
Query Answering in the Horn Fragments of the
Description Logics SHOIQ and SROIQ∗

Magdalena Ortiz† and Sebastian Rudolph‡ and Mantas Šimkus†

†Vienna University of Technology, Austria ‡Karlsruhe Institute of Technology, Germany
{ortiz@kr,simkus@dbai}.tuwien.ac.at rudolph@kit.edu

Abstract

The high computational complexity of the expres-
sive Description Logics (DLs) that underlie the
OWL standard has motivated the study of their
Horn fragments, which are usually tractable in data
complexity and can also have lower combined com-
plexity, particularly for query answering. In this pa-
per we provide algorithms for answering conjunc-
tive 2-way regular path queries (2CRPQs), a non-
trivial generalization of plain conjunctive queries,
in the Horn fragments of the DLs SHOIQ and
SROIQ underlying OWL 1 and OWL 2. We show
that the combined complexity of the problem is Ex-
pTime-complete for Horn-SHOIQ and 2ExpTime-
complete for the more expressive Horn-SROIQ,
but is PTime-complete in data complexity for both.
In contrast, even decidability of plain conjunctive
queries is still open for full SHOIQ and SROIQ.
These are the first completeness results for query
answering in DLs with inverses, nominals, and
counting, and show that for the considered logics
the problem is not more expensive than standard
reasoning.

1 Introduction

Description Logics (DLs), a family of languages for Knowl-
edge Representation and Reasoning, are applied in many
fields and are particularly popular as ontology languages for
conceptually describing application domains. In fact, the
Web Ontology Languages (OWL) proposed as a standard for
writing ontologies on the Web are based on expressive DLs:
OWL-DL (a.k.a. OWL 1) is based on the DL SHOIQ, while
the more recent OWL 2 standardis based on SROIQ [OWL
Working Group, 2009]. Unfortunately, the expressiveness of
these DLs comes at the cost of high complexity of reason-
ing: most of the traditional DL reasoning tasks, like decid-
ing knowledge base satisfiability or concept subsumption, are
NExpTime-complete for SHOIQ [Tobies, 2000] and 2NEx-
pTime complete for SROIQ [Kazakov, 2008]. If data com-
plexity is considered (that is, if the complexity is measured
in terms of the size of the assertional component while disre-
garding the size of the terminological component), then both

∗This work was partially supported by (†) the Austrian Science
Fund (FWF) grant P20840, the Vienna Science and Technology
Fund (WWTF) project ICT08-032, and (‡) the project ExpresST
funded by the Deutsche Forschungsgemeinschaft (DFG).

logics are co-NP-hard. As more and more application areas
require higher scalability, the study of fragments of expres-
sive DLs with better computational properties has become an
important area of research.

Horn fragments of DLs, which are obtained by restrict-
ing the syntax of a DL in such a way that disjunction is not
expressible, were first considered in [Hustadt et al., 2005]
as expressive fragments with tractable data complexity (see
also [Krötzsch et al., 2007]). It was later identified that they
can also exhibit lower combined complexity when it comes
to query answering. Indeed, answering conjunctive queries
(CQs), a kind of database-inspired queries that have become
the standard for querying DLs, is in ExpTime for the Horn
fragment of the prominentSHIQ [Eiter et al., 2008], while it
is already 2ExpTime-hard for quite restricted (non Horn) frag-
ments of SHIQ, like ALCI [Lutz, 2008] and SH [Eiter et
al., 2009]. It remained open whether this improvement in the
combined complexity of query answering extends to more ex-
pressive logics, and in particular, to the Horn fragments of the
DLs SHOIQ and SROIQ that underlie the OWL standards.
A positive answer is given in this paper.

The distinguishing feature of SHOIQ and SROIQ is that
they support nominals O, which allow to restrict the cardi-
nality of a concept, inverses I, which allow to navigate roles
in both directions, and number restrictions Q, which allow
to restrict the number of pairs of objects that may partici-
pate in a role. All of these features have been incorporated
to satisfy practical modeling requirements posed by knowl-
edge engineers. The interaction of these three constructors
constitutes a severe obstacle to establishing the forest model
property that is key to the design of algorithms. More often
than not, this also causes an increased complexity of reason-
ing. Some problems that are well understood for most DLs
remain open for SHOIQ and SROIQ, most notably the de-
cidability of query answering. It is only known that the prob-
lem is decidable (although no complexity bounds are known)
for ALCHOIQb [Rudolph and Glimm, 2010], and already
undecidable forALCOIFreg [Ortiz et al., 2010a].

The Horn fragments of SHOIQ and SROIQ remained
unexplored until [Ortiz et al., 2010b], where it was estab-
lished that every satisfiable knowledge base in these lan-
guages has a forest-like model that can be represented in a rel-
atively compact way. This and the lack of disjunction allowed
the authors to show that traditional reasoning tasks are Ex-
pTime-complete and 2ExpTime-complete in combined com-
plexity for Horn-SHOIQ and Horn-SROIQ, respectively,
and are PTime-complete in data complexity.

