
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Answer-Set Programming Encodings for
Argumentation Frameworks

DBAI-TR-2008-62

Uwe Egly Sarah Alice Gaggl Stefan Woltran

DBAI T ECHNICAL REPORT

2008

DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2008-62, 2008

Answer-Set Programming Encodings for
Argumentation Frameworks

Uwe Egly1 Sarah Alice Gaggl2 Stefan Woltran3

Abstract. We present reductions from Dung’s argumentation framework(AF) and gener-
alizations thereof to logic programs under the answer-set semantics. The reduction is based
on a fixed disjunctive datalog program (the interpreter) andits input which is the only part
depending on the AF to process. We discuss the reductions, which are the basis for the sys-
tem ASPARTIX in detail and show their adequacy in terms of computational complexity.

1Institute for Information Systems 184/3, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: uwe@kr.tuwien.ac.at

2Technische Universität Wien, E-mail: e0026566@student.tuwien.ac.at
3Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-

enna, Austria. E-mail: woltran@dbai.tuwien.ac.at

Acknowledgements: The authors would like to thank Wolfgang Faber for commentson an earlier
draft of this paper. This work was partially supported by theAustrian Science Fund (FWF) under
grant P20704-N18.

This is an extended version of a paper published in the Proceedings of the ICLP’08 Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP’08).

Copyright c© 2008 by the authors

1 Motivation

Dealing with arguments and counter-arguments in discussions is a daily life process. We usually
employ this process to convince our opponent to our point of view. As everybody knows, this is
sometimes a cumbersome activity because we miss a formal reasoning procedure for argumenta-
tion.

This problem is not new. Leibniz (1646–1716) was the first whotried to deal with arguments
and their processing by reasoning in a more formal way. He proposed to use alingua charac-
teristica (a knowledge representation (KR) language) to formalize arguments and acalculus ra-
tiocinator (a deduction system) to reason about them. Although Leibniz’s dream of a complete
formalization of science was destroyed in the thirties of the last century, restricted versions of
Leibniz’s dream survived.

In Artificial Intelligence (AI), the area of argumentation (see [6] for an excellent summary) has
become one of the central issues within the last decade, providing a formal treatment for reasoning
problems arising in a number of interesting applications fields, including Multi-Agent Systems
and Law Research. In a nutshell, argumentation frameworks formalize statements together with a
relation denoting rebuttals between them, such that the semantics gives an abstract handle to solve
the inherent conflicts between statements by selecting admissible subsets of them. The reasoning
underlying such argumentation frameworks turned out to be avery general principle capturing
many other important formalisms from the areas of AI and Knowledge Representations.

The increasing interest in argumentation led to numerous proposals for formalizations of argu-
mentation. These approaches differ in many aspects. First,there are several ways how “admissibil-
ity” of a subset of statements can be defined; second, the notion of rebuttal has different meanings
(or even additional relationships between statements are taken into account); finally, statements
are augmented with priorities, such that the semantics yields those admissible sets which contain
statements of higher priority.

Argumentation problems are in general intractable, thus developing dedicated algorithms for
the different reasoning problems is non-trivial. A promising approach to implement such systems
is to use a reduction method, where the given problem is translated into another language, for
which sophisticated systems already exist. Earlier work [7, 17] proposed reductions for basic ar-
gumentation frameworks to (quantified) propositional logic. In this work, we present solutions for
reasoning problems in different types of argumentation frameworks by means of computing the an-
swer sets of an (extended) datalog program. To be more specific, the system is capable to compute
the many important types of extensions (i.e., admissible, preferred, stable, semi-stable, complete,
and grounded) in Dung’s original framework [13], the preference-based argumentation framework
[1], the value-based argumentation framework [5], and the bipolar argumentation framework [2, 9].
Hence our system can be used by researchers to compare different argumentation semantics on con-
crete examples within a uniform setting. In fact, investigating the relationship between different
argumentation semantics has received increasing interestlately [3].

The declarative programming paradigm ofAnswer-Set Programming(ASP) [22, 24] under the
stable-models semantics [21] (which is our target formalism) is especially well suited for our pur-
pose. First, advanced solvers such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT which

2

are able to deal with large problem instances (see [20]) are available. Thus, using the proposed
reduction method delegates the burden of optimizations to these systems. Second, language exten-
sions such systems offer can be used to employ different extensions to AFs, which so far have not
been studied (for instance, weak constraints or aggregatescould yield interesting specially tailored
problems for AFs). Finally, depending on the class of the program one uses for a given type of
extension, one can show that, in general, the complexity of evaluation within the target formal-
ism is of the same complexity as the original problem. Thus, our approach is adequate from a
complexity-theoretic point of view.

With the fixed logic program (independent from the concrete AF to process), we are more in the
tradition of a classical implementation, because we construct an interpreter in ASP which processes
the AF given as input. This is in contrast to, e.g., the reductions to (quantified) propositional logic
[7, 17], where one obtains a formula which completely depends on the AF to process. Although
there is no advantage of the interpreter approach from a theoretical point of view (as long as
the reductions are polynomial-time computable), there areseveral practical ones. The interpreter
is easier to understand, easier to debug, and easier to extend. Additionally, proving properties
like correspondence between answer sets and extensions is simpler. Moreover, the input AF can
be changed easily and dynamically without translating the whole formula which simplifies the
answering of questions like “What happens if I add this new argument?”.

Our system makes use of the prominent answer-set solver DLV [22]. All necessary programs
to run ASPARTIX and some illustrating examples are available at

http://www.kr.tuwien.ac.at/research/systems/argumentation/

2 Preliminaries

In this section, we first give a brief overview of the syntax and semantics of disjunctive datalog
under the answer-sets semantics [21]; for further background, see [18, 22].

We fix a countable setU of (domain) elements, also calledconstants; and suppose a total order
< over the domain elements. Anatomis an expressionp(t1, . . .,tn), wherep is apredicateof arity
n ≥ 0 and eachti is either a variable or an element fromU . An atom isground if it is free of
variables. ByBU we denote the set of all ground atoms overU .

A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and wherea1, . . . , an, b1, . . . , bm are atoms, and “not ”
stands fordefault negation. The headof r is the setH(r) = {a1, . . . , an} and thebodyof r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and aconstraintif n = 0. A rule r is safeif each
variable inr occurs inB+(r). A rule r is groundif no variable occurs inr. A fact is a disjunctive-
free ground rule with an empty body. Aninput (database)is a finite set of facts. A program is
a finite set of disjunctive rules. For a programP and an input databaseD, we often writeP(D)
instead ofD ∪ P. If each rule in a program is normal (resp. ground), we call the program normal

3

stratified programs normal programs general case

|=c P NP ΣP
2

|=s P coNP ΠP
2

Table 1: Data Complexity for datalog (all results are completeness results).

