
A New Algorithm for P-log Inference Engine

Weijun Zhu

Texas Tech University

Abstract. P-log is a recently developed knowledge representation and
reasoning language which allows to combine logical and probabilistic
reasoning. Even though a naive implementation of P-log inference en-
gine allows some real life applications, in many cases it is still too slow
and memory consuming. In this paper we develop and implement a new
algorithm for answering P-log queries. The new approach reduces the
size of ground P-log program by only grounding rules which are related
to the given query. By utilizing the unitary property of the program, this
approach also avoids computing all possible worlds of the grounded pro-
gram. We present some empirical test results of the naive implementation
and this new implementation, and discuss the strength and weakness of
both systems.

1 Introduction

The language P-log was introduced by [1] to represent logical and probabilistic
information in the form of logic program. The semantics of the language is based
on the semantics of Answer Set Prolog (ASP) [2]. The probabilistic information
is also described by a set of rules whose semantics is built on the theory of Causal
Bayesian Network [3].

P-log inherits it’s logical expressibility and elaboration tolerance from ASP.
Unlike Bayesian networks, which are acyclic graphs, P-log allows users to state
recursive definitions without introducing extra atoms or variables. While Bayesian
networks are widely used for probabilistic reasoning, data mining and machine
learning, they are less suitable for representing some large and dynamic domains.
A problem that may require thousands of nodes in its Bayesian networks rep-
resentation can often be described by a P-log program with dozens of rules.
Moreover any change of the size of the domain may cause huge changes on the
corresponding graph while in P-log such change can be done simply by replacing
some constants.

The first implementation of P-log can be downloaded from www.cs.ttu.edu/ ∼
wezhu. Some comparison of performance and ease of representation between this
implementation and the system ACE (available at reasoning.cs.ucla.edu/ace/)
can be found in [4]. The P-log system was successfully used to find best proba-
bilistic diagnoses with some rather complicated systems [5].

This implementation is based on the following approach: the inputs, a P-log
program Π and a query Q, are all translated into an ASP program τ(Π,Q) such
that answer sets of τ(Π,Q) are in one-to-one correspondence to the possible



worlds of Π. In addition, all the probabilistic information in Π is also encoded
by rules with some special atoms such that the measure of each possible world
can be computed from the special atoms in the answer sets. We chose smodels
[6], one of the most efficient answer set solver at that time, as the inference engine
for computing answer sets. After all answer sets are computed by smodels, the
probabilistic information is gathered for computing the probabilities of formulas
in the query. In this paper, we refer to such implementation as plog1.0 inference
engine.

This approach suffers from some drawbacks. It is not unusual for a P-log
program to have a huge number of possible worlds that make the system too
slow. In fact, many queries to a P-log program can be answered by looking only at
a smaller portion of the program, which in turn requires computing much smaller
number of possible worlds. The procedure of encoding probabilistic information
into logical rules significantly increase the size of each possible world. This affects
the performance of the procedure of gathering probabilistic information. In some
cases, this procedure can take more than 90% of the total running time.

In this paper, we introduce our new approach which partially grounds the
input P-log program and uses our own answer set solver to avoid encoding prob-
abilistic information to logical rules. In addition, this new algorithm utilizes the
unitary property of our input program to improve the efficiency of the solver
even more.

2 Syntax and Semantics of P-log

A probabilistic logic program (P-log program) Π consists of (i) a sorted signa-
ture, (ii) a declaration, (iii) a regular part, (iv) a set of random selection rules,
(v) probabilistic information part and (vi) a set of observations and actions.

1. Sorted Signature: The sorted signature Σ of Π contains a set of constant
symbols and term-building function symbols, which are used to form terms
in the usual way. Additionally, the signature contains a collection of special
function symbols called attributes. Technically, every P-log atom is of the
form a(t̄) = y, where a is an attribute, t̄ is a vector of terms, and y is a
term. A literal is an atomic statement a(t̄) = y or its negation, a(t̄) 6= y. An
extended literal l is a literal or a not l, where not is the default negation
of Answer Set Prolog.