1039

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

In this paper we develop an algorithm for answering con-
junctive 2-way regular path queries (2CRPQs), a non-trivial
generalization of plain CQs that allow for expressing com-
plex navigation in models by means of regular expressions.
They also generalize the (2-way) regular path queries used for
querying web data and other forms of graph databases, and
they constitute a large fragment of the SPARQL 1.1 query
language for ontologies that is currently under standardiza-
tion.1 We show that a satisfiable KB in the Horn fragments
of SHOIQ and SROIQ has a universal model that can be
used to answer all queries, and use a combination of query
partitioning and tree automata techniques for query answer-
ing over a model representation similar to the one in [Ortiz
et al., 2010b]. Thereby we show that query answering is not
more expensive than standard reasoning: ExpTime-complete
for Horn-SHOIQ and 2ExpTime-complete for the more ex-
pressive Horn-SROIQ in combined complexity, but PTime-
complete in data complexity for both. Notably, these are the
first completeness results for query answering in DLs with
inverses, nominals, and counting.

2 Preliminaries

We start by introducing the DLs and the query language con-
sidered in this paper.

The Horn Fragments of SHOIQ and SROIQ
We recall the syntax of Horn-SROIQ and Horn-SHOIQ, as
defined in [Ortiz et al., 2010b].2

We assume countably infinite sets NC ⊃ {�,⊥}, NR and NI
of concept names, role names, and individuals respectively. If
r ∈ NR, then r and r− are roles, and their respective inverses
are inv(r)= r− and inv(r−)= r. We let NR =NR∪{r− | r ∈ NR}.
We assume a strict partial order ≺ on the roles such that t ≺ r
iff inv(t) ≺ r. Expressions of the forms (i) to (xii) in Table 1
are called axioms; in particular, axioms of the forms (i) to (v)
in Table 1 are role inclusion axioms (RIAs). The non-simple
roles in a given set R of RIAs are inductively defined: (A) r is
non-simple if there is a RIA r1 ◦ . . . ◦ rn
 r in R with n > 1,
(B) r is non-simple if R contains a RIA of the form s
 r with
s non-simple, and (C) r− is non-simple iff r is non-simple.
Then a role occurring in R is simple if it is not non-simple.

A terminology T is a set of axioms. The simple roles in T
are the simple roles in {α | α is a RIA in T }. A Horn-SROIQ
knowledge base (KB) is a tuple K=(T ,A), where T is a
terminology and the ABox A is a non-empty set of asser-
tions of the forms (xiii) and (xiv). The DL Horn-SHOIQ
results from restricting Horn-SROIQ as follows: (A) allow-
ing only RIAs of the forms (i), (ii’) and (v); (B) disallowing
disjointness axioms (vi); and (C) disallowing concepts of type
∃t.Self. Further restricting Horn-SHOIQ by allowing only
expressions of types (i), (ii’), (vi)–(ix), (xi), (xiii) and (xiv)
(marked in boldface in the table) yields the DL that we call
Horn-ALCHOIQDisj

Self. Note that in such a KB all roles are

1http://www.w3.org/TR/sparql11-query/
2Due to space limitations, we focus on the normal form used

in [Ortiz et al., 2010b]. As usual, every KB can be polynomially
rewritten into a normal one that is equivalent modulo the fresh con-
cept names introduced by the translation, see [Krötzsch et al., 2007].

Syntax
(i) r−
 r
(ii) w
 r
(ii’) r1
 r
(iii) r ◦ w
 r
(iv) w ◦ r
 r
(v) r ◦ r
 r
(vi) Disj(t, t′)

terminology
(vii) A B
C
(viii) A
∀r.B
(ix) A
∃r.B
(x) ∃r.A
 B
(xi) A
�1 t.B
(xii) A
�m t.B

Syntax ABox
(xiii) a:A
(xiv) (a, b):t

Table 1: Syntax of Horn-SROIQ in normal form. Here
m ≥ 0, a, b ∈ NI, r, ri are roles, and t and t′ are simple roles.
Further, w = r1 ◦ . . . ◦ rn where n ≥ 1 and, for each 1≤ i≤ n,
holds ri ≺ r. Concepts A, B, and C are either concept names,
nominals of the form {a}, or of the form ∃t.Self.

simple. The semantics of KBs is defined in the usual, model-
theoretic way via interpretations I = (ΔI, ·I).

2-Way Conjunctive Regular Path Queries

The queries we consider use nondeterministic finite state
automata (NFAs). Recall that an NFA is a tuple α =
(Σ, S , δ, s0, F), where Σ is the alphabet, S is the set of states,
δ ⊆ S × Σ × S is the transition relation, s0 ∈ S is the initial
state, and F ⊆ S is the set of final states. We use Σα, S α, δα,
sα0 and Fα to denote the components of α.

