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Abstract. Many structured argumentation approaches proceed by constructing a Dung-
style argumentation framework (AF) corresponding to a given knowledge base. While a
main strength of AFs is their simplicity, instantiating a knowledge base oftentimes requires
exponentially many arguments or additional functions in order to establish the connection.
In this paper we make use of more expressive argumentation formalisms. We provide sev-
eral novel translations by utilizing claim-augmented AFs (CAFs) and AFs with collective
attacks (SETAFs). We use these frameworks to translate assumption-based argumentation
(ABA) frameworks as well as logic programs (LPs) into the realm of graph-based argumen-
tation.
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Figure 1: Overview of existing and novel transformations. Novel translations between ABA and CAFs are
given in [a] Def. 3.6 and [b] 3.9; we present two translations relating ABA and SETAFs, cf. [c] Def. 3.13 and
[d] 3.17; translations between [e] SETAFs and LP are in Section 4.2; and for [f] CAFs and LPs by Def. 4.3.

1 Introduction

Argumentation structures often arise from instantiating knowledge bases and identifying their rel-
evant conflicts. The representation of knowledge bases in terms of graph-based argumentation for-
malisms has several advantages. First, they provide an intuitive and user-friendly way for conflict-
representation due to their graphical design. Second, the uniform representation allows to compare
different, seemingly unrelated knowledge bases and helps to identify their similarities. Various
kinds of knowledge bases and applications lead to the invention of several tailor-made argumen-
tation formalisms, each with their own advantages and disadvantages. In formal argumentation,
Abstract Argumentation due to Dung [10] serves as a common denominator for many of these for-
malisms. Popular extensions of Dung’s original framework incorporate for example propositional
acceptance conditions [6], assumptions [5], claims [15], or collective attacks [18]. At first glance,
these formalisms seem incompatible due to their focus on seemingly entirely different features. In
an effort to relate selected formalisms, researchers singled out pairs of formalisms and provided
translations for the respective cases. For the classical Dung semantics, i.e., for complete, pre-
ferred, stable, and grounded semantics (com,pref,stb,grd), semantics-preserving translations have
been successfully established in many cases.

In this work, we take a step back and compare a variety of argumentation formalisms, namely
Assumption Based Argumentation (ABA) [5], Claim-Augmented Frameworks (CAF) [15], and
Argumentation Frameworks with Collective Attacks (SETAF) [18]. Moreover we consider the
closely related Normal Logic Programs (LP) and the restricted atomic LPs [17] (we expect readers
to enjoy this work the most if they are already familiar with some of these formalisms). There
already exist semantics-preserving translations between several classes of the aforementioned for-
malisms. Caminada and Schulz [8] provide a translation between ABA and LP and vice versa.
In [13, 14], the correspondence between well-formed CAFs and SETAFs has been settled. All of
these mentioned translations preserve complete, stable, and preferred models (extensions).

If we furthermore take the well-investigated relation between Abstract Dialectical Frameworks
(ADF) [6] and LPs [20, 2] as well as to SETAFs, respectively [11, 1, 19], into account and collect
all available results, we obtain the following insight: (classes of) ABA frameworks, LPs, ADFs,
SETAFs, and CAFs can all be viewed, to some extent, as different sides of the same (pentagonal)
coin. We summarize this insight in Figure 1. We note that not all translations consider all instances
of the domain; e.g., the translation from CAFs to SETAFs restricts to so-called well-formed CAFs;
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also, Dvořák et. al [11] as well as Alcântara and Sá [1] focus on attacking (support-free) ADFs.
Likewise, the image of the translation often do not cover all instances of the target formalism, e.g.,
Polberg [19] translates SETAFs into attacking ADFs and Caminada and Schulz [8] map LPs to a
sub-class of ABA frameworks. As one can verify by following the directed arrows, there exists
semantics-preserving rewriting methods between (classes of) all of these formalisms. While this
existential statement suffices to establish a theoretical correspondence it is hardly of practical use
for translating, e.g., ABA instances to CAFs (this concrete example would require the application
of four different translations). From a theoretical point of view, one would have to comprehend
several steps through various different formalisms, thereby missing the observation that there are
immediate translations which preserve the structure quite well, as we will establish in this paper.
For example the CAF obtained from an ABA framework is natural and can be constructed directly,
and the role of the additional claims becomes clear immediately.

The paper is organized as follows. In Section 3 we focus on the intertranslatability of ABA,
CAFs, and SETAFs. We show how an ABA framework naturally induces a CAF which preserves
the structure of the knowledge base due to the flexible handling of claims. Moreover, we explore
the advantageous features of SETAFs which yield a representation that requires fewer arguments.
We will show that if one is solely interested in the underlying assumptions, SETAFs yield impres-
sively concise representations. In Section 4 we discuss the close relation between atomic LPs,
CAFs, and SETAFs, provide natural pairwise translations and demonstrate their compatibility.
Along the way, we show that the instantiation procedure [7] (i.e. constructing arguments from a
general LPs) can be bridged by first making the LP atomic.

Proofs of lemmata, propositions, and theorems marked with (♠) can be found in the appendix.

2 Background
We recall the necessary background for AFs since they constitute our main underlying formalism.
The other formalisms will be introduced on the fly. An argumentation framework (AF) [10] is a
directed graph (A,R) where A is a finite set of arguments and R ⊆ A×A the attack relation. An
argument x (set E ⊆A) attacks y if (x,y) ∈ R (some z ∈ E attacks y). We write E+

R = {a ∈ A |
E attacks a} and E−R = {a ∈ A | (a,b) ∈ R,b ∈ E}, and for short x+R = {x}+R , x−R = {x}−R ; we omit
subscript R if it is clear from the context.

A set E ⊆ A is conflict-free in F = (A,R) iff (x,y) /∈ R for all x,y ∈ E; E defends an argument x
if E attacks each attacker of x. A conflict-free set E is admissible in F (E ∈ adm(F)) iff it defends
all its elements. A semantics σ is a function which returns a set of subsets of A. These subsets are
called σ -extensions. In this paper we consider so-called complete, grounded, preferred, and stable
semantics (abbr. com, grd, pref, stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ adm(F). We let E ∈ com(F) iff E contains all
arguments it defends; E ∈ grd(F) iff E is ⊆-minimal in com(F); E ∈ pref(F) iff E is ⊆-maximal
in com(F); E ∈ stb(F) iff E+ = A\E.

Throughout the paper we will frequently use the notion of a hitting set: Let M be a set of sets.
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We call H a hitting set of M if H ∩M ̸= /0 for each M ∈M . By HSmin(M ) we denote the
⊆-minimal hitting sets of M . We will make use of the following result.

Lemma 2.2 ([3]). Let X = {X1, . . . ,Xn} be a set of sets with Xi ̸⊆ X j for i ̸= j. Then
HSmin(HSmin(X)) = X.