(resp. ground). A programP is calledstratified if there exists an assignmenta(·) of integers to
the predicates inP, such that for each ruler ∈ P the following holds: If predicatep occurs in the
head ofr and predicateq occurs

(i) in the positive body ofr, thena(p) ≥ a(q) holds;

(ii) in the negative body ofr, thena(p) > a(q) holds.

For any programP, let UP be the set of all constants appearing inP (if no constant appears in
P, an arbitrary constant is added toUP), and letBP be the set of all ground atoms constructible
from the predicate symbols appearing inP and the constants ofUP . Moreover,Gr(P) is the set of
rulesrσ obtained by applying, to each ruler ∈ P, all possible substitutionsσ from the variables
in P to elements ofUP .

An interpretationI ⊆ BU satisfiesa ground ruler iff H(r) ∩ I 6= ∅ wheneverB+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground programP, if eachr ∈ P is satisfied byI. A non-ground
rule r (resp., a programP) is satisfied by an interpretationI ⊆ BU iff I satisfies all groundings
of r (resp.,Gr(P)). I ⊆ BU is ananswer setof P iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct

PI = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(P)}.

For a programP, we denote the set of its answer sets byAS(P). We note that for eachI ∈ AS(P),
I ⊆ BP holds.

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program
P and a set of ground atomsA. Then, we writeP |=c A (credulous reasoning), ifA is contained
in some answer set ofP; we writeP |=s A (skeptical reasoning), ifA is contained in each answer
set ofP.

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will
deal with fixed programs, we focus on results for data complexity. Recall that data complexity in
our context is the complexity of checking whetherP (D) |= A when programsP are fixed, while
input databasesD and ground atomsA are an input of the decision problem. Depending on the
concrete definition of|=, we give the complexity results in Table 1 (cf. [11] and the references
therein).

Finally, we recall the concepts of splitting sets [23]. Given a programP , a setU of predicates
is asplitting setfor P , if and only if, for every ruler ∈ P , it holds if some predicate fromU occurs
in the head ofr, then each predicate inr is from U as well. Any splitting setU for programP

4

dividesP in two parts. Thetop P t
U of P contains all rules ofP which have an occurrence of a

predicatenot contained inU , while thebottomP b
U of P is defined asP \ P t

U . Splitting sets allow
to compute the answer sets of a programP step-by-step due to the following result (thesplitting
theorem): Let U be a splitting set of a programP , I ⊆ BU . Then,I ∈ AS(P) if and only if
I ∈ AS(P t

U(J)), whereJ = I ∩ BP b

U

is contained inAS(P b
U).

3 Encodings of Basic Argumentation Frameworks

In this section, we first introduce the most important semantics for basic argumentation frameworks
in some detail. In a distinguished section, we then provide encodings for these semantics in terms
of datalog programs.

3.1 Basic Argumentation Frameworks

In order to relate frameworks to programs, we use the universeU of domain elements also in the
following basic definition.

Definition 3.1 An argumentation framework (AF)is a pair F = (A, R) whereA ⊆ U is a set of
arguments andR ⊆ A × A. The pair(a, b) ∈ R means thata attacks (or defeats)b. A setS ⊆ A
of argumentsdefeatsb (in F), if there is ana ∈ S, such that(a, b) ∈ R. An argumenta ∈ A is
defendedbyS ⊆ A (in F) iff, for eachb ∈ A, it holds that, if(b, a) ∈ R, thenS defeatsb (in F).

An argumentation framework can be naturally represented asa directed graph.

Example 3.2 Let F = (A, R) be an AF withA = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)}. The graph representation ofF is the following.

a b c d e

Figure 1: Graph of Example 3.2.

In order to be able to reason about such frameworks, it is necessary to group arguments with
special properties toextensions. One of the basic properties is the absence of conflicts between
arguments contained in an extension.

Definition 3.3 Let F = (A, R) be an AF. A setS ⊆ A is said to beconflict-free (inF), if there
are noa, b ∈ S, such that(a, b) ∈ R. We denote the collection of sets which are conflict-free (in
F) by cf (F).

5

For our example frameworkF = (A, R) from Example 3.2, we have

cf (F) =
{
∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}

}
.

As a first concept of extension, we present thestable extensionswhich are based on the idea
that an extension should not only be internally consistent but also able to reject the arguments that
are outside the extension.

Definition 3.4 Let F = (A, R) be an AF. A setS is a stable extensionof F , if S ∈ cf (F) and
eacha ∈ A \ S is defeated byS in F . We denote the collection all of stable extensions ofF by
stable(F).

The frameworkF from Example 3.2 has a single stable extension{a, d}. Indeed{a, d} is
conflict-free, and each further elementb, c, e is defeated by eithera or d. In turn,{a, c} for instance
is not contained instable(F), although it is conflict-free as well. The obvious reason is thate is
not defeated by{a, c}.

Stable semantics in terms of argumentation are considered to be quite restricted. Moreover, it is
not guaranteed that a framework possesses at least one stable extension (consider, e.g., the simple
cyclic framework({a}, {(a, a)})). Therefore it is also reasonable to consider those arguments
which are able to defend themselves from external attacks, like theadmissible semanticsproposed
by Dung [13].

Definition 3.5 Let F = (A, R) be an AF. A setS is anadmissible extensionof F , if S ∈ cf (F)
and eacha ∈ S is defended byS in F . We denote the collection of all admissible extensions ofF
byadm(F).

For the frameworkF from Example 3.2, we obtain,

adm(F) =
{
∅, {a}, {c}, {d}, {a, c}, {a, d}

}
.

By definition, the empty set is always an admissible extension, therefore reasoning over admissible
extensions is also limited. In fact, some reasoning (for instance, given an AFF = (A, R), and
a ∈ A, is a contained in any extension ofF) becomes trivial wrt admissible extensions. Thus,
many researchers consider maximal (wrt set-inclusion) admissible sets, calledpreferred extensions,
as more important.

Definition 3.6 Let F = (A, R) be an AF. A setS is a preferred extensionof F , if S ∈ adm(F)
and for eachT ∈ adm(F), S 6⊂ T . We denote the collection of all preferred extensions ofF by
pref (F).

Obviously, the preferred extensions of frameworkF from Example 3.2 are{a, c} and{a, d}.
We note that each stable extension is also preferred, but theconverse does not hold, as witnessed
by this example.

The next semantics we consider is thesemi-stable semantics, recently introduced by Cami-
nada [8] and investigated also in [16]. Semi-stable semantics are located in-between stable and

6

preferred semantics, in the sense that each stable extension of an argumentation frameworkF is
also a semi-stable extension ofF , and each semi-stable extension ofF is a preferred extension
of F . However, in general both inclusions do not hold in the opposite direction. In contrast to
the stable semantics, semi-stability guarantees that there exists at least one extension. We use the
definition given in [16].

