
Weighted-Sequence Problem: ASP vs CASP

and Declarative vs Problem Oriented Solving

Yuliya Lierler, Shaden Smith, Miroslaw Truszczynski, Alex Westlund

Department of Computer Science, University of Kentucky, Lexington, KY
40506-0633, USA

Abstract. We define the weighted-sequence problem inspired by an im-
portant industrial problem in oracle query optimization. We evaluate
several approaches to solving this problem using answer set programming
(ASP) system clingo and constraint answer set programming (CASP)
solver clingcon. The focus of this paper is an experimental evaluation
of search procedures behind clingo and clingcon. We used instances
of the weighted-sequence problem where integer parameters were quite
small so that grounding was not an issue and we could focus on compar-
ison of the effectiveness of the clingo and clingcon solvers. Our key
finding is that the effectiveness of the search procedure used by cling-

con lags behind that of clingo. It points to the need for further research
on the integration of ASP and CSP technologies.

1 Introduction

In this paper we define a weighted-sequence problem and evaluate several ap-
proaches to solving this problem using answer set programming system clingo1 [5]
(based on grounder gringo [3] and answer set solver clasp2 [5]) and con-
straint answer set programming solver clingcon3 [6] (based on modifications
of grounder gringo, answer set solver clasp, and constraint solver gecode4).

The weighted-sequence problem is inspired by the problem of finding an op-
timal join order in the cost-based query optimizer of oracle. Lewis [8, Chapter
14] describes the basics behind the procedure used by the oracle query opti-
mizer for computing the optimal join order. A join order considered by oracle

is a left-deep tree [14] such that (i) tables participating in the join are its leaves
and (ii) each inner node is associated with one of the three possible join tags.
Each table is associated with parameters that are used to compute the cost of
each inner node with respect to the join tag assigned to it. The join-order cost
is the sum of the costs of its inner nodes. The optimal join order is an order

1 http://potassco.sourceforge.net/
2 clasp is an answer set solver that implements conflict-driven learning and back-

jumping.
3 http://www.cs.uni-potsdam.de/clingcon/
4 http://www.gecode.org/



with the minimal cost. Currently, oracle optimizer may consider all possible
orderings only for the joins consisting of at most five tables [8, Page 416]. Thus,
for the joins of more than five tables oracle will not even attempt to find an
optimal join order. The ultimate goal of our project is to address the problem
of finding an optimal join order using the state-of-the-art technology especially
designed for solving difficult combinatorial search problems. As a step in this
direction we devised a combinatorial problem based on similar constraints as
those that specify the join-order problem, simplifying and modifying some of
them. We call the resulting problem the weighted-sequence problem. In this pa-
per we study the effectiveness of “pure” and constraint answer set programming
tools in solving the weighted-sequence problem, selecting clingo and clingcon

as representative systems of each type. Based on our experimental results we for-
mulate several observations concerning the comparison between the two systems
and the methodology of modeling problems in (constraint) answer set program-
ming. The weighted-sequence problem was one of the benchmarks used in the
Third Answer Set Programming competition5. It was referred to as benchmark
number 28, Weight-Assignment Tree.

(Pure) answer set programming [10, 12] is a declarative programming for-
malism based on the answer set semantics of logic programs [7] that is oriented
towards difficult combinatorial search problems. Constraint answer set program-
ming [11, 6, 1] is an approach to declarative problem solving that integrates an-
swer set programming with constraint processing (CSP). It is thus closely related
to satisfiability modulo theory formalisms [13] that integrate satisfiability solv-
ing with specialized solvers for formulas in the corresponding theory. One of the
goals of research on constraint answer set programming (CASP) systems is to
address the grounding bottleneck of answer set programming (ASP) technology.
Combinatorial optimization problems when modeled as answer set programs re-
quire the use of variables representing possible values of the goal function, values
that often form large numeric domains. For instance, planning and scheduling
problems give rise in the corresponding answer set programs to variables repre-
senting times when events take place. Typically, the ranges of possible values for
these variables are large. Large domains are responsible for the sizes of ground
programs to be prohibitively large, and grounding in such situations is a com-
putationally heavy task. The optimization problem may in fact be quite easy
(especially if optimal solutions are not required and approximate solutions are
regarded as satisfactory). However, if grounding involves instantiations of vari-
ables over large domains, we may time out even before we get to the solving stage.
CASP solvers attempt to address the problem by performing partial grounding
only, not grounding variables whose values range over large domains, but dele-
gating the task of finding appropriate values for them to specialized algorithms,
in particular, to CSP solvers.