3 Intertranslatability of ABA Frameworks, CAFs, and
SETAFs

In this section, we consider the relation between ABA frameworks, well-formed CAFs, and
SETAFs. Semantics for ABA can be equivalently formulated in terms of assumptions or in terms
of arguments via attacks based on their claims. There are different representations that put the
focus on either preserving assumption-sets or extensions in terms of conclusions. Figure 2 shows
the different translations and directions we consider in this section: while the CAF representation
focuses on extensions in terms of conclusions but also preserves assumption-extension under pro-
jection (cf. translation [a] in Figure 2), there are several possibilities to represent ABA frameworks
as SETAFs. Translation [c] relates assumptions in the ABA framework with arguments in the
SETAF while Translation [d] relates conclusions with arguments. We also consider the reversed
direction, i.e., constructing ABA frameworks from CAFs and SETAFs (cf. [b] and [c], respec-
tively). In Section 3.1, we consider the relation of ABA and CAFs; in Section 3.2 we examine the
relation between ABA and SETAFs. First, we provide necessary background for ABA.

Assumption-based Argumentation. We assume a deductive system (L ,R), where L is a for-
mal language and R is a set of inference rules of the form r : a0← a1, . . . ,an, ai ∈L ; head(r) = a0
denotes the head and body(r) = {a1, . . . ,an} the body of rule r.

Definition 3.1. An ABA framework is a tuple (L ,R,A , ), where (L ,R) is a deductive system,
A ⊆L , A ̸= /0 a set of assumptions, and a contrary function : A →L .

We focus on ABA frameworks which are flat, i.e., for each rule r ∈R, head(r) /∈A , and finite,
i.e., L , R, A are finite. Furthermore, we assume L to be a set of atoms.

An atom p ∈L in an ABA framework D = (L ,R,A , ) is tree-derivable from assumptions
S⊆A and rules R⊆R, denoted by S ⊢R p, if there is a finite rooted labeled tree such that the root

SETAF

CAF

ABA

[a]
[b]

[d]

[c]

Translations [a,d] from ABA to CAFs and SETAFs
preserve conclusions (cf. Def. 3.6 and 3.17); Trans-
lation [b] from CAFs to ABA preserves proper
conclusion-extensions (cf. Def. 3.9); Translation [c]
between ABA and SETAFs preserves assumption-sets
(cf. Def. 3.13). The diagram commutes w.r.t. dashed
lines (cf. Prop. 3.21).

Figure 2: Semantics-preserving translations between ABA frameworks, CAFs, and SETAFs.

4



is labeled with p, the set of labels for the leaves is equal to S or S∪{⊤}, and there is a surjective
mapping from the set of internal nodes to R s.t. each internal note v is labeled with head(r) for
some r ∈ R and the set of all successor nodes corresponds to body(r) or ⊤ if body(r) = /0. We
write S ⊢ p if there exists R ⊆ R with S ⊢R p. Derivability for a set of assumptions S ⊆ A is
defined via ThD(S) = {p | S ⊢ p}.

A set S ⊆ A attacks a ∈ A if there is S′ ⊆ S such that S′ ⊢ a; S attacks T ⊆ A if it attacks
some a ∈ T . S is conflict-free if it does not attack itself; S is admissible if it is conflict-free and
counter-attacks each attacker (we say: S defends itself). We recall grounded, complete, preferred,
and stable ABA semantics (abbr. grd, com, pref, stb).

Definition 3.2. For an ABA D = (L ,R,A , ) and an admissible set S ⊆ A , S ∈ com(D) iff S
contains every assumption it defends; S∈ grd(D) iff S is⊆-minimal in com(D); S∈ pref(D) iff S is
⊆-maximal in com(D); S ∈ stb(D) iff S attacks each {x} ⊆A \S. Given σ ∈ {com,grd,pref,stb},
the σ -conclusion-extensions of D are σT h(D) = {ThD(S) | S ∈ σ(D)}, the proper σ -conclusion-
extensions of D are given by {C \A |C ∈ σT h(D)}.

ABA frameworks and AFs are closely related (see, e.g., [9]). Viewing tree derivations as
arguments, an ABA framework induces a corresponding AF as follows.

Definition 3.3. The associated AF FD = (A,R) of an ABA D=(L ,R,A , ) is given by A = {S ⊢
p | ∃R⊆R : S ⊢R p} and attack relation (S1 ⊢ p,S2 ⊢ q) ∈ R iff p ∈ {s | s ∈ S2}.

Example 3.4. Consider the ABA D with assumptions A = {a,b,c} and rules r1 : p← a, r2 : p← c,
and r3 : q← b. Moreover, a = b, b = p, and c = q. Below we depict the attacks between the
assumption-sets (left, we omit /0, {a,b}, {b,c}, and A ) and the AF FD (right) with arguments xi
(induced by rules ri) and arguments xa, xb, xc for the assumptions.

{a}
{b}

{c}
{a,c}

AF FD: x3
x1

x2
xa xb xc

The ABA D has two stable assumption-sets: S1 = {b} and S2 = {a,c} with ThD(S1) = {b,q} and
ThD(S2) = {a,c, p}. The stable extensions in FD are {x3,xb} and {x1,x2,xa,xc}.

For an argument x= S⊢ p, we consider functions cl(x)= p and asms(x)= S; moreover, cl(E)=
{cl(x) | x ∈ E} and asms(E) =

⋃
x∈E asms(x) for a set of arguments E.

Proposition 3.5 ([9]). For an ABA D, its associated AF F, σ ∈ {grd,com,pref,stb}; if E ∈ σ(F)
then asms(E) ∈ σ(D); and if S ∈ σ(D) then {S′ ⊢ p | ∃S′ ⊆ S : S′ ⊢ p} ∈ σ(F).

3.1 Assumption-based Argumentation and Claims
Claim-augmented Argumentation Frameworks. A claim-augmented argumentation frame-
work (CAF) [15] is a triple F = (A,R,cl) where F = (A,R) is an AF and a function cl which
assigns a claim to each argument in A. The claim-function is extended to sets in the natural way,
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i.e. for a set E ⊆ A, we let cl(E) = {cl(a) | a ∈ E}. For a CAF F = (A,R,cl), F = (A,R), and an
AF semantics σ , we define σc(F ) = {cl(E) | E ∈ σ(F)}. In this work, we focus on CAFs that are
well-formed; i.e. CAFs satisfying a+R = b+R for all a,b ∈ A with cl(a) = cl(b). Whenever we write
CAF, we mean well-formed CAF.

ABA-CAF Translations. There is a natural adaption of the AF instantiation given in Defini-
tion 3.3 to CAFs by assigning each argument S ⊢ p its claim p:

Definition 3.6. The associated CAF FD = (A,R,cl) for an ABA D=(L ,R,A , ) is obtained by
constructing (A,R) from Definition 3.3 and cl(S ⊢ p) = p for all S ⊢ p ∈ A.

