
��������	
���
��������
�
��
��
���������	���

��
��

�
��
������

��������	
��

�
��
�����
��������������������������

����������
��
�
���

����������������
��
��

�����������������
����
��

������������� �

��
���	���
������
���������
�����!!∀#∃##�

������

%��
��&��∋(����∋ �����������������������)��������&��∗����

	����

��+
	����
��,	����
����+�� −)���−�� ∋−���−�).��
��/
���.���
��+�������� �−���−����∋���∗ �����

∗���0�1#−!∀−∀!!2���������33333333333333333333333 3333333333333333333333
4)���������∋��5��∋�����,��6 4)���������∋��	����
��,��6

�����������)��������&��∗���
�71!8!�∗����9�:����;�����1<�9����−�=8<,4!61,∃>>!17!�9����;+,,...−�
.���−��−��

http://www.tuwien.ac.at/

2

Contents

Erklärung zur Verfassung der Arbeit v

Kurzfassung vii

Abstract ix

Acknowledgements xi

1 Introduction 1

1.1 Historical Background . 2

1.2 Current State of Affairs . 3

1.3 Main Contributions of the Thesis . 4

1.4 Example of Use in Terms of Case Law . 5

2 Theory and Conceptual Formulation 13

2.1 Basic Argumentation Framework . 13

2.1.1 Acceptability . 14

2.1.2 Properties of Acceptability . 16

2.2 Handling Controversial Arguments . 18

2.2.1 Prudent Semantics for Argumentation Frameworks 19

2.2.2 Properties of Prudent Semantics 19

i

ii CONTENTS

2.3 Extensions of Basic Argumentation Frameworks 20

2.3.1 Preference Based Argumentation Frameworks 21

2.3.2 Value Based Argumentation Frameworks 22

2.3.3 Bipolar Argumentation Frameworks 24

3 Answer Set Programming 31

3.1 Syntax . 31

3.2 Semantics . 32

3.3 Programming Techniques . 34

3.3.1 Linear Ordering . 34

3.3.2 Guess&Check Methodology . 35

3.3.3 Saturation Technique . 36

4 Complexity Issues 39

4.1 Basic Introduction . 39

4.2 Complexity of Argumentation Frameworks 40

4.3 Data Complexity . 41

5 Encodings 43

5.1 Basic Argumentation Framework . 43

5.1.1 Description of the Modules πχ of Π 46

5.2 Value Based Argumentation Framework 65

5.3 Bipolar Argumentation Framework . 67

5.4 Discussion . 70

6 System Description 73

6.1 Manual . 74

6.1.1 Input File . 74

CONTENTS iii

6.1.2 Execution . 78

7 Related Work 81

7.1 Model Checking . 81

7.1.1 Encodings Based on QBF . 81

7.2 Logic Programming . 82

7.2.1 ASP . 82

7.3 Implementations . 82

8 Conclusion 83

Bibliography 84

A ASPARTIX 91

iv CONTENTS

Erklärung zur Verfassung der

Arbeit

Sarah Alice Gaggl

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.”

Wien, 13.02.2009

v

vi ERKLÄRUNG ZUR VERFASSUNG DER ARBEIT

Kurzfassung

Im Laufe der letzten Jahre hat sich Argumentation zu einem zentralen Gebiet in der
Künstlichen Intelligenz (KI) etabliert. Dung führte 1995 Argumentation Frameworks
(AFs) als ein formales System ein, das es einem ermöglicht, aus widersprüchlichem
Wissen Schlüsse zu folgern. Desweiteren hat er mehrere Semantiken definiert, wie zum
Beispiel admissible, complete, preferred und grounded, mit deren Hilfe man Mengen von
zulässigen Argumenten berechnen kann.

Obwohl das Framework von Dung bereits sehr viele Möglichkeiten zur Verfügung stellt
um Aussagen über Argumente zu treffen, wurde es kontinuierlich erweitert und verfein-
ert. Bis jetzt wurden viele weitere Semantiken eingeführt, wie zum Beispiel s-admissible,
c-admissible, semi-stable, prudent und ideal. Zudem wurde auch das Framework durch
Präferenzrelationen (PAFs), Werte (VAFs) und Unterstüzungsrelationen (BAFs) erweit-
ert. All das führt dazu, dass wir mit unterschiedlichen Frameworks und Semantiken
geradezu überschüttet werden.

Ein Bestandteil dieser Arbeit und Voraussetzung für eine elegante Implementierung ist
das Erkennen der relevanten und vielversprechenden Frameworks und Semantiken, und
das Vereinheitlichen der unterschiedlichen Definitionen. Trotz ausgiebiger Forschung
auf diesem Gebiet gibt es noch immer kein System, mit dem man alle grundlegenden
Semantiken von Dung berechnen kann.

Daher war der Hauptbestandteil dieser Masterarbeit, ein System zu entwickeln, mit
dessen Hilfe man alle Semantiken für Dungs Framework, sowie die wichtigsten für PAFs,
VAFs und BAFs berechen kann. Unser System ASPARTIX, welches für “Answer Set
Programming Argumentation Reasoning Tool” steht, zeichnet sich dadurch aus, dass
es aus einem fixen disjunktiven logischen Programm besteht, welches vollkommen un-
abhängig vom jeweiligen Argumentation Framework ist. Das bedeutet, dass der Be-
nutzer nur das Framework und die gewünschte Semantik als Eingabedatenbank spezi-
fizieren muss. Daher kann ASPARTIX auf einfache Weise verwendet werden, um die
Unterschiede und Zusammenhänge der verschiedenen Semantiken und Frameworks zu
erforschen. Die Modularität unseres Systems ermöglicht eine einfache Erweiterung und
Verbesserung.

vii

viii KURZFASSUNG

Abstract

Within the last years, argumentation has become a very important field in Artificial
Intelligence (AI). In 1995, Dung introduced Argumentation Frameworks (AFs) as a for-
mal system to reason over conflicting knowledge. He defined several semantics (i.e.,
admissible, complete, preferred and grounded) for AFs to compute acceptable sets of
arguments.

Even though Dung’s framework offers many possibilities for reasoning over arguments,
it has been extended continuously. Till now, many more semantics (i.e., s-admissible, c-
admissible, semi-stable, prudent, ideal) have been introduced. Also the basic framework
has been extended by, for example, preference relations (PAFs), values (VAFs) and
support relations (BAFs), just to name some of them. All these extensions lead to the
fact that we are overwhelmed with different frameworks and semantics.

One part of this work is to filter out the most relevant/promising frameworks and seman-
tics and to bring all those definitions into a uniform notation. Such a uniform notation
is a prerequisite for an elegant implementation. Despite a constant research effort in
this area, there exists neither an implementation for computing all semantics of Dung’s
original framework nor implementations for the extensions thereof.

The main part of this thesis is to develop a system to compute all semantics of Dung’s
framework, as well as the most relevant ones for PAFs, VAFs and BAFs. Our system
ASPARTIX, which stands for Answer Set Programming Argumentation Reasoning Tool,
is exceptional due to the fact that it is a fixed disjunctive logic program, totally indepen-
dent of the concrete AF. This means that the user just needs to set up the framework
and the desired semantic as an input database. It is not necessary to make any trans-
lation of the framework or to modify the system. This makes it easy for researchers to
use ASPARTIX to compare the different semantics and frameworks even if the user is
not an expert in answer set programming. Due to the modularity of our system, it is
easy to extend and debug.

ix

x ABSTRACT

Acknowledgements

I owe a great deal to colleagues, friends and members of my family who have supported
me in completing my degree, and who, through their own research, comments and ques-
tions have encouraged and enlightened me.
In particular, I want to thank my supervisor Uwe Egly. I have learned much from work-
ing with him on that project, and his notes and suggestions have been a great help in
writing this thesis.
Furthermore, I greatly appreciate the support of my second adviser Stefan Woltran. His
support has been a great help with the formal details. By spending such a lot of time
on proofreading, he enabled me to complete this work in time.
Special gratitude is dedicated to my parents, Elisabeth and Albin Gaggl. Without their
support, I would not have been able to make a full time study without any financial
problems.
One of my greatest supporter has been Ülkü Keskin. She always believed in me and has
been positive about the fact that I can achieve my goals.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

When the mind’s eye rests on objects illuminated by truth and reality, it understands and
comprehends them, and functions intelligently; but when it turns to the twilight world of

change and decay, it can only form opinions, its vision is confused and its beliefs shifting, and it
seems to lack intelligence.

(Plato, 380BC)

Discussions and argumentation are part and parcel of human communication and inter-
action. Hence, argumentation regards almost everybody. The most important parts of
such an argumentation are the arguments. Intuitively, one can say that the one who
brings up the better arguments, comes off as winner.

Imagine a political debate on TV, politicians need to define their own position and want
to derive a benefit from their discussions. Therefore, they are not only interested in
bringing forward good arguments for their political programs, they also try to attack
the arguments of their political opponents, and defend themselves against attacks. Most
politicians, managers, economists and in general people who arouse public interest pre-
pare themselves very good for such discussions. They check up on the subject and their
opponent, they graduate special trainings to improve their skills, like for example Neuro
Linguistic Programming (NLP), and they have several consultants who ensure that they
do not make any mistakes. However, not only politicians and economists benefit from
good argumentation skills. From time to time, everybody faces such situations, even if
it is just a discussion with a friend.

It is possible to observe that the arguments in such a dialog bear a relation to each other,
and also that different means of privileges can appear. Therefore, the idea of analysing,
formalising, and of course solving argumentation arose very early in history. Down to
the present day, argumentation has become a central issue in many research areas, i.e.
philosophy, philology, mathematics, logic, artificial intelligence (AI), law research and
multiagent systems, just to mention a few of them.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Plato (428/427 BC - 348/347 BC)

Nevertheless, till now there does not exist a computer-aided system, capable of solving
all those argumentation issues. With this work, we hope to contribute to change this
fact.

This chapter is structured as follows. In Section 1.1 we give some famous characters
from history, who already dealt with argumentation. In Section 1.2 we analyse the
status quo concerning argumentation frameworks. In Section 1.3 we point out the main
contributions of this thesis. Finally, in Section 1.4 we exemplify how argumentation
frameworks can be used, and the need of extending the basic framework by values.

1.1 Historical Background

The desire of dealing with argumentation in a formal manner can be traced back till
antiquity. The quarrel was part and parcel of scientific research during the antiquity
and the Middle Ages. The concept of dialectic was first mentioned by Plato who treated
it as a question-and-answer game. In the so called Socratic Method, the arguments were
represented by the questions, and the progress of the argumentation resulted from the
affirmative or denial of these premises. Also Leibniz dreamed of an automatization of
the philosophical dispute. Therefore he conceived of and attempted to design a lingua
characteristica (a language in which all knowledge could be formally expressed) and
a calculus ratiocinator (calculus of reasoning) such that when philosophers disagreed
over some problem they could say ’calculemus’ (let us calculate) and agree to formulate
the problem in the lingua characteristica and solve it using the calculus ratiocinator.
Although Leibniz believed in the realizability of his dream, he needed to face up to
several problems such as:� some philosophical weaknesses,� the inevitable incompleteness of science,

1.2. CURRENT STATE OF AFFAIRS 3

If we had it, we should be able to reason in metaphysics
and morals in much the same way as in geometry and

analysis... If controversies were to arise, there would be no
more need of disputation between two philosophers than

between two accountants. For it would suffice to take
their pencils in their hands, to sit down to their slates,

and to say to each other (with a friend as witness, if they
liked): let us calculate.

(Gottfried Leibniz)

Figure 1.2: Gottfried
Wilhelm Leibniz (1646-
1716)� insufficient rigor in the mathematics of his day,� the limitations of the logic known in his time, and� the lack of adequate information technology.

Although Leibniz’s dream of a complete formalization of science was destroyed in the
thirties of the last century, restricted versions of Leibniz’s dream survived.

Another famous philosopher who dealt with argumentation was Arthur Schopenhauer.
In his book “The Art of Controversy”, he gives a guideline for winning every conversation.
In contrast to Plato and Leibniz, he does not concentrate on finding a logic based solution
for a dispute. According to his opinion, nearly everything is allowed, cheating included,
to win a conversation.

1.2 Current State of Affairs

Within the last decade, the area of argumentation has become a central issue in Artificial
Intelligence (AI) (see [12] for an excellent summary). Argumentation frameworks for-
malize statements together with a relation, denoting conflicts between them. By special
semantics for those frameworks, it is possible to built sets of acceptable arguments, and
therefore to solve the inherent conflicts.

Argumentation covers a wide range of applications fields, including multiagent systems
and law research. This led to the fact, that till now several different proposals for for-
malizations of argumentation exist. They not only vary in the way to define acceptable
arguments, also the notion of rebuttal has different meanings, or even additional rela-
tionships between statements are taken into account. Finally, statements are augmented

4 CHAPTER 1. INTRODUCTION

with priorities, such that the semantics yields those admissible sets which contain state-
ments of higher priority.

The absence of an accepted standard for argumentation framework is one current prob-
lem. Furthermore, argumentation problems are in general intractable, thus developing
dedicated algorithms for the different reasoning problems is non-trivial.

1.3 Main Contributions of the Thesis

Argumentation has gained increasing interest in artificial intelligence within the last
years. The consequence thereof is that we face loads of different frameworks and seman-
tics. To keep sight of the bigger picture, it is important to know which framework is
convenient for a particular problem, and which possibilities for reasoning are available
for that framework.

In this work, we investigate the most relevant and promising argumentation frameworks
together with the underlying semantics, and we bring them into a uniform notation.
Moreover, properties of acceptability, depending on the structure of argumentation
graphs, are analysed. We also describe the relations between the different semantics.
Therewith, we form the basis for an elegant implementation.

Furthermore, there still does not exist neither an implementation, capable of computing
all semantics of Dung’s basic argumentation framework, nor for the extensions thereof.
With this work, we present solutions for reasoning problems in different types of argu-
mentation frameworks, by means of computing the answer sets of an (extended) datalog
program. To be more specific, with our system, many important types of extensions
(i.e., admissible, preferred, stable, complete and grounded) in Dung’s original argumen-
tation framework (AF) [25], the preference based framework (PAF) [1], the value based
framework (VAF) [10], and the bipolar framework (BAF) [2,19] can be computed.

The declarative programming paradigm of Answer Set Programming (ASP) [41,43] under
the stable-models semantics [40] (which is our target formalism) is especially well suited
for our purpose. First, advanced solvers such as Smodels, DLV, GnT, Cmodels, Clasp, or
ASSAT are available which are able to deal with large problem instances (see [38]). Thus,
using the proposed implementation approach delegates the burden of optimizations to
these systems. Second, language extensions such systems offer can be used to employ
different extensions to AFs, which so far have not been studied (for instance, weak
constraints or aggregates could yield interesting specially tailored problems for AFs).
Finally, depending on the class of the programs one uses for a given type of extension,
one can show that, in general, the complexity of evaluation within the target formalism
is of the same complexity as the original problem. Thus, our approach is adequate from
a complexity-theoretic point of view.

1.4. EXAMPLE OF USE IN TERMS OF CASE LAW 5

The advantage of a fixed logic program is that it is completely independent of the
argumentation framework to process. Moreover, the input AF can be changed easily
and dynamically which simplifies the answering of questions like “What happens if I
add this new argument?”.

Our system makes use of the prominent answer set solver DLV [41]. All necessary
programs to run ASPARTIX and some illustrating examples are available at the following
web side:

http://www.kr.tuwien.ac.at/research/systems/argumentation/

Parts of the work have been published. The system ASPARTIX has been presented at
the 24th International Conference on Logic Programming (ICLP 2008) [32], and the en-
codings for the system ASPARTIX have been presented at the 1st Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP 2008) [30]. Additionally
a technical report [31] presents more details on the system and the encodings.

In the next section, we show the application of argumentation frameworks by means of
two examples from the law research area.

The structure of the remaining thesis is as follows:
Chapter 2 provides the necessary definitions of argumentation frameworks, as well as
an analysis of the different semantics and frameworks. The formal background of ASP
is introduced in Chapter 3. Besides syntax and semantics of ASP, we discuss some
programming techniques which we used to implement our system. In Chapter 4, we
discuss complexity issues for argumentation frameworks. The ASP encodings and the
proof of their correctness are introduced stepwise in Chapter 5. Chapter 6 is dedicated
to the description of the system ASPARTIX and its utilization. An overview of related
work is given in Chapter 7. Chapter 8 provides a conclusion of the topics addressed and
delivers an outlook on further research.

1.4 Example of Use in Terms of Case Law

In this section we will exemplify how an argumentation framework can be used to for-
malize and solve real legal cases. In the description of case law and argumentation
frameworks we follow [9,11,8]. In the USA, the judgment is based on previous decisions.
Therefore, the case law system is a very good example of the usage of an argumentation
framework. The lawyers compare the current case with previous ones, in order to argue
in favor of their clients.

First we consider an example, concerning a case about the right to hunt wild animals. We
show how an argumentation framework is set up, and how a set of acceptable arguments
is obtained.

6 CHAPTER 1. INTRODUCTION

Then we consider a more complex example, concerning the possession of a baseball. It
will be seen that a framework for a real case can become quite big and complicated, so
that the winner is not obvious any more. With this example, we show the need of a
computer-aided system to establish acceptable arguments. Furthermore, the need of an
extension of the basic framework by values and preferences is demonstrated in order to
get to a reasonable decision.

Wild Animals

The example in [9] is based on wild animal cases. We will consider one of those cases,
namely Keeble versus Hickergill in 1970. This was an English case in which Keeble
owned a duck pond to which he lured ducks, which he shot and sold for consumption.
Hickergill scared the ducks away by firing guns. The court found for Keeble.
To represent a case as an argumentation framework, we need to decide what counts as
an argument. Arguments need to have a conclusion and a reason for that conclusion.
Arguments will attack one another if their conclusions are in conflict. They will also
attack one another if the conclusion of the attacker indicates that the reason does not
hold, or if it suggests that the reason is no reason for the conclusion.
Now we will build the argumentation framework for the case Keeble versus Hickergill.
The basic contention of Keeble is that he had a right to the ducks, and that Hickergill
had prevented him from exercising this right. This is argument (A).
Hickergill must attack this argument, which he can do by saying that Keeble had no
right to the animals since he was not in possession of them (B). Keeble may respond
in one of two ways. He could argue that he is in pursuit of his livelihood, and that he
should be free to do so without interference, especially since his activity is socially useful
in providing food for others (F). Here the attack says the reason advanced in B is no
reason for its conclusion.
Alternatively Keeble could argue that he possesses the animals through his possession
of the land on which he would, in the absence of interference, find them (C). Hickergill
may attack this latter argument by pointing out that the ducks were wild animals, and
were not confined to Keeble´s land (D).
To this Keeble may respond that he had made efforts to attract the ducks through the
use of decoys, and his efforts promised in the absence of interference, success (E). That
is, although the ducks could be scared away, it was reasonable for the owner of the
pond to expect ducks to be there, and so was something he could expect to enjoy in
consequence of owning the pond. The table in Figure 1.3 lists the arguments and their
attacks. In the shown figure, the graph represents the corresponding attack relations.

In the resulting AF, one can see that the arguments E and F are not attacked, hence
they need to be part of the acceptable set. Hence, we can conclude that also A needs
to be acceptable, because his attack from B is is defended by E and F. Furthermore,
the argument E attacks the only attacker of C. It follows that the acceptable set is
{A,C,E,F}, a straightforward win for Keeble.

1.4. EXAMPLE OF USE IN TERMS OF CASE LAW 7

ID Argument Attacks

A Pursuer had right to animal
B Pursuer not in possession A
C Owns the land so possesses animals B
D Animals not confined by owner C
E Effort promising success made to secure animal made by pursuer B,D
F Pursuer has right to pursue livelihood B

A

B

C D EF

Figure 1.3: The attack relation for the case Keeble versus Hickergill.

In the next subsection, we will explain the case Popov v. Hayashi, based on the analysis
of [51], and show how it can be formalized as an argumentation framework. We will not
get into the details on which facts and rules the arguments and attacks are based on.
We are more interested in the decision made by the judge and how this decision can be
logically interpreted. For the more interested reader we refer to [51].

Who Owns the Baseball?