Definition 3.7 LetF = (A, R) be an AF, and for a setS ⊆ A, let S+
R

be defined asS ∪ {b | ∃a ∈
S, such that(a, b) ∈ R}. A setS is a semi-stable extensionof F , if S ∈ adm(F) and for each
T ∈ adm(F), S+

R
6⊂ T+

R
, We denote the collection of all semi-stable extensions ofF by semi(F).

For our example framework(A, R), the only semi-stable extension coincides with the stable
extensionT = {a, d}. In contrast,S = {a, c} is not semi-stable, becauseS+

R
= {a, b, c, d} ⊂

{a, b, c, d, e} = T+
R

.
Finally, we introduce complete and grounded extensions which Dung considered as skeptical

counterparts of admissible and preferred extensions, respectively.

Definition 3.8 Let F = (A, R) be an AF. A setS is a complete extensionof F , if S ∈ adm(F)
and, for eacha ∈ A defended byS (in F), a ∈ S holds. The least (wrt set inclusion) complete
extension ofF is called thegrounded extensionof F . We denote the collection of all complete
(resp., grounded) extensions ofF by comp(F) (resp.,ground(F)).

The complete extensions of frameworkF from Example 3.2 are{a, c}, {a, d}, and{a}, with
the last being also the grounded extensions ofF .

This concludes our collection of argumentation semantics,we consider in this paper. The
relations between the semantics are depicted in Figure 2, where an arrow frome to f indicates that
eache-extension is also af -extension.

stable

semi-stable

preferred grounded

complete

admissible

Figure 2: Overview of argumentation semantics and their relations.

We briefly review the complexity of reasoning in AFs. To this end, we define the following
decision problems fore ∈ {stable, adm, pref , semi , comp, ground}:

7

stable adm pref semi comp ground

Crede NP-c NP-c NP-c in ΣP
2 NP-c in P

Skepte coNP-c (trivial) ΠP
2 -c in ΠP

2 in P in P

Table 2: Complexity for decision problems in argumentationframeworks.

• Crede: Given AFF = (A, R) anda ∈ A. Is a contained in someS ∈ e(F)?

• Skepte: Given AFF = (A, R) anda ∈ A. Is a contained in eachS ∈ e(F)?

The complexity results are depicted in Table 2 (many of them follow implicitly from [12], for
the remaining results and discussions see [10, 15, 16]). In the table, “C-c” refers to a problem which
is complete for classC, while “in C” is assigned to problems for which a tight lower complexity
bound is not known. A few further comments are in order. We already mentioned that skeptical
reasoning over admissible extensions always is trivially false. Moreover, we note that credulous
reasoning over preferred extensions is easier than skeptical reasoning. This is due to the fact that
the additional maximality criterion only comes into play for the latter task. Indeed for credulous
reasoning the following simple makes clear why there is no increase in complexity compared to
credulous reasoning over admissible extensions:a is contained in someS ∈ adm(F) iff a is
contained in someS ∈ pref (F). A similar argument immediately shows why skeptical reasoning
over complete extensions reduces to skeptical reasoning over the grounded extension. Finally, we
recall that reasoning over the grounded extension is tractable [13]:

Proposition 3.9 The grounded extension of an AFF = (A, R) is given by the least fix-point of the
operatorΓF : 2A → 2A, defined asΓF (S) = {a ∈ A | a is defended byS in F}.

3.2 Encodings

We now provide a fixed encodingπe for each extension of typee introduced so far, in such a way
that the AFF is given as an input databasêF and the answer sets of the combined programπe(F̂)
are in a certain one-to-one correspondence with the respective extensions (with some additions,
we can of course combine the different encodings into a single program, where the user just has
to specify which type of extensions she wants to compute). Note that having established the fixed
programπe, the only translation required is to provide a given AFF as input databasêF to πe. In
fact, for an AFF , we defineF̂ as

F̂ = {arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R}.

In most cases, we have to guess candidates for the selected type of extensions and then check
whether a guessed candidate satisfies the corresponding conditions. We use unary predicatesin(·)
andout(·) to perform such a guess for a setS ⊆ A, wherein(a) represents thata ∈ S. Thus the
following notion of correspondence is relevant for our purposes.

8

Definition 3.10 Let S ⊆ 2U be a collection of sets of domain elements and letI ⊆ 2BU be a
collection of sets of ground atoms. We say thatS and I correspond to each other, in symbols
S ∼= I, iff |S| = |I| and for eachS ∈ S, there exists anI ∈ I, such that{a | in(a) ∈ I} = S.

Let F = (A, R) an argumentation framework. The following program fragment guesses, when
augmented bŷF , any subsetS ⊆ A and then checks whether the guess is conflict-free inF :

πcf = { in(X) :- not out(X), arg(X);

out(X) :-not in(X), arg(X);

:- in(X), in(Y), defeat(X, Y)}.

Proposition 3.11 For any AFF , cf (F) ∼= AS(πcf (F̂)).

For our example frameworkF from Example 3.2, we have as input

F̂ = { arg(a), arg(b), arg(c), arg(d), arg(e),

defeat(a, b), defeat(c, b), defeat(c, d), defeat(d, c), defeat(d, e), defeat(e, e) }.

Moreover, usinĝF together withπcf , we obtain:

AS(πcf (F̂)) = {S∅, Sa, Sb, Sc, Sd, Sac, Sad, Sbd},

where we denote bySα the following sets:

S∅ = F̂ ∪ {out(a), out(b), out(c), out(d), out(e)},

Sa = F̂ ∪ {in(a), out(b), out(c), out(d), out(e)},

Sb = F̂ ∪ {out(a), in(b), out(c), out(d), out(e)},

Sc = F̂ ∪ {out(a), out(b), in(c), out(d), out(e)},

Sd = F̂ ∪ {out(a), out(b), out(c), in(d), out(e)},

Sac = F̂ ∪ {in(a), out(b), in(c), out(d), out(e)},

Sad = F̂ ∪ {in(a), out(b), out(c), in(d), out(e)},

Sbd = F̂ ∪ {out(a), in(b), out(c), in(d), out(e)}.

We are now already well prepared to present the first encodingwhich is concerned with stable
extensions. The additional rules for the stability test areas follows:

πstable = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

:- out(X), not defeated(X)}.

The first rule computes those arguments attacked by the current guess, while the constraint
eliminates those guesses where some argument not containedin the guess remains undefeated.

9

For our example, let us first consider the collectionC of answer sets ofπcf (F̂) ∪
{defeated(X) :- in(Y), defeat(Y, X)}. Note that we can use the splitting theorem and, there-
fore, make direct use of the answer sets ofπcf (F̂). In fact, using our calculations from above we
obtain

C =
{

S∅,

Sa ∪ {defeated(b)},

Sb,

Sc ∪ {defeated(b), defeated(d)},

Sd ∪ {defeated(c), defeated(e)},

Sac ∪ {defeated(b), defeated(d)},

Sad ∪ {defeated(b), defeated(c), defeated(e)},

Sbd ∪ {defeated(c), defeated(e)}
}
.