The weighted-sequence problem is a benchmark that involves large domains
of integers that can serve as possible values of the parameters associated with
nodes, costs of nodes and the total cost of the sequence. In this work we ex-

5 https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite



perimentally evaluate search procedures behind ASP system clingo and CASP
system clingcon. In the phase of the work we describe in this preliminary
report, we used instances of the weighted-sequence problem where integer pa-
rameters were quite small. Thus, grounding was not an issue. In this way we
could focus on comparisons of the effectiveness of the clingo and clingcon

solvers. Our key finding is that the effectiveness of the search procedure used
by clingcon lags behind that of clingo. It points to the need for further re-
search on the integration of ASP and CSP technologies. Clearly, even if CASP
tools address the grounding bottleneck, without solid performance of constraint
solvers and good communication between ASP and CSP sides, CASP will not
become the milestone in declarative problem solving that it promises to be. In
our current and forthcoming work we will construct instances of the weighted-
sequence problem with large weights. We will use these instances to investigate
the effectiveness of clingcon in processing them. We expect that grounding will
not be a problem and will focus on the question how close to optimal solutions
will clingcon be able to get.

Another goal of the present work is to evaluate different approaches to mod-
eling the weighted-sequence problem. First, we model the weighted-sequence
problem in a purely declarative manner by simply encoding the problems re-
quirements directly and literally as they appear in the problem statement. We
then analyze the structure of the problem, and derive additional constrains, not
explicitly stated. This allows us to formulate alternative encodings of the prob-
lem. We evaluate these encodings experimentally and use the results to formulate
some plausible explanations pertaining to properties of different encodings, as
well as to properties of the clingo and clingcon solvers.

2 Problem Statement

In the weighted-sequence problem we are given a set of leaves (nodes) and an
integer m — maximum cost. Each leaf is a pair (weight,cardinality) where weight
and cardinality are integers. Every sequence (permutation) of the leaves is such
that all but one of the leaves are assigned a color. A colored sequence is associated
with the cost. The task is to find a colored sequence with the cost of at most m.

For a set S of leaves and an integer m, by [S,m] we denote the corresponding
weighted-sequence problem. We say that an integer m is optimal with respect
to a set S of leaves if (i) there exists a solution for a weighted-sequence problem
[S,m] and (ii) there exists no solution for [S,m − 1].

We now describe how a cost of a sequence is defined. Let M denote a sequence
of n leaves l0, . . . , ln−1. For a leaf li in M (0 ≤ i ≤ n − 1), by lw

i
and lc

i
we

denote its weight and cardinality respectively. Each leaf from l1, . . . , ln−1 in M

is assigned one of the three colors green, red, or blue (l0, that is, the leaf in
the position 0 in M , is not assigned any color). We define the costs of leaves as
follows. For the leaf l0, we set

cost(l0) = lw0 .



For every colored leaf we set

cost(li) =







lw
i

+ lc
i

if li is green
cost(li−1) + lw

i
if li is red

cost(li−1) + lc
i

if li is blue

where 1 ≤ i ≤ n − 1. The cost of the sequence M is the sum of the costs of its
colored leaves, i.e.,

cost(M) = cost(l1) + · · · + cost(ln−1).

3 ASP: Generate and Test Methodology

Answer set programming [10, 12] is a declarative programming formalism based
on the answer set semantics of logic programs [7]. The idea of ASP is to represent
a given computational problem by a program whose answer sets correspond
to solutions. A common methodology to solve a problem in ASP is to design
two main parts of a program: generate and test [9]. The former defines a
larger collection of answer sets that could be seen as potential solutions. The
latter consists of rules that eliminate the answer sets that do not correspond
to solutions. Often a third part of the program, define, is also necessary to
express auxiliary concepts that are used to encode the constraints. Thus, when
we represent a problem in ASP, two kinds of rules have a special role: those that
generate many answer sets corresponding to possible solutions, and those that
can be used to eliminate the answer sets that do not correspond to solutions.

The input language of clingo (clingcon) allows the user to specify large
programs in a compact fashion, using rules with schematic variables and other
abbreviations. Also, such aggregates as count and sum [2] are accepted by
clingo. We refer the reader to the manual of clingo [4] for more details.

4 Encodings

We start by presenting an encoding in the clingo language that attempts to
solve the weighted-sequence problem in a purely declarative manner by simply
encoding directly and literally the requirements as they appear in the problem
statement. We then describe two alternative encodings of the problem, referred
to as sequence and partition, that impose additional constraints derived by an-
alyzing the problem statement. Finally, we discuss how the presented clingo

encodings may be mapped into the corresponding clingcon programs that take
advantage of a special feature of clingcon, constraint atoms. In the subsequent
section, we evaluate these encodings experimentally and discuss the results of
the experiments.

