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Abstract

A common feature of non-monotonic logics is that the clas-
sical notion of equivalence does not preserve the intended
meaning in light of additional information. Consequently,
the term strong equivalence was coined in the literature and
thoroughly investigated. In the present paper, the knowl-
edge representation formalism under consideration are claim-
augmented argumentation frameworks (CAFs) which provide
a formal basis to analyze conclusion-oriented problems in ar-
gumentation by adapting a claim-focused perspective. CAFs
extend Dung AFs by associating a claim to each argument
representing its conclusion. In this paper, we investigate both
ordinary and strong equivalence in CAFs. Thereby, we take
the fact into account that one might either be interested in the
actual arguments or their claims only. The former point of
view naturally yields an extension of strong equivalence for
AFs to the claim-based setting while the latter gives rise to
a novel equivalence notion which is genuine for CAFs. We
tailor, examine and compare these notions and obtain a com-
prehensive study of this matter for CAFs. We conclude by
investigating the computational complexity of naturally aris-
ing decision problems.

1 Introduction
Equivalence is an important subject of research in knowl-
edge representation and reasoning. Given a knowledge base
K, finding an equivalent one, say K′, helps to obtain a better
understanding or more concise representation of K. From
a computational point of view, equivalence is particularly
interesting whenever a certain subset of a collection of in-
formation can be replaced without changing the intended
meaning. In propositional logics, for example, replacing a
subformula φ of Φ with an equivalent one, say φ′, yields a
formula Φ[φ/φ′] equivalent to Φ. That is, we may view φ as
an independent module of Φ. Within the KR community it
is folklore that this is usually not the case for non-monotonic
logics (apart from folklore, we refer the reader to (Baumann
and Strass 2016) for a rigorous study of this matter).

Motivated by this observation, the notion of strong equiv-
alence was introduced in the literature. In a nutshell, strong
equivalence requires the aforementioned property by design:
K and K′ are strongly equivalent if for any H, the knowl-
edge bases K ∪ H and K′ ∪ H are equivalent. Although
a naive implementation would require to iterate over an in-
finite number of possible H, researchers discovered tech-

niques to decide strong equivalence of two knowledge bases
efficiently, most notably for logic programming (Lifschitz,
Pearce, and Valverde 2001) and argumentation frameworks
(AFs) (Oikarinen and Woltran 2011). In this paper, we ex-
tend this line of research to a recent extension of AFs, called
Claim-augmented argumentation frameworks (CAFs).

Abstract argumentation frameworks as proposed by Dung
(Dung 1995) in his seminal 1995 paper are by now a ma-
jor research area in knowledge representation and reason-
ing. They have been thoroughly investigated since then and
various extensions have been proposed in order to extend
their expressive power. For example, researchers consid-
ered the addition of supports (Cayrol and Lagasquie-Schiex
2005), recursive (Baroni et al. 2011) and collective (Nielsen
and Parsons 2006) attacks, or probabilities (Thimm 2012)
to mention a few. CAFs as introduced by (Dvorák and
Woltran 2020) provide means for conclusion-oriented rea-
soning in argumentation. While traditional argumentation
formalisms focus on the identification of acceptable argu-
ments, the emphasis in claim-augmented argumentation lies
instead on the argument’s conclusions (claims). Building
on the basic observation that a claim can be supported by
different arguments, it becomes evident that the traditional
argument-focused perspective is often insufficient to cap-
ture claim-based reasoning. CAFs address this issue by
extending AFs with a function which assigns a claim to
each argument. They are in particular well-suited to analyze
instantiation-based approaches, e.g., instantiations of logic
programs (Caminada et al. 2015b), rule-based formalisms
like ABA+ (Bondarenko, Toni, and Kowalski 1993; Cam-
inada et al. 2015a), or logic-based instantiations (Besnard
and Hunter 2001; Gorogiannis and Hunter 2011), where the
focus lies on the claims of the arguments which have been
constructed during the process.

The goal of this paper is to investigate equivalence no-
tions for reasoning with a claim-centered point of view. Due
to their generality, CAFs form an ideal basis to obtain a com-
prehensive study of this matter. Our main contributions are:

• We provide characterization results of strong equivalence
between CAFs via semantics-dependent kernels for each
CAF semantics which has been considered in the litera-
ture so far. Moreover, we discuss ordinary equivalence
for CAFs and present dependencies between semantics
for this weaker equivalence notion.



• We introduce novel equivalence concepts based on argu-
ment renaming which are genuine for CAFs. We show
that ordinary equivalence up to renaming coincides with
ordinary equivalence while strong equivalence up to re-
naming can be characterized via kernel isomorphism.

• We present a rigorous complexity analysis of deciding
equivalence between two CAFs for all of the aforemen-
tioned equivalence notions. We show that deciding or-
dinary equivalence can be computationally hard, up to
the third level of the polynomial hierarchy while strong
equivalence is computationally tractable. Moreover, we
show that strong equivalence up to renaming has the same
complexity as the graph isomorphism problem.

Full proofs can be found in the appendix.

2 Background
Abstract Argumentation. We fix a non-finite background
set U . An argumentation framework (AF) (Dung 1995) is a
directed graph F = (A,R) where A ⊆ U represents a set of
arguments and R ⊆ A × A models attacks between them.
In this paper we consider finite AFs only.

For two arguments a, b ∈ A, if (a, b) ∈ R we say that a
attacks b as well as a attacks (the set) E given that b ∈ E ⊆
A. We frequently use the so-called range of a set E defined
as E⊕F = E ∪ E+

F where E+
F = {a ∈ A | E attacks a}.

