
ARVis - Programmer’s Guide

Visualization of relationships between answer sets

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Thomas Ambroz
Matrikelnummer 0925772

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Univ.Ass. Dipl.-Ing. Günther Charwat

Wien, 29.06.2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

ARVis - Programmer’s Guide

Visualization of relationships between answer sets

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Thomas Ambroz
Registration Number 0925772

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Univ.Ass. Dipl.-Ing. Günther Charwat

Vienna, 29.06.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Thomas Ambroz
1120 Wien, Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

v

Abstract

Answer Set Programming (ASP) becomes more and more popular. The complex and high-
performance features of ASP languages make it easy to solve problems in non-deterministic
polynomial time. The result of such problems often consists of many different solutions. Some
solutions (answer sets) could be similar, they could have some common properties or interrelate.
Such relationships could be very interesting. Therefore it is helpful to use this aspect and
create a graph visualization, containing the relationships between these answer sets. This
Bachelor’s thesis comprises such a visualization process by introducing the software application
called ARVis (Answer Set Relationship Visualizer) and its Programmer’s Guide. Therefore,
the structure, components, libraries, classes and interfaces of ARVis are described including
source code examples and explanations for the better understanding of the complete process.
The final software provides a simple user interface and supports ASP solvers like DLV, clingo
and a customized combination of grounder and solver (like gringo and clasp). The conditions
whether two answer sets correlate or not are defined by a separate ASP program. The computed
relationships between the answer sets are represented by a simple and interactive graph.

vii

Kurzfassung

Answer Set Programming (ASP) wird heutzutage immer bedeutsamer. Die komplexen und
leistungsfähigen Funktionen von ASP Programmiersprachen ermöglichen es, Probleme in nicht-
deterministischer polynomialer Zeit zu lösen. Das End-Ergebnis dieser Probleme besteht häufig
aus vielen unterschiedlichen Einzellösungen. Manche dieser Lösungen (Answer Sets) können sich
ähneln, sie können gemeinsame Eigenschaften aufweisen oder miteinander in Beziehung stehen.
Daher ist es hilfreich, diese gemeinsamen Eigenschaften und Beziehungen von Answer Sets mit
Hilfe eines Graphen darzustellen. In dieser Bachelorarbeit wird solch ein Visualisierungsprozess
vorgestellt, indem die Software ARVis (Answer Set Relationship Visualizer) beschrieben wird
– in Form einer Anleitung aus Entwicklersicht (Programmer’s Guide). Daher werden Aufbau,
Komponenten, Java Bibliotheken, Klassen und Schnittstellen von ARVis beschrieben – zusätzlich
mit vielen Quelltext Beispielen und Erklärungen für ein besseres Verständnis des gesamten
Vorgangs. Die Anwendung enthält eine leicht bedienbare Benutzeroberfläche und unterstützt
ASP Solver wie DLV, clingo und eine benutzerdefinierte Kombination von Grounder and Solver
(wie beispielsweise gringo and clasp). Die Bedingungen, ob zwei Answer Sets in Beziehung
stehen, werden durch ein eigenes ASP Programm definiert. Ein einfacher interaktiver Graph stellt
letztendlich die berechneten Beziehungen der Answer Sets dar.

ix

Contents

1 Introduction 1

2 Answer Set Programming 3
2.1 Background and application . 3
2.2 Syntax and semantics . 4

3 ASP-Solvers 7
3.1 DLV . 7
3.2 Clingo (gringo + clasp) . 9
3.3 Specialization: User defined combination of grounder and solver 11
3.4 Differences . 11
3.5 ASP Wrapper: Embedding ASP-Solver in independent external applications . . 13

4 Software “ARVis” 15
4.1 Background: The presentation of answer sets and their relationships 15
4.2 Layout and structure of the software . 17
4.3 Interfaces & libraries . 19
4.4 Use of the wizard for program guidance . 20
4.5 Connection to ASP-Solver . 22
4.6 Parser: The processing of the result data . 29
4.7 Calculation and setting of relationships . 31
4.8 Presentation as graph . 33

5 Conclusion 37

Bibliography 39

xi

CHAPTER 1
Introduction

Nowadays, Answer Set Programming (ASP) becomes more and more popular – for academic
purposes as well as in industrial real-world applications. The complex and high-performance
features of ASP languages make it easy to solve problems which are classified to be solvable in
non-deterministic polynomial time (NP) or also in NPNP . The result of such problems often
consists of many different solutions, represented by simple plain text terms [5, 11, 15]. Therefore
it could sometimes be difficult to interpret these results or to keep an overview. Additionally,
complex problems can lead to complex solutions, consisting of quite a lot of terms, called facts.
Due to this problem, some software solutions have been developed, helping to give a better
overview by doing visualization processes based on the results of the ASP program. On the
one hand, such a visualization could be done by representing each fact of an answer set as a
visualization element. Further on, other graphical elements can be used to classify and group
the facts. This way, each calculated solution would be organized to understand it in a better and
simpler way. This visualization process could be realized with shapes, colors and text elements or
with a simple graph by using nodes and edges. Such software applications are currently existing
on the market and are still in development [13]. On the other hand, the visualization could have
another main focus: Instead of considering every single solution (answer set) as closed entity,
the collection of all calculated solutions can be considered as a whole. Some solutions (answer
sets) could be similar, they could have some common properties or interrelate. Such relationships
are very interesting in some application cases and therefore it is useful to gather this aspect of
visualization too.

This bachelor’s thesis introduces this new aspect of visualization in detail by providing a
Programmer’s Guide for a concrete software application called ARVis (Answer Set Relationship
Visualizer)1. It implements such a visualization of answer sets. This application is a self-
development of Thomas Ambroz and Andreas Jusits. It was developed for the bachelor’s thesis

1http://www.dbai.tuwien.ac.at/proj/argumentation/vispartix/#ARVis

1

in cooperation with Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran and Univ.Ass. Dipl.-Ing.
Günther Charwat.

The Programmer’s Guide starts with an introduction to Answer Set Programming (ASP) in
general. Therefore the background, history and application of ASP will be described and the
some basics about syntax and semantics of Answer Set Programming will be mentioned.

The next chapter presents some specific ASP Solvers like DLV and clingo by explaining the
functionality, fields of application and advantages [10, 12]. Further on, a specialization – the
user defined combination of grounder and solver – is described. An example with the grounder
gringo and the solver claspD demonstrates the profit of such a custom combination. This specific
combination is explained because it is a use case in the software ARVis.

After the description of the most important ASP solvers, a simple table compares the dif-
ferences between DLV and clingo (gringo/clasp). The last section of this chapter deals with
the ASP Wrapper – the embedding of an ASP Solver in external software applications. Such
ASP Wrappers are useful to benefit from the powerful features of ASP Solvers in independent
programs. Therefore the already existing DLV Java Wrapper is introduced [17]. In addition, this
section explains how a wrapper could be implemented on your own in case that no wrapper exists
for a specific solver or programming language.

With the knowledge about Answer Set Programming, ASP Solvers and ASP Wrappers we can
start with the introduction and implementation of the software ARVis. This process is described
in Chapter 4. Starting with the general background of ARVis, the presentation of answer sets
and their relationships will be described and illustrated in detail. This section explains what is
necessary to put such a visualization process into practice and what details should be considered.
For example it is useful to define whether two answer sets correlate or not by a separate ASP
program. This way, the user is always able to define the conditions on his own and can do this in
a very comfortable way. The next section of this chapter is about the layout and structure of the
software. This gives an overview about all existing packages, included libraries and also about
the most important classes. After that, short descriptions of the imported libraries are provided to
learn about their main features.

Now the implementation of the software gets started by explaining the wizard which is
needed for simple program guidance. Short code extracts should demonstrate how the wizard is
used. Also, the 5 steps to visualize the relationships between answer sets are illustrated. After
that, the connection to the ASP Solver is implemented by using the DLV Java Wrapper as well
as the self-developed Gringo-Clasp-Wrapper. The latter also needs a parser which converts
the plain text solutions produced by the ASP Solver in corresponding Java objects for further
processing. This is emphasized in the next section by providing the source code of this parser
together with a short explanation. Now we are able to calculate and set the relationships between
the corresponding answer sets. For that we can use the solutions which we have computed in the
previous step and which are now available as simple Java objects. The last section finishes the
visualization: a graph is built and the calculated edges and vertices are set.

2

CHAPTER 2
Answer Set Programming

2.1 Background and application

The idea of Answer Set Programming is to use a program as a formal representation of a certain
problem. This means that such a program does not specify how its problem should be solved,
but rather describes what has to be achieved and which solutions have to be found. It is a simple
declarative logic programming language which includes high-performance abilities to solve
computational problems which are specified by a logic program. The solutions of this problem
are called answer sets, which the solver has to find and return as output. These results are sets of
ground first-order literals.

ASP is one of the most important and popular procedures to solve declarative problems. ASP
systems can be used to find solutions for all search problems in non-deterministic polynomial
time (NP) or also in NPNP . That is why ASP becomes attractive in the scientific community
and it is used in real-world applications with industrial and academic purpose. Some examples
for application areas are team-building, reasoning tools in systems biology and synthesis of
multiprocessor units. Also, there is a rising interest in artificial intelligence because of the high
power of knowledge representing, manipulating and modeling.

The roots of Answer Set Programming can be found in knowledge representation, non-
monotonic reasoning, logic programming, Boolean Constraint Solving and also databases. An
early version of an ASP solver was smodels. Later DLV and SAT-based (satisfiability checking)
ASP solvers were introduced like assat and cmodels. Also the conflict-driven ASP solver clasp
was developed [11, 12].

The structure and components of ASP languages are very similar. The common modeling

3

components, for example, are disjunction in the heads of the rules, non-monotonic negation,
weak/strong constraints and aggregate functions. Most ASP systems support many other interest-
ing and useful features. The language itself is very powerful and expressive, because all properties
and rules can be defined as a mathematical formalism. So the problems can be defined in a simple
and precise way and it is possible to express all the properties of a finite structure by using a
function-free first-order configuration which is decidable in non-deterministic polynomial time
with an oracle in NP. Further on, Answer Set Programming is declarative, which means that the
order of literals and rules do not matter. ASP is also assigned to Disjunctive Logic Programming
(DLP). Therefore, simple disjunction can be used in the heads of the rules and also negation is
allowed in the bodies [5, 14, 17].