In an ASP approach to the weighted-sequence problem, the goal is to encode
the problem as a logic program so that answer sets of the program correspond to
sequences of leaves with the cost less than or equal to a given integer. Below we
will present several encodings. Some concepts are common among all of them.



We introduce these common concepts now. Let n and m be integers giving
the number of leaves in a weighted-sequence and the bound on the total cost
of a solution (maximum cost), respectively. Then each encoding contains the
following facts

num(n)
maxCost(m).

The weight and cardinality of each leaf is specified by facts of the form

leafWeightCard(i, w, c)

where i is an integer from 1 to n that stands for an id of a leaf, and w and c are
the weight and cardinality of this leaf, respectively.

In addition, the define part of every encoding presented here contains the
rules

position(X) ← X = 0..N − 1, num(N)
coloredPos(X) ← X = 1..N − 1, num(N),

which specify that there are n positions 0 . . . n− 1 in the sequence, and that the
positions 1 . . . n − 1 are colored and the position 0 is not.

Declarative Encoding: The generate part of a declarative encoding, decl,
consists of two components. The first one generates a sequence by assigning each
leaf its position. It is formed by the following two rules:

1{leafPos(L,P ) : position(P )}1 ← leaf (L)
← leafPos(L,P ), leafPos(L′, P ), position(P ), L 6= L′.

Intuitively, the first rule says that each leaf is assigned exactly one position. The
second rule ensures that no two leaves are given the same position.

The second component of the generate part assigns exactly one color to
every colored position in a sequence (positions 1, . . . , n− 1). To this end, it uses
the rule

1{posColor(P,C) : color(C)}1 ← coloredPos(P ). (1)

The define part of the program decl includes the rules that specify the
cost of each colored leaf in a sequence. For instance, the two rules

posCost(0, Cost) ← leafWeightCard(L,Cost, C), leafPos(L, 0)
posCost(P,Cost) ← coloredPos(P ), posColor(P, red), leafPos(L,P ),

leafWeightCard(L,W,C), posCost(P − 1, Cost′),
Cost = Cost′ + W

(2)

state that (i) the cost of the leaf in position 0 is its weight, and (ii) the cost of
the leaf in position P that is colored red is the sum of its weight and the cost of
the preceding node. Similar rules specify costs of leaves when they are colored
green or blue. The define part of decl also contains rules that define the cost
of a sequence:

seqCost(1, Cost) ← posCost(1, Cost)
seqCost(P,Cost) ← coloredPos(P ), P > 1, seqCost(P − 1, C),

posCost(P,C ′), Cost = C + C ′.

(3)



Consequently, an answer set contains the ground atom seqCost(n − 1, c) if and
only if c is the number that corresponds to the cost of the sequence determined
by other ground atoms in this answer set (we recall that n is the number of
leaves).

Finally, define includes the rule that introduces an auxiliary predicate exists:

exists ← seqCost(N − 1, Cost), num(N), Cost ≤ M,maxCost(M) (4)

which affirms that the sequence determined by an answer set has total cost
within the specified bound m.

The test part of decl contains a single constraint:

← not exists (5)

It tests whether an answer set contains the atom exists and eliminates those that
do not. In this way only answer sets determining sequences with the total cost
within the specified bound remain. If no such sequence exists the program has
no answer sets.

We note that the rules in (2) and (3) may be augmented by additional
conditions in the bodies

Cost ≤ M, maxCost(M).

This modification is crucial for making grounded instances of programs smaller
and is incorporated in our encodings.

Sequence Encoding: For a leaf l, we define its value val(l) as follows

val(l) =

{

lw if lw ≤ lc,
lc otherwise.

In other words, val(l) denotes the smallest number associated with l (either its
weight or cardinality).

The sequence encoding depends on the following observation.

Observation 1: Given an arbitrary sequence of leaves there is a simple condition
that determines the color to assign to each leaf in a colored position so that any
other color assignment results in a colored sequence with the same or higher
cost.

Let l1 and l2 be two leaves in a sequence so that l1 immediately precedes l2.
We define the color number of a leaf l2 to be

colorNum(l2) = min(lw2 + lc2, cost(l1) + val(l2)).

We now note that a color assigned to leaf l2 in accordance with the formula

color(l2) =







green if colorNum(l2) = lw2 + lc2
red otherwise, if colorNum(l2) = cost(l1) + lw2
blue otherwise, if colorNum(l2) = cost(l1) + lc2



guarantees that any other color assignment results in a colored sequence with
the same or higher cost.

Observation 1 paves a way to the sequence encoding, seq, that builds upon
the decl encoding by replacing choice rule (1) with a set of “deterministic rules.”
For instance,

posColor(P, green) ← P > 1, coloredPos(P ), leafPos(L,P ),
leafWeightCard(L,W,C), leafValue(L, V ),
posCost(P − 1, Cost), W + C < Cost + V

is one of the rules in this set. We note that leafValue(l, v) is defined in a way
that v = val(l) where l is a leaf.