Example 3.7. Instantiating ABA D from Example 3.4 yields the following CAF:

CAF FD: x3
q

x1 p

x2p
xaa xb

b
xc c

The CAF FD is well-formed since attacks depend on the conclusion of the attacking argument:
an argument x attacks argument y if cl(x) = a for some a ∈ asms(y). Due to Proposition 3.5, the
translation preserves the σ -conclusion-extensions of an ABA D; assumption-extensions can be
obtained by restricting the conclusion-sets to A .

Proposition 3.8. For an ABA D = (L ,R,A , ), its associated CAF FD and σ ∈
{grd,com,pref,stb}, it holds that σT h(D) = σc(FD) and σ(D) = {C∩A |C ∈ σc(FD)}.

For the other direction, we identify each claim c in a given well-formed CAF as contrary of
some hidden assumption ac; moreover, each argument which is attacked by claim c is derived from
assumption ac (i.e., ac is attacked by all arguments with claim c).

Definition 3.9. The associated ABA DF = (L ,R,A , ) of a CAF F = (A,R,cl) is given by
A = {ac | c∈ cl(A)}, L =A ∪cl(A), contrary function ac = c for all c∈ cl(A), and R = {cl(x)←
{acl(y) | y ∈ x−} | x ∈ A}.

We obtain a translation which relates claim-sets of the CAF with the proper conclusion-
extensions of the obtained ABA. Note the restriction to the proper conclusion-extensions is neces-
sary since the translation treats assumptions as implicit information.

Proposition 3.10. (♠) For a CAF F = (A,R,cl), its corresponding ABA DF and a semantics
σ ∈ {grd,com,pref,stb}, it holds that σc(F ) = {C \A |C ∈ σT h(DF )}.

Example 3.11. Consider the CAF FD from Example 3.7. We construct an ABA DFD =
(L ,R,A , ) with A = {ap,aq,aa,ab,ac}, contrary function ax = x for each claim in FD and
rules p ← ab, p ← aq, q ← ap, a ← ab, b ← ap, and c ← aq. The ABA DFD has two sta-
ble assumption-sets S1 = {aa,ap,ac} and S2 = {ab,aq} with ThDFD

(S1) = {aa,ap,ac,b,q} and
ThDFD

(S2) = {ab,aq,a,c, p}. The proper conclusion-extensions of DFD are {b,q} and {a,c, p}
which correspond to the conclusion-extensions of D.
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3.2 Assumption-based Argumentation and Collective Attacks
Argumentation frameworks with collective attacks. A SETAF [4] is a pair SF = (A,R) where
A is a finite set of arguments and R⊆ (2A \{ /0})×A is the attack relation. For an attack (T,h) ∈ R
we call T the tail and h the head of the attack. SETAFs (A,R) where |T | = 1 for all (T,h) ∈ R
amount to AFs. In that case, we write (t,h) to denote ({t},h).

A set T1 ⊆ A attacks h ∈ A (the set T2 ⊆ A) if there is T ′1 ⊆ T1 (and h ∈ T2, resp.) such that
(T ′1,h) ∈ R. We write h−R = {T | (T,h) ∈ R} to denote the set of attackers of the argument h (in
R). For S ⊆ A, we use S+R to denote the set of arguments attacked by S (in R). S is conflict-free in
SF if it does not attack itself; S defends argument a ∈ A if it attacks each attacker of a; likewise, S
defends T ⊆ A iff it defends each a ∈ T . A set S is called admissible if it defends itself (adm(SF)
denotes the set of all admissible sets in SF). AF semantics generalize to SETAFs in the following
way [16, 18].

Definition 3.12. Given a SETAF SF = (A,R) and a set S ∈ adm(SF). Then, S ∈ com(SF) iff S
contains each argument it defends; S ∈ grd(SF) iff S is ⊆-minimal in com(SF); S ∈ pref(SF) iff S
is ⊆-maximal in com(SF); S ∈ stb(SF) iff S attacks all a ∈ A\S.

ABA-SETAF-translations: relating assumptions with arguments. When inspecting the defi-
nitions of attacks for ABA frameworks and SETAFs we find the following natural correspondence:
a set of arguments T attacks an argument h in the SETAF iff T derives the contrary of h in the cor-
responding ABA. We obtain an ABA framework from a given SETAF by introducing a rule h← T
for each attack (T,h) ∈ R. For the other direction, we identify conflicts between assumption-sets.
Below, we give the resulting translations.

Definition 3.13. For an ABA D = (L ,R,A , ), we define the corresponding SETAF SFD =
(AD,RD) with AD = A and (S,a) ∈ RD iff S ⊢ a. For a SETAF SF = (A,R), we define the corre-
sponding ABA DSF = (LSF ,RSF ,ASF , ) with LSF = A∪{px | x ∈ A}, ASF = A, x = px for all
x ∈ A, and for each (T,h) ∈ R, we add a rule ph← T to RSF .

Example 3.14. Instantiating ABA D from Example 3.4 yields the following SETAF:

SETAF SFD: a b c

The translations indeed preserve the (assumption-based) semantics.

Proposition 3.15. (♠) Given a semantics σ ∈ {grd,com,pref,stb}. For an ABA D and its associ-
ated SETAF SFD, it holds that σ(D) = σ(SFD). For a SETAF SF and its associated ABA DSF , it
holds that σ(SF) = σ(DSF).

We obtain the following strong intertranslatibility result using the correspondence (S,a) ∈ R in
SF iff a← S in DSF iff S ⊢ a in DSF iff (S,a) ∈ R in SFDSF = SF .

Proposition 3.16. Given a SETAF SF, it holds that SFDSF = SF.
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This result shows that no information is lost in the SETAF when representing it in terms of
ABA. The other direction, i.e., translating ABA frameworks to SETAFs, however, comes with a
cost: given an ABA framework D, it is impossible to extract the σ -conclusion-extensions from
SETAF SFD. This means that the conclusions of a given ABA instance are lost when applying
the translation. In the following, we present a translation that preserves conclusions of an ABA
instance.

ABA-SETAF-translations: relating conclusions and arguments. In order to establish a trans-
lation from ABA frameworks to SETAFs that preserves the conclusions of the original instance,
we proceed as follows: For a given ABA instance D= (L ,R,A , ), we construct a corresponding
SETAF SFD = (A,R) with

1. A = {p | ∃S ⊆ A : S ⊢ p}, i.e., conclusions in D correspond to arguments of our resulting
SETAF (observe that each assumption a ∈A is a conclusion of D); and

2. a set of conclusions C attacks a conclusion p in SFD, i.e., (C, p)∈ R, iff C contains a contrary
for each set of assumptions S with S ⊢ p, and C is ⊆-minimal among all such sets (i.e., C is
a minimal hitting set of the set {{a | a ∈ S} | S ⊢ p}).

Definition 3.17. For a given ABA instance D = (L ,R,A , ), let Sp = {S | S ⊢ p} and S p =
{{a | a ∈ S} | S ⊢ p} for each p ∈L . We construct the SETAF SFc

D = (A,R) with A = {p | ∃S ⊆
A : S ⊢ p} and R = {(C, p) | p ∈ A,C ∈ HSmin(S p)}.