The case Popov v. Hayashi is a real case and has been decided by the honourable Kevin
McCarthy in 2002. The case concerned the possession of the baseball which Barry
Bonds hit for his record breaking 73rd home run in the 2001 season. Such a ball is
very valuable (Mark McGwire’s 1998 70th home run ball sold at auction for $3,000,000).
When the ball was struck into the crowd, Popov caught it in the upper part of the
webbing of his baseball glove. Such a catch, a snowcone catch because the ball is not
fully in the mitt, does not give certainty of retaining control of the ball, particularly
since Popov was stretching and may have fallen. However, Popov was not given the
chance to complete his catch since, as it entered his glove, he was tackled and thrown to
the ground by others trying to secure the ball, which became dislodged from his glove.
Hayashi (himself innocent of the attack on Popov), then picked up the ball and put it
in his pocket, so securing possession.

8 CHAPTER 1. INTRODUCTION

The Arguments

The arguments for this case arise out of testimonies of witnesses and videotape footage
and the reasoning involved. The arguments are formulated as follows:
It is a general principle that the fans have the right to take home any baseball. Popov
caught the baseball, it follows that he has possession of the baseball (A1). But Hayashi
retrieved the ball, so it follows that he has possession of the ball too (A2). If someone
catches a ball, he is the owner of it, so that no one has the right to assume possession
(A3). The baseball was in the glove of Popov, which means that he caught the ball (A4).
But Popov was not in control of the ball (A5), otherwise it could not have been possible
to lose the ball. Popov was still in motion (A6). He lost contact with the ball, which
means that he had no control of the baseball (A7).
The reason why Popov lost control of the ball was, because he has been assaulted, and
so the contact was intentional on the part of other persons (A8, A9). Popov was ably
and actively engaged in establishing control (A10). As the baseball was in the glove of
Popov, he was ably and actively engaged in establishing control (A11).
McCarthy argued that the custom and practice of the stands creates a reasonable expec-
tation that a person will achieve full control of a ball before claiming possession (A12).
He also considered that Popov, who was ably and actively engaged in establishing control
of the ball, had a pre-possessory interest in it, which precludes Hayashi from establishing
control by retrieving the ball (A13).
Additional to the arguments based on video and witness testimony, we have four ques-
tions which are no observable, and so have to be inferred on the basis of what was
observed. Thus whether the ball was caught (Q1), whether Popov was not in control
(Q2), whether he was actively attempting to establish control (Q3) and whether the con-
tact was intentional (Q4) are all open to question. These four arguments are intended to
represent positive answers to the questions: if the argument is not defeated, the contrary
has not been shown.
Table 1.1 shows the arguments and basic questions for the case, and Figure 1.4 pictures
the corresponding argument graph.

Analysis

From Table 1.1 and Figure 1.4 it is obvious that the arguments A9, A11 and A12 are not
attacked and therefore need to be accepted. The argument A9 eliminates the possibility
that the contact was incidental, therefore A8 can defeat A7. Hence it has not been
shown that Popov was not in control of the baseball. From A11 it follows that Popov
was actively and ably engaged in establishing control. But A12 eliminates A10 and it
follows that Popov was still in motion and were not able to complete the catch. Thus
A1 and A3 are defeated and it seems that A2 survives, giving possession to Hayashi.
But the fact that Popov, who was ably and actively engaged in establishing control of
the ball, had a pre-possessory interest in it, defeats A2.

1.4. EXAMPLE OF USE IN TERMS OF CASE LAW 9

ID Argument Attacks

A1 Popov has possession of the baseball A2
A2 Hayashi has possession of the baseball A1
A3 Popov caught the baseball A2
A4 The baseball was in the glove of Popov Q1
A5 Popov has not been in complete control of the baseball A4
A6 Popov was still in motion A4
A7 Popov lost contact with the baseball Q2
A8 Contact on Popov was intentional on the part of Y A7
A9 Y assaulted Popov Q3
A10 Popov was ably and actively engaged in establishing control A5, A6
A11 The baseball was in the glove of Popov Q4
A12 The custom and practice of the stands in baseball A10
A13 Popov had a pre-possessory interest in the ball A2

Q1 Not caught? A1, A3
Q2 In control? A5
Q3 Contact incidental? A8
Q4 Not active? A10, A13

Table 1.1: Arguments and basic question for Popov v. Hayashi.

The result of this is, that neither Popov nor Hayashi had established possession of the
ball. Therefore McCarthy had to make a decision which is fair to both parties.

Argumentation Framework

In order to be able to make a fair decision, McCarthy considered the following arguments
on which he also assigned different values:

PR1: Where interruption of completing the catch so establishing possession was illegal;
decide for Popov; to prevent assault being rewarded; promoting the value of public
order.

PR2: Where it has not been shown that Hayashi did not have possession and did nothing
wrong; do not decide for Popov; which would punish Hayashi; demoting the value
of fairness.

PR3: Where Hayashi had unequivocal control of the baseball; decide for Hayashi; to
provide a bright line; promoting clarity of law.

PR4: Where interruption of completing the catch so establishing possession was illegal;
do not insist on unequivocal control; which would reward assault; demoting the
value of public order.

10 CHAPTER 1. INTRODUCTION

A1A2A3

A4A5

A6

A7 A8

A9

A10A11 A12

A13

Q1

Q2 Q3

Q4

Figure 1.4: Argument Graph for Popov v. Hayashi.

PR5: Since Hayashi was not an assailant, finding for Hayashi would not reward assault.

PR6: Where it has not been shown that Popov did not have possession and did nothing
wrong; do not decide for Hayashi; which would punish Popov; demoting the value
of fairness.

PR7: Where interruption of completing the catch so establishing possession was illegal;
Popov should sue the assailants of the assault; which would not punish Popov;
promoting the value of fairness.

PR8: Since assailants cannot be identified, suing those responsible for the assault is not
a viable action.

Figure 1.5 shows the corresponding Argument Graph.

In order to be able to evaluate the acceptability of the arguments, we need to specify
a value ranking. McCarthy has explicitly said that fairness will be his primary value.
Thus, both PR1 and PR3 are defeated. PR5 will defeat PR4, and PR8 will defeat PR7,
since both must be objectively accepted given the facts. This leaves us with PR2 and
PR6 which are not in conflict.

The result is that McCarthy can decide neither for Popov nor for Hayashi. Therefore,
he decided that the ball should be sold and the proceeds divided between the two.

1.4. EXAMPLE OF USE IN TERMS OF CASE LAW 11

PR1
Public order

PR2
Fairness

PR3
Clarity

PR4
Public order

PR5
Fact

PR6
Fairness

PR7
Popov sue
assailants

PR8
Fact

Figure 1.5: Value-based Argument Graph for Popov v. Hayashi.

Conclusion of the Example

With this example we illustrated how useful an argumentation framework can be for
finding and/or analysing a decision. Therefore we used different kinds of approaches
such as basic argumentation frameworks and value based argumentation frameworks,
which will be introduced in the following chapters. In order to be able to reason about
those different argumentation frameworks, different semantics of acceptable arguments
are defined which will also be introduced and discussed. Furthermore a program has been
implemented in the ASP language DLV which is able to compute all those semantics for
a variety of different argumentation frameworks.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Theory and Conceptual

Formulation

In this chapter, we introduce different argumentation frameworks and discuss possible
semantics from the literature. We present basic definitions and notations which are
needed for the thesis.

2.1 Basic Argumentation Framework

We introduce basic argumentation frameworks and discuss some semantics for them.
The exposition (and especially the definitions) are based on [25].

Definition 2.1.1. An argumentation framework AF is a pair (A,R) where A is a
set of arguments and R is a binary relation on A, i.e., R ⊆ A×A. For two arguments
a, b, the statement (a, b) ∈ R means that a attacks b. A set S ⊆ A of arguments attacks b,
if b is attacked by an argument in S. A set S of arguments attacks a set S′ of arguments,
if there is an argument a ∈ S which attacks an argument b ∈ S′.

An argumentation framework AF = (A,R) can be represented as a directed graph
G = (V,E). The set of vertices is A, and R is the set of directed edges.

Example 2.1.1. Let (A,R) be an argumentation framework with

A = {a, b, c, d, e},

R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

This argumentation framework AF is represented by the graph shown in Figure 2.1.

13

14 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

a b c d e

Figure 2.1: Graph of the respective AF = (A,R) from Example 2.1.1.

2.1.1 Acceptability

In order to be able to perform reasoning about an argumentation framework, it is nec-
essary to group arguments with special properties to extensions. One of the basic prop-
erties of an extension is that the arguments are not in conflict with each other. But
avoiding conflicts alone is not very significant, therefore arguments should also be able
to reject arguments that are outside the extension. This leads to the definition of stable
extensions.

Definition 2.1.2. Let AF = (A,R). A set S ⊆ A is said to be conflict-free (in AF),
if there are no arguments a, b ∈ S such that (a, b) ∈ R. We denote by cf (AF) the set of
all conflict-free sets of AF.
A conflict-free set S ⊆ A is a stable extension of AF , iff for each argument c ∈ A with
c 6∈ S, there exists an argument b ∈ S such that (b, c) ∈ R. We denote by stable(AF)
the set of all stable extensions of AF.

For the framework AF of Example 2.1.1, we obtain stable(AF) = {{a, d}}. Indeed {a, d}
is conflict-free, since a and d are not adjacent. Moreover, each further element b, c, e is
attacked by either a or d. In turn, {a, c} for instance is not contained in stable(AF),
although it is clearly conflict free. Since e is not attacked by {a, c}, the latter is not an
element of stable(AF).

It is possible that an argumentation framework does not have a stable extension. Another
possibility to achieve an acceptable set of arguments is to consider those arguments which
are able to defend themselves against all external attacks. This is the basis of the notion
of admissible sets.

Definition 2.1.3. Let AF = (A,R). An argument a ∈ A is defended by a set S ⊆ A
of arguments (in AF), iff for each argument b ∈ A, it holds that, if (b, a) ∈ R, then b is
attacked by S. A conflict-free set S ⊆ A is admissible (in AF), iff each argument in S
is defended by S in AF . We denote by adm(AF) the set of all admissible extensions of
AF.

For the argumentation framework AF of Example 2.1.1, we obtain adm(AF) = {{}, {a},
{c}, {d}, {a, c}, {a, d}}. By definition, the empty set is always an admissible extension,

2.1. BASIC ARGUMENTATION FRAMEWORK 15

and an argumentation framework can have several admissible extensions, therefore rea-
soning over admissible extensions is limited. The maximal admissible sets, called pre-
ferred extensions, are considered to be of more interest.

Definition 2.1.4. Let AF = (A,R). A preferred extension of AF is a maximal
(with respect to set inclusion) admissible set of AF. We denote by pref (AF) the set of
all preferred extensions of AF.

For the argumentation framework AF of Example 2.1.1, we obtain pref (AF) = {{a, c},
{a, d}}. Beside the maximal admissible sets, one might be interested in admissible sets
which just defend those arguments which belong to them. This expresses a kind of
completeness.

Definition 2.1.5. Let AF = (A,R). An admissible set S ⊆ A is called a complete
extension of AF, iff each argument, which is defended by S (in AF), belongs to S. We
denote by comp(AF) the set of all complete extensions of AF.

For the argumentation framework AF of Example 2.1.1, we obtain

comp(AF) = {{a}, {a, c}, {a, d}}.

In contrast to the preferred extensions, which are characterized by maximality, the
grounded extension is determined by the minimal complete extension.

Definition 2.1.6. Let AF = (A,R). The least (with respect to set inclusion) complete
extension of AF is the grounded extension. We denote by ground(AF) the grounded
extension of AF.

The grounded extension for the argumentation framework of Example 2.1.1 is given by
ground(AF) = {a}. As mentioned above, the preferred extensions are of particular
interest. The preferred extensions of an argumentation framework AF can be taken
as being the consistent positions that can be adopted within AF . Any argument that
appears in all preferred extensions will be acceptable in every consistent position, and
any argument that appears in no preferred extension cannot be held in any consistent
position. This means that the notion can be related to varieties of semantics of non-
monotonic reasoning: credulously acceptable arguments will be those that appear in
at least one preferred extension, and sceptically acceptable arguments will be those
which appear in all preferred extensions. This notion allows us to distinguish those
arguments which must be accepted, those which can be defended, and those which are
indefensible [27].

Since any admissible set is a subset of some preferred extension, credulous acceptance
of an argument a is ensured by finding any admissible (not necessarily maximal) set
containing a.

16 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

stable

preferred grounded

complete

admissible

Figure 2.2: Overview of relations.

2.1.2 Properties of Acceptability

As mentioned so far, there exists a variety of different notions of acceptability, but
in some cases these semantics are not totally different. It happens quite often that
certain extensions from diverse semantics coincide [5]. Furthermore, there can be drawn
conclusions from the structure (in particular cycles) of the argumentation framework to
the acceptability. A lot of those properties have been discussed in literature. Here we
give an outline of the most important ones.

Property 2.1.1. Every stable extension is a preferred extension, but not vice versa.
Moreover, every preferred extension is also a complete extension. Stable, preferred and
complete semantics can have multiple extensions whereas the grounded semantics just
has a single extension.

The relations between the semantics are depicted in Figure 2.2, where an arrow from e
to f indicates that each e-extension is also a f-extension.

The next property follows from the fact that the empty set is always admissible.

Property 2.1.2. Every argumentation framework possesses at least one preferred ex-
tension.

Property 2.1.3. Each admissible set is included in a preferred extension. The grounded
extension is included in each preferred extension. Each argument which is not attacked
belongs to the grounded extension (hence to each preferred and to each stable extension).

An argumentation framework can not have more than one grounded extension. There-
fore, an alternative definition is possible which is based on a fix-point operator:

Definition 2.1.7. The grounded extension of an argumentation framework AF = (A,R)
is given by the least fix-point of the operator ΓAF : 2A → 2A, defined as

ΓAF (S) = {a ∈ A | a is defended by S in AF}.

2.1. BASIC ARGUMENTATION FRAMEWORK 17

a b a

b

c

a b c d

Figure 2.3: Graphs for the respective argumentation frameworks AF1, AF2 and AF3

from Example 2.1.2.

In [10, 14, 25, 27] the relation between preferred extensions and cycles in the graph rep-
resentation have been analysed.

Property 2.1.4. If an argumentation framework has (at least) two different preferred
extensions, then the directed graph of AF contains a directed cycle of even length.

Property 2.1.5. If an argumentation framework has no cycle of even length, then AF
has a single preferred extension.

As an illustration consider the following examples.

Example 2.1.2. Consider the argumentation frameworks from Figure 2.3. The argu-
mentation framework AF1 from the graph on the left side as one even cycle and hence
pref (AF1) = {{a}, {b}}. For AF2 from the graph in the middle with one odd cycle
we obtain pref (AF2) = {{}}, and for AF3 from the graph on the right side we obtain
pref (AF3) = {{a}}.

The argumentation framework AF2 from Example 2.1.2 also exemplifies the following
property.

Property 2.1.6. Let AF = (A,R) be an argumentation framework with no cycle of
even length. If each vertex in A is the endpoint of an edge in R, then the only preferred
extension of AF is the empty set.

From cycles, we can also draw conclusions whether preferred and stable extensions co-
incide.

Property 2.1.7. If an argumentation framework has no cycle of odd length, then each
preferred extension of AF is a stable extension of AF .

Example 2.1.3. Consider the argumentation framework from Figure 2.4. We get
pref (AF) = {{a}, {b}, {c}}, and these three extensions are also stable extensions.

Property 2.1.8. If an argumentation framework has no cycle and A is finite, then AF
has a single extension. It is stable, preferred, complete, and grounded.

Example 2.1.4. Consider the argumentation framework from Figure 2.5.
Since AF has no cycle, {a, c} is the only extension of AF , and it is stable, preferred,
complete, and grounded.

18 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

a

b

c

Figure 2.4: Graph of the respective AF from Example 2.1.3.

a b c d

Figure 2.5: Graph of the respective AF from Example 2.1.4.

2.2 Handling Controversial Arguments

Sometimes it may occur that an argument a is defended by an argument b, and at the
same time the argument b defends an attacker c of a. Even though there is no direct
conflict between the arguments a and b, it may be incautious to accept both arguments
at the same extension.

Example 2.2.1. Let AF = (A,R) with A = {a, b, c, e, n, i} and R = {(b, a), (c, a), (n, c),
(i, b), (e, c), (i, e)}.

a

b c

e n

i

The argument a is defended by the argument i and at the same time i, defends the
argument c which is an attacker of a. Thus it would not be cautious to accept both a and
i in the same extension. But the semantics for argumentation frameworks defined so far
has one preferred extension, namely {a, n, i}.

Definition 2.2.1. Let AF = (A,R). An argument a ∈ A indirectly attacks an
argument b ∈ A, iff there exists a finite sequence (of odd length) a0, . . . , a2n+1 such that
b = a0 and a = a2n+1, and for each i, 0 ≤ i ≤ 2n, ai+1 attacks ai.
An argument a indirectly defends an argument b, iff there exists a sequence (of even
length) a0, . . . , a2n, such that b = a0 and a = a2n, and for each i, 0 ≤ i ≤ 2n, ai+1

attacks ai.
An argument a is controversial with respect to an argument b, iff a indirectly attacks
b and indirectly defends b.

2.2. HANDLING CONTROVERSIAL ARGUMENTS 19

2.2.1 Prudent Semantics for Argumentation Frameworks

In order to handle controversial arguments, the prudent semantics have been introduced
in [20].

Definition 2.2.2. Let AF = (A,R). A set S ⊆ A is p(rudend)-conflict-free (in
AF), iff there are no arguments a, b ∈ S such that a indirectly attacks b. We denote by
pcf (AF) the set of all p-conflict-free sets of AF . A p-conflict-free set S ⊆ A is a stable
p-extension of AF , iff for each argument c 6∈ S an argument b ∈ S exists that directly
attacks c. We denote by pstable(AF) the set of all stable p-extensions of AF .

The argumentation framework AF of Example 2.2.1 has no stable p-extension.

Definition 2.2.3. Let AF = (A,R). A set S ⊆ A is said to be p-admissible (in AF),
iff every a ∈ S is defended by S and for all a, b ∈ S, a does not indirectly attack b. We
denote by padm(AF) the set of all p-admissible sets of AF .

The argumentation framework AF of Example 2.2.1 has {i, n} and its subsets as p-
admissible sets of AF .

Definition 2.2.4. Let AF = (A,R). A preferred p-extension of AF is a maximal
(with respect to set inclusion) p-admissible extension of AF. We denote by ppref (AF)
the set of all preferred p-extensions of AF .

In AF from Example 2.2.1, {i, n} is the unique preferred p-extension of AF .

Definition 2.2.5. Let AF = (A,R). An admissible set S ⊆ A is called a complete
p-extension of AF, iff each argument which is defended by S (in AF) and without
indirect conflicts with S (in AF), belongs to S. We denote by pcomp(AF) the set of all
complete p-extensions of AF .

Definition 2.2.6. Let AF = (A,R). The least (with respect to set inclusion) complete
p-extension of AF is the grounded p-extension of AF. We denote by pground(AF)
the set of all grounded p-extensions of AF .

2.2.2 Properties of Prudent Semantics

From [20] we can conclude some properties of prudent semantics.

Property 2.2.1. Let AF = (A,R) and a, b ∈ A. If a is controversial with respect to b,
then {a, b} can not be included into any p-admissible set for AF .

This means that no arguments belonging to an odd-length cycle of AF can also belong to
a p-admissible set. Especially, it is not cautious to consider within a single extension the

20 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

arguments of an odd-length cycle since they attack themselves indirectly. Furthermore,
any argument from an odd-length cycle is controversial with respect to an argument of
the cycle.

Example 2.2.2. Consider the following AF = (A,R). Let A = {a, b, c, d, e} and
R = {(a, e), (a, d), (b, a), (c, b), (d, c), (e, d)}.

a

b c

d

e

The argument a is controversial with respect to argument c because a attacks both the
defender e and the attacker d of c. Hence {a, c} can not belong to any p-admissible set
of AF . Note that {a, c} ∈ adm(AF).

Some of the previous mentioned properties from argumentation frameworks also hold
for prudent semantics in a similar form.

Property 2.2.2. Every stable p-extension of an argumentation framework AF also is
a preferred p-extension of AF . The converse does not hold.

Property 2.2.3. Let AF = (A,R). If AF is acyclic, then the grounded p-extension of
AF is nonempty.

Thus, every argumentation framework has at least one preferred p-extension, a unique
grounded p-extension and zero, one or many stable p-extension. While the grounded
extension of an argumentation framework AF is included in the intersection of all com-
plete extensions of AF , it is in general not the case that the grounded p-extension of
AF is included in every preferred p-extension of AF .

Property 2.2.4. Let AF = (A,R). If AF has a stable p-extension, then the intersection
of all preferred p-extensions of AF is included into the grounded p-extension of AF .