The other difference with the decl encoding is that rules defining posCost

predicate are simpler. In the decl encoding, three cases are considered, when
a position is colored green, red, and blue. In the encoding seq, with the use of
leafValue predicate, it is sufficient to consider two cases only: when position is
colored green and when it is not.

Intuitively, the advantage of this encoding in comparison with the encoding
decl is a reduced search space as color assignment requires no choices.

Sequence Encoding+:
Observation 2: Let l and l′ be two consecutive elements in a sequence M (in that
order), neither being a green-colored leaf. It is easy to see that if val(l′) < val(l)
then the sequence M ′ constructed from M by changing the order of l and l′ has
a smaller cost than M , i.e., cost(M ′) < cost(M). We say that M ′ is a mirror
sequence of M .

Observation 2 allows us to add the constraint

← coloredPos(P ;P − 1),
not posColor(P, green), not posColor(P − 1, green),
leafPos(L,P − 1), leafPos(L′, P ),
leafValue(L, V ), leafValue(L′, V ′), V > V ′.

(6)

to the seq encoding. We denote the resulting program by seq+. We note that
this constraint may eliminate a sequence M that is a solution to a given weighted-
sequence problem. Yet, such sequence M is guaranteed to have a mirror sequence
to which constraint (6) is not applicable.

The motivation behind extending the seq encoding with (6) is that it reduces
the search space by placing additional constraints on the answer sets. We expect
that the closer a maximum cost of a given weighted-sequence problem to an
optimal one, the more important the presence of constraint (6) is.

Sequence Encoding++:
Let g1, . . . , gk be a set of all green nodes in a sequence M , that is,

M = M0 g1 M1 . . . gk Mk (7)

where each Mi, 0 ≤ i ≤ k, is a sequence of non-green leaves. We call M0 the 0th
partition of (7) and each gi Mi, 1 ≤ i ≤ k, a green partition of (7).



Observation 3: The fact that the cost of a green node only relies on its own
weight and cardinality makes it evident that the cost of the sequence (7) is the
same as the cost of the sequence M0 P , where P is any permutation of the set
of green partitions of (7), {g1 M1, . . . , gk Mk}.

Observation 3 allows us to add a constraint

← leafPos(L,P ), leafPos(L′, P ′),
posColor(P, green), posColor(P ′, green),
L < L′, P > P ′

to the seq+ encoding. We denote the resulting program by seq++. Intuitively,
the last rule “breaks the symmetry” by enforcing that any answer set to the
program has the green leaves in the corresponding solution sequence sorted ac-
cording to their costs.

Partition Encoding: For a leaf l and a sequence N of non-green leaves, we say
that a sequence l N is sorted if the leaves in N are in the ascending order with
respect to their values.

In all encodings discussed previously, the generate part enumerates se-
quences of given leaves. Observation 3 suggests that one may formalize gener-

ate differently. We now describe a partition encoding, part, that is based on
this idea. Let n be the number of leaves in a given weighted-sequence problem.
Instead of generating a sequence of n leaves, we can generate partitions that can
be used to form such a sequence. Once the partitions are generated, they can
be viewed as determining the sequence, in which they occur sorted according
to the costs of their green nodes, with the 0th partition placed at the front (cf.
Observation 2). We now specify the corresponding generation process:

– assign (arbitrarily) some leaves (up to n − 1) a green color (each of these
leaves “marks” its partition),

– decide (arbitrarily) for each non-green leaf to which partition it belongs:
either 0th or a green partition marked by some green node,

– assign (deterministically) each non-green leaf a position in its partition so
that the resulting partition is sorted,

– ensure that the 0th partition is nonempty.

We now start the description of the test part. First, we insist (similarly to
the seq++ encoding) that only a sequence M built from partitions so that the
green nodes in M are sorted may form an answer set.

Next, we use the rules in (3), (4), and (5) to ensure that the resulting sequence
is indeed a solution. To do so we introduce a number of rules into the define

part of a program that together map a position of a leaf in its partition to a
position of this leaf in the sequence (resulting from the generated partitions).

Finally, we use Observation 1 to support additional restrictions that forbid
sequences where changing a color of some node from green (non-green) to non-
green (green) produces sequences with smaller costs.

To implement these ideas in part we used aggregates #count and #sum

provided by the clingo language. The construct #count was used in three rules
and the construct #sum in one rule of the encoding.