As mentioned in the introduction, the answer sets computed from the solver are only simple
plain text solutions and users might find it difficult to interpret them. Therefore, a few applications
were developed, which represent the solutions as visualization, so the user can understand them
better. Software applications and tools like ASPVIZ1, IDPDraw2 and also Kara [13] are some
examples, providing such visualizations of answer sets.

2.2 Syntax and semantics

Programs are defined as collections of clauses of the following form:

a1 ∨ ... ∨ ak ← b1 ∧ ... ∧ bm ∧ not bm+1 ∧ ... ∧ not bn

In ASP, strings starting with lower case letters define constants, while strings with uppercase
letters are used as variables. This is the same convention as in Prolog. Logical variables and
constants are called terms. Expressions like p(x1, ..., xn) are referred to as atoms, whereas p is a
predicate with arity n and the containing arguments are terms. Moreover, literals are defined as
positive or negative atoms. An ASP program consists of a finite set of rules.

In written ASP code, disjunctive rules have following expression:

a1 ∨ ... ∨ ak :− b1, ..., bm, not bm+1, ..., not bn

a1...ak and b1...bn are atoms, whereas k ≥ 0, n ≥ m ≥ 0.

The left side of :− is called head, the right side is defined as body. To be more specific, for
the rule r, we get H(r) = a1, ..., ak as the set of literals in the head, and B(r) = B+(r)∪B−(r)
as the set of literals in the body, whereas B+ is the positive body with B+(r) = b1, ..., am and
B− is the negative body with B−(r) = bm+1, ..., an. The head of a rule must be true whenever

1http://www.cs.bath.ac.uk/ occ/aspviz/
2http://dtai.cs.kuleuven.be/krr/software/visualisation

4

all its body literals are true. An atom can only be true if there is at least one rule which is deriving
it.

There are a few more definitions describing specific constructs of rules: A rule which contains
only one single literal in its head, is called normal rule. If a rule does not define any head literals,
it is described as integrity constraint. This means, the head is assumed to be false. If all literals
in the body are true, the entire rule would be false. Therefore the current answer set would be
discarded. A rule with an empty body is referred to as a fact and in this specific case the sign :−
can be omitted. A fact is always true.

Usually, all rules in ASP programs have to be safe. That means that each variable in a rule
must occur in at least one positive literal in the body of this rule. Further on, a program, a rule or
an atom which does not include any variables, is called ground.

To understand the semantic background of ASP programs, we have to explain the Herbrand
Universe and Herbrand Base [5, 9, 17]. The Herbrand Universe, abbreviated UP , defines the set
of all constants which are contained in a program P . In case no constant is defined in P , the
Herbrand Universe obtains only one arbitrary constant. The Herbrand Base, BP , is the set of
all ground atoms which can be constructed from predicates in P and of all constants which are
defined in the Herbrand Universe. For every rule r, ground(r) describes the set of rules which
are obtained by replacing all occurring variables in r by constants of the Herbrand Universe.
Moreover, ground(P) is the union of all sets ground(r) for every r in the program P .

We define an interpretation of a program P as a consistent subset of the Herbrand Base.
The expression consistent means that this subset does not include any literal which occurs as its
positive and negative form at the same time (for example a and −a).

First, let P be a positive program (all rules contain only positive bodies) and I an interpreta-
tion: I is closed under P , if ∀r ∈ ground(P), H(r) ∩ I 6= 0, whenever B(r) ⊆ I . In words, I
is closed under P , if for every rule r in ground(P), where the body of the rule is a subset of I ,
there is at least one element in the head of this rule which occurs in I . An interpretation is an
answer set for a positive program P , if it is minimal of all closed interpretations.

To define the answer sets not only for positive but also for general programs, we can use
a reduction to positive programs with a stability condition. The reduct or Gelfond-Lifschitz
transformation [5, 9, 17] of a ground program, ground(P), concerning an interpretation I is the
positive ground program ground(P)I , which can be obtained by applying the following two
rules on ground(P):

• deleting all rules r in ground(P), where the negative body of r contains at least one
element of I , or in mathematical term: B−(r) ∩ I 6= 0

• deleting all negative bodies from the remaining rules

An answer set for a program P is an interpretation I , if I is an answer set of ground(P)I .

5

CHAPTER 3
ASP-Solvers

This chapter introduces some popular ASP-Solvers, which we will use and need in the software
ARVis described in Chapter 4. Also, some custom combinations of grounder and solver will
be explained, playing an important role in the Answer Set Relationship Visualizer application.
Further on, a simple overview represents the differences, advantages and disadvantages of the
particular ASP-Solvers. The end of this chapter deals with the embedding of such ASP-Solvers
in stand-alone applications.

3.1 DLV

DLV1 is a state-of-the-art ASP system which is still being developed by Italian researchers. The
project started at the end of 1996 as an research project at the Vienna University of Technology
which was led by Nicola Leone. It was first released in 1997, and over the years DLV has been
improved substantially: The language made progress, a lot of extensions were implemented
and many optimization techniques were developed, for example database methods for better
instantiation and also efficient techniques for model generation and answer set checking. Cur-
rently, it supports disjunction, weak-constraints, aggregates and also function symbols. Today,
DLV is developed in cooperation between the University of Calabria and the Vienna University
of Technology. Nowadays, it is widely used all over the world, by researchers as well as in
real-world applications. The powerful and efficient DLV engine can be seen as competitive to all
advanced ASP systems [1].

The following list gives a short overview of some industrial and commercial applications,
where DLV is a basic component [6, 14]:

1http://www.dlvsystem.com

7

• Team Buidling in the Gioia-Tauro Seaport: With the help of DLV a system was imple-
mented to automatically and optimally allocate the available personal of the seaport of
Gioia Tauro.

• E-Tourism: The so-called IDUM application is an e-tourism system helping a travel
agency to find the best travel routes.

• Automatic Itinerary Search: This web application is able to output details about the
whole transportation system of the Italian region Calabria, like bus/train departure times,
routes, travel time and walking directions.

• e-Medicine: In the Italian region Veneto, an automatic system has been developed to
classify documents and case histories of clinical diagnoses.

• Information Integration: INFOMIX, a data integration system, funded by the European
Commission, implemented the DLV System as computational core. Many web sources
and legacy databases have to be integrated for the information system of the University of
Rome.

• CERN: At the European Laboratory for Particle Physics, DLV is used as an deduc-
tive database application which requires sophisticated knowledge manipulation on huge
databases.

DLV is developed using GNU tools like GCC, flex and bison. That is why it is portable to
Unix platforms and Microsoft Windows. The main component of the system is the DLV core.
Around this core there are many front-end preprocessors and output filters. DLV is executed via
the command line and the input data is read from the file/database system. Also, an Intelligent
Grounding Module is implemented. Its main task is to generate a subset of the grounded input.
This subset is usually much smaller than the original but still has the same answer sets. This
modified ground program is then processed by the Model Generator, which computes an answer
set and proofs with the help of the Model Checker whether it is valid or should be discarded. This
is done with every single answer set until a predefined maximum number has been generated or
no more answer sets are available. Finally the result is filtered and printed to the output [6, 14].

As mentioned above, DLV is very powerful and has many language enhancements. To go in
more detail: DLV has capabilities for advanced knowledge modeling, like an efficient formalism
for knowledge representation and reasoning. This high-expressive language construct includes
aggregates, strong/weak constraints, lists, sets, functions and more. Also inheritance and queries,
built-in predicates and also integer arithmetics are available, of course. The order of rules is not
relevant, so DLV is full declarative. Many front-ends exist supporting special applications in the
fields of artificial intelligence and information extraction [4, 6, 14].

Further on, the implementation of the DLV engine is very solid, so many algorithms and
techniques for database and search optimization are available to increase the performance. Such
improvements are indexing and join ordering methods and also heuristics and back-jumping

8

techniques. An advantage of the high-performance of DLV is that it can easily handle complex
problems and also is able to manage applications with enormous use of data [14].

The last important area is the interoperability of DLV to interact with external applications
and systems: many abilities exist to connect to relational database management systems over a
ODBC interface or to call external C++ functions within the DLV programs. Also a mechanism
for running DLV from Java programs is available, the DLV Java Wrapper2. This Java Wrapper is
introduced in Section 3.5.

3.2 Clingo (gringo + clasp)

The university of Potsdam develops Answer Set Programming tools such as gringo, clasp and
clingo3.

Gringo is a grounder tool and is able to translate logic programs with first-order variables into
equivalent propositional logic programs. This is necessary because answer set solvers are based
on variable-free (ground) programs. After that, the application clasp can be used to generate the
corresponding answer sets. Clasp is an answer set solver, which provides powerful modeling
capacities and state-of-the-art techniques from Boolean constraint solving. For satisfiability
checking (SAT) clasp uses an algorithm based on conflict-driven nogood learning. The last tool,
clingo, combines both features in one single application [10, 12].

All three software applications are written in C++ and are published under the General
Public License (GNU). Precompiled binaries and source packages are available for Linux and
Windows.

By using gringo and clasp, the output of gringo is usually piped to clasp. Therefore, the
following two commands are the same:

gringo [options | files] | clasp [options | number]
clingo [options | files | number]

The options argument: There are a lot of options available which can be used to set extra
functionality or to define some preferences and limits. The files argument: Several files can be
added here, which should be used as input. The number argument: it defines the maximum
number of answer sets which should be computed.

2http://www.dlvsystem.com/dlvsystem/index.php/DLV_WRAPPER
3http://potassco.sourceforge.net/

9

A simple gringo/clasp invocation could be as follows:

gringo input_A.lp input_B.lp | clasp

where input_A.lp and input_B.lp are the source files.