2.3 Extensions of Basic Argumentation Frameworks

The basic argumentation frameworks provide various semantics for acceptability, but
there are still several limitations. All arguments have the same priority, but in daily-life
discussions this is not always the case. There exists a requirement for preference relations
or for the possibility to add values to the arguments. Furthermore, it is only possible
to represent a support implicitly via defended arguments, but we may be interested
in a relation which is independent of the attack relation. Therefore we present some
extensions of the basic argumentation framework which cover these requirements.

2.3. EXTENSIONS OF BASIC ARGUMENTATION FRAMEWORKS 21

2.3.1 Preference Based Argumentation Frameworks

In preference based argumentation frameworks, we have the possibility to define addi-
tionally to the attack relation preference relations between the arguments. This allows
us to prefer and compare particular arguments.

Example 2.3.1. Let PAF = (A,R). Let A = {a, b, c} and R = {(b, a), (c, b)}.

abc

According to basic argumentation frameworks, we obtain pref (PAF) = {{a, c}}. But if
we know that the argument b is preferred to the argument c, then b defends itself against
c in some sense, and we obtain pref (PAF) = {{b, c}}.

In order to define preference based argumentation frameworks, we need the concept of
preorders.

Definition 2.3.1. A binary relation . defined on a set S is a preordering if it is
reflexive and transitive, i.e., ∀a, b, c ∈ S: a . a (reflexive); if a . b and b . c then a . c
(transitive).

The following definitions are based on [1].

Definition 2.3.2. A preference based argumentation framework (PAF) is a
triplet (A,R,Pref) where A and R are as for a standard argumentation framework and
Pref is a (partial or complete) preordering on A×A.

Different definitions of the relations R and Pref lead to different preference-based argu-
mentation systems.

Definition 2.3.3. Let PAF = (A,R,Pref). An argument a ∈ A defeats an argument
b ∈ A iff both (a, b) ∈ R and (b, a) 6∈ Pref .

Acceptability in PAFs

The notions for acceptable sets of arguments for preference based argumentation frame-
works remain the same as for basic argumentation frameworks, except that we consider
defeat relations instead of attack relations.

22 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

2.3.2 Value Based Argumentation Frameworks

A value based argumentation framework is similar to a preference based argumentation
framework, except that we can assign values to the arguments and define an ordering
over those values. Remember the introductory example Popov v. Hayashi from Section
1.4, where at first the judge was not able to make a decision. Only after he extended
the argumentation framework to a value based argumentation framework, he was able
to pronounce a judgement. In the example, we just presented a verbal reasoning for the
judgement. Now we will introduce the necessary definitions, following [7].

Definition 2.3.4. A value based argumentation framework (VAF) is a 5-tuple
(A,R, V, val , valpref), where A and R are as for a standard argumentation framework,
V is a non-empty set of values, val is a function which maps from elements of A to
elements of V , and valpref ⊆ V × V is a preference relation (transitive, irreflexive
and asymmetric). We say that an argument a ∈ A relates to value v ∈ V if accepting a
promotes or defends v: the value in question is given by val(a). For every a ∈ A, val (a) ∈
V .

Definition 2.3.5. Let VAF = (A,R, V, val , valpref). An argument a ∈ A defeats an
argument b ∈ A iff both (a, b) ∈ R and (val(b), val (a)) 6∈ valpref hold.

Example 2.3.2. Consider the following VAF = (A,R, V, val , valpref). Let A = {a, b, c},
R = {(b, a), (c, b)}, V = {red, blue}, val(a) = blue, val(b) = blue, val(c) = red and
valpref = {(red , blue)}.

a
blue

b
blue

c
red

We obtain that c defeats b, because (c, b) ∈ R and (val(b), val (c)) 6∈ valpref holds. But,
for valpref (blue, red), this does not hold any longer.

Acceptability in VAFs

In order to exemplify the notions of acceptance in value based argumentation frame-
works, let us consider the following example from [10].

Example 2.3.3. Hal, a diabetic, loses his insulin in an accident through no fault of his
own. Before collapsing into a coma, he rushes to the house of Carla, another diabetic.
She is not at home, but Hal enters her house and uses some of her insulin. Was Hal
justified, and does Carla have a right to compensation?
The first argument A is that Hal is justified, since a person has a privilege to use the
property of others to save his/her life. The second argument B is that it is wrong to
infringe the property rights of another. The argument C denotes that Carla’s rights have

2.3. EXTENSIONS OF BASIC ARGUMENTATION FRAMEWORKS 23

not been infringed. Argument D stands for the fact that if Hal were to poor to compensate
Carla, he should none the less be allowed to take the insulin. Argument E denotes that
poverty is no defence for theft. The last argument F means that Hal is endangering
Carla’s life. Arguments A,D and F are based on the value that life is important (life).
Whereas the arguments B,C and E are based on the value that property owners should
be able to enjoy their property (property). Figure 2.3.3 shows the corresponding graph.

A
life

B
property

C
property

D
life

E
property

F
life

Figure 2.6: Corresponding graph for VAF from Example 2.3.3.

We assume that life has a higher value than property.

Definition 2.3.6. Let VAF = (A,R, V, val , valpref). An argument a ∈ A is defended
by a set S ⊆ A of arguments, iff for each argument b ∈ A, it holds that, if b defeats a,
then b is defeated by S.

Definition 2.3.7. Let VAF = (A,R, V, val , valpref). A set S ⊆ A of arguments is
said to be conflict-free, if there are no two arguments a, b ∈ S such that (a, b) ∈ R
and (val(b), val (a)) ∈ valpref . We denote by cf (VAF) the set of all conflict-free sets of
V AF .

Definition 2.3.8. Let VAF = (A,R, V, val , valpref). A conflict-free set of arguments
S ⊆ A is admissible, iff each argument in S is defended by S. We denote by adm(VAF)
the set of all admissible sets of VAF.

Some admissible extensions of the VAF from Example 2.3.3 are:

{B,D}, {D,E,F}, {B,D,F}, {B,D,E,F}.

Definition 2.3.9. Let VAF = (A,R, V, val , valpref). A set S ⊆ A of arguments is a
preferred extension of VAF if it is a maximal (with respect to set inclusion) admissible
set of VAF. We denote by pref (VAF) the set of all preferred extensions of VAF.

24 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

The preferred extension from the VAF from Example 2.3.3 is {B,D,E,F}. If we value
property more than life, the preferred extension is {A,C,E}.

Definition 2.3.10. Let VAF = (A,R, V, val , valpref). A conflict-free set of arguments
S ⊆ A is a stable extension of VAF, iff for each argument c ∈ A, with c 6∈ S, an
argument b ∈ S exists such that b defeats a. We denote by stable(VAF) the set of all
stable extensions of VAF.

The stable extension for the VAF from Example 2.3.3 equals the preferred extension.

Properties of Acceptability in VAFs

By the extension of an argumentation framework with values, the acceptance of argu-
ments may change significantly depending on the ranking of values.

Consider the VAF from Example 2.3.2. If we prefer red to blue, we obtain {a, c} as
the preferred extension. But, if we prefer blue to red, we obtain {b, c} as the preferred
extension. The argument a, which is sceptically acceptable in a value free framework, has
been rejected by an alteration of priorities, whereas the argument c remains acceptable
independent of the value ranking. This leads to two different notions of acceptance, the
objective and the subjective acceptance [10].

Definition 2.3.11 (Objective Acceptance). Given a VAF = {A,R, V, val , valpref }, an
argument a ∈ A is objectively acceptable if and only if a is contained in every
preferred extension for all possible value preferences.

Definition 2.3.12 (Subjective Acceptance). Given a VAF = {A,R, V, val , valpref }, an
argument a ∈ A is subjectively acceptable if and only if a is contained in some
preferred extensions for some value preferences.

An argument which is neither objectively nor subjectively acceptable is said to be in-
defensible. In [7] several properties of value based argumentation frameworks with
respect to cycles have been analysed. A cycle in a VAF is monochromatic if it contains
arguments related to a single value, dichromatic if it contains arguments related to ex-
actly two arguments and polychromatic if they have two or more values. In a VAF ,
monochromatic cycles act like in an AF . But VAFs with no monochromatic cycles have
a unique, non-empty preferred extension, given an ordering on values. This follows from
the fact that an AF related to a VAF with no monochromatic cycles is cycle free.

2.3.3 Bipolar Argumentation Frameworks

The following definitions are based on [3,18,19].

2.3. EXTENSIONS OF BASIC ARGUMENTATION FRAMEWORKS 25

A bipolar argumentation framework is an extension of the basic argumentation frame-
work introduced in [25], in which two kinds of interactions between arguments are pos-
sible: the attack relation and the support relation. These two relations are independent
which leads to a bipolar representation of the interaction between arguments.

Definition 2.3.13. An abstract bipolar argumentation framework (BAF) is a
triplet BAF = (A,Rdef , Rsup), where A is a set of arguments, Rdef is a binary relation
on A called defeat relation and Rsup is another binary relation on A called support
relation. For two arguments a and b, (a, b) ∈ Rdef (resp. (a, b) ∈ Rsup) means that a
defeats b (resp. a supports b).

A bipolar argumentation framework can be represented by a directed graph Gb called
the bipolar interaction graph. In order to differentiate between the two relations, two
kinds of edges are used. For two arguments a and b, (a, b) ∈ Rdef is represented by a→ b
and (a, b) ∈ Rsup is represented by a 99K b.

Example 2.3.4. Consider the following BAF = (A,Rdef , Rsup). Let A = {a, b, c, d, e},
Rdef = {(a, e), (d, c)} and Rsup = {(a, b), (b, c), (d, e)}. Then the graph Gb looks as
follows:

a b c

d

e

Definition 2.3.14. Let BAF = (A,Rdef , Rsup). A supported defeat for an argument
b ∈ A is a sequence

a1R1 . . . Rn−1an,

n ≥ 3, with an = b, such that ∀i = 1, . . . , n − 2, Ri = Rsup and Rn−1 = Rdef . A
direct defeat on b ∈ A (a sequence reduced to two arguments aRdef b) will also be called
a supported defeat.
An indirect defeat for an argument b ∈ A is a sequence

a1R1 . . . Rn−1an,

n ≥ 3, with an = b, such that ∀i = 2, . . . , n− 1, Ri = Rsup and R1 = Rdef .

Definition 2.3.15. A set S ⊆ A set-defeats an argument b ∈ A, iff there exists a
supported defeat or an indirect defeat for b from an element of S. A set S ⊆ A set-
supports an argument b ∈ A, iff there exists a sequence

a1Rsup . . . Rsupan,

n ≥ 2, such that an = b and a1 ∈ S.

26 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

Definition 2.3.16. A set S ⊆ A defends an argument a ∈ A, iff for each argument
b ∈ A, if {b} set-defeats a, then b is set-defeated by S.

Acceptability in Bipolar Argumentation Frameworks

In the following we will define the semantics for acceptability in bipolar argumentation
frameworks [19].

Definition 2.3.17. A set S ⊆ A is conflict-free, iff there are no two arguments a and
b in S such that {a} set-defeats b.

Definition 2.3.18. A set S ⊆ A is safe, iff there is no argument b ∈ A such that S
set-defeats b and either S set-supports b or b ∈ S.

Some safe sets from the BAF from Example 2.3.4 are {d, e}, {a, b, c} and {b, c, e}.

Definition 2.3.19. A conflict-free set S ⊆ A is a stable extension, iff for each argu-
ment a 6∈ S, S set-defeats a.

The unique stable extension from the BAF from Example 2.3.4 is {a, b, d}.

We can give three different definitions for admissibility. The first one is equal to Dung’s
definition and is therefore called d-admissible extension.

Definition 2.3.20. A conflict-free set S ⊆ A is a d-admissible extension, iff each
argument in S is defended by S.

The d-admissible extensions from the BAF from Example 2.3.4 are as follows:

{{}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}}.

Next we consider admissibility for safe sets.

Definition 2.3.21. A safe set S ⊆ A is a s-admissible extension, iff each argument
in S is defended by S.

The s-admissible extensions from the BAF from Example 2.3.4 are as follows:

{{}, {a}, {b}, {d}, {a, b}}.

The last definition of admissibility is related to closed sets1.

1A set is closed under an operator if that operator returns a member of the set when evaluated on
members of the set.

2.3. EXTENSIONS OF BASIC ARGUMENTATION FRAMEWORKS 27

Definition 2.3.22. A conflict-free set S ⊆ A is a c-admissible extension, iff S is
closed 2 for Rsup and each argument in S is defended by S.

The unique c-admissible extension from the BAF from Example 2.3.4 is the empty set
{}. Finally, we define preferred semantics for BAFs .

Definition 2.3.23. A d-preferred (resp. s-preferred, c-preferred) extension of
a bipolar argumentation framework BAF is a maximal (with respect to set inclusion)
d-admissible (resp. s-admissible, c-admissible) set of BAF.

The preferred extensions from the BAF from Example 2.3.4 are as follows:� {a, b, d} is the unique d-preferred extension,� {d} and {a, b} are the s-preferred extensions, and� {} is the unique c-preferred extension.

Properties of Acceptability in BAFs

The following properties show relations between the semantics from BAFs . The exposi-
tion here is based on [19].

Property 2.3.1. If a set S ⊆ A is safe, then S is conflict-free. If a set S ⊆ A is
conflict-free and closed for Rsup , then S is safe.

Property 2.3.2. Let S be a stable extension. If S is safe, then S is closed for Rsup .

Consequence 1. Let S be a stable extension of a bipolar argumentation framework
BAF = (A,Rdef , Rsup). Then S is safe iff S is closed for Rsup .

Property 2.3.3. Each c-admissible extensions is also s-admissible, and each s-admissible
extension is also d-admissible.

Property 2.3.4. Let S be the unique stable extension of the bipolar argumentation
framework BAF = (A,Rdef , Rsup).

1. The s-preferred extensions and the c-preferred extensions are subsets of S.

2. Each s-preferred extension which is closed for Rsup is also a c-preferred extension.

3. If S is safe, then S is the unique c-preferred extension and also the unique s-
preferred extension.

2We remark that a set S of arguments is closed under Rsup , iff S is closed under the transitive closure
of Rsup .

28 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

a

b1 b2

c0

c1 c2

c3

d

e

Figure 2.7: Graph of the respective BAF = (A,Rdef , Rsup) from Example 2.3.5

4. If A is finite, each c-preferred extension is included in a s-preferred extension.

5. If S is not safe, the s-preferred extensions are the subsets of S which are maximal
(with respect to set inclusion) s-admissible.

6. If S is not safe, and A is finite, then there is only one c-preferred extension.

Controversial Arguments in BAFs

We have already discussed controversial arguments before, but in the case of a bipolar
argumentation framework, we also need to take into account the support relation. In
some particular arrangements of a bipolar argumentation framework, it may happen
that an argument a supports an argument b, which is controversial with respect to
an argument c. In such a case, the arguments a and c are not directly controversial.
Therefore b(ipolar)-controversial arguments have been introduced in [17].

Definition 2.3.24. An argument a ∈ A is b-controversial with respect to an argument
b ∈ A, iff a supports (by a sequence of supports) an argument c which indirectly attacks
b and a supports (by a sequence of supports) an argument d which indirectly defends b.

Example 2.3.5. Consider the BAF in Figure 2.7. Let A = {a, b1, b2, c0,
c1, c2, c3, d, e}, Rdef = {(b1, a), (b2, a), (c0, b1), (c1, b1), (c1, c2), (c2, b2), (c3, b2)} and
Rsup = {(d, c1), (e, b2)}.

Definition 2.3.25. A set S ⊆ A is b(ipolar)p(prudent)-conflict-free, iff there are
no two arguments a and b in S such that there exists a sequence

a1Rsup . . . RsupanRdef . . . Rdef an+m,

n ≥ 1, with a1 = a, an+m = b, and m is an odd number.

2.3. EXTENSIONS OF BASIC ARGUMENTATION FRAMEWORKS 29

In the BAF from Example 2.3.5, the set {a, c0, c3, d} does not contain indirect attacks,
but it is not bp-conflict-free.

Definition 2.3.26. A set S ⊆ A is bp-admissible for a bipolar argumentation frame-
work BAF, iff S is bp-conflict-free and each argument in S is defended by S. A pre-
ferred bp-extension of BAF is a maximal (with respect to set inclusion) bp-admissible
set of BAF. A bp-conflict-free set S is a stable bp-extension, iff for each argument
a 6∈ S, S defeats a.

The BAF from Example 2.3.5 has two preferred bp-extensions: {a, c0, c3} and
{c0, c1, c3, d, e}, but no stable bp-extension.

30 CHAPTER 2. THEORY AND CONCEPTUAL FORMULATION

Chapter 3

Answer Set Programming

In this chapter we introduce the basic definitions of Answer Set Programming (ASP)
which are needed for the remainder of the thesis.

3.1 Syntax

Answer Set Programming has been first introduced in [40]. It is a declarative program-
ming paradigm based on an extension of function-free first-order logic.

A term is constant symbol or a variable symbol.

An atom is an expression A(t1, . . . , tn), where A is a predicate symbol of arity n and
t1, . . . , tn are terms.

A literal is an atom A(t1, . . . , tn) or a strongly negated atom ¬A(t1, . . . , tn), where ¬
stands for the classical (strong) negation. In contrast, not represents negation as failure;
if an atom is not true in some model, then its negation should be considered to be true
in that model.

A literal is called ground if it does not contain any variable symbols.

A disjunctive logic program Π is a set of rules r of the form

L1 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln, (3.1)

where n ≥ m ≥ k ≥ 0 and Li (i = 1, . . . , n) is a literal. The head of the rule r is the set
H(r) = {L1, . . . , Lk}, and the body of r is B(r) = {Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln}.
Furthermore, we denote the positive body of r by B+(r) = {Lk+1, . . . , Lm} and the
negative body of r by B−(r) = {Lm+1, . . . , Ln}.

31

32 CHAPTER 3. ANSWER SET PROGRAMMING

A rule is safe1 if each variable in the head of the rule also appears in at least one literal
in the positive body of that rule. A program is safe if each of its rules is safe, and in the
following we will only consider safe programs.

An integrity constraint is a rule with empty head, whereas a fact is a non-disjunctive
rule with empty body.

A rule is called ground if it contains only ground literals, and a program is called ground
program if it only contains ground rules.

Occasionally, we write for a set F of facts (which is considered to represent some term
of input) and a program Π, Π(F) instead of F ∪Π.

A program Π is called stratified, if there exists an assignment s(·) of integers to the
predicates in Π, such that for each rule r ∈ Π, the following holds: If predicate p occurs
in the head of r and predicate q occurs

(i) in the positive body of r, then s(p) ≥ s(q) holds;

(ii) in the negative body of r, then s(p) > s(q) holds.

The Herbrand universe HUΠ of a program Π is the set of all constant symbols occurring
in Π. A ground instance of a rule r ∈ Π is a ground rule r′ where each variable occurring
in r is substituted by an element of HUΠ. In the following, we will denote with Gr(Π)
the ground instance of the program Π i.e. the set of all ground instances of rules in Π.

Example 3.1.1. Consider the program Π:

Π = { p(1, 2);

q(x)← p(x, y),¬q(y)}.

Its Herbrand universe HUΠ is {1, 2}. The ground instance of the program Π is as follows:

Gr(Π) = { q(1)← p(1, 1),¬q(1);

q(1)← p(1, 2),¬q(2);

q(2)← p(2, 1),¬q(1);

q(2)← p(2, 2),¬q(2)}.

3.2 Semantics

The semantics of logic programs is an extension of the answer set semantics for general
logic programs proposed in [39]. The stable model semantics defines, when a set S of
ground atoms is a “stable model” of a given program.

1Note that safe in the context of ASP has no bearing on safe in the context of BAFs from Section 2.3.3

3.2. SEMANTICS 33

The semantics of extended programs treat a rule with variables as shorthand for the set
of its ground instances. It is sufficient then to define answer sets for extended programs
without variables. This will be done in two steps.

First we consider programs without not (i.e., m = n in every rule of the form (3.1) of
the program).

Definition 3.2.1. Let Π be a ground disjunctive logic program without variables that
does not contain not, and let Lit be the set of ground literals over HUΠ. An answer set
of Π is any minimal subset S of Lit such that,

(i) for each rule L1 ∨ · · · ∨Lk ← Lk+1, . . . , Lm from Π, if Lk+1, . . . , Lm ∈ S, then, for
some i = 1, . . . , k, Li ∈ S;

(ii) if S contains a pair of complementary literals, then S = Lit.