We note that the encoding part is similar in its nature to the encoding
seq++ as both programs incorporate similar restrictions (based on Observa-
tion 1-3) on the solution space. The main difference is in generate where part

is more restrictive in choices. Also, the part encoding is more sophisticated. For
instance, it encodes sorting of a partition by simulating a procedural sorting algo-
rithm based on computing ranks and exploiting the aggregate #count provided
by clingo rather than enforcing sortedness by the appropriate constraint.

Clingcon Encodings: The CASP language of clingcon extends the ASP
language of clingo by introducing “constraint atoms”. These atoms are inter-
preted differently than “typical” ASP atoms. The system clingcon splits the
task of search between two programs: an ASP solver (clingo) and a CSP solver
(gecode). The ASP solver incorporated in clingcon treats constraint atoms
as boolean atoms and assigns them some truth value. The CSP solver, on the
other hand, is used to verify whether the assignments given to the constraint
atoms by the ASP solver of clingcon hold based on their “real” meaning.

Let us note that posCost and seqCost predicates used in all clingo encod-
ings are “functional”. In other words, when this predicate occurs in an answer
set its first argument uniquely determines its second argument. Often, functional
predicates in ASP encodings can be replaced by constraint atoms in CASP en-
codings. Indeed, this is the case in the weighted-sequence problem domain. This
allows us to create alternative encodings for decl and seq*6 in the clingcon

language.
We note that only the rules containing functional predicates posCost and

seqCost were changed in decl and seq* to produce clingcon programs. For
instance, the rules in (3) and (4) have the following form in the clingcon

encodings

seqCost(1) =$ posCost(1) ← coloredPos(1)
seqCost(P ) =$ posCost(P ) + seqCost(P − 1) ← P > 1, coloredPos(P )
exists ← seqCost(N − 1) ≤$ M, num(N), maxCost(M),

where

seqCost(1) =$ leafCost(1), seqCost(P ) =$ leafCost(P ), seqCost(N − 1) ≤$ M

are constraint atoms. The rules defining posCost , such as (2), are rewritten in a
similar manner:

posCost(0) =$ Cost ← leafWeightCard(L,Cost, C), leafPos(L, 0)
posCost(P ) =$ posCost(P − 1) + W ← coloredPos(P ), posColor(P, red),

leafPos(L,P ), lwc(L,W,C)

where posCost(0) =$ Cost and posCost(P ) =$ posCost(P−1)+W are constraint
atoms.

We may benefit from the clingcon encodings when weights, cardinalities,
and maximum cost of a given weighted-sequence problem are “large” integers.

6 By seq* we denote a set of sequence encodings: seq, seq+, and seq++.



In such cases, any clingo encoding (that we were able to come up with) faces
the grounding bottleneck. The size of the grounded clingo program heavily
depends on the integer values provided by the problem specification. On the
other hand, the size of the corresponding grounded clingcon program is only
affected by these integer values to a small degree.

5 Experimental Analysis

We first describe hardware specifications, the instance generation method, and
the procedures used to perform all experiments. Then we will discuss the exper-
imental results reported.

Experiments were performed concurrently on three identical machines, each
possessing a single-core 3.60GHz Pentium 4 CPU and 3Gb of RAM, and running
Ubuntu Linux version 10.04. Experiments were performed with clingo version
3.0.3 and clingcon version 0.1.2.

Instance generation is driven by two inputs: the number of leaves in the
instance, n, and the maximum value of a weight and cardinality of a single leaf,
v. The process is as follows.

Given n and v, the set S of n leaves is created by generating random weights
w0, . . . , wn−1 and cardinalities c0, . . . , cn−1 so that 0 ≤ wi, ci ≤ v. For all in-
stances we used v = 12 and n ∈ {8, 10, 11, 12}. We refer to these instances as
small because of the low value of v.

As leaves are created they are assigned a unique position in a sequence M .
Positions 1 through n−1 in M are then randomly assigned colors green, red, or
blue. We calculate the total cost m of the resulting colored sequence M and use
it, together with S, as an instance to the weighted-sequence problem, denoted
by [S,m].

Thirty random problem instances generated in the way described above form
the first set of instances, called easy, that we have considered. Clearly, all of them
are satisfiable.

The process for creating harder instances involved an encoding and a solver.
The encoding decl was chosen along with clingo. We proceeded by starting
with an instance [S,m] in the set of easy instances. We used clingo to solve it,
and if the instance was satisfiable, we calculated the tree cost for the solution
found, m̂, (clearly, m̂ ≤ m). We then repeated the process for the instance [S, m̂−
1]. When [S, m̂− 1] was found unsatisfiable we had two pieces of information: m̂

was optimal with respect to S, and m̂−1 made the set S “barely” unsatisfiable.
Instances obtained in this way from the easy instances formed the sets of optimal
and unsatisfiable instances, respectively, while the instances [S, m̂ + 5] formed
the set of hard instances.