Now we define 2-way conjunctive regular path queries
(2CRPQ, or simply queries), whose atoms use nondetermin-
istic finite state automata (NFAs) to define regular languages
over the alphabet NR. Let V be a countably infinite set of vari-
ables. Then a 2CRPQ q is a set of atoms of the form α(x, y),
where x, y ∈ V and α is an NFA with Σα = NR. We use V(q)
to denote the set of variables occurring in q.

Let I be an interpretation and α an NFA with Σα = NR.
An α-path (from d0 to dn) in I is a sequence d0, . . . , dn of
elements of ΔI such that for each 0 ≤ i < n there is a state
si ∈ S α and a role ri ∈ NR such that (di, di+1) ∈ rIi , s0 = sα0 ,
sn−1 ∈ Fα and (si, ri, si+1) ∈ δα. We call d′ an α-successor of
d in I if there is an α-path from d to d′.

A match for a query q in an interpretation I is a mapping
π : V(q) → ΔI such that π(y) is an α-successor of π(x) for
each α(x, y) ∈ q. We write I |= q if there is a match for q in
I. Given a knowledge base K , we write K |= q if I |= q for
every model I of K .

Note that queries are Boolean, i.e. , they do not allow for
answer variables. They can simulate the standard (Boolean)
conjunctive queries, that use concept and role names instead
of NFAs in the atoms, and allow for individuals in the place
of variables.3 As usual, the decision problem associated to
answering queries with answer variables can be reduced to
the entailment of a Boolean query.

Simplifying Horn-SROIQ and Horn-SHOIQ KBs

Query answering in Horn-SROIQ and Horn-SHOIQ
KBs can be reduced to query answering in the simpler
Horn-ALCHOIQDisj

Self KBs. The following proposition is
an easy consequence of the knowledge base transformation
in [Kazakov, 2008]:

3Individuals and concepts can be eliminated from the query in
polynomial time using fresh query atoms and axioms in the KB.

1040

Proposition 1. For every Horn-SROIQ terminology T and
query q there exists a Horn-ALCHOIQDisj

Self terminology T ′
and a query q′ such that:
(1) (T ,A) |= q iff (T ′,A) |= q′, for any ABoxA;
(2) T ′ and q′ can be effectively constructed from T and q in

single exponential time. If T is in Horn-SHOIQ, then
T ′ and q′ can be constructed from T and q in polynomial
time (assuming that numbers are encoded unary).

3 Query Answering

Assume in what follows a Horn-ALCHOIQDisj
Self KB K =

(T ,A) and a query q. Our goal is to provide an algorithm
and characterize the combined and data complexity of decid-
ing K |= q. By Proposition 1, such a procedure can be used
for Horn-SHOIQ and Horn-SROIQ as well. Without loss
of generality we assume that K is satisfiable.4

3.1 Universal Model Property

Our method builds on the following crucial property: the KB
K has a universal model, i.e. there is a model I of K such
that K |= q′ iff I |= q′, for any query q′. The universality
of I is due to the guaranteed existence of a homomorphic
embedding ϕ of I into any other model I′ of K . Intuitively,
if I has a match π for q, then the composition ϕ◦π is a match
for q in I′.

By employing the results in [Ortiz et al., 2010b] we can
further show thatK has a universal model I with a quite reg-
ular structure, which allows to finitely represent it. To this
end, we introduce a representation of (possibly infinite) mod-
els of K via model descriptions. In the next section, we will
see that model descriptions give rise to an optimal algorithm
for query answering.

Intuitively, a model description contains a graph part and
a successor function. The graph part comprises a finite num-
ber of domain elements G that may be arbitrarily interrelated
by roles, while the successor function tells us how this finite
structure can be expanded into a potentially infinite forest-
shaped structure.
Definition 1 (Model description). A concept type τ (for T)
is any set of concepts occurring in the axioms of T and that
does not contain ⊥ and does not contain a pair of concepts of
the form {�1 t.B,�m t.B} with m > 1. A role-type ρ (for T) is
a set of roles occurring in T . The set of all concept types of
T is denoted by TT , and the set of all role types by RT .

A model description for K is a tupleM = (G, θ, f , succs)
where:

(a) G is a set of objects called graph nodes;
(b) θ is a function that maps each d ∈ G to a concept type
θ(d) ∈ TT and each pair (d, d′) ∈ G×G to a role type
θ(d, d′) ∈ RT in such a way that θ(d, d′) = {inv(r) | r ∈
θ(d, d′)} for each d, d′ ∈ G;

(c) f is a function f : NI(A) → G, where NI(A) denotes the
set of individuals occurring inA;

4If K is unsatisfiable, then K |= q for every q. Satisfiability
of K within the necessary time bounds can be checked using the
algorithm in [Ortiz et al., 2010b].

(d) succs : G∪ (TT ×RT ×TT)→ 2RT × (TT ∪G) is a function
such that succs(d) ∈ 2RT ×TT for each d ∈ G.

We use receive(M) to denote the nodes in G that occur in
the range of succs.