We will denote the set of answer sets of a program Π by AS(Π).

Example 3.2.1. Consider the following program Π:

{ man(tom);

single ∨ husband← man(X)}.

The program Π has two answer sets {man(tom), husband} and {man(tom), single}.

Now we define a method to obtain the answer sets of a program containing negation.

Definition 3.2.2. Let Π be a ground disjunctive logic program. The Gelfond-Lifschitz
reduct of Π with respect to a set S ⊂ Lit is the the disjunctive logic program ΠS obtained
from Π by deleting

(i) each rule that has a formula not L in its body with L ∈ S, and

(ii) all formulas of the form not L in the bodies of the remaining rules.

Definition 3.2.3. As ΠS does not contain not, its answer sets are already defined. If
S is one of them, then we say that S is an answer set of Π.

Example 3.2.2. We modify the program Π from Example 3.2.1 as follows:

Π = { man(tom)← not husband;

single ∨ husband← man(X)}.

34 CHAPTER 3. ANSWER SET PROGRAMMING

Now the modified program has the unique answer set {man(tom), single}. Consider the
answer set S = {man(tom), husband} and its Gelfond-Lifschitz reduct

ΠS = { single ∨ husband← man(tom)}.

The program ΠS has one answer set, namely {}. Hence, S is not an answer set of ΠS

and therefore it is not an answer set of Π.

Property 3.2.1. [39] Let Π be a normal program such that Π is stratified. Then Π
has at most one answer set. If Π is, in addition, constraint-free, then it has a unique
answer set.

3.3 Programming Techniques

Disjunctive logic programming under the answer set semantics is a very expressive for-
malism for knowledge representation and reasoning. In Chapter 4, the relevant com-
plexity classes are introduced and we give the corresponding complexity results. In this
section, we mention some programming techniques which have been used for our system.

3.3.1 Linear Ordering

To derive predicates for infimum, supremum, and successor, we need to define an order
over the domain elements. We will exemplify this method by an example.

Example 3.3.1. Consider a company. The employees and their salaries are represented
by empl/2. We compute the linear ordering over the employees and derive the predicates
succ, inf and sup for successor, infimum and supremum with the following program Πord .

Πord = { lt(X,Y)← empl(X,), empl(Y,),X < Y ;

nsucc(X,Z)← lt(X,Y), lt(Y,Z);

succ(X,Y)← lt(X,Y),not nsucc(X,Y);

ninf(Y)← lt(X,Y);

inf(X)← empl(X,),not ninf(X);

nsup(X)← lt(X,Y);

sup(X)← empl(X,),not nsup(X)}.

Now we can compute the sum of salaries of the employees with the following program
Πsum.

Πsum = { partSum(X,S)← inf(X), empl(X,S);

partSum(Y, S)← succ(X,Y),partSum(X,S1), empl(X,S2), S = S1 + S2;

sum(S)← sup(X),partSum(X,S)}.

3.3. PROGRAMMING TECHNIQUES 35

3.3.2 Guess&Check Methodology

With the Guess&Check methodology [34, 41], it is possible to encode problems in a
declarative way, by at first guessing a search space, and then filtering out the solutions
via the elimination of wrong candidates.

Given a set Î of facts that specify an instance I of some problem P, a Guess&Check
program P for P consists of the following two parts:

Guessing Part: The guessing part G ⊆ P of the program defines the search space,
such that answer sets of G(Î) represent solution candidates for I.

Checking part: The checking part C ⊆ P of the program filters the solution candidates
in such a way that the answer sets of G ∪ C ∪ Î represent the admissible solutions
for the problem instance I.

This technique can be extended to the Guess&Check&Optimize paradigm by adding
an optimization part. As we did not make use of the optimization part, we refer to [41]
for details.

For a number of problems, the Guess&Check program has the following layered structure:� The guessing part G consists of disjunctive rules that “guess” a solution candidate
S.� The checking part C consists of integrity constraints that check the admissibility
of S.

Each layer may have further auxiliary predicates, defined by normal stratified rules. As
an example let us consider the 3-Colorability problem.

Example 3.3.2. Given a graph G = (V,E) as input, assign to each node one of three
colors (red, green, or blue), such that adjacent nodes always have different colors. 3-
Colorability is a classical NP-complete problem. The encoding looks as follows, where a
set of nodes V and edges E are specified by the predicates node/1 and edge/2 .

G = {col(X, r) ∨ col(X, g) ∨ col(X, b)← node(X).}

C = {← edge(X,Y), col(X,C), col(Y,C).}

The nodes and edges of the graph are represented by a set Î of facts with predicates node
and edge. The “guessing” rule G states that every node is colored red, green, or blue.
The “checking” constraint C assures that there are no two connected nodes with the same
color. The answer sets of G(Î) represent all possible assignments of colors to the nodes.
The minimality of answer sets guarantees that every node has a different color. All those

36 CHAPTER 3. ANSWER SET PROGRAMMING

answer sets of G(Î) which satisfy C are solutions for the problem. There is a one-to-one
correspondence between the solutions of the 3-colorable problem and the answer sets of
Î ∪ G ∪ C. The graph G is 3-colorable if and only if Î ∪ G ∪ C has some answer set, and
each of the answer sets of Î ∪ G ∪ C represents a legal 3-coloring of G.

3.3.3 Saturation Technique

In the previous example, we considered a program, where the checking part C had no
influence on the guessing part G. Now we consider problems, where the checking part
C must have influence on the guessing part G. This influence is defined by disjunctive
rules in C or an interference from C with G (in particular head-cycles must be present in
G ∪ C).

As an example, let us consider a restricted class of Quantified Boolean Formulas, namely
∃∀-QBFs. QBFs are extensions of propositional logic by the possibility to quantify over
propositional atoms. Here, we consider prenex QBFs of the form

Q1X1Q2X2 . . . QnXnφ,

where Q ∈ {∀,∃}, and φ is a quantifier free propositional formula. The semantic is
defined as follows.� ∀φ(p) is a shorthand for φ(⊤) ∧ φ(⊥), and� ∃φ(p) is a shorthand for φ(⊤) ∨ φ(⊥).

Example 3.3.3. [35,41] The ∃∀-QBF problem is to decide whether a quantified Boolean
formula (QBF) of the shape Φ = ∃X∀Y φ, where X and Y are disjoint sets of propo-
sitional variables and φ = C1 ∨ · · · ∨ Ck is a 3DNF formula over X ∪ Y , evaluates to
true. We want to have a witness assignment σ to the variables X, such that φ[X/σ(X)]
is a tautology, where X/σ(X) denotes the substitution of X by σ(X). This leads to a
Guess&Check disjunctive logic program, in which the witness assignment σ is guessed
by some rules and the rest of the program checks whether φ[X/σ(X)] is a tautology.
A QBF Φ is encoded as a set of facts Φ̂, consisting of� exists(v), for each existential variable v ∈ X;� forall(v), for each universal variable v ∈ Y ; and� term(p1 , p2 , p3 , q1 , q2 , q3), for each disjunct l1 ∧ l2 ∧ l3 in φ, where

(i) if li is a positive atom vi, then pi = vi, otherwise pi =“true”, and

(ii) if li is a negated atom ¬vi, then qi =“false”.

3.3. PROGRAMMING TECHNIQUES 37

For example, term(x1, true , y4, false , y2, false), encodes x1 ∧ ¬y2 ∧ y4.

The program P∃∀−QBF looks as follows.

G = { t(true);

f(false);

t(X) ∨ f(X)← exists(X)}.

C = { t(Y) ∨ f(Y)← forall(Y);

w ← term(X,Y,Z,Na,Nb,Nc), t(X), t(Y), t(Z), f(Na), f(Nb), f(Nc);

t(Y)← w, forall (Y);

f(Y)← w, forall (Y);

← not w}.

The guessing part G “initializes” the logical constants “true” and “false” and chooses
a witnessing assignment σ to the variables in X, which leads to an answer set AG for
this part. The more tricky checking part C then tests whether φ[X/σ(X)] is a tautology,
using a saturation technique [35]: the constraint ← not w. enforces that w must be true
in any answer set of the program; the preceding two rules imply that such an answer set
A contains both t(y) and f(y) for every y ∈ Y . Hence, A has a unique extension with
respect to w and all t(y) and f(y) where y ∈ Y . By the minimality of answer sets, an
extension of AG to the (uniquely determined) answer set A of the whole program exists,
iff for each possible assignment µ to the variables in Y , effected by the disjunctive rule
in the checking part, the atom w is derived. The latter holds iff there is some disjunct in
φ[X/σ(X), Y/µ(Y)] which is true. Hence, A is an answer set iff the formula φ[X/σ(X)]
is a tautology. In summary, we obtain that Φ is a Yes-instance, that is, it evaluates to
true, iff P∃∀−QBF (Φ̂) has some answer set. Moreover, the answer sets of P∃∀−QBF (Φ̂)
are in a one-to-one correspondence with the witnesses σ for the truth of Φ.

38 CHAPTER 3. ANSWER SET PROGRAMMING

Chapter 4

Complexity Issues

4.1 Basic Introduction

The polynomial hierarchy is a sequence of classes starting with

∆P
0 := ΣP

0 := ΠP
0 := P,

where P is the set of decision problems solvable in polynomial time.
For k ≥ 0, we get

∆P
k+1 := PΣP

k ,

ΣP
k+1 := NPΣP

k ,

ΠP
k+1 := coNPΣP

k ,

where AB is the set of decision problems solvable by a Turing machine in class A aug-
mented by an oracle for some problem in class B. For example, ΣP

1 = NP, ΠP
1 = coNP,

and ∆P
2 = PNP is the class of problems solvable in polynomial time with an oracle for

some problem in NP.

Known relations between the classes in the polynomial hierarchy are as follows:

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1

ΠP
k ⊆ ∆P

k+1 ⊆ ΠP
k+1

ΣP
k = coΠP

k

The class PSPACE is the set of decision problems that can be solved by a deterministic
or Turing machine using a polynomial amount of memory and an arbitrary run time.
If a nondeterministic Turing machine is used, then the class NPSPACE obtained. In

39

40 CHAPTER 4. COMPLEXITY ISSUES

stable adm prefex comp ground

Crede NP-c NP-c NP-c NP-c in P

Skepte coNP-c (trivial) ΠP
2 -c in P in P

Table 4.1: Complexity for decision problems in argumentation frameworks.

Savitch’s theorem [48], it is shown that PSPACE equals NPSPACE. A decision problem
is PSPACE-complete if it is in PSPACE and every problem in PSPACE can be reduced
to it in polynomial time.

4.2 Complexity of Argumentation Frameworks

In this section, we briefly review the complexity of reasoning in argumentation frame-
works. To this end, we define the following decision problems for e ∈{stable ,adm ,prefex ,
comp,ground}:� Crede: Given an argumentation framework AF = (A,R), and an argument a ∈ A.

Is a contained in some S ∈ e(AF)?� Skepte: Given an argumentation framework AF = (A,R), and an argument a ∈ A.
Is a contained in each S ∈ e(AF)?

The complexity results are depicted in Table 4.1 (many of them follow implicitly from [24],
for the remaining results and discussions we refer to [21,29]).

In Table 4.1, “C-c” refers to a problem which is complete for class C, while “in C” is
assigned to problems for which a tight lower complexity bound is not known. Skeptical
reasoning over admissible extensions is always trivially false. Moreover, we note that
credulous reasoning over preferred extensions is easier than skeptical reasoning. This
is due to the fact that the additional maximality criterion only comes into play for the
latter task. Indeed, for credulous reasoning, the following makes clear why there is no
increase in complexity compared to credulous reasoning over admissible extensions: a is
contained in some S ∈ adm(AF) iff a is contained in some S ∈ prefex (AF). A similar
argument immediately shows why skeptical reasoning over complete extensions reduces
to skeptical reasoning over the grounded extension.

Complexity of Value Based Argumentation Frameworks

In value based argumentation framework, the complexity of decision problems is depen-
dent on the value preferences. As a reminder, on Page 24 we already gave the definitions

4.3. DATA COMPLEXITY 41

stratified programs normal programs general case

|=c P NP ΣP
2

|=s P coNP ΠP
2

Table 4.2: Data complexity for datalog (all results are completeness results).

for objective acceptance (OBA) and subjective acceptance (SBA). In [28], it has been
shown that OBA is coNP-complete and SBA is NP-complete. Basically, complexity of
reasoning in VAFs has the same complexity as in basic AFs.

Complexity of Preference Based Argumentation Frameworks

In [23] it has been shown, that credulous reasoning over stable extensions is NP-hard,
and sceptical reasoning over stable extensions is coNP-hard. In principle, reasoning in
PAFs has the same complexity as in basic AFs.

4.3 Data Complexity

We briefly recall some complexity results for disjunctive logic programs. We focus on
results for data complexity. Data complexity in our context is the complexity of checking
whether P (D) |= A when programs P are fixed, while input databases D and ground
atoms A are an input of the decision problem. Depending on the concrete definition of
|=, we give the complexity results in Table 4.2 (cf. [22] and the references therein).

When comparing Table 4.1 to Table 4.2, it is obvious which programs are adequate for
the respective decision problems of argumentation frameworks.

Further Complexity Results

In Section 3.3, we introduced some programming techniques by some examples. Here we
give the respective complexity results. Problems which are in NP, like the NP-complete
3-Colorability problem, can be encoded with a simple Guess&Check program, as used
in Example 3.3.2. In this program, we just used disjunction in the guessing part and
the layer is head-cycle free. Hence, an answer set A of Πguess ∪ FI can be guessed in
polynomial time [6, 34]. The complexity of deciding whether an atom belongs to some
answer set is thus in NP.

For problems beyond NP and in particular for ΣP
2 -complete problems, this technique

42 CHAPTER 4. COMPLEXITY ISSUES

can not be applied anymore, because it would imply ΣP
2 ⊆ NP, which is widely believed

to be false. Thus, if a program solves a ΣP
2 -complete problem and has guessing and

checking parts Πguess and Πcheck with complexities below ΣP
2 , then Πcheck must either

contain disjunctive rules or interfere with Πguess (and in particular head-cycles must
be present in Πguess ∪ Πcheck) [34, 41]. In Example 3.3.3 we used a program where the
checking part Πcheck contains a disjunctive rule. This is adequate due to the fact that
the ∃∀-QBF problem is ΣP

2 -complete [46].

Chapter 5

Encodings

In this chapter, we introduce stepwise the DLV program Π, which computes the se-
mantics for various variants of frameworks described in Chapter 2. Moreover we prove
correctness of Π, by showing that the answer sets of the program are in a one-to-one
correspondence to the acceptable sets of arguments. We provide a fixed program, totally
independent of the concrete problem instance. The argumentation framework AF and
the type of extension to compute is set up as an input database.

In Section 5.1 we describe the decomposition of the program Π into modules. The basic
dependence relation between the modules forms a partial order. The decomposition
does not only make it easier to describe and understand the whole program, but also
allows us to prove the functioning of the program step by step. In Section 5.2 and 5.3
we will add additional modules for value based argumentation frameworks and bipolar
argumentation frameworks. The entire program Π is given at a glance in Appendix A.

5.1 Basic Argumentation Framework

For a better understanding, we split the program Π into modules πχ with χ ∈ Mod(Π)
where, for a given argumentation framework AF , and a semantic ε ∈ Σ = {stable , adm ,
comp, ground , prefex},

Mod(Π) = { ÂF , ext(ε), guess , defeat , cf , defeated ,not defended , adm ,

comp, stable , ground , ord , prefex}.

Later, we will use the above as splitting sets [42]. A description of the respective modules
is given in Table 5.1. Following the notion of potential usage in [36] we will prove step
by step the correctness of the program Π resulting in Theorem 1.

Definition 5.1.1. Let π1 and π2 be programs. We say that π2 potentially uses π1, or

43

44 CHAPTER 5. ENCODINGS

Module Description

ÂF Representation of the argumentation framework AF .

πext(ε) Predicates for calculations control specifying the type of the argumen-
tation framework and which extensions should be calculated.

πguess Guessing of an interpretation representing a set subset of arguments.

πdefeat Derivation of successful defeat.

πcf Constraint for elimination of answer sets which represent conflicts.

πdefeated Rule for derivation of defeated arguments.

πnot defended Rule for derivation of not defended arguments.

πadm Constraint for elimination of answer sets representing non-admissible
sets.

πcomp Constraint for elimination of answer sets representing non-complete sets.

πstable Constraint for elimination of answer sets representing non-stable sets.

πground Stratified rules to compute the answer set representing the grounded
extension.

πord Rules for specification of an ordering on the arguments.

πprefex Elimination of not preferred answer sets.

Table 5.1: Modules πχ of the program Π

π1 is independent of π2 (denoted π2 ⊲ π1), iff each predicate that occurs in some head
of π2 does not occur (positively or negatively) in π1.

Proposition 5.1.1. Let π1, π2 and π3 be disjunctive programs. Then,

1. (π2 ∪ π3) ⊲ π1 iff π2 ⊲ π1 and π3 ⊲ π1, and

2. π3 ⊲ (π1 ∪ π2) iff π3 ⊲ π1 and π3 ⊲ π2.

For a proof of Proposition 5.1.1, we refer to [47]. The following proposition is based
on [36,42].

Proposition 5.1.2. Let Π = π1 ∪ π2 be a disjunctive program such that π2 ⊲ π1. Then,
it holds that

AS(Π) =
⋃

A∈AS(π1)

(AS(A ∪ π2)).

Each module πχ (except ÂF and πext(ε)) depends on the output of other modules. We
will denote this dependency by the transitive partial order relation ≺. If πj ≺ πi, then
πi serves as input for πj .

Figure 5.1 shows the partial order relation between the modules πχ, where an edge from
module πi to πj stands for πj ≺ πi.

5.1. BASIC ARGUMENTATION FRAMEWORK 45

ÂF

πguess πdefeat

πcf πnot defended

πdefeated

πadm πstableπcomp

πord

πprefex

πground

πext(ε)

Figure 5.1: Partial order relation between modules πχ.

Definition 5.1.2. Let AF = (A,R). We denote by Πχ(ÂF) the union of module πχ

and its predecessors for the argumentation framework AF:

Πχ(ÂF) = πχ ∪
⋃

πχ≺πϕ

πϕ,

where χ ∈Mod(Π).

For example:

Πcf (ÂF) = πcf ∪ πdefeat ∪ πguess ∪ ÂF ,

Πguess(ÂF) = πguess ∪ ÂF ,

Πdefeat (ÂF) = πdefeat ∪ ÂF ,

Πord (ÂF) = πord ∪ ÂF ,

Πdefeated (ÂF) = πdefeated ∪ πguess ∪ πdefeat ∪ ÂF ,

Πnot defended (ÂF) = πnot defended ∪ πdefeated ∪ πguess ∪ πdefeat ∪ ÂF .

Definition 5.1.3. Let AF = (A,R) and ε ∈ Σ = {stable , adm , comp, ground , prefex}.

The program Πε(ÂF) represents the union of module πε and its predecessors with respect
to ≺.

46 CHAPTER 5. ENCODINGS

For example:

Πstable(ÂF) = πstable ∪ πcf ∪ πdefeated ∪ πdefeat ∪ πguess ∪ ÂF ∪ πext(stable),

Πadm (ÂF) = πadm ∪ πcf ∪ πnot defended ∪ πdefeat ∪ πguess ∪ ÂF ∪ πext(adm),

Πcomp(ÂF) = πcomp ∪ πcf ∪ πnot defended ∪ πdefeat ∪ πguess ∪ ÂF ∪ πext(comp),

Πground (ÂF) = πground ∪ πcf ∪ πdefeat ∪ πguess ∪ ÂF ∪ πext(ground),

Πprefex (ÂF) = πprefex ∪ πadm ∪ πord ∪ πcf ∪ πnot defended ∪ πdefeat ∪ πguess

∪ ÂF ∪ πext(prefex).

Theorem 1. For each argumentation framework AF = (A,R) and extension
ε ∈ Σ = {stable , adm , comp, ground , prefex}, there is a one-to-one correspondence be-

tween ε(AF) and AS(Πε(ÂF)).

5.1.1 Description of the Modules πχ of Π

In the following we introduce the modules in detail, and we prove their correctness
resulting in Theorem 1.

Representation of the Argumentation Framework

The argumentation framework AF = (A,R) is represented in the following way:

Definition 5.1.4. Given an argumentation framework AF , ÂF consists of the following
facts:

ÂF = { arg(a) | a ∈ A} ∪

{ attack(a, b) | (a, b) ∈ R}.