Like DLV, gringo/clasp and clingo have many powerful features: on the one hand, they
support the characteristic ASP main features like integrity constraints, classical negation and
disjunction. On the other hand they provide built-in arithmetic functions, built-in comparison
predicates, assignments, intervals, conditions, pooling, aggregates, optimization, meta-statements
and integrated scripting language [10].

To explain some of these expressive features: Intervals can be used in the form i..j, where
i and j are integers. Then, such an interval defines each integer k which is between i and j. All
intervals are expanded by the grounding process. For example: num(1..3). is the same as
num(1). num(2). num(3).

Conditions are defined by the symbol : and are helpful to encode a lot of ground atoms that
are connected by conjunctions and disjunctions. The advantage of this construction is the more
efficient and shortened notation. A short example:

pc(1). pc(2). pc(3). pc(4). pc(5)
assign(X) : pc(X).

is the same as

pc(1). pc(2). pc(3). pc(4). pc(5)
assign(1) | assign(2) | assign(3) | assign(4) | assign(5).

Another interesting feature is pooling. With the symbol ; it is possible to specify alternative
terms for arguments inside an atom. Therefore, p(...,X;Y,...) in the body of a rule is the
same as p(...,X,...), p(...,Y,...), whereas such an expression inside the head of a
rule causes to expand to multiple rules.

Aggregates can be used on a multiset of weighted literals that results to a specific value.
Gringo provides #sum, #min, #max to compute the sum, minimum and maximum of weights
for example.

With optimization statements answer sets can be rated. This is like the weak constraint
aggregate in DLV. With meta-statements it is easy to write comments, hide predicates, use
constants, declare domains and do a lot more. The last relevant feature and ability is to use the
integrated scripting language, so-called lua, inside a program which provides extended features
like inserting answer sets into a database.

10

3.3 Specialization: User defined combination of grounder and
solver

In some cases it is useful to define a custom combination of grounder and solver. Of course, they
have to be compatible to each other, so in our case we use the tools from Potassco4, gringo and
claspD. Gringo is the grounder, already mentioned in Section 3.2, claspD is an extended version
of the clasp solver, which is able to solve disjunctive logic programs.

Existing ASP systems do not provide any complex optimization capacities, but Potassco is
offering a collection of meta-encodings which support such optimizations and preferences by
using simple meta-programming [3]. Therefore, gringo has to be called with the source files
and the –reify option enabled to get a reified output from gringo. That means that the result is
an output ground program in form of facts. This output can be used as input for another gringo
invocation, and in this case we only have to specify the meta-encodings. Further on, this resulting
output has to be transmitted to the claspD solver, which finally computes the desired answer sets.

To give a concrete example, we assume to search for cardinality-minimal answer sets. To
sum it up, we need a gringo-gringo-claspD invocation as follows:

gringo -reify source.lp | gringo - encodings/{meta.lp,metaD.lp,
metaO.lp} <(echo “optimize(1,1,card).”) | claspD 0

whereas source.lp is the relevant source file and meta.lp, metaD.lp and metaO.lp
are the meta-encodings which are located in the encodings folder. The component <(echo
“optimize(1,1,card).”) only inserts an additional fact for the optimization, meaning
that all literals of priority level and weight 1 are an issue of cardinality minimization [3].

3.4 Differences

Now we want to give an overview about the differences between the two ASP solvers DLV5

and clingo6 (or respectively gringo7/clasp8). Both have powerful engines with a lot of features,
but DLV offers better interoperability with external applications like the Java Wrapper, ODBC
interface and the ability to call external C++ functions. It also supports queries which means that
DLV is able to handle incoming queries about existing facts. Gringo/clasp does not have as much
compatibility features as DLV but also provides an integrated scripting language with database
support. In contrast to this restriction, gringo/clasp has more language constructs with the ability

4http://potassco.sourceforge.net/
5Version from December 21st, 2011
6Version 3.0.4
7Version 3.0.4
8Version 2.0.6

11

for conditions and pooling and it has better aggregate functions and meta-statements than DLV.
For example with gringo/clasp it is possible to define lower and upper bounds by using aggregate
functions.

DLV gringo/clasp
strong integrity constraints available available
weak integrity constraints (optimization) available available
classical negation available available
disjunction available restricted (fully avail-

able only in claspD)
built-in arithmetic functions available available
built-in comparison predicates available available
assignments available available
intervals available available
conditions available
pooling available
aggregates basic extended
queries available
meta-statements less a lot
interoperability Java Wrapper, ODBC

interface, external C++
function calls

integrated scripting lan-
guage with database
support

Table 3.1: Differences between DLV and gringo/clasp

12

3.5 ASP Wrapper: Embedding ASP-Solver in independent
external applications

Most ASP solvers do not provide any libraries or interfaces to communicate and interact with the
solver from external applications. That means, it is often not possible to integrate the solver in an
independent software development language like C++ or Java, in order to use it for knowledge
representation and reasoning or solving disjunctive logic programs.

One exception is DLV, because for this ASP solver a Java library has been developed, which
can be used to “wrap” the DLV System in a Java application. The so-called DLV Wrapper9 is
a simple object-oriented library, implemented in Java. Therefore, the DLV Java Wrapper can
be seen as interface between the external application and the DLV System. This way, it is quite
easy to run logic programs and to process the resulting output with normal Java code. The
DLV Wrapper is divided in many classes, which can be used to have full control over the DLV
execution. For example, there are classes like Literal, Predicate, Model and Program,
which provide helpful functions to run the program and read and process the output. In fact, the
result is not only a simple string representation of answer sets. Furthermore each answer set is
returned as Model object which can be handled and passed through by implemented methods
to get all its predicates and literals which are also represented by Predicate and Literal
objects. That is why the complete process of running DLV in an external application is quite
comfortable. Of course, it is also possible to set invocation parameters and to fully control the
DLV execution, for example to check the exit status or destroy/stop the running DLV process [17].

To integrate an ASP solver in external applications where no libraries and no interfaces
exist, for example gringo/clasp, it is necessary to develop such an interface on your own. First,
the relevant ASP solver or respectively the grounder has to be executed with all input files and
arguments. Therefore, it could be helpful to implement such features by using and running a
separate thread, for better usability and avoiding to freeze the user interface by executing long and
complex logical programs. By using a separate solver, the output (the grounded program) has now
to be piped to the corresponding ASP solver applying the same procedures as above. This being
done, the resulting output has to be parsed to process the content (literals, predicates and terms)
of the answer sets in the further application context. More details about the implementation are
described in Section 4.5 when we need to build such a component for our Answer Set Relationship
Visualizer.

9http://www.dlvsystem.com/dlvsystem/index.php/DLV_WRAPPER

13

CHAPTER 4
Software “ARVis”

4.1 Background: The presentation of answer sets and their
relationships

The main topic of this bachelor’s thesis is the visualization of relationships between answer sets.
But how can this be put into practice? How is it possible to indicate that two answer sets have
common properties or interrelate?

The basic idea is to use a graph, where a vertex represents a single answer set and the
relationship between two answer sets is illustrated as an edge. But to develop a software that is
solely focused on this problem reveals many other questions: How can the relationships be set?
How is it possible to define them as a result of simple rules?

A method is required which sets the relationships between answer sets automatically. This
can be best realized with another answer set program, where the result defines those connections.
This being done, setting relationships where answer sets have a common property or interrelate
becomes possible.

The challenge now is to define a simple software which supports all these features. It has
to require two ASP files from the user – one for the main task and one for the visualization.
Afterwards the corresponding graph could be drawn. But there is still another problem: The
connection between the main program and the visualization program. The latter requires the
result of the first program. That means, the result has to be parsed and processed, so that it is
compatible with the visualization program. To keep it simple: The result of the main program –
all answer sets together which are needed as input for the second program – has to be converted
into the corresponding ASP code. This code is only a simple list of ASP conforming “facts”.

15

Each of these facts consists of a single literal or respectively of a predicate. The predicate’s
name could be any word, but for better comprehension, we use “as”, meaning answer set. The
arguments of this predicate can be as following: an identity of the related answer set, the name
of the corresponding predicate in the model of this answer set and the last arguments are taken
over from the related predicate. This way the relationship between the fact and the answer set is
maintained.

The following pattern is advisable:

as(answerset_id, predicate_name, arg1, arg2, arg3, ...)

An example: Suppose that we get the following output from a simple basic answer set
program with 2 answer sets. The semantics of the predicates “in” and “out” are not relevant for
the conversion.

1: in(1, 2) in(1,3) in(1,4) out(1,5)
2: in(2, 2) in(2,3) in(2,4) out(4,5)

This output would be converted to:

as(1, in, 1, 2).
as(1, in, 1, 3).
as(1, in, 1, 4).
as(1, out, 1, 5).

as(2, in, 2, 2).
as(2, in, 2, 3).
as(2, in, 2, 4).
as(2, out, 2, 5).

In fact, we get an ASP code, which can be used in another context again – in our case the
visualization program to calculate the relations.

Executing the two relevant files – the main ASP file and the corresponding visualization ASP
file – outputs a result, where the answer sets define the edges in a graph. The only step left to do
is to parse the result of the ASP-Solver and generate graph components which can be delivered to
the graph visualization. Furthermore, the visualization program possibly outputs multiple answer
sets. This way, it is simple to generate several different models. Each of these models represents
a graph of their own and therefore their own visualization.

16

Now we managed to get the whole visualization process done. Figure 4.1 demonstrates the
just explained idea.

Figure 4.1: Process of visualization

4.2 Layout and structure of the software

The program ARVis is divided into 5 main packages. Each of them has a separate and independent
main task. Figure 4.2 shows the general structure, the used libraries and the hierarchy of the
packages.

Package ASP:
The main function of this package is the representation of an answer set and it includes classes for
data management like internal data structures for the complete process of the software. So, classes
like AnswerSet, Literal and Result can be found there. Furthermore help functions are
implemented in order to convert answer sets into ASP code and to process them in another context
again. In our case, this other context is the evaluation of the relationship between the answer sets.
A sub package of the ASP package, called wrapper, is responsible for the connection between the
ARVis software and the corresponding ASP-Solver. Therefore, this is one of the most important
parts of the software and we will examine it in more detail later on.

