Towards Preprocessing for Abstract Argumentation Frameworks

Thomas Linsbichler

Based on joint work with Ringo Baumann, Wolfgang Dvořák and Stefan Woltran

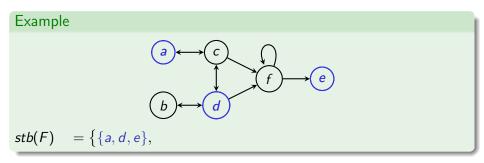
Workshop on New Trends in Formal Argumentation August 17th, 2017

Seminal Paper by Phan Minh Dung:

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

Seminal Paper by Phan Minh Dung:

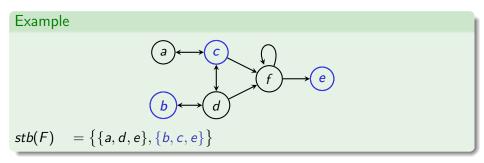
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.



同 ト イヨ ト イヨト

Seminal Paper by Phan Minh Dung:

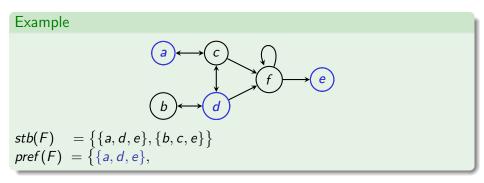
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.



・ 同 ト ・ ヨ ト ・ ヨ ト

Seminal Paper by Phan Minh Dung:

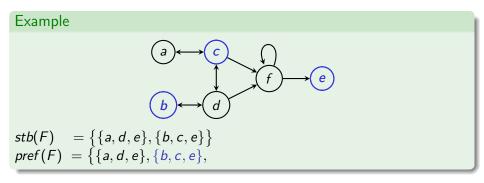
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.



- 4 同 6 4 日 6 - 日 5 - 日

Seminal Paper by Phan Minh Dung:

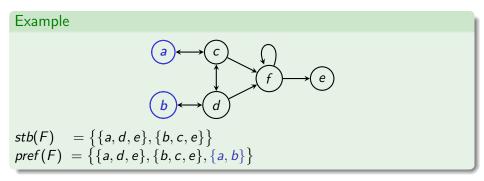
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.



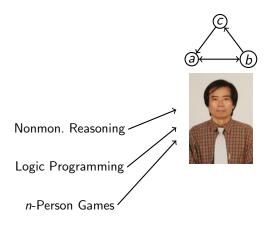
・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Seminal Paper by Phan Minh Dung:

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

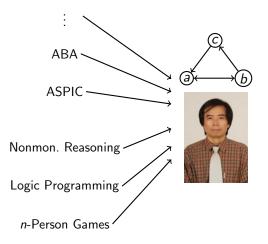


(人間) とくほう (人間) とうほう



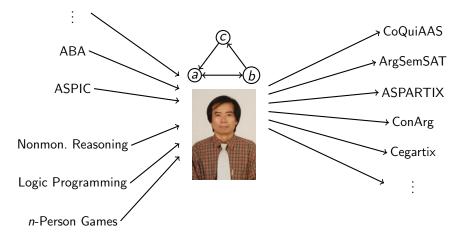
э

э



-∢ ≣ →

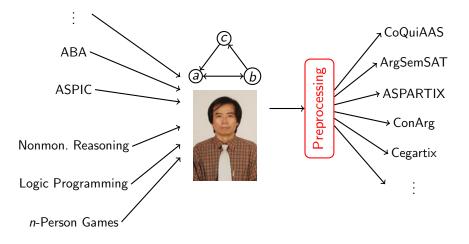
3



э

э

< ∃ →



э

□ ▶ < □ ▶ < □ ▶</p>

- Quick Background on Argumentation Frameworks
- The Role of Preprocessing
- Theoretical Foundations
- Building a Preprocessing Machine
- Conclusions and Open Questions

Background

Definition

An argumentation framework (AF) is a pair (A, R) where A is a finite set of arguments and $R \subseteq A \times A$ is the attack relation representing conflicts.

Semantics

For AF F = (A, R), $E \in \sigma(F)$ iff ...

