
DeXIN– An Extensible Framework For

Distributed XQuery Over Heterogeneous Data

Sources⋆

Muhammad Intizar Ali1, Reinhard Pichler1, Hong Linh Truong2, and
Schahram Dustdar2

1 Database and Artificial Intelligence Group, Vienna University of Technology
{intizar,pichler}@dbai.tuwien.ac.at,

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. In the Web environment, rich, diverse sources of heteroge-
neous and distributed data are ubiquitous. In fact, even the information
characterizing a single entity - like, for example, the information related
to a Web service - is normally scattered over various data sources us-
ing various languages such as XML, RDF, and OWL. Hence, there is a
strong need for Web applications to handle queries over heterogeneous,
autonomous, and distributed data sources. However, existing techniques
do not provide sufficient support for this task. In this paper we present
DeXIN, an extensible framework for providing integrated access over het-
erogeneous, autonomous, and distributed web data sources, which can
be utilized for data integration in modern Web applications and Service
Oriented Architecture. DeXIN extends the XQuery language by support-
ing SPARQL queries inside XQuery, thus facilitating the query of data
modeled in XML, RDF, and OWL. DeXIN facilitates data integration
in a distributed Web and Service Oriented environment by avoiding the
transfer of large amounts of data to a central server for centralized data
integration and exonerates the transformation of huge amount of data
into a common format for integrated access.

Key words: Data Integration, Distributed Query Processing, Web Data
Sources, Heterogeneous Data Sources.

1 INTRODUCTION

In recent years, there has been an enormous boost in Semantic Web technolo-
gies and Web services. Web applications thus have to deal with huge amounts
of data which are normally scattered over various data sources using various
languages. Hence, these applications are facing two major challenges, namely (i)
how to integrate heterogeneous data and (ii) how to deal with rapidly growing

and continuously changing distributed data sources .

⋆ This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT08-032.

2 Muhammad Intizar Ali et al.

The most important languages for specifying data on the Web are, on the one
hand, the Extensible Markup Language (XML) [1] and, on the other hand, the
Resource Description Framework (RDF) [2] and Ontology Web Language (OWL)
[3]. XML is a very popular format to store and integrate a rapidly increasing
amount of semi-structured data on the Web while the Semantic Web builds on
data represented in RDF and OWL, which is optimized for data interlinking
and merging. There exists a wide gap between these data structures, since RDF
data (with or without the use of OWL) has domain structure (the concepts and
the relationships between concepts) while XML data has document structure
(the hierarchy of elements). Also the query languages for these data formats are
different. For XML data, XQuery [4] has become the query language of choice,
while SPARQL [5] is usually used to query RDF/OWL data.

It would clearly be useful to enable the reuse of RDF data in an XML world
and vice versa. Many Web applications have to find a way of querying and
processing data represented in XML and RDF/OWL simultaneously. There are
several approaches for dealing with heterogeneous data consisting of XML, RDF
and OWL: The most common approach is to transform all data sources into
a single format [6, 7] and apply a single query language to this data. Another
approach to deal with heterogeneity is query re-writing which poses queries of
different query languages to the data which is left in the original format, thus
avoiding transformation of the whole data sources [8]. A major drawback of the
transformation-based approaches is that the transformation of data from one
language into the other is a tedious and error prone process. Indeed, an RDF
graph can be represented by more than one XML tree structure, so it is not
clear how to formulate XQuery queries against it. On the other hand, XML
lacks semantic information; so converting XML to RDF results in incomplete
information with a number of blank nodes in the RDF graph. Moreover, many
native XML and RDF data storage systems are now available to tackle rapidly
increasing data sizes. We expect in the near future that many online RDF/XML
sources will not be accessible as RDF/XML files, but rather via data stores
that provide a standard querying interface, while the approach of query re-
writing limits language functionalities because it is not possible to compile all
SPARQL queries entirely into XQuery. In [8], a new query language is designed
which allows the formulation of queries on data in different formats. The system
automatically generates subqueries in SPARQL and XQuery which are posed
to the corresponding data sources in their native format – without the need of
data transformation. A major drawback of this approach is that the user has to
learn a new query language even though powerful, standardized languages like
XQuery and SPARQL exist. Moreover, this approach is not easily extended if
data in further formats (like relational data) has to be accessed.