17

Figure 4.2: Structure of ARVis

Package config:
This module is essential for the configuration and the storage of user defined preferences. All
data is stored in a simple property file, which can also be edited manually because of the fact that
it is saved as plain text. Additionally, the Memory class is responsible for the temporary storage
of all data which is required during the steps in the wizard panel.

Package graph:
To visualize the relationship and the connections between two or more answer sets, the classes
of this package are used. Some classes are only important for data storage and data structure,
for example Edges, Edge and Vertices. These are relevant for the class Visualiza-
tionResult, which is the representation of the final result. It contains all relationships of the
answer sets which have to be visualized in a graph - consisting of edges and vertices and the
optional highlighted ones. To generate a user-friendly graph, the class GraphVisualization
is needed. It uses the VisualizationResult class to get the necessary data and draw a
graph in the user interface. This graph is not only a static image, it is interactive and the user can
move each single vertex and also resize the whole graph. Each vertex is clickable, to select one or
more answer sets, whose content is displayed in the text box right of the graph. All this graphical
features are supported by the JUNG library.

Package wizard:
All classes of this package are responsible for the general user interface. The complete process of
the Answer Set Relationship Visualizer is done in a wizard, i.e. the user is guided through the

18

program step by step. The great advantage of this method is the better management and control
for the user. All panels which are used in this wizard are found in this package. Each step of the
wizard is implemented in a separate class as a panel. Also a so-called ProgressViewer is
developed for better usability. It indicates the current status and displays which steps are done
and which have to be passed through.

Package txtExport:
This package contains only one single class, whose main function is to generate a text report of
the final outcome.

As mentioned above, the software is grouped in modules or rather in packages. To explain all
features and methods of each class in every package would go beyond the scope of this Bachelor’s
thesis, so we would like to explain only the most important and interesting components and
classes in this project. For better comprehension a source code of ARVis is included in some
cases.

4.3 Interfaces & libraries

Some libraries were used to add extra functionality and to build on existing java classes and
interfaces. The following libraries are used:

DLV-Wrapper:
This library provides a simple java interface to the DLV System. This means that the DLV-
Wrapper allows to embed the disjunctive logic programs written in DLV into a java program.
With the powerful methods of this wrapper, the DLV can be controlled and accessed completely
via simple Java code.

JUNG 2.0.1: [2]
JUNG is the Java Universal Network/Graph Framework and is an open-source Java library
which supports the modeling, visualization and analysis of data in a graph. It also uses other
existing third-party java libraries. JUNG includes many algorithms from graph theory and is
able to represent a lot of various graphs like directed and undirected graphs, hypergraphs and
multi-modal graphs. The vertices and edges can be annotated with metadata and descriptions and
the layout of the whole graph can be easily adapted to a customized one. ARVis requires some
parts of these powerful features, whose implementation is mentioned in Section 4.8.

Nexes Wizard: [7]
This is a free Java library which supports to create a simple wizard. It allows to create typical
JPanel objects , which can be added to an instance of the wizard class. The wizard automati-
cally includes the buttons Next and Back to each window and is responsible for displaying the
corresponding next or previous panel. The detailed implementation and use in ARVis is described
in the Section 4.4.

19

MigLayout:
MigLayout is also a free and open software. It provides a Java layout manager which simplifies
creating layouts and user interfaces.

4.4 Use of the wizard for program guidance

A wizard is implemented to keep the user interface simple. This way, the user can be lead from
one step to another. Each step is based on the result and input from the previous one. That is why
a wizard is the best and efficient possibility to design the user interface. The Nexes Wizard is a
Java library that fulfills these requirements. It provides simple classes to create a wizard.

The basic idea is to implement descriptor classes which are inherited from the abstract
class WizardPanelDescriptor provided by Nexes Wizard. Such a descriptor class has the
following structure:

1 p u b l i c c l a s s W i z a r d P a n e l 0 1 _ D e s c r i p t o r e x t e n d s W i z a r d P a n e l D e s c r i p t o r {
2

3 p u b l i c s t a t i c f i n a l S t r i n g IDENTIFIER = " ExecuteDLV " ;
4 p r i v a t e WizardPane l01 p a n e l ;
5

6 p u b l i c W i z a r d P a n e l 0 1 _ D e s c r i p t o r () {
7 p a n e l = new WizardPane l01 () ;
8

9 s e t P a n e l D e s c r i p t o r I d e n t i f i e r (IDENTIFIER) ;
10 se tPane lComponen t (p a n e l) ;
11 }
12

13 p u b l i c O b j e c t g e t N e x t P a n e l D e s c r i p t o r () {
14 r e t u r n W i z a r d P a n e l 0 2 _ D e s c r i p t o r . IDENTIFIER ;
15 }
16

17 p u b l i c O b j e c t g e t B a c k P a n e l D e s c r i p t o r () {
18 r e t u r n n u l l ;
19 }
20

21 p u b l i c vo id abou tToHidePane l () {
22 . . .
23 }
24

25 p u b l i c vo id a b o u t T o D i s p l a y P a n e l () {
26 . . .
27 }
28 . . .
29 }

The constructor of this class creates a new object WizardPanel01, which is a subtype of
the JPanel class. Therefore, every JPanel can be added to the wizard. This new object and

20

an identifier are assigned to the WizardPanelDescriptor. For every new panel that has
to be inside the wizard, a new class that extends from WizardPanelDescriptor must be
implemented.

Furthermore, some methods exist and must be overridden in order to take control of the wizard.
Such methods are getNextPanelDescriptor() to return the identifier of the next panel,
getBackPanelDescriptor() to set the previous one, aboutToDisplayPanel() to
define some code which has to be executed when the panel is displayed and the last important
method aboutToHidePanel(), which is called before the next panel is shown.

The following source code gains insight, how the wizard is configured:

1 JFrame frame = new JFrame () ;
2 f rame . s e t T i t l e (" ARVis ") ;
3

4 . . .
5

6 Wizard wi z a r d = new Wizard (f rame) ;
7

8 . . .
9

10 d e s c r i p t o r 1 = new W i z a r d P a n e l 0 1 _ D e s c r i p t o r () ;
11 w iz a r d . r e g i s t e r W i z a r d P a n e l (W i z a r d P a n e l 0 1 _ D e s c r i p t o r . IDENTIFIER , d e s c r i p t o r 1) ;
12

13 W i z a r d P a n e l D e s c r i p t o r d e s c r i p t o r 2 = new W i z a r d P a n e l 0 2 _ D e s c r i p t o r () ;
14 w iz a r d . r e g i s t e r W i z a r d P a n e l (W i z a r d P a n e l 0 2 _ D e s c r i p t o r . IDENTIFIER , d e s c r i p t o r 2) ;
15

16 . . .
17

18 w iz a r d . s e t C u r r e n t P a n e l (W i z a r d P a n e l 0 1 _ D e s c r i p t o r . IDENTIFIER) ;
19 i n t r e t = wi za rd . showModalDialog () ;

First, a new Wizard object has to be created and then the WizardPanelDescriptor
objects can be added by using the registerWizardPanel method. Afterwards, the current
panel of the wizard can be set and the last thing to do is to call showModalDialog(), which
displays the wizard.

For the Answer Set Relationship Visualizer we need 5 JPanels because 5 steps are necessary
to do the process of visualizing. Figure 4.3 shows the 5 steps in detail which are represented by a
gray rectangle. In order to implement a common wizard, the user must have the opportunity to go
backwards to change inputs.

21

Figure 4.3: 5 steps to visualize the relationship between answer sets

4.5 Connection to ASP-Solver

In order to execute the relevant ASP code and process the result in further steps, a connection
between ARVis and the corresponding ASP-Solver is essential. Therefore, an abstract class is
advisable which provides the necessary interface to interact with the ASP-Solver. The implemen-
tation for a specific ASP-Solver, like DLV and Clingo, is then introduced as a sub class to provide
a common interface.

The following source code shows the abstract class ASPWrapper:

1 p u b l i c a b s t r a c t c l a s s ASPWrapper {
2

3 p r o t e c t e d L i s t < S t r i n g > f i l e s ;
4 p r o t e c t e d S t r i n g code ;
5 p r o t e c t e d i n t maxAnswerSets ;
6 p r o t e c t e d b o o l e a n e x e c u t i o n S t o p p e d ;
7 . . .

22

8

9 p u b l i c s t a t i c ASPWrapper c r e a t e W r a p p e r (b o o l e a n f i r s t E x e c u t i o n) {
10 Conf ig c o n f i g = Conf ig . g e t I n s t a n c e () ;
11 S t r i n g s o l v e r = c o n f i g . g e t P r o p e r t y (Conf ig . SOLVER) ;
12 ASP_Solver a s p _ s o l v e r = ASP_Solver . va lueOf (s o l v e r) ;
13

14 i f (a s p _ s o l v e r == ASP_Solver . C l i ng o) {
15 r e t u r n new Cl ingoWrapper () ;
16 }
17 e l s e i f (a s p _ s o l v e r == ASP_Solver . O the r) {
18 r e t u r n new GringoClaspWrapper (f i r s t E x e c u t i o n) ;
19 }
20 e l s e {
21 r e t u r n new DLVWrapper () ;
22 }
23 }
24

25 . . .
26

27 p u b l i c vo id s e t F i l e s (L i s t < S t r i n g > f i l e s) {
28 t h i s . f i l e s = f i l e s ;
29 }
30

31 p u b l i c vo id se tCode (S t r i n g code) {
32 t h i s . code = code ;
33 }
34

35 . . .
36

37 p u b l i c s y n c h r o n i z e d vo id s t o p E x e c u t i o n () {
38 t h i s . e x e c u t i o n S t o p p e d = t r u e ;
39 }
40

41 p u b l i c a b s t r a c t R e s u l t e x e c u t e () t h r ow s E x e c u t i o n E x c e p t i o n ;
42 }

This ASPWrapper provides simple methods like setFiles to set a list of files that should
be executed, or setCode to deliver a code as string. The static method createWrapper
returns a specific wrapper whereas the type depends on the current configuration. To create a new
specific wrapper class, the ASPWrapper has to be inherited and the only method execute()
has to be implemented. This method is responsible for the complete execution of the ASP code
and has to return the answer sets in a new object called Result. Additionally, the method
stopExecution() can be overridden providing to stop the execution process.