- admissible: E is conflict-free and defends itself
- stable: E is conflict-free and has full range
- preferred: E is subset-maximal admissible
- complete: E is admissible and contains all defended arguments
- semi-stable: E is admissible with subset-maximal range
- stage: E is conflict-free with subset-maximal range
- grounded: E is subset-minimal complete set
- ideal: E is subset-maximal adm contained in each pref extension

Background

σ	$Cred_{\sigma}$	$Skept_\sigma$	Ver_{σ}	NE_{σ}
cf	in L	trivial	in L	in L
grd	P-c	P-c	P-c	in L
stb	NP-c	coNP-c	in L	NP-c
adm	NP-c	trivial	in L	NP-c
сотр	NP-c	P-c	in L	NP-c
ideal	in Θ_2^P	in Θ_2^P	in Θ_2^P	in Θ_2^P
pref	NP-c	П ₂ ^P -с	coNP-c	NP-c
sem	Σ_2^P -c	Π_2^P -c	coNP-c	NP-c
stage	Σ_2^P -c	Π_2^P -c	coNP-c	in I

Background - ICCMA'17

(http://www.dbai.tuwien.ac.at/iccma17/)

Home	Calls	Rules			Participation				Submissions				Results			Organization				ICCMA					2017		
he tasks suppo	rted by	(the s	olver	s are :	summ	arized	l in th	e foll	ovving	g table	:																
		co			PR					эт			397			этө					on		ID				
	D3	DC	DВ	СE	EE	DC	DE	СE	EE	DC	DE	СE	EE	DC	DE	SЕ	EE	DC	DC	СE	EE	DC	СE	DC			
argmat olpb	İ	1	1	1	1					1	1	1	1								Ì	- 1	1				
argmat dvisat	1	1	1	1	1	1	1	1	1	1	1	1	1									1	1	1			
argmat-mpg	1	1	1	1	- 1	1	- 1	1	1	1	1	- 1	1	1	1	1	1	1	1	- 1	1	1	- 1	1			
argmat-sat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
ArgSemSAT	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				1	1	1				
ArgTools	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
ASPrMin	i								1												i	i	1		_		
cegartix	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Chimœrarg	i								1				1								1	i					
ConArg		1	- 1	1	- 1	- 1	- 1	1	1	- 1	1	1	1	- 1	1	- 1	1	1	- 1	- 1	- 1	- 1	1	1			
CuQuiAAS		1	1	1	1	1	- 1	1	1	- 1	1	1	1	- 1	1	- 1	1	1	1	- 1	- 1	- 1	- 1	- 1			
EqArgSolver	1	1	1	1	1	1	1	1	1	1	1	1	1									1	1		-		
g g-sts	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
goDIAMOND	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1	1	1	1	-		
heureka		1	1	1	1	1	1	1	1	1	1	1	1									1	1		-		
pyglaf	1	- 1	- 1	- 1	- 1	- 1																					

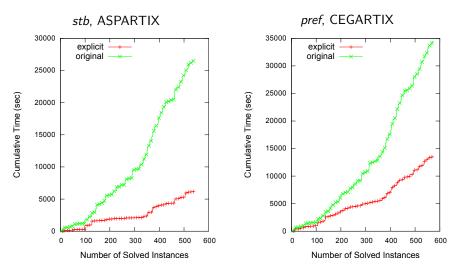
Description and a

Thomas Linsbichler (TU Wien)

Preprocessing

- Preprocessing refers to a family of simplifications which are computationally easy to perform and are equivalence preserving
 - ► SAT: tautology elimination, clause subsumption, ...
- Proved very successful in SAT and QSAT solving
- Example from the QBF world:
 - Preprocessor Bloqqer solved 471 of 1130 instances from QBFEVAL'16.
 - DepQBF solves 556 instances without preprocessing, but 817 with preprocessing.
- Preprocessing in the context of argumentation poses some additional challenges

Preprocessing for Argumentation – Some Experiments



Thomas Linsbichler (TU Wien)

Preprocessing for Abstract Argumentation

August 17, 2017 9 / 31

In order to define possible preprocessing steps, we require

- a suitable notion of equivalence
- which allows to verify which subparts of AFs can be simplified ...
- under different semantics

In order to define possible preprocessing steps, we require

- a suitable notion of equivalence
- which allows to verify which subparts of AFs can be simplified ...
- under different semantics