Intuitively, every model description represents some inter-
pretation IM. Its domain contains the graph nodes G, and
each graph node is the root of a possibly infinite tree-shaped
structure in which some nodes may be related to graph nodes
(the latter ‘receiving’ nodes are represented by receive(M)).
Each d ∈ G is associated to a concept type θ(d) that con-
tains precisely the concepts it satisfies, and each pair d, d′ to
a role type θ(d, d′) containing precisely the roles that relate
them. The function f tells which individual names are in-
terpreted as which graph nodes, while succs describes how
tree-shaped structures can be generated starting from graph
nodes. To understand this, recall that succs is defined for
elements in d ∈ G and triplets (τ1, ρ, τ2) ∈ TT ×RT ×TT .
This means that succs gives a specific successor configura-
tion for the graph nodes, while for the remaining nodes the
children are given based on a concepts-roles-concepts pat-
tern. In particular, the children of a tree node e are deter-
mined based on the type of e, the type of its parent and the
roles that connect them. The children are given as a set of tu-
ples (ρ, τ) ∈ RT ×TT and (ρ, d) ∈ RT ×G. Intuitively, (ρ, τ)
stands for a ρ-child satisfying τ, while (ρ, d) means a ρ-link
to the graph node d. We build IM formally as follows:
Definition 2. LetM = (G, θ, f , succs) be a model description
forK . We say thatM describes the interpretation IM defined
as follows:

The domain ΔIM is the smallest set of words of the form
e = dρ1τ2 . . . ρn−1τn ∈ G× (TT ×RT)∗ such that:
- G ⊆ ΔIM ,
- if d ∈ G and (ρ′, τ′) ∈ succs(d), then dρ′τ′ ∈ ΔI,
- if eρτ ∈ ΔIM and (ρ′, τ′) ∈ succs(last(e), ρ, τ), then

eρτρ′τ′ ∈ ΔI,
where last(e) = θ(e) if e ∈ G, and last(eρτ) = τ otherwise.

Nodes in ΔIM \ G are called tree nodes, and we say that a
node eρτ ∈ ΔIM is a child of the node e.

The interpretation function ·IM is defined next:
• for each a ∈ NI(A), aIM = f (a);
• for each A ∈ NC, AIM = {e | A ∈ last(e)};
• for each r ∈ NR, rIM is the set of pairs that contains:

- (d, d′) if d, d′ ∈ G and r ∈ θ(d, d′)
- (e, eρτ) whenever e, eρτ ∈ ΔI and r ∈ ρ,
- (eρτ, e) whenever e, eρτ ∈ ΔI and inv(r) ∈ ρ,
- (e, e) whenever ∃r.Self ∈ last(e),
- (eρτ, d) if d ∈ G and (ρ′, d)∈succs(last(e), ρ, τ) for a
ρ′ with r ∈ ρ′,

- (d, eρτ) if d ∈ G and (ρ′, d)∈succs(last(e), ρ, τ) for a
ρ′ with inv(r) ∈ ρ.

Importantly, there is a model description that represents the
desired universal model, and it can be constructed in time that
is single exponential in the size ||K|| and only polynomial in
||A|| (for fixed T):

1041

Theorem 2. For the KBK there is a model descriptionM =
(G, θ, f , succs) such that:
(1) IM |= K;
(2) K |= q′ iff IM |= q′, for every query q′;
(3) M can be build in time single exponential in ||K|| (and

is thus of size at most exponential in ||K||). If T is fixed,
thenM can be obtained in polynomial time in ||A||.

(4) If T is fixed, then |receive(M)| is bounded by a constant.

Sketch. In [Ortiz et al., 2010b] it was shown that a model of a
given Horn-ALCHOIQDisj

Self KB K can be obtained from the
minimal model I of a Datalog program obtained from K . It
can be shown in a rather straightforward way that the result-
ing model is universal. The claim follows from those results,
since the I is very closely related to the model descriptions
used in this paper. To make this paper as self-contained as
possible, we sketch here a direct proof of existence and uni-
versality of the mentioned model representation.

LetM be the set of all models of K . We then defineM as
follows (using τI as a shortcut for

⋂
A∈τ AI):

(a) To define G, we first let T̂ denote the set of all τ ∈ TT for
which (i) every I ∈ M satisfies |τI| = 1 and (ii) there is no
τ′ ⊃ τ with the same property (i.e. τ is inclusion-maximal).

