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Abstract. Claim-augmented argumentation frameworks (CAFs) provide a formal basis to
analyze conclusion-oriented problems in argumentation by adapting a claim-focused per-
spective; they extend Dung AFs by associating a claim to each argument representing its
conclusion. This additional layer offers various possibilities to generalize abstract argu-
mentation semantics, i.e. the re-interpretation of arguments in terms of their claims can be
performed at different stages in the evaluation of the framework: One approach is to per-
form the evaluation entirely at argument-level before interpreting arguments by their claims
(inherited semantics); alternatively, one can perform certain steps in the process (e.g., max-
imization) already in terms of the arguments’ claims (claim-level semantics). The inherent
difference of these approaches not only potentially results in different outcomes but, as we
will show in this paper, is also mirrored in terms of computational complexity. To this end,
we provide a comprehensive complexity analysis of the four main reasoning problems with
respect to claim-level variants of preferred, naive, stable, semi-stable and stage semantics
and complete the complexity results of inherited semantics by providing corresponding re-
sults for semi-stable and stage semantics. Furthermore, we provide complexity results for
these types of frameworks when restricted to specific graph classes and when parameterized
by the number of claims within the framework. Moreover, we show that deciding, whether
for a given framework the two approaches of a semantics coincide (concurrence) can be
surprisingly hard, ranging up to the third level of the polynomial hierarchy.
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1 Introduction

Argumentation is an increasingly important research area within AI [1]. Among the most
prominent approaches to handle inconsistent and conflicting statements is abstract argu-
mentation [2] which is nowadays acknowledged as one of the core reasoning mechanisms for
argumentation. In his seminal paper, Dung has proposed several argumentation semantics
which have been adopted subsequently in several formalisms [3, 4]. Over the past decades,
many more semantics entered the stage, each of which contributes to the rich and diverse
landscape of argumentation semantics [5]. By now, the broad variety of semantics for ar-
gumentation offers many choices to model argumentative settings as needed. Despite of all
differences, most of the argumentation semantics have something in common: their high com-
putational complexity. Indeed, it has been shown that deciding credulous as well as skeptical
acceptance of arguments but also the verification of sets of jointly acceptable arguments is
computationally expensive, ranging up to the second level of the polynomial hierarchy [6].

Although a lot of effort has been invested in exploring the computational complexity of
the semantics in terms of arguments, only little is known about the complexity of evaluating
argumentative settings in terms of the claims of the arguments. Generally speaking, the
claim of an argument is the statement it intends to justify. Ultimately, an argumentative
analysis aims to identify justifiable assertions; hence the evaluation of claim acceptance is
an essential part of argumentative reasoning.

As recently addressed in the literature, there are several ways to transfer argument ac-
ceptance to claim acceptance [7, 8]. Let us outline two intuitive approaches in the general
schema to instantiate argumentation frameworks, so called instantiation procedures (see e.g.
[9, 10, 4, 11]). This instantiation process starts from a (typically inconsistent) knowledge
base, from which possible arguments are constructed. An argument consists of a claim and
a support, the latter being a subset of the knowledge base. The relationship between ar-
guments is then settled, for instance an argument α attacks argument β if the claim of α
contradicts (parts of) the support of β. As soon as all arguments and attacks between ar-
guments are given, one abstracts away from the contents of the arguments. The resulting
network is then interpreted as an abstract argumentation framework (AF) and semantics
for AFs are used to obtain a collection of jointly acceptable sets of arguments, commonly
referred to as extensions. One of the most famous argumentation semantics are preferred
semantics which return maximal admissible (i.e., conflict-free and self-defending) sets of ar-
guments. To obtain the preferred set of claims, these extensions are then reinterpreted in
terms of the claims of the accepted arguments, thus restating the result in the domain of
the initial setting. We recall two natural choices to obtain our desired preferred claim-sets.
When looking for preferred extensions in terms of claims, we can either

(a) take the preferred extensions of the AF and replace each argument by its claim, or

(b) take the admissible sets of the AF, replace each argument by its claim, and then select
the subset-maximal ones from the resulting set of extensions.

Option (a) which we shall call inherited semantics in what follows, is often used implicitly
in instantiation-based argumentation and has been explicitly studied in [12]. This approach
resembles reasoning methods in rule-based formalisms such as ASPIC+ [4]. Option (b) has
recently been advocated in [8] as an alternative way to lift concepts behind argumentation
semantics to claim-based semantics; we will refer to the latter as claim-level semantics since
parts of the semantic selection process takes place on the claim- rather than on the argument-
level. Hence, these two approaches provide different methods in order to accomplish the final
steps in the instantiation process, i.e., evaluating the abstract framework and provide the
extensions in terms of the accepted claims. Understanding the complexity of this part in
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the instantation is crucial towards the design of advanced argumentation systems. Inves-
tigating this final step independently from the entire process has the clear advantage that
results are not restricted to a particular formalism (e.g., ASPIC+) and are thus of general
nature. Furthermore, as discussed in [13], there are logic programming semantics that, in
the standard instantiation model [14, 10], correspond to claim-level semantics and cannot be
captured with inherited semantics.

Example 1. Consider the following AF where each node represents an argument and the
edges representing their relations, i.e., attacks between them. Each argument is labelled with
its respective claim, i.e., arguments a1 and a2 are assigned claim a, arguments b1 and b2 are
assigned claim b and arguments c1 and d1 are assigned claims c and d respectively.

a1

a

b1

b

c1
c d1 d

a2 a

b2 b

Evaluating the AF with respect to the admissible semantics, ignoring the claims, yields
∅, {a1}, {b1}, {b2}, {a1, b2}, {b1, b2}, {a2, b1}, {a1, b2, c1}, and {a2, b1, b2}. To obtain the pre-
ferred claim-sets one can now select the subset-maximal sets and then replace each argument
by its claim (option (a)), yielding {a, b, c}, {a, b}; observe that swapping those steps (option
(b)) results in the unique claim-set {a, b, c}.

In [12], it has been shown that inherited semantics are in general of higher computational
complexity than their argument-based counterparts. In particular the verification problem is
computationally more expensive. While the computational complexity of inherited seman-
tics has already been investigated for many argumentation semantics, the computational
complexity of claim-level semantics has not been studied so far. As we already observed in
the above example, the two approaches to evaluate the framework with respect to preferred
semantics yield different results. A detailed analysis of the differences between these two
approaches was provided in [8], also showing that there are some semantics where the two
approaches coincide when arguments with the same claim attack the same arguments (this
property is commonly referred to as well-formedness). What remains open is the question
whether this difference is mirrored in terms of computational complexity. In that matter, we
are in particular interested in deciding whether these approaches yield the same result in a
given framework. Hence apart from the classical decision problems of deciding credulous and
skeptical acceptance, verification of acceptance for a given claim set, and deciding whether
a non-empty set of acceptable claims exist, we furthermore consider the question of how
hard it is to decide whether two different approaches of a semantics deliver the same result.
We call this decision problem concurrence of two frameworks. As sketched above, there are
some situations in which inherited and claim-level semantics yield the same outcome; namely
in case the considered argumentation framework satisfies well-formedness which is a certain
structural restriction that appears naturally in many instantiation procedures. Tying into
this, as many of the obtained results will conclude intractability, considering specific graph
classes or parameterized decision problems can be useful. This has been done for AFs [15]
and for some inherited semantics [12], but is still an open question for some of the other
common semantics that output claim-sets as result of their evaluation.

We tackle these three questions via a thorough complexity analysis. To be independent
from a particular instantiation schema, we consider claim-augmented frameworks (CAFs) [12],
which are AFs where each argument is assigned a claim (indeed Example 1 provides an ex-
ample for a CAF).

Our main contributions are as follows:
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• We settle the computational complexity of all the claim-level semantics, i.e. stable,
naive, preferred, semi-stable, and stage semantics, introduced in [8] for the main de-
cision problems of credulous and skeptical acceptance, verification, and testing for
non-empty extensions. Among our findings is that for naive semantics, the claim-level
variant is harder than its inherited counterpart, while for preferred semantics, it is the
inherited variant that shows higher complexity.

• We also provide complexity results for inherited semi-stable and stage semantics which
have not been investigated in [12]. As it turns out, for these two semantics the com-
plexity of the inherited and claim-level variants coincides.

• Additionally, we provide complexity results for the main decision problems when re-
stricted to specific graph classes and also when parameterized by the number of claims
for inherited semi-stable and stage semantics as well as for the claim-level variants of
the stable, naive, preferred, semi-stable, and stage semantics. As we will see, this will
often times allow for better bounds than the unrestricted case.

• We determine the complexity of the concurrence problem, i.e. whether for a given
CAF and a semantics, the inherited and claim-level variant of that semantics coincide.
Note that showing this problem to be easy would suggest that there are relatively
natural classes of CAFs which characterize whether or not the two variants collapse.
However, as we will see, concurrence can be surprisingly hard, up to the third level of
the polynomial hierarchy.

A preliminary version of this paper has been presented at the thirty-fifth AAAI con-
ference on artificial intelligence (AAAI-21) [16]. Besides providing full proofs and in-depth
discussions, this version significantly extends the preceding paper by several new complex-
ity results, in particular, we provide a full complexity analysis of the considered reasoning
problems for specific graph classes.

2 Preliminaries

In the this section we (a) recall abstract argumentation frameworks, claim-augmented ar-
gumentation frameworks and their semantics, and (b) recall the necessary background and
computational complexity,

2.1 Argumentation Frameworks and their Semantics

We introduce (abstract) argumentation frameworks and their semantics [2, 5]. We fix U as
countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U is a
finite set of arguments and R ⊆ A× A is the attack relation. E ⊆ A attacks b if (a, b) ∈ R
for some a ∈ E; we denote by E+

F = {b ∈ A | ∃a ∈ E : (a, b) ∈ R} the set of arguments
defeated by E. We call E⊕F = E ∪E+

F the range of E in F . An argument a ∈ A is defended
(in F ) by E if b ∈ E+

F for each b with (b, a) ∈ R.

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R) a set
σ(F ) ⊆ 2A of extensions. We consider for σ the functions cf , adm, naive, prf , stb, sem and
stg which stand for conflict-free, admissible, naive, preferred, stable, semi-stable and stage,
respectively.
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Definition 2. Let F = (A,R) be an AF. A set E ⊆ A is conflict-free (in F ), if there are
no a, b ∈ E, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets in F . For
E ∈ cf (F ) we have E ∈ adm(F ) if each a ∈ E is defended by E in F . For E ∈ cf (F ), we
define

• E ∈ naive(F ), if there is no D ∈ cf (F ) with E ⊂ D;

• E ∈ prf (F ), if E∈adm(F ) and @D ∈ adm(F ): E⊂D;

• E ∈ stb(F ), if E⊕F = A;

• E ∈ sem(F ), if E ∈ adm(F ) and @D ∈ adm(F ): E⊕F ⊂ D⊕F ;

• E ∈ stg(F ), if there is no D ∈ cf (F ) with E⊕F ⊂ D⊕F .

Next we introduce claim-augmented argumentation frameworks (CAFs) [12], which ex-
tend AFs by a function claim that assigns claims to argument.

Definition 3. A claim-augmented argumentation framework (CAF) is a triple (A,R, claim)
where (A,R) is an AF and claim : A → C assigns a claim to each argument in A; C is
a set of possible claims. The claim-function is extended to sets in the natural way, i.e.
claim(E) = {claim(a) | a ∈ E}. A set of arguments E ⊆ A is called a realization of a
claim-set S ⊆ claim(A) if claim(E) = S. A CAF (A,R, claim) is well-formed if {a}+(A,R) =

{b}+(A,R) for all a, b ∈ A with claim(a) = claim(b).

Well-formed CAFs naturally appear as result of instantiation procedures where the con-
struction of the attack relation depends on the claim of the attacking argument. However,
formalisms which handle argument strengths or allow for preference relations over arguments
(assumptions/defeasible rules) typically violate the property of well-formedness [17, 18].

Semantics for CAFs Here we give a short recap of inherited semantics and claim-level
semantics for CAFs. We will first introduce inherited semantics (i-semantics).

Definition 4. For a CAF CF = (A,R, claim) and an AF semantics σ, we define i-σ seman-
tics as σc(CF ) = {claim(E) | E ∈ σ((A,R))}. We call E ∈ σ((A,R)) with claim(E) = S a
σc-realization of S in CF .

Next we discuss claim-level semantics (cl-semantics) for CAFs. Central for cl-variants of
stable, semi-stable and stage semantics is the following notion of claim-defeat.

Definition 5. Let CF = (A,R, claim), E ⊆ A and c ∈ claim(A). E defeats c (in CF ) if E
attacks (in (A,R)) every a ∈ A with claim(a) = c.

Example 2. Consider the CAF from Example 1. The argument b1 (or: the set E = {b1})
attacks the arguments a1, c1 but defeats only claim c, because not every occurrence of claim
a is attacked.

We will next introduce the notion of range for a claim-set S. As different realizations of
S might yield different sets of defeated claims, the range of S is in general not unique and
depends on the particular realization E of S.

Definition 6. For a CAF CF = (A,R, claim), let νCF (E) = {c ∈ claim(A) | E defeats c in CF}.
For a claim-set S ⊆ claim(A) and a realization E of S in CF , we call S ∪ νCF (E) a range
of S in CF . If S ∪ νCF (E) = claim(A) we say E has full claim-range.

Example 3. Let us consider again the CAF CF from Example 1.
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a1

a

b1

b

c1
c d1 d

a2 a

b2 b

First, consider the set of arguments E1 = {b2, c1}. The set attacks the arguments d1 and
a2. Hence E1 attacks claim d; claim a however is not attacked since E1 does not attack all
occurrences of a (the argument a1 is unattacked). Thus νCF (E1) = {d} and claim(E1) ∪
νCF (E1) = {b, c, d}. Now, we extend E1 by a1 and obtain E2 = {a1, b2, c1}. Again, claim
d is the only claim which is attacked by the set; however, E2 has full claim-range since it
contains claim a.

Observe that in well-formed CAFs, each claim-set possesses a unique range as each re-
alization attacks the same arguments, i.e., for a claim-set S ⊆ claim(A), νCF (E) = νCF (D)
for all realizations E,D of S in CF . We will thus write S+

CF to denote the unique set of
defeated claims νCF (E) of S in CF .

We are now ready to introduce cl-semantics for CAFs.

Definition 7. For a CAF CF = (A,R, claim) and S ⊆ claim(A), we define

• S ∈ cl -prf (CF ) if S ∈ admc(CF ) and there is no T ∈ admc(CF ) with S ⊂ T ;

• S ∈ cl -naive(CF ) if S ∈ cfc(CF ) and there is no T ∈ cfc(CF ) with S ⊂ T ;

• S ∈ cl -stbτ (CF ), τ ∈ {cf , adm}, if there exists E ∈ τ((A,R)) with claim(E) = S and
S ∪ νCF (E) = claim(A);

• S ∈ cl -sem(CF ) if there exists E ∈ adm((A,R)) with claim(E) = S such that there is
no D ∈ adm((A,R)) with S ∪ νCF (E) ⊂ claim(D) ∪ νCF (D);

• S ∈ cl -stg(CF ) if if there exists E ∈ cf ((A,R)) with claim(E) = S such that there is
no D ∈ cf ((A,R)) with S ∪ νCF (E) ⊂ claim(D) ∪ νCF (D).

A set of arguments E ⊆ A is a

• cl -prf -realization ( cl -naive-realization) of S ⊆ claim(A) in CF if claim(E) = S,
E ∈ adm((A,R)) (E ∈ cf ((A,R)), respectively);

• cl -stbτ -realization of S ⊆ claim(A) in CF , τ ∈ {adm, cf }, if claim(E) = S, E ∈
adm((A,R)) (E ∈ cf ((A,R))), and S ∪ νCF (E) = claim(A);

• cl -sem-realization ( cl -stg-realization) of S ⊆ claim(A) in CF if claim(E) = S, E ∈
adm((A,R)) (E ∈ cf ((A,R))), and S ∪ νCF (E) is subset-maximal among admissible
respectively conflict-free range-sets in CF .

Example 4. Let us consider again our running example CAF CF . As we have observed
already in Example 1, the preferred claim-sets of CF are given by {a, b, c} and {a, b}. The set
E2 from the above example is cl -stbτ (for τ ∈ {cf , adm}) in CF since it has full claim-range.
Observe that E2 is also stable on argument-level since it attacks all other arguments.

Let E3 = {b1, a2}. The set is conflict-free, admisssible, and attacks the arguments c1 and
d1. Hence claim(E3) ∪ νCF (E3) = claim(A), i.e., E3 has full claim-range and is cl -stbτ for
τ ∈ {cf , adm}.

We occasionally make use of the relations between different semantics for CAFs [12, 8].
For inherited semantics, the relations between the semantics carry over from the correspond-
ing AF counterparts, e.g.,

stbc(CF ) ⊆ semc(CF ) ⊆ prfc(CF ) ⊆ admc(CF )
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stbc

cl -stbadm

cl -sem
semc

stgc
cl -stg

cl -stbcf

prfc
cl -prf

naivec
cl -naive

admc

cfc

(a) Relations for CAFs.

stbc = cl -stbcf = cl -stbadm

cl -semsemc stgccl -stg

prfc = cl -prf
naivec

cl -naive

admc

cfc

(b) Relations for well-formed CAFs.

Figure 1: Relations between semantics for general CAFs (a) and well-formed CAFs (b) as
presented in [8]. An arrow from σ to τ indicates that σ(CF ) ⊆ τ(CF ) for each CAF CF .

for any CAF CF . The relations between the different variants for the semantics often depend
on the particular CAF class, e.g., for general CAFs,

stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF ).

For well-formed CAFs, on the other hand, all stable variants coincide, i.e., stbc(CF ) =
cl -stbadm(CF ) = cl -stbcf (CF ). Figure 1 provides an overview over the relations between
semantics for general and for well-formed CAFs. We furthermore observe the following im-
plications between claim-level stable semantics and semi-stable respectively stage semantics:
If cl -stbcf (CF ) 6= ∅ then cl -stbcf (CF ) = cl -stg(CF ), likewise, if cl -stbadm(CF ) 6= ∅ then
cl -stbadm(CF ) = cl -sem(CF ) for each CAF CF [13].

Remark 1. Let us briefly discuss why we do not consider claim-level versions for complete,
grounded, and admissible semantics. An appropriate adaption of both semantics requires
a notion for claim-defense. As discussed in [19], the natural choice of adapting a defense
notion to claim-level (a claim c is defended by a set of arguments E iff there exists some
occurrence of c which is defended by E) results in cl-complete, cl-grounded, and cl-admissible
semantics that are equivalent to their inherited counter-parts.

2.2 Computational Complexity

We assume the reader to be familiar with the basic concepts of computational complexity
theory (see, e.g. [20] for an introduction), in particular with the complexity classes polynomial
time (P)and non-deterministic polynomial time (NP). In the following, we briefly recapitulate
the concept of oracle machines and related complexity classes relevant for this work. To this
end, let C denote some complexity class. By a C-oracle machine we mean a (polynomial time)
Turing machine which can access an oracle that decides a given (sub)-problem in C within
one computation step. We denote the corresponding complexity classes of such machines
as PC if the underlying Turing machine is deterministic; and NPC if the underlying Turing
machine is nondeterministic. In this work we consider complexity classes from the first three
levels of the polynomial-time hierarchy. The classes NP and coNP build the first level of
the polynomial-time hierarchy. The complexity classes on the second level are build by the
use of NP-oracles. First, the class ΣP

2 = NPNP denotes the set of problems which can be
decided by a nondeterministic polynomial time algorithm that has (unrestricted) access to
an NP-oracle. The class ΠP

2 = coNPNP is defined as the complementary class of ΣP
2 , i.e.

ΠP
2 = coΣP

2 . In the same way we can define the third level by using ΣP
2 oracles. That is, we

define the class ΣP
3 as NPΣP

2 and ΠP
3 = coNPΣP

2 as the complementary class of ΣP
3 .
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We have the following relations between these complexity classes:

P ⊆ NP
coNP

⊆ ΣP
2

ΠP
2
⊆ ΣP

3

ΠP
3

We will see that many problems in this paper are indeed of high complexity. A prominent
approach to tame the high complexity of such problems is parameterized complexity theory
(see, e.g., [21]). A key observation of this approach is that many hard problems become
polynomial-time tractable if some problem parameter is bounded by a fixed constant. If the
order of the polynomial bound is independent of the parameter1 one speaks of fixed-parameter
tractability (FPT).

3 Computational Problems

We consider the following decision problems with respect to a CAF-semantics σ:

• Credulous Acceptance (CredCAF
σ ): Given a CAF CF = (A,R, claim) and claim c ∈

claim(A), is c contained in some S ∈ σ(CF )?

• Skeptical Acceptance (SkeptCAF
σ ): Given a CAF CF = (A,R, claim) and claim c ∈

claim(A), is c contained in each S ∈ σ(CF )?