2. Declaration: The declaration of a P-log program is a collection of definitions
of sorts, attributes and variables.

– A sort c can be defined by explicitly listing its elements,

c = {x1, . . . , xn} (1)

If c is a set of continuous integer numbes from m to n. It can be defined
as,

c = {m..n} (2)



– Attributes can be declared by a statement of the form:

a : c1 × . . .× cn → c0 (3)

– Variables V1, . . . Vn that can take values from elements of a sort c is
declared as:

#domain c(V1; . . . ;Vn) (4)

3. Regular Part: The regular part of a P-log program consists of a collection
of rules r of Answer Set Prolog (without disjunction) formed using literals
of Σ

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (5)

4. Random Selection Rules: A random selection rule is a rule of the form

[r] random(a(t̄) : {X : p(X)})← B (6)

where r is a term used to name the rule and B is a collection of extended
literals of Σ. Statement (6) says that if B holds, the value of a(t̄) is selected at
random from {X : p(X)}∩range(a), unless this value is fixed by a deliberate
action.

5. Probabilistic Information: Information about probabilities of random at-
tributes taking a particular value is specified by the following statement (pr
rules)

prr(a(t̄) = y|cB) = v (7)

where r is the term used to name the pr rules, B is a collections of extended
literals, pr is a special symbol not belonging to Σ and v is a term built from
arithmetic functions whose resulting value is a rational number between 0
and 1.

6. Observations and Actions: Observations and actions are statements of
the respective forms: obs(l) and do(a(t̄) = y), where l is a literal of Σ and
a(t̄) = y is an atom of Σ.

Formal semantics of P-log are explained in [1]. In short, the P-log program is
mapped to an A-Prolog program τ(Π) and random selection rules are translated
into choice rules in smodels. The answer sets of τ(Π) are one-to-one correspon-
dence to the possible worlds of Π. Probabilities are assigned to logically possible
outcomes of random selctions. The probability value is determined either by pr
ruels or by applying equal probability principles. The unnormalized probability,
µ̂(W ), of a possible world W induced by Π is

µ̂Π(W ) =
∏

a(t̄,y)∈W

P (W,a(t̄) = y) (8)

where P (W,a(t̄) = y) is the probability assigned to the random atom a(t̄) = y
w.r.t. the possible world W .



A query Q to a P-log program Π of signature Σ has the form:

{f1, . . . , fk}|obs(l1), . . . , obs(lm), do(a1(t̄1) = y1), . . . , do(an(t̄n) = yn) (9)

where f1, . . . , fk are formulas ofΣ, l1, . . . , lm are literals and a1(t̄1) = y1, . . . , an(t̄n) =
yn are atoms. By formula(Q), we mean the set {f1, . . . , fk} and by ΠQ, we mean
a P-log program consisting of do and obs statements in the query Q.

The answer to a query Q w.r.t. a P-log program Π of signature Σ is a set F
of formulas such that

F = arg max
f∈formula(Q)

PΠ∪ΠQ
(f) (10)

i.e., F is a subset of formula(Q) such that for every element f of F , the proba-
bility PΠ∪ΠQ

(f) has the largest value, or say f is one of the most likely formulas
being true w.r.t. the program Π ∪ΠQ.

The algorithm described in this paper requires the probabilty distribution
defined by the P-log programs follow the general probability principles. Fur-
thermore, the P-log program should be causally ordered, which means no two
random selection rules recursively depend on each other. In addition, we assume
that the regular part of the P-log program is stratified, hence truth value of
non-random attribute atoms in regular part of the P-log program can be derived
through an iteration methods, described in [7]. In this paper, we call such P-log
programs strongly causally ordered unitary (scou) P-log program. The formal
definition of scou P-log program can be found at www.cs.ttu.edu/ ∼ wezhu.

Most probabilistic problems, including all the problems which can be mod-
eled by Bayesian networks, can be represented as a scou P-log program. The
restrictions on scou P-log prgram does not limit much on the usefulness of the
algorithm described in this paper. Real life problems, including all the examples
shown in this paper, should be natually represented by scou P-log programs. Fur-
thermore, in most cases, a syntax based check can determine whether a given
P-log program is a scou P-log program or not.