Three specific ASPWrapper classes were established to support DLV, Clingo and a cus-
tomized combination of Gringo & Clasp.

The DLVWrapper implementation uses the already existing DLV Java Wrapper which is
the official library of the DLV System.

23

Here is an extract of the DLVWrapper class:

1 p u b l i c c l a s s DLVWrapper e x t e n d s ASPWrapper {
2 . . .
3

4 @Override
5 p u b l i c R e s u l t e x e c u t e () t h r ow s E x e c u t i o n E x c e p t i o n , P a r s e r E x c e p t i o n ,

I n t e r r u p t e d E x c e p t i o n {
6 Program p = new Program () ;
7

8 f o r (S t r i n g f i l e : t h i s . f i l e s) {
9 p . a d d P r o g r a m F i l e (f i l e) ;

10 }
11

12 p . a d d S t r i n g (t h i s . code) ;
13

14 . . .
15

16 DlvHandle r d l v = new DlvHandle r (p a t h) ; / / s e t p a t h DLV e x e c u t a b l e
17 d l v . s e t P r o g r a m (p) ; / / s e t s i n p u t (c o n t a i n e d i n a Program o b j e c t)
18

19 . . .
20

21 L i s t <AnswerSet > a n s w e r S e t s = new A r r a y L i s t <AnswerSet > () ;
22

23 . . .
24

25 d l v . run (DlvHandle r .ASYNCHRONOUS) ; / / run a DLV p r o c e s s and s e t t h e o u t p u t
h a n d l i n g method .

26

27 w h i l e (d l v . g e t S t a t u s () != DlvHandle r . FINISHED) {
28 Thread . s l e e p (1 0 0) ;
29

30 i f (t h i s . e x e c u t i o n S t o p p e d == t r u e) {
31 d l v . k i l l () ;
32 th row new I n t e r r u p t e d E x c e p t i o n () ;
33 }
34 }
35

36 w h i l e (d l v . hasMoreModels ()) { / / w h i l e DLV o u t p u t s a new model
37

38 Model m = d l v . nextModel () ;
39

40 . . .
41

42 w h i l e (m. h a s M o r e P r e d i c a t e s ()) {
43 {
44 P r e d i c a t e p r = m. n e x t P r e d i c a t e () ;
45

46 w h i l e (p r . h a s M o r e L i t e r a l s ()) {
47 L i t e r a l l i t = p r . n e x t L i t e r a l () ;
48 S t r i n g p red i ca t eName = " " ;
49

50 i f (l i t . i s P o s i t i v e ()) {

24

51 p red i ca t eName = l i t . name () ;
52 }
53 e l s e {
54 p red i ca t eName = "−" + pr . name () ;
55 }
56

57 asp . L i t e r a l l i t e r a l = new asp . L i t e r a l (p r ed i ca t eName) ;
58

59 f o r (i n t i = 0 ; i < l i t . a r i t y () ; i ++) {
60 l i t e r a l . addTerm (l i t . getTermAt (i)) ;
61 }
62

63 a n s w e r S e t . a d d L i t e r a l (l i t e r a l) ;
64 }
65 }
66 a n s w e r S e t s . add (a n s w e r S e t) ;
67 }
68

69 . . .
70

71 r e t u r n new R e s u l t (a n s w e r S e t s) ;
72 }
73 }

In fact, the only method that has to be overridden is the execute() method:
First a new DLV program is created and all relevant ASP code and ASP files are added. Then
a new object of DlvHandler is instantiated, whose only argument is the path to the DLV
executable. After the DLV program was set in the DlvHandler we can begin with the execution
by calling the run method. With the help of the methods nextModel(), nextPredicate(),
nextLiteral() and getTermAt() we can easily navigate through the result and receive
all relevant data that we need for our own data object of AnswerSet. The return value of the
execute() method is a new object of type Result which contains all AnswerSet objects.

Now we can go on to the more complex GringoClaspWrapper. In this case, no library
exists that provides an java interface to the Glingo and Clasp executables. That’s why the
execution of the Glingo and Clasp program has to be done manually with the needed ASP
code as input stream. Furthermore, a parser has to be introduced which converts the output of
the executable into a data object of type Result, we can deal with in further context. The
implementation of the parser will be discussed in Section 4.6.

The user of the software is able to define a custom combination of Glingo and Clasp in the
configuration. This string can consists of several commands separated by the pipe character |. An
example for such a string is:
gringo -reify | gringo - encodings/meta.lp encodings/metaD.lp
encodings/metaO.lp input.lp | claspD 0
where the ASP code would be transmitted by an input stream to the command gringo -reify.

25

The main task is to set the relevant ASP code as input stream for the first command and
the output as input for the following command. The output of the last command is the result
containing the answer sets as plain text.

The following source code is an extract of the real GringoClaspWrapper:

1 p u b l i c c l a s s Gr ingoClaspWrapper e x t e n d s ASPWrapper {
2 . . .
3

4 p u b l i c R e s u l t e x e c u t e () t h r ow s E x e c u t i o n E x c e p t i o n , P a r s e r E x c e p t i o n ,
I n t e r r u p t e d E x c e p t i o n {

5 p r i v a t e P r o c e s s p r o c e s s ;
6 . . .
7

8 / / r e a d t h e i n p u t o f t h e s o u r c e f i l e s
9 f o r (S t r i n g f i l e : t h i s . f i l e s) {

10 . . .
11 Scanne r s c a n n e r = new Scanne r (new F i l e R e a d e r (f i l e)) ;
12

13 w h i l e (s c a n n e r . ha sNex tL ine ()) {
14 i n p u t += s c a n n e r . n e x t L i n e () + " \ n " ;
15 }
16 . . .
17 }
18

19 i n p u t += t h i s . code ;
20

21 S t r i n g [] e x e c _ p a r t s = e x e c u t e S t r i n g . s p l i t (" \ \ | ") ;
22

23 t r y {
24 f o r (i n t i = 0 ; i < e x e c _ p a r t s . l e n g t h ; i ++) {
25 F i l e work ingDi r = n u l l ;
26

27 i f (e x e c P a t h . i sEmpty () == f a l s e) {
28 work ingDi r = new F i l e (e x e c P a t h) ;
29 }
30

31 S t r i n g exec = e x e c _ p a r t s [i] . t r i m () ;
32 S t r i n g [] cmdPar t s = p r e p a r e E x e c (exec , e x e c P a t h) ;
33

34 / / e x e c u t e t h e command
35 p r o c e s s = Runtime . ge tRun t ime () . exec (cmdPar ts , n u l l , work ingDi r) ;
36

37 i f (t h i s . e x e c u t i o n S t o p p e d == t r u e) {
38 p r o c e s s . d e s t r o y () ;
39 th row new I n t e r r u p t e d E x c e p t i o n () ;
40 }
41

42 / / s e t t h e i n p u t f o r t h e e x e c u t a b l e
43 P r i n t W r i t e r w r i t e r = new P r i n t W r i t e r (p r o c e s s . g e t O u t p u t S t r e a m ()) ;
44 w r i t e r . p r i n t (i n p u t) ;
45 w r i t e r . c l o s e () ;
46

26

47 r e s u l t = " " ;
48

49 / / g e t t h e o u t p u t from t h e e x e c u t a b l e
50 Scanne r s c a n n e r = new Scanne r (p r o c e s s . g e t I n p u t S t r e a m ()) ;
51 w h i l e (s c a n n e r . ha sNex tL ine ()) {
52 S t r i n g l i n e = s c a n n e r . n e x t L i n e () ;
53 r e s u l t += l i n e + " \ n " ;
54 }
55

56 / / g e t t h e e r r o r message from t h e e x e c u t a b l e
57 s c a n n e r = new Scanne r (p r o c e s s . g e t E r r o r S t r e a m ()) ;
58 w h i l e (s c a n n e r . ha sNex tL ine ()) {
59 S t r i n g l i n e = s c a n n e r . n e x t L i n e () ;
60 e r r o r += l i n e + " \ n " ;
61 }
62

63 / / s e t t h e r e s u l t a s i n p u t f o r t h e n e x t command
64 i n p u t = r e s u l t ;
65

66 i f (t h i s . e x e c u t i o n S t o p p e d == t r u e) {
67 th row new I n t e r r u p t e d E x c e p t i o n () ;
68 }
69 }
70 }
71 c a t c h (I n t e r r u p t e d E x c e p t i o n e) {
72 th row new I n t e r r u p t e d E x c e p t i o n () ;
73 }
74 c a t c h (E x c e p t i o n e) {
75 th row new E x e c u t i o n E x c e p t i o n (e . ge tMessage ()) ;
76 }
77

78 C l a s p R e s u l t P a r s e r p a r s e r = new C l a s p R e s u l t P a r s e r (r e s u l t , e r r o r) ;
79 r e t u r n new R e s u l t (p a r s e r . g e t A n s w e r S e t s ()) ;
80 }
81

82 p r i v a t e S t r i n g p r e p a r e E x e c (S t r i n g exec , S t r i n g work ingDi r) {
83 i f (work ingDi r == n u l l) {
84 work ingDi r = " " ;
85 }
86

87 S t r i n g [] cmdPar t s ;
88 . . .
89 b o o l e a n i n Q u o t e s = f a l s e ;
90 S t r i n g b u f f e r = " " ;
91 L i s t < S t r i n g > cmdLis t = new A r r a y L i s t < S t r i n g > () ;
92

93 / / p a r s e t h e command s t r i n g and s p l i t i t t o use i t f o r t h e exec method (
s t r i n g a r r a y c o n t a i n i n g f i l e , arg1 , a rg2 . . .)