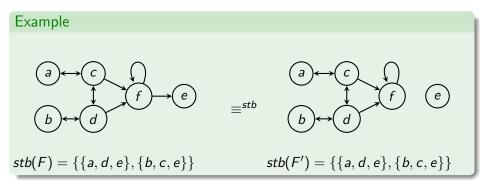
More precisely, we want to find pairs (F, F') such that replacing F by F' in any AF G does not change the extensions of G

Definition

Given a semantics σ . Two AFs F and F' are (standard) equivalent w.r.t. σ (in symbols $F \equiv^{\sigma} F'$) iff $\sigma(F) = \sigma(F')$.

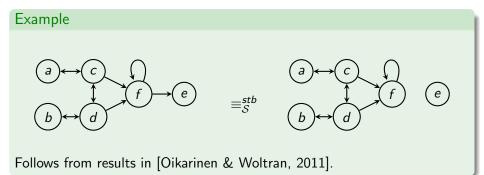
Definition

Given a semantics σ . Two AFs F and F' are strongly equivalent w.r.t. σ (in symbols $F \equiv_{\mathcal{S}}^{\sigma} F'$) iff $F \cup H \equiv^{\sigma} F' \cup H$ holds for each AF H.

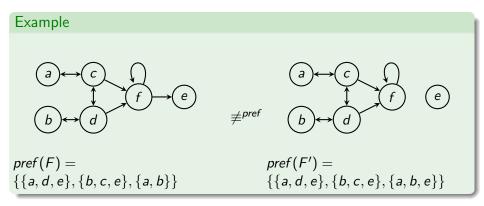


・ 同 ト ・ ヨ ト ・ ヨ ト

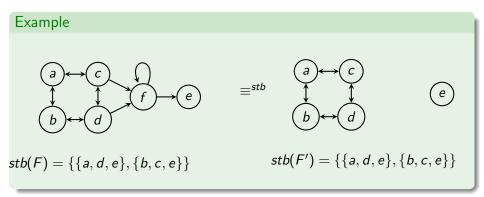
3



, 2017 13 / 31



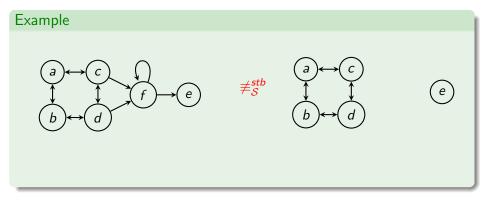
3



< A > <

-∢ ≣ →

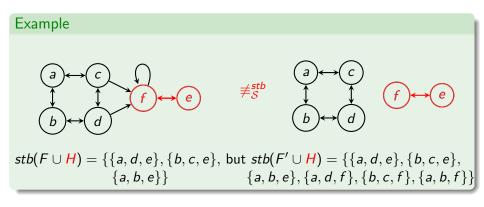
3



< /□ > <

3 🕨 🖌 🗄

3



Thomas Linsbichler (TU Wien) Preprocessing for Abstract Argumentation August 17

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Observations:

- Standard equivalence is too weak for our purpose
- Strong equivalence is too restricted
 - ▶ For self-loop free AFs F, F': $F \equiv_{S}^{\sigma} F'$ iff F = F'!

Observations:

- Standard equivalence is too weak for our purpose
- Strong equivalence is too restricted
 - ▶ For self-loop free AFs F, F': $F \equiv_{S}^{\sigma} F'$ iff F = F'!

We thus require a notion of equivalence which takes into account the neighborhood in an adequate way.

Definition

Given a semantics σ and arguments $C \subseteq U$. Two AFs F and F' are *C*-relativized equivalent w.r.t. σ (in symbols $F \equiv_C^{\sigma} F'$) iff $F \cup H \equiv^{\sigma} F' \cup H$ holds for each AF H not containing arguments from C.

▲□ ● ▲ □ ● ▲ □ ● □

Observations:

- Standard equivalence is too weak for our purpose
- Strong equivalence is too restricted
 - ▶ For self-loop free AFs F, F': $F \equiv_{S}^{\sigma} F'$ iff F = F'!