3 Grounding Algorithm

In Bayesian networks, conditional independence among variables is the key con-
cept for concise representation of probabilistic models and for fast computation
of probabilities of random events. The similar idea can be used for P-log infer-
ence engine, that is to find a subset of P-log program such that for those rules
that are not included in this subset, the answer to the query is independent from
them.

Our approach is based on the idea of dependent set of literals. To start, let
us consider a ground scou P-log program, shown in Example 1, and our query
is what is the probability of l being true.

Example 1. A ground scou P-log program



l, a, b, c, d, e : boolean.

1. l :- a, not b.

2. [a] random(a).

3. pr(a=true|c=true)=1/4.

4. [c] random(c).

5. [d] random(d).

6. [e] random(e).

Let S be a set of ground literals of a signature Σ. By Term(S), we denote
the set of ground attribute terms occurring in the literals from S. For example,
if S = {a = true, b = false, c 6= true}, then Term(S) = {a, b, c}.

Definition 1. [Dependent Set]
Let Π be a ground P-log program with signature Σ and l be a ground literal

of Σ. We define the dependent set of l, written as DepΠ(l), as the minimal
set of ground attribute terms from Σ satisfying the following conditions:

– Term({l}) ⊆ DepΠ(l);
– For every regular rule l0 : −B of Π if Term({l0}) ⊆ DepΠ(l), then Term(B) ⊆
DepΠ(l));

– For a random selection rule of the form (4): if a(t̄) ∈ DepΠ(l), then Term(B∪
p(y)) ⊆ DepΠ(l);

– For a pr rule in the form (5) if a(t̄) ∈ DepΠ(l), then Term(B) ⊆ DepΠ(l).

In the previous example, the dependent set of literal l is {l, a, b, c}. Only
literals in the dependent set of literal l directly or indirectly affect the probability
of l being true. Therefore, we can safely remove rules which contain no such
literals. For example, rules 5 and 6 can be removed from the P-log program Π
without changing the results of the query. Notice that with some extra rules,
every formula f can be associated with a literal l such that l is true if and only if
f is true. Therefore, the theorem we address here only consider the probability
of a literal l and the proof can be found at www.cs.ttu.edu/ ∼ wezhu.

Theorem 1. Let Π be a unitary and strongly causally ordered P-log program
with no do and obs statements and Σ be its signature. Let l be a literal of Σ
and αl be the attribute term used to form l and Π ′ = {r|Term(Head(r)) ∈
Dep(αl), r ∈ Π}, then probΠ′(l) = probΠ(l).

For a non-ground P-log program, we can build the dependent set and ground
the program at the same time. This is done by using a head-to-body approach,
which is described in the Algorithm 1.

In Algorithm 1, we use the set Sterm for storing ground terms which belong
to the dependent set of l and use the set Sfinished for recording ground terms
that have been processed. Inside the while loop, the ground program Π ′ is built
by calling function GroundRule(Π, a(t̄)). This function checks each rule of Π, if
the rule can be grounded to rules whose head are formed by a(t̄), then all such
ground instances will be added to program Π ′. Since some rules generated by



Input: a strongly causally ordered P-log program Π with signature Σ and a
ground literal l of Σ.

Output: a ground P-log program Π ′ with signature Σ, such that
PΠ(l) = PΠ′(l)

Sterm := Term({l});
Sfinished := ∅;
Π ′ := declarations in Π;
while Sterm is not empty do

Let a(t̄) be an element of Sterm;
Π ′ := Π ′ ∪GroundRule(Π, a(t̄));
Reduce the program Π ′;
Update Sterm and Sfinished;

end
return Π ′

Algorithm 1: Ground

this function may be useless (whose bodies are never satisfied by any possible
worlds), we use a reduction function to eliminate any such rules. This reduction
function is critical to help the algorithm keep unrelated ground terms out of the
set Sterm and to avoid grounding useless rules.

4 Computing possible worlds and probabilities

We use the following example to show that sometimes computing all possible
worlds may not be necessary.