• Verification (VerCAF
σ ): Given a CAF CF = (A,R, claim) and a set S ⊆ claim(A), is

S ∈ σ(CF )?

• Non-emptiness (NECAF
σ ): Given a CAF CF = (A,R, claim), is there a non-empty set

S ⊆ claim(A) such that S ∈ σ(CF )?

We furthermore consider these reasoning problems restricted to well-formed CAFs and denote
them by Credwfσ , Skeptwfσ , Verwfσ , and NEwf

σ . Moreover, we denote the corresponding decision
problems for AFs (which can be obtained by defining claim as the identity function) by
CredAF

σ , SkeptAF
σ , VerAF

σ , and NEAF
σ . Finally, we introduce a new decision problem which

asks whether the two variants of a semantics coincide on a given CAF.

• Concurrence (ConCAF
σ ): Given a CAF CF , does it hold that σc(CF ) = cl -σ(CF )?

For stable semantics, we write ConCAF
stbτ to specify the considered cl-stable variant (τ ∈

{adm, cf }). The concurrence problem restricted to well-formed CAFs is denoted Conwf
σ .

Tables 1 & 2 depict known complexity results for AF semantics [22, 23, 24, 6]; and for
inherited CAF semantics [12]. Note that Table 2 lacks results for semi-stable and stage
semantics which have not been studied yet in terms of complexity. We close this gap and
complement these results by an analysis of the claim-level variants.

4 Complexity of Reasoning Problems

The forthcoming analysis yields the following high level picture: Credulous and skeptical
reasoning as well as deciding existence of a non-empty extension is of the same complexity
as in AFs except for the notable difference that skeptical reasoning with respect to cl-naive
semantics goes up two levels in the polynomial hierarchy and is thus also more complex

1That is, the running time can be stated as O(f(k) · poly(n)), where f is a computable function, k is the
problem parameter under investigation, n is the size of the problem instance, and poly(·) is an arbitrary but
fixed polynomial.
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Table 1: Complexity of AFs.

σ CredAF
σ SkeptAF

σ VerAF
σ NEAF

σ

cf in P trivial in P in P

adm NP-c trivial in P NP-c

stb NP-c coNP-c in P NP-c

naive in P in P in P in P

prf NP-c ΠP
2 -c coNP-c NP-c

sem ΣP
2 -c ΠP

2 -c coNP-c NP-c

stg ΣP
2 -c ΠP

2 -c coNP-c in P

Table 2: Known complexity results for inherited semantics, with ∆ ∈ {CAF ,wf }. Results
that deviate from the corresponding results for AFs are bold-face.

σ Cred∆
σ Skept∆σ VerCAF

σ /Verwfσ NE ∆
σ

cfc in P trivial NP-c / in P in P

admc NP-c trivial NP-c / in P NP-c

stbc NP-c coNP-c NP-c / in P NP-c

naivec in P coNP-c NP-c / in P in P

prfc NP-c ΠP
2 -c ΣP

2 -c / coNP-c NP-c

semc ? ? ? / ? ?

stgc ? ? ? / ? ?

than deciding skeptical acceptance for i-naive semantics which has been shown to be coNP-
complete. For well-formed CAFs, skeptical reasoning admits the same complexity for both
claim-level and inherited naive semantics but remains more complex than in AFs.

For general CAFs, the verification problem is more complex than for AFs for all of the
considered semantics. Comparing claim-level and inherited semantics we observe that the
complexity of the verification problem for cl-preferred semantics drops while the complexity
for cl-naive semantics admits a higher complexity than their inherited counterparts; the
claim-level and inherited variants of stable, semi-stable and stage semantics admit the same
complexity. For well-formed CAFs, the complexity of the verification problem coincides with
the known results for AFs.

4.1 Complexity Results for General CAFs

In this section, we provide complexity results for general CAFs for credulous and skeptical
acceptance, verification and for the non-emptiness problem with respect to both variants of
semi-stable and stage semantics as well as claim-level naive, preferred and stable semantics.
First, we discuss upper bounds in Section 4.1.1 before we present hardness results yielding
the corresponding lower bounds in Section 4.1.2. An overview of our results is given in
Tables 3 & 4.

4.1.1 Membership Results

We will first discuss the membership proofs of the considered decision problems. To begin
with, we will give poly-time respectively coNP procedures for deciding whether a given set
of arguments E is a σ-realization for σ ∈ {cl -stbadm , cl -stbcf , cl -sem, cl -stg}. This lemma
yields upper bounds for the respective reasoning problems; notice that the complexity goes
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up one level in the polynomial hierarchy since one requires an additional guess for E.

Lemma 1. Given a CAF CF = (A,R, claim) and some E ⊆ A. Deciding whether E realizes
(1) a τ -cl-stable claim-set in CF for τ ∈ {adm, cf } is in P; (2) a cl-semi-stable (cl-stage)
claim set in CF is in coNP.

Proof. Checking admissibility (conflict-freeness) of E is in P (cf. Table 1); moreover, νCF (E)
can be computed in polynomial time by looping over all claims c ∈ claim(A) and adding
each c to νCF (E) if E attacks each occurrence of c in CF . For τ -cl-stable semantics, it
remains to check whether claim(E) ∪ νCF (E) = claim(A) to verify that E realizes a τ -cl-
stable claim-set in CF . For cl-semi-stable (cl-stage) semantics, we have to check that each
E′ ⊆ A with claim(E′)∪νCF (E′) ⊃ claim(E)∪νCF (E) is not admissible (conflict-free). This
can be solved in coNP by a standard guess & check algorithm, i.e. guess a set and verify
that it is admissible (conflict-free), compute the claims and verify that they are a proper
superset of the claims of the original set, yielding a coNP algorithm to verify that E realizes
a cl-semi-stable (cl-stage) claim-set in CF .

We use this lemma to show membership results for the verification problems for the
claim-based semantics.

Proposition 1. The following membership results hold for the verification problems VerCAF
σ :

1. VerCAF
σ is in NP for σ ∈ {cl -stbadm , cl -stbcf },

2. VerCAF
σ is in ΣP

2 for σ ∈ {cl -sem, cl -stg},

3. VerCAF
σ is in DP for σ ∈ {cl -prf , cl -naive}.

Proof. Consider a CAF CF = (A,R, claim) and a set S ⊆ claim(A) that has to be verified
against a semantics σ. 1 & 2) Here we can apply a guess and check algorithm. That is, one
can verify S ∈ σ(CF ) by guessing a set of arguments E ⊆ A with claim(E) = S and checking
whether E is a σ-realization of S. The latter is in P, respectively coNP by Lemma 1, yielding
NP- and ΣP

2 -procedures for the respective semantics.
3) DP-membership of VerCAF

σ for σ ∈ {cl -prf , cl -naive} is by (a) checking that a given
claim-set S is admissible (conflict-free) and (b) verifying subset-maximality of S. The former
has been shown to be NP-complete (cf. Table 2); the latter is in coNP: Guess a set of
arguments E such that S ⊂ claim(E) and check admissibility (conflict-freeness) of E. Thus
VerCAF

σ can be represented as the intersection of a NP-complete problem and a problem in
coNP and lies therefore in DP.

Next we consider the verification problem for the inherited semantics semc and stgc.

Proposition 2. VerCAF
σ is in ΣP

2 for σ ∈ {semc, stgc}.

Proof. ΣP
2 -membership of VerCAF

σc for σ ∈ {sem, stg} is by guessing a set E ⊆ A with
claim(E) = S and checking E ∈ σ((A,R)). The latter is coNP-complete by known results
for AFs (cf. Table 1).

We next turn the reasoning problems, starting with the skeptical acceptance problem
SkeptCAF

σ .

Proposition 3. The following membership results hold for the skeptical acceptance problems
SkeptCAF

σ :

1. SkeptCAF
σ is in coNP for σ ∈ {cl -stbadm , cl -stbcf },

9



2. SkeptCAF
σ is in ΠP

2 for σ ∈ {cl -prf , cl -naive, cl -sem, cl -stg}.

3. SkeptCAF
σ is in ΠP

2 for σ ∈ {semc, stgc}.

Proof. Membership proofs for SkeptCAF
σ are by standard guess-and-check algorithms for the

complementary problem: For a CAF CF = (A,R, claim) and claim c ∈ claim(A), guess a
set E ⊆ A such that c /∈ claim(E) and check claim(E) ∈ σ(CF ). 1) For σ ∈ {cl -stbτ} the
latter can be verified in P by Lemma 1, which yields coNP-membership; 2) By the same
lemma, that test for sigma ∈ {cl -sem, cl -stg}, is coNP, thus showing ΠP

2 -membership; for
σ ∈ {cl -prf , cl -naive}, we use the result for VerCAF

σ , i.e., claim(E) ∈ σ(CF ) can be verified
via two NP-oracle calls, which shows that SkeptCAF

σ is in ΠP
2 ; 3) for σ ∈ {semc, stgc}, it suffices

to check E ∈ sem((A,R)) or E ∈ stg((A,R))–both are in coNP (cf. Table 1)–to derive the
desired upper bound.

Proposition 4. The following membership results hold for the credulous acceptance problems
CredCAF

σ :

1. CredCAF
σ is in P for σ ∈ {cl -naive},

2. CredCAF
σ is in NP for σ ∈ {cl -stbadm , cl -stbcf , cl -prf }.

3. CredCAF
σ is in ΣP

2 for σ ∈ {cl -sem, cl -stg}.

Proof. Membership for CredCAF
σ and σ ∈ {cl -stbτ , cl -sem, cl -stg , semc, stgc} are by standard

guess-and-check-algorithms: For a CAF CF = (A,R, claim) and claim c ∈ claim(A), guess a
set E ⊆ A such that c ∈ claim(E) and check claim(E) ∈ σ(CF ). For cl-preferred and cl-naive
semantics, we exploit the fact a claim c ∈ claim(A) is credulously accepted with respect to cl-
preferred (cl-naive) semantics iff it is contained in some i-admissible (i-conflict-free) claim-set
and thus the complexity of CredCAF

θ for θ ∈ {cfc, admc} (cf. Table 2) applies.

Proposition 5. The following membership results hold for the non-empty problems NECAF
σ :

1. NECAF
σ is in P for σ ∈ {cl -naive, cl -stg};

2. NECAF
σ is in NP for σ ∈ {cl -stbadm , cl -stbcf , cl -prf , cl -sem};

3. NECAF
stgc

is in P and NECAF
semc

is in NP.

Proof. NECAF
σ for σ ∈ {semc, stgc, cl -prf , cl -naive, cl -sem, cl -stg} can be reduced to the re-

spective problem for AFs: for cl-preferred (cl-naive) semantics and both variants of semi-
stable (stage) semantics, we have that a CAF has a non-empty claim-set iff a non-empty ad-
missible (conflict-free) set of argument exists, i.e., NECAF

σ σ ∈ {cl -prf , cl -sem, semc, cl -naive,
cl -stg , stgc}, coincides with either NEAF

adm or NEAF
cf and we get the complexity directly from

Table 1. For σ ∈ {cl -stbadm , cl -stbcf }, NECAF
σ can be verified by guessing a non-empty set

E ⊆ A and utilizing Lemma 1 (1) for checking that claim(E) is a τ -cl-stable claim-set of
CF .

4.1.2 Hardness Results

We now turn to the hardness results for the considered decision problems. First observe that
one can reduce AF decision problems to the corresponding problems for CAFs by assigning
each argument a unique claim. Thus CAF decision problems generalize the corresponding
problems for AFs and are therefore at least as hard. It remains to provide hardness proofs for
the decision problems with higher complexity. By comparing Table 1 with the membership
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y1 1 y′1 1

z̄1 1ȳ′2 2

z2 2

ȳ3 3 ȳ′3 3

y′4 4 z4 4

z̄4 4

y y y′ y′

ȳ ȳ ȳ′ ȳ′ a1 1 a2 2 a3 3 a4 4

ϕ ϕ

Figure 2: CAF from the proof of Proposition 6 for the formula ∀yy′∃zϕ, where ϕ is given by
the clauses {{y, y′,¬z}, {¬y′, z}, {¬y,¬y′}, {y′, z,¬z}}.

results from above, we observe that it remains to show hardness for SkeptCAF
cl-naive and the

verification problems VerCAF
σ for all semantics σ under consideration.

We will first present a reduction from QSAT ∀2 to show ΠP
2 -hardness of SkeptCAF

cl-naive be-
fore we address the verification problems. In this reduction, starting from a QBF Ψ =
∀Y ∃Zϕ(Y,Z) where ϕ is a 3-CNF given by a set of clauses C = {cl1, . . . , cln} over atoms in
X=Y ∪ Z, we construct a CAF as follows (cf. Figure 2):

• For each clause cli, we introduce three arguments representing the literals contained
in cli and assign them claim i;

• moreover, we add arguments representing literals over Y and assign them unique claims;

• furthermore, we add arguments a1, . . . , an with claims 1, . . . , n and an argument ϕ with
unique claim ϕ;

• we introduce conflicts between each argument representing a variable x ∈ X and argu-
ments representing its negation; moreover, we add symmetric attacks between ϕ and
each argument ai.

This reduction is formalized as follows:

Reduction 1. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 , where ϕ is a 3-CNF given
by a set of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z. We construct a CAF
CF = (A,R, claim) as follows (cf. Figure 2):

A = {xi | x ∈ cli, i ≤ n} ∪ {x̄i | ¬x ∈ cli, i ≤ n} ∪
Y ∪ Ȳ ∪ {a1, . . . , an, ϕ}

R = {(ai, ϕ), (ϕ, ai) | i ≤ n} ∪ {(xi, x̄j)(x̄j , xi), | i, j ≤ n}∪
{(y, ȳi), (ȳi, y), (yi, ȳ), (ȳ, yi), (y, ȳ), (ȳ, y) | y ∈ Y }

where Ȳ = {ȳ | y ∈ Y }, and claim(xi) = claim(x̄i) = claim(ai) = i, claim(y) = y,
claim(ȳ) = ȳ, and claim(ϕ) = ϕ.

We will show that Ψ is valid iff the claim ϕ is skeptically accepted with respect to cl-
naive semantics in CF . The main observation is that for every Y ′ ⊆ Y , the set Y ′ ∪ {ȳ |
y /∈ Y ′} ∪ {a1, . . . , an} is conflict-free in (A,R) by construction, and therefore Y ′ ∪ {ȳ |
y /∈ Y ′} ∪ {1, . . . , n} is in cfc(CF ). Consequently, ϕ is skeptically accepted with respect to
cl-naive semantics iff for every Y ′ ⊆ Y , the set Y ′∪{ȳ | y /∈ Y ′}∪{1, . . . , n, ϕ} is cl-naive. It
suffices to check that for every Y ′ ⊆ Y , the set Y ′ ∪{ȳ | y /∈ Y ′}∪ {1, . . . , n, ϕ} is cl-naive iff
there is Z ′ ⊆ Z such that Y ′ ∪Z ′ is a model of ϕ. This is addressed in the following lemma.

Lemma 2. For every Y ′ ⊆ Y , Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} ∈ cl -naive(CF ) iff there is
Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of ϕ.

Proof. Let S = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ}.
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First assume S ∈ cl -naive(CF ). Consider a cfc-realization E of S. We have ϕ ∈ E
because ϕ is the unique argument having claim ϕ. Consequently, ai /∈ E and thus each claim
i is represented by xi for some x ∈ X ∪ X̄. Let Z ′ = {z ∈ Z | zi ∈ E}. Then M = Y ′ ∪Z ′ is
a model of ϕ: Consider an arbitrary clause cli. Since {1, . . . , n} ⊆ S, there is some argument
with claim i in E, that is, either ai ∈ E or xi ∈ E or x̄i ∈ E for some x ∈ X (observe that
yi ∈ E iff y ∈ E and ȳi ∈ E iff ȳ ∈ E, thus a further case distinction for y ∈ Y , ȳ ∈ Ȳ is not
required). We have that ai /∈ E since n ∈ S and for each argument b with claim(b) = n we
have (ai, b) ∈ R. Thus there is x ∈ X such that either xi ∈ E or x̄i ∈ E. In the former case,
we have x ∈ M and thus M satisfies cli, in the latter case x /∈ M and thus cli is satisfied.
We obtain that M is a model of ϕ.

Now assume there is Z ′ ⊆ Z such that M = Y ′∪Z ′ is a model of ϕ. Let E = Y ′∪{ȳ | y /∈
Y ′} ∪ {xi | x ∈ M} ∪ {x̄i | x /∈ M} ∪ {ϕ}. E is conflict-free since ai /∈ E for all i < n; other
conflicts appear only between arguments xi, x̄j referring to the same atom x. Moreover, as
M is a model of ϕ, we have that for each clause cli, there is either a positive literal x ∈ cli
with x ∈M or a negative literal x̄ ∈ cli with x /∈M . Thus {1, . . . , n} ⊆ claim(E); moreover,
Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ claim(E) and therefore claim(E) = S. S is a maximal cl-conflict-free
claim-set since S ∪ {c} /∈ cf c(CF ) for any c ∈ (Y ∪ Ȳ ) \ S as each realization of S ∪ {c}
contains y, ȳ for some y ∈ Y . Thus S ∈ cl -naive(CF ).

We are now ready to prove the correctness of the reduction.

Lemma 3. Ψ is valid iff the claim n is skeptically accepted with respect to cl-naive semantics
in CF .

Proof. Assume Ψ is not valid. Then there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z, M = Y ′ ∪ Z ′
does not satisfy ϕ. Let S = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n}. Observe that S is i-conflict-
free, witnessed by the cfc-realization Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {a1, . . . , an}. S is cl-naive since
S ∪ {ϕ} /∈ cf c(CF ) by (1) and S ∪ {c} /∈ cf c(CF ) for any c ∈ (Y ∪ Ȳ ) \S as each realization
of S ∪ {c} contains y, ȳ for some y ∈ Y . Thus ϕ is not skeptically accepted with respect to
cl-naive semantics in CF .

Assume ϕ is not skeptically accepted with respect to cl-naive semantics in CF . Then
there is a set S ∈ cl -naive(CF ) such that ϕ /∈ S. Observe that S contains Y ′ ∪ {ȳ | y /∈ Y }
for some Y ′ ⊆ Y by construction. Let Y ′ = S ∪ Y . We show that for all Z ′ ⊆ Z, Y ′ ∪ Z ′ is
not a model of ϕ: Towards a contradiction assume there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′
is a model of ϕ. By (1), T = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} ∈ cl -naive(CF ). Thus T ⊃ S
since ϕ /∈ S, contradiction to S being cl-naive in CF . It follows that Ψ is not valid.

By the above lemma and the fact that the reduction can be performed in polynomial
time we obtain ΠP

2 -hardness.

Proposition 6. SkeptCAF
cl-naive is ΠP

2 -hard.

Hardness results for verification problems admit a higher complexity compared to AFs
for all of the considered semantics. DP-hardness with respect to cl-preferred and cl-naive
semantics will be shown by reductions from SAT-UNSAT; ΣP

2 - hardness with respect to i-
semi-stable and i-stage semantics are by reductions from credulous reasoning for AFs with
the respective semantics; the remaining hardness results are shown via reductions from
appropriate decision problems for inherited semantics.

We first recall the standard reduction that provides the basis for DP-hardness of verifi-
cation with respect to cl-preferred semantics and reappears in Section 5.
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Figure 3: Reduction 2 for a formula which is given by the clauses
{{x1, x3, x4}, {x̄3, x̄4, x̄2)}, {x̄1, x̄3, x2}}.

ϕ2

ϕ2

cl21d cl22d cl23d

x2
1

x2
1

x̄2
1

x2
1

x2
2

x2
2

x̄2
2

x2
2

x2
3

x2
3

x̄2
3

x2
3

x2
4

x2
4

x̄2
4

x2
4

ϕ1

ϕ1

cl13 dcl12 dcl11 d

x1
1

x1
1

x̄1
1

x1
1

x1
2

x1
2

x̄1
2

x1
2

x1
3

x1
3

x̄1
3

x1
3

x1
4

x1
4

x̄1
4

x1
4

Figure 4: Reduction 3 for formulas (ϕ1, ϕ2) given by the sets of clauses
{{x1

1, x
1
3, x

1
4}, {x̄1

3, x̄
1
4, x̄

1
2)}, {x̄1

1, x̄
1
3, x

1
2}} and {{x2

1, x
2
2, x

2
3}, {x̄2

1, x
2
3, x

2
4}, {x̄2

2, x̄
2
3, x̄

2
4}}

Reduction 2. Let ϕ be given by a set of clauses C = {cl1, . . . , cln} over atoms in X and let
X̄ = {x̄ | x ∈ X}. We construct (A,R) with

A = X ∪ X̄ ∪ C ∪ {ϕ}
R = {(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈ cl}∪

{(x, x̄), (x̄, x) | x ∈ X} ∪ {(cli, ϕ) | i ≤ n}

Intuitively, each conflict-free set of literal-arguments that defend the argument ϕ corre-
sponds to a satisfying assignment of ϕ. An example of the reduction is given in Figure 3.