To benchmark each encoding we used them to solve each of the four instance
sets (easy, hard, optimal, and unsatisfiable). A time limit of 1500 seconds (25:00
minutes) was enforced for each instance. From each solve the grounding time,
solving time, solution, and number of choices made were recorded for further
study.



We now present and discuss the results of our experiments. Due to space
limits only some results are presented here. For more results, we refer to http:

//www.csr.uky.edu/WeightedSequence/.

First, we note that clingcon was designed to address the “grounding bottle-
neck” of ASP. It attempts to accomplish that by performing a partial grounding
only, that is, not instantiating all variables but leaving the task of finding ap-
propriate values for them to a constraint solver. On the one hand, our results
seem to indicate that clingcon succeeded. Indeed, the grounding times we
collected for the four groups of instances we considered clearly show the superi-
ority of clingcon over clingo in this respect (cf. http://www.csr.uky.edu/
WeightedSequence/).

However, in ASP grounding is only a part of the story and as one comes to
solving, the picture arguably is different. We will now focus on solving. In the
tables we discuss below we report total times that include both the time for
grounding and solving. We do so because ultimately it is the total time that is
the right measure of the performance of a program solving tool in ASP.

From Easy to Hard or Clingo vs Clingcon: Tables 1 - 4 present the timing
results on instances that are easy, hard, optimal, and unsatisfiable, respectively.
First, the results suggest the soundness of our approach to generate increasingly
harder instances by lowering the bound for the total weight. Indeed, for both
solvers the tables show growing running times as we move across the four groups
of instances from easy to unsatisfiable ones. More interestingly, the results sug-
gest observations important for a comparison of the strengths and weaknesses
of clingo and clingcon.

When run on easy instances, clingo and clingcon show similar perfor-
mance (Table 1), with clingcon having a slight advantage (a significant one
on the partition encodings). The reason is that grounding takes more time for
clingo but problems are easy enough that clingcon can still solve them very
quickly.

In the following tables ”to” stands for ”timeout”.

Table 1. Easy Small Instances

clingo clingcon

Instance decl seq seq+ seq++ part decl seq seq+ seq++ part

1-8-127 0.28 0.21 0.23 0.61 0.50 0.01 0.03 0.02 0.03 0.08
2-8-63 0.15 0.10 0.11 0.11 0.53 0.01 0.03 0.02 0.06 0.13
3-8-186 0.68 0.48 0.49 0.82 0.83 0.00 0.03 0.02 0.04 0.06
4-10-248 0.94 0.96 0.99 4.39 22.90 0.02 0.06 0.06 0.46 3.14
5-10-194 0.64 0.64 0.68 5.91 50.86 0.02 0.04 0.04 0.07 1.62
6-10-155 0.61 0.49 0.53 0.78 7.75 0.02 0.03 0.03 0.05 0.18
7-11-139 0.59 0.53 0.60 1.21 66.51 0.02 0.06 0.27 0.84 6.57
8-11-168 0.90 0.83 0.93 2.73 30.30 0.02 0.08 0.04 1.38 0.52
9-11-152 0.54 0.52 0.58 2.67 1.54 0.02 0.06 0.13 3.08 1.65
10-12-140 0.83 0.55 0.66 1.13 36.91 0.02 0.10 0.06 0.99 2.05



The situation changes when we consider hard instances (Table 2). Now
clingcon, while still quite often outperforming clingo, in many cases does
worse or much worse. In fact, clingcon times out 16% of the time.

Table 2. Hard Small Instances

clingo clingcon

Instance decl seq seq+ seq++ part decl seq seq+ seq++ part

1-8-71 0.27 0.16 0.17 0.15 0.44 0.32 0.02 0.04 0.03 1.34
2-8-27 0.06 0.06 0.07 0.09 0.54 1.09 0.16 0.25 0.32 1.06
3-8-81 0.38 0.67 0.68 0.47 2.54 385.16 4.29 1.24 0.40 0.21
4-10-78 1.04 3.40 2.59 1.93 17.12 to 15.02 30.52 28.74 18.50
5-10-79 0.24 0.38 0.54 1.58 127.81 56.85 0.18 0.03 0.11 5.26
6-10-70 0.29 0.36 0.60 1.88 30.48 to 7.90 28.62 0.18 25.74
7-11-73 2.55 0.45 0.52 2.59 94.97 to 519.86 171.16 87.06 49.52
8-11-44 1.17 1.24 1.21 3.82 379.62 to 0.22 86.04 to 114.88
9-11-86 0.54 0.56 0.36 4.00 27.37 to 0.60 0.30 33.76 4.42
10-12-51 0.48 0.45 0.78 3.48 145.84 to 243.22 to 89.48 103.02

This trend continues when the two solvers are run on instances with the
weight bound set at the optimal value (Table 3), and on instances that are
“barely” unsatisfiable, the weight bound being set at 1 less the optimal value. In
the first case clingcon times out in 46% of the 50 cases, while clingo termi-
nates on each instance and under each encoding. In the second case, clingcon

times out in 66% of cases while clingo times out only 4% of the time.