For example, the encoding ÂF for the argumentation framework AF of Example 2.1.1

5.1. BASIC ARGUMENTATION FRAMEWORK 47

is as follows:

ÂF = { arg(a),

arg(b),

arg(c),

arg(d),

arg(e),

attack(a, b),

attack(c, b),

attack(c, d),

attack(d, c),

attack(d, e),

attack(e, e)}.

As the module ÂF does not contain any rules or constraints, the following proposition
is obvious.

Proposition 5.1.3. For every argumentation framework AF = (A,R) it holds that

AS(ÂF) = {ÂF} = {{arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ R}}.

This means that the program ÂF has one single answer set ÂF .

Selection of Extensions

The module πext(ε) denotes which extensions ε ∈ Σ should be computed. It is not
possible to compute more than one extension at the same time. Except for the preferred
extensions which require also the admissible ones.

Definition 5.1.5. For an extension ε ∈ Σ, the module πext(ε) consists of the following
fact and rule:

πext(ε) = { ε;

adm← prefex}.

Guessing an Interpretation

In the module πguess all subsets S ⊆ A are guessed. The resulting answer sets represent
the search space for the subsequent modules.

48 CHAPTER 5. ENCODINGS

Definition 5.1.6. The module πguess consists of the following two rules:

πguess = { in(X)← not out(X), arg(X); (5.1)

out(X)← not in(X), arg(X)}. (5.2)

The two predicates in/1 and out/1 determine, whether an argument a ∈ A is in or
oppositely not in the set S ⊆ A.

Definition 5.1.7. For a set I of facts, we define

σ(I) = {a | in(a) ∈ I}.

Proposition 5.1.4. Let AF = (A,R). For each set S ⊆ A, there exists an interpretation

I ∈ AS(Πguess(ÂF)) such that

I = ÂF ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}.

For each interpretation I ∈ AS(Πguess(ÂF)) it holds that ÂF ⊆ I and there exists a set
S ⊆ A such that S = σ(I).

The concept of guessing is well known, therefore we omit the proof.

Defeat

In module πdefeat a successful attack is derived. For the basic argumentation frameworks
the defeat relation equals the attack relation. For PAFs and VAFs this module will be
modified!

Definition 5.1.8. The module πdefeat consists of the following rule:

πdefeat = { defeat(X,Y)← attack(X,Y)}.

Proposition 5.1.5. For every argumentation framework AF = (A,R) it holds that

AS(Πdefeat (ÂF)) = { I ∪ {defeat(a, b) | attack(a, b) ∈ I} | I ∈ AS(ÂF)}

= { ÂF ∪ {defeat(a, b) | (a, b) ∈ R}}.

The program Πdefeat (ÂF) has one single answer set denoted by ÂF defeat .

Conflict free Sets

The module πcf eliminates all answer sets with conflicting arguments.

5.1. BASIC ARGUMENTATION FRAMEWORK 49

Definition 5.1.9. The module πcf consists of the following constraint:

πcf = { ← in(X), in(Y),defeat(X,Y)}.

We know that πguess ⊲ πcf and πdefeat ⊲ πcf holds. From Proposition 5.1.1, we can
conclude that (πguess ∪ πdefeat) ⊲ πcf holds. Hence, we can conclude from Proposition

5.1.2 and Definition 5.1.2 that the answer sets of the program Πcf (ÂF) are defined as
follows,

AS(Πcf (ÂF)) =
⋃

J∈AS((Πguess∪ Πdefeat)(dAF))

AS(J ∪ πcf).

Hence, the correspondence between the answer sets of the program Πcf (ÂF) and the
conflict free subsets of arguments is given in Proposition 5.1.6.

Proposition 5.1.6. Let AF = (A,R). For each conflict free set S ⊆ A, there exists an

interpretation I ∈ AS(Πcf (ÂF)), such that

I = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}.

For each interpretation I ∈ AS(Πcf (ÂF)) it holds that ÂF defeat ⊆ I, and there exists a
conflict free set S ⊆ A, such that S = σ(I).

Proof. We know that the program Πdefeat (ÂF) has one single answer set ÂF defeat . Hence,
it is easy to see that

AS((Πguess ∪Πdefeat)(ÂF)) = {ÂF defeat ∪ J | J ∈ AS(Πguess(ÂF))}. (5.3)

Let S ⊆ A be a conflict free set. By Proposition 5.1.4, we know that there exists an
interpretation J ∈ AS(Πguess (ÂF)) such that

J = ÂF ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}.

By (5.3), we know that ÂF defeat ⊇ ÂF . One can see that there exists an interpretation

I ∈ AS((Πguess ∪Πdefeat)(ÂF)), such that

I = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}.

Since S is conflict free, the constraint in πcf can not fire. Hence, it follows that

I ∈ AS(Πcf (ÂF)).

Now we show that for each interpretation I ∈ AS(Πcf (ÂF)) there exists a conflict free set
S ⊆ A, such that S = σ(I). The module πcf only consists of one constraint. Hence, no

new facts are derived. Therefore, I ∈ AS((Πguess ∪Πdefeat)(ÂF)) has to hold. Consider
an interpretation J , such that

J = I \ {defeat(a, b) | (a, b) ∈ R}.

It is obvious that J ∈ AS(Πguess (ÂF)). Hence by Proposition 5.1.4, we know that there
exists a set S ⊆ A such that σ(I) = σ(J) = S.

50 CHAPTER 5. ENCODINGS

Defeated Arguments

With the module πdefeated we derive defeated arguments which we need to compute stable
extensions. Furthermore we use πdefeated for the module πnot defended .

Definition 5.1.10. The module πdefeated consists of the following rule:

πdefeated = {defeated(X)← in(Y),defeat(Y,X)}.

We know that πguess ⊲ πdefeated and πdefeat ⊲ πdefeated holds. From Proposition 5.1.1,
we can conclude that (πguess ∪ πdefeat) ⊲ πdefeated holds. Hence, we can conclude from

Proposition 5.1.2 and Definition 5.1.2 that the answer sets of the program Πdefeated (ÂF)
are defined as follows,

AS(Πdefeated (ÂF)) =
⋃

J∈AS((Πguess∪ Πdefeat)(dAF))

AS(J ∪ πdefeated).

Hence, the correspondence between the answer sets of the program Πdefeated (ÂF) and
the subsets of arguments is given in Proposition 5.1.7.

Proposition 5.1.7. Let AF = (A,R). For each set S ⊆ A, there exists an interpretation

I ∈ AS(Πdefeated (ÂF)), such that

I = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

For each interpretation I ∈ AS(Πdefeated (ÂF)) it holds that ÂF defeat ⊆ I, and there
exists a set S ⊆ A, such that S = σ(I).

Proof. According to the proof of Proposition 5.1.6, by (5.3), we know that ÂF defeat ⊇

ÂF . One can see that for each set S ⊆ A, there exists an interpretation J ∈ AS((Πguess∪

Πdefeat)(ÂF)), such that

J = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}.

Assume that there exists an interpretation I ⊃ J , such that

I = J ∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

It is easy to see that
I ∈ AS(Πdefeated (ÂF)).

Now we show that for each interpretation I ∈ AS(Πdefeated (ÂF)) there exists a set
S ⊆ A, such that S = σ(I). Consider an interpretation J ⊂ I, such that

J = I \ {defeat(a, b) | (a, b) ∈ R} ∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

It is obvious that J ∈ AS(Πguess(ÂF)). Hence by Proposition 5.1.4, we know that there
exists a set S ⊆ A such that σ(I) = σ(J) = S.

5.1. BASIC ARGUMENTATION FRAMEWORK 51

Non Defended Arguments

In the module πnot defended , we derive arguments which are not defended. We need these
arguments later to compute admissible and complete extensions.

Definition 5.1.11. The module πnot defended consists of the following rule:

πnot defended = {not defended(X)← defeat(Y,X),not defeated(Y)}.

We know that πdefeated ⊲πnot defended . As shown in Figure 5.1, it holds that πnot defended ≺
πdefeated . Hence, we can conclude from Proposition 5.1.2 and Definition 5.1.2 that the

answer sets of the program Πnot defended(ÂF) are defined as follows,

AS(Πnot defended(ÂF)) =
⋃

J∈AS(Πdefeated (dAF))

(AS(J ∪ πnot defended))

Hence, the correspondence between the answer sets of the program Πnot defended (ÂF)
and the subsets of arguments is given in Proposition 5.1.8.

Proposition 5.1.8. Let AF = (A,R). For each set S ⊆ A, there exists an interpretation

I ∈ AS(Πnot defended (ÂF)), such that

I = { ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}}.

For each interpretation I ∈ AS(Πnot defended(ÂF)) it holds that ÂF defeat ⊆ I, and there
exists a set S ⊆ A, such that S = σ(I).

Proof. From Proposition 5.1.7 we know that for each set S ⊆ A, there exists an inter-
pretation J ∈ AS(Πdefeated (ÂF)), such that

J = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

Assume that there exists an interpretation I ⊃ J , such that

I = J ∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

It is easy to see that
I ∈ AS(Πnot defended (ÂF)).

Now we show that for each interpretation I ∈ AS(Πnot defended (ÂF)) there exists a set
S ⊆ A, such that S = σ(I). Consider an interpretation J ⊂ I, such that

J = I \ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

It is obvious that J ∈ AS(Πdefeated (ÂF)). Hence by Proposition 5.1.7, we know that
there exists a set S ⊆ A such that σ(I) = σ(J) = S.

52 CHAPTER 5. ENCODINGS

Admissible Sets

The module πadm eliminates all answer sets which do not correspond to adm(AF).

Definition 5.1.12. The module πadm consists of the following constraint:

πadm = { ← in(X),not defended(X), adm}.

We know that πcf ⊲πadm and πnot defended ⊲πadm holds. From Proposition 5.1.1, we can
conclude that (πcf ∪πnot defended)⊲πadm holds. Hence, we can conclude from Proposition

5.1.2 and Definition 5.1.3 that the answer sets of the program Πadm (ÂF) are defined as
follows,

AS(Πadm (ÂF)) =
⋃

J∈AS((Πcf ∪Πnot defended)(dAF))

(AS(J ∪ πadm ∪ πext(adm))).

Hence, the correspondence between the answer sets of the program Πadm (ÂF) and the
admissible sets of arguments is given in Proposition 5.1.9.

Proposition 5.1.9. Let AF = (A,R). For each set S ∈ adm(AF), there exists an

interpretation I ∈ AS(Πadm (ÂF)), such that

I = ÂF defeat ∪ {adm.} ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

For each interpretation I ∈ AS(Πadm (ÂF)) there exists a set S ∈ adm(AF), such that
S = σ(I).

In order to prove Proposition 5.1.9, we first need to define the following proposition.

Proposition 5.1.10. Let AF = (A,R). For each conflict free set S ⊆ A, there exists

an interpretation I ∈ AS((Πcf ∪Πnot defended)(ÂF)), such that

I = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

For each interpretation I ∈ AS((Πcf ∪Πnot defended)(ÂF)) there exists a conflict free set
S ⊆ A, such that S = σ(I).

Proof. By Proposition 5.1.8, we know that there exists an interpretation
I ∈ AS(Πnot defended(ÂF)), such that

I = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

5.1. BASIC ARGUMENTATION FRAMEWORK 53

Since S is conflict free, the constraint in πcf does not fire. Hence, I ∈ AS((Πcf ∪

Πnot defended)(ÂF)) also holds. Now, we show that for each interpretation I ∈ AS((Πcf ∪

Πnot defended)(ÂF)), there exists a conflict free set S ⊆ A, such that S = σ(I). The
module πcf only consists of one constraint. Hence, no new facts are derived. Therefore,

I ∈ AS(Πnot defended (ÂF)) has to hold. By Proposition 5.1.8, we know that there exists
a set S ⊆ A, such that S = σ(I).

Proof. (of Proposition 5.1.9) By Proposition 5.1.10, we know that there exists an inter-

pretation J ∈ AS((Πcf ∪Πnot defended)(ÂF)), such that

J = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

Assume that there exists an interpretation I ⊃ J , such that

I = J ∪ {adm.}

Since S is admissible, it does not contain arguments which are not defended. Therefore,
in(a) and not defended(a) can not hold for any a ∈ S. So, the constraint in πadm does

not fire. Hence, I ∈ AS(Πadm (ÂF)) holds. Now, we show that for each interpretation

I ∈ AS(Πadm (ÂF)) there exists a set S ∈ adm(AF), such that S = σ(I). Consider an
interpretation J ⊂ I, such that

J = I \ {adm}.

It is obvious that J ∈ AS((Πcf ∪ Πnot defended)(ÂF)). Hence, by Proposition 5.1.9, we
know that there exists a set S ⊆ A, such that S = σ(I) = σ(J).

Complete Sets

The module πcomp eliminates all answer sets which do not correspond to comp(AF).

Definition 5.1.13. The module πcomp consists of the following constraint:

πcomp = { ← out(X),not not defended(X), comp}.

We know that πcf ⊲πcomp and πnot defended ⊲πcomp holds. From Proposition 5.1.1, we can
conclude that (πcf ∪πnot defended)⊲πcomp holds. Hence, we can conclude from Proposition

5.1.2 and Definition 5.1.3 that the answer sets of the program Πcomp(ÂF) are defined as
follows,

AS(Πcomp(ÂF)) =
⋃

J∈AS((Πcf ∪Πnot defended)(dAF))

(AS(J ∪ πcomp ∪ πext(comp))).

54 CHAPTER 5. ENCODINGS

Hence, the correspondence between the answer sets of the program Πcomp(ÂF) and the
complete sets of arguments is given in Proposition 5.1.11.

Proposition 5.1.11. Let AF = (A,R). For each set S ∈ comp(AF), there exists an

interpretation I ∈ AS(Πcomp(ÂF)), such that

I = ÂF defeat ∪ {comp.} ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

For each interpretation I ∈ AS(Πcomp(ÂF)) there exists a set S ∈ comp(AF), such that
S = σ(I).

Proof. By Proposition 5.1.10, we know that there exists an interpretation J ∈ AS((Πcf ∪

Πnot defended)(ÂF)), such that

J = ÂF defeat ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}.

Assume that there exists an interpretation I ⊃ J , such that

I = J ∪ {comp.}

Since S is a complete set, every arguments which is defended by S, belongs to S. Hence,
the constraint in πcomp does not fire. Hence, I ∈ AS(Πcomp(ÂF)) holds. Now, we show

that for each interpretation I ∈ AS(Πcomp(ÂF)) there exists a set S ∈ comp(AF), such
that S = σ(I). Consider an interpretation J ⊂ I, such that

J = I \ {comp}.

It is obvious that J ∈ AS((Πcf ∪ Πnot defended)(ÂF)). Hence, by Proposition 5.1.9, we
know that there exists a set S ⊆ A, such that S = σ(I) = σ(J).

Stable Sets

The module πstable eliminates all answer sets which do not correspond to stable(AF).

Definition 5.1.14. The module πstable consists of the following constraint:

πstable = { ← out(X),not defeated(X), stable}.

5.1. BASIC ARGUMENTATION FRAMEWORK 55

We know that πcf ⊲ πstable and πdefeated ⊲ πstable holds. From Proposition 5.1.1, we can
conclude that (πcf ∪ πdefeated) ⊲ πstable holds. Hence, we can conclude from Proposition

5.1.2 and Definition 5.1.3 that the answer sets of the program Πstable(ÂF) are defined
as follows,

AS(Πstable(ÂF)) =
⋃

J∈AS((Πcf ∪Πdefeated)(dAF))

(AS(J ∪ πstable ∪ πext(stable))).

Hence, the correspondence between the answer sets of the program Πstable(ÂF) and the
stable sets of arguments is given in Proposition 5.1.12.

Proposition 5.1.12. Let AF = (A,R). For each set S ∈ stable(AF), there exists an

interpretation I ∈ AS(Πstable(ÂF)), such that

I = ÂF defeat ∪ {stable.} ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

For each interpretation I ∈ AS(Πstable(ÂF)) there exists a set S ∈ stable(AF), such
that S = σ(I).

Proof. By Proposition 5.1.7, we can conclude that there exists an interpretation J ∈
AS(Πdefeated (ÂF)), such that

J = ÂF defeat{in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}.

This holds especially for all conflict free sets S ⊆ A. Therefore, J ∈ AS((Πcf ∪

Πdefeated)(ÂF)) also holds. Assume that there exists an interpretation I ⊃ J , such
that

I = J ∪ {stable.}

Since S ∈ stable(AF), there does not exist any argument a ∈ A \ S, such that a is not

defeated. Therefore, the constraint in πstable does not fire. Hence, I ∈ AS(Πstable(ÂF))

holds. Now, we show that for each interpretation I ∈ AS(Πstable(ÂF)) there exists a set
S ∈ stable(AF), such that S = σ(I). Consider an interpretation J ⊂ I, such that

J = I \ {stable}.

It is obvious that J ∈ AS(Πdefeated (ÂF)). Hence, by Proposition 5.1.7, we know that
there exists a set S ⊆ A, such that S = σ(I) = σ(J).

56 CHAPTER 5. ENCODINGS

Defining an Order over the Arguments

The module πord allows us to compute an order over the arguments. It derives infi-
mum, supremum and successor predicates from the arguments which are needed for the
grounded and preferred extensions.

Definition 5.1.15. The module πord consists of the following rules:

πord = { lt(X,Y)← arg(X), arg(Y),X < Y ;

nsucc(X,Z)← lt(X,Y), lt(Y,Z);

succ(X,Y)← lt(X,Y),not nsucc(X,Y);

ninf(Y)← lt(X,Y);

inf(X)← arg(X),not ninf(X);

nsup(X)← lt(X,Y);

sup(X)← arg(X),not nsup(X)}.

The predicate < is supplied by DLV and fixes an order over the the arguments. We get
a fixed sequence (with respect to <) of arguments a1, . . . , an with the minimal argument
min< = a1 denoted by inf(a1), the maximal argument max< = an denoted by sup(an)
and the successor of an argument s<(ai) = ai+1 denoted by succ(ai, ai+1). For two
arguments ai, aj ∈ a1, . . . , an we say ai < aj if i < j denoted by lt(ai, aj).

From Proposition 5.1.2, Definition 5.1.2 and the partial order relation pictured in Fig-
ure 5.1, we can conclude that the answer sets of the program Πord (ÂF) are defined as
follows,

AS(Πord (ÂF)) = AS(πord ∪ ÂF).

The program Πord (ÂF) contains stratified negation, and therefore it has one single

answer set denoted by ÂF ord .

Example 5.1.1. Let AF = (A,R), with A = {e, f, g, h, s, w} and
R = {(e, s), (f, e), (h, g), (w, h), (w, s), (e, w)}.

ÂF = { arg(e), arg(f), arg(g), arg(h), arg(s), arg(w), attack(e, s),

attack(f, e), attack(h, g), attack(w, h), attack(w, s), attack(e,w)}

The unique answer set of the program Πord (ÂF) contains ÂF together with all the pred-

5.1. BASIC ARGUMENTATION FRAMEWORK 57

w

f

h e

g s

Figure 5.2: Graph representation from the example AF.

icate derived in the module πord .

ÂF ord = ÂF ∪ {inf(e), sup(w), lt(e, f), lt(e, g), lt(f, g), lt(e, h), lt(f, h), lt(g, h),

lt(e, s), lt(f, s), lt(g, s), lt(h, s), lt(e,w), lt(f,w), lt(g,w), lt(h,w), lt(s,w),

nsup(e),nsup(f),nsup(g),nsup(h),nsup(s),ninf(f),ninf(g),ninf(h),ninf(s),

ninf(w),nsucc(e, g),nsucc(e, h),nsucc(e, s),nsucc(e,w),nsucc(f, h),

nsucc(f, s),nsucc(f,w),nsucc(g, s),nsucc(g,w),nsucc(h,w),

succ(e, f), succ(f, g), succ(g, h), succ(h, s), succ(s,w)}

Grounded Extension

To compute the grounded extension for a given argumentation framework AF = (A,R),
we need to encode the operator ΓAF as defined in Definition 2.1.7. Therefore we will
use a stratified program. Note that here we are not able to first guess a candidate for
the extension and then check whether the guess satisfies certain conditions. Instead, we
“fill” the in(·)-predicate according to the definition of the operator ΓAF .