We next present a reduction from SAT-UNSAT to VerCAF
cl-prf which shows DP-hardness.

For a SAT-UNSAT instance (ϕ1, ϕ2) we apply Reduction 2 to both formulas and consider
the disjoint union of the two resulting AFs.

Reduction 3. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT, where each of the propositional
formulas ϕi (for i = 1, 2) is given over a set of clauses Ci = {cli1, . . . , clin} over atoms in Xi.
Moreover, we assume X1 ∩ X2 = ∅. Let (Ai, Ri) be the AFs that we obtain when applying
Reduction 2 to the formulas ϕi and adding attacks {(cl, cl) | cl ∈ Ci}. We construct the
CAF CF (ϕ1,ϕ2) = (A1 ∪ A2, R1 ∪ R2, claim) with claim(x) = claim(x̄) = x for all x ∈ Xi,
claim(cl) = d for all cl ∈ Ci and claim(ϕi) = ϕi. See Figure 4 for an illustrative example.

We now observe that a formula ϕi is satisfiable iff Xi ∪ {ϕi} is a cl-preferred claim-set of
(Ai, Ri, claim) which yields the correctness of the reduction.

Lemma 4. (ϕ1, ϕ2) is a valid SAT-UNSAT instance iff X1 ∪ X2 ∪ {ϕ1} is a cl-preferred
claim-set of CF (ϕ1,ϕ2).
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Proof. We have to show that X1 ∪X2 ∪ {ϕ1} is cl-preferred in CF (ϕ1,ϕ2) iff ϕ1 is satisfiable
and ϕ2 is unsatisfiable. For the purpose of this proof we consider the CAF CF (ϕ1,ϕ2) as the
disjoint union of the CAFs CF 1 = (A1, R1, claim) and CF 2 = (A2, R2, claim).

Since CF 1 and CF 2 are unconnected and have no common arguments (and thus cl -prf (CF ) =
{S ∪ T | S ∈ cl -prf (CF 1), T ∈ cl -prf (CF 2)}), it suffices to show that

(a) ϕi is satisfiable iff Xi ∪ {ϕi} is a cl-preferred claim-set of CF i, and

(b) ϕi is unsatisfiable iff Xi is a cl-preferred claim-set of CF i.

We have that (b) follows from (a) since Xi is i-admissible in CF i independently of the
satisfiability of ϕi (for an admc-realization, consider X ′ ∪ {x̄ | x /∈ X ′} for any X ′ ⊆ Xi) and
no argument cl ∈ Ci can appear in an admissible set. We show ϕi is satisfiable iff Xi ∪ {ϕi}
is a cl-preferred claim-set of CF i:

Assume ϕi is satisfiable and consider a model M of ϕi. Let E = M ∪ {x̄ | x /∈ M}. We
show that E′ = E ∪ {ϕi} is admissible in (Ai, R

′
i): First observe that E is admissible since

each a ∈ Xi∪X̄i defends itself. Since M satisfies ϕi, we have that for any clause cl ∈ Ci, there
is either x ∈ cl with x ∈M or x̄ ∈ cl with x /∈M , thus E attacks each cl ∈ C. Consequently,
E defends ϕi; we conclude that E′ is admissible in (Ai, R

′
i). Moreover, claim(E′) is a subset-

maximal i-admissible claim-set since claim(E′) = Ai \ {d}, that is, claim(E′) contains every
claim c ∈ claim(Ai) which is assigned to non-self-attacking arguments. Thus claim(E′) =
Xi ∪ {ϕi} is cl-preferred in CF i.

Now assume Xi ∪ {ϕi} is cl-preferred in CF i. Let E be a admc-realization of Xi ∪ {ϕi}
and let M = E∩Xi. Consider an arbitrary clause cl ∈ Ci. Since ϕi ∈ E is defended by E we
have that E attacks cl, thus there is either an argument x ∈ E such that (x, cl) ∈ R′i or an
argument x̄ ∈ E with (x̄, cl) ∈ R′i. In the former case, we have x ∈ M and thus M satisfies
cl, in the latter case x /∈M and thus cl is satisfied. We obtain that M is a model of ϕi.

By the above lemma and the fact that the reduction can be performed in polynomial
time we obtain DP-hardness.

Proposition 7. VerCAF
cl-prf is DP-hard.

DP-hardness of verification with respect to cl-naive semantics can be shown via a reduc-
tion from SAT-UNSAT by combining ideas from the previous propositions. As in Propo-
sition 7, one constructs two independent frameworks CF 1, CF 2 representing the formulas
(3-CNFs) ϕ1, ϕ2 with sets of clauses C1 = {cl1, . . . , clm} respectively C2 = {clm+1, . . . , cln}.
The construction is similar to the one in Proposition 6, i.e., one introduces an argument
with claim i for each literal in a clause cli ∈ Cj , an argument ϕj representing the respective
formula and adds |Cj | arguments with claims 1, . . . ,m respectively m + 1, . . . , n. One can
show that {1, . . . , n, ϕ1} is cl-naive in CF 1∪CF 2 iff ϕ1 is satisfiable and ϕ2 is unsatisfiable.

Reduction 4. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT, where each of the propositional
formulas ϕj (for j = 1, 2) is given over a set of clauses Cj over atoms in Xj. Moreover,
we assume X1 ∩ X2 = ∅, C1 = {cl1, . . . , clm}, C2 = {clm+1, . . . , cln}, and define A′1 =
{a1, . . . , am} and A′2 = {am+1, . . . , an}.

We construct the CAF CF (ϕ1,ϕ2) = (A,R, claim) with

A = {xi | x ∈ cli, 1 ≤ i ≤ n} ∪ {x̄i | x̄ ∈ cli, 1 ≤ i ≤ n} ∪A′1 ∪A′2 ∪ {ϕ1, ϕ2}
R = {(xi, x̄j)(x̄j , xi), | i, j ≤ n} ∪ {(ai, ϕ1), (ϕ1, ai) | i ≤ m}∪

{(ai, ϕ2), (ϕ2, ai) | m < i ≤ n}

with claim(xi) = claim(x̄i) = claim(ai) = i and claim(ϕi) = ϕi.
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Figure 5: Reduction 4 for formulas (ϕ1, ϕ2) given by the sets of clauses
{{s, u, v}, {ū, v̄, t̄)}, {s̄, ū, t}} and {{w, x, y}, {w̄, y, z}, {x̄, ȳ, z̄}}

Notice that the CAF CF (ϕ1,ϕ2) can be interpreted as the disjoint union of two CAFs,
CF 1 represents ϕ1 and CF 2 represents ϕ2. See Figure 5 example illustrating the reduction.

Lemma 5. (ϕ1, ϕ2) is a valid SAT-UNSAT instance iff
{1, . . . , n, ϕ1} ∈ cl -naive(CF ).

Proof. For the purpose of this proof we consider the CAF CF (ϕ1,ϕ2) as disjoint union of two
CAFs. To this end let CF 1 be the projection of CF (ϕ1,ϕ2) on the arguments {xi | x ∈ cli, 1 ≤
i ≤ m} ∪ {x̄i | x̄ ∈ cli, 1 ≤ i ≤ m} ∪ A′1 ∪ {ϕ1} and CF 2 be the projection of CF (ϕ1,ϕ2) on
the arguments
{xi | x ∈ cli,m + 1 ≤ i ≤ n} ∪ {x̄i | x̄ ∈ cli,m + 1 ≤ i ≤ n} ∪ A′2 ∪ {ϕ2}. Notice that
CF (ϕ1,ϕ2) = CF 1 ∪ CF 2 and that CF 1 and CF 2 are isomorphic.

We show ϕ1 is satisfiable and ϕ2 is unsatisfiable iff
{1, . . . , n, ϕ1} ∈ cl -naive(CF ) by proving

(a) ϕ1 is satisfiable iff {1, . . . ,m, ϕ1} ∈ cl -naive(CF 1).

(b) ϕ2 is unsatisfiable iff {m+ 1, . . . , n} ∈ cl -naive(CF 2).

Since CF 1, CF 2 are unconnected and claim(A1) ∩ claim(A2) = ∅, we have naivec(CF ) =
{S ∪ T | S ∈ naivec(CF 1), T ∈ naivec(CF 2)}. Thus ϕ1 is satisfiable and ϕ2 is unsatisfiable
iff {1, . . . , n, ϕ1} ∈ cl -naive(CF ).

Proof of (a): First assume ϕ1 is satisfiable and consider a model M of ϕ1. Let E =
{xi | x ∈ M, i ≤ m} ∪ {x̄i | x /∈ M, i ≤ m} ∪ {ϕ1}. E is conflict-free by construction;
moreover, ϕ1 ∈ claim(E) and i ∈ claim(E) for each i ≤ m: For each clause cli ∈ C1, there
is either x ∈ M ∩ cli or x̄ ∈ cli such that x /∈ M , consequently there is either xi ∈ E with
claim(xi) = i or x̄i ∈ E with claim(x̄i) = i. We have shown that {1, . . . ,m, ϕ1} has a
conflict-free realization in CF 1.

Now assume {1, . . . ,m, ϕ1} ∈ cl -naive(CF ). Let E be a cfc-realization of {1, . . . ,m, ϕ1}
and let M = {x | ∃i ≤ m : xi ∈ E}. Now, consider an arbitrary clause cli ∈ C1. Then
E contains an argument with claim i, that is, either xi ∈ E or x̄i ∈ E. In the former
case, x ∈ M and thus cli is satisfied. In the latter case, x /∈ M as x̄i is in conflict with all
arguments xj and thus cli is satisfied. We obtain that M is a model of ϕ1 and thus ϕ1 is
satisfiable.

Proof of (b): First notice that claim(A′2) = {m+ 1, . . . , n} is i-conflict-free by construc-
tion. By (a), ϕ2 is unsatisfiable iff {m+ 1, . . . , n, ϕ2} /∈ cl -naive(CF ′2). We thus obtain ϕ2 is
unsatisfiable iff {m+ 1, . . . , n, ϕ2} /∈ cl -naive(CF 2) iff {m+ 1, . . . , n} ∈ cl -naive(CF 2).

By the above lemma and the fact that the reduction can be performed in polynomial
time we obtain DP-hardness.

Proposition 8. VerCAF
cl-naive is DP-hard.
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In the following, we show ΣP
2 -hardness of the verification problem for CAFs with respect

to i-semi-stable and i-stage semantics, utilizing a reduction from the respective credulous
acceptance problem for AFs.

Proposition 9. VerCAF
semc and VerCAF

stgc are ΣP
2 -hard.

Proof. We present a proof for VerCAF
semc , the proof for VerCAF

stgc is analogous. For an instance

(A,R), b ∈ A of CredAF
sem , we construct a CAF CF = (A′, R, claim) with A′ = A ∪ {x},

x 6∈ A and claim(b) = c1, claim(a) = c2 for all a ∈ A′ \ {b}. Then, as the argument x
is not involved in any attack, it is contained in every semi-stable extension of (A′, R) and
thus, as claim(x) = c2, c2 is contained in every i-semi-stable claim-set of CF . Furthermore,
as CF contains only two claims, the only candidates for i-semi-stable claim-sets are {c1, c2}
and {c2}. Moreover, as b is the only argument with claim c1, {c1, c2} is i-semi-stable iff b is
contained in some semi-stable set of arguments in (A′, R). Thus, b is credulously accepted in
(A,R) w.r.t. semi-stable semantics iff {c1, c2} is i-semi-stable in CF . ΣP

2 -hardness of VerCAF
semc

thus follows from known results for AFs.

Finally, we provide hardness results for cl-semi-stable,
τ -cl-stable and cl-stage semantics. We will present reductions from the verification prob-
lem of suitable inherited semantics. To that end, we consider the following translations.

Reduction 5. For a CAF CF = (A,R, claim), we define three translations:

• Tr1(CF ) = (A′, R′, claim ′) with

A′ =A ∪ {a′ | a ∈ A}
R′ =R ∪ {(a, a′), (a′, a′) | a ∈ A}

and claim ′(a) = claim(a) for a ∈ A, claim(a′) = ca for a′ ∈ {a′ | a ∈ A} with fresh
claims ca /∈ claim(A).

• Tr2(CF ) = (A′, R′2, claim ′) with

A′ =A ∪ {a′ | a ∈ A}
R′2 =R′ ∪ {(a, b′) | (a, b) ∈ R};

and claim ′ as before.

• Tr3(CF ) = (A′, R′3, claim ′) with

A′ =A ∪ {a′ | a ∈ A}
R′3 =R′2 ∪ {(b, a) | (a, b) ∈ R} ∪ {(a, b) | a ∈ A, (b, b) ∈ R};

and claim ′ as before.

See Figure 6 for an example illustrating the translations. The following lemma states
that (a) Tr1 maps i-preferred semantics to cl-semi-stable semantics, (b) Tr2 maps inherited
to claim-level stable semantics, and (c) Tr3 maps inherited to claim-level stage semantics.
The proof can be found in the appendix.

Lemma 6. For a CAF CF = (A,R, claim),

prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF )),

stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for τ ∈ {adm, cf },
stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).
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Table 3: Complexity of inherited semantics for CAFs, full picture (results for i-semi-stable
and i-stage semantics are new). Results that deviate from the corresponding AF results are
highlighted in bold-face.

σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

cfc in P trivial NP-c in P

admc NP-c trivial NP-c NP-c

stbc NP-c coNP-c NP-c NP-c

naivec in P coNP-c NP-c in P

prfc NP-c ΠP
2 -c ΣP

2 -c NP-c

semc ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

stgc ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

Table 4: Complexity of claim-based semantics for CAFs. Results that deviate from the
corresponding AF results are highlighted in bold-face; results that deviate from those w.r.t.
inherited semantics are underlined.

σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

cl -stbadm NP-c coNP-c NP-c NP-c

cl -stbcf NP-c coNP-c NP-c NP-c

cl -naive in P ΠP
2 -c DP-c in P

cl -prf NP-c ΠP
2 -c DP-c NP-c

cl -sem ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

cl -stg ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

Lower bounds for VerCAF
σ , σ ∈ {cl -stbadm , cl -stbcf , cl -sem, cl -stg}, thus follow from the

results of the respective inherited semantics: For a given CAF CF = (A,R, claim) and a
set of claims S ⊆ claim(A), one can check S ∈ σ′c(CF ), σ′ ∈ {stb, prf , stg}, by applying the
respective translation and checking whether S is a σ-realization in the resulting CAF.

Proposition 10. VerCAF
σ is NP-hard for σ ∈ {cl -stbadm , cl -stbcf } and ΣP

2 -hard for σ ∈
{cl -sem, cl -stg}.
Proof. The NP-hardness of VerCAF

σ for σ ∈ {cl -stbadm , cl -stbcf } is by the fact that Verstbc is
NP-hard and translation Tr2. The ΣP

2 -hardness of VerCAF
cl-sem is by the fact fact that Verprf c

is ΣP
2 -hard and translation Tr1. Finally, the ΣP

2 -hardness of VerCAF
cl-stg is by the fact fact that

Verstgc is ΣP
2 -hard and translation Tr3.

This concludes our complexity analysis of general CAFs. The full complexity landscape
is summarized in Tables 3 & 4. Table 3 shows the results for inherited semantics (together
with the results of [12]) while Table 4 shows the results for claim-based semantics.

4.2 Complexity Results for well-formed CAFs

We now turn to the complexity of well-formed CAFs. First observe that all upper bounds
from the previous section carry over since well-formed CAFs are a special case of CAFs. It
remains to give improved upper bounds for verification with respect to all of the considered
semantics as well as for Skeptwfcl-naive . The latter also requires a genuine hardness proof as it
remains harder than the corresponding problem for AFs even in the well-formed case. For
the remaining semantics, we obtain hardness results from the corresponding problems for
AFs since they constitute a special case of the respective problems for CAFs.
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We first discuss improved upper bounds for verification. For preferred as well as for both
variants of cl-stable semantics, membership is immediate by the corresponding results for
inherited semantics as the respective semantics collapse in the well-formed case [8].

Proposition 11. Verwfσ is in P for σ ∈ {cl -stbcf , cl -stbadm} and coNP-complete for σ =
cl -prf .

For the remaining semantics, we exploit the following observation [12].

Lemma 7. Let CF = (A,R, claim) be well-formed. For S ⊆ claim(A), let

E0(S) ={a ∈ A | cl(a) ∈ S}
E1(S) =E0(S) \ E0(S)+

(A,R)

E2(S) ={a ∈ E1(S) | b ∈ E1(S)+
(A,R) for all (b, a) ∈ R}.

Then S ∈ cfc(CF ) iff S = claim(E1(S)) and S ∈ admc(CF ) iff S = claim(E2(S)).

To check whether a set S ⊆ claim(A) is cl-naive in a given well-formed CAF CF =
(A,R, claim), we utilize Lemma 7 to test (i) S ∈ cfc(CF ) and (ii) S ∪ {c} /∈ cfc(CF ) for all

c ∈ claim(A) \ S, which yields a poly-time procedure for Verwfnaive .

Proposition 12. Verwfnaive is in P.

For inherited as well as claim-level semi-stable and stage semantics, we first compute
E1(S), respectively E2(S) in P (cf. Lemma 7). For cl-semi-stable (cl-stage) semantics,
utilize Lemma 1 to check in coNP whether E2(S) (E1(S)) realizes a cl-semi-stable (cl-stage)
claim set; similarly, for i-semi-stable (i-stage) semantics, we check that E2(S) ∈ sem((A,R))
(E1(S) ∈ stg((A,R))), which is known to be coNP-complete.

Proposition 13. Verwfσ is in coNP for σ ∈ {cl -sem, cl -stg , semc, stgc}.

Finally, we will discuss coNP-completeness of skeptical reasoning in well-formed CAFs
w.r.t. cl-naive semantics. To show hardness, we make use of a small adaption of the standard
reduction (cf. Reduction 2) by removing the argument ϕ and all associated attacks.

Proposition 14. Skeptwfcl-naive is coNP-complete.

Proof. For a well-formed CAF CF = (A,R, claim), one can verify skeptical acceptance of
a claim c ∈ claim(A) by (1) guessing a set E ⊆ A such that c /∈ claim(E); (2) checking
if claim(E) is a cl-naive claim-set of CF . The latter can be verified in polynomial time,
yielding a NP-procedure for the complementary problem.

Hardness can be shown via a reduction from UNSAT: For a formula ϕ with clauses
C = {cl1, . . . , cln} over the atoms X, let (A′, R′) be as in Reduction 2. We define CF =
(A,R, claim) with A = A′\{ϕ} and R = R′\{(cli, ϕ) | i ≤ n}, moreover, we set claim(x) = x,
claim(x̄) = x̄, and claim(cli) = ϕ̄. See Figure 7 for an illustrative example of the reduction.
Observe that CF is well-formed. We show ϕ is satisfiable iff ϕ̄ is not skeptically accepted in
CF .

In case ϕ is satisfiable, then there is a model M ⊆ X of ϕ. Consider E = M∪{x̄ | x /∈M},
which is conflict-free and cannot be extended by any argument cli assigned with claim ϕ̄:
Indeed, since each clause cli is satisfied by M , there is either a positive literal x ∈ cli with
x ∈M or a negative literal x̄ ∈ cli with x /∈M , thus cli is attacked by E in (A,R). Moreover,
we have that for each x ∈ X, either x ∈ E (and thus x ∈ claim(E)) or x̄ ∈ E (and thus
x̄ ∈ claim(E)) and (x, x̄) ∈ R. Consequently, claim(E) is maximal among i-conflict-free

18



Table 5: Complexity of inherited semantics in well-formed CAFs, full picture (results for
i-semi-stable and i-stage semantics are new). Results that deviate from general CAFs (cf.
Table 3) are highlighted in bold-face.

σ Credwfσ Skeptwfσ Verwfσ NEwf
σ

cfc in P trivial in P in P

admc NP-c trivial in P NP-c

stbc NP-c coNP-c in P NP-c

naivec in P coNP-c in P in P

prfc NP-c ΠP
2 -c coNP-c NP-c

semc ΣP
2 -c ΠP

2 -c coNP-c NP-c

stgc ΣP
2 -c ΠP

2 -c coNP-c in P

Table 6: Complexity of claim-based semantics in well-formed CAFs. Results that deviate
from general CAFs (cf. Table 4) are highlighted in bold-face.

σ Credwfσ Skeptwfσ Verwfσ NEwf
σ

cl -stbcf NP-c coNP-c in P NP-c

cl -stbadm NP-c coNP-c in P NP-c

cl -naive in P coNP-c in P in P

cl -prf NP-c ΠP
2 -c coNP-c NP-c

cl -sem ΣP
2 -c ΠP

2 -c coNP-c NP-c

cl -stg ΣP
2 -c ΠP

2 -c coNP-c in P

claim-sets and thus claim(E) ∈ cl -naive(CF ). It follows that ϕ̄ is not skeptically accepted
in CF .