For dealing with distributed Web data sources , two major approaches for
query processing exist: centralized query processing transfers the distributed
data to the central location and processes the query there, while decentralized
query processing executes the queries at remote sites whenever this is possible.
With the former approach, the data transfer easily becomes the bottleneck of

DeXIN 3

the query execution. Keeping replica on the central location is usually not feasi-
ble either, since we are dealing with autonomous and continually updating data
sources. Hence, in general, decentralized query processing is clearly superior.
Recently DXQ [9] and XRPC [10] have been proposed for decentralized execu-
tion of XQuery and, likewise, DARQ [11] for SPARQL. However, to the best of
our knowledge, a framework for decentralized query execution to facilitate data
integration of heterogeneous Web data sources is still missing.

In this paper we present DeXIN (Distributed extended XQuery for het-
erogeneous Data INtegration) – an extensible framework for distributed query
processing over heterogeneous, distributed and autonomous data sources. DeXIN
considers one data format as the basis (the so-called “aggregation model”) and
extends the corresponding query language to executing queries over heteroge-
neous data sources in their respective query languages. Currently, we have only
implemented XML as aggregation model and XQuery as the corresponding lan-
guage, into which the full SPARQL language is integrated. However, our frame-
work is very flexible and could be easily extended to further data formats (e.g.,
relational data to be queried with SQL) or changed to another aggregation model
(e.g., RDF/OWL rather than XML). DeXIN decomposes a user query into sub-
queries (in our case, XQuery or SPARQL) which are shipped to their respective
data sources. These queries are executed at remote locations. The query results
are then transformed back into the aggregation model format (for converting
the results of a SPARQL query to XML, we adhere to the W3C Proposed Rec-
ommendation [12]) and combined to the overall result of the user query. It is
important to note that – in contrast to the transformation-based approaches
mentioned above [6, 7] only the results are transformed to a common format.
The main contributions of this paper are as follows.

• We present DeXIN – an extensible framework for parallel query execution over
distributed, heterogeneous and autonomous large data sources.

• We come up with an extension of XQuery which covers the full SPARQL lan-
guage and supports the decentralized execution of both XQuery and SPARQL
in a single query.

• Our approach supports the data integration of XML, RDF and OWL data
without the need of transforming large data sources into a common format.

• We have implemented DeXIN and carried out experiments, which document
the good performance and reduced network traffic achieved with our approach.

2 APPLICATION SCENARIO

DeXIN can be profitably applied in any Web environment where large amounts
of heterogeneous, distributed data have to be queried and processed. A typi-
cal scenario can be the area of Web service management. The number of Web
services available for different applications is increasing day by day. In order
to assist the service consumer in finding the desired service with the desired
properties, several Web service management systems have been developed. The

4 Muhammad Intizar Ali et al.

Service Evolution Management Framework (SEMF) 2 [13] is one of these ef-
forts to manage Web services and their related data sources. SEMF describes
an information model for integrating the available information for a Web ser-
vice, keeping track of evolutionary changes of Web services and providing means
of complex analysis of Web services. SEMF facilitates the selection of the best
Web service from a pool of available Web services for a given task. Each Web
service is associated with different attributes which effect the quality of service.

Web Service

Service

License

Agreement

Quality of

Service

Folk-sonomy

Pre

Conditions

Interaction

Patterns

Post

Conditions

Interface

Taxonomy

Provides Information

Data Source

Fig. 1. Data Sources of a Web Service [13]

Figure 1 gives an impression of the
diversity of data related to a Web
service. This data is normally scat-
tered over various data sources using
various languages such XML, RDF,
and OWL. However, currently avail-
able systems do not treat these het-
erogeneous, distributed data sources
in a satisfactory manner. What is ur-
gently needed is a system which sup-
ports different query languages for dif-
ferent data formats, which operates
on the data sources as they are without any transformations, and which uses
decentralized query processing whenever this is possible. Moreover, this system
should be flexible and allow an easy extension to further data formats. In fact,
this is precisely the functionality provided by DeXIN.