Example 3.18. We construct SETAF SFc
D from the ABA D from Example 3.4. The arguments

in SFc
D correspond to the conclusions in D, i.e., A = {a,b,c, p,q}. We determine the attackers of

p ∈ A: first, we identify the set Sp = {{a},{c}} that contains all assumption-sets that derive p (in
D); the set S p = {{b},{q}} contains the respective contraries. The unique hitting set of S p is
{b,q}, thus {b,q} attacks p. We depict the resulting SETAF below (the joint arcs from {b,q} to p
(in blue) represent the set-attack):

SETAF SFc
D: a

b

p

q
c

The construction indeed preserves the σ -conclusion-extensions for the considered seman-
tics; moreover, we obtain the assumption-extensions of the original instance by projecting the
conclusion-extensions to the assumptions A .

Proposition 3.19. (♠) For an ABA D = (L ,R,A , ), its associated SETAF SFc
D and σ ∈

{grd,com,pref,stb}, it holds that σT h(D) = σ(SFc
D) and σ(D) = {C∩A |C ∈ σ(SFc

D)}.

3.3 Summary & Compatibility
We presented several different translations from ABA to CAFs and SETAFs and vice versa. For
CAFs, we related claims with conclusions; for SETAFs, we considered two translations by relating
arguments with assumptions and with conclusions, respectively.
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When comparing the ABA instances when starting from a CAF or a SETAF (cf. Definition 3.9
and 3.13, respectively), we observe the following similarities: in both cases, the resulting ABA
is flat, also, each rule contains only assumptions in its body, furthermore, no contrary of an as-
sumption is an assumption. We furthermore observe the following notable difference between the
two translations: while the translation from ABA to CAF potentially causes an exponential blow-
up as the argument-construction can be exponential in the number of assumptions, we observe
that the resulting SETAF is linear in the number of assumptions, i.e., the exponential blow-up can
be avoided. We note, however, that the computation of the SETAF might be exponential—the
computational effort is shifted to the construction of the attack relation which requires to identify
tree-derivations S ⊢ a in the ABA framework to define attacks (S,a) in the SETAF.

We end this section by presenting a strong intertranslatability result for our considered for-
malisms. For this, we make use of the translation from well-formed CAFs to SETAFs [13]. To
fit our setting, we reformulate the translation in terms of hitting sets instead of CNF and DNF-
formulas to capture the attack-structure of the frameworks.

Definition 3.20 (cf. [13]). For a well-formed CAF F = (A,R,cl), we define the corresponding
SETAF SFF = (AF ,RF ) by letting AF =cl(A) and RF = {(T,c) | c ∈ cl(A),T ∈HSmin({cl(x−R ) |
x ∈ A,cl(x) = c})}. For a SETAF SF = (A,R), we define the corresponding CAF FSF =
(ASF ,RSF ,clSF) with ASF = {xc,h | c∈ A, h∈HSmin(c−R )}, clSF(xc,h) = c, and RSF = {(xc,hx ,yd,hy) |
c ∈ hy}.

Restricting the translation to redundancy-free CAFs, i.e., frameworks s.t. there are no x,y ∈ A
with cl(x) = cl(y), x+ = y+, and x− ⊆ y−, we obtain the following result.

Proposition 3.21. (♠) Given an ABA D = (L ,R,A , ), its corresponding SETAF SFc
D (cf. Def-

inition 3.17), let FD be the corresponding CAF (cf. Definition 3.6), and let SFc
FD

be the SETAF
corresponding to the CAF FD (cf. Definition 3.20). It holds that SFc

D = SFc
FD

.

4 Strong Intertranslatability of LPs, CAFs, and SETAFs
In this section we strengthen the results regarding CAFs, LPs, and SETAFs by providing structure-
preserving translations for suitable normal forms of the formalisms. This highlights their equiv-
alent expressiveness. While there is an immediate correspondence between CAFs and LPs, the
connection to SETAFs is via a detour making use of hitting sets, as we will explain in more detail
in Section 4.1 (cf. [12]). The relations we will discuss are depicted in Figure 3. Our way to extract

SETAF

CAF

LP atomic LP

Figure 3: Transformations between formalisms discussed in Section 4

9



arguments from an LP is similar to the AF-instantiation reported in [7] where a semantics corre-
spondence between LPs and AFs has been established. Due to space restrictions, we will focus
our attention on stable semantics since this is the most commonly used semantics for LPs, but we
want to emphasize that analogous results hold for the other cases, i.e. com, grd, and pref as well.
Moreover, most results reported in this section are concerned with syntactical properties.

Logic Programs. We consider logic programs with default negation not. Such programs consist
of rules of the form “c← a1, . . . ,an,not b1, . . . ,not bm.” where 0 ≤ n,m and the ai, bi and c are
ordinary atoms. We let head(r) = c, pos(r) = {a1, . . . ,an} and neg(r) = {b1, . . . ,bm}. Let L (P)
be the set of all atoms occurring in P. For B = {b1, . . . ,bm}, we use not B as a shorthand for the
conjunction not b1, . . . ,not bm. A rule r is atomic [17] if pos(r) = /0; a program P is atomic if each
rule in P is.

For LPs without default negation (neg(r) = /0) the unique stable model is the smallest set of
atoms closed under all rules, where a set E is closed under a rule r with neg(r) = /0 iff pos(r)⊆ E
implies head(r) ∈ E. For any LP P, a set E of atoms is a stable model (E ∈ stb(P)) iff E is the
stable model of PE = {head(r)← pos(r) | neg(r)∩E = /0}.

Example 4.1. If P = {(d← not a, not b.),(d← not c.),(a← not c.),(c← not a.),(b.)}, then P is
atomic. For E = {b,c} we have PE = {(c.),(b.)} and thus E ∈ stb(P).

Redundancies. Throughout this section we will require redundancy notions for our formalisms.
An argument x ∈ A in a CAF F = (A,R,cl) is redundant if there is y ∈ A with cl(x) = cl(y) and
y− ⊆ x−. An attack (T,h) ∈ R in a SETAF SF = (A,R) is redundant if there is (T ′,h) ∈ R with
T ′ ⊊ T . A rule r ∈ P of an atomic LP is redundant if there is r′ ∈ P with head(r) = head(r′)
and neg(r′) ⊆ neg(r); an atom a ∈L (P) is redundant if it does not occur as a rule head in P. A
CAF resp. SETAF resp. LP without redundant arguments resp. attacks resp. rules and atoms is
redundancy-free.

4.1 High Level Point of View
In the following subsections we will require various translations between the formalisms, which
may appear rather technical at first glance. However, by closely inspecting all cases we observe
that the constructed instances of the respective formalisms are quite similar in their spirit and
translations are obtained by using suitably applied simple steps.