Now assume ϕ̄ is not skeptically accepted in CF , then there is a set S ∈ cl -naive(CF )
such that ϕ̄ /∈ S. For a cfc-realization E of S, we have M = E ∩X is a model of ϕ: Consider
an arbitrary clause cli. As ϕ̄ /∈ S we have that E attacks cli, thus there is either an argument
x ∈ E such that (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R. In the former case, we
have x ∈ M and thus M satisfies cli, in the latter case x̄ /∈ M and thus cli is satisfied. We
obtain that M is a model of ϕ.

This concludes our complexity analysis of well-formed CAFs. All the results are summa-
rized in Tables 5 & 6.

5 Complexity of Concurrence

This section examines the complexity of deciding concurrence of the different variants of the
considered semantics and studies a claim-based variant of the coherence problem.

The inherent difference of maximization on argument- respectively claim-level in CAFs
has been already discussed by [8] who showed that also for well-formed CAFs, claim-level and
inherited versions of semi-stable and stage semantics potentially yield different claim-sets. In
this section, we first consider the complexity of ConCAF

σ and Conwf
σ , that is: Given a (well-

formed) CAF CF and a semantics σ, how hard is it to decide whether σc(CF ) = cl -σ(CF )?
Our results are summarized in Table 7 and show that deciding concurrence is in general
computationally hard; observe that for semi-stable and stage semantics, the problem is
complete for the third level of the polynomial hierarchy. For preferred and stable semantics
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Table 7: Complexity of deciding ConCAF
σ and Conwf

σ .

prf naive stbτ sem stg

ConCAF
σ ΠP

2 -c coNP-c ΠP
2 -c ΠP

3 -c ΠP
3 -c

Conwf
σ trivial coNP-c trivial ΠP

2 -c ΠP
2 -c

on the other hand, the question becomes trivial for well-formed CAFs as the claim-based
versions of this semantics coincide with their inherited counter-parts.

We furthermore show that deciding whether cl -stbcf (CF ) = cl -stbadm(CF ) for a given
CAF CF is ΠP

2 -complete and conclude the section with a brief discussion of the well-known
coherence problem when applied to claim-based semantics. However, let us start with the
collection of results concerning concurrence which will be proven in the forthcoming two
subsections.

Theorem 1. The complexity results depicted in Table 7 hold.

5.1 Concurrence of General CAFs

We start with a rather straight-forward observation for preferred and naive semantics which
will be useful for both membership and hardness arguments. The distinguishing factor of
inherited and claim-level variants of preferred and naive semantics is incomparability : a set
of sets X = {X1, . . . , Xn} is incomparable iff Xi 6⊆ Xj for all i, j ≤ n. Claim-level variants of
both semantics return incomparable sets of claim-extensions since maximization is performed
on claim-level. We show next that the two different variants of preferred and naive semantics
coincide iff the inherited variants return incomparable sets as well.

Proposition 15. For a CAF CF = (A,R, claim), for σ ∈ {prf ,naive}, σc(CF ) = cl -σ(CF )
if and only if σc(CF ) is incomparable.

Proof. Let σ = prf (the proof for σ = naive is analogous). Assume prfc(CF ) is incomparable
and let S ∈ prfc(CF ). Then S ∈ admc(CF ). Now assume there is T ∈ admc(CF ) with
T ⊃ S. Consider a admc-realization E of T in CF and let E′ ∈ prf ((A,R)) with E ⊆ E′.
But then claim(E′) ∈ prfc(CF ) and claim(E′) ⊇ T ⊃ S, contradiction to prfc(CF ) being
incomparable.

To get upper bounds for preferred and naive semantics, it thus suffices to verify incom-
parability of σc(CF ). We give a ΣP

2 (NP resp.) procedure for the complementary problem:
Guess E,G ⊆ A and check (i) E,G ∈ σ((A,R)) and (ii) claim(E) ⊂ claim(G). The former
is in coNP for prf (in P for naive) by Table 1.

Membership for the remaining semantics is by the following generic guess and check
procedure for the complementary problem: To show for a given CAF CF = (A,R, claim) that
σc(CF ) 6= cl -σ(CF ) one first guesses a set of claims S ⊆ claim(A) and checks whether S ∈
σc(CF ) and S /∈ cl -σ(CF ) or vice versa. The complexity of the procedure thus follows from
the corresponding results for verification with respect to the considered semantics, i.e. NP-
membership for the stable semantics; ΣP

2 -membership for semi-stable and stage semantics,
cf. Tables 3 and 4.

Before turning to the results for the matching lower bounds in general CAFs, let us point
out that for all except naive semantics, deciding concurrence admits a lower complexity for
well-formed CAFs than for general CAFs. In the preliminary version of this paper, we have
proven coNP-hardness of deciding concurrence for general CAFs while the complexity of this
problem for well-formed CAFs has been left open. This gap has been closed recently [25] by
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showing that coNP-hardness holds even in the well-formed case. Due to this novel insights,
we omit the original hardness proof for general CAFs presented in [16] and refer the interested
reader to [25].

Proposition 16. ConCAF
prf is ΠP

2 -hard.

Proof. We present a reduction from SkeptAF
prf : Given an instance (A,R), a ∈ A from SkeptAF

prf .
W.l.o.g. we can assume that the preferred extensions of (A,R) are non-empty (otherwise
add an isolated argument). We construct CF = (A′, R′, claim) with A′ = A ∪ {i, j}, R′ =
R∪{(j, b), (b, j) | b ∈ A}, and claim(a) = claim(j) = c1, claim(b) = c2 for b ∈ (A\{a})∪{i}.
Then prf ((A′, R′)) = {E ∪ {i} | E ∈ prf ((A,R))} ∪ {{i, j}} since the argument i is isolated
and thus appears in each extension; moreover, j mutually attacks each argument b ∈ A.
For all extensions D ∈ prf ((A′, R′)) with a ∈ D we have claim(D) = {c1, c2}; for all
extensions D ∈ prf ((A′, R′)), D 6= {i, j}, with a /∈ D, we have claim(D) = {c2}; moreover,
claim({i, j}) = {c1, c2} and thus we have {c1, c2} ∈ prfc(CF ) independently of the considered
instance. Thus a is not skeptically accepted in (A,R) with respect to preferred semantics iff
{c2} ∈ prfc(CF ) iff prfc(CF ) is not incomparable. Applying Proposition 15 concludes the
proof.

Next we present our ΠP
2 -hardness proof for claim-level stable semantics. We will make

use of the following reduction.

Reduction 6. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance of QSAT ∀2 , where ϕ is given by a set
of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z and let (A,R) be as in Reduction 2.
We define a CAF (A′, R′, claim) with

A′ = A \ {ϕ}
R′ = (R ∪ {(cli, cli) | i ≤ n}) \ {(cli, ϕ) | i ≤ n}

and claim(y) = y, claim(ȳ) = ȳ, claim(v) = claim(cli) = c for i ≤ n and v ∈ Z ∪ Z̄.

See Figure 8 for an illustrative example of the reduction.

Proposition 17. ConCAF
stbτ , τ ∈ {cf , adm} is ΠP

2 -hard.

Proof. We present a reduction from QSAT ∀2 . Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of
QSAT ∀2 , where ϕ is given by a set of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z.
Let (A,R) be as in Reduction 6.

We will first show that (a) cl -stbτ = {Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} | Y ′ ⊆ Y }: Each τ -cl-stable
claim-set S contains either y or ȳ by construction; moreover, c ∈ S since c is not defeated
by any conflict-free set of arguments E ⊆ A, thus each τ -cl-stable claim-set is of the form
Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} for some Y ′ ⊆ Y . Moreover, each such set is stbτ -realizable, since
for any Y ′ ⊆ Y , z ∈ Z, the set E = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {z} is admissible (conflict-free) in
(A,R′) and attacks every a ∈ A such that claim(a) /∈ claim(E).

We show Ψ is valid iff stbc(CF ) = cl -stbτ (CF ).
Assume Ψ is valid. Let Y ′ ⊆ Y . Then there is Z ′ ⊆ Z such that ϕ is satisfied by

M = Y ′ ∪ Z ′. Let E = M ∪ {x̄ | x /∈ M}. Since M satisfies each clause cli, there is either
x ∈ cli with x ∈ M or there is x̄ ∈ cli with x /∈ M . It follows that each cli, i ≤ n, is
attacked by E. Since E is also conflict-free we have shown that E is a stable extension of
(A,R) and therefore Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF ). As Y ′ was arbitrary, we have that
Y ′ ∪{ȳ | y /∈ Y ′}∪{c} ∈ stbc(CF ) for all Y ′ ⊆ Y . We conclude that stbc(CF ) = cl -stbτ (CF )
by (a).

Assume stbc(CF ) = cl -stbτ (CF ). Let Y ′ ⊆ Y . By (a) we have that S = Y ′ ∪ {ȳ | y /∈
Y ′} ∪ {c} ∈ cl -stbτ (CF ) = stbc(CF ). Consider a stbc-realization E of S and let Z ′ = E ∩ Z.
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Then M = Y ′ ∪ Z ′ satisfies ϕ: Consider an arbitrary clause cli. As E attacks cli there is
either an argument x ∈ E with (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R. In the
former case, x ∈ cli and x ∈M and thus cli is satisfied; in the latter case, x̄ ∈ cli and x /∈M
and thus cli is satisfied. Thus M is a model of ϕ. We have shown that for every Y ′ ⊆ Y ,
there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ satisfies ϕ. It follows that Ψ is valid.

We finally arrive at the ΠP
3 -hardness proofs for concurrence in the case of semi-stable and

stage semantics. We reduce fromQSAT ∃3 . Our formulae are of the form Ψ = ∃X∀Y ∃Zϕ(X,Y, Z)
for a CNF ϕ over variables in X ∪ Y ∪ Z. The basis for our reduction builds the standard
reduction (cf. Reduction 2). We will deal with the arguments corresponding to the different
groups of literals over X, Y , and Z as follows:

• For each argument l ∈ {x,¬x} corresponding to a literal over atoms in X, we introduce
a self-attacking dummy argument dl which is attacked by l. Moreover, each argument
is assigned its own name; i.e., argument l has claim l.

In this way, we ensure that we can treat different truth assignments for atoms in X
separately in the CAF (the dummy arguments indicate whether x or ¬x is contained
in the extension because only one of them is contained in the range). Moreover, each
truth assignment gives rise to a distinct claim-extension.

• For arguments corresponding to literals over Y , we proceed similarly and introduce
dummy arguments. However, we do not distinguish between atoms and their nega-
tion. We do so by assigning the argument corresponding to atom y and the argument
corresponding to its negation the same claim y, for each atom y ∈ Y .

Again, we encode the truth assignments for atoms in Y with the dummy arguments.
However, now we cannot distinguish the truth assignments when looking only at the
claim-extensions of the CAF.

• Arguments associated to literals over Z do not distinguish between atoms and their
negation. We assign each pair of arguments corresponding to an atom z ∈ Z and its
negation the same claim z.

For atoms over Z, it does not matter whether we choose the argument corresponding
to a given atom or its negation. As the arguments are existentially quantified it suffices
to consider some satisfying assignment.

We furthermore extend the basic reduction with attacks on and from the argument
corresponding to ϕ. First, we add an argument ϕ̄ that symmetrically attacks ϕ. In this
way, we ensure that ϕ appears in the (claim-)range of each extension. Second, we add two
self-attacking arguments d1 and d2 with the same claim d. Here, only one of them (d1)
is attacked by ϕ. This gadget is crucial to separate claim-level and inherited semantics:
On argument-level, it is always better to include ϕ instead of ϕ̄ in the extension whenever
possible since the argument-based range contains d1 if ϕ is contained in the extension. The
claim-range of an admissible (conflict-free) set, however, does not distinguish between an
extension containing ϕ and an extension containing ϕ̄ since not all occurrences of d are
attacked.

Below, we state the formal definition.

Reduction 7. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of QSAT ∃3 , where ϕ is given by
a set of clauses C = {cl1, . . . , cln} over atoms in V = X ∪ Y ∪Z. We can assume that there
is a variable y0 ∈ Y with y0 ∈ cli for all i ≤ n (otherwise we can add such a y0 without
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changing the validity of Ψ). Let (A,R) be the AF constructed from ϕ as in Reduction 2. We
define CF = (A′, R′, claim) with

A′ = A ∪ {d1, d2, ϕ̄} ∪ {dv, dv̄ | v ∈ X ∪ Y }
R′ = R ∪ {(a, da), (da, da), | a ∈ X ∪ X̄ ∪ Y ∪ Ȳ } ∪

{(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, d1)} ∪ {(di, dj) | i, j ≤ 2}

and claim(v) = claim(v̄) = v for v ∈ Y ∪ Z; claim(cli) = ϕ̄ for i ≤ n; claim(di) = d for
i = 1, 2; claim(a) = a otherwise.

An illustrative example of the reduction is given in Figure 9.
The following lemma deals with the structure of the cl-semi-stable and i-semi-stable

claim-sets of the constructed CAF CF .

Lemma 8. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of QSAT ∃3 and let CF = (A,R, claim)
be as in Reduction 7. Then for all E ∈ sem((A,R)),

1. ϕ ∈ E ⇔ ϕ̄ /∈ E;

2. ϕ ∈ E ⇔ E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2});

3. ϕ̄ ∈ E ⇔ C ∩ E 6= ∅;

4. ϕ̄ ∈ E ⇔ E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}).

Proof. Let F = (A,R) and first observe that (1) is immediate by construction.
For (2), first assume ϕ ∈ E. Then ϕ̄, d1 ∈ E⊕F since ϕ ∈ E; also, ϕ ∈ E only if E defends

ϕ against each cli, i ≤ n, thus each cli is attacked by E; moreover, each a ∈ V ∪ V̄ is either
contained or attacked by E, otherwise, D = E ∪ {a} is admissible in (A,R) with D⊕F ⊃ E⊕F ,
contradiction to E ∈ sem((A,R)). Thus V ∪V̄ ∈ E⊕F and da ∈ E⊕F for a ∈ E∩(X∪X̄∪Y ∪Ȳ ).
In case E⊕F = A \ ({da | a ∈ (X ∪ X̄ ∪Y ∪ Ȳ ) \E}∪ {d2}), we have ϕ ∈ E since ϕ is the only
argument attacking d1.

To show (3), first assume ϕ̄ ∈ E. Towards a contradiction assume C ∩ E = ∅. Then
D = (E ∪ {ϕ}) \ {ϕ̄} is admissible in (A,R) and D⊕F is a proper subset of E⊕F , contradiction
to E being semi-stable in (A,R). It follows that C ∩E 6= ∅. The other direction is immediate
since C ∩ E 6= ∅ implies ϕ /∈ E. By (1) we obtain ϕ̄ ∈ E.

To show (4) let us again assume ϕ̄ ∈ E. Then ϕ ∈ E+
F ; moreover, each a ∈ V ∪ V̄ is

either contained in E or attacked by E, otherwise, D = (E ∪ {a}) \ {cli | i ≤ n, (a, cli) ∈ R}
is admissible in (A,R) and satisfies D⊕F ⊃ E⊕F , contradiction to E ∈ sem((A,R)). We thus
have V ∪ V̄ ∈ E⊕F and da ∈ E⊕F for a ∈ E ∩ (X ∪ X̄ ∪Y ∪ Ȳ ). Also, each cli is either attacked
by E or defended by E (by (3), there is at least one i ≤ n such that cli ∈ E). The other
direction follows since d1 /∈ E⊕F and thus ϕ /∈ E.

Next we provide some properties for the reduction making use of the observation that for
any instance of QSAT ∃3 , each i-semi-stable and each cl-semi-stable claim-set in the resulting
CAF is of the form SX′ ∪ {e} where

SX′ = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z

for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}; in fact, it can be shown that each such set is cl -sem-
realizable. Note that this is not the case for i-semi-stable semantics (as a counter-example,
consider e = ϕ̄ and X = {x} in Figure 9).
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Lemma 9. Let CF = (A,R, claim) be as in Reduction 7 for an instance ∃X∀Y ∃Zϕ(X,Y, Z)
of QSAT ∃3 . Then,

{SX′ ∪ {ϕ} | X ′ ⊆ X} ⊆ semc(CF ) ⊆ cl -sem(CF ) =

{SX′ ∪ {e} | X ′ ⊆ X, e ∈ {ϕ, ϕ̄}}
Proof. Let F = (A,R). To prove the statement we will first show that (i) each cl-semi-
stable and each i-semi-stable claim-set is of the form SX′ ∪ {e} for some X ′ ⊆ X and for
e ∈ {ϕ, ϕ̄}. As semc(CF ) ⊆ prfc(CF ) and cl -sem(CF ) ⊆ prfc(CF ), it suffices to prove the
statement for each i-preferred claim-set S. First observe that S cannot contain both a, ā
for a ∈ X ∪ {ϕ} since there is no cfc-realization containing both a, ā. As each other claim
in claim(A) \ (V ∪ V̄ ∪ {ϕ, ϕ̄}) is self-attacking, it remains to show that SX′ ∪ {e} ⊆ S for
some X ′ ⊆ X, e ∈ {ϕ, ϕ̄}: (a) S contains X ′ ∪ {x̄ | x /∈ X ′} for some for some X ′ ⊆ X:
Assume there is x ∈ X such that x, x̄ /∈ S. Consider a prfc-realization E of S and let
D = E ∪ {x}. D is conflict-free since x̄, dx /∈ E, moreover, cli /∈ E for each clause cli with
(x, cli) ∈ R, since cli is not defended against the attack (x, cli). Also, D is admissible since
E does not contain the only attacker x̄ of x and D ⊃ E, contradiction to E being preferred
in (A,R). (b) S contains Y ∪ Z: Assume there is v ∈ Y ∪ Z such that v /∈ S. Consider a
prfc-realization E of S and let D = E ∪ {v}. D is admissible since v̄ /∈ E by assumption
v /∈ S and D ⊃ E, contradiction to E being preferred in (A,R). (c) S contains either ϕ or
ϕ̄: Towards a contradiction, assume ϕ, ϕ̄ /∈ S. Consider a prfc-realization E of S and let
D = E ∪ {ϕ̄}. D is admissible since ϕ /∈ E and D ⊃ E, contradiction to E being preferred
in (A,R). We thus have shown that each inherited as well as each claim-level semi-stable
claim-set is of the form SX′ ∪ {e}, e ∈ {ϕ, ϕ̄}, for some set X ′ ⊆ X.

Next we show that each set of the form SX′ ∪ {ϕ} is i-semi-stable in CF . Fix some set
X ′ ⊆ X and let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ {ϕ} for some Z ′ ⊆ Z and
Y ′ ⊆ Y with y0 ∈ Y ′. E defends ϕ as y0 ∈ cli for all i ≤ n, thus E is admissible. Moreover,
E is semi-stable since E⊕F = V ∪ V̄ ∪ {da | a ∈ E ∩ (X ∪ X̄ ∪ Y ∪ Ȳ )} ∪ C ∪ {ϕ, ϕ̄, d1}
is subset-maximal: Assume there is D ∈ adm((A,R)) with D⊕F ⊃ E⊕F , that is, there is
e ∈ {d2} ∪ {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \E} such that e ∈ D⊕F ; in particular, e ∈ D+

F because
all considered arguments are self-attacking. Observe that d2 /∈ D+

F since its only attacker is
self-attacking. In case e = da for some a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E we have a ∈ D and ā ∈ D
and thus D is conflicting, contradiction to D being conflict-free. Thus we have shown that
claim(E) = SX′ ∪ {ϕ} is i-semi-stable.

It remains to prove that each set of the form SX′ ∪ {e} for some X ′ ⊆ X, e ∈ {ϕ, ϕ̄}
is cl-semi-stable in CF . Let X ′ ⊆ X. We first show that SX′ ∪ {ϕ̄} is cl-semi-stable in
CF . Consider some Y ′ ⊆ Y , Z ′ ⊆ Z and let C′ ⊆ C denote the set of clauses cli which are
not attacked by X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′}. Let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈
X ′ ∪ Y ′ ∪ Z ′} ∪ C′ ∪ {ϕ̄}. Then E is admissible, claim(E) = SX′ ∪ {ϕ̄}, and νCF (E) = {da |
a ∈ X ′ ∪Y ′ ∪Z ′ ∪{v̄ | v /∈ X ′ ∪Y ′ ∪Z ′}}∪ {ϕ}. Thus claim(E)∪ νCF (E) is subset-maximal
among admissible sets since it contains every claim c ∈ claim(A) which is assigned to non-self-
attacking arguments; moreover, it contains a maximal set of claims among {dv | v ∈ V ∪ V̄ }
since it contains precisely one of dv, dv̄ for each v ∈ V ; furthermore observe that d /∈ νCF (E)
for all conflict-free sets E ⊆ A since d2 /∈ E+

F for every E ∈ cf ((A,R)). It follows that
SX′ ∪ {ϕ̄} is cl-semi-stable. In a similar way we show that SX′ ∪ {ϕ} is cl-semi-stable in
CF . Let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ {ϕ} for some Z ′ ⊆ Z and Y ′ ⊆ Y
with y0 ∈ Y ′. Then E defends ϕ as y0 ∈ cli for all i ≤ n, thus E is admissible. Moreover,
claim(E) = SX′ ∪ {ϕ} and νCF (E) = {da | a ∈ X ′ ∪ Y ′ ∪Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪Z ′}} ∪ {ϕ̄}.
Similar as before we conclude that claim(E) ∪ νCF (E) is subset-maximal among admissible
claim-sets.