3 RELATED WORK

Several works are concerned with the transformation of data sources from one
language into the other. The W3C GRDDL [6] working group addresses the is-
sue of extracting RDF data from XML files. In [7], SPARQL queries are embed-
ded into XQuery/XSLT and automatically transformed into pure XQuery/XSLT
queries to be posed against pure XML data. In great contrast to these two ap-
proaches, DeXIN does not apply any transformation to the data sources. Instead,
subqueries in SPARQL (or any other language, to which DeXIN is extended in
the future) are executed directly on the data sources as they are and only the
result is converted. Moreover, in [7], only a subset of SPARQL is supported,
while DeXIN allows full SPARQL inside XQuery.

In [8], a new query language XSPARQL was introduced (by merging XQuery
and SPARQL) to query both XML and RDF/OWL data. In contrast to [8],
our approach is based on standardized query languages (currently XQuery and
SPARQL) rather than a newly invented language. Moreover, the aspect of data
distribution is not treated in [8].

DXQ[9], XRPC[10] and DARQ[11] are some efforts to execute distributed
XQuery and distributed SPARQL separately on XML and RDF data. However,

2 We acknowledge the assistance of Martin Treiber (Distributed Systems Group ,Vi-
enna University of Technology) for providing access to SEMF data.

DeXIN 5

the integration of heterogeneous data sources and the formulation of queries with
subqueries from different query languages (like SPARQL inside XQuery) are not
addressed in those works.

4 DEXIN

4.1 Architectural Overview

An architectural overview of DeXIN is depicted in Figure 2. The main task of
DeXIN is to provide an integrated access to different distributed, heterogeneous,
autonomous data sources. Normally, the user would have to query each of these

XQuery

Processor

DeXIN

SPARQL

Processor
SQL

Processor
RDF Data

Store
Internet

XQuery
SPARQL

SQL
http

XML/

RDF/

OWL

httpSPARQL
XQuery SQL

XML Data

Store
RDBMS

E
x
t.
X
Q
u
e
ry

Fig. 2. Architectural overview of DeXIN framework

data sources separately. With the support of DeXIN, he/she has a single entry
point to access all these data sources. By using our extension of XQuery, the
user may still formulate subqueries to the various data sources in the appropri-
ate query language. Currently, DeXIN supports XQuery to query XML data and
SPARQL to query RDF/OWL data. However, the DeXIN framework is very flex-
ible and we are planning to further extend this approach so as to cover also SQL
queries on relational data. Note that not all data sources on the Web provide an
XQuery or SPARQL endpoint. Often, the user knows the URI of some (XML
or RDF/OWL) data. In this case, DeXIN retrieves the requested document via
this URI and executes the desired (XQuery or SPARQL) subquery locally on
the site where DeXIN resides. DeXIN decomposes the user query, makes con-
nections to data sources and sends subqueries to the specified data sources. If
the execution fails, the user gets a meaningful error message. Otherwise, after
successful execution of all subqueries, DeXIN transforms and integrates all in-
termediate results into a common data format (in our case, XML) and returns
the overall result to the user. In total, the user thus issues a single query (in our
extended XQuery language) and receives a single result . All the tedious work of
decomposition, connection establishment, document retrieval, query execution,
etc. is done behind the scene by DeXIN.

6 Muhammad Intizar Ali et al.

4.2 Query Evaluation Process

The query evaluation process in DeXIN is shown in Figure 3. The main compo-
nents of the framework are briefly discussed below.

Parser. The Parser checks the syntax of the user query. If the user query is
syntactically correct, the parser will generate the query tree and pass it on to
the query decomposer. Otherwise it will return an error to the user.

Query Decomposer. The Query Decomposer decomposes the user query
into atomic subqueries, which apply to a single data source each. The concrete

Query

Results

Aggregation

model Query

Engine

Result Wrapper

to Aggregation

model

Result Wrapper

to Aggregation

model

Result Wrapper

to Aggregation

model

Data Source

Sn Query

Engine

Data Source

S2 Query

Engine

Data Source

S1 Query

Engine

Query

Rewriter
Executor

Metadata

Manager

Query

Decomposer
Parser

Optimizer

Fig. 3. Query Evaluation Process

data source is identified by means of
the information available in the Meta-
data Manager (see below). Each of
these atomic subqueries can then be
executed on its respective data source
by the Executor (see below).