More precisely, inter-translating CAFs and atomic LPs is done by identifying rule heads with
claims and bodies with in-going attacks. Recall our program P from above. In a rather immediate
way, the program induces a CAF FP consisting of five arguments xi (one for each rule) where
cl(x1)=cl(x2)=d, cl(x3)=a, cl(x4)=c, and cl(x5)=b corresponding to the rule heads. Moreover,
cl(x−1 ) = {a,b}, cl(x−2 ) = cl(x−3 ) = {c}, cl(x−4 ) = {a}, and cl(x−5 ) = /0 defines the attack relation
of the well-formed CAF FP.

When connecting either CAFs or atomic LPs to SETAFs, the notion of a hitting set is required.
In SETAFs, we do not use multiple copies of the same claim resp. rule head, but encode the
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acceptability condition solely in the attack relation. The corresponding SETAF would therefore
possess only the four arguments a,b,c,d. For example, d cannot be accepted if (i) either a or b
is inferred (first rule not applicable) and (ii) c is inferred (second rule not applicable either). This
yields the following SETAF SFP. Below, we also depict the CAF FP we calculated earlier:

SFP: a
c

d

b
FP: x2

d

x4
c

x3
a

x1
d

x5
b

The more challenging part is dropping the assumption that the given LP P is atomic (see Figure 3).
For this, we will utilize an inductive procedure constructing arguments [7].

Definition 4.2. For an LP P, A is an argument in P (A∈Args(P)) with CONC(A)=c, RULES(A) =⋃
i≤n RULES(Ai) ∪ {r}, and VUL(x) =

⋃
i≤n VUL(Ai) ∪ {b1, . . . ,bm} iff there are A1, . . . ,An ∈

Args(P) and a rule r ∈ P with r = c← CONC(A1), . . . ,CONC(An), not b1, . . . ,not bm, and r /∈
RULES(Ai) for all i≤ n.

We will show that this procedure can be mimicked by rewriting P. For example let P′ = {(d←
c, not b.),(d← not c.),(a← not c.),(c← not a.),(b.)}. The atomic program P from above is the
result of inserting the rule (c← not a.) in (d← c, not b.).

4.2 Translations
CAFs and Logic Programs. We will now formally establish the correspondence between CAFs
and LPs, by making use of Args(P) in case P is not atomic.

Definition 4.3. For a CAF F = (A,R,cl), we define the corresponding atomic LP PF by P= {c←
not B. | a∈A, cl(a)= c, cl(a−)=B}. For an LP P, we set FP =(AP,RP,clP) where AP =Args(P),
RP = {(a,b) | cl(a) ∈ VUL(b)}, and clP(a) = CONC(a).

Example 4.4. The LP P′ from above yields four arguments stemming from the atomic rules, e.g.
there is some argument A with CONC(A) = c, VUL(A) = {a} and RULES(A) = {(c← not a.)}.
From (d ← c, not b.) and this argument A we construct another argument with conclusion d and
vulnerabilities {a,b} (inherited from A and the applied rule). The complete corresponding CAF
FP′ is the same as the CAF FP depicted in Section 4.1.

A rather convenient feature of this approach is that we can infer the semantics correspondence
from [7] due to the way CAF semantics make use of the claims.

Proposition 4.5. For F a CAF and P an LP, stb(F ) = stb(PF ) and stb(P) = stb(FP).

By inspecting Definition 4.2 we observe that the challenging part is handling positive atoms in
rule bodies. If P is atomic, we can extract the corresponding CAF FP = (AP,RP,clP) immediately
via AP = P, RP = {(a,b) | head(a) ∈ neg(b)}, and clP(a) = head(a). The fact that atomic LPs
and CAFs are so closely related motivates the question whether we can transform the LP before
constructing the arguments as done in [7]. A technique of this kind could pre-process the LP
instead of utilizing the instantiation procedure. In the following, we formalize this idea.
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Definition 4.6. For an LP P the corresponding atomic LP PAT is defined inductively:

• If r ∈ P is atomic, then r ∈ PAT .

• If there is a rule r0 ∈ P with pos(r0) = {a1, . . . ,an} and for each ai, 1 ≤ i ≤ n, there is
some rule ri ∈ PAT s.t. head(ri) = ai, then there is a rule r ∈ PAT with head(r) = head(r0),
pos(r) = /0, and neg(r) =

⋃n
i=1 neg(ri).

Example 4.7. Applied to our LP P′ = {(d ← c, not b.),(d ← not c.),(a ← not c.),(c ←
not a.),(b.)} this procedure yields P′AT = P with P as in Example 4.1.

The following theorem formalizes that this pre-processing step successfully mimics the induc-
tive procedure from [7]. Informally speaking, instantiating the LP is done as in Definition 4.2 and
yields the same result as turning the LP into an atomic one via iterative insertion of atomic rules
and then extracting the corresponding CAF by identifying rule heads with claims and rule bodies
with in-going attacks. Formally:

Theorem 4.8. (♠) Let P be an LP. Then FP = FPAT .

SETAFs and LPs We also want to briefly mention that analogous results hold when turn-
ing an LP into a SETAF, which can be done as follows. For an LP P we define by AP =⋃

A∈Args(P) CONC(a) and RP = {(T,c) | T ∈ HSmin({VUL(A) | A ∈ Args(P), CONC(A) = c})} the
associated SETAF SFP. For a SETAF SF = (A,R), we define its associated LP PSF = {c← not B. |
B ∈ HSmin(c−R )}. As observed before, the construction of Args(P) can be omitted if P is atomic.
With these constructions, we find:

Theorem 4.9. For a SETAF SF and an LP P, stb(SF)= stb(PSF) and stb(P)= stb(SFP). Moreover,
SFP = SFPAT .

4.3 Summary & Compatibility
In this section, we presented translations from LPs to SETAFs and to CAFs, respectively. We
observe that when instantiating an LP as CAF or SETAF, an exponential blow-up cannot be avoided
due to the construction of arguments which is an inherent part of both procedures. For atomic LPs,
on the other hand, the number of arguments is linear in the number of rules in both formalisms. For
the other direction, i.e., when translating a CAF or SETAF into an LP, the resulting LP is atomic.
It can be shown that for atomic LPs, these constructions are bijective and each others inverse,
establishing a close relation.

Lemma 4.10. (♠) For all redundancy-free atomic LPs P, CAFs F , and SETAFs SF, respectively,
it holds that i) SFPSF = SF; ii) PSFP = P = PFP; and iii) FPF = F .

We end this section with a strong intertranslatability result in the spirit of Theorem 3.21, stating
that all (atomic, well-formed, and redundancy-free) instances of the considered formalisms can
be equivalently represented as CAFs, LPs, or SETAFs without any loss of information via the
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presented translations and the method in [14] (cf. Definition 3.20). This shows that all of our
constructions are compatible with each other and similar in their behavior. In particular, the order
in which they are applied is arbitrary.

Theorem 4.11. (♠) For all redundancy-free atomic LPs P, SETAFs SF, CAFs F , we have FSF ∼=
FPSF ; PSF = PFSF ; FP ∼= FSFP; SFP = SFFP; SFF = SFPF ; and PF = PSFF

.