We define the equivalence relation ≈ on NI(A) by letting
a ≈ b iff aI = bI for all I ∈ M. Now we let G contain
all pairs (c, τ′) for which either (i) c is a ≈-equivalence class
and, for any b ∈ c, τ′ =

⋂
I∈M{A | bI ∈ AI} (we call these

the named graph nodes) or (ii) c = ∅, τ′ ∈ T̂ and there is no
b ∈ NI(A) such that bI ∈ τI for all I ∈ M (we call these the
anonymous graph nodes).
(b) For each (c, τ′) ∈ G, we define θ by letting θ((c, τ′)) :=
τ′ and letting θ((c1, τ1), (c2, τ2)) contain all roles r for which
every I ∈ M satisfies that (e1, e2) ∈ rI where ei ∈ ΔI is the
domain element with ei ∈ τIi and ei = dI for all d ∈ ci.
(c) f is such that every b is mapped to the unique ([b]≈, τ′).
(d) We define succs as follows: For d ∈ G, we let succs(d)
contain all (ρ, τ′) where (i) for every I ∈ M and e ∈ τI there
exists some e′ ∈ τ′I with (e, e′) ∈ rI for all r ∈ ρ and (ρ, τ′) is
inclusion-maximal w.r.t. that property; (ii) there is no d′ ∈ G
with ρ ⊆ θ(d, d′) and τ′ ⊆ θ(d′); (iii) {∃r.Self | r ∈ ρ}∪τ′ � τ.
For τ, τ′ ∈ TT and ρ ∈ RT we let succs(τ, ρ, τ′) contain
• all (ρ′, τ′′) where (i) for every I ∈ M and e ∈ τ′I there

exists some e′ ∈ τ′′I with (e, e′) ∈ rI for all r ∈ ρ′
and (ρ′, τ′′) is inclusion-maximal w.r.t. that property;
(ii) it is not the case that both ρ′ ⊆ {inv(r) | r ∈ ρ} and
τ′′ ⊆ τ; (iii) there is no (c, τ′′′) ∈ G with τ′′ ⊆ τ′′′ ; (iv)
{∃r.Self | r ∈ ρ} ∪ τ′ � τ;
• all (ρ′, (c, τ′′)) with (c, τ′′) ∈ G where for every I ∈ M,

e ∈ τ′I, e′ ∈ τ′′I and r ∈ ρ′ holds (e, e′) ∈ rI and τ′′ ∈ T̂.
By inspecting each type of axiom that may occur inK (see

Table 1), one can show that the interpretation IM defined in
Definition 2 is a model of K as claimed in 1.

To prove that IM is universal (Claim 2), one can show that
there is a homomorphism ϕ from IM to every model I of
K , which can be constructed inductively on the length of the
elements of ΔIM as follows:

• We start from G. For each named graph node ([a]≈, τ′),
we let ϕ(([a]≈, τ′)) := aI. For each anonymous graph
node (∅, τ′), we let ϕ((∅, τ′)) = w for the unique w with
{w} = τI.

• Let each eρτ ∈ ΔIM for which ϕ(e) has been defined,
we set ϕ(eρτ) = w for a w with w ∈

⋂
A∈τ AI and

(ϕ(e),w) ∈
⋂

r∈ρ rI; such a w exists in every model of
K by the construction ofM.

The existence of the homomorphism ϕ into every model I
ensures that whenever there is a match π for a 2CRPQ q in
IM, then π ◦ ϕ is a match for q in I. This shows that IM is
universal, i.e. K |= q iff IM |= q.

To see that M satisfies Claim 4, note that the number of
distinct (c, τ) ∈ G satisfying τ′′ ∈ T̂ for every I ∈ M (let us
call these particular elements Gs) is exponentially bounded
by T , since there can be only one such element for each τ.
Yet, by definition only elements of Gs occur in the range of
succs and hence in receive(M).

To prove Claim 3 note that the exponential bound on the
size ofM follows from the fact that there are at most expo-
nentially many different types. Likewise, this gives rise to an
exponential time algorithm since all (overall single exponen-
tially many) decisions to define M requiring inspections of
the setM of all models can be cast into Horn-ALCHOIQDisj

Self
standard reasoning tasks which are known to be ExpTime-
complete.

For the polynomial size bound ofM w.r.t. |A| note that we
have by definition |G \ receive(M)| ≤ |NI(A)|, consequently
the sizes of the receive(M)-related parts of succs and θ are at
most linearly and quadratically bounded by |NI(A)|, respec-
tively. Further, for a fixed T , receive(M) and the respective
parts of succs and θ are constant, hence |M| is of polynomial
size w.r.t. |A| as claimed. The polynomial bound on the time
needed to establishM is a consequence of the known time-
polynomial data complexity of Horn-ALCHOIQDisj

Self as the
conditions for the definition of Gs and the respective parts
of succs and θ can be obtained by a polynomial number of
Horn-ALCHOIQDisj

Self satisfiability checks on K . �

3.2 Algorithm and Complexity

By Theorem 2, deciding K |= q is equivalent to checking
IM |= q, where M is a model description for a universal
model of K . We now assume such anM = (G, θ, f , succs),
and provide a method to check IM |= q.

First we define the tree-shaped parts of IM.

Definition 3. For each d ∈ G the d-tree of IM, denoted IM,d,
is obtained from IM in two steps by (1) restricting IM to
the domain ΔIM,d that contains (a) each e ∈ ΔIM of the form
dρτ . . . ρ′τ′, and (b) each d′ ∈ G such that (e, d′) ∈ rIM for
some e = dρτ . . . ρ′τ′ as above and some r ∈ NR; and (2) set-
ting {r | (d, d′) ∈ rI} = ∅ for all d, d′ ∈ ΔIM,d ∩G.