If we now apply the constraint:- out(X), not defeated(X) to each element inC, we observe
that any set fromC exceptSad ∪ {defeated(b), defeated(c), defeated(e)} is violated by that con-
straint. In fact, each other set contains at least one atomout(y) without the matchingdefeated(y).

In general, our encoding for stable extensions satisfies thefollowing correspondence result.

Proposition 3.12 For any AFF , stable(F) ∼= AS(πstable(F̂)).

Next, we give the additional rules for the admissibility test:

πadm = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

:- in(X), defeat(Y, X), not defeated(Y)}.

The first rule is the same as inπstable . The new constraint rules out sets containing a non-
defended argument. Indeed, we can identify non-defended arguments as those, which are defeated
by an argument, which itself is undefeated.

For our example framework, we thus can start from setC as above but now we check which
sets violate the new constraint:- in(X), defeat(Y, X), not defeated(Y). This is the case for two
of the candidates. (1)Sb containsin(b) anddefeat(a, b) but sincedefeated(a) is not contained,
the constraint applies; (2) forSbd ∪ {defeated(c), defeated(e)} the argumentation is analogously.
Hence, we obtain

AS(πadm(F̂)) =
{

S∅,

Sa ∪ {defeated(b)},

Sc ∪ {defeated(b), defeated(d)},

Sd ∪ {defeated(c), defeated(e)},

Sac ∪ {defeated(b), defeated(d)},

Sad ∪ {defeated(b), defeated(c), defeated(e)}
}
.

Again, we observe the one-to-one correspondence to the admissible extensions ofF . The
general result is as follows.

10

Proposition 3.13 For any AFF , adm(F) ∼= AS(πadm(F̂)).

We proceed with the encoding for complete extensions, whichis also quite straightforward.
We define

πcomp = πadm ∪ {not defended(X) :-defeat(Y, X), not defeated(Y);

:- out(X), not not defended(X)}.

Once more, we use our running example to illustrate the functioning of πcomp . Again,
we proceed in two steps and first compute the answer sets of theprogram without the con-
straint :- out(X), not not defended(X). Here, we can directly use the sets fromAS(πadm(F̂))

and check which predicatesnot defended(·) can be derived. The answer sets ofπadm(F̂) ∪
{not defended(X) :-defeat(Y, X), not defeated(Y)} are

S∅ ∪ {not defended(b),not defended(c),not defended(d),not defended(e)},

Sa ∪ {defeated(b),not defended(b),not defended(c),not defended(d),not defended(e)},

Sc ∪ {defeated(b),defeated(d),not defended(b),not defended(d),not defended(e)},

Sd ∪ {defeated(c),defeated(e),not defended(b),not defended(c),not defended(e)},

Sac ∪ {defeated(b),defeated(d),not defended(b),not defended(d),not defended(e)},

Sad ∪ {defeated(b),defeated(c),defeated(e),not defended(b),not defended(c),not defended(e)}.

Obviously, each candidate which containsout(a) is ruled out by the constraint
:- out(X), not not defended(X), since no candidate set containsnot defended(a). One can
check that all other sets do not violate the constraint, and thus are answer sets ofπcomp(F̂). Again,
these remaining three sets characterize the complete extensions ofF , as desired.

Proposition 3.14 For any AFF , comp(F) ∼= AS(πcomp(F̂)).

We now turn to the grounded extension. For suitably encodingthe operatorΓF , we can come
up with astratifiedprogram for this task. Note that in a stratified program it is not possible to first
guess a candidate for the extension and then check whether the guess satisfies certain conditions.
Instead, we “fill” thein(·)-predicate according to the definition of the operatorΓF . To compute
(without unstratified negation) the required predicate forbeing defended, we now make use of the
order< over the domain elements and derive corresponding predicates for infimum, supremum,
and successor.

π< = { lt(X, Y) :- arg(X), arg(Y), X < Y ;

nsucc(X, Z) :- lt(X, Y), lt(Y, Z);

succ(X, Y) :- lt(X, Y), not nsucc(X, Y);

ninf(Y) :- lt(X, Y);

inf(X) :- arg(X), not ninf(X);

nsup(X) :- lt(X, Y);

sup(X) :- arg(X), not nsup(X)}.

11

We now define the desired predicatedefended(X) which itself is obtained via a predicate
defended upto(X, Y) with the intended meaning that argumentX is defended by the current
assignment with respect to all argumentsU ≤ Y . In other words, we let rangeY starting from
the infimum and then using the defined successor predicate to derive defended upto(X, Y) for
“increasing”Y . If we arrive at the supremum element in this way, we finally derive defended(X).
We define

πdefended = { defended upto(X, Y) :- inf(Y), arg(X), not defeat(Y, X);

defended upto(X, Y) :- inf(Y), in(Z), defeat(Z, Y), defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

not defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

in(V), defeat(V, Y), defeat(Y, X);

defended(X) :- sup(Y), defended upto(X, Y)}, and

πground = π< ∪ πdefended ∪ {in(X) :-defended(X)}.

Note thatπground is indeed stratified.
We illustrate the building blocks forπground using our example frameworkF . Moreover, we

assume as ordera < b < c < d < e. For this order,π< yields a single answer setS0 which
contains (among other atoms, which will not be used in later calculations):

{inf(a), succ(a, b), succ(b, c), succ(c, d), succ(d, e), sup(e)} ⊆ S0

We now compute the answer set forF̂ ∪ π< ∪ πdefended step by step. In the “first round” we
have noin(·) predicate derived so far, hence only the first and third rule in πdefended are of interest.
In fact, for inf(a), the first rule inπdefended yields:

defended upto(a, a), defended upto(c, a), defended upto(d, a), defended upto(e, a);

note thatdefended upto(b, a) is missing, since we havedefeat(a, b) ∈ F̂ . Now we usesucc(a, b)
and obtain

defended upto(a, b), defended upto(c, b), defended upto(d, b), defended upto(e, b).

The remaining atoms we derive are

defended upto(a, c), defended upto(c, c), defended upto(e, c);

(sinced is attacked byc, defended upto(d, c) cannot be derived) and finally,

defended upto(a, d), defended upto(a, e).

Hence, we obtaindefended(a) via sup(e) and defended upto(a, e). Moreover, the rule
in(X) :-defended(X) derivesin(a). We now can use the additional factin(a) for a second round

12

of evaluatingπdefended , in particular, by using the second and fourth rule inπdefended . However, as
a does not defend any argument, it can be checked that no further atoms can be derived. Thus we
obtain that in the single answer set ofπground (F̂) the onlyin(·) predicate isin(a). However, this
corresponds to the grounded extensions ofF .