Example 2. [A scou P-log program Π]

a, b, f : boolean.

[a] random (a).

[b] random (b).

f :- a.

f :- b.

-f :- not f.

The probability of f being true w.r.t. Π can be computed by building a tree
in which nodes, N , are labeled by sets, LN , of literals in the signature of Π and
links are labeled by values v (0 ≤ v ≤ 1). The root of the tree consists of literals
that are always true in all possible worlds of Π and the children of a node N
are created as follows:

1. Find a random selection rule r such that r is ready to fire w.r.t. LN (i.e., the
body of r is satisfied by LN and the probability of each possible outcome
can be known by looking at corresponding pr rules or by applying equal
probability principles). Suppose we pick the first random selection rule in
Example 2 to fire, we will have two possible outcomes: a and ¬a.



2. We then derive as much as possible by using regular rules in the P-log pro-
gram. As shown in Figure 1(a), the literal f is included in the left child of
the root.

Fig. 1. Possible worlds of Example 2 and two different ways of computation of prob-
ability of f being true: (a) PΠ(f) = PΠ({a, f, b}) + PΠ({a, f,¬b}) + PΠ(¬a, b, f); (b)
PΠ(f) = PΠ({a, f}) + PΠ({¬a, b, f}).

The weight of each node N , denoted by weight(N), is the product of all the
numbers that label the path from root to node N .

If a P-log program is a scou P-log program, then the tree built as above is
a unitary tree in which the sum of the weights of all the leaf nodes descended
from a node N is the weight of N .

To compute the probability of f being true w.r.t. the P-log program in Ex-
ample 2, we can sum up all the weights of leaf nodes in which f is true. However,
from Figure 1 we can see that we don’t need to fire random selection rule b for the
node {a, f}. Since the literal f is always true in both possible worlds ({a, f, b}
and {a, f,¬b}) extended from {a, f}, we can compute the probability of f being
true by summing up PΠ({a, f}) and PΠ({¬a, b, f}), as shown in Fig. 1(b).

With obs and do statements in the program which play roles of eliminating
possible worlds of a P-log program, the tree we created above is no longer a
unitary tree. Hence we need some special treatments to make our tactics work.
The goal is to look for nodes N in the tree such that the subtree rooted at N is
a unitary tree and the truth value of a formula f is known by N . We call such
a node as a partial possible world that knows f . Let Φ be the set of all these
nodes, we define φ be a subset of Φ as follows: For any node N and its parent
N ′, N ∈ φ if and only if N ′ 6∈ Φ.

The set φ is called the set of smallest partial possible worlds that knows f .
For some P-log programs Π, the size of φ can be much smaller than the number
of possible worlds. The following theorem says that it is sufficient to compute



the probability of a formula f by summing up the weights of nodes which belong
to φ.

Theorem 2. Let Π be a ground scou P-log program and f be a formula. Let
φf be the collection of all the smallest partial possible worlds of Π that know
f . Then the probability of f being true w.r.t. Π can be computed by following
equation:

PΠ(f) =
∑

I∈φf and I`f

weight(I) (11)

5 Experimental Results

We conducted our experiments on a machine built with 1.60GHz CPU and 2GB
memory. The operating system is ubuntu system (version 10.10). We name the
new P-log inference engine, based on the approach described in this paper, as
plog2.0 and call the old one as plog1.0. We compare the performance of plog2.0
against plog1.0 to see how problems from different domains affect the efficiency
of those two P-log inference engines.

We record the running times of smodels in plog1.0 and report them under the
column Sm in our tables. The time used for retrieving probability information
from output of smodels and computing the probability of formulas is recorded
under the column Retr. The running times of grounding software (lparse) is
not listed in the tables as they are normally insignificant. For the new system
plog2.0, grounding time is presented under the column Ground and the time
used for computing partial possible worlds and probability of formulas is shown
under the column Solv. The total running times, shown under the column Total
is measured by the time command in Linux system. In our tables, all running
times are in seconds.