Definition 5.1.16. The module πground consists of the following rules:

πground = { defended upto(X,Y)← inf(Y), arg(X),not defeat(Y,X),

ground; (5.4)

defended upto(X,Z)← succ(Y,Z),defended upto(X,Y),

not defeat(Z,X), ground; (5.5)

defended upto(X,Y)← inf(Y), in(Z),defeat(Z, Y),

defeat(Y,X); (5.6)

defended upto(X,Z)← succ(Y,Z),defended upto(X,Y),

in(V),defeat(V,Z),defeat(Z,X); (5.7)

defended(X)← sup(Y),defended upto(X,Y), ground; (5.8)

in(X)← defended(X), ground}. (5.9)

58 CHAPTER 5. ENCODINGS

In Definition 2.1.7 we defined the grounded extension ground(AF) over the least fix-
point of the operator ΓAF (S) = {a ∈ A | a is defended by S in AF}. This operator
works as follows:
In the first iteration the operator ΓAF contains all arguments a ∈ A which are not
defeated:

Γ0
AF = ΓAF (∅) = {a ∈ A |6 ∃b : (b, a) ∈ R}.

In the following iterations all arguments are added which are defended by the arguments
contained in Γi−1

AF :

Γi
AF = ΓAF (Γi−1

AF) = {a ∈ A | a is defended by Γi−1
AF }.

The iteration stops if no new arguments can be added:

Γi
AF = Γi−1

AF

which is the least fix-point lfp representing the grounded extension of AF ground(AF).

From Proposition 5.1.2, Definition 5.1.3 and the partial order relation pictured in Fig-
ure 5.1, we can conclude that the answer sets of the program Πground (ÂF) are defined
as follows,

AS(Πground (ÂF)) = AS(πground ∪ ÂF ord ÂF defeat ∪Aext(ground)).

The program Πground (ÂF) contains stratified negation, and therefore it has one single

answer set denoted by ÂF ground .

In order to prove the correspondence between the operator ΓAF , and the program
Πground (ÂF), we define the operator ∆dAF

representing the answer set ÂF ground as fol-
lows.

Definition 5.1.17. In the first iteration, the operator ∆0
dAF

= ∆dAF
(∅) contains all facts

from the answer set Aord (ÂF)∪{ground.} ∪ defended upto(a, b), defended(a), in(a) for
all arguments a which are not defeated; formally

∆0
dAF

= ÂF ord ∪ {ground.}

∪{defended upto(a, b) | ∀aj < b : (aj , a) 6∈ R, (b, a) 6∈ R}

∪{defended(a) | ∀aj ∈ A : (aj , a) 6∈ R}

∪{in(a) | ∀aj ∈ A : (aj, a) 6∈ R}.

In the ith iteration, the operator ∆i
dAF

= ∆dAF
(∆i−1

dAF
) contains all facts from the previous

iteration ∆i−1
dAF

, plus {defended upto(a, b)}, {defended(a)}, and {in(a)} for all arguments

5.1. BASIC ARGUMENTATION FRAMEWORK 59

a defended by those contained in ∆i−1
dAF

.

∆i
dAF

= ∆i−1
dAF

∪{defended upto(a, b) | ∀b ∈ A such that (aj < b) and in(aj) ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: (b, a) ∈ R, (c, b) ∈ R}

∪{defended(a) | ∀b ∈ A such that (aj < b) and in(aj) ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: (b, a) ∈ R, (c, b) ∈ R}

∪{in(a) | ∀b ∈ A such that (aj < b) and in(aj) ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: (b, a) ∈ R, (c, b) ∈ R}

Proposition 5.1.13. Let AF = (A,R), the answer set ÂF ground for the program

Πground (ÂF) and the operator ∆dAF
defined as above, then it holds that

ÂF ground = lfp(∆dAF
).

Proof. In the first iteration we will apply the Rules (5.4), (5.5), (5.8) and (5.9). Hence

∆dAF
will consist of the union of the answer sets ÂF ord , ÂF defeat and Aext(ground)) and the

predicates derived from those rules r ∈ Gr(Πground) with ÂF ord ∪ ÂF defeat ∪Aext(ground)

satisfies B(r)

∆0
dAF

= AS(ÂF ord ∪Aext(ground))

∪{H(r) | r ∈ Gr(Πground (ÂF)), ÂF ord ∪ ÂF defeat ∪Aext(ground) satisfies B(r)}

= ÂF ord ∪ {ground.}

∪{defended upto(a, b) |6 ∃ aj < b : defeat(aj , a) ∈ ÂF ord ,

defeat(b, a) ∈ ÂF ord}

∪{defended(a) |6 ∃ aj < b : defeat(aj , a) ∈ ÂF ord}

∪{in(a) |6 ∃ aj < b : defeat(aj, a) ∈ ÂF ord}.

In this step in(·) represents those arguments which are not defeated in AF . In the next
iterations the Rules (5.6),(5.7), (5.8) and (5.9) will add all arguments which are defended

60 CHAPTER 5. ENCODINGS

by arguments c, with in(c) ∈ ∆i−1
dAF

:

∆i
dAF

= ∆i−1
dAF
∪ {H(r) | r ∈ Gr(Πground),∆i−1

dAF
satisfies B(r)}

= ∆i−1
dAF

∪{defended upto(a, b) | ∀b ∈ A such that (aj < b) and in(aj) ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: defeat(b, a) ∈ ∆i−1
dAF

,

defeat(c, b) ∈ ∆i−1
dAF
}

∪{defended(a) | ∀b ∈ A such that (aj < b) and in(aj) ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: defeat(b, a) ∈ ∆i−1
dAF

,defeat(c, b) ∈ ∆i−1
dAF
}

∪{in(a) | ∀b ∈ A such that (aj < b) and aj ∈ ∆i−1
dAF

,

∃ in(c) ∈ ∆i−1
dAF

: defeat(b, a) ∈ ∆i−1
dAF

,defeat(c, b) ∈ ∆i−1
dAF
}

The module πground contains stratified negation, therefore the program Πground (ÂF)
has one single answer set, and the iteration stops if ∆i

dAF
= ∆i−1

dAF
. The least fix-point

lfp(∆dAF
) contains ÂF ord ∪ {ground.}, plus all facts {defended upto(.)}, {defended(.)},

and {in(.)} derived by πground ∪ ÂF ord ∪ ÂF defeat ∪Aext(ground). Hence

lfp(∆dAF
) = AS(Πground (ÂF))

.

5.1. BASIC ARGUMENTATION FRAMEWORK 61

Consider the argumentation framework from Example 5.1.1.

ÂF = {arg(e), arg(f), arg(g), arg(h), arg(s), arg(w), attack(e, s),

attack(f, e), attack(h, g), attack(w, h), attack(w, s), attack(e,w)}

ÂF ord = ÂF ∪ {inf(e), sup(w), lt(e, f), . . . , lt(s,w), succ(e, f), . . . , succ(s,w)}

Aext(ground) = {ground}

ÂF defeat = ÂF ∪ {defeat(e, s), . . . ,defeat(e,w)}

∆0
dAF

= ÂF ord ∪Aext(ground) ∪ {defended upto(e, e),defended upto(f, e),

defended upto(g, e),defended upto(h, e),defended upto(f, f),

defended upto(g, f),defended upto(h, f),defended upto(f, g),

defended upto(g, g),defended upto(h, g),defended upto(f, h),

defended upto(h, h),defended upto(f, s),defended upto(h, s),

defended upto(f,w),defended(f), in(f)}

∆1
dAF

= ∆0
dAF
∪ {defended upto(s, e),defended upto(w, e),

defended upto(s, f),defended upto(w, f),defended upto(s, g),

defended upto(w, g),defended upto(s, h),defended upto(w, h),

defended upto(s, s),defended upto(w, s),defended upto(w,w),

defended(w), in(w)}

∆2
dAF

= ∆1
dAF
∪ {defended upto(g, h),defended upto(g, s),

defended upto(g,w),defended(g), in(g)}

∆3
dAF

= ∆2
dAF

Therefore, we have ground(AF) = {f, g, w}.

According to the Propositions 5.1.13 and 5.1.14, we formulate the following lemma:

Lemma 5.1.1. Let AF = (A,R). Then, for every i ≥ 0,

Γi
AF = {a ∈ A | in(a) ∈ ∆i

dAF
}.

Proof. Induction Base i = 0:
⊆: Let a ∈ Γ0

AF . We show that in(a) ∈ ∆0
dAF

. Since a ∈ Γ0
dAF

, there is no b ∈

A with (b, a) ∈ R. We show that for each b ∈ A defended upto(a, b) holds. This
holds, since defeat(b, a) ∈ Aord iff (b, a) ∈ R. Thus, for each b ∈ A with (b, a) 6∈
R, defended upto(a, b) ∈ ∆0

dAF
holds. Therefore, defended(a) ∈ ∆0

dAF
and necessarily

in(a) ∈ ∆0
dAF

.

⊇: Let a ∈ A such that in(a) ∈ ∆0
dAF

. We will show that a ∈ Γ0
AF . For any a ∈ A, if

in(a) ∈ ∆0
dAF

then defended(a) ∈ ∆0
dAF

. This holds, since defended upto(a, b) holds for

each b ∈ A. Therefore, there is no b ∈ A with (b, a) ∈ R and a ∈ Γ0
AF must hold.

62 CHAPTER 5. ENCODINGS

Induction Step: Suppose the assumption holds for all j < i; particularly we can as-
sume that Γi−1

AF = {a ∈ A | in(a) ∈ ∆i−1
dAF
}.

⊆: It will do to show that for each a ∈ Γi
AF \ Γi−1

AF , in(a) ∈ ∆i
dAF

holds.

Since a ∈ Γi
AF , it must hold that for each b ∈ A with (b, a) ∈ R there exists an c ∈ Γi−1

AF

with (c, b) ∈ R. Therefore in(c) ∈ ∆i−1
dAF

holds by induction hypothesis. Since for all

b ∈ A, defeat(b, a) and defeat(c, b) ∈ ∆i−1
dAF

, then defended upto(a, b) ∈ ∆i
dAF

. Therefore,

defended(a) ∈ ∆i
dAF

and necessarily in(a) ∈ ∆i
dAF

.

⊇: Let a ∈ A such that in(a) ∈ ∆i
dAF
\ ∆i−1

dAF
. We will show that a ∈ Γi

AF holds.

Since a ∈ A, if in(a) ∈ ∆i
dAF

, defended(a) ∈ ∆i
dAF

. This holds, since for all b ∈ A,

defended upto(a, b) ∈ ∆i
dAF

. Therefore, for any b ∈ A with defeat(b, a) and defeat(c, b) ∈

∆i−1
dAF

it holds that in(c) ∈ ∆i−1
dAF

. Hence, by induction hypothesis c ∈ Γi−1
AF holds. There-

fore, for each b ∈ A with (b, a) ∈ R there exists an c ∈ Γi−1
AF with (c, b) ∈ R. It follows

that a ∈ Γi
AF holds.

Proposition 5.1.14. Let AF = (A,R). There is a one-to-one correspondence between

ground(AF) and AS(Πground (ÂF)).

Preferred Extensions

The module πprefex assures that just answer sets survive which represent the preferred
extensions. We recall that the preferred extensions are the maximal admissible exten-
sions.

Definition 5.1.18. The module πprefex consists of the following rules:

πprefex = { inN(X) ∨ outN(X)← out(X),prefex; (5.10)

inN(X)← in(X),prefex; (5.11)

eq upto(Y)← inf(Y), in(Y), inN(Y); (5.12)

eq upto(Y)← inf(Y), out(Y), outN(Y); (5.13)

eq upto(Y)← succ(Z, Y), in(Y), inN(Y), eq upto(Z); (5.14)

eq upto(Y)← succ(Z, Y), out(Y), outN(Y), eq upto(Z); (5.15)

eq← sup(Y), eq upto(Y); (5.16)

undefeated upto(X,Y)← inf(Y), outN(X), outN(Y); (5.17)

undefeated upto(X,Y)← inf(Y), outN(X),not defeat(Y,X); (5.18)

undefeated upto(X,Y)← succ(Z, Y),undefeated upto(X,Z), (5.19)

outN(Y); (5.20)

5.1. BASIC ARGUMENTATION FRAMEWORK 63

undefeated upto(X,Y) ← succ(Z, Y),undefeated upto(X,Z), (5.21)

not defeat(Y,X); (5.22)

undefeated(X) ← sup(Y),undefeated upto(X,Y); (5.23)

spoil ← eq; (5.24)

spoil ← inN(X), inN(Y),defeat(X,Y); (5.25)

spoil ← inN(X), outN(X), arg(X); (5.26)

spoil ← inN(X), outN(Y),defeat(Y,X),undefeated(Y);(5.27)

inN(X) ← spoil, arg(X); (5.28)

outN(X) ← spoil, arg(X); (5.29)

⊥ ← not spoil}. (5.30)

We know that πadm ⊲ πprefex and πord ⊲ πprefex holds. From Proposition 5.1.1, we can
conclude that (πadm ∪ πord) ⊲ πprefex holds. Hence, we can conclude from Proposition

5.1.2 and Definition 5.1.3 that the answer sets of the program Πprefex (ÂF) are defined
as follows,

AS(Πprefex (ÂF)) =
⋃

J∈AS((Πadm∪Πord)(dAF))

(AS(J ∪ πprefex ∪ πext(prefex))).

Hence, the correspondence between the answer sets of the program Πprefex (ÂF) and the
preferred sets of arguments is given in Proposition 5.1.15.

Proposition 5.1.15. Let AF = (A,R). For each set S ∈ pref (AF), there exists an

interpretation I ∈ AS(Πprefex (ÂF)), such that

I = ÂF ord ∪ {spoil.} ∪ {prefex.} ∪ {defeat(a, b) | (a, b) ∈ R}

∪{in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}

∪{inN(a) | a ∈ A} ∪ {outN(a) | a ∈ A}

∪ {defeated(a) | b ∈ S, (b, a) ∈ R}

∪ {not defended(a) | (b, a) ∈ R, 6 ∃c ∈ S : (c, b) ∈ R}

∪ {eq upto(a) | a ∈ A} ∪ {eq}

∪ {undefeated upto(a, b) | a, b ∈ A} ∪ {undefeated(a) | a ∈ A}.

For each interpretation I ∈ AS(Πprefex (ÂF)) there exists a set S ∈ pref (AF), such that
S = σ(I).

Proof. Since S ∈ pref (AF), and the fact that every preferred extension is also an admis-
sible extension, we know that S ∈ adm(AF) also holds. By Proposition 5.1.9 we know,

that there exists an interpretation J ∈ AS(Πadm (ÂF)), such that σ(J) = S. Let I be
given as above, with that particular S. We show that,

64 CHAPTER 5. ENCODINGS

a) I is a model of Πprefex (ÂF), and

b) ∀K ⊂ I, K is not a model (Πprefex (ÂF))I .

Ad a): We know that J ⊆ I holds. Hence, I is a model of Πadm (ÂF), since J is an

answer set of Πadm (ÂF), and no atom of I \ J occurs in Πadm (ÂF). Moreover, all other
rules (5.10) to (5.30) are satisfied by I, since all heads of the corresponding ground rules

occur in I. Hence, I is a model of Πprefex (ÂF).
Ad b): Towards a contradiction, suppose such a K exists.� First suppose that (K∩J) ⊂ J holds. If K is a model of (Πadm (ÂF))I then (K∩J)

is also a model of (Πadm (ÂF))I . This and the fact that (K ∩ J) ⊂ J , leads to a
contradiction to J ∈ AS(Πadm).� Now, suppose that (K ∩ J) = J holds. Then, at least some atoms of the form
spoil, inN(.) and outN(.) from I \ J are missing in K. Note that, whenever, for
each argument a ∈ A, inN(a) and outN(a) are contained in K, then for all a, b ∈ A
also all atoms eq upto(a), eq and undefeated upto(a, b) are in K. According to
Definition 5.1.7 we define a new operator σ′ as follows

σ′(K) = {a | inN(a) ∈ K}.

– If spoil ∈ K, then K = I must hold (see Rules(5.28) and (5.29)). Hence,
spoil 6∈ K.

– By Rule (5.26), we know that for any a ∈ A, not both, inN(a) and outN(a),
are contained in K.

– By Rule (5.24), we know that {eq} is not contained in K.

– By Rule (5.25), we know that σ′(K) is conflict free.

– By Rule (5.27), we know that σ′(K) is admissible.

By Rule (5.10), we know that σ′(K) ⊇ σ(K) = σ(I), and since eq 6∈ K, one can
see that σ′(K) 6= σ(K). Hence, σ′(K) ⊃ σ(K) holds. We showed that there is
a S′ = σ′(K), such that S′ ∈ adm(AF) and S′ ⊃ S. This is a contradiction to
S ∈ pref (AF).

Now, we show that for each interpretation I ∈ AS(Πprefex (ÂF)), there exists a set

5.2. VALUE BASED ARGUMENTATION FRAMEWORK 65

S ∈ pref (AF), such that S = σ(I). Consider an interpretation J ⊂ I, such that

J = I \ {lt(X,Y) | a, b ∈ A : a < b} ∪ {nsucc(a, c) | a, b, c ∈ A : a < b, b < c}

∪ {succ(a, b) | a, b ∈ A : a < b, 6 ∃c ∈ A : b < c}

∪ {ninf(b) | a, b ∈ A : a < b}

∪ {inf(a) | a ∈ A, 6 ∃b ∈ A : b < a}

∪ {nsup(a) | a, b ∈ A : a < b}

∪ {sup(a) | a ∈ A, 6 ∃b ∈ A : a < b}

∪ {spoil.} ∪ {prefex.}

∪ {inN(a) | a ∈ A} ∪ {outN(a) | a ∈ A}

∪ {eq upto(a) | a ∈ A} ∪ {eq}

∪ {undefeated upto(a, b) | a, b ∈ A} ∪ {undefeated(a) | a ∈ A}.

It is easy to see that J ∈ AS(Πadm (ÂF)). Hence, by Proposition 5.1.9 we know that
that there exists a set S ∈ adm(AF), such that S = σ(J). We can conclude that
σ(J) = σ(I) = S holds. For S ∈ pref (AF), it remains to show that there is no S′ ⊃ S,
such that S′ ∈ adm(AF). Consider an interpretation K ⊂ I, such that

K = J ∪ {prefex.} ∪ {inN(a) | a ∈ S′} ∪ {outN(a) | a 6∈ S′} ∪ K ′

The set K ′ contains all further atoms over the grounding of the rules (5.12) to (5.23)

according to the set S′. However spoil 6∈ K. We show that K is a model of Πprefex (ÂF)I .

First, K is a model of Πadm (ÂF)I , since J ∈ AS(Πadm (ÂF)). By definition of K ′, we
only have to show that spoil is not derived by K. This holds since,

- S′ 6= S and thus Rule (5.24) cannot fire,

- S′ is conflict free and thus Rule (5.25) cannot fire,

- either inN(a) or outN(a) are contained in K for each a ∈ A. Thus Rule (5.26)
cannot fire,

- S′ is admissible and thus Rule (5.27) cannot fire.

Hence, one can see that K ⊂ I and K is a model of Πprefex (ÂF)I . This is a contradiction

to I ∈ AS(Πprefex (ÂF)).

5.2 Value Based Argumentation Framework

In order to compute value based argumentation frameworks, the encoding of the basic
argumentation framework needs to be modified in the following way. We need to add

66 CHAPTER 5. ENCODINGS

some additional facts to the input database. Furthermore, we must add two modules to
the preference relation. This new modules have the following partial order

πdefeat ≺ πpref ≺ πvalpref ≺ ÂF .

Representation of a Value Based Argumentation Framework

To represent a value based argumentation framework AF = (A,R, V, val , valpref), we

need to extend the module ÂF from the basic argumentation framework, by facts for
the values of arguments and the preference relation of the values.

Definition 5.2.1. Given a value based argumentation framework AF, ÂF consists of
the following facts:

ÂF = { arg(a) | a ∈ A} ∪

{ attack(a, b) | (a, b) ∈ R} ∪

{ val(a, val a) | val a ∈ V, val (a) = val a} ∪

{ valpref(v1, v2) | (v1, v2) ∈ valpref }.

In the following, we use the modified version of ÂF to represent a value based argumen-
tation framework AF . As in the case of a basic argumentation framework, the program
ÂF of a value based argumentation framework, also has one single answer set ÂF .

Preference on Values

The preference relation is transitive. This will be assured by the module πvalpref .

Definition 5.2.2. The module πvalpref consists of the following rule:

πvalpref = { valpref(X,Z)← valpref(X,Y), valpref(Y,Z)}.

It holds that ÂF ⊲ πvalpref , and the partial order relation is

πvalpref ≺ ÂF .