We thus require a notion of equivalence which takes into account the neighborhood in an adequate way.

Definition

Given a semantics σ and arguments $C \subseteq U$. Two AFs F and F' are *C*-relativized equivalent w.r.t. σ (in symbols $F \equiv_C^{\sigma} F'$) iff $F \cup H \equiv^{\sigma} F' \cup H$ holds for each AF H not containing arguments from C.

- \bullet for ${\it C}=\emptyset,$ C-relativized equivalence coincides with strong equivalence
- for C = U, C-relativized equivalence is just standard equivalence

・ロット 4 回 > ・ 目 > ・ 日 > ・ クタマ

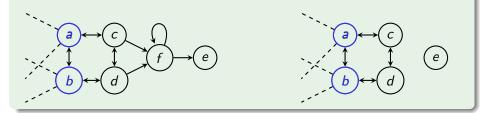
Definition

Given a semantics σ and arguments $C \subseteq U$. Two AFs F and F' are *C*-relativized equivalent w.r.t. σ (in symbols $F \equiv_C^{\sigma} F'$) iff $F \cup H \equiv^{\sigma} F' \cup H$ holds for each AF H not containing arguments from C.

Definition

Given a semantics σ and arguments $C \subseteq U$. Two AFs F and F' are *C*-relativized equivalent w.r.t. σ (in symbols $F \equiv_C^{\sigma} F'$) iff $F \cup H \equiv^{\sigma} F' \cup H$ holds for each AF H not containing arguments from C.

Example with $C = \{c, d, e, f\}$



イロト イポト イヨト イヨト 二日

We first define a parameterized notion of the semantics.

Definition

Let F = (A, R), $C \subseteq U$. The C-restricted stable extensions of F are

$$stb_{C}(F) = \{E \in cf(F) \mid A \cap C \subseteq E_{F}^{\oplus}\}$$

- 3

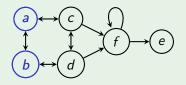
We first define a parameterized notion of the semantics.

Definition

Let F = (A, R), $C \subseteq U$. The C-restricted stable extensions of F are

$$stb_{C}(F) = \{E \in cf(F) \mid A \cap C \subseteq E_{F}^{\oplus}\}$$

Example with $C = \{c, d, e, f\}$



$$stb_{C}(F) = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}\}$$

$$stb_{C}(F') = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}\}$$

Thomas Linsbichler (TU Wien)

Preprocessing for Abstract Argumentation

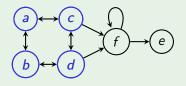
We first define a parameterized notion of the semantics.

Definition

Let F = (A, R), $C \subseteq U$. The C-restricted stable extensions of F are

$$stb_{C}(F) = \{E \in cf(F) \mid A \cap C \subseteq E_{F}^{\oplus}\}$$

Example with $C = \{e, f\}$



$$stb_{C}(F) = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}\}$$

$$stb_{C}(F') = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}, \{a, e\}, \{b, e\}, \{e\}\}\$$

For other semantics, such variants can be defined accordingly.

Definition

Let F be an AF, $C \subseteq U$. We define

$$\begin{aligned} adm_{C}(F) &= \{E \in cf(F) \mid E_{F}^{-} \cap C \subseteq E_{F}^{+}\} \\ pref_{C}(F) &= \{E \in adm_{C}(F) \mid \text{ for all } D \in adm_{C}(F) \text{ with} \\ E \setminus C = D \setminus C, E_{F}^{+} \setminus C \subseteq D_{F}^{+} \setminus, E_{F}^{-} \setminus E_{F}^{+} \supseteq D_{F}^{-} \setminus D_{F}^{+} : \\ E \cap C \not\subset D \cap C \} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

For other semantics, such variants can be defined accordingly.

Definition

Let F be an AF, $C \subseteq U$. We define

$$\begin{aligned} adm_{\mathcal{C}}(F) &= \{E \in cf(F) \mid E_{F}^{-} \cap C \subseteq E_{F}^{+}\} \\ pref_{\mathcal{C}}(F) &= \{E \in adm_{\mathcal{C}}(F) \mid \text{ for all } D \in adm_{\mathcal{C}}(F) \text{ with} \\ E \setminus C &= D \setminus C, E_{F}^{+} \setminus C \subseteq D_{F}^{+} \setminus, E_{F}^{-} \setminus E_{F}^{+} \supseteq D_{F}^{-} \setminus D_{F}^{+} : \\ E \cap C \not\subset D \cap C \} \end{aligned}$$

For complete and grounded semantics, similar definitions can be given by using a parameterized version of the characteristic function.