94 f o r (i n t i = 0 ; i < exec . l e n g t h () ; i ++) {
95 / / do ub l e q u o t e s can be used t o use s p a c e s i n p a t h and a rgumen t s ; t h e

b o o l e a n i n Q u o t e s has t o be t r u e when we a r e c u r r e n t l y p a r s i n g
between two do ub le q u o t e s

96 i f (exec . c ha r At (i) == ’ " ’) {

27

97 i n Q u o t e s = ! i n Q u o t e s ;
98 c o n t i n u e ;
99 }

100

101 / / i f t h e c u r r e n t c h a r a c t e r i s a s p a c e and t h i s c h a r a c t e r i s NOT
between two do ub le quo te s , t h e n add t h e c u r r e n t s t r i n g i n t h e
b u f f e r a s a new e l e m e n t t o cmdLis t and c l e a r t h e b u f f e r

102 i f (exec . c ha r At (i) == ’ ’ && i n Q u o t e s == f a l s e) {
103 cmdLis t . add (b u f f e r) ;
104 b u f f e r = " " ;
105 c o n t i n u e ;
106 }
107

108 / / add t h e c u r r e n t c h a r a c t e r t o t h e s t r i n g b u f f e r
109 b u f f e r += exec . c h a r At (i) ;
110 }
111

112 / / f i n a l l y add t h e r e m a i n i n g s t r i n g t o cmdLis t
113 cmdLis t . add (b u f f e r) ;
114

115 cmdPar t s = cmdLis t . t o A r r a y (new S t r i n g [0]) ;
116

117 i f (new F i l e (cmdPar t s [0]) . i s A b s o l u t e () == f a l s e) {
118 cmdPar t s [0] = work ingDi r + " / " + cmdPar t s [0] ;
119 }
120

121 i f (new F i l e (cmdPar t s [0]) . i s F i l e () == f a l s e) {
122 th row new E x e c u t i o n E x c e p t i o n (" The f i l e \ " " + cmdPar t s [0] + " \ " i s

i n c o r r e c t . \ n P l e a s e e n t e r a v a l i d f i l e i n Menu −> S t a r t −>
C o n f i g u r a t i o n ") ;

123 }
124

125 r e t u r n cmdPar t s ;
126 }
127

128 @Override
129 p u b l i c s y n c h r o n i z e d vo id s t o p E x e c u t i o n () {
130 e x e c u t i o n S t o p p e d = t r u e ;
131

132 i f (p r o c e s s != n u l l) {
133 p r o c e s s . d e s t r o y () ;
134 }
135 }
136 }

First, the code contained in the ASP files is read and then the additional code that was set in
the variable code is added. This optional data string containing in the variable code is only set
in the second ASP execution (visualization program), when we need the generated ASP code
from the first execution (main program). The merged code has to be set as input stream for the
first command. To get the several commands, the complete command string has to be split by the
pipe character. In the implemented loop each command is executed with the corresponding data

28

as input stream and afterwards the resulting output is set as input for the next command. After
this loop we get the desired output in the variable result that contains the answer sets which
we need for further visualization. But this result is only a plain text which has to be parsed with
the help of the developed ClaspResultParser to receive a list of AnswerSet data objects.

Additional information about the working directory:
When a command is executed, the environment for this executable must be set to the user-defined
working directory. Also, the command itself has to be prepared which is done by the method
prepareExec(). This method only inserts the working directory at the beginning, if the
command does not contain an absolute file path. This preparation is done because then the user
does not have to include the absolute path in every command and in every argument – it simplifies
the user-defined command string very much.

4.6 Parser: The processing of the result data

As mentioned above, for Clingo, Clasp and ClaspD we need a parser which does the processing
of the output text. The output of the three ASP-Solvers is very similar because they descend from
the same solver family, but they differ in some aspects like various offsets of the relevant data or
different number of line breaks. So, the best thing to do is to combine the functionality of parsing
the output of all three solvers in one single class. This implementation is then able to handle all
outputs, independent of the specific type. An advantage is, that other similar ASP-Solvers can be
used as long as they have one of the three output formats.

For the DLV System we do not need anything like that, because the DLV Java Wrapper library
includes all these features.

To demonstrate how the parser works, here is the simplified version of the source code of the
getAnswerSets method in the the class ClaspResultParser:

1 p u b l i c L i s t <AnswerSet > g e t A n s w e r S e t s () t h r ow s P a r s e r E x c e p t i o n
2 {
3 L i s t <AnswerSet > a n s w e r S e t s = new A r r a y L i s t <AnswerSet > () ;
4

5 / / s p l i t t h e o u t p u t i n t o s i n g l e l i n e s
6 S t r i n g [] l i n e s = r e s u l t . s p l i t (" \ \ n ") ;
7 i n t o f f s e t = −1;
8

9 / / d e t e r m i n e t h e o f f s e t o f t h e r e a l d a t a
10 f o r (i n t i = 0 ; i < l i n e s . l e n g t h ; i ++) {
11 i f (l i n e s [i] . c o n t a i n s (" Answer ") == t r u e) {
12 o f f s e t = i ;
13 b r e a k ;
14 }
15 }
16 . . .

29

17

18 i n t i d = 1 ;
19

20 / / p a s s t h r o u g h e v e r y l i n e
21 f o r (i n t i = o f f s e t ; i < l i n e s . l e n g t h ; i ++) {
22 / / b r e a k i f a s p e c i a l keyword o c c u r s
23 i f (l i n e s [i] . e q u a l s ("SATISFIABLE") | | l i n e s [i] . e q u a l s ("UNSATISFIABLE , ") | |

l i n e s [i] . e q u a l s ("UNKNOW") | | l i n e s [i] . i sEmpty ()) {
24 b r e a k ;
25 }
26

27 / / on ly each second l i n e has r e l e v a n t d a t a
28 i f ((i − o f f s e t) % 2 == 0) {
29 c o n t i n u e ;
30 }
31

32 / / s p l i t a l i n e i n t o l i t e r a l s
33 S t r i n g [] l i t s = l i n e s [i] . s p l i t (" ") ;
34 AnswerSet a n s w e r S e t = new AnswerSet (i d) ;
35

36 / / p a s s t h r o u g h t h e l i t e r a l s
37 f o r (i n t j = 0 ; j < l i t s . l e n g t h ; j ++) {
38 / / c r e a t e a new l i t e r a l o b j e c t and add i t t o t h e c u r r e n t answer s e t
39 L i t e r a l l i t e r a l = new L i t e r a l (g e t P r e d i c a t e (l i t s [j]) , ge tTerms (l i t s [j]))

;
40 a n s w e r S e t . a d d L i t e r a l (l i t e r a l) ;
41 }
42

43 a n s w e r S e t s . add (a n s w e r S e t) ;
44 i d ++;
45 }
46

47 r e t u r n a n s w e r S e t s ;
48 }

The first lines of this source code determine the offset of the real relevant data. The beginning
of the output is some text which is irrelevant for parsing, so we are going to skip it until we
reach the first answer set solution. Then we pass through the lines and split every line containing
an answer set into its literals. It is important that only every second line includes a model, all
others lines are skipped. When we now obtain the single literal strings, we use the two methods
getPredicate() and getTerms() to receive the predicate as well as the list of terms
containing in the string representation of the literal. These two help methods extract the data
by splitting the string, similar to the method above. The name of the predicate and the list of
terms are set in a new Literal object, which is added to the current answer set. Each of these
answer sets is an element of an ArrayList. After parsing the mentioned ArrayList object
is returned which contains all concerning models.

30

4.7 Calculation and setting of relationships

When we run the the main program, generating the corresponding ASP code from its result and
adding this code to the visualization program, we get an Result object as output. The content
of this data object is a list of all models where each of them represents an independent solution
for visualization. But these models only contain all data in the form of ASP related Literals, so
we still need to calculate and generate Edge objects for the relationships between the answer
sets of the main program. This Edge objects are necessary to draw a graph.

To store these Edge objects in the same Result object, we have to create a new class
called VisualizationResult which extends the Result class to provide additional
features. Therefore, a new method generateEdges(List<String> predicates,
List<String> predicatesHighlighted) is implemented, which is responsible for
the generation of these Edge objects. The first argument is a list of all predicates representing an
edge, the latter list defines which edges should be highlighted with a special color.

The following code presents the functionality of this extended class:

1 p u b l i c c l a s s V i s u a l i z a t i o n R e s u l t e x t e n d s R e s u l t {
2 p r i v a t e L i s t <Edges > edges ;
3 p r i v a t e L i s t < V e r t i c e s > v e r t i c e s ;
4

5 . . .
6

7 p u b l i c vo id g e n e r a t e E d g e s (L i s t < S t r i n g > p r e d i c a t e s , L i s t < S t r i n g >
p r e d i c a t e s H i g h l i g h t e d) {

8

9 Conf ig c o n f i g = Conf ig . g e t I n s t a n c e () ;
10 b o o l e a n gene ra t eOneGraph = c o n f i g . g e t B o o l e a n P r o p e r t y (Conf ig .