Proposition 3.15 For any AFF , ground(F) ∼= AS(πground (F̂)).

Obviously, we could have used thedefended(·) predicate in previous programs. Indeed,πcomp

could be defined as

πcf ∪ πdefended ∪ { :- in(X), not defended(X); :- out(X), defended(X)}.

We continue with the more involved encodings for preferred and semi-stable extensions. Com-
pared to the one for admissible extensions, these encodingsrequire an additional maximality test.
However, this is sometimes quite complicate to encode (see also [19] for a thorough discussion on
this issue).

In fact, to compute the preferred extensions, we will use a saturation technique as follows:
Having computed an admissible extensionS (characterized via predicatesin(·) andout(·)) , we
perform a second guess using new predicates, sayinN(·) andoutN(·), such that they represent a
guessT ⊃ S. For that guess, we will use disjunction (rather than default negation), which allows
that for eacha both inN(a) andoutN(a) are contained in a possible answer set (under certain
conditions). In fact, exactly such answer sets will correspond to the preferred extensions. The
saturation is therefore performed in such a way that all predicatesinN(a) andoutN(a) are derived
for thoseT , which donotcharacterize an admissible extension. If this saturation succeeds for each
T ⊃ S, we want that saturated interpretation to become an answer set. This can be done by using
a saturation predicatespoil, which is handled via a constraint:- not spoil. This ensures that only
saturated guesses survive.

Such saturation techniques always require a restricted useof negation. The predicates defined
in π< will serve for this purpose. Two new predicates are needed: predicateeq which indicates
whether a guessT represented by atomsinN(·) andoutN(·) is equal to the guess forS (represented
by atomsin(·) andout(·)). The second predicate we define isundefeated(X) which indicates that
X is not defeated by any element fromT . Both predicates are computed via predicateseq upto(·)
(resp.undefeated upto(·, ·)) in the same manner as we useddefended upto(·, ·) for defended(·)
in the moduleπdefended above:

πeq = { eq upto(Y) :- inf(Y), in(Y), inN(Y);

eq upto(Y) :- inf(Y), out(Y), outN(Y);

eq upto(Y) :- succ(Z, Y), in(Y), inN(Y), eq upto(Z);

eq upto(Y) :- succ(Z, Y), out(Y), outN(Y), eq upto(Z);

eq :- sup(Y), eq upto(Y)};

13

πundefeated = { undefeated upto(X, Y) :- inf(Y), outN(X), outN(Y);

undefeated upto(X, Y) :- inf(Y), outN(X), not defeat(Y, X);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

outN(Y);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

not defeat(Y, X);

undefeated(X) :- sup(Y), undefeated upto(X, Y)}.

With these predicates at hand, we next define the spoiling module for preferred extensions:

πspoilpref = { inN(X) ∨ outN(X) :- out(X); inN(X) :- in(X); (1)

spoil :- eq; (2)

spoil :- inN(X), inN(Y), defeat(X, Y); (3)

spoil :- inN(X), outN(Y), defeat(Y, X), undefeated(Y); (4)

inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X); (5)

:-not spoil}. (6)

We define
πpref = πadm ∪ π< ∪ πeq ∪ πundefeated ∪ πspoilpref .

When joined withF̂ for some AFF = (A, R), the rules ofπspoilpref work as follows: Rules
(1) guess a new setT ⊆ A (via predicatesinN(·) andoutN(·)), which compares to the guess
S ⊆ A (S is characterized by predicatesin(·) andout(·) as used inπadm) asS ⊆ T . In case
T = S, we obtain predicateeq and derive predicatespoil (by rule (2)). The remaining guesses for
T are now handled as follows. First, rule (3) derives predicate spoil if the new guessT contains a
conflict. Second, rule (4) derivesspoil if the new guessT contains an element which is attacked
by an argument outsideT which itself is undefeated (byT). Hence, we derivedspoil for those
S ⊆ T where eitherS = T or T did not correspond to an admissible extension ofF . We now
finally spoil up the current guess and derive allinN(a) andoutN(a) in rules (5). Recall that due
to constraint (6) such spoiled interpretations are the onlycandidates for answer sets. To turn them
into an answer set, it is however necessary that we spoiled for eachT , such thatS ⊆ T ; but by
definition this is exactly the case ifS is a preferred extension.

To illustrate howπpref applies to our example framework, note that a step-by-step evaluation
as used before is no longer possible. In particular, the sub-programΠ = πeq ∪ πundefeated ∪ πspoil

has to be treated as once, due to the cyclic dependencies among the atoms (in other words, we
only obtain trivial splitting sets forΠ). However, we can still splitπpref into πadm ∪ π< andΠ. We
already know the single answer setS0 of π<(F̂) and the collectionAS(πadm(F̂)) of answer sets
of πadm (F̂). As is easily checked, we thus getAS(F̂ ∪ πadm ∪ π<) = {S0 ∪ S | S ∈ πadm(F̂)}.
Hence, let us illustrate the functioning ofΠ for the two inputs1 S1 = S0 ∪ Sa andS2 = S0 ∪ Sac.
Indeed, we expect thatS1 does not lead to an answer set ofπpref (F̂), while the second setS2

1We omit the further atoms from the corresponding answer setsin F̂ ∪ πadm ∪ π<, since they play no role inΠ.

14

corresponds to a preferred extension ofF , and thus should be part of an answer set ofπpref (F̂). As
discussed above, the only potential answer setI1 of Π(S1) contains containsS1 as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (7)

We next check whether someJ1 ⊂ I1 satisfiesΠ(S1)
I1 = Π(S1) \ { :-not spoil}. If this is not the

case,I1 becomes an answer set. Indeed, one can check that

Sa ∪ {inN(a), outN(b), inN(c), outN(d), outN(e)}

satisfiesΠ(S1)
I1. This can be seen as follows: this set does not containspoil, thus the bodies of

rules (2–4) must not be satisfied. For the first rule this is thecase sinceeq is not derived (we leave
it to the reader to check this), for the second rule this is thecase as well, since the vertices for
which inN(·) holds are not adjacent. Finally, for (4), we first mention that πundefeated is derived
for the following instantiationsundefeated(a), undefeated(c), undefeated(e). One can now check
that the bodies of (4) are not satisfied. As well, rules (5) arenot applied (sincespoil has not been
derived). Thus, we found a proper subsetJ1 of I1, such thatJ1 |= Π(S1)

I1. Consequently,I1

cannot be an answer set ofΠ(S1) and thus not ofπpref (F̂).
The situation is different for setS2 = S0 ∪ Sac. As before the only potential answer setI2 of

Π(S2) containsS2 as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (8)

Moreover,Π(S2)
I2 = Π(S2) \ { :- not spoil} as before, and we thus seek for setsJ2 ⊂ I2, such

that J2 |= Π(S2)
I2 . Note that rule (1) guarantees thatJ2 contains at leastinN(a), inN(c) but

further inN(·) predicates could be contained inJ2. However, if the onlyinN(·) predicates inJ2

areinN(a), inN(c), predicateeq is derived and we spoil. As well, if a furtherinN(·) predicate is
contained inJ2 then we already know that such a set characterizes a subsetS ′ ⊆ A which cannot
be conflict free. Indeed, rule (3) applies in this case, and weobtain spoil. As soon asspoil is
derived, rules (5) “turnJ2 into I2”. From this observation it is clear that we cannot find aJ2 ⊂ I2,
such thatJ2 |= Π(S2)

I2. ThusI2 becomes an answer set ofΠ(S2) and therefore also ofπpref (F̂).
This meets our expectation, sinceSac relates to the preferred extension{a, c} of F .