We tested our systems on a large pool of domains. The four domains we
presented in this paper are the most representative examples that address the
characters of both systems. Except the grid domain, all domains came from
other relevant literatures. The detailed descriptions of each domain and the P-
log program of each instances can be downloaded at www.cs.ttu.edu/ ∼ wezhu.

plog1.0 plog2.0

Inst Sm Retr Total Ground Solv Total

bld(7,1) 3.73 53.58 59.71 0.02 0.01 0.10

bld(7,2) 2.01 29.03 33.90 0.02 0.05 0.09

bld(7,3) 1.13 15.73 17.59 0.03 0.37 0.41

bld(7,4) 0.57 8.58 9.64 0.03 1.97 2.03

bld(8,4) 6.53 94.76 105.19 0.04 14.91 15.09

Fig. 2. The blood type domain



In Figure 2, we present our results of running plog2.0 and plog1.0 on problems
in blood type domain [8]. The problem is to compute the probability of one’s blood
type w.r.t. the ABO blood type system given some blood type information of his
relatives. In each instance bld(m,n), we have total m individuals in the domain,
of which n persons are relatives to the person P we are interested in. Notice
that the blood types of individuals from other families have no influence on the
result of our query. Those individuals can be dropped in the computation of the
query. From the table, we can see that plog2.0 performs much better than plog1.0
does on all the instances we have tested. For many instances, plog2.0 is more
than 10 times faster than the old one. The table also shows that the procedure
of retrieval probabilistic information from answer sets takes about 90% of the
total running time of old P-log inference engine. In plog2.0, the grounding time
normally is small and insignificant comparing to the solving time.

The result is not surprising. While both systems have the same ungrounded
P-log program as input, the sizes of the ground programs produced by both
systems are different. The system plog1.0 grounds the whole program as plog2.0
only grounds part of it. The system plog2.0 will produce a ground program which
only contains n individuals, adding new individual who is not a family member
of P to this domain has no effect on how many possible worlds will be computed
by plog2.0. On the other hand, adding any individual increases the number of
possible worlds in an exponential rate for old plog1.0 system.

plog1.0 plog2.0

Inst Sm Retr Total Ground Solv Total

grid 3 4 0.09 1.09 1.34 0.01 0.04 0.07

grid 2 7 0.38 5.35 6.13 0.01 0.06 0.08

grid 3 5 0.70 11.03 12.48 0.02 0.26 0.30

grid 4 4 1.54 23.40 26.50 0.02 0.56 0.59

grid 3 6 6.48 106.06 120.06 0.03 1.69 1.79

grid 4 5 - - T.O. 0.03 8.08 8.12

Fig. 3. The grid domain.

In Figure 3, we show the results of instances of the grid domain. A grid
instance, grid m n, consists of m × n nodes. Each node N in the grid receives
information from its left node and the node above and passes information to
its right node and the node below. If N is a faulty node, then it cannot pass
information to its destination. Nodes can randomly be faulty or not. We are
interested in the probability of information being successfully passed from the
node in the up-left conner to the node at the bottom-right conner. The table
shows that the plog2.0 performs significantly better than plog1.0 does. The total
time grows exponentially with respect to the number of total nodes in the domain
for both engines, but plog2.0 is about 50 times faster than plog1.0 on average.



Since each node has two possible outcomes: the node is faulty or not, the
number of possible worlds of an instance grid m n is 2m×n. However, the set of
all the smallest partial possible worlds that knows the formula (here, the formula
is the literal MessageReceived which means the node in the bottom-right conner
can receive the information sent from the node at the up-left conner) is much
smaller. For example, if the source node is faulty then we can derive that the
literal MessageReceived cannot be true regardless the status of other nodes.
We find that the idea of smallest partial possible worlds that knows formula is
specially useful when dealing with diagnosis problems where often a single faulty
component may explain the unexpected observations.

plog1.0 plog2.0

Inst Sm Retr Total Ground Solv Total

B10 2 0.05 0.02 0.17 0.24 0.03 0.27

B10 3 0.11 0.07 0.28 0.24 0.09 0.34

B15 1 0.09 0.01 0.36 1.10 0.04 1.15

B15 2 0.34 0.09 0.71 1.09 0.25 1.36

B15 3 1.11 0.45 1.88 1.13 1.04 2.19

B20 1 0.42 0.03 1.01 3.94 0.14 4.11

B20 2 1.99 0.28 2.90 4.01 1.25 5.29

B20 3 6.62 0.53 7.86 4.04 7.32 11.40

Fig. 4. The block map domain.