Metadata Manager. All data
sources supported by the system are
registered by the Metadata Manager.
For each data source, the Metadata
Manager contains all the relevant in-
formation required by the Query De-
composer, the Optimizer or the Ex-
ecutor. Metadata Manager also stores
information like updated statistics
and availability of data sources to sup-
port the Optimizer.

Optimizer. Optimizer searches
for the best query execution plan
based on static information available
at the Metadata Manager. It also per-
forms some dynamic optimization to
find variable dependencies in the dependant or bind joins. Dependant or bind
joins are basically nested loop joins where intermediate results from the outer
relation are passed as filter to the inner loop. Thus, for each value of a variable in
the outer loop, a new subquery is generated for execution at the remote site. In
such scenarios, the optimizer will first look for all possible values of the variables
in the outer loop and ground the variables in the subquery with all possible
values, thus formulating a bundled query to ship at once to the remote site.

Executor. The Executor schedules the execution sequence of all the queries
(in parallel or sequential). In particular, the Executor has to take care of any de-
pendencies between subqueries. If a registered data source provides an XQuery
or SPARQL endpoint, then the Executor establishes the connection with this
data source, issues the desired subqueries and receives the result. If a registered
data source only allows the retrieval of XML or RDF/OWL documents via the
URI, then the Executor retrieves the desired documents and executes the sub-
queries locally on its own site. Of course, the execution of a subqueries may fail,

DeXIN 7

e.g., with source unreachable, access denied, syntax error, query timeout, etc. It
is the responsibility of the Executor to handle all these exceptions. In particular,
the Executor has to decide if a continuation makes sense or the execution is
aborted with an error message to the user.

Result Reconstruction. All the results received from distributed, hetero-
geneous and federated data sources are wrapped to the format of the aggregation
model (in our case, XML). After wrapping the results, this component integrates
the results and stores them in temporary files for further querying by the aggre-
gation model query processor (in our case, an XQuery engine).

Query Rewriter. The Query Rewriter rewrites the user query in the ex-
tended query language (in our case, extended XQuery) into a single query on the
aggregation model (in our case, this is a proper XQuery query which is executed
over XML sources only). For this purpose, all subqueries referring to different
data sources are replaced by a reference to the locally stored result of these sub-
queries. The overall result of the user query is then simply obtained by locally
executing this rewritten query.

5 XQUERY EXTENSION TO SPARQL

DeXIN is an extensible framework based on a multi-lingual and multi-database
architecture to deal with various data formats and various query languages.
It uses a distinguished data format as “aggregation model” together with an
appropriate query language for data in this format. So far, we are using XML
as aggregation model and XQuery as the corresponding query language. This
aggregation model can then be extended to other data formats (like RDF/OWL)
with other query languages (like SPARQL). In order to execute SPARQL queries
inside XQuery, it suffices to introduce a new function called SPARQLQuery().
This function can be used anywhere in XQuery where a reference to an XML
document may occur. This approach is very similar to the extension of SQL via
the XMLQuery function in order to execute XQuery inside SQL (see [14]). The
new function SPARQLQuery() is defined as follows:

XMLDOC SPARQLQuery(String sparqlQuery,URI sourceURI)

The value returned by a call to this function is of type XMLDOC. The function
SPARQLQuery() has two parameters: The first parameter is of type String and
contains the SPARQL query that has to be executed. The second parameter is
of type URI and either contains the URI or just the name of the data source
on which the SPARQL query has to be executed. The name of the data source
refers to an entry in the database of known data sources maintained by the
Metadata Manager. If the indicated data source is reachable and the SPARQL
query is successfully executed, then the result is wrapped into XML according
to the W3C Proposed Recommendation [12].