We are now in the position to prove the desired ΠP
3 -hardness result.
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Proposition 18. ConCAF
sem is ΠP

3 -hard.

Proof. Let CF = (A,R, claim) be the CAF generated by Reduction 7 from the given
QSAT ∃3 instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) and let F = (A,R). We show that Ψ is valid
iff semc(CF ) 6= cl -sem(CF ). Since semc(CF ) ⊆ cl -sem(CF ) by Lemma 9, the latter reduces
to showing that semc(CF ) is a proper subset of cl -sem(CF ), that is, we show that Ψ is valid
iff there is some X ′ ⊆ X such that SX′ ∪ {ϕ̄} is not semc-realizable in CF .

Let us first assume that Ψ is valid, that is, there is X ′ ⊆ X such that for all Y ′ ⊆ Y ,
there is Z ′ ⊆ Z such that X ′ ∪ Y ′ ∪ Z ′ is a model of ϕ. We show SX′ ∪ {ϕ̄} /∈ semc(CF ).
Towards a contradiction, assume there is E ∈ sem((A,R)) with claim(E) = SX′∪{ϕ̄}. Then
ϕ̄ ∈ E. By Lemma 8, we have E⊕F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}). Let
Y ′ = E ∩ Y . By assumption Ψ is valid, there is Z ′ ⊆ Z such that M = X ′ ∪ Y ′ ∪ Z ′ is
a model of ϕ. Let D = M ∪ {v̄ | v /∈ M} ∪ {ϕ}. D is conflict-free; moreover, D attacks
every cli, i ≤ n, using that M is a model of ϕ: For each clause cli, there is v ∈ V such that
either v ∈ cli ∩M (in that case, v ∈ D and (v, cli) ∈ R) or v̄ ∈ cli and v /∈ M (in that
case, v̄ ∈ D and (v̄, cli) ∈ R). It follows that D is admissible as ϕ is defended against each
attack of clause-arguments cli. Next we show that D⊕F is a proper superset of E⊕F : Clearly,
V ∪ V̄ ⊆ D⊕F ; also, C ⊆ D⊕F as shown above; moreover, ϕ̄, d1 ∈ D⊕F since ϕ ∈ D. As D
and E contain the same arguments a ∈ X ∪ X̄ ∪ Y ∪ Ȳ by construction, we furthermore
have {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} = {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ D}. It follows that
D⊕F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2}). Thus D is admissible and D⊕F ⊃ E⊕F ,
contradiction to our assumption E is semi-stable in (A,R).

Next assume Ψ is not valid. We show that for all X ′ ⊆ X, SX′ ∪ {ϕ̄} ∈ semc(CF ). Fix
X ′ ⊆ X. Since Ψ is not valid, there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z, X ′ ∪ Y ′ ∪Z ′ is not a
model of ϕ. Fix Z ′ ⊆ Z and let E = X ′∪Y ′∪Z ′∪{v̄ | v /∈ X ′∪Y ′∪Z ′}∪C′∪{ϕ̄}, where C′ ⊆ C
contains all clauses cli which are not attacked by X ′ ∪Y ′ ∪Z ′ ∪{ā | a /∈ X ′ ∪Y ′ ∪Z ′}. Then
E is admissible and E⊕F = A\ ({da | a ∈ (X ∪ X̄ ∪Y ∪ Ȳ )\E}∪{d1, d2}). We show that E is
semi-stable in (A,R): Assume there is D ⊆ A with D⊕F ⊃ E⊕F . First observe that D attacks
the same arguments da, a ∈ X∪X̄∪Y ∪Ȳ , as E and thus X ′∪Y ′ ⊆ D. By Lemma 8 and since
D⊕F is strictly bigger than E⊕F , we have that D⊕F = A\({da | a ∈ (X∪X̄∪Y ∪ Ȳ )\D}∪{d2}).
It follows that ϕ ∈ D. Let Z ′′ = D ∩ Z. Then M = X ′ ∪ Y ′ ∪ Z ′′ is a model of ϕ: As each
cli, i ≤ n, is attacked by D, there is a literal l ∈ D with l ∈ cli; now, if l is a positive literal,
we have l ∈ M , in case l is a negative literal, we have l /∈ M . Thus ϕ is satisfied by M ,
contradiction to our initial assumption Ψ is not valid. It follows that SX′ ∪ {ϕ̄} ∈ semc(CF )
for all X ′ ⊆ X. Thus semc(CF ) = cl -sem(CF ) by Lemma 9.

ΠP
3 -hardness of ConCAF

stg also uses Reduction 7 since stgc(CF ) = semc(CF ) and cl -stg(CF ) =
cl -sem(CF ) for all CAFs CF generated via the reduction. The proof proceeds similar as the
proof of Lemma 9 and can be found in the appendix.

Lemma 10. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of QSAT ∃3 and let CF = (A,R, claim)
be as in Reduction 7. Then

1. cl -sem(CF ) = cl -stg(CF ); and

2. semc(CF ) = stgc(CF ).

ΠP
3 -hardness of ConCAF

stg thus follows from the above lemma and from Proposition 18.

Proposition 19. ConCAF
stg is ΠP

3 -hard.
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5.2 Concurrence of Well-formed CAFs

For well-formed CAFs, cl-preferred and i-preferred as well as all considered variants of stable
semantics coincide [8] thus the respective problems become trivial. Since for semi-stable
and stage semantics, the complexity for verification drops for both variants, we get the ΠP

2 -
membership results, by using the same generic membership argument as for general CAFs.

As coNP-hardness of deciding concurrence for naive semantics has been proven in [25] it
remains to show matching hardness results for semi-stable and stage concurrence. This is
by a reduction from QSAT ∀2 with some appropriate adaptions of Reduction 2.

Reduction 8. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance of QSAT ∀2 , where ϕ is given by a set
of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z. Let (A,R) be the AF constructed
from ϕ as in Reduction 2. We define CF = (A′, R′, claim) with

A′ = A ∪ {e, d1, d2, ϕ̄1, ϕ̄2}
R′ = R ∪ {(a, da)(da, da) | a ∈ Y ∪ Ȳ } ∪ {(di, dj) | i, j = 1, 2} ∪

{(a, b) | a, b ∈ {ϕ, ϕ̄1, ϕ̄2}, a 6= b} ∪ {(ϕ, e), (e, e), (ϕ, d1), (ϕ̄1, d1)}

and claim(d1) = claim(d2) = d and claim(v) = v otherwise.

An example to illustrate the reduction is given in Figure 10. We observe that conflict-free
claim-sets admit a close correspondence to their realizations in the underlying AF since all
arguments except the self-attacking arguments d1 and d2 have been assigned unique claims.
The following observations are easy to verify.

Lemma 11. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 , let σ ∈ {sem, stg} and let
CF = (A,R, claim) be as in Reduction 8. Then

1. for all E ∈ cf ((A,R)), (claim(E))+
CF = E+

(A,R) \ {d1};

2. every S ∈ cfc(CF ) admits a unique realization in (A,R);

3. for all S ∈ σc(CF ) ∪ cl -σ(CF ), either ϕ ∈ S or ϕ1 ∈ S or ϕ2 ∈ S.

The following two lemmas will be useful to prove ΠP
2 -hardness of Conwf

σ for semi-stable
and stage semantics. First, we will show that each inherited semi-stable (i-stage) claim-set
is cl-semi-stable (cl-stage).

Lemma 12. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance of QSAT ∀2 , let σ ∈ {sem, stg} and let
CF = (A,R, claim) be as in Reduction 8. Then σc(CF ) ⊆ cl -σ(CF ).

Proof. Let F = (A,R) and consider S ∈ σc(CF ) and let E denote the unique σc-realization
of S in (A,R). As E ∈ σ((A,R)), we have that E ∪E+

F is subset-maximal among admissible
(conflict-free) extensions. We will show that S ∪ S+

CF is subset-maximal among i-admissible
(i-conflict-free) claim-sets. Towards a contradiction, assume S ∪ S+

CF is not subset-maximal
among i-admissible (i-conflict-free) claim-sets, that is, there is T ∈ admc(CF ) (T ∈ cfc(CF ))
with T ∪ T+

CF ⊃ S ∪ S+
CF . Consider the unique cfc-realization D of T in (A,R), then

D ∪D+
F \ {d1} = T ∪ T+

CF ⊃ S ∪ S+
CF = E ∪ E+

F \ {d1}. If either d1 ∈ D+
F or d1 /∈ E+

F we
are done since in this case, we have D∪D+

F ⊃ E ∪E+
F , contradiction to E being semi-stable

(stage) in (A,R). Thus we assume d1 ∈ E+
F but d1 /∈ D+

F . By Lemma 11, we have ϕ2 ∈ D
since ϕ2 does not attack d1; also, ϕ1 ∈ E or ϕ ∈ E. In case ϕ ∈ E, we have e ∈ E+

F , e /∈ D+
F

thus e ∈ S ∪ S+
CF but e /∈ T ∪ T+

CF , contradiction to the assumption T ∪ T+
CF ⊃ S ∪ S+

CF . In
case ϕ2 ∈ D and ϕ1 ∈ E, consider D′ = (D ∪ {ϕ1}) \ {ϕ2}. D′ is admissible (conflict-free)
as D is admissible (conflict-free) and exchanging ϕ2 with ϕ1 does neither add conflicts nor
undefended arguments. Moreover, d1 ∈ (D′)+

F and D ∪D+
F = D′ ∪ (D′)+

F \ {d1}. Therefore
D′ ∪ (D′)+

F ⊃ E ∪ E+
F , contradiction to E being semi-stable (stage) in (A,R).
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Next we will prove that each semi-stable (stage) claim-set that contains ϕ is both inherited
and claim-level semi-stable (stage).

Lemma 13. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 , let σ ∈ {sem, stg} and let
CF = (A,R, claim) be as in Reduction 8. Then for all S ∈ σc(CF )∪cl -σ(CF ), ϕ ∈ S implies
S ∈ σc(CF ) ∩ cl -σ(CF ).

Proof. Let F = (A,R). By Lemma 12, σc(CF ) ⊆ cl -σ(CF ) thus it suffices to prove the
statement for S ∈ cl -σ(CF ). Let E denote the unique cfc-realization of S in (A,R). We
will show E ∈ σ((A,R)). Towards a contradiction, assume there is D ∈ adm((A,R)) (D ∈
cf ((A,R))) with D∪D+

F ⊃ E∪E+
F . As ϕ ∈ E we have d1 ∈ E+

F and thus D∪D+
F \{d1} ⊃ E∪

E+
F \{d1}. By Lemma 11, claim(D)∪claim(D)+

F = D∪D+
F \{d1} ⊃ E∪E+

F \{d1} = S∪S+
CF ,

contradiction to S being cl-semi-stable (cl-stage) in CF .

Proposition 20. Conwf
σ , σ ∈ {sem, stg}, is ΠP

2 -hard.

Proof. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 and let CF = (A,R, claim) be as
in Reduction 8. Moreover, let F = (A,R).

We will show Ψ is valid iff σc(CF ) = cl -σ(CF ).
First assume Ψ is valid. We show that in this case, ϕ ∈ S for all S ∈ σc(CF )∪ cl -σ(CF ).

By Lemma 13, this implies S ∈ σc(CF ) ∩ cl -σ(CF ) and thus σc(CF ) = cl -σ(CF ).
By Lemma 12, it suffices to prove the statement for every S ∈ cl -σ(CF ). Towards a

contradiction, assume there is S ∈ cl -σ(CF ) such that ϕ /∈ S. Then e /∈ S ∪ S+
CF . Let

Y ′ = S ∩ Y . Since Ψ is valid, there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ. Let
E = Y ′ ∪ Z ′ ∪ {x̄ | x /∈ Y ′ ∪ Z ′} ∪ {ϕ}. Then S′ = claim(E) is i-admissible (i-conflict-free)
and S′ ∪ (S′)+

CF = claim(A) \ ({d} ∪ {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E}). We can conclude that
S′ ∪ (S′)+

CF ⊃ S ∪ S+
CF since e /∈ S ∪ S+

CF and {d} ∪ {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E} * S ∪ S+
CF ,

contradiction to our initial assumption S is cl-semi-stable (cl-stage). It follows that ϕ ∈ S
for every S ∈ cl -σ(CF ).

Now assume Ψ is not valid, i.e., there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z, Y ′ ∪ Z ′ is not
a model of ϕ. We will show that σc(CF ) ⊂ cl -σ(CF ). Fix Z ′ ⊆ Z and let E = Y ′ ∪Z ′ ∪ {x̄ |
x /∈ Y ′ ∪ Z ′}. Moreover, let E1 = E ∪ C′ ∪ {ϕ1} and E2 = E ∪ C′ ∪ {ϕ2} where C′ ⊆ C
contains all clauses cli such that E ∩ cli = ∅. Clearly, E1, E2 ∈ adm((A,R)) (E1, E2 ∈
cf ((A,R))) and thus E1 = claim(E1), E2 = claim(E2) ∈ admc(CF ) (E1 = claim(E1), E2 =
claim(E2) ∈ cfc(CF )). Observe that (E2)⊕F ⊂ (E1)⊕F since d1 is attacked by ϕ1 ∈ E1 but
there is no a ∈ E2 such that (a, d1) ∈ R. It follows that E2 = claim(E2) /∈ σc(CF ). We
show that E2 ∈ cl -σ(CF ) for σ ∈ {sem, stg}, that is, we show that claim(E2) ∪ (E2)+

CF =
claim(A) \ ({e, d} ∪ {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E}) is maximal among admissible (conflict-
free) claim-sets: Towards a contradiction, assume there is T ∈ admc(CF ) (T ∈ cfc(CF ))
such that T ∪ T+

CF ⊃ claim(E2) ∪ (E2)+
CF . As {dy | y ∈ Y ′} ∪ {dȳ | y /∈ Y ′} ⊆ T+

CF we have
Y ′∪{ȳ | y /∈ Y ′} ⊆ T and T+

CF does not contain any claim in {dy | y /∈ E}∪{dȳ | ȳ /∈ E} since
for every y ∈ Y , there is no conflict-free set attacking both dy and dȳ. Moreover, d /∈ T+

CF

for every T ∈ cfc(CF ) since d1 and d2 are the only attackers of d2 and d1 is self-attacking.
It follows that e ∈ T+

CF and thus ϕ ∈ T . Consider the unique cfc-realization D of T . Since
ϕ ∈ D we have we have cli /∈ D for every i ≤ n and thus each cli is attacked by D. Let
M = D∩X and consider an arbitrary clause cli. As each cli is attacked by D, there is either
x ∈ D with x ∈ cli or x̄ ∈ D with x̄ ∈ cli. In the former case, we have x ∈ M and thus
cli is satisfied, in the latter case, x /∈ M and thus cli is satisfied. Thus M is a model of ϕ
and Y ′ ⊆ M , contradiction to our initial assumption Y ′ ∪ Z ′′ is not a model of ϕ for every
Z ′′ ⊆ Z.
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5.3 Coherence and Concurrence of Stable Variants

We conclude this section by analyzing two related problems. First, we ask ourselves how
hard it is to decided whether the two variants of the claim-based stable semantics coincide.
Bearing in mind the complexity of the verification problem of the two semantics, the problem
has to be contained in ΠP

2 ; however, as we show next, it is also hard for this class for general
CAFs. For well-formed CAFs recall that the two variants collapse anyway making this
problem trivial for well-formed CAFs.

Proposition 21. Given a CAF CF = (A,R, claim), deciding whether
cl -stbcf (CF ) = cl -stbadm(CF ) is ΠP

2 -complete.

Proof. We present a ΣP
2 -procedure for the complementary problem.

(1) Guess a set S ⊆ claim(A);

(2) check S ∈ cl -stbcf (CF ) and S /∈ cl -stbadm(CF ).

The latter can be checked in NP, respectively, coNP.
We present a reduction from QSAT ∀2 . Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 ,

where ϕ is given by a set of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z. We
construct a CAF CF = (A,R, claim) given by

• A = X ∪ X̄ ∪ C ∪ {ϕ, ϕ̄};

• R = {(x, cli) | x ∈ cli} ∪ {(x̄, cli | x̄ ∈ cli} ∪ {(cli, cli), (cli, ϕ) | i ≤ n} ∪ {(x, x̄), (x̄, x) |
x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ̄)} ∪ {(ϕ̄, z) | z ∈ Z} ∪ {(ϕ̄, z̄) | z̄ ∈ Z̄};

• claim(y) = y, claim(ȳ) = ȳ for y ∈ Y , ȳ ∈ Ȳ , claim(z) = claim(z̄) = claim(cli) =
claim(ϕ) = claim(ϕ̄) = c for i ≤ n, z ∈ Z, z̄ ∈ Z̄.

See Figure 11 for an illustrative example. We show

(a) for all Y ′ ⊆ Y , Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} ∈ cl -stbcf (CF ). Moreover, there is no other
cf -cl-stable claim-set in CF .

Let Y ′ ⊆ Y be arbitrary, let z ∈ Z and let E = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {z}. Clearly, E is
conflict-free in (A,R); moreover, E attacks every a ∈ A such that claim(a) /∈ claim(E).
It follows that claim(E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} ∈ cfc(CF ). Moreover, claim(E)
is maximal among all conflict-free claim-sets: Assume there is T ∈ cfc(CF ) such that
T ⊃ claim(E) for some Y ′ ⊆ Y . Then there is y ∈ Y such that y ∈ T and ȳ ∈ T ,
contradiction to cf -realizability of T since for every y ∈ Y , y and ȳ mutually attack
each other. We can furthermore conclude that no other cl-stable claim-set exists since
for every y ∈ Y , y and ȳ mutually attack each other. Thus each cf -cl-stable claim-set
is of the form Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} for some Y ′ ⊆ Y .

(b) Ψ is valid iff cl -stbadm(CF ) = cl -stbcf (CF ).

Assume Ψ is valid. We show that stbc(CF ) = cl -stbcf (CF ), cl -stbadm(CF ) = cl -stbcf (CF )
then follows since stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF ). Let Y ′ ⊆ Y . Then there
is Z ′ ⊆ Z such that ϕ is satisfied by M = Y ′ ∪ Z ′. Let E = M ∪ {x̄ | x /∈ M} ∪ {ϕ}.
Since M satisfies each clause cli, there is either x ∈ cli with x ∈ M or there is x̄ ∈ cli
with x /∈ M . It follows that each cli, i ≤ n, is attacked by E; moreover, E attacks ϕ̄
since ϕ ∈ E. Since E is also conflict-free we have shown that E is a stable extension
of (A,R) and therefore Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF ). As Y ′ was arbitrary,
we have that Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF ) for all Y ′ ⊆ Y . We conclude that
stbc(CF ) = cl -stbadm(CF ) = cl -stbcf (CF ) by (a).
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Assume cl -stbadm(CF ) = cl -stbcf (CF ). Let Y ′ ⊆ Y . By (a) we have that S = Y ′∪{ȳ |
y /∈ Y ′}∪{c} ∈ cl -stbadm(CF ) = cl -stbcf (CF ). Consider an adm-realization E of S and
let Z ′ = E ∩ Z. Then M = Y ′ ∪ Z ′ satisfies ϕ: First observe that ϕ ∈ E: Since c ∈ S,
there is some a ∈ A with claim(a) = c such that a ∈ E. Moreover, a ∈ Z ∪ Z̄ ∪ {ϕ}
since every other claim assigned with c is self-attacking. In case a = ϕ, we are done;
in case a = z or a = z̄ for some z ∈ Z we have ϕ ∈ E since E defends a against ϕ̄.
Since ϕ ∈ E, we furthermore have that E attacks each clause cli since ϕ is defended
by E against cli. Now, consider an arbitrary clause cli. As E attacks cli there is either
an argument x ∈ E with (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R. In the
former case, x ∈ cli and x ∈ M and thus cli is satisfied ; in the latter case, x̄ ∈ cli
and x /∈M and thus cli is satisfied. Thus M is a model of ϕ. We have shown that for
every Y ′ ⊆ Y , there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ satisfies ϕ. It follows that Ψ is valid.

The second problem we would like to discuss here is the well-known coherence problems,
which asks whether for a given AF its preferred and stable extensions coincide, shown ΠP

2 -
complete in [23]. The problem was studied for inherited semantics in [12] showing that
complexity remains on the second level. The forthcoming result shows that, although the
complexity of the verification task increases for claim-based preferred semantics, testing
coherence for CAFs in terms of cl-semantics is of the same complexity as in the AF setting,
as well.