Therefore the answer sets of the program Πvalpref (ÂF) are defined as follows,

AS(Πvalpref (ÂF)) = AS(ÂF ∪ πvalpref)

= ÂF ∪ {valpref(a, c) | ∃b1 . . . bn such that (a, b1) ∈ valpref ,

(bi, bi+1) ∈ valpref , (bn, c) ∈ valpref ,

for i ∈ {1, . . . , n− 1}}.

The program Πvalpref (ÂF) has one single answer set denoted by ÂF valpref .

5.3. BIPOLAR ARGUMENTATION FRAMEWORK 67

Preference on Arguments

The preference relation of a value based argumentation framework is defined over val-
ues. In order to conclude which arguments are preferred over other ones, we derive the
predicate prefex/2 for arguments as follows.

Definition 5.2.3. The module πpref consists of the following rules:

πpref = { pref(X,Y)← valpref(Val X ,Val Y), val(X,Val X), val(Y,Val Y);

pref(X,Z)← pref(X,Y),pref(Y,Z)}.

Defeat

In a value based argumentation framework a defeat is successful, if for two arguments
a, b ∈ A it holds that (a, b) ∈ R and the argument b is not preferred over the argument
a. Therefore the module πdefeat from the basic argumentation framework needs to be
modified as follows.

Definition 5.2.4. The module πdefeat consists of the following rule:

πdefeat = { defeat(X,Y)← attack(X,Y),not pref(Y,X)}.

Note that all extensions from basic AFs can now be computed for VAFs accordingly. We
just need to add the modules πvalpref and πpref to each Πε(ÂF), and modify the modules

ÂF and πdefeat as described above.

To compute preference based argumentation frameworks we do not need any new mod-
ules. We just need to add in the module ÂF , the facts for the preference relation. This
means that for a given preference based argumentation framework AF = (A,R,Pref),

the module ÂF contains facts pref(a, b) for (a, b) ∈ Pref , in addition to the facts for the
basic framework. The partial order for preference based argumentation frameworks is
as follows

πdefeat ≺ πpref ≺ ÂF .

5.3 Bipolar Argumentation Framework

In order to compute Bipolar Argumentation Frameworks, the encoding of the basic
argumentation framework needs to be extended by the following modules. The partial
order relations for bipolar argumentation frameworks are as follows.

πdefeat ≺ πsupported ≺ πsupport ≺ ÂF

68 CHAPTER 5. ENCODINGS

In this section we provide the definitions of the new modules, but only sketch their
formal functioning.

Representation of a Bipolar Argumentation Framework

To represent a bipolar argumentation framework AF = (A,Rdef , Rsup), we need to

extend the module ÂF from the basic argumentation framework by the support relation.

Definition 5.3.1. Given a bipolar argumentation framework AF, ÂF consists of the
following facts:

ÂF = { arg(a) | a ∈ A} ∪

{ attack(a, b) | (a, b) ∈ Rdef } ∪

{ support(a, b) | (a, b) ∈ Rsup}.

Support

In bipolar argumentation frameworks supports are denoted by the support relation. The
following module assures the transitivity of this relation.

Definition 5.3.2. The module πsupport is defined as follows,

πsupport = { support(X,Z)← support(X,Y), support(Y,Z)}.

Supported Arguments

The module πsupported derives arguments which are supported by a set S ⊆ A.

Definition 5.3.3. The module πsupported is defined as follows,

πsupported = { supported(X)← in(Y), support(Y,X)}.

Defeat

The module πdefeat needs to be modified as follows.

Definition 5.3.4. The module πdefeat is defined as follows,

πdefeat = { defeat(X,Y)← attack(X,Y);

defeat(X,Y)← attack(Z, Y), support(X,Z);

defeat(X,Y)← attack(X,Z), support(Z, Y)}.

5.3. BIPOLAR ARGUMENTATION FRAMEWORK 69

Note that the d-admissible extensions for BAFs are computed in a similar way as for
AFs. We just need to add the modules πsupport and πsupported to the program Πadm (ÂF),

and modify the modules ÂF and πdefeat as described above.

Safe Sets

According to the definition of safe sets for bipolar argumentation frameworks the module
πsafe eliminates all sets which are not safe.

Definition 5.3.5. The module πsafe is defined as follows,

πsafe = {← supported(a),defeated(a)}.

The partial order relations for the module πsafe are as follows

πsafe ≺ πdefeated

πsafe ≺ πsupported .

Closed

The module πclosed eliminates all answer sets which are not closed under Rsup .

Definition 5.3.6. The module πclosed contains the following two constraints.

πclosed = { ← support(X,Y), in(X), out(Y);

← support(X,Y), out(X), in(Y)}.

The partial order relation for the module πclosed is as follows

πclosed ≺ πsupport .

s-admissible Sets

With the module πsadm , we eliminate all answer sets which are not s-admissible.

Definition 5.3.7. The module πsadm is defined as follows,

πsadm = { ← in(x),not defended(X), s adm}.

The program Πsadm (ÂF) is defined as follows.

70 CHAPTER 5. ENCODINGS

Definition 5.3.8. Let BAF = (A,Rdef , Rsup). The program Πsadm (ÂF) represents the
union of module πsadm and its predecessors.

Πsadm (ÂF) = πsadm ∪ πsafe ∪ πsupported ∪ πsupport ∪ πnot defended ∪ πdefeat

∪ πguess ∪ ÂF ∪ πext(sadm).

Note that we use the modified modules ÂF and πdefeat .

c-admissible Sets

With the module πcadm , we eliminate all answer sets which are not c-admissible.

Definition 5.3.9. The module πcadm contains the following constraint,

πcadm = { ← support(X,Y), in(X), out(Y), c adm}.

The program Πcadm (ÂF) is defined as follows.

Definition 5.3.10. Let BAF = (A,Rdef , Rsup). The program Πcadm (ÂF) represents
the union of module πcadm and its predecessors.

Πcadm (ÂF) = πcadm ∪ πclosed ∪ πsupport ∪ πnot defended ∪ πdefeat

∪ πguess ∪ ÂF ∪ πext(cadm).

Note that here we also use the modified modules ÂF and πdefeat .

The one-to-one correspondence between the d-admissible, s-admissible and c-admissible
extensions, and the answer sets of the respective programs, can be shown in a similar way
as done in the previous sections. Moreover, the programs for d-preferred, s-preferred and
c-preferred extensions can be defined, by replacing the respective modules for admissible
extensions (and their predecessors) to the program Πprefex (ÂF).

5.4 Discussion

We briefly argue that our encodings are adequate in a complexity point of view. However,
we restrict ourselves to the encodings for basic AFs. By the one-to-one correspondence
between the answer sets and the extensions (see Theorem 1, and in particular Propo-
sitions 5.1.9, 5.1.11, 5.1.12, 5.1.13 and 5.1.15), we reduce the reasoning problems Crede

and Skepte, for e ∈{stable , adm , prefex , comp, ground} (see Section 4.2) to the respec-
tive problems |=c and |=s defined for answer set programming in Section 4.3. Recall

5.4. DISCUSSION 71

stable adm prefex comp ground

Crede πstable(dAF) |=c a πadm(dAF) |=c a πadm(dAF) |=c a πcomp(dAF) |=c a πground(dAF)|=a

Skepte πstable(dAF) |=s a (trivial) πprefex (dAF) |=s a πground(dAF)|=a πground(dAF)|=a

Table 5.2: Overview of the encodings of the reasoning tasks for AF = (A,R) and a ∈ A.

that our program is fixed. The adequate encodings, depending on the chosen reasoning
task, are depicted in Table 5.2 (see also [31]). Hence, the complexity of evaluating the
respective encodings always coincides with the complexity of the encoded reasoning task
(see Tables 4.1 and 4.2). For this reason, we understand our encodings as adequate.

72 CHAPTER 5. ENCODINGS

Chapter 6

System Description

In this chapter, we describe the system ASPARTIX which has been implemented on
top of the answer set programming system DLV. ASPARTIX is capable to compute
extensions of several kinds of argumentation frameworks such as the basic AFs, as well
as PAFs, VAFs and BAFs.

The program and some examples are available at

http://www.kr.tuwien.ac.at/research/systems/argumentation/

Table 6.1 gives an overview which extensions are possible for which argumentation frame-
works. Note that the empty fields follow from the fact that not all semantics have been
defined for all frameworks, i.e., (s-)admissible and (c-)admissible extensions are only
meaningful for BAFs, whereas the complete and grounded extensions have not been
introduced for VAFs and BAFs.

Extension AF PAF VAF BAF

stable × × × ×
(d-)admissible × × × ×
(s-)admissible ×
(c-)admissible ×

complete × ×
grounded × ×
(d-)preferred × × × ×
(s-)preferred ×

(c-)preferred ×

Table 6.1: Extensions and argumentation frameworks.

73

74 CHAPTER 6. SYSTEM DESCRIPTION

6.1 Manual

Requirements

As ASPARTIX is a DLV implementation, it is required to have installed DLV. For further
information about DLV and its usage we refer to the DLV-project page

http://www.dbai.tuwien.ac.at/research/project/dlv/

ASPARTIX consists of an “interpreter” program executed by DLV. The interpreter gets
the argumentation framework by reading the input file.

6.1.1 Input File

In the input file, the user specifies the input database. It should contain the specification
of the argumentation framework AF = (A,R) and the desired semantics. Furthermore
we recall that the ending of the input file should be .dl as this is common usage for
DLV. For example af1.dl is a legal file name.

Representation of Arguments

For a given argumentation framework AF = (A,R), the arguments a ∈ A are defined
by the facts arg/1. For example,

arg(a).

stands for the argument a. Due to the syntax of DLV, it is necessary that the name of
the argument starts with a lower-case letter.

Representation of Attack Relations

For a given argumentation framework AF = (A,R), the attack relation R ⊆ A × A is
defined by the facts attack/2. For example,

attack(a, b).

denotes that the argument a attacks the argument b.

Figure 6.1 shows how the input file for Example 2.1.1 looks like. The fact prefex. denotes
that the preferred extension should be computed.

6.1. MANUAL 75

prefex.

arg(a).

arg(b).

arg(c).

arg(d).

arg(e).

attack(a, b).

attack(c, b).

attack(c, d).

attack(d, c).

attack(d, e).

attack(e, e).

Figure 6.1: The file example2.1.1.dl for Example 2.1.1 and preferred extensions.

PAFs

In a given preference based argumentation framework PAF = (A,R,Pref), preferences
on arguments are expressed via the preference relation Pref ⊆ A × A. To specify this
preordering on the arguments, the facts pref/2. are added to the input file. For example,

pref(a, b).

denotes that the argument a is preferred over the argument b. Additionally it is required
to add the fact paf. to the input to specify that we are dealing with a PAF.

Figure 6.2 shows how the input file for Example 2.3.1 looks like.

VAFs

For a given value based argumentation framework VAF = (A,R, V, val , valpref), the
following facts need to be added to the input file. To specify the values val for the
arguments, the facts val/2. are used. For example,

val(a, value a).

76 CHAPTER 6. SYSTEM DESCRIPTION

paf.

prefex.

arg(a).

arg(b).

arg(c).

attack(c, b).

attack(b, a).

pref(b, c).

Figure 6.2: The file example2.3.1.dl for Example 2.3.1 and preferred extensions.

denotes that the argument a has the value value a. The preference relation is defined
via the fact valpref/2. For example,

valpref(value a, value b).

denotes that the value value a is preferred to the value value b. Additionally it is
required to add the fact vaf. to the input to specify, that we are dealing with a VAF.

Figure 6.3 shows how the input file for Example 2.3.3 looks like.

BAFs

For a given bipolar argumentation framework BAF = (A,Rdef , Rsup), the following facts
need to be added to the input file. The support relation Rsup ⊆ A×A is defined via the
fact support/2. For example,

support(a, b).

stands for the argument a supporting the argument b. We recall that the attack relation
R of the basic argumentation framework equals the defeat relation Rdef of a BAF.
Therefore Rdef is defined via the fact attack/2. Additionally it is required to add the
fact baf. to the input to specify that we are dealing with a BAF.

Figure 6.4 shows how the input file for Example 2.3.4 and s-admissible extensions looks
like.

6.1. MANUAL 77

vaf.

prefex.

arg(a).arg(b).arg(c).

arg(d).arg(e).arg(f).

attack(a, e).attack(b, a).

attack(c, b).attack(c, f).

attack(d, c).attack(e, d).

attack(f, a).

val(a, life).

val(b, property).

val(c, property).

val(d, life).

val(e, property).

val(f, life).

valpref(life, property).

Figure 6.3: The file example2.3.3.dl for Example 2.3.3 and preferred extensions.

Extensions

To specify which extension should be computed, the respective fact should be added to
the input file. If no extension is defined in the input file, no valid answer set can be
computed and the program returns an input error. It is only possible to compute one
extension at a time. The possible extensions for the basic AFs are:

adm. % for admissible

compl. % for complete

ground. % for ground

prefex. % for preferred

stable. % for stable

78 CHAPTER 6. SYSTEM DESCRIPTION

baf.

s adm.

arg(a).

arg(b).

arg(c).

arg(d).

arg(e).

attack(a, e).

attack(d, c).

support(a, b).

support(b, c).

support(d, e).

Figure 6.4: The file example2.3.4.dl for Example 2.3.4 and s-admissible extensions.

Special semantics for BAFs are the following:

c adm. % for c-admissible (complete)

d adm. % for d-admissible (Dung)

s adm. % for s-admissible (stable)

c prefex. % for c-preferred

d prefex. % for d-preferred

s prefex. % for s-preferred

In the input files from Figures 6.1, 6.2 and 6.3, the preferred extensions have been
selected, whereas in Figure 6.4, the s-admissible extension has been selected.

6.1.2 Execution

To execute the program correctly, it is just necessary to run DLV together with the input
file and ASPARTIX on the command line. The output are answer sets specifying the
required semantics. For better readability, it is useful to use the filter option of DLV.
For example,

6.1. MANUAL 79$./DLV input.dl aspartix.dl -filter=in,input error

executes ASPARTIX with the input file input.dl. With -filter=in,input error only
the predicates in/1 and input error are printed out.

Output

In the resulting answer sets, the fact in/1 denotes the arguments which are in the required
extension. If the answer set contains the fact input error, then the input has not been
declared correctly.

The output for Example 2.1.1 as in Figure 6.1 with the input options

-filter=in,input error

is shown in Figure 6.5. As expected, we have two preferred extensions, namely {a, c}
and {a, d}.

DLV [build BEN/Oct 11 2007 gcc 4.0.1 (Apple Computer, Inc.

build 5367)]

{in(a), in(c)}

{in(a), in(d)}

Figure 6.5: Output for Example 2.1.1 and preferred extensions.

The output for Example 2.3.4 as in Figure 6.4 is shown in Figure 6.6. We have five
s-admissible extensions namely {}, {a}, {b}, {d} and {a, b}.

80 CHAPTER 6. SYSTEM DESCRIPTION

DLV [build BEN/Oct 11 2007 gcc 4.0.1 (Apple Computer, Inc.

build 5367)]

{in(d)}

{in(a)}

{in(a), in(b)}

{in(b)}

{}

Figure 6.6: Output for Example 2.3.4 and s-admissible extensions.

Chapter 7

Related Work

A lot of research has been performed in the field of argumentation over the last ten years,
resulting in a variety of approaches to compute acceptable semantics of an argumentation
framework. In this chapter we mention the most relevant of them compared to our
approach.

7.1 Model Checking

The approach to compute acceptable sets of arguments with model checking was intro-
duced by Besnard and Doutre in [13].
For a given argumentation framework AF = (A,R) and semantics ε ∈ Σ = {stable ,
adm , comp, ground , prefex}, a propositional formula is associated whose models corre-
spond to the acceptable sets under the semantics. One disadvantage of this approach
is that for the preferred semantic the maximal (with respect to set inclusion) models
of the formula of the admissible extensions are required. Furthermore, to obtain the
grounded extension, the minimal (with respect to set inclusion) model of the formula of
the complete extensions is required. Unfortunately, computing the maximal or minimal
models of a formula is usually not supported by current SAT-solvers.

This problem has been resolved by Egly and Woltran in [33] via the use of Quantified
Boolean Formulas (QBFs).

7.1.1 Encodings Based on QBF

Egly and Woltran showed in [33] how to extend formulas by some conditions which
express maximality respectively minimality of the models. They used QBFs to evaluate
the preferred and grounded semantics.

81

82 CHAPTER 7. RELATED WORK

7.2 Logic Programming

The idea of computing acceptable sets of arguments in terms of logic programming has
already been mentioned by Dung [25].

7.2.1 ASP

The work which is closest related to ours is the approach from Nieves et al. [44] and
Osorio et al. [45]. In [45] they gave an ASP encoding for admissible extensions which
is very similar to ours. On the other hand, their method to compute the preferred
extensions in [44] differs from ours substantially. They introduced a mapping function
that constructs a disjunctive logic program P , such that the preferred extensions of
an argumentation framework correspond to the stable models of P . This means that
they need a translation for every new instance, whereas we designed a fixed program
which is independent of the concrete argumentation framework. From the complexity
point of view, their approach is on a par with our program because, the reductions are
polynomial-time computable. From the application point of view, our system has some
useful features. It is easier to extend and debug. The user can easily add or delete
arguments and relations and thereby compare different argumentation frameworks.

7.3 Implementations

To the best of our knowledge, so far no system is available which supports such a broad
range of different semantics, although nowadays a number of implementations exists3.� Dungine [49] is a Java reasoner capable of reasoning with grounded and credulous

preferred extensions.� An epistemic and practical reasoner is available which also supports preferred
credulous semantics for practical arguments [50]
(see http://www.wietskevisser.nl/research/epr/).� The program PARMENIDES is a system for e-democracy based on value-based
AFs [16,4].� CASAPI is a Prolog implementation that combines abstract and assumption-based
argumentation [37] (see http://www.doc.ic.ac.uk/∼dg00/casapi.html).

3See also http://www.csc.liv.ac.uk/∼azwyner/software.html for an overview.

Chapter 8

Conclusion

In this work, we dealt with different types of argumentation frameworks and related
reasoning problems.
We analysed the respective definitions and properties and brought them into a uniform
notation. The system ASPARTIX has been implemented on top of DLV, capable to
compute different types of extensions in Dung’s argumentation framework as well as in
some extensions of it. To the best of our knowledge, so far no system is available which
supports such a broad range of different semantics for all those frameworks. Beside the
encodings and their proof of correctness, we also discussed argumentation frameworks
in terms of complexity. Thereby we showed that our system is also adequate from the
complexity point of view.

The work which is closest related to ours is by Nieves et al. [44] who also suggest to use
answer-set programming for computing extensions of argumentation frameworks. The
most important difference is that in their work the program has to be re-computed for
each new instance, while our system relies on a single fixed program which just requires
the actual instance as an input database. We believe that our approach thus is more
reliable and easier extendible to further formalisms.

Future work includes a comparison of the efficiency of different implementations and
an extension of our system by incorporating further recent notions of semantics, for
instance, the semi-stable semantics [15] or the ideal semantics [26].

83

84 CHAPTER 8. CONCLUSION

Bibliography

[1] Leila Amgoud and Claudette Cayrol. A reasoning model based on the production
of acceptable arguments. Ann. Math. Artif. Intell., 34(1-3):197–215, 2002.

[2] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie, and Pierre Livet. On
bipolarity in argumentation frameworks. International Journal of Intelligent Sys-
tems, 23:1–32, 2008.

[3] Leila Amgoud, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex. On the
bipolarity in argumentation frameworks. In 10th International Workshop on Non-
Monotonic Reasoning (NMR 2004), Whistler, Canada, June 6-8, 2004, Proceedings,
pages 1–9, 2004.

[4] Katie Atkinson, Trevor J. M. Bench-Capon, and Peter McBurney. Parmenides: Fa-
cilitating democratic debate. In Electronic Government: Third International Con-
ference, EGOV 2004, Zaragoza, Spain, August 30 - September 3, 2004, Proceedings,
pages 313–316, 2004.

[5] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumen-
tation frameworks where semantics agree. In Proceedings of the 2nd Conference on
Computational Models of Argument (COMMA’08), pages 37–48. IOS Press, 2008.

[6] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic
programs. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

[7] Trevor J. M. Bench-Capon. Value-based argumentation frameworks. In 9th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR 2002), April 19-21, Toulouse,
France, Proceedings, pages 443–454, 2002.

[8] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in AI and law:
Editors’ introduction. Artif. Intell. Law, 13(1):1–8, 2005.