GENERATE_ONE_GRAPH) ;
11

12 i n t answerSetsNumber = Memory . g e t I n s t a n c e () . g e t R e s u l t () . g e t A n s w e r S e t s () .
s i z e () ;

13

14 / / p a s s t h r o u g h a l l e x i s t i n g answer s e t s
15 f o r (AnswerSet a n s w e r S e t : t h i s . g e t A n s w e r S e t s ()) {
16 Edges e = new Edges () ;
17 V e r t i c e s v = new V e r t i c e s () ;
18

19 / / p a s s t h r o u g h a l l l i t e r a l s i n t h i s answer s e t
20 f o r (L i t e r a l l i t : a n s w e r S e t . g e t L i t e r a l s ()) {
21

22 . . .
23

24 / / check whe the r t h e p r e d i c a t e r e p r e s e n t s an h i g h l i g h t e d edge or
v e r t e x

25 i f (p r e d i c a t e s H i g h l i g h t e d . c o n t a i n s (l i t . g e t P r e d i c a t e () + " / " + l i t .
ge tTerms () . s i z e ())) {

26 / / check whe the r t h e p r e d i c a t e r e p r e s e n t s an edge (b i n a r y) o r a

31

v e r t e x (una ry)
27 i f (l i t . ge tTerms () . s i z e () == 2) {
28 i n t from = I n t e g e r . p a r s e I n t (l i t . ge tTerms () . g e t (0)) ;
29 i n t t o = I n t e g e r . p a r s e I n t (l i t . ge tTerms () . g e t (1)) ;
30

31 i f (from >= 1 && from <= answerSetsNumber && t o >= 1 && t o <=
answerSetsNumber) {

32 / / add t h e edge t o t h e Edges o b j e c t w i th h i g h l i g h t e d s e t t r u e
33 e . add (from , to , t r u e) ;
34 }
35 }
36 e l s e i f (l i t . ge tTerms () . s i z e () == 1) {
37 i n t v e r t e x = I n t e g e r . p a r s e I n t (l i t . ge tTerms () . g e t (0)) ;
38

39 i f (v e r t e x >= 1 && v e r t e x <= answerSetsNumber) {
40 / / add t h e v e r t e x t o t h e V e r t i c e s d a t a o b j e c t
41 v . add (v e r t e x) ;
42 }
43 }
44 }
45

46 / / check whe the r t h e p r e d i c a t e r e p r e s e n t s an edge
47 i f (p r e d i c a t e s . c o n t a i n s (l i t . g e t P r e d i c a t e () + " / " + l i t . ge tTerms () .

s i z e ())) {
48 i f (l i t . ge tTerms () . s i z e () == 2) {
49 i n t from = I n t e g e r . p a r s e I n t (l i t . ge tTerms () . g e t (0)) ;
50 i n t t o = I n t e g e r . p a r s e I n t (l i t . ge tTerms () . g e t (1)) ;
51

52 i f (from >= 1 && from <= answerSetsNumber && t o >= 1 && t o <=
answerSetsNumber) {

53 / / add t h e edge t o t h e Edges o b j e c t w i th h i g h l i g h t e d s e t f a l s e
54 e . add (from , to , f a l s e) ;
55 }
56 }
57 }
58

59 . . .
60 }
61 t h i s . addEdges (e) ;
62 t h i s . a d d V e r t i c e s (v) ;
63 }
64 }
65 . . .
66 }

The first loop passes through all answer sets existing in this Result object, the second
one traverses all literals in this model. After that it should be checked whether the predicate of
this literal represents a highlighted element by searching in the specified predicatesHigh-
lighted list. If that is the case, then the arity of the literal defines whether it describes an edge
or a vertex. Now this element has to be added to the Edges or Vertices data object along
with the highlighted flag.

32

A similar procedure is done if the literal represents a normal edge and therefore is found in
the predicates list. The difference is that the edge is added as a non highlighted one and
there is no need to add any vertex at all because every answer set is drawn as vertex anyway.

Hint: The Edges data object is designed in a way that adding an already existing edge leads
to an update, whereas the status flag highlighted can only be set from false to true but
not the other way around. That means that an already highlighted edge still remains highlighted.

Every Edges and Vertices data object that belongs to a single model has to be added as
an element of their own to a list in the VisualizationResult by calling the addEdges
and addVertices methods. As a result the index of the elements in these lists corresponds
with the index of the related answer sets in this Result object.

4.8 Presentation as graph

This is the last important step to achieve the desired visualization. We already have all relevant
edges, vertices and highlighted elements as data objects that we need to draw a graph. All we
have to do is to create a new Graph object, add all vertices and edges and finally design the
layout. This is implemented in the GraphVisualization class. It is a lot of code to define
all properties and styles like colors, strokes and shapes. Hence the following example only
includes the most important code parts:

1 p u b l i c c l a s s G r a p h V i s u a l i z a t i o n implemen t s I t e m L i s t e n e r {
2 p r i v a t e Graph < I n t e g e r , I n t e g e r > g ;
3 p r i v a t e V i s u a l i z a t i o n V i e w e r < I n t e g e r , I n t e g e r > vv ;
4 . . .
5

6 p u b l i c G r a p h V i s u a l i z a t i o n (JTex tArea t e x t A r e a R e s u l t , J L i s t j L i s t P r e d i c a t e s)
{

7

8 . . .
9

10 g = new D i r e c t e d S p a r s e M u l t i g r a p h < I n t e g e r , I n t e g e r > () ;
11

12 / / The Layout <V, E> i s p a r a m e t e r i z e d by t h e v e r t e x and edge t y p e s
13 Layout < I n t e g e r , I n t e g e r > l a y o u t = new KKLayout< I n t e g e r , I n t e g e r >(g) ;
14

15 l a y o u t . s e t S i z e (new Dimension (2 0 0 , 200)) ;
16 vv = new V i s u a l i z a t i o n V i e w e r < I n t e g e r , I n t e g e r >(l a y o u t) ;
17

18 vv . s e t P r e f e r r e d S i z e (new Dimension (2 5 0 , 250)) ;
19 vv . g e t P i c k e d V e r t e x S t a t e () . a d d I t e m L i s t e n e r (t h i s) ;
20 vv . g e t R e n d e r C o n t e x t () . s e t V e r t e x L a b e l T r a n s f o r m e r (new T o S t r i n g L a b e l l e r <

I n t e g e r > ()) ;
21

22 . . .
23

33

24 PluggableGraphMouse gm = new PluggableGraphMouse () ;
25 gm . add (new T r a n s l a t i n g G r a p h M o u s e P l u g i n (MouseEvent .BUTTON3_MASK)) ;
26 gm . add (new Sca l ingGraphMouseP lug in (new C r o s s o v e r S c a l i n g C o n t r o l () , 0 , 1 . 1 f

, 0 . 9 f)) ;
27 gm . add (new ModPickingGraphMousePlugin < I n t e g e r , S t r i n g > ()) ;
28 vv . se tGraphMouse (gm) ;
29

30 . . .
31

32 Trans fo rmer < I n t e g e r , P a i n t > e d g e P a i n t = new Trans fo rmer < I n t e g e r , P a i n t > ()
{

33 p u b l i c P a i n t t r a n s f o r m (I n t e g e r i) {
34 i f (Memory . g e t I n s t a n c e () . g e t V i s R e s u l t () . ge tEdgesOfModel (c u r r e n t M o d e l) .

g e t (i) . i s H i g h l i g h t e d ()) {
35 r e t u r n Colo r . r e d ;
36 }
37 r e t u r n Colo r . b l a c k ;
38 }
39 } ;
40

41 . . .
42

43 Trans fo rmer < I n t e g e r , P a i n t > v e r t e x B a c k g r o u n d = new Trans fo rmer < I n t e g e r ,
P a i n t > () {

44 p u b l i c P a i n t t r a n s f o r m (I n t e g e r i) {
45 i f (vv . g e t P i c k e d V e r t e x S t a t e () . i s P i c k e d (i)) {
46 r e t u r n Colo r . y e l l o w ;
47 }
48 r e t u r n Colo r . w h i t e ;
49 }
50 } ;
51

52 vv . g e t R e n d e r C o n t e x t () . s e t E d g e D r a w P a i n t T r a n s f o r m e r (e d g e P a i n t) ;
53 vv . g e t R e n d e r C o n t e x t () . s e t A r r o w D r a w P a i n t T r a n s f o r m e r (e d g e P a i n t) ;
54 vv . g e t R e n d e r C o n t e x t () . s e t A r r o w F i l l P a i n t T r a n s f o r m e r (e d g e P a i n t) ;
55 vv . g e t R e n d e r C o n t e x t () . s e t E d g e A r r o w S t r o k e T r a n s f o r m e r (e d g e S t r o k e) ;
56 vv . g e t R e n d e r C o n t e x t () . s e t E d g e S t r o k e T r a n s f o r m e r (e d g e S t r o k e) ;
57 vv . g e t R e n d e r C o n t e x t () . s e t V e r t e x D r a w P a i n t T r a n s f o r m e r (v e r t e x B o r d e r) ;
58 vv . g e t R e n d e r C o n t e x t () . s e t V e r t e x S t r o k e T r a n s f o r m e r (v e r t e x S t r o k e) ;
59 vv . g e t R e n d e r C o n t e x t () . s e t V e r t e x F i l l P a i n t T r a n s f o r m e r (v e r t e x B a c k g r o u n d) ;
60 vv . g e t R e n d e r C o n t e x t () . s e t E d g e S h a p e T r a n s f o r m e r (new EdgeShape . Line < I n t e g e r ,

I n t e g e r > ()) ;
61 }
62 . . .
63 }

First, an object of DirectedSparseMultigraph is instantiated providing a simple di-
rected graph which permits parallel edges. The types of the edges and vertices are defined as
integers. Then this graph is added to a new created KKLayout, which helps us to organize the
vertices in a viewable way. Furthermore, this layout object is added to a new object of Visu-
alizationViewer. This viewer represents the main frame in which the graph is embedded.

34

Now we can set the size, add ItemListener for actions like clicking and set the VertexLa-
belTransformer to display the integer value of each vertex inside itself. Further on, with the
method setGraphMouse an object of PluggableGraphMouse can be set which is respon-
sible for the interactive features like picking, moving and resizing by the user. In order to enable
these features it is necessary to add several plugins to the PluggableGraphMouse object:
TranslatingGraphMousePlugin is a plugin for moving the complete graph by holding
the right mouse, CrossoverScalingControl does the complete zoom feature which can be
performed with the mouse wheel. The last plugin ModPickingGraphMousePlugin needed
is a modification of the already existing PickingGraphMousePlugin of the JUNG library.
This is useful for picking one or more vertices and move them around. For this modification, the
PickingGraphMousePlugin is adopted from the JUNG library and modified in some cases
to adjust the interactive mode of the graph like a better multi-selecting feature with the ability to
move them around in a more comfortable way.