Proposition 22. Given a CAF CF = (A,R, claim), σ ∈ {cf , adm} deciding whether
cl -stbσ(CF ) = cl -prf (CF ) is ΠP

2 -complete; hardness holds even for well-formed CAFs.

Proof. We present a ΣP
2 -procedure for the complementary problem.

(1) Guess a set S ⊆ claim(A);

(2) check S ∈ (cl -stbσ(CF ) \ cl -prf (CF )) ∪ (cl -prf (CF ) \ cl -stbσ(CF )).

Verifying that S is cl-preferred is DP-complete, verifying that S is cl-stable is NP-complete,
yielding a ΣP

2 -algorithm.
Hardness follows from the corresponding result for AFs, i.e., deciding coherence for AFs

is ΠP
2 -complete.

6 Tractable Fragments

While most of the decision problems considered in Section 4 are intractable, some of them
become tractable when restricted to specific graph classes or when parameterized by some
criterion characterizing the structure of the framework. Thus, in what follows, we will revisit
those decision problems and investigate their complexities when restricted to such graph
classes or when parameterized by the number of claims within the framework. This is in the
line of similar investigations for AFs where tractable graph classes have been considered [26,
6] as well as fixed-parameter tractable algorithms [27, 28, 29].

6.1 Graph classes

We will consider five graph classes that have proven themselves promising for acquiring
improved bounds for Dung AFs [26, 6]. Based on their graph structure, we will consider
CAFs CF = (A,R, claim) that fall into one of these five classes:

• Acyclic CAFs, if there is no directed cycle in (A,R).
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• Noeven CAFs, if there is no directed cycle of even length in (A,R).

• Symmetric CAFs, if the attack relation R is symmetric, i.e. whenever (a, b) ∈ R then
also (b, a) ∈ R.

• Symmetric irreflexive CAFs, if CF is symmetric and contains so self-attacks, i.e.
(a, a) 6∈ R for all a ∈ A.

• Bipartite CAFs, if (A,R) is a bipartite graph, i.e. does not contain an undirected cycle
of even length.

We recall that on well-formed CAFs, the inherited and claim-level variants coincide for
preferred and stable semantics. Thus for cl-preferred and cl-stable semantics in well-formed
CAFs, the complexity results for credulous and skeptical reasoning as well as verification
carry over from the respective inherited counterparts [12].

6.1.1 Acyclic CAFs

For acyclic CAFs, we obtain tractability for most of the considered problems since all con-
sidered admissible-based as well as all range-based semantics coincide with grounded seman-
tics. This is an immediate consequence of the respective property for acyclic AFs where
grd(F ) = prf (F ) = stb(F ) = sem(F ) = stg(F ) for each acyclic AF F [15].

Proposition 23. For acyclic CAFs, for ∆ ∈ {CAF ,wf }, Cred∆
σ , Skept∆σ , and Ver∆

σ is in P
for σ ∈ {cl -prf , cl -stbcf , cl -stbadm , cl -sem, semc, cl -stg , stgc}.

For cl-naive semantics, on the other hand, the restriction to acyclic graphs does not yield
any computational advantages. To obtain ΠP

2 -hardness for skeptical acceptance and DP-
hardness for verification in the general case, we adapt Reduction 1 by taking unidirectional
instead of bidirectional edges; acyclicity can be easily guaranteed if e.g., each argument which
corresponds to a positive atom has only outgoing attacks and each argument corresponding
to a negated atom has only incoming attacks; additionally, we remove all attacks from the
argument ϕ. For coNP-hardness of skeptical acceptance for cl-naive semantics for well-formed
CAFs, we adapt the reduction from the proof of Proposition 14 accordingly, e.g., by removing
all attacks from arguments representing positive literals. We thus obtain the following result.

Proposition 24. For acyclic CAFs, Cred∆
cl-naive , ∆ ∈ {CAF ,wf }, and Verwfcl-naive is in P;

SkeptCAF
cl-naive is ΠP

2 -complete; Skeptwfcl-naive is coNP-complete; and VerCAF
cl-naive is DP-complete.

We note that NE ∆
σ , ∆ ∈ {CAF , wf} is trivial for all considered semantics σ since the

grounded extension is non-empty (assuming A 6= ∅).

6.1.2 Noeven CAFs

We first recall that grounded, preferred, and semi-stable semantics coincide for each noeven
AF F = (A,R), and grd(F ) = stb(F ) if grd(F ) 6= {∅} [30, 15]. We thus obtain that
grdc(CF ) = cl -sem(CF ) = semc(CF ) = prfc(CF ), moreover, stbc(CF ) = cl -stbadm(CF )
since the underlying AF has a unique preferred extension that serves as candidate set for
realizing a stable claim-set. Since the grounded extension can be computed in P we obtain
the following results.

Proposition 25. For noeven CAFs, for ∆ ∈ {CAF , wf}, Cred∆
σ , Skept∆σ , Ver∆

σ , and NE ∆
σ

is in P for σ ∈ {cl -prf , cl -stbadm , cl -sem, semc}.
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Proposition 24 also applies in the noeven case.

Proposition 26. For noeven CAFs, Cred∆
cl-naive , ∆ ∈ {CAF , wf},

and Verwfcl-naive is in P; SkeptCAF
cl-naive is ΠP

2 -complete; Skeptwfcl-naive is coNP-complete; and
VerCAF

cl-naive is DP-complete.

However, for the cl -stbcf semantics, the problems remain hard. Towards this, we intro-
duce the following reduction

Reduction 9. Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C =
{c1, . . . , cn} over atoms in X, where negated atoms are denoted by x̄. We construct CAFϕ =
(A,R, claim) with

A = X ∪ X̄ ∪ C
R = {(x, x̄) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}

with claim(x) = claim(x̄) = ψ for all x ∈ X and claim(c) = c for all c ∈ C. An illustrative
example of the reduction is given in Figure 12. Note, that the only directed cycles contained
in CAFϕ are the self-attacks of the arguments in C, thus CAFϕ is noeven.

Proposition 27. For noeven CAFs, CredCAF
cl-stbcf

, VerCAF
cl-stbcf

, and NECAF
cl-stbcf

are NP-complete;

SkeptCAF
cl-stbcf

is coNP-complete.

Proof. Upper bounds are obtained via the case for general CAFs, c.f. Table 4. For the lower
bounds, we start with the NP-complete problems.

For a given instance of 3-SAT ϕ, we construct a CAFϕ as in Reduction 9. Note, that
the arguments c ∈ C are all self-attacking and thus can never be part of any conflict-free
set of arguments of the Dung AF underlying CAFϕ. Therefore, their claims cannot be part
of any cl -stbcf extension of CAFϕ. Furthermore, trivially, ∅ cannot be a cl -stbcf extension
of CAFϕ either. Thus, the only candidate cl -stbcf extension of CAFϕ is {ψ} and therefore,
CredCAF

cl-stbcf
(CAFϕ, ψ) = VerCAF

cl-stbcf
(CAFϕ, {ψ}) = NECAF

cl-stbcf
(CAFϕ). We will show that ϕ is

satisfiable iff VerCAF
cl-stbcf

(CAFϕ, {ψ}).
First, assume that ϕ is satisfiable and let M be a model of ϕ. Then, the set E =

M∪X \M is conflict-free in the underlying Dung AF of CAFϕ by the construction of CAFϕ.
Furthermore, as all c ∈ C are satisfied by M , there must be some l ∈ E such that (l, c) ∈ R
for all c ∈ C. Thus, E attacks all arguments c ∈ C and therefore claim(E) ∪ νCAFϕ(E) =
{ψ} ∪ {C} = claim(A), making {ψ} a cl -stbcf extension of CAFϕ.

Now, assume that ϕ is unsatisfiable. Then, for every conflict-free set of arguments E ⊆
X ∪ X̄ in the underlying Dung AF of CAFϕ, there exists some c ∈ C such that (l, c) 6∈ R for
all l ∈ E, as otherwise E∩X would be a model of ϕ by construction. Therefore, c 6∈ νCAFϕ(E)
for some c ∈ C and thus {ψ} is not a cl -stbcf extension of CAFϕ.

The result for the SkeptCAF
cl-stbcf

problem can be proven similarly by reducing from 3-

UNSAT while using the same construction CAFϕ as before, but with claim(c) = γ for all
c ∈ C and without the self-attacks of the arguments in C. If ϕ is satisfiable, then {ψ} is a
cl -stbcf extension of CAFϕ by an analogous argument as before and thus, γ is not skeptically
accepted in CAFϕ w.r.t. the cl -stbcf semantics. However, if ϕ is unsatisfiable, as before, {ψ}
cannot be a cl -stbcf extension of CAFϕ, as otherwise ϕ would be satisfiable and thus, γ is
skeptically accepted in CAFϕ w.r.t. the cl -stbcf semantics, as ∅ is trivially not a cl -stbcf

extension of CAFϕ and all other possible extension contain γ.

Next, we look at the semantics based on the stage and semi-stable semantics.
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Proposition 28. For noeven CAFs, for ∆ ∈ {CAF , wf}, Cred∆
σ is ΣP

2 -complete and Skept∆σ
is ΠP

2 -complete for σ ∈ {stgc, cl -stg}.

Proof. We obtain upper bounds from the corresponding problems for general CAFs. Lower
bounds can be obtained via the respective results for noeven Dung AFs [15], which carry
over to CAFs by assigning every argument a unique claim.

Next we turn to the verification problem for noeven well-formed CAFs with respect to
stage semantics. We obtain coNP-membership from well-formed CAFs (cf. Table 6). For
hardness, we show that this problem is already intractable for noeven Dung AFs.

We make use of the following reduction.

Reduction 10. Let ϕ be an instance of 3-UNSAT, with ϕ given as a set of clauses C =
{c1, . . . , cn} over atoms in X, where negated atoms are denoted by x̄. We construct AFϕ =
(A,R) with

A = X ∪ X̄ ∪ C ∪ {y}
R = {(x, x̄) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}∪

{(x, y), (x̄, y) | x ∈ X} ∪ {(y, c) | c ∈ C}

for a fresh atom y. An illustrative example of the reduction is given in Figure 13. Note that
the only directed cycles contained in AFϕ are the self-attacks of the arguments in C, thus
AFϕ is noeven.

Proposition 29. VerFstg is coNP-complete for noeven Dung AFs.

Proof. The upper bound can be obtained from the case for Dung AFs in general [15]. We
show the lower bound via reduction from 3-UNSAT. Let ϕ be an instance of 3-UNSAT and
AFϕ = (A,R) be as in Reduction 10. We show that {y} is a stage extension of AFϕ iff ϕ is
unsatisfiable. To increase readability, we will omit the ϕ in the subscript for the remainder
of this proof and just write AF instead of AFϕ. Note that the argument y is conflicting with
every other argument, as y attacks all arguments c ∈ C and is attacked by all arguments
x, x̄ ∈ X. Thus, the only candidate stage extension containing y is the one containing only
y, which has range {y}+AF = C ∪ {y}.
First, assume that ϕ is satisfiable and let M be a model of ϕ. Then, the set E = M ∪X \M
is conflict-free in AF by the construction of AF . Furthermore, as all c ∈ C are satisfied by
M , there must be some l ∈ E such that (l, c) ∈ R for all c ∈ C. Thus E+

AF = M ∪X \M ∪
C ∪ {y} ⊃ C ∪ {y} = {y}+AF and therefore {y} is not a stage extension of AF .
Now, assume that ϕ is unsatisfiable. Then, for every conflict-free set of arguments E ⊂
X ∪ X̄, c 6∈ E+

AF for some c ∈ C, as otherwise E ∩ X would be a model of ϕ. Therefore,
{y}+AF = C ∪ {y} is maximal (with regard to ⊆) in AF and thus {y} is a stage extension of
AF .

As a consequence, we obtain coNP-completeness for the respective problem for noeven
well-formed CAFs.

Proposition 30. For noeven well-formed CAFs, Verwfσ is coNP-complete for σ ∈ {stgc, cl -stg}.

Proof. Upper bounds are obtained from the case for CAFs in general [31]. Lower bounds
generalize from the case for Dung AFs, c.f. Proposition 29, which carry over to well-formed
CAFs by assigning every argument an unique claim.

Proposition 31. VerCAF
σ is ΣP

2 -complete for σ ∈ {stgc, cl -stg} for noeven CAFs.

32



Proof. We present the proof for σ = stgc, the proof for σ = cl -stg is analogous. Upper bound
via the general case for CAFs, lower bound via a reduction from the Credstg problem for
noeven Dung AFs. The Credstg problem for noeven Dung AFs is known to be ΣP

2 -c [15].
To decide the problem for an argument b in an noeven Dung AF = (A,R), construct a
CAF = (A′ = A ∪ {x}, R, claim) with a new argument x 6∈ A and claim(b) = c1 and
claim(a) = c2 for all a ∈ A′ \ {b}. Then, argument b is credulously accepted in AF with
regard to the stage semantics iff {c1, c2} is a i-stage extension of CAF .

Proposition 32. For noeven CAFs, NE ∆
σ , ∆ ∈ {CAF , wf} is in P for σ ∈ {cl -naive, cl -prf ,

cl -stbadm , cl -sem, semc, cl -stg , stgc}.

Proof. In order to decide non-emptiness for σ ∈ {cl -prf , cl -stbadm , cl -sem} it suffices to check
whether there exists some unattacked argument. For cl-naive, i-naive, cl-stage, and i-stage
semantics, it suffices to check whether there is some argument a ∈ A that does not attack
itself.

6.1.3 Symmetric CAFs

For symmetric AFs, each conflict-free set defends itself, i.e., cf (F ) = adm(F ) for each sym-
metric AF F . As an immediate consequence we obtain that each admissible-based semantics
coincide with their conflict-free-based counterpart.

Lemma 14. For each symmetric CAF CF , cl -prf (CF ) = cl -naive(CF ),
stbcf (CF ) = cl -stbadm(CF ), cl -sem(CF ) = cl -stg(CF ).

Hardness results for cl-naive semantics correspond to the results for the general case
since Reduction 1 is indeed symmetric; the reduction from the proof of Proposition 14 can
be adapted by adding the required attacks between the clause-arguments and the literal-
arguments. By the above observation we moreover obtain the respective results for cl-
preferred semantics.

Proposition 33. For symmetric CAFs, Cred∆
σ , ∆ ∈ {CAF , wf}, Skeptwfσ and Verwfσ is in

P; SkeptCAF
σ is ΠP

2 -complete; and VerCAF
σ is DP-complete for σ ∈ {cl -naive, cl -prf }.

As shown in [12], deciding credulous acceptance w.r.t. stable semantics remains NP-hard
for symmetric AFs; likewise, deciding skeptical acceptance w.r.t. stable semantics remains
coNP-hard for symmetric AFs. By assigning each argument a unique claim, we thus obtain
the respective results for cl-stable semantics. Moreover, we obtain NP-completeness of ver-
ifying cl-stable claim-sets for symmetric CAFs by appropriate adaption of Translation Tr2.
Note that for well-formed CAFs, verification is solvable in polynomial time (cf. Table 6).

Proposition 34. For symmetric CAFs, for ∆ ∈ {CAF , wf}, Cred∆
σ is NP-complete and

Skept∆σ is coNP-complete; moreover, VerCAF
σ is NP-complete and Verwfσ is in P for σ ∈

{cl -stbcf , cl -stbadm}.

Proof. To prove NP-completeness of verifying cl-stable claim-sets for symmetric CAFs, we
first observe that membership for VerCAF

σ is by the corresponding result for general CAFs.
For hardness, we provide a reduction from VerCAF

stbc for symmetric CAFs: We adapt Trans-
lation Tr2 by setting Tr′2(CF ) = (A′, R′ ∪ {(b, a) | (a, b) ∈ R′}, claim ′) for Tr2(CF ) =
(A′, R′, claim ′), i.e., we make all attacks symmetric. We obtain stbc(CF ) = stbc(Tr

′
2(CF )) =

cl -stbτ (Tr′2(CF )) for τ ∈ {cf , adm} for any symmetric CAF CF . Thus, for an instance, i.e.,
a CAF CF and a claim-set S of VerCAF

stbc for symmetric CAFs, it suffices to check whether
Tr′2(CF ) is cl-stable.

33



For most of the considered decision problems, both versions of semi-stable and stage
semantics for symmetric (well-formed) CAFs admit the same complexity as the respective
problems for AFs (cf. [15]; the lower bound for verification is obtained by translating standard
Dung AFs to symmetric Dung AFs in a way such that stage extensions are preserved [15,
Lemma 14]), with the notable exception of verification for general CAFs which remains as
hard as in the general case.

Proposition 35. For symmetric CAFs, for ∆ ∈ {CAF , wf}, Cred∆
σ is ΣP

2 -complete; Skept∆σ
is ΠP

2 -complete; VerCAF
σ is ΣP

2 -complete and Verwfσ is coNP-complete for σ ∈ {cl -sem, semc, cl -stg , stgc}.

Proof. For Cred∆
σ , Skept∆σ , and Verwfσ , lower bounds are by the corresponding results for AFs

[15]; upper bounds are by the respective results for general CAFs (cf. Tables 4 and 6).
To show hardness of VerCAF

σ we reduce from CredFσ for symmetric AFs (ΣP
2 -complete):

Given an AF F = (A,R) and an argument b ∈ A, we assign the claims claim(b) = c1,
claim(a) = c2, a ∈ A\{b}. It can be shown that the argument b is credulously accepted iff the
set of claims {c1, c2} is cl-semi-stable (cl-stage) in the corresponding CAF (A,R, claim).

For σ ∈ {cl -naive, cl -prf , cl -sem, semc, cl -stg , stgc}, to decide NE ∆
σ , ∆ ∈ {CAF , wf}, it

suffices to check whether CF contains an argument that does not attack itself. For stable
semantics, the problem remains NP-hard already for Dung AFs.

Proposition 36. NEAF
stb is NP-complete for symmetric AFs.

Proof. Membership is by the corresponding result for general AFs. Hardness is by the
following reduction from SAT: Given a CNF ϕ with clauses C over atoms in X. We denote
¬x by x̄. We construct F = (A,R) with

A = X ∪ X̄ ∪ C
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c), (c, l) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}

We show that stb(F ) 6= ∅ iff ϕ is satisfiable. First, let stb(F ) 6= ∅ and let E ∈ stb(F ).
Clearly, M = E ∩X is a model of ϕ since each clause is satisfied: Let c ∈ C, then there is
l ∈ E st l attacks c. In case l is a positive literal l is contained in M , in case l is a negative
literal, we have l is not contained in M and thus c is satisfied in both cases. For the other
direction, assume ϕ has a model M . Then E = M ∪ {x̄ | x /∈M} is a stable extension of F
since each clause argument is attacked: As all c ∈ C are satisfied by M , there must be some
l ∈ E such that (l, c) ∈ R for all c ∈ C by construction.

We thus obtain the following result.

Proposition 37. For symmetric CAFs, for ∆ ∈ {CAF ,wf }, NE ∆
σ is in P for σ ∈ {cl -naive,

cl -prf , cl -sem, semc, cl -stg , stgc} and NP-complete for σ ∈ {cl -stbcf , cl -stbadm}.

6.1.4 Symmetric irreflexive CAFs

Each symmetric irreflexive AF is coherent [32], i.e., naive(F ) = prf (F ) = stb(F ) = sem(F ) =
stg(F ) for every symmetric irreflexive AF F . An immediate consequence is that the Nonemptiness-
problem becomes trivial for all considered semantics; moreover, all range-based semantics
that we consider in this paper collapse in this case.

Lemma 15. For each symmetric irreflexive CAF CF ,

stbc(CF ) = cl -stbcf (CF ) = cl -stbadm(CF )

= cl -sem(CF ) = semc(CF ) = cl -stg(CF ) = stgc(CF ).

34



Proof. First observe that stbc(CF ) 6= ∅ using prf (F ) = stb(F ) for F being the underly-
ing AF of CF . We thus obtain cl -stbcf (CF ) 6= ∅ and cl -stbadm(CF ) 6= ∅. Consequently,
cl -stbcf (CF ) = cl -stg(CF ) and cl -stbadm(CF ) = cl -sem(CF ). It remains to show that
stbc(CF ) = cl -stbadm(CF ). Assume that there is S ∈ cl -stbadm(CF ) that is not i-stable. Let
E be a cl -stbadm -realization of S. Since E is not stable in F , there is an argument a ∈ A
that is not attacked by E. We have claim(a) ∈ S (otherwise, S is not cl-adm-stable in
CF ). By symmetry we have a does not attack E, i.e., E ∪ {a} is conflict-free. Moreover,
E∪{a} is admissible since, in symmetric CAFs, each argument defends itself. Consequently,
we can add all arguments that are unattacked by E to obtain a i-stable realization of S,
contradiction to our initial assumption S /∈ stbc(CF ).

We thus obtain the following complexity results as an immediate consequence from
Lemma 15 and [12].