Theoretical Foundations – Main Results

For other semantics, such variants can be defined accordingly.

Definition

Let F be an AF, $C \subseteq U$. We define

$$\begin{aligned} adm_{\mathcal{C}}(F) &= \{E \in cf(F) \mid E_{F}^{-} \cap C \subseteq E_{F}^{+}\} \\ pref_{\mathcal{C}}(F) &= \{E \in adm_{\mathcal{C}}(F) \mid \text{ for all } D \in adm_{\mathcal{C}}(F) \text{ with} \\ E \setminus C = D \setminus C, E_{F}^{+} \setminus C \subseteq D_{F}^{+} \setminus E_{F}^{-} \setminus E_{F}^{+} \supseteq D_{F}^{-} \setminus D_{F}^{+} : \\ E \cap C \not\subset D \cap C \end{aligned}$$

For complete and grounded semantics, similar definitions can be given by using a parameterized version of the characteristic function.

Theorem

Let F be an AF and $C \subseteq U$. Then, the following relations hold: $stb_{C}(F) \subseteq pref_{C}(F) \subseteq comp_{C}(F) \subseteq adm_{C}(F); grd_{C}(F) \subseteq comp_{C}(F).$

Theoretical Foundations - Main Results

Theorem

Let
$$F, F'$$
 be AFs and $C \subseteq U$. Then, $F \equiv_C^{stb} F'$ iff jointly

(1)
$$stb_C(F) = stb_C(F');$$

(2) if
$$stb_C(F) \neq \emptyset$$
, $A(F) \setminus C = A(F') \setminus C$;

(3) for all
$$E \in stb_C(F)$$
, $E_F^+ \setminus C = E_{F'}^+ \setminus C$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theoretical Foundations - Main Results

Theorem

Let
$$F, F'$$
 be AFs and $C \subseteq U$. Then, $F \equiv_{C}^{stb} F'$ iff jointly

(1)
$$stb_C(F) = stb_C(F');$$

(2) if
$$stb_C(F) \neq \emptyset$$
, $A(F) \setminus C = A(F') \setminus C$;

(3) for all
$$E \in stb_C(F)$$
, $E_F^+ \setminus C = E_{F'}^+ \setminus C$.

Example with $C = \{c, d, e, f\}$

$$\begin{array}{c} a \leftrightarrow c \\ \downarrow \\ b \leftrightarrow d \end{array} \xrightarrow{f} e \\ call (1) stb_{C}(F) = stb_{C}(F') = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}\}; \end{array}$$

Recall (1) $stb_C(F) = stb_C(F') = \{\{a, d, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}\};$ (2) and (3) also hold.

Thomas Linsbichler (TU Wien)

Preprocessing for Abstract Argumentation

August 17, 2017 22 / 31

3

<ロ> <同> <同> < 同> < 同>

Theoretical Foundations - Main Results

Theorem

Let
$$F, F'$$
 be AFs and $C \subseteq U$. Then, $F \equiv_C^{stb} F'$ iff jointly
(1) $stb_C(F) = stb_C(F')$;
(2) if $stb_C(F) \neq \emptyset$, $A(F) \setminus C = A(F') \setminus C$;
(3) for all $E \in stb_C(F)$, $E_F^+ \setminus C = E_{F'}^+ \setminus C$.

Similar characterization results can be shown for the other main semantics.

22 / 31

・ 同 ト ・ ヨ ト ・ ヨ ト

Replacement Theorem

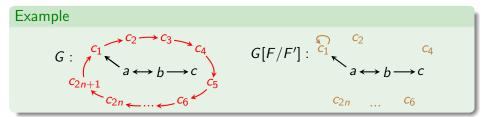
For AFs F, F', G and $C \subseteq U$ such that $A(F) \cup A(F') \subseteq C$, $(A(G) \setminus A(F)) \cap C = \emptyset$, and F is a sub-AF of G, let $B = (A(F))^{\oplus}_{G} \cup (A(F))^{-}_{G}$ and $F^{G} = (B, R(G) \cap (B \times B))$. Then, $F^{G} \equiv^{\sigma}_{C} F^{G}[F/F']$ implies $G \equiv^{\sigma} G[F/F']$.