We present the results of running instances of the block map domain [9]
with plog2.0 and plog1.0 in Figure 4. We can see that the new inference engine
takes more total time than those reported by plog1.0. Unlike previous examples,
where grounding time does not play important role on the overall performance,
the grounding time for the block map domain significantly affects the overall
performance of plog2.0. As shown in the table, in the worst case, the grounding
time could take over 90% of overall running time. The solving time of plog2.0 is
comparable to the running time of smodels. Except the last instance, the solving
time of plog2.0 is slightly smaller than the running time reported by smodels.

Both engines produce the same size of ground programs and compute same
number of possible worlds. Therefore, the method we described in this paper
does not help. The head-to-body approach in the grounding algorithm takes too
many extra considerations with no gains on the resulting ground program. We
believe this is the main reason why the overall performance of new system is
worse than the old one.

The results of running instances of poker domain [10] are shown in Figure
5. An instance P3 12 means we randomly pick 3 cards from 12 cards deck. We
are interested in the probability of having a single pair in hands. Again, the new
system plog2.0 performs better than the old system plog1.0. On average, plog2.0
takes about 1/3 of the total running time of plog1.0 does.



plog1.0 plog2.0

Inst Sm Retr Total Ground Solv Total

P3 12 0.02 0.07 0.25 0.05 0.02 0.08

P3 16 0.05 0.21 0.37 0.09 0.07 0.17

P3 20 0.11 0.54 0.79 0.14 0.15 0.30

P5 12 0.07 0.39 0.58 0.12 0.15 0.29

P5 16 0.41 2.78 3.54 0.22 1.00 1.24

P5 20 1.67 12.60 14.90 0.33 4.14 4.51

Fig. 5. The poker domain

Similar to the block map domain, both engines essentially produce the same
size of ground programs and compute the same size of possible worlds for in-
stances in this domain. Comparing to the block map example, the differences
are: in the poker domain, the size of the ground program is not very large. With
much less logical rules in the poker domain, each possible world is much easier
to compute. Meanwhile, the large number of possible worlds makes the retrieval
procedure become a bottle neck of the performance of plog1.0. It takes more
than 80% of the total computing time in several instances. The smaller num-
ber of logic rules make the difference between the solving time of plog2.0 and
smodels running time of plog1.0 become ignorable.

Overall, plog2.0 performs better than plog1.0 in many types of domains.
The improvement can be huge when partially grounding and computing partial
possible worlds are effective. Even for domains that have no such advantage can
be taken by plog2.0, the new system will still perform better when the total
number of possible worlds is large and the size of the program is small.

6 Related Work

We surveyed several works related to the inference engine designed for com-
bining logic and probabilistic reasoning. Some research has been conducted to
explore the benefits of utilizing logic information in Bayesian networks to im-
prove the performance of exact inference engines for probabilistic reasoning. [11]
shows computing with Bayesian networks can be reduced to CNF model counting
problems. This approach uses state-of-the-art SAT and model counting engines,
dynamic variable branching heuristics and component caching. The results show
that when many of the dependencies between variables are entirely or partially
deterministic, the efficient logical machine underlying model counting programs
stands a good chance of quickly reducing the problem into small subproblems.
[9] described an inference system for relational Bayesian networks. The system
compiles propositional instances of these models into arithmetic circuits. It ex-
ploits determinism and local structure in the Bayesian networks and expand the
scales of Bayesian networks that can be handled efficiently by exact inference
algorithms.



The closest work to this paper is another implementation of P-log [10], which
was developed by using XASP for computing possible worlds and using XSB for
retrieving probability information from possible worlds. Because their imple-
mentation is also translation based, it has similar disadvantages as our old P-log
system. We plan to perform a comparison between plog2.0 and their implemen-
tation in the near future.