Proposition 38. For symmetric irreflexive CAFs, Cred∆
σ , ∆ ∈ {CAF , wf}, Skeptwfσ , and

Verwfσ is in P; SkeptCAF
σ is coNP-complete; and VerCAF

σ is NP-complete for σ ∈ {cl -stbcf ,
cl -stbadm , cl -sem, semc, cl -stg , stgc}.

We note that inherited and claim-level preferred (naive) semantics do not necessarily
coincide: As a counter-example consider the CAF CF = ({a1, a2, b}, {(b, a1), (a1, b)}, claim)
with claim(ai) = a, claim(b) = b, then prfc(CF ) = {{a}, {a, b}} 6= {{a, b}} = cl -prf (CF ).
The respective decision problems are as hard as in the general case, using the fact that
cl -naive(CF ) = cl -prf (CF ) for every symmetric CAF (cf.L̃emma 14) and the observation
that the corresponding reductions for symmetric CAFs are indeed irreflexive.

Proposition 39. For symmetric irreflexive CAFs, Cred∆
σ , ∆ ∈ {CAF , wf}, Skeptwfσ and

Verwfσ is in P; SkeptCAF
σ is ΠP

2 -complete; and VerCAF
σ is DP-complete for σ ∈ {cl -naive, cl -prf }.

6.1.5 Bipartite CAFs

Finally, we consider bipartite CAFs. First recall that in bipartite AFs, prf (F ) = stb(F ) =
sem(F ) = stg(F ). We thus obtain the following result.

Lemma 16. For each bipartite CAF CF ,

prfc(CF ) = stbc(CF ) = cl -stbadm(CF ) = cl -sem(CF ) = semc(CF ) = stgc(CF ).

Proof. Let S ∈ cl -stbadm(CF ). Let E be a cl -stbadm -realization of S. By monotonicity
of the claim-range we can assume E ∈ prf (F ). Thus S = claim(E) ∈ stbc(CF ). By
cl -stbc(CF ) 6= ∅, we have cl -stbadm(CF ) = cl -sem(CF ).

By the respective problems for Dung AFs [15] and by [12], we thus obtain the following
results for σ ∈ {cl -stbadm , cl -sem, semc, stgc}.

Proposition 40. For bipartite CAFs, for ∆ ∈ {CAF , wf}, for σ ∈ {cl -stbadm , cl -sem, semc, stgc},
Cred∆

σ is in P and Skept∆σ is coNP-complete; moreover, VerCAF
σ is NP-complete and Verwfσ

is in P.

Observe that cl -stbcf (CF ) 6= cl -stbadm(CF ) (as a counter-example, consider the CAF
CF = ({a1, a2, b}, {(a1, b)}, claim) with claim(ai) = a, claim(b) = b).

By Lemma 16 we obtain that stbc(CF ) 6= ∅ (using prfc(CF ) = stbc(CF ) and prfc(CF ) 6= ∅
for all CAFs CF ). Since each stable extension is non-empty, we obtain that each preferred
extension is non-empty. Also, bipartite CAFs do not contain self-attacking arguments. Thus,
for ∆ ∈ {CAF ,wf }, NE ∆

σ is a trivial yes-instance for all considered semantics σ.
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By stbc(CF ) 6= ∅, we have cl -stbcf (CF ) = cl -stg(CF ). For well-formed CAFs, we have
stbc(CF ) = cl -stbcf (CF ) = cl -stg(CF ) and cl -prf (CF ) = prfc(CF ) for each well-formed
CAF CF . By known results for i-stable semantics we thus obtain the following results
for the respective reasoning problems; for cl-naive semantics, we obtain coNP-hardness for
skeptical acceptance by a reduction from monotone 3-SAT via an appropriate adaption of
the reduction from the proof of Proposition 14.

Proposition 41. For bipartite CAFs, for σ ∈ {cl -stbcf , cl -stg , cl -prf , cl -naive}, Credwfσ and
Verwfσ is in P, and Skeptwfσ is coNP-complete.

Proof. coNP-hardness for skeptical acceptance of cl-naive semantics is proven analogous to
[12, Proposition 17].

Turning now to cl-naive and cl-preferred semantics for general bipartite CAFs, we observe
that that (1) the Reduction 1 is bipartite (this yields the hardness-results for cl-naive se-
mantics) and (2) the constructed CAF in Reduction 1 satisfies cl -naive(CF ) = cl -prf (CF ).
We furthermore show DP-hardness by a reduction from SAT-UNSAT.

Proposition 42. For bipartite CAFs, CredCAF
σ is in P, SkeptCAF

σ is ΠP
2 -complete, and

VerCAF
σ is DP-complete for σ ∈ {cl -prf , cl -naive}.

Proof. To show DP-hardness of VerCAF
σ , we present the following reduction from SAT-

UNSAT. Consider an instance (ϕ1, ϕ2) where ϕi is a 3-CNF given by clauses Ci (we enumerate
the clauses as follows: C1 = {c1, . . . , cm}, C2 = {cm+1, . . . , cn}) over atoms in Xi. We use
the following construction for both ϕ1 and ϕ2, i.e., we construct two CAFs CF 1, CF 2 as
follows: Given a CNF ψ with clauses C = {c1, . . . , cn} over atoms in X. We denote ¬x by
x̄. Let V = {vi | v ∈ ci, i ≤ n}. We construct CF = (A,R, claim) with

A = V ∪ C ∪ {ψ}
R = {(xi, x̄j), (x̄j , xi) | xi, x̄j ∈ V } ∪ {(ci, ψ), (ψ, ci) | i ≤ n}

with claims claim(vi) = claim(ci) = i, claim(ψ) = ψ. For CF , we have (1) cl -prf (CF ) =
cl -naive(CF ), (2) ψ is satisfiable iff {1, . . . , n, ψ} is cl-preferred, and (3) ψ is unsatisfiable iff
{1, . . . , n} is cl-preferred. We obtain ϕ1 is satisfiable and ϕ2 is unsatisfiable iff {1, . . . , n, ϕ1}
is cl-preferred in CF 1 ∪ CF 2.

For cl-cf -stable and cl-stage semantics, we obtain the following results.

Proposition 43. For bipartite CAFs, for σ ∈ {cl -stbcf , cl -stg}, CredCAF
σ and VerCAF

σ is
NP-complete, and SkeptCAF

σ is coNP-complete.

Proof. Membership results follow from the respective problems for cl-cf -stable semantics for
general CAFs (cf. Table 4).

For hardness, we first observe that stbc(CF ) = cl -stbcf (CF ) in the proof of [12, Propo-
sition 2] which yields NP-completeness of VerCAF

σ ; moreover, we can adapt the proof from
[12, Proposition 17] to show coNP-hardness for SkeptCAF

σ .
To show NP-hardness of CredCAF

σ , we present a reduction from SAT: Given a CNF ϕ with
clauses C = {c1, . . . , cn} over atoms in X. We denote ¬x by x̄. Let V = {vi | v ∈ ci, i ≤ n}.
We construct CF = (A,R, claim) with

A = V ∪ C ∪ {ϕ}
R = {(xi, x̄j), (x̄j , xi) | xi, x̄j ∈ V } ∪ {(ci, ϕ) | i ≤ n}

36



with claim(vi) = i, claim(ci) = i, and claim(ϕ) = ϕ. We show that ϕ is credulously
acceptable iff ϕ is satisfiable.

First assume ϕ is satisfiable. Then there is a model M that satisfies each clause ci. Let
E = {xi ∈ V | x ∈ M} ∪ {x̄i ∈ V | x /∈ M} ∪ {ϕ}. Clearly, E is conflict-free, moreover,
claim(E) = {1, . . . , n, ϕ} = claim(A) thus we have found a cl-cf -stable extension containing
ϕ.

In case ϕ is credulously acceptable, let S denote the cl-cf -stable extension and E its
realization in the underlying AF. First, C * E because ϕ is the unique argument with claim
ϕ. Thus, for each ci ∈ C, there is an argument xi or x̄i that is contained in E. Consider the
set M = {x ∈ X | ∃j : xj ∈ E}. It can be shown that M is indeed a model of ϕ.

This concludes our complexity analysis for graph classes. Table 8 and Table 9 summarize
our results for CAFs respectively well-formed CAFs when restricted to the considered graph
classes. Recall that the non-emptiness is trivial for acyclic, symmetric & irreflexive as well as
for bipartite CAFs. For the remaining graph classes, i.e., for noeven and symmetric CAFs,
the non-emptiness problem is tractable for all semantics except for cl-stable variants.

When comparing the different graph classes, it is not surprising that acyclic CAFs are
computationally-wise the best choice for computing standard reasoning tasks; here, all con-
sidered reasoning problems for all except naive semantics are tractable. When restricted to
well-formed CAFs, symmetric & irreflexive CAFs are even easier to handle; here, all con-
sidered problems are in P. In symmetric CAFs, on the other hand, almost all semantics
retain their full complexity, the only exception is preferred semantics for which verification
drops one level in the polynomial hierarchy (as it corresponds to verifying naive extensions in
symmetric CAFs). Noeven CAFs turn out to be beneficial for computing admissible-based
semantics – in this graph class, all admissible-based semantics are tractable. In symmetric &
irreflexive CAFs, credulous reasoning becomes tractable; also, both variants of semi-stable
and stage semantics drop one level in the polynomial hierarchy. We observe a similar behavior
for bipartite CAFs, here, credulous reasoning for cl-cf -semantics and cl-stage semantics re-
mains harder. Considering bipartite well-formed CAFs, skeptical reasoning for all considered
semantics is coNP-complete while credulous reasoning and verification become tractable.

6.2 Fixed-parameter tractability w.r.t. the number of claims

Here we investigate well-formed CAFs with a relatively small number of claims when com-
pared to the number of arguments. For the standard inherited semantics it has been shown
that reasoning in well-formed CAFs is fixed-parameter tractable w.r.t. the number of claims
used in the CAF [12]. That is, the complexity of reasoning mainly depends on the number
of claims rather than the total size of the CAF. In following we

(a) extend these results to inherited semi-stable and stage semantics as well as claim-based
semantics and

(b) complement existing negative results in that direction for general CAFs.

First recall that on well-formed CAFs we have that cl -prf = prf c and cl -stbcf = cl -stbadm =
stb. It thus suffices to consider cl -naive, stgc, cl -stg , semc, cl -sem semantics in this section.

First, we consider the non-emptiness problem NEwf
σ . The problem is already tractable

for most of the considered semantics and it thus only remains to consider σ ∈ {semc, cl -sem}.

Proposition 44. For σ ∈ {semc, cl -sem, cl -prf }, the NEwf
σ problem can be solved in time

O(2k · poly(n)) (where poly(·) is a fixed polynomial and n the size of the instance) for a
well-formed CAF = (A,R, claim) with |claim(A)| ≤ k.
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Table 8: Complexity of CAFs with special graph structure.

graph class task semc stgc cl -naive cl -prf cl -stbcf cl -stbadm cl -sem cl -stg

acyclic

CredCAF
σ in P in P in P in P in P in P in P in P

SkeptCAF
σ in P in P ΠP

2 -c in P in P in P in P in P

VerCAF
σ in P in P DP-c in P in P in P in P in P

NECAF
σ trivial for all considered semantics

noeven

CredCAF
σ in P ΣP

2 -c in P in P NP-c in P in P ΣP
2 -c

SkeptCAF
σ in P ΠP

2 -c ΠP
2 -c in P coNP-c in P in P ΠP

2 -c

VerCAF
σ in P ΣP

2 -c DP-c in P NP-c in P in P ΣP
2 -c

NECAF
σ in P in P in P in P NP-c in P in P in P

symmetric &
irreflexive

CredCAF
σ in P in P in P in P in P in P in P in P

SkeptCAF
σ coNP-c coNP-c ΠP

2 -c ΠP
2 -c coNP-c coNP-c coNP-c coNP-c

VerCAF
σ NP-c NP-c DP-c DP-c NP-c NP-c NP-c NP-c

NECAF
σ trivial for all considered semantics

symmetric

CredCAF
σ ΣP

2 -c ΣP
2 -c in P in P NP-c NP-c ΣP

2 -c ΣP
2 -c

SkeptCAF
σ ΠP

2 -c ΠP
2 -c ΠP

2 -c ΠP
2 -c coNP-c coNP-c ΠP

2 -c ΠP
2 -c

VerCAF
σ ΣP

2 -c ΣP
2 -c DP-c DP-c NP-c NP-c ΣP

2 -c ΣP
2 -c

NECAF
σ in P in P in P in P NP-c NP-c in P in P

bipartite

CredCAF
σ in P in P in P in P NP-c in P in P NP-c

SkeptCAF
σ coNP-c coNP-c ΠP

2 -c ΠP
2 -c coNP-c coNP-c coNP-c coNP-c

VerCAF
σ NP-c NP-c DP-c DP-c NP-c NP-c NP-c NP-c

NECAF
σ trivial for all considered semantics
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Table 9: Complexity of well-formed CAFs with special graph structure.

graph class task semc stgc cl -naive cl -prf cl -stbcf cl -stbadm cl -sem cl -stg

acyclic

Credwfσ in P in P in P in P in P in P in P in P

Skeptwfσ in P in P coNP-c in P in P in P in P in P

Verwfσ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics

noeven

Credwfσ in P ΣP
2 -c in P in P in P in P in P ΣP

2 -c

Skeptwfσ in P ΠP
2 -c coNP-c in P in P in P in P ΠP

2 -c

Verwfσ in P coNP-c in P in P in P in P in P coNP-c

NECAF
σ in P in P in P in P in P in P in P in P

symmetric &
irreflexive

Credwfσ in P in P in P in P in P in P in P in P

Skeptwfσ in P in P in P in P in P in P in P in P

Verwfσ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics

symmetric

Credwfσ ΣP
2 -c ΣP

2 -c in P in P NP-c NP-c ΣP
2 -c ΣP

2 -c

Skeptwfσ ΠP
2 -c ΠP

2 -c in P in P coNP-c coNP-c ΠP
2 -c ΠP

2 -c

Verwfσ coNP-c coNP-c in P in P in P in P coNP-c coNP-c

NECAF
σ in P in P in P in P NP-c NP-c in P in P

bipartite

Credwfσ in P in P in P in P in P in P in P in P

Skeptwfσ coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c

Verwfσ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics
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Table 10: Parameterized complexity of well-formed CAFs CAF = (A,R, claim) with respect
to k = |claim(A)| (FPT denotes the class of fixed-parameter tractable problems).

task semc stgc cl -naive cl -prf cl -stbcf cl -stbadm cl -sem cl -stg

Credwfσ in FPT in FPT in P in FPT in FPT in FPT in FPT in FPT

Skeptwfσ in FPT in FPT in FPT in FPT in FPT in FPT in FPT in FPT

Verwfσ in FPT in FPT in P in FPT in P in P in FPT in FPT

NECAF
σ in FPT in P in P in FPT in FPT in FPT in FPT in P

Proof. We iterate over all sets C ⊆ claim(A) and compute the corresponding candidates for
an admissible set E ⊆ A with claim(E) = C. If one of these sets is indeed admissible we
return yes otherwise false. For each C this procedures is in P (cf. Lemma 7).

We next present an enumeration algorithm for the extensions to show the upper bounds
for the credulous and skeptical reasoning tasks as well as the verification problem.

Proposition 45. For σ ∈ {cl -naive, stgc, cl -stg , semc, cl -sem}, the Credwfσ ,
Skeptwfσ and Verwfσ problems can be solved in time O(4k · poly(n)) (where poly(·) is a fixed
polynomial and n the size of the instance) for a well-formed CAF = (A,R, claim) with
|claim(A)| ≤ k.

Proof. We iterate over all sets C ⊆ claim(A) and compute the corresponding maximal
conflict-free (resp. admissible) set E ⊆ A in P (cf. Lemma 7) and filter out sets C that do
not have a corresponding conflict-free (resp. admissible) set. We end up with at most 2k

many sets. Next, depending on the semantics σ we proceed as follows:

• For cl -naive we compare the remaining sets C pairwise and filter out sets that are not
⊆-maximal.

• For stgc and semc we compute the range for the extensions by adding all attacked
arguments to E. Finally, we eliminate all pairs for which the range is not ⊆ - maximal.

• For cl -stg and cl -sem we compute the claim-range for the extensions by adding all
defeated claims to C. Finally, we eliminate all pairs for which the claim-range is not
⊆- maximal

In all three cases we end up with the set of extensions and can now easily decide the credulous
and skeptical acceptance of arguments as well as the validity of a given extension.

These fixed-parameter tractability results are summarized in Table 10. We next show
that for general CAFs and σ ∈ {semc, stgc} these problems are not fixed-parameter tractable
w.r.t. number of claims but maintain their full complexity even when there are only two
claims.

Proposition 46. For σ ∈ {semc, stgc},

• CredCAF
σ , SkeptCAF

σ , VerCAF
σ maintain their full complexity even for CAFs with only

two claims, and

• NECAF
semc maintains its full complexity even for CAFs with only one claim.
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Proof. First consider the following translation for a given CAF = (A,R, claim) with an
arbitrary number of claims and a given claim c. Construct CAF ′ = (A,R, claim ′) with
claim ′(a) = c iff claim(a) = c and claim ′(a) = d otherwise. Then claim c is credulously
(resp. skeptically) accepted in CAF iff c is credulously (resp. skeptically) accepted in CAF ′.
We obtain that CredCAF

σ , SkeptCAF
σ maintain their full complexity.

The lower bound for VerCAF
σ can be obtained similar as in the proof of Proposition 31

via a reduction from the ΣP
2 -complete Credσ problem for Dung AFs. To decide the problem

for an argument b in a Dung AF = (A,R), construct a CAF = (A′ = A ∪ {x}, R, claim)
with a new argument x 6∈ A and claim(b) = c1 and claim(a) = c2 for all a ∈ A′ \ {b}. Then,
argument b is credulously accepted in AF with regard to σ iff {c1, c2} is a i-σ extension of
CAF .

NECAF
semc : For a given CAF = (A,R, claim) with an arbitrary number of claims, cre-

ate CAF ′ = (A,R, claim ′) with claim ′(a) = c for all a ∈ A. Then NECAF
sem (CAF ) =

NECAF
sem (CAF ′).

That is, for all consider inherited semantics, the problems retain their full complexity
for general CAFs with only two claims. The picture for claim-based semantics is a more
subtle. For instance consider cl -prf (respectively cl -naive) with just two claims {c1, c2}. In
order to test whether c1 is skeptically accepted it is sufficient to test whether ∅ and {c2} are
not cl -prf which is in DP. That is, a small number of claims can lower the complexity of
claim-based semantics. While a full investigation of this matter is beyond the scope of this
paper, we observe that claim-based semantics remain NP/coNP-hard.

Proposition 47. For CAFs with only two claims,

• VerCAF
σ is NP-hard for σ ∈ {cl -stbcf , cl -stbadm , cl -prf },

• VerCAF
σ is coNP-hard for σ ∈ {cl -stg , cl -sem}, and

• NECAF
σ is NP-complete σ ∈ {cl -stbcf , cl -stbadm , cl -prf , cl -stg , cl -sem}.

That is, for all semantics, except cl -naive, the parametrized approach discussed here
does not lead to tractability results. Finally let us consider the case of cl -naive. VerCAF

cl-naive

for CAFs with only two claims can be solved in polynomial time by considering all pairs
of arguments where the first argument has claim 1 and the second argument has claim 2
and check whether one of those pairs is conflict-free. Indeed this can be generalized to an
O(nk · poly(n)) algorithm for k claims. However, this algorithm does not fall in the class of
FPT but a class of higher complexity, i.e., the class XP which contains the parameterized
problems with runtime O(nf (k)) for some computable function f .

7 Discussion

In this work we studied the computational complexity of the different semantics for claim-
augmented argumentation frameworks. That is, we complemented existing complexity re-
sults for inherited semantics [12] and provided a full complexity analysis of claim-level seman-
tics. We want to highlight three observations here: (a) for both approaches the verification
problem is harder than in the AF setting, which is in particular relevant when it comes to
the enumeration of extensions; (b) however, when restricted to well-formed CAFs the com-
plexity of verification drops to the complexity of AFs; and (c) the complexity of inherited
and claim-level semantics differs for naive and preferred semantics.

Moreover, given the high complexity of the considered semantics we investigated tractable
fragments in terms of certain graph classes (that are known to be tractable when neglecting
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claims) as well as a parameterized algorithm for enumerating extensions in well-formed CAFs.
The full complexity classification of the semantics together with the first tractable fragments
paves the way for complexity-adequate reduction-based implementations [33, 34, 35] of the
considered semantics which is an emerging topic for future work.

Besides studying the standard reasoning tasks we also settled the complexity of the
concurrence problem, i.e., deciding whether two variants of a semantics coincide on a CAF.
The concurrence problem is in the tradition of the well-known coherence problem [23],
which (a) for AFs is ΠP

2 -complete; (b) remains ΠP
2 -complete for inherited semantics [12]; and

(c) also for claim-based semantics, despite the complexity increase for reasoning problems,
remains ΠP

2 -complete (Proposition 22). However, the complexity for the novel concurrence
problem turns out to be surprisingly hard, ranging up to the third level of the polynomial
hierarchy.