To find a match π for q in IM, we first consider a func-
tion δ that ’guesses’ for each variable x of q whether π(x) is
a graph node d = δ(x), or a tree node inside a d-tree (indi-
cated by δ(x) = d↓). Based on δ, we decompose q into several
queries, additionally guessing for each α(x, y) of q which of
three kinds of paths exists between π(x) and π(y): a path of

1042

type p that starts and ends in a graph node, a path t that is en-
tirely inside a d-tree and does not pass any other graph node,
or a path that starts or ends inside a tree, but passes at least
one other graph node on the way.

Definition 4 (Query Partition). Let S =
⋃
α(x,y)∈q S α, and let

G′ = G ∪ {d↓ | d ∈ G}. A partition Π of q is a pair (δ, Γ)
where δ : Vars(q) → G′ and Γ : q → (G × S)2 ∪ {p, t} such
that one of the following holds for each α(x, y) ∈ q:

- δ(x), δ(y) ∈ G and Γ(α(x, y)) = p, or

- there is some d ∈ G such that δ(x), δ(y) ∈ {d, d↓}, and
Γ(α(x, y)) = t,

- {δ(x), δ(y)} � G and Γ(α(x, y)) = 〈(d1, s1), (d2, s2)〉 ∈ (G ×
S)2 with s1, s2 ∈ Qα, and δ(y) ∈ {d2, d2↓}.
For the parts of the paths that start or end inside the trees,

we build queries that are evaluated over the d-trees. We con-
sider atoms α(t, t′) with t, t′ ∈ G ∪ V. A match π for such
a query q in a part of IM is defined analogously as in Sec-
tion 2, but it must additionally map each d ∈ G occurring in
q to itself. For an NFA α, s ∈ S α and S ⊆ S α, we define
αs,S = (Σα, S α, δα, s, S), that is, αs,S is obtained by making s
the initial state and S the set of final states of α.

Definition 5. For each d ∈ G, the d-query of Π is the set
tq(Π, d) containing

- each α(f (x), f (y)) such that α(x, y) ∈ q, δ(x), δ(y) ∈ {d, d↓},
and Γ(α(x, y)) = t;

- each αsα0 ,{s1}(f (x), d1) such that α(x, y) ∈ q, δ(x) ∈ {d, d↓},
and Γ(α(x, y)) = 〈(s1, d1), (s2, d2)〉; and

- each αs2,Fα (d2, f (y)) such that α(x, y) ∈ q, δ(y) ∈ {d2, d2↓},
and Γ(α(x, y)) = 〈(s1, d1), (s2, d2)〉,

where, for a variable x, f (x) = δ(x) if δ(x) ∈ G, and f (x) = x
otherwise.

For the remaining parts of the paths, we rely on a relation
paths(M) that contains all the relevant paths between graph
nodes. We will show later how this relation can be effectively
computed.

Definition 6. We define paths(M) = {〈(s, d)(s′, d′)〉 ∈ (G ×
S)2 | d′ is an αs,{s′}-successor of d in IM }. LetΠ = (δ, Γ) be a
partition of q. Then we say that paths(M) satisfies the graph
paths of Π if the following hold:

- for each α(x, y) ∈ q such that {δ(x), δ(y)} ⊆ G and
Γ(α(x, y)) = p, there is some s f ∈ Fα such that
〈(δ(x), sα0), (δ(y), s f)〉 ∈ paths(M), and

- for each α(x, y) ∈ q such that Γ(α(x, y)) = 〈(d, s)(d′s′)〉,
〈(d, s)(d′s′)〉 ∈ paths(M).

We writeM |= Π if paths(M) satisfies the graph paths of
Π, and IM,d |= tq(Π, d) for every d ∈ G.

Every match for q in IM can be used to define a partition
such thatM |= Π. Conversely, ifM |= Π then there is a match
for the full q in IM. Hence we have:

Theorem 3. IM |= q iff there exists query partition Π of q
such thatM |= Π.

Consequently, IM |= q (and K |= q), reduces to finding
a query partition Π such that M |= Π. We first note that
the number of distinct partitions Π of q is O

(
|G||Vars(q)| · (|G| ·

|S|)2|q|
)
. Keeping in mind Theorem 2, the number of distinct

partitions Π to be traversed is exponential in ||K|| + ||q||, but
polynomial in ||A|| if T and q are fixed.

It remains to see how to decideM |= Π. To this aim, we
first show how IM,d |= tq(Π, d) can be checked for a given
partition Π and a d ∈ G. We employ automata over infinite
trees, which are a generalization of finite state automata over
finite words [Vardi, 1998]. Recall that an infinite k-ary tree
over an alphabet Σ is a pair (T,L), where (a) T is the set of
all finite words over {1, . . . , k}; (b) L : T → Σ is the labeling
function that assigns to each node in T a symbol from Σ. Each
tree automaton A is defined for some alphabet Σ and accepts
some set L(A) of infinite trees over Σ. The basic reasoning
problem is to decide given an automaton A whether A accepts
at least one tree, i.e. that L(A) � ∅. Various operations on
automata can be performed, e.g. for a pair of automata A1,
A2, one can build the intersection automaton A1 ∩ A2 such
that L(A1 ∩ A2) = L(A1) ∩ L(A2).