Proposition 3.16 For any AFF , pref (F) ∼= AS(πpref (F̂)).

We conclude our encodings for the different types of extensions with the program for the semi-
stable semantics. The basic intuition for the forthcoming encoding is as for the preferred semantics.
The main difference lies in the fact that, given an admissible extensionS for an AFF = (A, R),
we now have to test whether noT ∈ adm(F) with S+

R
⊂ T+

R
exists, while for preferred extensions

it was sufficient to test whether no suchT of the formS ⊂ T exists. This requires the following
changes. First, we have to guess an arbitrary setT (for preferred extensions we could restrict
ourselves to supersets ofS). Then we spoil (as before) in caseT is not admissible. Finally, we
explicitly get rid off the cases whereS+

R
6⊂ T+

R
(for preferred extensions, we only had to exclude

15

the caseS = T via the predicateeq). Hence, we need a new predicateeqplus which tests for
S+

R
= T+

R
, and we spoil ifeqplus is derived, or in case there exists ana ∈ S+

R
not contained inT+

R
.

We can reuse the modulesπadm , π<, as well asπundefeated and define the following additional
rules

π+
eq = { eqplus upto(Y) :- inf(Y), in(Y), inN(Y);

eqplus upto(Y) :- inf(Y), in(Y), inN(X), defeat(X, Y);

eqplus upto(Y) :- inf(Y), in(X), inN(Y), defeat(X, Y);

eqplus upto(Y) :- inf(Y), in(X), inN(Z), defeat(X, Y), defeat(Z, Y);

eqplus upto(Y) :- inf(Y), out(Y), outN(Y), not defeated(Y), undefeated(Y);

eqplus upto(Y) :- succ(Z, Y), in(Y), inN(Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(Y), inN(X), defeat(X, Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(X), inN(Y), defeat(X, Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(X), inN(U), defeat(X, Y), defeat(U, Y),

eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), out(Y), outN(Y), not defeated(Y), undefeated(Y),

eqplus upto(Z);

eqplus :- sup(Y), eqplus upto(Y)};

πspoilsemi = { inN(X) ∨ outN(X) :- arg(X);

spoil :- eqplus;

spoil :- inN(X), inN(Y), defeat(X, Y);

spoil :- inN(X), outN(Y), defeat(Y, X), undefeated(Y);

spoil :- in(X), outN(X), undefeated(X);

spoil :- in(Y), defeat(Y, X), outN(X), undefeated(X);

inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X);

:- not spoil}.

We define
πsemi = πadm ∪ π< ∪ π+

eq ∪ πundefeated ∪ πspoilsemi

and obtain the following result.

Proposition 3.17 For any AFF , semi(F) ∼= AS(πsemi(F̂)).

We summarize the results from this section.

Theorem 3.18 For any AF F and e ∈ {stable, adm, pref , semi , comp, ground}, it holds that
e(F) ∼= AS(πe(F̂)).

16

stable adm pref semi comp ground

Crede πstable(F̂) |=c a πadm(F̂) |=c a πadm(F̂) |=c a πsemi(F̂) |=c a πcomp(F̂) |=c a πground (F̂)|=a

Skept
e

πstable(F̂) |=s a (trivial) πpref (F̂) |=s a πsemi(F̂) |=s a πground (F̂)|=a πground (F̂)|=a

Table 3: Overview of the encodings of the reasoning tasks forAF F = (A, R) anda ∈ A.

We note that our encodings areadequatein the sense that the data complexity of the encodings
mirrors the complexity of the encoded task. In fact, depending on the chosen reasoning task, the
adequate encodings are depicted in Table 3. Recall that credulous reasoning over preferred ex-
tensions reduces to credulous reasoning over admissible extensions and skeptical reasoning over
complete extensions reduces to reasoning over the single grounded extension. The only proper
disjunctive programs involved areπpref andπsemi , all other encodings are disjunction-free. More-
over,πground is stratified. Stratified programs have at most one answer set, hence there is no need
to distinguish between|=c and|=s. If one now assigns the complexity entries from Table 1 to the
encodings as depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision problemsusing our programs. As a first
example consider theΠP

2 -complete problem ofcoherence[15], which decides whether for a given
AF F , pref (F) ⊆ stable(F) (recall thatpref (F) ⊇ stable(F) always holds). We can decide this
problem by extendingπpref in such a way that an answer-set ofπpref survives only if it does not
correspond to a stable extension. By definition, the only possibility to do so is if some undefeated
argument is not contained in the extension.

Corollary 3.19 The coherence problem for an AFF holds iff the program

πpref (F̂) ∪ {v :- out(X), not defeated(X); :-not v}

has no answer set.

As a second example, we give a program which decides, for a given AFF , whether the semi-
stable and the preferred extension ofF coincide. This problem has been shown to beΠP

2 -complete
in [16].

Again, we can decide this problem by reusing some of the modules from previous encodings.
In this particular case, however, we need to separate some ofthe atoms which are used in common
by πpref andπsemi . For this reason, we require new atomsinNN(·), outNN(·), undefeatedN(·) and
undefeatedN upto(·, ·), and denote byπundefeatedN the program resulting fromπundefeated by using
the new atoms instead ofinN(·), outN(·), undefeated(·) andundefeated upto(·, ·), respectively.

17

Similarly, we obtainπ+
eqN from π+

eq . Consider now the following program

πcoinicde = πpref ∪ πundefeatedN ∪ π+
eqN ∪ {

inNN(X) ∨ outNN(X) :- arg(X);

:- eqplus;

:- inNN(X), inNN(Y), defeat(X, Y);

:- inNN(X), outNN(Y), defeat(Y, X), undefeatedN(Y);

:- in(X), outNN(X), undefeated(X);

:- in(Y), defeat(Y, X), outNN(X), undefeatedN(X)}.

Corollary 3.20 Given an AFF , it holds thatsemi(F) = pref (F) iff πcoinicde(F̂) has no answer
set.