Concerning future work we identify the following directions. In this work we considered
two different families of claim-based argumentation semantics that both followed the CAF
approach of using extensions of arguments, map them to extensions of claims and then reason
about the acceptance of claims. This a common approach in structured argumentation and
there are more ways of lifting argument semantics to the claim-level, as recently discussed in
[7]. Investigating the computational properties of these approaches is a promising direction
for future research. Moreover, given the complexity of the fundamental problems for the
semantics under our considerations one can reach for more advanced computational tasks,
e.g., dealing with incomplete information on the arguments and attacks [36, 37], the problem
of counting the number of extensions [38, 39], or enforcing the acceptance of a statement or
an extension [40, 41].

Acknowledgments

This research has been supported by Vienna Science and Technology Fund (WWTF) through
project ICT19-065, the Austrian Science Fund (FWF) through projects P30168, P32830, and
W1255-N23.

References

[1] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. R. Simari,
M. Thimm, S. Villata, Towards artificial argumentation, AI Magazine 38 (3) (2017)
25–36. doi:10.1609/aimag.v38i3.2704.

[2] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games, Artificial Intelligence 77 (2)
(1995) 321–358. doi:10.1016/0004-3702(94)00041-X.

[3] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-
theoretic approach to default reasoning, Artificial Intelligence 93 (1997) 63–101. doi:

10.1016/S0004-3702(97)00015-5.
URL http://dx.doi.org/10.1016/S0004-3702(97)00015-5

[4] S. Modgil, H. Prakken, Abstract rule-based argumentation, in: P. Baroni, D. Gabbay,
M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumentation, College
Publications, 2018, Ch. 6, pp. 287–364, also appears in IfCoLog Journal of Logics and
their Applications 4(8):2319–2406.

42



[5] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their
semantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook
of Formal Argumentation, College Publications, 2018, Ch. 4, pp. 159–236.
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[10] M. Caminada, S. Sá, J. Alcântara, W. Dvořák, On the equivalence between logic pro-
gramming semantics and argumentation semantics, International Journal of Approxi-
mate Reasoning 58 (2015) 87–111. doi:10.1016/j.ijar.2014.12.004.

[11] K. Cyras, X. Fan, C. Schulz, F. Toni, Assumption-based argumentation: Disputes,
explanations, preferences, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre
(Eds.), Handbook of Formal Argumentation, College Publications, 2018, Ch. 7, pp.
365–408, also appears in IfCoLog Journal of Logics and their Applications 4(8):2407–
2456.
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ȳ2

x3

c

z̄1

c

x4

c

z̄2

c

Figure 8: A CAF illustrating Reduction 6 for the formula Ψ = ∀Y ∃Zϕ(Y,Z) where ϕ(Y, Z)
is given by the clauses {{y1, z1, z2}, {z̄1, z̄2, ȳ2)}, {ȳ1, z̄1, y2}}.
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ȳ
y

z1

z1

z̄1

z1

z2

z2

z̄2

z2

dx
dx

dx̄
dx̄

dy
dy

dȳ
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A Translations between semantics (Proof of Lemma 6)

Lemma 6. For a CAF CF = (A,R, claim),

prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF )),

stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for τ ∈ {adm, cf },
stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).

The statement is proven in the following Lemmata 17, 18, and 19.

Lemma 17. For a CAF CF = (A,R, claim), prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF )).

Proof. Let Tr1(CF ) = CF ′ = (A′, R′, claim ′). The proof proceeds in three steps:
(i) We first show that C ∈ cfc(CF ) if and only if C ∈ cfc(CF ′) and further that

prfc(CF ) = prfc(CF ′).
⇒: Let E be a cfc-realization of C in (A,R). As E ⊆ A, it cannot contain any a′. Thus,
E ∈ cf ((A′, R′)), as all additional attacks contain at least one argument a′, which are not
contained in E and therefore C ∈ cfc(CF ′).
⇐: Let E be a cfc-realization of C in (A′, R′). As all arguments a′ are self-attacking,
E ∩A′ = ∅. Therefore, as R ⊆ R′, E ∈ cf ((A,R)) and thus C ∈ cfc(CF ).

Moreover, also E ∈ adm((A,R)) if and only if E ∈ adm((A′, R′)), as E ∩ A′ = ∅.
Now, as preferred extensions are subset maximal admissible sets, we further obtain that
E ∈ prf ((A,R)) if and only if E ∈ prf ((A′, R′)) and thus, prfc(CF ) = prfc(CF ′).

(ii) Next, to show that prfc(CF ′) ⊆ cl -sem(CF ′), let C ∈ prfc(CF ′) and E be a prfc-
realization of C in (A′, R′). Furthermore, towards a contradiction, let F ∈ adm((A′, R′)) and
C ∪ νCF ′(E) ⊂ claim ′(F ) ∪ νCF ′(F ). As E ∈ prf ((A′, R′)), there must be some a ∈ E \ F .
Furthermore, as all arguments b′ ∈ A′\A are self-attacking, it must hold that a ∈ A and thus,
by the construction of Tr1, there must be some argument a′ such that a is the only argument
attacking a′ and a′ is the only argument with claim claim ′(a′). Therefore, claim ′(a′) ∈
νCF ′(E) but claim(a′) 6∈ claim ′(F )∪ νCF ′(F ), contradicting that C ∪ νCF ′(E) ⊂ claim ′(F )∪
νCF ′(F ). Thus, such a set F cannot exist and therefore, prfc(CF ′) ⊆ cl -sem(CF ′).

(iii) Finally, to show that cl -sem(CF ′) ⊆ prfc(CF ′), let C ∈ cl -sem(CF ′) and E ⊆ A′

be a admissible set witnessing C. Towards a contradiction, let F ⊆ prf ((A′, R′)) such that
E ⊂ F . Then, C ∪ νCF ′(E) ⊆ claim ′(F ) ∪ νCF ′(F ). Furthermore, as E ⊂ F , there must
be some a ∈ F \ E and thus some a′ ∈ A′ attacked by a. As, by the construction of Tr1,
a′ is the only argument with claim claim ′(a′) and is only attacked by a (except for itself),
claim ′(a′) ∈ claim ′(F ) ∪ νCF ′(F ) and claim ′(a′) 6∈ C ∪ νCF ′(E) and thus C ∪ νCF ′(E) ⊂
claim ′(F ) ∪ νCF ′(F ), contradicting that C ∈ cl -sem(CF ′). Thus, such a set F cannot exist
and therefore, cl -sem(CF ′) ⊆ prfc(CF ′).

Lemma 18. For a CAF CF = (A,R, claim), stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF ))
for τ ∈ {adm, cf }.

Proof. Let Tr2(CF ) = CF ′ = (A′, R′, claim ′). Since stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF )
holds for any CAF CF , it suffices to show that (i) stbc(CF ) ⊆ stbc(CF ′) and (ii) cl -stbcf (CF ′) ⊆
stbc(CF ).

First observe that (a) for every set of arguments E ⊆ A, E attacks the argument a′ in
CF ′ iff a ∈ E ∪E+

(A,R). Indeed, E attacks an argument a′ iff either a ∈ E or if there is b ∈ E
such that (b, a) ∈ R.

(i) Let S ∈ stbc(CF ) and consider a stbc-realization E ⊆ A. We show that E is stable
in CF ′: First notice that E is conflict-free since we introduced no attacks between existing
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arguments in CF ′. Moreover, E attacks every argument a ∈ A′ \E: Clearly, E attacks every
argument a ∈ A\E; moreover, E attacks every a′ ∈ {a′ | a ∈ A} by (a) since E∪E+

(A,R) = A.

(ii) Let S ∈ cl -stbcf (CF ′), then there is a set E ∈ A′ such that E ∈ cf ((A′, R′)) and
claim(E) ∪ νCF ′(E) = claim(A′). We show that E ∈ stb((A,R)). First observe that E ⊆ A
since each argument a′ ∈ {a′ | a ∈ A} is self-attacking; moreover, E is conflict-free in (A,R).
We show that E attacks every argument a ∈ A \ E: We have {ca | a ∈ A} ⊆ νCF ′(E) since
claim(E) ∪ νCF ′(E) = claim(A′). Thus E attacks each argument a′ in CF ′. We conclude
by (a) that a ∈ E ∪ E+

(A,R) for every argument a ∈ A. We have shown that E ∈ stb((A,R))

and, consequently, S ∈ stbc(CF ).

Lemma 19. For a CAF CF = (A,R, claim),

stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).

Proof. Let Tr3(CF ) = CF ′ = (A′, R′, claim ′). The proof proceeds in three steps:
(i) First, observe that cf ((A,R)) = cf ((A′, R′)) as all added arguments are self-attacking

and we only add attacks between arguments {a, b} ⊆ A if there was already one in at least
one direction or the attacked argument was self-attacking. Moreover, {∅} ∈ stgc(CF ) if and
only if all arguments are self-attacking which is the case if and only if {∅} ∈ cl -stg(CF ).

(ii) Regarding stgc(CF ) = stgc(CF ′): For every maximal (with regard to ⊆) E ∈
cf (A′, R′), A ⊆ E ∪ E+

(A′,R′), as all arguments in A are either contained or, due to the fact
that E is maximal, are attacked by E. Thus, such sets E, due to the fact that all arguments
a′ are self-attacking, are the only witnessing candidates for the extensions in stgc(CF ) and
stgc(CF

′). Furthermore, by construction of Tr3, E∪E+
(A′,R′) = A∪{a′ ∈ A′ | a ∈ E∪E+

(A,R)}
and thus E ∪ E+

(A,R) will be maximal if and only if E ∪ E+
(A′,R′) is maximal.

(iii) Finally, stgc(CF ′) = cl -stg(CF ′) follows by observing that the claims of all arguments
in A′ are unique.

B Concurrence for stage semantics (Proof of Lemma 10)

Below we prove the correspondence of semi-stable and stage semantics for CAFs generated
from Reduction 7. This lemma is the main part for proving ΠP

3 -hardness for ConCAF
stg .

Lemma 10. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of QSAT ∃3 and let CF = (A,R, claim)
be as in Reduction 7. Then

1. cl -sem(CF ) = cl -stg(CF ); and

2. semc(CF ) = stgc(CF ).

Proof. To prove the statements we will first show that (i) each cl-stage and each i-stage claim-
set is of the form X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}: Let
S ∈ stgc(CF )∪cl -stg(CF ), V = X∪Y ∪Z. First notice that S ⊆ X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e}
for some X ′ ⊆ X, for e ∈ {ϕ, ϕ̄}: S cannot contain both a, ā for a ∈ X ∪ {ϕ} since there is
no cfc-realization E containing both b, b̄, for b ∈ X, nor ϕ, b for b ∈ {ϕ̄} ∪ C. It remains to
show that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} ⊆ S for some X ′ ⊆ X, for e ∈ {ϕ, ϕ̄}.

Let S ∈ stgc(CF ) and consider a stgc-realization E of S. E contains V ′ ∪ {v̄ | v /∈ V ′}
for some V ′ ⊆ V : Assume there is v ∈ V such that v, v̄ /∈ E and let D = (E \ {cli |
(v, cli) ∈ R}) ∪ {v}. D is conflict-free since v̄, dv /∈ E and since cli /∈ E for each clause
cli with (v, cli) ∈ R. Moreover, each such cli is attacked by D and thus D⊕(A,R) ⊃ E⊕(A,R),

contradiction to E being stage in (A,R). Moreover, E contains either ϕ or ϕ̄: Towards a

51



contradiction, assume ϕ, ϕ̄ /∈ E and let D = E ∪ {ϕ̄}. D is conflict-free since ϕ /∈ E and
D⊕(A,R) ⊃ E

⊕
(A,R), contradiction to E being stage in (A,R).

Let S ∈ cl -stg(CF ). We will first show that S contains either ϕ or ϕ̄: Towards a
contradiction, assume ϕ, ϕ̄ /∈ S. As S is cl-stage, there is an cfc-realization E of S such that
claim(E)∪νCF (E) is maximal among conflict-free claim-sets. Let D = E∪{ϕ̄}. D is conflict-
free since ϕ /∈ E and thus claim(D) ∪ νCF (D) = claim(E) ∪ νCF (E) ∪ {ϕ, ϕ̄} ⊃ claim(E) ∪
νCF (E), contradiction to S being cl-stage. S contains X ′ ∪ {x̄ | x /∈ X ′} and Y ∪ Z ⊆ S:
Assume there is x ∈ X such that x, x̄ /∈ S. As S is cl-stage, there is an cfc-realization E of
S such that claim(E) ∪ νCF (E) is maximal among conflict-free claim-sets. In case ϕ ∈ S,
then ϕ ∈ E and ϕ̄ /∈ E, cli /∈ E, i ≤ n, since they are in conflict with ϕ. Then D = E ∪ {x}
is conflict-free and properly extends E, thus claim(D) ∪ νCF (D) ⊃ claim(E) ∪ νCF (E),
contradiction to S being cl-stage. In case ϕ̄ ∈ E, let D = (E \ {cli | (x, cli) ∈ R}) ∪ {x, ϕ̄}.
D is conflict-free since x̄, dx /∈ E, cli /∈ E for each clause cli with (v, cli) ∈ R and ϕ /∈ E
by assumption ϕ̄ ∈ S. claim(D) = claim(E) ∪ {x} since the only arguments which have
been removed from D are labelled with claim ϕ̄ and D contains ϕ̄; moreover, νCF (E) ⊆
νCF (D) since ϕ is the only attacked argument of each cli and (ϕ̄, ϕ) ∈ R. Consequently,
claim(D) ∪ νCF (D) ⊃ claim(E) ∪ νCF (E), contradiction to S being cl-stage. Y ∪ Z ⊆ S:
Assume there is v ∈ Y ∪ Z such that v /∈ S. As S is cl-stage, there is an cfc-realization E
of S such that claim(E)∪ νCF (E) is maximal among conflict-free claim-sets and E does not
contain v, v̄ by assumption. Analogous to above, one can extend E appropriately to derive
a contradiction to S being cl-stage.

(1) Analogous to Lemma 9, one can show that cl -stg(CF ) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪
Z ∪ {e} | X ′ ⊆ X, e ∈ {ϕ, ϕ̄}}.

(2) We will show (a) stgc(CF ) ⊆ semc(CF ); and (b) semc(CF ) ⊆ stgc(CF ).
To show (a), let S ∈ stgc(CF ). By (i), either ϕ ∈ S or ϕ̄ ∈ S. In case ϕ ∈ S, we have

S = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} for some X ′ ⊆ X, thus S ∈ semc(CF ) by Lemma 9. In
case ϕ̄ ∈ S, we consider a stgc-realization E of S. E is admissible: Each a ∈ V ∪ V̄ ∪ {ϕ̄}
defends itself; also, ϕ /∈ E by (i); moreover, each cli ∈ E is defended by E, otherwise there
is cli ∈ E which is not defended by E against some argument a ∈ V ∪ V̄ , thus ā /∈ E, that
is, there is v ∈ V such that v, v̄ /∈ E, contradiction to (i). Thus E is semi-stable, otherwise
there is some set D ∈ adm((A,R)) ⊆ cf ((A,R)) with D⊕(A,R) ⊃ E⊕(A,R), contradiction to E

being stage in (A,R).
To show (b), let S ∈ semc(CF ) and consider a semc-realization E of S. Clearly, E is

conflict-free. We show that E ∈ stg((A,R)). Towards a contradiction, assume that there
is D ∈ cf ((A,R)) with D⊕(A,R) ⊃ E⊕(A,R). Let a ∈ D⊕(A,R) \ E

⊕
(A,R). By Lemma 8, either

E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2}) (in case ϕ ∈ E) or E⊕(A,R) =

A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}) (in case ϕ̄ ∈ E); that is, a ∈ {da | a ∈
(X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}. Also, for all v ∈ V , either dv ∈ E⊕(A,R) or dv̄ ∈ E⊕(A,R),

otherwise v, v̄ /∈ E; let E′ = E ∪ {v}, then (E′)⊕(A,R) ⊃ E⊕(A,R), contradiction to E being

semi-stable. In case a = db for some b ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E}, we have db, db̄ ∈ D⊕(A,R)

and thus b, b̄ ∈ D, contradiction to D being conflict-free. Moreover, a 6= d2 since the only
attacker d1 of d2 is self-attacking. Consider the case a = d1, then ϕ ∈ D since ϕ is the only
attacker of d1. Thus cli /∈ D for all i ≤ n by conflict-freeness of D; we conclude that D
attacks each cli, i ≤ n since cli ∈ E⊕(A,R) for all i ≤ n and D⊕(A,R) ⊃ E⊕(A,R). Therefore D is

admissible and D⊕(A,R) ⊃ E
⊕
(A,R), contradiction to E being semi-stable.
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C Bounding the number of claims (Proof of Proposition 47)

Proposition 47. For CAFs with only two claims,

• VerCAF
σ is NP-hard for σ ∈ {cl -stbcf , cl -stbadm , cl -prf },

• VerCAF
σ is coNP-hard for σ ∈ {cl -stg , cl -sem}, and

• NECAF
σ is NP-complete σ ∈ {cl -stbcf , cl -stbadm , cl -prf , cl -stg , cl -sem}.

Proof. The hardness proofs for VerCAF
σ are by three variants of the standard reduction:

σ ∈ {cl -stbcf , cl -stbadm}: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses
C = {c1, . . . , cn} over atoms in X, where negated atoms are denoted by x̄. We construct
CAFϕ = (A,R, claim) with

A = X ∪ X̄ ∪ C
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}

with claim(x) = claim(x̄) = c for all x ∈ X and claim(ci) = d for all ci ∈ C. An illustrative
example of the reduction is given in Figure 14. First notice that because of the specific
use of symmetric attacks and the self attacks conflict-free sets and admissible sets coincide.
Thus, also cl -stbcf and cl -stbadm coincide and it suffices to consider cl -stbcf in the following.
By construction the formula ϕ is satisfiable iff there is a conflict-free set that attacks all
arguments ci ∈ C iff there is a cl -stbcf extension iff {c} is a cl -stbcf extension. We obtain
that VerCAF

σ is NP-hard.

σ ∈ {cl -prf }: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C =
{c1, . . . , cn} over atoms in X, where negated atoms are denoted by x̄. We construct CAFϕ =
(A,R, claim) with

A = X ∪ X̄ ∪ C ∪ {ϕ}
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c), (c, ϕ) | c ∈ C}

with claim(x) = claim(x̄) = c for all x ∈ X ∪ C and claim(ϕ) = d. An illustrative example
of the reduction is given in Figure 15. By construction the formula ϕ is satisfiable iff there is
a conflict-free set that attacks all arguments ci ∈ C iff there is an admissible set containing
ϕ iff {c, d} is a cl -prf extension. We obtain that VerCAF

cl-prf is NP-hard.

σ ∈ {cl -stg , cl -sem}: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses
C = {c1, . . . , cn} over atoms in X, where negated atoms are denoted by x̄. We construct
CAFϕ = (A,R, claim) with

A = X ∪ X̄ ∪ C ∪ {y, z}
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C} ∪

{(x, y), (x̄, y), (y, x), (y, x̄) | x ∈ X} ∪ {(z, z)}

with claim(x) = claim(x̄) = c for all x ∈ X ∪ {z}, claim(ci) = d for all ci ∈ C and
claim(y) = d. An illustrative example of the reduction is given in Figure 16. First notice
that because of the specific use of symmetric attacks and the self attacks conflict-free sets
and admissible sets coincide. Thus, also cl -stg and cl -sem coincide and it suffices to consider
cl -stg in the following. By construction the formula ϕ is satisfiable iff there is a conflict-free
set that attacks all arguments ci ∈ C iff there is a cl-stage extension with range {c, d} iff {d}
is not a cl-stage extension. We obtain that VerCAF

σ is NP-hard.
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Figure 14: Construction from the proof of Proposition 47 for the formula ϕ given by the
clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}
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Figure 15: Construction from the proof of Proposition 47 for the formula ϕ given by the
clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}

Now consider the non-empty problems NECAF
σ . First, for the NP-hardness with σ ∈

{cl -stbcf , cl -stbadm} consider the first reduction of this proof. By construction {c} is the
only candidate for being an extension and we already know that {c} is an extension iff φ
is satisfiable. Thus we obtain that there is a non-empty extension iff φ is satisfiable which
shows NP-hardness.
For σ ∈ {cl -prf , cl -stg , cl -sem} we reuse the following construction from the proof of Proposi-
tion 46: For a given CAF = (A,R, claim) with an arbitrary number of claims, create CAF ′ =
(A,R, claim ′) with claim ′(a) = c for all a ∈ A. Then NECAF

σ (CAF ) = NECAF
σ (CAF ′).
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Figure 16: Construction from the proof of Proposition 47 for the formula ϕ given by the
clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}
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