Let q′ = tq(Π, d). It is not too difficult to build a tree au-
tomaton A∗ such that (a) IM,d |= q′ iff L(A∗) � ∅, i.e. to re-
duce our problem to testing nonemptiness of the language of
a tree automaton, (b) L(A∗) � ∅ can be checked in time expo-
nential in ||K||+ ||q||, and in polynomial time in ||A|| if T and q
are fixed. Naturally, such a reduction involves an encoding of
(tree-shaped) interpretations as labeled trees. The automaton
A∗ is defined as the intersection automaton A∗ = AM,d ∩ Aq′ ,
where AM,d accepts exactly one labeled tree that encodes the
interpretation IM,d, and Aq′ accepts labeled trees that encode
interpretations with a match for q′. We next describe the lan-
guages L(AM,d) and L(Aq′), and discuss the relevant proper-
ties of AM,d and Aq′ , but omit their explicit construction.

The language L(AM,d) consists of exactly one labeled tree
(T,L) which represents IM,d. The alphabet is ΣM =ΣM1 ∪
ΣM2 ∪{nil}, where ΣM1 =RT ×TT and ΣM2 =RT × receive(M).
Intuitively, a node w ∈ T labeled with (ρ, τ) ∈ ΣM1 corre-
sponds to a tree node ew in IM,d with type τ and which is
connected to its parent via the roles in ρ. On the other hand,
a node w·c ∈ T labeled with (ρ, d) ∈ ΣM2 reflects the roles
connecting the tree node ew in IM,d to the graph node d.
Technically, all nodes of T must have the same number of
children, and thus we may need to use the nil label to nodes
that do not correspond to elements in IM,d. AM,d can be
built as a deterministic 1-way tree automaton with state set
Q = TT ×RT ×TT ∪ {d} whose transition function δ is a
notational reformulation of succs.

The language L(Aq′) consists of trees over ΣM that encode
tree-shaped interpretations with a match for q′. To this end,
let X be the set of variables in q′. Then the automaton Aq′ can
be built in two stages. First, we can build automaton A′ that
accepts trees (T,L) over an extended alphabet Σ′ = 2X ×ΣM
with the following properties: (a) for each x ∈ X there is ex-
actly one node w ∈ T with L(w) = (V,N) and x ∈ V , i.e. each
variable x ∈ X occurs in exactly one node of (T,L) and thus
(T,L) encodes an interpretation together a variable assign-

1043

ment π; (b) the variable assignment π witness a match for q′
in the encoded interpretation. By exploiting the bound (4)
in Theorem 2, we can implement A′ as an alternating 2-way
automaton whose state set is linear in ||K|| + ||q||, but which
is constant if T and q are fixed. The automaton Aq′ is then
obtained from A′ by transforming A′ into a nondeterminis-
tic 1-way automaton [Vardi, 1998] and projecting away the
first component in the labels of nodes, i.e. L(Aq′) is the set of
trees (T,L) over ΣM which can be endowed with a variable
assignment such that resulting tree is accepted by A′.

Since the size of q′ = tq(Π, d) is polynomial in q, the num-
ber of states in the automata AM,d, Aq′ and A∗ is exponen-
tial in ||K|| + ||q||, however it is bounded by a constant if T
and q are fixed. Using well-known algorithms we obtain that
testing non-emptiness of A∗ is feasible in time exponential in
||K|| + ||q||, and polynomial in ||A|| if T and q are fixed.

To obtain an algorithm forM |= Π, it is only left to show
how to decide whether paths(M) satisfies the graph paths of
a given Π. We start by providing an effective construction of
paths(M), which can be obtained as the smallest set of pairs
that satisfies the following:
(a) For each d, d′ ∈G, α(x, y) ∈ q, s, s′ ∈ S α, and r ∈NR, if

r ∈ θ(d, d′) and (s, r, s′) ∈ δα then 〈(d, s), (d′, s′)〉 ∈
paths(M).

(b) For each d, d′ ∈ G, α(x, y) ∈ q, and s, s′ ∈ S α, if IM,d |=
αs,{s′}(d, d′), then 〈(d, s), (d′, s′)〉 ∈ paths(M).

(c) For d, d′, d′′ ∈G, α(x, y) ∈ q and s, s′, s′′ ∈ S α, if
〈(s, d)(s′, d′)〉 ∈ paths(M) and 〈(s′, d′)(s′′, d′′)〉 ∈
paths(M), then 〈(s, d)(s′′, d′′)〉 ∈ paths(M).