Roughly speaking we combine here the program which computesthe preferred extensions with
a program which checks whether the input isnot semi-stable. The latter test can be accomplished
via constraints (instead of the spoiling technique used above), since it is sufficient here to just get
rid off candidates which already have been checked to be preferred but are not semi-stable.

4 Encodings for Generalizations of Argumentation Frame-
works

4.1 Value-Based Argumentation Frameworks

As a first example for generalizing basic AFs, we deal with value-based argumentation frameworks
(VAFs) [5] which themselves generalize the preference-based argumentation frameworks [1].
Again we give the definition wrt the universeU .

Definition 4.1 A value-based argumentation framework (VAF)is a 5-tupleF = (A, R, Σ, σ, <)
whereA ⊆ U are arguments,R ⊆ A × A, Σ ⊆ U is a non-empty set of values disjoint fromA,
σ : A → Σ assigns a value to each argument fromA , and< is a preference relation (irreflexive,
asymmetric) between values.

Let≪ be the transitive closure of<. An argumenta ∈ A defeatsan argumentb ∈ A in F if
and only if(a, b) ∈ R and(b, a) /∈≪.

Using this notion of defeat, we say in accordance to Definition 3.1 that a setS ⊆ A of argu-
mentsdefeatsb (in F), if there is ana ∈ S which defeatsb. An argumenta ∈ A is defendedby
S ⊆ A (in F) iff, for eachb ∈ A, it holds that, ifb defeatsa in F , thenS defeatsb in F . Using these
notions of defeat and defense, the definitions in [5] for conflict-free sets, admissible extensions,
and preferred extensions are exactly along the lines of Definition 3.3, 3.5, and 3.6, respectively.

18

In order to compute these extensions for VAFs, we thus only need to slightly adapt the modules
introduced in Section 3.2. In fact, we just overwriteF̂ for a VAF F as

F̂ = {arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ R} ∪

{val(a, σ(a)) | a ∈ A} ∪ {valpref(w, v) | v < w}

and we require one further module, which now obtains thedefeat(·, ·) relation accordingly:

πvaf = { valpref(X, Z) :- valpref(X, Y), valpref(Y, Z);

pref(X, Y) :- valpref(U, V), val(X, U), val(Y, V);

defeat(X, Y) :- attack(X, Y), not pref(Y, X)}.

We obtain the following theorem using the new concepts forF̂ andπvaf , as well as re-using
πadm andπpref from Section 3.2.

Theorem 4.2 For any VAFF ande ∈ {adm, pref }, e(F) ∼= AS(πvaf ∪ πe(F̂)).

For the other notions of extensions, we can employ our encodings from Section 3.2 in a similar
way. The concrete composition of the modules however depends on the exact definitions, and
whether they make use of the notion of a defeat in a uniform way. In [4], for instance, stable
extensions for a VAFF are defined as those conflict-free subsetsS of arguments, such that each
argument not inS is attacked (rather than defeated) byS. Still, we can obtain a suitable encoding
quite easily using the following redefined module:

πstable = πcf ∪ { attacked(X) :- in(Y), attack(Y, X);

:- out(X), not attacked(X)}.

Theorem 4.3 For any VAFF , stable(F) ∼= AS(πvaf ∪ πstable(F̂)).

The coherence problem for VAFs thus can be decided as follows.

Corollary 4.4 The coherence problem for a VAFF holds iff the program

πpref (F̂) ∪ {attacked(X) :- in(Y), attack(Y, X);

v :- out(X), not attacked(X); :-not v}

has no answer set.

4.2 Bipolar Argumentation Frameworks

Bipolar argumentation frameworks [9] augment basic AFs by asecond relation between arguments
which indicates supports independent from defeats.

19

Definition 4.5 A bipolar argumentation framework (BAF) is a tupleF = (A, Rd, Rs) whereA ⊆
U is a set of arguments, andRd ⊆ A×A andRs ⊆ A×A are the defeat (resp., support) relation
of F .

An argumenta defeatsan argumentb in F if there exists a sequencea1, . . . , an+1 of arguments
fromA (for n ≥ 1), such thata1 = a, andan+1 = b, and either

• (ai, ai+1) ∈ Rs for each1 ≤ i ≤ n − 1 and(an, an+1) ∈ Rd; or

• (a1, a2) ∈ Rd and(ai, ai+1) ∈ Rs for each2 ≤ i ≤ n.

As before, we say that a setS ⊆ A defeatsan argumentb in F if somea ∈ S defeatsb; an
argumenta ∈ A is defendedby S ⊆ A (in F) iff, for eachb ∈ A, it holds that, ifb defeatsa in F ,
thenS defeatsb in F .

Again, we just need to adapt the input databaseF̂ and incorporate the new defeat-relation.
Other modules from Section 3.2 can then be reused. In fact, wedefine for a given BAFF =
(A, Rd, Rs),

F̂ = {arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ Rd} ∪ {support(a, b) | (a, b) ∈ Rs},

and for the defeat relation we first compute the transitive closure of thesupport(·, ·)-predicate and
then definedefeat(·, ·) accordingly.

πbaf = { support(X, Z) :- support(X, Y), support(Y, Z);

defeat(X, Y) :- attack(X, Y);

defeat(X, Y) :- attack(Z, Y), support(X, Z);

defeat(X, Y) :- attack(X, Z), support(Z, Y)}.

Following [9], we can use this notion of defeat to define conflict-free sets, stable extensions,
admissible extensions and preferred extensions2 exactly along the lines of Definition 3.3, 3.4, 3.5,
and 3.6, respectively.

Theorem 4.6 For any BAFF ande ∈ {stable, adm, pref }, e(F) ∼= AS(πbaf ∪ πe(F̂)).

More specific variants of admissible extensions from [9] areobtained by replacing the notion
a conflict-free set by other concepts.

Definition 4.7 Let F = (A, Rd, Rs) be a BAF andS ⊆ A. ThenS is calledsafein F if for each
a ∈ A, such thatS defeatsa, a /∈ S and there is no sequencea1, . . . , an (n ≥ 2), such thata1 ∈ S,
an = a, and (ai, ai+1) ∈ Rs, for each1 ≤ i ≤ n − 1. A setS is closed underRs if, for each
(a, b) ∈ Rs, it holds thata ∈ S if and only ifb ∈ S.

Note that for a BAFF , each safe set (inF) is conflict-free (inF). We also remark that a setS
of arguments is closed underRs iff S is closed under the transitive closure ofRs.

2These extensions are calledd-admissible and resp.d-preferred in [9].

20

Definition 4.8 LetF = (A, Rd, Rs) be a BAF. A setS ⊆ A is called ans-admissible extensionof
F if S is safe (inF) and eacha ∈ S is defended byS (in F). A setS ⊆ A is called ac-admissible
extensionof F if S is closed underRs, conflict-free (inF), and eacha ∈ S is defended byS (in
F). We denote the collection of alls-admissible extensions (resp. of allc-admissible extensions) of
F by sadm(F) (resp. bycadm(F)).