7 Conclusion and Future Work

This paper described the inference engine plog2.0. We conclude that our new
system plog2.0 is more efficient than the old system plog1.0. In a summary, we
list the major improvements of this new system as follows:

1. The new algorithm selectively grounds the input program with respect to
the specific query given by the user. When a smaller ground P-log program
is produced, often it will result in a much smaller set of possible worlds and
faster computation.

2. The old P-log system involves complicated decoding of probability informa-
tion from the output of an answer set solver and some heavy IO operations.
The new algorithm combines construction of possible worlds and measures
their probability at the same time. This may save significant computation
time comparing to old P-log system where measuring possible worlds are
done after all the possible worlds are built.

3. The new algorithm takes advantage of unitary properties of the input pro-
gram. Instead of building the set of all possible worlds, it builds the set of
smallest partial possible worlds that know the formula. The later set usu-
ally is much smaller and easier to compute. The grid domain and similar
examples have shown that such method can be very effective in reducing the
computation time of P-log systems.

We list our future work as follows:

– It is very common that once a P-log program is fixed, user may propose many
different queries to the program. Our implementation so far has not taken
advantage of this usage patterns. With proper cache techniques introduced,
we should be able to avoid repeated computations for different queries. One
of our future work is to add this feature so that a sequence of queries can be
answered more quickly.

– If the ground program still contains a lot of random selection rules. Evaluat-
ing the probability of a formula may become infeasible. Many sophisticated
algorithms, such as recursive conditioning [12], allow to compute probabili-
ties with respect to a large scale of Bayesian networks. We are interested in
how to combine these techniques with our algorithms so we may be able to
solve problems with large number of random selection rules in the program.

– The ground time of the new system is comparatively small in many domains
we have tested. However in some other problems, when the ground program



is large, it become the bottle neck of the overall performance of P-log sys-
tem. We expect some overhead of our grounding algorithm comparing to
other systems, say lparse. However, we believe a better design of grounding
algorithm may help reducing the grounding time on large programs.

References

[1] Baral, C. and Gelfond, M. and Rushton, N.: Probabilistic Reasoning with An-
swer Sets. Theory and Practice of Logic Programming (2009) 57–144.

[2] Gelfond, M. and Lifschitz, V.: Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing (1991) Vol. 9. 365–385.

[3] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kauffmann Publishers, Inc. (1988)

[4] Gelfond, M. and Rushton, N. and Zhu, W.: Combining Logical and Probabilis-
tic Reseasoning. AAAI Spring Symposium (2006) 50–55.

[5] Nogueira, N. and Balduccini, M. and Gelfond, M. and Watson, R. and Barry,
M.: An A-Prolog decision support system for the Space Shuttle. In PADL 2001
(2000) 169–183.

[6] Niemelae, I. and Simons, P.: Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. Lecture Notes in Computer Sci-
ence (1997) Vol. 1265 420–429.

[7] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem
Solving Cambridge University Press. (2003)

[8] Friedman, N. and Getoor, L. and Koller, D. and Pfeffer, A.: Learning Proba-
bilistic Relation Models. AAAI (1999) 1300–1307.

[9] Chavira, M. and Darwiche, A. and Jeager, M.: Compiling Relational Bayesion
Networks for Exact Inference. International Journal of Approximate Reasoning
(2006). Vol. 42. 4–20.

[10] Anh, H.T. and Ramli, C.D. and Damasio, C.V.: An Implementation of Ex-
tended P-Log Using XASP. In ICLP ’08: Proceedings of the 24th International
Coference on Logic Programming, pages 739-743, Berlin, Heidelberg, 2008.
Springer-Verlag.

[11] Sang, T. and Beame, P. and Kautz, H.: Solving Bayesian networkss by
Weighted Model Counting. AAAI (2005). 475–482.

[12] Darwiche, A.: Recursive Conditioning. Artificial Intelligence (2001). VOL. 126.
5–41