5 Discussion
In this paper we investigated translations between the argumentation formalisms ABA, CAF,
SETAF as well as their connections to LP. We strengthened the implicitly existing intertranslatabil-
ity result by providing additional translations, filling some of the existing gaps. For selected trans-
lations we showed structure-preserving properties and argued why others (such as those involving
ABA) might not feature this preservation. Finally, our overview yields implications regarding
expressiveness: the formalisms under our consideration admitting strong intertranslatability are
equally expressive—i.e. , they can describe the same sets of models (extensions). These results
illustrate the usefulness of the versatility in argumentation formalisms: while certain applications
might suggest the usage of a specific formalism, it might be useful to later translate this framework
and utilize features that are native to another formalism. Strong intertranslatability even guarantees
the preservation of the structure, which opens interesting topics for future work: as some of the
discussed translations are modular in some sense, one might even be able to instantiate the same
knowledge base as part formalism A and part formalism B, while connecting both parts in later
steps during the workflow. Another useful consequence of our findings is that it is now easier to
transfer concepts and ideas between formalisms, serving as a starting point for various investiga-
tions that highlight the similarities of the considered approaches even further.
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A Proofs of Section 3
Proposition 3.10. (♠) For a CAF F = (A,R,cl), its corresponding ABA DF and a semantics
σ ∈ {grd,com,pref,stb}, it holds that σc(F ) = {C \A |C ∈ σT h(DF )}.
Proof. Given the CAF F = (A,R,cl) and its associated ABA DF = (L ,R,A , ). First, we
modify the given CAF F by removing copies of arguments (a copy of an argument x is an argument
y with cl(x)= cl(y), x+= y+, and x−= y−) until we reach the copy-free CAF F ′=(A′,R′,cl), R′=
R∩A′×A′. The considered semantics are preserved by redundancy-results for CAFs from [14]. It
follows that σT h(DF ) = σT h(DF ′) and σc(FDF ′ ) = σc(FDF ).

We observe that F ′ is syntactically equivalent to FD′F
\A = (A′′ \{{a} ⊢ a | a ∈A },R′′,cl)

with A′ \ {{a} ⊢ a | a ∈ A } and R′′ = R′∩A′′×A′′: Indeed, each argument x attacked by claims
C in F ′ corresponds to a rule cl(x) ← C which yields an argument y = C ⊢ cl(x) with claim
cl(x) attacked by claims in C in the resulting CAF FDCF ′ . Since F ′ is copy-free, each argument
yields precisely one rule which in turn corresponds to precisely one argument. We obtain that
σc(F ′) = σc(FDF ′ \A ).

Second, we show that σc(FDF ′ \A ) = {C \A |C ∈ σc(FDF ′ )}. For this, we show that for
each AF F = (A,R) and argument x ∈ A with x+ = /0, it holds that {E \{x} | E ∈ σ(F)}= σ(F \
{x}). First, let E ∈ com(F). Then E ′=E \{x} is complete in F \{x} since E ′ is admissible defends
precisely all arguments in E \ {x} because x does not defend any other arguments. Likewise, in
case E is stable in F we have E ′ is stable in F \{x}. For the other direction, consider a complete
extension E in F \ {x}. Then either E or E ∪{x} is complete in F : in case E defends x, we have
E ∪{x} is complete in F , otherwise, E is complete because x does not attack any other arguments.
By iteratively removing arguments in FDF ′ we obtain the statement.

Now, we have σc(F ) = σc(F ′) = σc(FDF ′ \A ) = {C \A | C ∈ σc(FDF ′ )}. Moreover,
σc(FDF ′ ) = σc(FDF ) holds. By Proposition 3.8, it holds that σT h(DF ) = σc(FDF ). Therefore
we obtain σc(F ) = {C \A |C ∈ σc(FDF )}, as required.
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Proposition 3.15. (♠) Given a semantics σ ∈ {grd,com,pref,stb}. For an ABA D and its associ-
ated SETAF SFD, it holds that σ(D) = σ(SFD). For a SETAF SF and its associated ABA DSF , it
holds that σ(SF) = σ(DSF).

Proof. For both translations, the semantics correspondence follows straight-forward from the at-
tack definition of ABA frameworks and SETAFs.

To show σ(D) = σ(SFD), we first observe that for each set of arguments (assumptions) S ⊆
A = A , S+D = S+SFD

: indeed, S ⊆A attacks an assumption a ∈A iff there is a set S′ ⊆ S such that
S′ ⊢ a. By definition, the latter is equivalent to (S′,a)∈ R. Thus a is attacked in SFD by S. It follows
that the conflict-free sets coincide. Consequently, stable semantics are preserved by the translation.
Next we show that for each set S ⊆ A = A , S defends a ∈A in D iff S defends a ∈ A in SFD. For
this, let us observe that attacks in D and SFD extend uniformly to sets: S attacks a set T in D iff
there is S′ ⊆ S, t ∈ T , such that S′ ⊢ t ′. This is in turn equivalent to set-attacks in the corresponding
SETAF: S attacks T in SFD iff there is S′ ⊆ S, t ∈ T such that (S′, t) ∈ R. It follows that S defends
a in D iff S defends a in the corresponding SETAF SFD. Consequently, admissible, complete,
grounded, and preferred semantics coincide. To show σ(SF) = σ(DSF), we obtain S+SF = S+SFD

for
each S ⊆A = A using (S,a) ∈ R iff S ⊢ a. It follows that the conflict-free sets coincide. Defense
translates in a similar manner: S defends a ∈ A in SF iff it attacks each T ⊆ A with (T,a) ∈ R,
which is in turn equivalent to T ⊢ a. Consequently, each set S defends the same elements in A. We
obtain that the translation indeed preserves the semantics under consideration.

Proposition 3.19. (♠) For an ABA D = (L ,R,A , ), its associated SETAF SFc
D and σ ∈

{grd,com,pref,stb}, it holds that σT h(D) = σ(SFc
D) and σ(D) = {C∩A |C ∈ σ(SFc

D)}.

Proof. First, we show the statement for σ = com:

(⇒): Consider a com-assumption-extension S ∈ com(D) and let C = ThD(S) = comT h(D) denote
its corresponding com-conclusion-extension.

First, we show that C is conflict-free in SFc
D: Towards a contradiction, assume that there is

C′ ⊆C, p ∈C such that (C′, p) ∈ R, that is, for all T ⊆A with T ⊢ p there is a ∈ T such that
a ∈C′. Since p is a conclusion of S, there is some set S′ ⊆ S that derives p. Consequently,
there is some a ∈ S′ such that a ∈ C′. This means that a is contained in C ⊇ C′ and thus
derivable from S, i.e., there is some set S′′ ⊆ S such that S′′ ⊢ a, thus S attacks itself as a ∈ S
and a derivable from S, contradiction to conflict-freeness of S in D.