Table 3. Optimal Small Instances

clingo clingcon

Instance decl seq seq+ seq++ part decl seq seq+ seq++ part

1-8-66 0.68 0.68 0.29 0.19 1.14 495.37 0.60 0.06 1.76 1.20
2-8-22 0.10 0.06 0.06 0.11 0.28 553.80 2.83 3.70 2.70 16.44
3-8-76 1.41 1.06 1.52 1.31 11.48 to 2.93 22.70 15.47 2.81
4-10-73 50.03 43.54 20.19 17.50 48.46 to 675.65 1079.84 to 3.68
5-10-74 1.23 5.64 5.19 11.11 327.94 to 53.65 23.27 763.50 403.82
6-10-65 23.26 16.59 8.14 3.26 144.99 to 304.59 1225.43 to 59.92
7-11-68 7.57 102.06 18.07 21.90 163.95 to to to to to
8-11-39 0.67 5.43 29.15 13.48 836.16 to 1412.74 to to to
9-11-81 19.82 23.33 25.16 32.60 713.39 to 522.50 to to to
10-12-46 1.87 6.41 22.18 18.04 1413.56 to 766.77 to to to

The results suggest that as the problems get harder (constraints get tighter
and harder to satisfy), the initial advantage of clingcon that results from sim-
plified grounding disappears. For hard problems, clingcon’s constraint solver
or the way clingcon integrates the constraint solver with its ASP solver are
not optimized enough to handle them. In contrast, the highly optimized ASP
solver of clingo is still powerful enough to handle them.



Table 4. Unsatisfiable Small Instances

clingo clingcon

Instance decl seq seq+ seq++ part decl seq seq+ seq++ part

1-8-65 5.99 2.95 3.51 1.84 19.96 to 43.77 39.17 12.39 83.65
2-8-21 0.12 0.12 0.12 0.13 3.57 1422.32 16.76 16.66 12.34 24.64
3-8-75 3.08 3.01 2.31 2.56 19.61 to 46.51 24.34 22.66 73.61
4-10-72 50.68 53.63 41.90 18.62 273.76 to to to to to
5-10-73 64.26 105.47 78.81 16.01 399.21 to to to 1085.86 1294.15
6-10-64 23.40 14.50 8.36 2.98 122.62 to to to 957.29 909.54
7-11-67 64.07 125.61 87.60 19.75 1311.52 to to to to to
8-11-38 100.57 129.44 73.57 19.67 1306.37 to to to to to
9-11-80 1353.04 71.56 87.32 27.70 to to to to to to
10-12-45 60.42 88.24 39.00 22.83 to to to to to to

From Declarative to Sophisticated: Next, we considered the effect of the
encoding on the performance of solvers. The declarative encoding represents a
rather direct and literal modeling of problem requirements in terms of rules. In
particular, it does not take advantage of the observations that form the basis for
the sequence and partition encodings, and that aim at constructing programs
defining smaller search spaces of feasible candidates. Interestingly, despite that,
for clingo the declarative, the encodings seq and seq+ are quite comparable,
with no encoding being significantly better than the other two. In fact, we have
analyzed the number of choices made by clingo on unsatisfiable instances and
they correlate well with running times of the system (Table 5 illustrates the
claim). This seems to suggest that clingo, and to be more precise, its mechanism
to learn additional clauses restricting the search space, can compensate for at
least some constraints that are not given explicitly.

As concerns clingcon, providing constraints explicitly is essential; cling-

con times out on all but one declarative unsatisfiable instances. However, it
terminates on three out of 10 instances under seq and seq+ encodings, and on
six out of 10 instances under the seq++ encoding and five out of 10 instances un-
der the part encoding, all four encodings providing additional “human” inferred
constraints. These results suggest that learning in clingcon is still rather inef-
fective. Unsatisfiable instances are particularly relevant here as they force solvers
to “consider” the entire search space.