We define now further programs as follows

πsadm = πadm ∪ { supported(X) :- in(Y), support(Y, X);

:- supported(X), defeated(X) }

πcadm = πadm ∪ { :- support(X, Y), in(X), out(Y);

:- support(X, Y), out(X), in(Y) }.

Finally, one definess-preferred (resp.c-preferred) extensions as maximal (wrt set-inclusion)
s-admissible (resp.c-admissible) extensions.

Definition 4.9 LetF = (A, Rd, Rs) be a BAF. A setS ⊆ A is called ans-preferred extensionof F
if S ∈ sadm(F) and for eachT ∈ sadm(F), S 6⊆ T . Likewise, a setS ⊆ A is called ac-preferred
extensionof F if S ∈ cadm(F) and for eachT ∈ cadm(F), S 6⊆ T . Byspref (F) (resp.cpref (F))
we denote the collection of alls-preferred extensions (resp. of allc-preferred extensions) ofF .

Again, we can reuse parts of theπpref -program from Section 3.2. The only additions necessary
are to spoil in case the additional requirements are violated. We define

πspref = πsadm ∪ πhelpers ∪ πspoil ∪

{ supported(X) :- inN(Y), support(Y, X);

spoil :- supported(X), defeated(X) }

πcpref = πcadm ∪ πhelpers ∪ πspoil ∪

{ spoil :- support(X, Y), inN(X), outN(Y);

spoil :- support(X, Y), outN(X), inN(Y) }.

Theorem 4.10 For any BAFF ande ∈ {sadm, cadm, spref , cpref }, we havee(F) ∼= AS(πbaf ∪

πe(F̂)).

Slightly different semantics for BAFs occur in [2], where the notion of defense is based onRd,
while the notion of conflict remains evaluated with respect to the more general concept of defeat
as given in Definition 4.5. However, also such variants can beencoded within our system by a
suitable composition of the concepts introduced so far.

Again, we note that we can put together encodings for complete and grounded extensions for
BAFs, which have not been studied in the literature.

21

5 Discussion

In this work we provided logic-program encodings for computing different types of extensions in
Dung’s argumentation framework as well as in some recent extensions of it. To the best of our
knowledge, so far no system is available which supports sucha broad range of different semantics,
although nowadays a number of implementations exists3. The encoding (together with some ex-
amples) is available on the web and can be run with the answer-set solver DLV [22]. We note that
DLV also supplies the built-in predicate< which we used in some of our encodings. Moreover,
DLV provides further language-extensions which might leadto alternative encodings; for instance
weak constraints could be employed to select the grounded extension from the admissible, or pri-
oritization techniques could be used to compute the preferred extensions.

The work which is closest related to ours is by Nieveset al. [25] who also suggest to use
answer-set programming for computing extensions of argumentation frameworks. The most im-
portant difference is that in their work the program has to bere-computed for each new instance,
while our system relies on asingle fixedprogram which just requires the actual instance as an
input database. We believe that our approach thus is more reliable and easier extendible to further
formalisms.

Future work includes a comparison of the efficiency of different implementations and an ex-
tension of our system by incorporating further recent notions of semantics, for instance, the ideal
semantics [14].

References

[1] Leila Amgoud and Claudette Cayrol. A reasoning model based on the production of accept-
able arguments.Ann. Math. Artif. Intell., 34(1-3):197–215, 2002.

[2] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie, and Pierre Livet. On bipolarity
in argumentation frameworks.International Journal of Intelligent Systems, 23:1–32, 2008.

[3] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumentation
frameworks where semantics agree. InProceedings of the 2nd Conference on Computational
Models of Argument(COMMA’08), pages 37–48. IOS Press, 2008.

[4] Trevor J. M. Bench-Capon. Value-based argumentation frameworks. InProceedings of the
9th International Workshop on Non-Monotonic Reasoning(NMR’02), pages 443–454, 2002.

[5] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumenta-
tion frameworks.J. Log. Comput., 13(3):429–448, 2003.

[6] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.Artif.
Intell., 171(10-15):619–641, 2007.

3See http://www.csc.liv.ac.uk/∼azwyner/software.html for an overview.

22

[7] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of arguments. In
Proceedings of the 10th International Workshop on Non-Monotonic Reasoning(NMR’02),
pages 59–64, 2004.

[8] Martin Caminada. Semi-stable semantics. InProceedings of the 1st Conference on Compu-
tational Models of Argument(COMMA’06), pages 121–130. IOS Press, 2006.

[9] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments
in bipolar argumentation frameworks. InProceedings of the 8th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty(ECSQARU’05), vol-
ume 3571 ofLNCS, pages 378–389. Springer, 2005.

[10] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. InProceedings of the 8th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty(ECSQARU’05), volume 3571 ofLNCS, pages
317–328. Springer, 2005.

[11] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-
pressive power of logic programming.ACM Computing Surveys, 33(3):374–425, 2001.

[12] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories.Theor. Comput. Sci., 170(1-2):209–244, 1996.

[13] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games.Artif. Intell., 77(2):321–358, 1995.

[14] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation.Artif. Intell., 171(10-15):642–674, 2007.

[15] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence infinite argument systems.Artif.
Intell., 141(1/2):187–203, 2002.

[16] Paul E. Dunne and Martin Caminada. Computational complexity of semi-stable semantics
in abstract argumentation frameworks. InProceedings of the 11th European Conference
on Logics in Artificial Intelligence(JELIA 2008), volume 5293 ofLNCS, pages 153–165.
Springer, 2008.

[17] Uwe Egly and Stefan Woltran. Reasoning in argumentation frameworks using quantified
boolean formulas. InProceedings of the 1st Conference on Computational Models of Argu-
ment(COMMA’06), pages 133–144. IOS Press, 2006.

[18] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364–418, 1997.

[19] Thomas Eiter and Axel Polleres. Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Practice of
Logic Programming, 6(1-2):23–60, 2006.

23

[20] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyński. The first
answer set programming system competition. InProceedings of the 9th International Con-
ference on Logic Programming and Nonmonotonic Reasoning(LPNMR’07), volume 4483 of
LNCS, pages 3–17. Springer, 2007.

[21] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases.New Generation Comput., 9(3/4):365–386, 1991.

[22] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning.ACM
Trans. Comput. Log., 7(3):499–562, 2006.

[23] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. InProceedings of the 11th
International Conference on Logic Programming(ICLP’94), pages 23–37. MIT Press, 1994.

[24] Ilkka Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm.Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

[25] Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Preferred extensions as stable mod-
els. Theory and Practice of Logic Programming, 8(4):527–543, July 2008.

24