[9] Trevor J.M. Bench-Capon. Representation of case law as an argumentation frame-
work. Bench-Capon, T., Daskalopoulu, A. and Winkels, R. (eds.), Proceedings
of the Fifteenth Annual Conference on Legal Knowledge and Information Systems
(2002), pages 103–112, 2002.

85

86 BIBLIOGRAPHY

[10] Trevor J.M. Bench-Capon. Persuasion in practical argument using value-based
argumentation frameworks. J. Log. Comput., 13(3):429–448, 2003.

[11] Trevor J.M. Bench-Capon, Katie Atkinson, and Alison Chorley. Persuasion and
value in legal argument. J. Log. Comput., 15(6):1075–1097, 2005.

[12] Trevor J.M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelli-
gence. Artif. Intell., 171(10-15):619–641, 2007.

[13] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of argu-
ments. In 10th International Workshop on Non-Monotonic Reasoning (NMR 2004),
Whistler, Canada, June 6-8, 2004, Proceedings, pages 59–64, 2004.

[14] Philippe Besnard and Anthony Hunter. Elements of argumentation. Cambridge,
MA, MIT Press, 2008.

[15] Martin Caminada. Semi-stable semantics. In Proceedings of the 1st Conference on
Computational Models of Argument (COMMA’06), pages 121–130. IOS Press, 2006.

[16] Dan Cartwright and Katie Atkinson. Political engagement through tools for ar-
gumentation. In Proceedings of the 2nd Conference on Computational Models of
Argument (COMMA’08), pages 116–127. IOS Press, 2008.

[17] Claudette Cayrol, Caroline Devred, and Marie-Christine Lagasquie-Schiex. Han-
dling controversial arguments in bipolar argumentation systems. In Proceedings
of the 1st Conference on Computational Models of Argument (COMMA’06), pages
261–272, Liverpool, United Kingdom, 2006. IOS Press.

[18] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Gradual valuation for
bipolar argumentation frameworks. In Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, 8th European Conference, ECSQARU 2005,
Barcelona, Spain, July 6-8, 2005, Proceedings, volume 3571 of LNCS, pages 366–
377. Springer, 2005.

[19] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of
arguments in bipolar argumentation frameworks. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, 8th European Conference, ECSQARU
2005, Barcelona, Spain, July 6-8, 2005, Proceedings, pages 378–389, 2005.

[20] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics for
argumentation frameworks. In Proceedings of the 17th IEEE International Confer-
ence on Tools with Artificial Intelligence(ICTAI’05), pages 368–372, Hong-Kong,
2005.

[21] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumen-
tation frameworks. In Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, 8th European Conference, ECSQARU 2005, Barcelona, Spain, July
6-8, 2005, Proceedings, volume 3571 of LNCS, pages 317–328. Springer, 2005.

BIBLIOGRAPHY 87

[22] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Computing Surveys, 33(3):374–
425, 2001.

[23] Yannis Dimopoulos, Pavlos Moraitis, and Leila Amgoud. Theoretical and computa-
tional properties of preference-based argumentation. In ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings,
pages 463–467, 2008.

[24] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic pro-
grams and default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.

[25] Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[26] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical
argumentation. Artif. Intell., 171(10-15):642–674, 2007.

[27] Paul E. Dunne. Complexity and combinatorial properties of argument systems.
Technical report, 2001.

[28] Paul E. Dunne and Trevor Bench-capon. Complexity in value-based argument
systems. In Logics in Artificial Intelligence, 9th European Conference, JELIA 2004,
Lisbon, Portugal, September 27-30, 2004, Proceedings, volume 3229 of Lecture Notes
in Computer Science, pages 360–371. Springer-Verlag, 2004.

[29] Paul E. Dunne and Trevor J.M. Bench-Capon. Coherence in finite argument sys-
tems. Artif. Intell., 141(1/2):187–203, 2002.

[30] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encod-
ings for argumentation frameworks. In 1st Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP 2008), Udine, Italy, 2008.

[31] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming en-
codings for argumentation frameworks. Technical Report DBAI-TR-2008-62, Tech-
nische Universität Wien, 2008.

[32] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. ASPARTIX: Implementing argu-
mentation frameworks using answer-set programming. In Logic Programming, 24th
International Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceed-
ings, volume 5366 of Lecture Notes in Computer Science, pages 734–738. Springer,
2008.

[33] Uwe Egly and Stefan Woltran. Reasoning in argumentation frameworks using quan-
tified boolean formulas. In Proceedings of the 1st Conference on Computational
Models of Argument (COMMA’06), pages 133–144. IOS Press, 2006.

88 BIBLIOGRAPHY

[34] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative
problem-solving using the dlv system. In Logic-Based Artificial Intelligence, pages
79–103, Norwell, MA, USA, 2000. Kluwer Academic Publishers.

[35] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic
programming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995.

[36] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM
Trans. Database Syst., 22(3):364–418, 1997.

[37] Dorian Gaertner and Francesca Toni. Hybrid argumentation and its proper-
ties. In Proceedings of the 2nd Conference on Computational Models of Argument
(COMMA’08), pages 183–195. IOS Press, 2008.

[38] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Trusz-
czyński. The first answer set programming system competition. In Proceedings of the
9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’07), volume 4483 of LNCS, pages 3–17. Springer, 2007.

[39] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Proceedings of the 5th International Conference and Symposium on
Logic Programming (ICLP’88), Seattle, Washington, August 15-19, 1988, pages
1070–1080, 1988.

[40] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Comput., 9(3/4):365–386, 1991.

[41] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV system for knowledge representation
and reasoning. ACM Trans. Comput. Logic, 7(3):499–562, 2006.

[42] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings of
the 8th International Conference on Logic Programming (ICLP’94), pages 23–37,
Cambridge, MA, USA, 1994. MIT Press.

[43] Ilkka Niemelä. Logic programming with stable model semantics as a constraint
programming paradigm. Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

[44] Juan Carlos Nieves, Ulises Cortés, and Mauricio Osorio. Preferred extensions as
stable models. Theory and Practice of Logic Programming (TPLP), 8(4):527–543,
2008.

[45] Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves, and Ulises Cortés. Inferring
acceptable arguments with answer set programming. In Proceedings of the 6th Mex-
ican International Conference on Computer Science (ENC 2005), 26-30 September
2005, Puebla, Mexico, pages 198–205, 2005.

BIBLIOGRAPHY 89

[46] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[47] Jörg Pührer. On debugging of propositional answer-set programming. Master’s
thesis, Technical University Vienna, 2008.

[48] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[49] Matthew South, Gerard Vreeswijk, and John Fox. Dungine: A Java Dung Rea-
soner. In Proceedings of the 2nd Conference on Computational Models of Argument
(COMMA’08), pages 360–368. IOS Press, 2008.

[50] Wietske Visser. Implementation of argument-based practical reasoning. Master’s
thesis, Utrecht University, The Netherlands, 2008.

[51] Adam Wyner, Trevor J.M. Bench-Capon, and Katie Atkinson. Arguments, values
and baseballs: Representation of Popov v. Hayashi. JURIX 2007: The Twentieth
Annual Conference on Legal Knowledge and Information Systems, pages 151–160,
2007.

90 BIBLIOGRAPHY

Appendix A

ASPARTIX

%%%
% f o r some input−f a c t s new f a c t s are der ived , f o r example
% f o r every p r e f e r r ed extens ion , from any argumentation
% framework (AF) except BAF’ s a l s o the adm i s s i b l e
% ex ten s i on s need to be computed .
%%%

adm :− d adm , baf , not i n pu t e r r o r . % d−adm i s s i b l e ex t en s i on s f o r
% BAF’ s are the same as the
% standard adm i s s i b l e ex t en s i on s

adm :− comp . % every complete ext . i s a l s o
% an admi s s i b l e ext .

adm :− prefex , not baf , not i n pu t e r r o r .
comp :− ground , not i n pu t e r r o r . % every grounded ext . i s a l s o

% a complete ext .
pr e f ex :− d pre f ex , baf , not i n pu t e r r o r . % d−pr e f e r r ed ext . f o r BAF’ s

% are the same as
% standard p r e f . ext .

d adm :− d pre f ex , baf , not i n pu t e r r o r .
c l o s ed :− c adm , baf , not i n pu t e r r o r . % c−adm . ext . f o r BAF’ s need

% to be c l o s ed
s a f e :− s adm , not i n pu t e r r o r . % s−adm . ext . f o r BAF’ s need

% to be s a f e
s adm :− s p r e f ex , baf , not i n pu t e r r o r .
c adm :− c pr e f ex , baf , not i n pu t e r r o r .

%%%
% check the p o s s i b l e ex t en s i on s
%%%

extens i on :− adm .
extens i on :− c adm , baf .
extens i on :− d adm , baf .
extens i on :− s adm , baf .
extens i on :− c l os ed , baf .
extens i on :− comp .
extens i on :− ground .
extens i on :− sa f e , baf .
extens i on :− s t ab l e .
extens i on :− pre f ex .
extens i on :− c pr e f ex , baf .

91

92 APPENDIX A. ASPARTIX

extens i on :− d pre f ex , baf .
extens i on :− s p r e f ex , baf .

%%%
% error−handl ing f o r wrong input combinations
%%%

%% support r e l a t i o n i s only al lowed f o r BAFs
i npu t e r r o r :− support (X,Y) , not baf .

%% i f no extens i on i s s p e c i f i e d in the input f i l e , we do not
%% compute anything .
i n pu t e r r o r :− not extens i on .

%% va l p r e f p r e f e r ence r e l a t i o n i s only s p e c i f i e d f o r VAFs
i npu t e r r o r :− va l p r e f (X,Y) , not vaf .

%% preorder ing o f arguments i s only s p e c i f i e d f o r VAFs and PAFs
va f p r e f :− pr e f (X,Y) , not paf , vaf .
i n pu t e r r o r :− not va fpr e f , p r e f (X,Y) , not paf .

%% complete and grounded ex t en s i on s are not supported f o r BAFs
i npu t e r r o r :− baf , comp .
i n pu t e r r o r :− baf , ground .

%%%
% pr e f e r e n c e s f o r PAF and VAF
%%%

%% va l p r e f p r e f e r ence r e l a t i o n ; t r a n s i t i v
v a l p r e f (X, Z) :− va l p r e f (X,Y) , v a l p r e f (Y,Z) .

%% pr e f computes p r e f e r ence o f arguments depending on the
%% pr e f e r ence r e l a t i o n v a l p r e f
p r e f (X,Y) :− va l p r e f (U,V) ,

va l (X,U) ,
va l (Y,V) .

%% t r a n s i t i v i t y o f p r e f
p r e f (X, Z) :− pr e f (X,Y) , p r e f (Y,Z) .

%%%
% support and de f ea t f o r BAF
%%%

%% argument x i s supported by argument y
support (X, Z) :− support (X,Y) , support (Y,Z) .

%% set−supports : argument x i s supported by the s e t S
supported (X) :− i n (Y) , support (Y,X) .

%% de f ea t s (BAF)
de f ea t (X,Y) :− attack (Z ,Y) , support (X, Z) , baf . %supported de f ea t
de f ea t (X,Y) :− attack (X,Y) , baf . %supported de f ea t
de f ea t (X,Y) :− attack (X, Z) , support (Z ,Y) , baf . %i nd i r e k t de f ea t
%%%

%% argument a de f ea t s argument b f o r c l a s s i c a l AF as we l l as
%% f o r PAF and VAF

93

de f ea t (A,B) :− attack (A,B) ,
not pr e f (B,A) .

%% Guess S \ subseteq A (only i f no i npu t e r r o r has been der i ved) .
i n (X) v out (X) :− arg (X) , not ground , not i n pu t e r r o r .

%% S has to be c o n f l i c t f r e e f o r a l l ex t en s i on s
:− i n (X) , i n (Y) , d e f ea t (X,Y) .

%% S de f ea t s X
de f eated (X):− i n (Y) , d e f ea t (Y,X) .

%% X \ i n S i s not defended by S
not defended (X):− de f ea t (Y,X) , not de f eated (Y) .

%% admi s s i b l e
:− i n (X) , not defended (X) , adm .

%% complete
:− out (X) , not not defended (X) , comp .

%% s tab l e
:− out (X) , not de f eated (X) , s t ab l e .

%%%
% s p e c i a l l semantics f o r BAF
%%%

%% sa f e
:− supported (B) , de f eated (B) , s a f e .

%% s−adm i s s i b l e
:− i n (X) , not defended (X) , s adm .

%% c l o s ed
:− support (X,Y) , out (Y) , i n (X) , c l o s ed .
:− support (X,Y) , i n (Y) , out (X) , c l o s ed .

%% c admi s s i b l e
:− i n (X) , not defended (X) , c adm .

%%%
% For the remaining part we need to put an order on the domain .
% Therefore , we de f i n e a succes sor −r e l a t i o n with inf inum and supremum
% as f o l l ow s
%%%

l t (X,Y) :− arg (X) , arg (Y) , X<Y, not i n pu t e r r o r .
nsucc (X, Z) :− l t (X,Y) , l t (Y,Z) .
succ (X,Y) :− l t (X,Y) , not nsucc (X,Y) .
n i n f (X) :− l t (Y,X) .
nsup (X) :− l t (X,Y) .
i n f (X) :− not n i n f (X) , arg (X) .
sup (X) :− not nsup (X) , arg (X) .

%% grounded
%% the grounded extens i on i s the minimal complete extens i on

defended upto (X,Y) :− i n f (Y) , arg (X) , not de f ea t (Y,X) , ground .
defended upto (X,Y) :− i n f (Y) , i n (Z) , d e f ea t (Z ,Y) , d e f ea t (Y,X) ,

ground .

94 APPENDIX A. ASPARTIX

defended upto (X,Y) :− succ (Z ,Y) , defended upto (X,Z) ,
not de f ea t (Y,X) , ground .

defended upto (X,Y) :− succ (Z ,Y) , defended upto (X,Z) , i n (V) ,
d e f ea t (V,Y) , d e f ea t (Y,X) , ground .

defended (X) :− sup (Y) , defended upto (X,Y) .
i n (X) :− defended (X) , ground , not i n pu t e r r o r .

%% Guess S ’ \ supseteq S f o r c l a s s i c a l p r e f . ext .

inN(X) v outN (X) :− out (X) , prefex , not i n pu t e r r o r .
inN(X) :− i n (X) , prefex , not i n pu t e r r o r .

%% Guess S ’ \ supseteq S f o r s−pr e f e r r ed
inN(X) v outN (X) :− out (X) , s p r e f ex , not i n pu t e r r o r .
inN(X) :− i n (X) , s p r e f e x .

%% Guess S ’ \ supseteq S f o r c−pr e f e r r ed
inN(X) v outN (X) :− out (X) , c pr e f ex , not i n pu t e r r o r .
inN(X) :− i n (X) , c p r e f ex .

%% I f S ’ = S then s p o i l .
%% Use the suce s s o r f unc t i on and check s t a r t i n g from supremum whether
%% elements in S ’ i s a l s o in S . I f t h i s i s not the case we ” stop ”
%% I f we reach the supremum we s p o i l up .

eq upto (Y) :− i n f (Y) , i n (Y) , inN(Y) .
eq upto (Y) :− i n f (Y) , out (Y) , outN (Y) .

eq upto (Y) :− succ (Z ,Y) , i n (Y) , inN(Y) , eq upto (Z) .
eq upto (Y) :− succ (Z ,Y) , out (Y) , outN (Y) , eq upto (Z) .

eq :− sup (Y) , eq upto (Y) .

%% get those X \notin S ’ which are not de f eated by S ’
%% using succ e s s o r again . . .

undefeated upto (X,Y) :− i n f (Y) , outN (X) , outN (Y) .%, pr e f ex .
undefeated upto (X,Y) :− i n f (Y) , outN (X) , not de f ea t (Y,X) .%, pr e f ex .

undefeated upto (X,Y) :− succ (Z ,Y) , undefeated upto (X, Z) , outN (Y) .
undefeated upto (X,Y) :− succ (Z ,Y) , undefeated upto (X, Z) , not de f ea t (Y,X) .

undefeated (X) :− sup (Y) , undefeated upto (X,Y) .

s p o i l :− eq .

%% S ’ has to be c o n f l i c t f r e e − otherwi s e s p o i l
s p o i l :− inN(X) , inN(Y) , d e f ea t (X,Y) , c p r e f ex .
s p o i l :− inN(X) , inN(Y) , d e f ea t (X,Y) , pr e f ex .

%% set−supports
supportedN (X) :− inN(Y) , support (Y,X) .

%% S ’ has to be s a f e f o r s−pr e f e r r ed
s p o i l :− supportedN (B) , d e f ea t (X,B) , inN (X) , s p r e f e x .
s p o i l :− de f ea t (X,B) , inN (X) , inN (B) , s p r e f e x .

%% S ’ has to be c l o s ed f o r c−pr e f e r r ed
s p o i l :− support (X,Y) , outN (Y) , inN(X) , c p r e f ex .
s p o i l :− support (X,Y) , inN(Y) , outN (X) , c p r e f ex .

95

%% S ’ has to be adm i s s i b l e − otherwi s e s p o i l
s p o i l :− inN (X) , outN (Y) , d e f ea t (Y,X) , undefeated (Y) .

inN (X) :− s po i l , arg (X) , not i n pu t e r r o r .
outN (X) :− s po i l , arg (X) , not i n pu t e r r o r .

%% do the f i n a l s po i l−thing . . .
:− not s po i l , prefex , not i n pu t e r r o r .
:− not s po i l , s p r e f ex , not i n pu t e r r o r .
:− not s po i l , c pr e f ex , not i n pu t e r r o r .

Index

ΓAF , 16
NP, 39
ΠP

k , 39
ΣP

k , 39
coΠP

k , 39
valpref , 22
val , 22
3-Colorability, 35, 41

answer set, 33
Answer Set Programming (ASP), 31
Argumentation Framework (AF), 13
atom, 31

b-controversial (BAF), 28
Bipolar Argumentation Framework (BAF),

24
bipolar interaction graph, 25

calculus ratiocinator, 2
Carla, 22
case law, 5
closed sets, 26
complexity, 39
constraint

integrity constraint, 32
controversial, 18
credulous, 15, 40

data complexity, 41
defeat relation, 25
defeats (PAF), 21
defeats (VAF), 22
defend (BAF), 26
defended (AF), 14
defended (VAF), 23
dichromatic, 24

disjunctive logic program, 31

extension, 14

admissible, 14

admissible (VAF), 23
bp-admissible, 29

bp-conflict-free, 28

c-admissible (BAF), 27

c-preferred (BAF), 27
complete, 15

complete p-extension, 19

conflict-free, 14
conflict-free (BAF), 26

conflict-free (VAF), 23

d-admissible (BAF), 26

d-preferred (BAF), 27
grounded, 15

grounded p-extension, 19

p-admissible, 19

p-conflict-free, 19
preferred, 15

preferred (VAF), 23

preferred bp-extension, 29
preferred p-extension, 19

s-admissible (BAF), 26

s-preferred (BAF), 27

safe (BAF), 26
stable, 14

stable bp, 29

stable (BAF), 26

stable (VAF), 24
stable p-extension, 19

fact, 32

Gelfond-Lifschitz reduct, 33

96

INDEX 97

ground, 31, 32
ground instance, 32
Guess&Check, 35, 41
Guess&Check&Optimize, 35

Hal, 22
head-cycle free, 41
Herbrand Universe, 32

indirect attack, 18
indirect defeat (BAF), 25
indirect defense, 18
infimum, 34

Leibniz, 2
linear ordering, 34
lingua characteristica, 2
literal, 31

Modules πχ, 44
monochromatic, 24

Neuro Linguistic Programming (NLP), 1
NPSPACE, 39

objectively acceptable, 24

partial order, 44
Plato, 2
polychromatic, 24
polynomial hierarchy, 39
Popov v. Hayashi, 7
Preference Based Argumentation Framework

(PAF), 21
preordering, 21
prudent, 19
PSPACE, 39
PSPACE-complete, 40

Quantified Boolean Formulas (QBF), 36

safe, 32
saturation, 36
Savitch’s theorem, 40
sceptical, 15, 40
set-defeats (BAF), 25

set-supports (BAF), 25
stable model, 32
stratified, 32, 41
subjectively acceptable, 24
successor, 34
support relation (BAF), 25
supported defeat (BAF), 25
supremum, 34
System Description, 73

term, 31
Turing machine, 39

Value Based Argumentation Framework (VAF),
22

wild animals, 6