To illustrate this concept, we revisit the motivating example of SEMF[13] dis-
cussed in Section 3. Suppose that a user wants to get information about available
Web services which have a license fee of less than one Euro per usage. Moreover,

8 Muhammad Intizar Ali et al.

suppose that the user also needs information on the service license agreement
and the quality of service before using this service in his/her application. Even
this simple example may encounter the problem of heterogeneous data sources
if, for example, the service license agreement information is available in XML
format while the information about the quality of service is available in RDF
format. A query in extended XQuery for retrieving the desired information is
shown in Figure 4. We conclude this section by having a closer look at the central

f o r
$a in doc (” http : //SEMF/ License . xml”)/ agreement ,
$b in SPARQLQuery(” SELECT ? t i t l e ?ExecutionTime
WHERE {

?x <http : //www.w3 . org /2001/ sub#t i t l e > ? t i t l e .
?x <http : //www.w3 . org /2001/ sub#QoS> ?ExecutionTime ”

} , http : //SEMF/QoS . rd f)/ r e s u l t
WHERE
$a/ s e r v i c e t i t l e = $b/ t i t l e
AND $a/ peruse/amount <= 1
RETURN
<Results >

<Serv ice>

<Se rv i c eT i t l e >{$a/ t i t l e }</Se rv i c eT i t l e >

<Requirement>{$a/ requirement}</Requirement>
<ExecutionTime>{$b/ExecutionTime}</ExecutionTime>

</Serv ice>

</Results>

Fig. 4. An example extended XQuery for DeXIN

steps for executing an extended XQuery query, namely the query decomposition
and query execution.

The query tree returned by the Parser has to be traversed in order to search
for all calls of the SPARQLQuery() function. Suppose that we have n such calls.
For each call of this function, the Query Decomposer retrieves the SPARQL
query qi and the data source di on which the query qi shall be executed. The
result of this process is a list {(q1, d1), . . . , (qn, dn)} of pairs consisting of a query
and a source. The Executor then poses each query qi against the data source
di. The order of the execution of these queries and possible parallelization have
to take the dependencies between these queries into account. If the execution of
each query qi was successful, its result is transferred to the site where DeXIN
is located and converted into XML-format. The resulting XML-document ri is
then stored temporarily. Moreover, in the query tree received from the Parser,
the call of the SPARQLQuery() function with query qi and data source di is
replaced by a reference to the XML-document ri. The resulting query tree is
a query tree of pure XQuery without any extensions. It can thus be executed
locally by the XQuery engine used by DeXIN.

6 IMPLEMENTATION AND EXPERIMENTS

DeXIN supports queries over distributed, heterogeneous and autonomous data
sources. It can be easily plugged into applications which require such a facility. As
a case study, we take the example of service management systems and show how

DeXIN 9

DeXIN enhances service management software by providing this query facility
over heterogeneous and distributed data sources. We set up a testbed which
includes 3 computers (Intel(R) Core(TM)2 CPU, 1.86GHz, 2GB RAM) running
SUSE Linux with kernel version 2.6. The machines are connected over a standard
100Mbit/S network connection. An open source native XML database eXist
(release 1.2.4) is installed on each system to store XML data. Our prototype
is implemented in Java. We utilize the eXist [15] XQuery processor to execute
XQuery queries. The Jena Framework [16] (release 2.5.6) is used for storing the
RDF data, and the ARQ query engine packaged within Jena is used to execute
SPARQL queries.

6.1 Experimental Application: Web Service Management

One of the main motivations for developing this framework is to utilize it for
service management systems like SEMF [13]. Being able to query distributed
and heterogeneous data sources associated to Web services is a major issue in
these systems. SEMF stores and manages updated information about all the
services listed in this framework. Recall the example use case given in Section
5: We consider a user who requests information about available Web services
which have a license fee of less than one Euro per usage. Moreover, the user
needs information on the service license agreement and the quality of service. We
assume that the service license agreement information is available in XML format
while the information about the quality of service is available in RDF format.
As we have seen in Section 5, our framework provides the user a convenient way
of querying these distributed, heterogeneous data sources at the SEMF platform
without worrying about the transformation, distribution and heterogeneity of
the data sources involved by issuing the extended XQuery query of Figure 4 to
SEMF. The result returned to the user is in XML format and may look like the
XML file in Figure 5.