There are at most (|G| · |S|)2 cases for which we have to test
the conditions (a) and (b). Each test of the first kind can be
done with a simple inspection ofM and the NFAs in q, and
for each test of the second type we can use the same automata-
based decision procedure that we use for the d-queries above.
Hence each test can be done in time that is exponential in
||K|| + ||q||, and in polynomial time in ||A|| if T and q are
fixed. Finally, we close the table under condition (c) by a
simple iterative procedure that reaches a fixed-point after at
most (|G| · |S|)|q| steps. Hence paths(M) can be effectively
constructed in time that is exponential in ||K|| + ||q||, and in
polynomial time in ||A|| if T and q are fixed.

Simple look-ups on this table allow us to decide whether
paths(M) satisfies the graph paths of Π for any given Π.
Hence, putting the above pieces together, we get:
Lemma 4. Entailment of 2CRPQs in Horn-ALCHOIQDisj

Self
is in ExpTime w.r.t. combined complexity and in PTime
w.r.t. data complexity.

We can now show the main complexity result of this paper:
Theorem 5. Entailment of 2CRPQs in Horn-SHOIQ is
ExpTime-complete, while the problem in Horn-SROIQ is
2ExpTime-complete with respect to combined complexity. The
data complexity of both problems is PTime-complete.

Proof. (Sketch) Let K = (T ,A) be a Horn-SHOIQ (resp.
Horn-SROIQ) KB and q a query. Then the upper bounds
follow from Lemma 4 and Proposition 1, which states that
we can obtain a Horn-ALCHOIQDisj

Self KB K′ = (T ′,A) and
a query q′ such that: (a) K |= q iff K′ |= q′; (b) ||K′||+ ||q′|| is

polynomial (resp., exponential) in ||K||+ ||q||; (c) if ||T ||+ ||q||
is fixed, then ||T ′|| + ||q′|| is fixed.

The lower bounds follow from the complexity of standard
reasoning: the ExpTime and the PTime lower bounds can be
found in [Hustadt et al., 2005], while the 2ExpTime lower
bound follows from [Ortiz et al., 2010b]. �

4 Discussion and Conclusion

Our results show that answering complex queries like 2CR-
PQs in Horn-SHOIQ and Horn-SROIQ is not just decid-
able but in fact even not any harder than standard reasoning,
both in combined and data complexity. That CQ entailment
checking is significantly easier in the Horn fragments than in
the full DLs is arguably due to the existence of a universal
model which can be conveniently represented and harnessed
for efficient algorithms. We believe that the techniques to es-
tablish the result and the insights thus obtained will pave the
way toward more efficient querying algorithms for the Horn
restriction of OWL and might prove useful to tackle the prob-
lem of CQ entailment for full SROIQ and SHOIQ.

References
[Eiter et al., 2008] T. Eiter, G. Gottlob, M. Ortiz, and M. Šimkus.

Query answering in the description logic Horn-SHIQ. In Proc.
JELIA’08, pages 166–179, 2008.

[Eiter et al., 2009] T. Eiter, C. Lutz, M. Ortiz, and M. Šimkus.
Query answering in description logics with transitive roles. In
Proc. IJCAI’09, pages 759–764, 2009.

[Hustadt et al., 2005] U. Hustadt, B. Motik, and U. Sattler. Data
complexity of reasoning in very expressive description logics. In
Proc. IJCAI’05, pages 466–471, 2005.

[Kazakov, 2008] Y. Kazakov. RIQ and SROIQ are harder than
SHOIQ. In Proc. KR’08, pages 274–284, 2008.

[Krötzsch et al., 2007] M. Krötzsch, S. Rudolph, and P. Hitzler.
Complexity boundaries for Horn description logics. In Proc.
AAAI’07, pages 452–457, 2007.

[Lutz, 2008] Carsten Lutz. The complexity of conjunctive query
answering in expressive description logics. In Proc. IJCAR’08,
pages 179–193, 2008.

[Ortiz et al., 2010a] M. Ortiz, S. Rudolph, and M. Šimkus. Query
answering is undecidable in dls with regular expressions, in-
verses, nominals, and counting. Technical Report INFSYS RR-
1843-10-03, TU Vienna, April 2010.

[Ortiz et al., 2010b] M. Ortiz, S. Rudolph, and M. Šimkus. Worst-
case optimal reasoning for the Horn-DL fragments of OWL 1 and
2. In Proc. KR’10, 2010.

[OWL Working Group, 2009] W3C OWL Working Group. OWL 2
Web Ontology Language: Document Overview. W3C Recom-
mendation, 27 October 2009.

[Rudolph and Glimm, 2010] S. Rudolph and B. Glimm. Nominals,
inverses, counting, and conjunctive queries or: Why infinity is
your friend! J. Artif. Intell. Res. (JAIR), 39:429–481, 2010.

[Tobies, 2000] S. Tobies. The complexity of reasoning with cardi-
nality restrictions and nominals in expressive description logics.
J. Artif. Intell. Res. (JAIR), 12:199–217, 2000.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with two-
way automata. In ICALP’98, pages 628–641. Springer, 1998.

1044