Second, we show that C defends itself in SFc
D: Consider a set B ⊆ A that attacks argument

p ∈C in SFc
D. Again, we consider the set S′ ⊆ S with S′ ⊢ p. By (B, p) ∈ R we obtain that

there is some a ∈ S′ such that a ∈C′. Now, consider all assumption-sets T that derive a in D.
Since S defends itself in D, it must be the case that for all such assumption-sets T that derive
a, there is d ∈ T such that S ⊢ d in D. Thus the set {d | d ∈ T,T ⊢ a} is contained in C and
counter-attacks B on a in SFc

D.

Next, we show that C is complete in SFc
D. Consider an argument p ∈ A that is defended by

C in SFc
D. We show that p ∈ ThD(S) = comT h(D) by reconstructing the set of assumptions

S′ ⊆ S that derives p in D: For this, we consider all sets Sp = {S1, . . . ,Sn} that conclude p

16



in D. Then p is attacked by each possible combination (hitting sets) B1, . . . ,Bm of the sets
S1, . . . ,Sn, i.e., p is attacked by each Bi ∈ HSmin(S p). As p is defended by C in SFc

D, there
is some qi ∈ Bi for each Bi, i ≤ m, such that C attacks qi in SFc

D, i.e., there is C′ ⊆ C with
(C′,qi) ∈ R. Observe that C′ is a hitting set of HSmin(contrarySqi), that is, C contains a
contrary in T for each assumption-set T with T ⊢ qi. Since S is complete in D, we conclude
that qi ∈ S since S contains all assumptions that it defends. The set Q = {qi | i ≤ m} is a
hitting set of HSmin(S p), i.e., Q ∈ HSmin(HSmin(S p)). By Lemma 2.2, Q ∈S p = {{a |
a ∈ S} | S ⊢ p}, i.e., there is some S′ ⊆ {q1, . . . ,dm} such that S′ ⊢ p. Moreover, S′ ⊆ S.
Consequently, it follows that S ⊢ p in D, and therefore, p ∈C holds. We have shown that C
contains each argument it defends.

(⇐): Consider a com-extension C of SFc
D. We show that C is a com-conclusion-extension and

S = C∩A is a com-assumption-extension of D. Let us first observe that arguments in SFc
D

that are associated with assumptions in D are attacked by at most one other argument: each
assumption a is attacked by the argument a if it exists, since each assumption is derivable
only by itself. Since C is complete, each assumption in S must be defended in SFc

D, thus C
contains some T with (T,a) ∈ R for each a ∈ S which is attacked by a.

We observe that S is conflict-free in D: Towards a contradiction, assume there is S′ ⊆ S and
a ∈ S such that S′ ⊢ a. By the above observation, there is some T ⊆C such that (T,a) ∈ R,
thus C attacks itself in SFc

D, contradiction.

We show that (1) S derives all conclusions p ∈C in D: Using the trivial derivation a ⊢ a we
obtain that the statement is true for all assumptions a ∈ S. Let T1, . . . ,Tn denote the set of all
attackers of p in SFc

D, i.e., (Ti, p) for all i ≤ n. By construction, {T1, . . . ,Tn} = HSmin(S p).
Since p is defended by C in SFc

D, we have that for all attackers Ti, there is di ∈ Ti such that di
is attacked by C. Thus di ∈C for all such di that are attacked by C since each assumption di
is attacked by (at most) di by the above observation. The set B = {d1, . . . ,dn} is a hitting set
of HSmin(S p). By Lemma 2.2, it follows that B is contained in S p, i.e., there is some set
S′ ⊢ p such that B = {a | a ∈ S′}. As outlined above, all di are contained in S thus we have
found a set of assumptions S′ ⊆ S that derives p in D.

It follows that S defends itself in D: Consider a set of assumptions B ⊆ A that attacks an
assumption a ∈ S, i.e., B ⊢ a in D. By the above observation, there is T ⊆C with (T,a) ∈ R,
and T contains b for some b∈ B. By (1), there is S′⊆ S such that S′ ⊢ b. Therefore, S defends
itself against each attack.

Next, we show that C contains all conclusions derivable from S in D. Consider some p ∈L
such that S′ ⊢ p for some S′ ⊆ S. Since C defends itself against all attacks on assumptions
a ∈ S′, it holds that C defends p against each attacker T of p: each such attacking set T
contains a for some a ∈ S′; C attacks a since it defends a ∈ S, thus we have that C defends p
against the attack from T .

Finally, we show that C contains all assumptions it defends. Consider an assumption a ∈A
that is defended by C in SFc

D, that is, C attacks a in SFc
D. Since C is complete in SFc

D, we
obtain that a ∈C.
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We conclude that in D and SFc
D, complete conclusion-extensions coincide, i.e., comT h(D) =

com(SFc
D). Thus the statement also holds for preferred (i.e., ⊆-maximal complete extensions) and

grounded (i.e., ⊆-minimal complete extensions) semantics.
For stable semantics, first assume that S (C, respectively) is stable in D, and consider some

p ∈ A \C. We show that p is attacked by C in SFc
D: By definition, S does not derive p in D, thus

for all T ⊆A with T ⊢ p, there is some a ∈ T with a /∈ S. Since S is stable, all assumptions a /∈ S
are attacked, i.e., S derives a for each such a. Let B = {a | T ⊢ p,a ∈ T \ S} then a ∈C for each
a ∈ B. Consider the⊆-minimal set B′ ⊆ B that contains some a, a ∈ T , for each T with T ⊢ p, then
(B′, p) ∈ R by definition of the attack relation in SFc

D. For the other direction, consider a stable set
C of SFc

D, and let S =C∩A . Consider an assumption a ∈A \S. Since C is stable in SFc
D, we have

that a ∈C (recall that each assumption is attacked by a if it exists—in case a /∈ A, it holds that a
is unattacked in SFc

D and thus a ∈C, contradiction to our assumption). As shown above, S derives
each element in C, thus it holds that S derives a. Consequently, stable extensions coincide.

Proposition 3.21. (♠) Given an ABA D = (L ,R,A , ), its corresponding SETAF SFc
D (cf. Def-

inition 3.17), let FD be the corresponding CAF (cf. Definition 3.6), and let SFc
FD

be the SETAF
corresponding to the CAF FD (cf. Definition 3.20). It holds that SFc

D = SFc
FD

.

Proof. Let SFc
D = (A,R) and SFFD = (A′,R′). First, we observe that A = A′: Indeed, for each

conclusion a in D there is an argument in FD with claim a. As claims correspond to arguments in
the corresponding SETAF, it holds that A = A′.

We obtain R = R′ by observing that each attack (T,a) towards an argument a ∈ A (conclusion
a in D) can be equivalently obtained by (a) constructing minimal hitting sets over the contraries
of assumption-sets that derive a or (b) first identifying all arguments with claim a (corresponding
to the assumption sets S1,S2, . . . deriving a in D) and constructing the minimal hitting sets of the
attackers of these arguments. This is because an argument xb with claim b attacks an argument
xa = Si ⊢ a with claim a by construction iff b∈ Si. In summary, both constructions follow the same
steps.