<Results >

<Serv ice>

<Se rv i c eT i t l e >WISIRISFuzzySearch </Se rv i c eT i t l e >

<Requirement>
<peruse>

<payment>
<amount currency=’EUR’> 0 .90 </amount>
<taxpercent code=’VAT’>20</taxpercent >

</payment>
</peruse>

</Requirement>
<ExecutionTime Unit=’ sec ’>17</ExecutionTime>

</Serv ice>

<Serv ice>

.
</Serv ice>

.
</Result>

Fig. 5. Result after Executing the Query shown in Figure 4

10 Muhammad Intizar Ali et al.

6.2 Performance Analysis

In order to analyze the performance of DeXIN, we have conducted tests with
realistically large data. Since SEMF is only available as a prototype, the test
data available in this context is too small for meaningful performance tests.
We therefore chose to use DBPedia (see http://dbpedia.org/) and DBLP (see
http://dblp.uni-trier.de/xml/), which are commonly used for benchmarking.

Data Distribution over the Testbed. For the SPARQL query execution
over RDF data, we use a subset of DBPedia, which contains RDF information
extracted from Wikipedia. This data consists of about 31.5 million triples and is
divided into three parts (Articles, Categories, Persons). The size of these parts is
displayed in Table 1. The data is distributed over the testbed in such a way that
the Articles, Categories, and Persons are stored on different machines. More-
over, we have further split these data sets into 10 data sources of varying size in
order to formulate queries with subqueries for a bigger number of data sources.
For the XQuery execution over XML data we used DBLP. DBLP is an online
bibliography available in XML format, which lists more than 1 million articles.
It contains more than 10 million elements and 2 million attributes. The average
depth of the elements is 2.5. The XML data is also divided into three parts (Ar-
ticles, Proceedings, Books), whose. size is shown in Table 2. We distributed the
XML data over the testbed such that the Articles, Proceedings, and Books are
stored on different machines. As with the RDF data, we also subdivided each of
the three parts of the XML data into several data sources of varying size.

Table 1. RDF Data Sources.

Name Description # Tuples

RS1 Articles 7.6Million

RS2 Categories 6.4Million

RS3 Persons 0.6Million

Table 2. XML Data Sources.

Name Description Size

XS1 Articles 250MB

XS2 Proceedings 200MB

XS3 Books 50MB

Experiments. In the first scenario we consider a set of queries of different
complexity varying from simple select-project queries to complex join queries.
The queries use a different number of distributed sources and have different
result sizes. The results shown are the average values over ten runs. The query
execution time is subdivided as

Total Time = Connection Time + Execution Time + Transfer Time

Figure 6 presents the query execution time for a naive centralized approach
compared with DeXIN. It turns out that the data transfer time is the main
contributor to the query execution time in the distributed environment – which
is not surprising according to the theory on distributed databases [17]. DeXIN
reduces the amount of data transferred over the network by pushing the query
execution to the local site, thus transferring only the query results. We observe
that with increasing size of data sets, the gap in the query execution time between
DeXIN and the naive centralized approach is widened.

In the second scenario we fix the size of data sources and execute queries
with varying selectivity factor (i.e., the ratio of result size to data size) and com-

DeXIN 11

pare the query execution time of DeXIN with the naive centralized approach.
As was already observed in the previous scenario, the execution time is largely
determined by the network transfer. Figure 7 further strengthens this conclusion
and, moreover, shows that DeXIN gives a better execution time for queries with
high selectivity. The results displayed in Figure 7 indicate that DeXIN is much
stronger affected by varying the selectivity of queries than the centralized ap-
proach. DeXIN is superior to the centralized approach as long as the selectivity
factor is less than 90% . Above, the two approaches are roughly equal.

In the third scenario, we observe the effect of the number of data sources
on the query execution time. We executed several queries with varying number
of sources used in each query. Figure 8 again compares the execution time of
DeXIN with the execution time of a naive centralized approach. It turns out
that as soon as the number of sources exceeds 2, DeXIN is clearly superior.