Now we need some Transformer objects which are added to the Visualization-
Viewer and are needed for the customized style like colors, shapes and strokes. They are used
when a specific element is drawn. For example, when a transformer is set by setEdgeDraw-
PaintTransformer, then the method transform in this Transformer object will be
called each time when the color of an edge is drawn. Of course, in this case the return value has
to be a Color object. That way, every edge can be colored individually. In our case, we need a
specific implementation to highlight determined vertices and edges by using a different color.
Here is the relevant code once again to present the structure of these Transformer objects:

1 Trans fo rmer < I n t e g e r , P a i n t > e d g e P a i n t = new Trans fo rmer < I n t e g e r , P a i n t > () {
2 p u b l i c P a i n t t r a n s f o r m (I n t e g e r i) {
3 i f (Memory . g e t I n s t a n c e () . g e t V i s R e s u l t () . ge tEdgesOfModel (c u r r e n t M o d e l) . g e t (

i) . i s H i g h l i g h t e d ()) {
4 r e t u r n Colo r . r e d ;
5 }
6 r e t u r n Colo r . b l a c k ;
7 }
8 } ;

The method Memory.getInstance().getVisResult() on line 3 returns the
current VisualizationResult object. This being done the method getEdgesOf-
Model(currentModel) delivers the Edges data object which contains all edges of the
current model. With get(i) we simply get the relevant Edge object because the index i is
delivered as argument of the currently drawn edge. The Edge object contains the status which
indicates if the edge is highlighted or not (which we have set in the last section when we
generated all the edges). We can get this status by the method isHighlighted(). In fact, all
highlighted edges are drawn red, all others black.

The same procedure can be applied to the vertices and also can be done with all other layout
styles like shapes and strokes.

35

The only thing left to do is to set the data – all vertices and edges – which is done with an
update() method:

1 p u b l i c vo id u p d a t e (i n t i n d e x) {
2 V i s u a l i z a t i o n R e s u l t v i s R e s u l t = Memory . g e t I n s t a n c e () . g e t V i s R e s u l t () ;
3 R e s u l t r e s u l t = Memory . g e t I n s t a n c e () . g e t R e s u l t () ;
4

5 O b j e c t [] v e r t i c e s = g . g e t V e r t i c e s () . t o A r r a y () ;
6

7 / / d e l e t e a l l c u r r e n t v e r t i c e s
8 f o r (i n t i = 0 ; i < v e r t i c e s . l e n g t h ; i ++) {
9 g . removeVer tex ((I n t e g e r) v e r t i c e s [i]) ;

10 }
11

12 / / add a v e r t e x f o r each answer s e t
13 f o r (i n t i = 0 ; i < r e s u l t . g e t A n s w e r S e t s () . s i z e () ; i ++) {
14 g . addVer t ex (i +1) ;
15 }
16

17 Edges edges = v i s R e s u l t . getEdgesOfModel (i n d e x) ;
18 t h i s . c u r r e n t M o d e l = i n d e x ;
19

20 / / add a l l edges which a r e r e l e v a n t f o r t h i s model
21 f o r (I n t e g e r i d : edges . g e t A l l ()) {
22 g . addEdge (id , edges . g e t (i d) . getFrom () , edges . g e t (i d) . ge tTo () , EdgeType .

DIRECTED) ;
23 }
24

25 vv . upda teUI () ;
26 }

The argument index decides which model should be drawn.

First, all existing vertices have to be deleted and then for every answer set a new vertex with
increasing integer value is added to the graph. Finally we receive the current Edges object by
calling visResult.getEdgesOfModel(index) and then we get all single edges as list
by the edges.getAll() method. Now we can run through the list and add each and everyone
of them to the graph by using addEdge.

36

CHAPTER 5
Conclusion

The Answer Set Relationship Visualizer is publicly available for download1 and can be used
to visualize the relationships between answer sets. The simple user interface provided by the
wizard allows to execute the visualization process step by step. The configuration window of the
software makes it possible to change the current ASP Solver, adjust the number of calculated
answer sets and so on. The status bar at the top of the wizard always shows the process steps, also
indicating the current status. The execution of the ASP Solver is indicated in a dialog window
with the ability to abort this process any time. This can be done because the execution is running
in its own thread. The result of every execution is displayed in the next step. Because of this fact
the user has always the chance to prove the computed solutions.

In case of the main ASP program the user can filter the necessary predicates to keep the
number of new generated facts smaller. In case of the visualization ASP program the edge
predicate and highlight edge/vertex predicate can be chosen in a comfortable way. Also multiple
selections are possible. The predicates are checked and are only used when they are compatible:
unary predicates correspond to vertices, binary predicates to edges.

The final step – the visualization – is kept simple: Left the list of models, in the middle the
visualization graph and right the detail box for selected vertices (answer sets). The graph is
interactive and provides some useful features like multi-selection, moving the complete graph or
only selected vertices and zooming in/out. Therefore, the vertices can be well-arranged. Now
the relationships between the answer sets are presented in a comfortable and obvious way. All
highlighted vertices and edges which are defined in the corresponding highlight predicate are
colored in red, all the others are black. Further on, the result of the main and visualization ASP
program can be exported to a simple text file.

1http://www.dbai.tuwien.ac.at/proj/argumentation/vispartix/#ARVis

37

Of course, this software is only a basic module for such a visualization. In future versions
some other ASP Wrapper could be implemented or some more properties and configurations
could be build into the application. Also, the graph could be extended: for example, appearing
text fields at the position of every selected vertex containing the corresponding answer set instead
of using the detail box directly to the right. In addition, the export feature could be expanded.
Currently, it only exports to text files, which is not very convenient. At first, a better way would be
to let the user decide which data should be exported because not all answer sets and informations
are necessary at all. Secondly, an addition export format should be PDF. Then it would be possible
to export the graph visualization which is the heart of the whole process of course. The result
would be much more illustrative and better usable for documentation.

How we see it, there is still a lot to do and potential for future versions. Nevertheless, the
current version can be used to handle the main goal – the visualization of the relationships
between answer sets – in a very comfortable way.

38

Bibliography

[1] DLV System. http://www.dlvsystem.com, Accessed: 2012-05-23.

[2] JUNG: Java Universal Network/Graph Framework. http://jung.sourceforge.net/, Accessed:
2012-05-23.

[3] metasp: Complex Optimization in Answer Set Programming. http://www.cs.uni-
potsdam.de/wv/metasp, Accessed: 2012-05-23.

[4] Robert Bihlmeyer, Wolfgang Faber, Vincenzino Lio, and Gerald Pfeifer. DLV - User
Manual. http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html, Accessed:
2012-05-23.

[5] Piero Bonatti, Francesco Calimeri, Nicola Leone, and Francesco Ricca. Answer Set
Programming. In Agostino Dovier and Enrico Pontelli, editors, A 25-Year Perspective on
Logic Programming, volume 6125 of Lecture Notes in Computer Science, pages 159–182.
Springer, 2010.

[6] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona
Perri, and Gerald Pfeifer. System Description: DLV. In Proceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR ’01, pages
424–428. Springer-Verlag, London, UK, 2001.

[7] Robert Eckstein. Creating Wizard Dialogs with Java Swing.
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html, Accessed:
2012-05-23.

[8] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Unit Testing in
ASPIDE. CoRR, abs/1108.5434, 2011.

[9] Camillo Fiorentini, Alberto Momigliano, and Mario Ornaghi. Towards a Type Discipline
for Answer Set Programming. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro,
editors, Types for Proofs and Programs, volume 5497 of Lecture Notes in Computer Science,
pages 117–135. Springer, 2009.

39

[10] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Sven Thiele. A User’s Guide to gringo, clasp, clingo, and iclingo
(version 3.x). http://sourceforge.net/projects/potassco/files/potassco_guide/2010-10-
04/guide.pdf/download, Accessed: 2012-05-23.

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Challenges in
Answer Set Solving. In Marcello Balduccini and Tran Son, editors, Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning, volume 6565 of Lecture Notes
in Computer Science, pages 74–90. Springer, 2011.

[12] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The Potsdam Answer Set Solving Collection. AI Commun.,
24(2):107–124, April 2011.

[13] Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Kara: A System
for Visualising and Visual Editing of Interpretations for Answer-Set Programs. CoRR,
abs/1109.4095, 2011.

[14] Nicola Leone and Wolfgang Faber. The DLV Project: A Tour from Theory and Research to
Applications and Market. In Proceedings of the 24th International Conference on Logic
Programming, ICLP ’08, pages 53–68. Springer-Verlag, Berlin, Heidelberg, 2008.

[15] Vladimir Lifschitz. What is answer set programming? In Proceedings of the 23rd national
conference on Artificial intelligence - Volume 3, AAAI’08, pages 1594–1597. AAAI Press,
2008.

[16] Enrico Pontelli. Answer Set Programming in 2010: A Personal Perspective. In Proceed-
ings of the 12th international conference on Practical Aspects of Declarative Languages,
PADL’10, pages 1–3. Springer-Verlag, Berlin, Heidelberg, 2010.

[17] Francesco Ricca. A Java Wrapper for DLV. In Marina De Vos and Alessandro Provetti,
editors, Answer Set Programming, Advances in Theory and Implementation, Proceedings of
the 2nd Intl. ASP 03 Workshop, volume 78 of CEUR Workshop Proceedings. 2003.

40

	Introduction
	Answer Set Programming
	Background and application
	Syntax and semantics

	ASP-Solvers
	DLV
	Clingo (gringo + clasp)
	Specialization: User defined combination of grounder and solver
	Differences
	ASP Wrapper: Embedding ASP-Solver in independent external applications

	Software ``ARVis''
	Background: The presentation of answer sets and their relationships
	Layout and structure of the software
	Interfaces & libraries
	Use of the wizard for program guidance
	Connection to ASP-Solver
	Parser: The processing of the result data
	Calculation and setting of relationships
	Presentation as graph

	Conclusion
	Bibliography