B Proofs of Section 4
Theorem 4.8. (♠) Let P be an LP. Then FP = FPAT .

In order to prove this result, we will augment our atomic LP obtained from Definition 4.6 with
some technicalities in order to prepare an inductive proof relating this program to Args(P), the
arguments constructible from a program P.

For an LP P we consider the following algorithm which outputs a set PAlg of tuples of the form
(r,ht(r)) = (r,h) where r is an atomic rule and h the height of the rule. Observe that the obtained
rules are the same as in PAT .

• for each atomic rule r ∈ P, add (r,1) to PAlg,

• loop until no further rule is added:

18



– for each rule r0 ∈ P:

– Let pos(r0) = {a1, . . . ,an}. If each ai ∈ pos(r0) occurs as a rule head in PAlg chose
rules (r1,h1), . . . ,(rn,hn) ∈ PAlg with head(ri) = ai and add a rule (r,ht(r)) = (r,h) to
PAlg where

* head(r) = head(r0), pos(r) = /0, and neg(r) =
⋃n

i=0 neg(ri),

* h = 1+maxn
i=1 hi.

We proceed analogously with Args(P), assigning a height to each argument:

Definition B.1. For an LP P, A is an argument in P (A ∈ Args(P)) with CONC(A) = c,
RULES(A) =

⋃
i≤n RULES(Ai)∪{r}, and VUL(x) =

⋃
i≤n VUL(Ai)∪{b1, . . . ,bm} iff there are argu-

ments A1, . . . ,An (in P) and a rule r ∈P with r = c← CONC(A1), . . . ,CONC(An), not b1, . . . ,not bm.

The height ht(A) of an argument A in P is defined inductively as follows:

• if RULES(A) = {r}, for some r ∈ P, then ht(A) = 1;

• otherwise, if r is the top rule of A and A1, . . .An are used to construct A, then ht(A) = 1+
maxn

i=1 ht(Ai).

Now we are ready to show a correspondence between Args(P) and PAlg:

Proposition B.2. For each integer h, there is a tuple (r,ht(r)) ∈ PAlg with body(r) = B and
head(r) = c with ht(r) ≤ h iff there is some argument A ∈ Args(P) with CONC(A) = c and
VUL(A) = B with ht(A)≤ h.

Proof. We show the claim per induction; the base case is clear.
(⇒) Let r0 ∈ PAlg a rule with ht(r0) = n+1. This rule is induced by a rule r ∈ P with pos(r) =

{a1, . . . ,an} and for each 1 ≤ i ≤ n, there is some ri ∈ PAlg with ht(r) ≤ n and head(ri) = ai.
Suppose body(ri) = Bi. By the inductive hypothesis, there are arguments Ai, 1 ≤ i ≤ n, with
CONC(Ai) = ci and VUL(Ai) = Bi. Hence the rule r induces an argument A0 corresponding to r0.

(⇐) Analogously.

Now, the proof of Theorem 4.8 is an immediate corollary of the following observation we
remarked after Proposition 4.5.

Lemma B.3. Let P be an atomic LP. Then the corresponding CAF FP = (AP,RP) is (up to argu-
ment names) given via

AP = P RP = {(a,b) | head(a) ∈ neg(b)} clP(a) = head(a).

Proof. For this, it suffices to observe that for an atomic LP, for each rule r = c← not b1, . . .not bm
there is an argument A with CONC(A) = c and VUL(A) = {b1, . . .bm} with RULES(A) = {r}; by
definition, no further rule is constructable. Hence the relation is immediate.
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Theorem 4.9. For a SETAF SF and an LP P, stb(SF)= stb(PSF) and stb(P)= stb(SFP). Moreover,
SFP = SFPAT .

Proof. The proof for the syntactical correspondence is analogous to the CAF case by apply-
ing the following lemma. Regarding the semantical correspondence, stb(SFP) = stb(P) holds
for atomic LPs due to [12]. For the non-atomic case observe that stb(P) = stb(PAt) because
stb(P) = stb(FP) = stb(FPAT ) = stb(PAT ). The equation stb(SF) = stb(PSF) can be derived anal-
ogously from [12].

Lemma B.4. Let P be an atomic LP. Then the corresponding SETAF SFP = (AP,RP) is given via

AP = {a ∈L (P) | a ∈
⋃

r∈P head(r)},
RP = {(T,c) | T ∈ HSmin(BP(c))}.

Proof. It suffices to note that for an atomic LP, for each rule r = c← not b1, . . .not bm there is an
argument A with CONC(A) = c and VUL(A) = {b1, . . .bm} with RULES(A) = {r}; i.e. the same
observation we made before. Hence

AP =
⋃

A∈Args(P)

CONC(a) = {a ∈L (P) | a ∈
⋃
r∈P

head(r)}

as well as

RP = {(T,c) | T ∈ HSmin({VUL(A) | A ∈ Args(P), CONC(A) = c})}
= {(T,c) | T ∈ HSmin({body(r) | head(r) = c})}
= {(T,c) | T ∈ HSmin(BP(c))}

concluding the proof.

Lemma 4.10. (♠) For all redundancy-free atomic LPs P, CAFs F , and SETAFs SF, respectively,
it holds that i) SFPSF = SF; ii) PSFP = P = PFP; and iii) FPF = F .

Proof. For the translation between CAFs and atomic LPs this is immediate. For the translation
between these two frameworks and SETAFs this follows from Lemma 2.2.

Theorem 4.11. (♠) For all redundancy-free atomic LPs P, SETAFs SF, CAFs F , we have FSF ∼=
FPSF ; PSF = PFSF ; FP ∼= FSFP; SFP = SFFP; SFF = SFPF ; and PF = PSFF

.

Proof. Each case can be inferred analogously by using the close relation between the CAF and
the LP (cl(x) corresponds to head(r) and cl(x−) corresponds to neg(r)) as well as the fact that
transition to or from a SETAF is done by using a hitting set of cl(x−) resp. neg(r) resp. tails(c).
We demonstrate only the first case here.

Case (1) a): FSF ∼= FPSF .
(⊆) Suppose an argument (xc,h) occurs in FSF . Then h is a minimal hitting set of tails(c) in

SF. Therefore, a rule of the form “c← not h.” occurs in PSF . Translating PSF into the CAF FPSF

induces an argument x with claim c and cl(c−) = h. This argument correspond to (xc,h).
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(⊇) Now assume an argument x with cl(x) = c and cl(x−) = B occurs in FPSF . This argument
stems from a rule “c← not B.” in PSF which in turn is induced since B ∈HSmin(tails(c)) in SF for
some argument c. This means however there is an arugment (xc,B) in FSF with cl((xc,B)

−) = B,
i.e. the argument has a counterpart in FSF .

We thus conclude FSF ∼= FPSF .
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