Fig. 6. Execution Time Comparison

0

20

40

60

80

100

0.5 1 2 5 10 20 50 80 90

T
im

e
(m

s
)

Selectivity(%)

Centralized DeXIN

Fig. 7. Varying Selectivity Factor

0

20

40

60

80

2 3 4 5 6

T
im
e
(m

s
)

No. of Data Sources

Centralized DeXIN

Fig. 8. Varying level of Distribution

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented DeXIN – a novel framework for an integrated
access to heterogeneous, distributed data sources. So far, our approach supports
the data integration of XML and RDF/OWL data without the need of transform-
ing large data sources into a common format. We have defined and implemented
an extension of XQuery to provide full SPARQL support for subqueries. It is
worth mentioning that the XQuery extension not only enhances XQuery capa-
bilities to execute SPARQL queries, but SPARQL is also enhanced with XQuery
capabilities e.g. result formatting in the return clause of XQuery etc.

DeXIN can be easily integrated in distributed web applications which require
querying facility in distributed or peer to peer networks. It can become a powerful

12 Muhammad Intizar Ali et al.

tool for knowledgeable users or web applications to facilitate querying over XML
data and reasoning over Semantic Web data simultaneously.

An important feature of our framework is its flexibility and extensibility. A
major goal for future work on DeXIN is to extend the data integration to fur-
ther data formats (in particular, relational data) and further query languages
(in particular, SQL). Moreover, we are planning to incorporate query optimiza-
tion techniques (like semi-joins – a standard technique in distributed database
systems [17]) into DeXIN. We also want to extend the tests with DeXIN. So far,
we have tested DeXIN with large data sets but on a small number of servers.
In the future, when the Web service management system SEMF [13] is eventu-
ally applied to realistically big scenarios, DeXIN will naturally be tested in an
environment with a large-scale network.

References

1. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition), September 2006. W3C
Proposed Recommendation.

2. Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Revised),
February 2004. W3C Proposed Recommendation.

3. Deborah L. McGuinness and JFrank van Harmelen. OWL Web Ontology Language,
February 2004. W3C Proposed Recommendation.

4. Scott Boag, Don Chamberlin, Mary F. Fernndez, Daniela Florescu, Jonathan Ro-
bie, and Jrme Simon. XQuery 1.0: An XML Query Language, January 2007. W3C
Proposed Recommendation.

5. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF,
January 2008. W3C Proposed Recommendation.

6. Fabien Gandon. GRDDL Use Cases: Scenarios of extracting RDF data from XML
documents, April 2007. W3C Proposed Recommendation.

7. Sven Groppe, Jinghua Groppe, Volker Linnemann, Dirk Kukulenz, Nils Hoeller,
and Christoph Reinke. Embedding sparql into xquery/xslt. In Proc. SAC 2008,
pages 2271–2278, 2008.

8. Waseem Akhtar, Jacek Kopecký, Thomas Krennwallner, and Axel Polleres. Xs-
parql: Traveling between the xml and rdf worlds - and avoiding the xslt pilgrimage.
In Proc. ESWC 2008, pages 432–447, 2008.

9. Mary F. Fernández, Trevor Jim, Kristi Morton, Nicola Onose, and Jérôme Siméon.
Highly distributed xquery with dxq. In SIGMOD Conference, pages 1159–1161,
2007.

10. Ying Zhang and Peter A. Boncz. Xrpc: Interoperable and efficient distributed
xquery. In VLDB, pages 99–110, 2007.

11. Bastian Quilitz and Ulf Leser. Querying distributed rdf data sources with sparql.
In Proc. ESWC 2008, pages 524–538, 2008.

12. Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format, January
2008. W3C Proposed Recommendation.

13. Martin Treiber, Hong-Linh Truong, and Schahram Dustdar. SEMF - Service Evo-
lution Management Framework. In Proc. EUROMICRO 2008. IEEE Computer
Society, 2008.

14. Jim Melton. SQL, XQuery, and SPARQL: What’s Wrong With This Picture? . In
Proc. XTech, 2006.

15. Wolfgang M. Meier. eXist: Open Source Native XML Database, June 2008.
16. Jena. – A Semantic Web Framework for Java, June 2008.
17. M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems.

Prentice Hall, 1999.