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク へ (や

Theoretical Foundations – Main Results

Replacement Theorem

For AFs F, F', G and $C \subseteq U$ such that $A(F) \cup A(F') \subseteq C$, $(A(G) \setminus A(F)) \cap C = \emptyset$, and F is a sub-AF of G, let $B = (A(F))^{\oplus}_{G} \cup (A(F))^{-}_{G}$ and $F^{G} = (B, R(G) \cap (B \times B))$. Then, $F^{G} \equiv^{\sigma}_{C} F^{G}[F/F']$ implies $G \equiv^{\sigma} G[F/F']$.

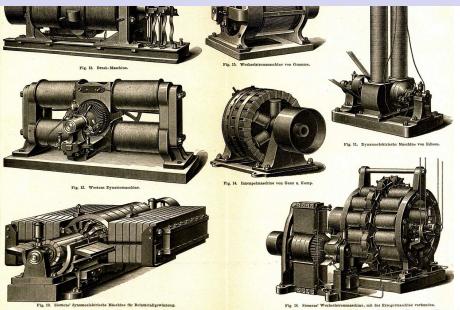


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Some complexity results:

				сотр	
$F \equiv^{\sigma}_{S} G$ $F \equiv^{\sigma} G$	in L				
$F\equiv^{\sigma} G$	P-c	coNP-c.	coNP-c.	coNP-c.	П ₂ ^P -с.
$F\equiv^{\sigma}_{C}G$	coNP-c.	coNP-c.	coNP-c.	coNP-c.	П ₂ ^P -с.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ



Thomas Linsbichler (TU Wien)

Preprocessing for Abstract Argumentation

- 1. Collect patterns (F^{G}, F, F') which apply for the replacement theorem
 - This can be done in an offline-phase
 - employ the equivalence characterizations
 - different patterns for different semantics

Thomas Linsbichler (TU Wien)

Preprocessing for Abstract Argumentation

2. Build a tool that scans a given AF for possible application of the replacement patterns (F^G, F, F')

- Requires efficient implementation of subgraph-isomorphism problem
- sort out which size of subgraphs allow for efficient scanning for patterns
- integrate other known simplifications (computation of grounded extension) and interleave this with the applied replacements

- 3. Experimental Evaluation and Fine-Tuning
 - which replacements actually help solvers?
 - Preprocessing on the argumentation level should go beyond preprocessing on encodings
 - identification of "promising regions" (e.g. potential separation into SCCs)
 - integration of ML techniques

Preprocessing for Abstract Argumentation

Conclusion

- Increasing interest in development of AF solvers
- In other domains, preprocessing recognized as a crucial step to improve efficiency
- Nonmonotonic nature of argumentation semantics makes life complicated

In this talk:

- Introduced a suitable notion of equivalence to seek for simplification patterns
- Discussion of next steps towards practical realization of a preprocessing tool
 - Recall: this is beneficial for all solvers!

- Understand C-relativized equivalence for further semantics
- What can be done for acceptance problems?
- Claim: preprocessing could be more powerful if we allow to shift from AFs to a more general formalism (for instance, SETAFs)
 - however, this requires solvers for this general formalism

30 / 31

- Understand C-relativized equivalence for further semantics
- What can be done for acceptance problems?
- Claim: preprocessing could be more powerful if we allow to shift from AFs to a more general formalism (for instance, SETAFs)
 - however, this requires solvers for this general formalism

Thank you for your attention!

- P. M. Dung: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2):321–358, 1995.
- R. Baumann, W. Dvořák, T. Linsbichler and S. Woltran: A General Notion of Equivalence for Abstract Argumentation. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17), pages 800-806. AAAI Press, 2017. Full version: www.dbai.tuwien.ac.at/research/report/dbai-tr-2017-105.pdf
- E. Oikarinen, S. Woltran: Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 175(14-15):1985–2009, 2011.

伺下 イヨト イヨト