Next, we note that understanding the problem and its constraints is not
enough. Much still depends on how the necessary concepts are modeled. The
encodings seq++ and part are designed so that the search spaces of candidate
solutions they generate are isomorphic. However, the two encodings go about
defining these search spaces quite differently. It turns out that the partition
encoding is much less efficient (Table 5; we consider only clingo on unsatisfiable
instances as clingcon timed out on most instances in that group). The partition
encoding, part, uses the aggregate sum to model one of its constraints. We have
also considered an alternative partition encoding, part-no-sum, that eliminates
a rule with the aggregate sum in part using normal rules. Our results show that
using this aggregate does not significantly change the number of choice points



Table 5. clingo: Unsat Instances; Reporting running time (choice points)

Instance seq++ part part-no-sum

1-8-65 1.84(7509) 19.96(28106) 10.86(31983)
2-8-21 0.13(1017) 3.57(6576) 0.69(4874)
3-8-75 2.56(7025) 19.61(21844) 9.07(17886)
4-10-83 18.62(27769) 273.76(118054) 106.77(150284)
5-10-61 16.01(25478) 399.21(205398) 112.40(201958)
6-10-64 2.98(8685) 122.62(55158) 33.24(62826)
7-11-67 19.75(35376) 1311.52(404169) 285.40(402663)
8-11-38 19.67(35852) 1306.37(402672) 231.77(420197)
9-11-80 27.70(45504) to 936.19(1440642)
10-10-72 22.83(41926) to 396.34(591053)

reported by clingo on part and part-no-sum. However, the part encoding
results in overall higher processing times. We also note that the number of choice
points on seq++ is substantially smaller than for part and part-no-sum. Both
part and part-no-sum contain rules that use the aggregate count. Incidentally,
the encoding seq++, which seems to perform best of the three does not use
aggregates at all. While these results are based on too small a sample to derive
any general conclusions, they do suggest that arbitrary use of aggregates may
be detrimental.

6 Conclusions and Future Work

Our experimental findings lead us to a number of observations. Highly tuned
ASP search procedures (in particular, clingo) display a similar behavior on both
“literal” (decl) and “sophisticated” (seq++) encodings of a weighted-sequence
problem. The sophisticated encoding imposes a number of restrictions on the
problem’s search space in comparison with the literal encoding. For a hybrid
system such as clingcon (that combines both ASP and CSP techniques in its
search), reduced search space is crucial for the system’s scalability. Overall our
key finding is that the effectiveness of the search procedure used by clingcon

lags behind that of clingo. CASP promises to become a milestone in declarative
problem solving by providing the means of solving ASP grounding bottleneck.
To do so, solid performance of CSP solvers and good communication between
ASP and CSP sides are essential.

Currently we are constructing instances of the weighted-sequence problem
with large weights. We will use these instances to investigate the effectiveness
of clingcon in processing them. We will focus on the question how close to
optimal solutions will clingcon be able to get. We also plan to evaluate the
performance of CSP/CLP systems on the weighted-sequence problem. This will
provide us with a better understanding on how ASP, CASP, and pure CSP/CLP
systems compare.

Ultimately we will shift our attention to the query optimization problem of
finding an optimal join order using the state-of-the-art ASP/CASP/CSP tech-
nology. We expect that the experience and knowledge gained during our work
on weighted-assignment problem will be instrumental.



Acknowledgments

We are grateful to Philip Cannata for bringing the problem of finding an optimal
join order in query optimization to our attention, and to Vladimir Lifschitz and
Yuanlin Zhang for useful discussions related to the topic of this work. Yuliya
Lierler was supported by a CRA/NSF 2010 Computing Innovation Fellowship,
Miroslaw Truszczynski by the NSF grant IIS-0913459, and Shaden Smith and
Alex Westlund by the NSF REU Supplement to that grant.

References

1. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: Proceedings of ICLP’09 Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP’09) (2009)

2. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in
disjunctive logic programming: semantics, complexity, and implementation in DLV.
In: Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI 2003). pp. 847–852. Morgan Kaufmann (2003)

3. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set program-
ming. In: Proceedings of the Ninth International Conference on Logic Programming
and Nonmonotonic Reasoning. pp. 266–271 (2007)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T.,
Thiele, S.: A User Guide to gringo, clasp, clingo and iclingo (2010),
http://cdnetworks-us-2.dl.sourceforge.net/project/potassco/potassco_

gui%de/2010-10-04/guide.pdf
5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set

solving. In: Proceedings of 20th International Joint Conference on Artificial Intel-
ligence (IJCAI’07). pp. 386–392. MIT Press (2007)

6. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proceed-
ings of ICLP-2009. pp. 235–249 (2009)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium. pp. 1070–1080. MIT Press (1988)

8. Lewis, J.: Cost-Based Oracle Fundamentals. Apress (2005)
9. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1-2),

39–54 (2002)
10. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer Verlag (1999)

11. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence
(2008)

12. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

14. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimiza-
tion for the join ordering problem. The VLDB Journal (1997)