A set E ⊆ A is conflict-free in F (for short, E ∈ cf (F ))
iff for no a, b ∈ E, (a, b) ∈ R. A set E defends an argument
a if any attacker of a is attacked by some argument of E. A
semantics is a function σ : F → 22U

with F 7→ σ(F ) ⊆ 2A.
This means, given an AF F = (A,R) a semantics returns a
set of subsets of A. These subsets are called σ-extensions.

In this paper we consider so-called naive, admissible,
complete, grounded, preferred, stable, semi-stable and stage
semantics (abbr. na , ad , co, gr , pr , stb, ss , stg). Apart
from naive, semi-stable and stage semantics (Verheij 1996;
Caminada 2006), all mentioned semantics were already in-
troduced in (Dung 1995).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈ na(F ) iff E is ⊆-maximal in cf (F ),
2. E ∈ ad(F ) iff E defends all its elements,
3. E ∈ co(F ) iff E ∈ ad(F ) and for any a defended by E

we have, a ∈ E,
4. E ∈ gr(F ) iff E is ⊆-minimal in co(F ), and
5. E ∈ pr(F ) iff E is ⊆-maximal in ad(F ),
6. E ∈ stb(F ) iff E∈cf (A) and E attacks any a ∈ A \ E,
7. E ∈ ss(F ) iff E ∈ ad(F ) and there is no D ∈ ad(F )

with E⊕F ( D⊕F ,
8. E ∈ stg(F ) iff E ∈ cf (F ) and there is no D ∈ cf (F )

with E⊕F ( D⊕F .

Claim-based Argumentation. A claim-augmented argu-
mentation framework (CAF) (Dvorák and Woltran 2020) is
a triple F = (A,R, cl) where F = (A,R) is an AF and
cl : A→ C is a function which assigns a claim to each argu-
ment in A; C is a set of (countable infinite) possible claims.

The claim-function is extended to sets in the natural way, i.e.
for a set E ⊆ A, we let cl(E) = {cl(a) | a ∈ E}.

There are several ways in which semantics for AFs extend
to CAFs. The most basic one is to choose an appropriate AF
semantics and consider the claims of the induced extensions.
Definition 2.2. For a CAF F = (A,R, cl), F = (A,R),
and a semantics σ, we define the inherited variant of σ (i-σ)
as σc(F) = {cl(E) | E ∈ σ(F )}. We call E ∈ σ(F ) with
cl(E) = S a σc-realization of S in F .
Example 2.3. Consider the following CAF F :

d1d

c1c

a1

a b1 b

a2 a

Let us focus on stable semantics. For the underlying AF F
we have the unique stable extension E = {c1, b1}. It is thus
easy to see that stbc(F) = {{c, b}}. Moreover, {c1, b1} is a
stbc-realization of E.

Let us now turn to the semantics which actually operate on
the level of the claims instead of focusing on the underlying
arguments. For this, we need to generalize the notion of
defeat to claims. A set of arguments E ⊆ A defeats a claim
c ∈ cl(A) in F if E attacks every a ∈ A with cl(a) = c
(in F ); we write EB

F = {c ∈ cl(A) | E defeats c in F} to
denote the set of all claims which are defeated by E in F .
The claim-range of a set of claims S = cl(E) is denoted by
EB
F = cl(E) ∪ EB

F .
Example 2.4. Consider again the CAF F from the previous
example. Although c1 defeats a1, it does not defeat the claim
a. However, E = {c1, b1} defeats a, i.e. a ∈ EB

F . The
claim-range of E is thus EB

F = {a, b, c, d}.
Observe that the range of a set of claims is not a well-

defined concept: In our example CAF F , the claim-range of
{a} could either be {a, b} induced by the realization {a1}
or it could be {a}, which is induced by the realization {a2}.
Nonetheless, we can define semantics based on the claim-
range by focusing on the underlying setE of arguments. We
consider cl-preferred, cl-naive, cl-cf -stable, cl-ad -stable,
cl-semi-stable and cl-stage semantics (abbr. cl -pr , cl -na ,
cl -stbcf , cl -stbad , cl -ss , cl -stg) as introduced in (Rap-
berger 2020; Dvorák, Rapberger, and Woltran 2020a).
Definition 2.5. Let F = (A,R, cl) be a CAF with underly-
ing AF F = (A,R). For a set of claims S ⊆ cl(A),
• S ∈ cl -pr(F) if S is ⊆-maximal in adc(F);
• S ∈ cl -na(F) if S is ⊆-maximal in cfc(F);
• S ∈ cl -stbτ (F), τ ∈ {cf , ad}, if there is a τc-realization
E of S which defeats any c ∈ cl(A)\S (i.e.,EB

F =cl(A));
• S ∈ cl -ss(F) if there is an adc-realization E of S in F

such that there is no D ∈ ad(F ) with EB
F ( DB

F ;
• S ∈ cl -stg(F) if there is an cfc-realization E of S in F

such that there is no D ∈ cf (F ) with EB
F ( DB

F .
A set E ⊆ A cl -σ-realizes the claim-set S in F if cl(E) =
S and E satisfies the respective requirements; e.g., E ∈
cf (F ) and EB

F = cl(A) for cl-cf -stable semantics. We call
E a cl -σ-realization of S in F .



Example 2.6. Consider the semantics cl -stbcf . We have
that S = {c, b} ∈ cl -stbcf (F) since the realization E =
{c1, b1} for S has full claim-range as we already observed
before. Moreover, S′ = {d, a} ∈ cl -stbcf (F) as well: We
consider the realization E′ = {d1, a1}. The claims c and b
are defeated by E′ and hence, EB

F = {a, b, c, d}. Note that
E′ is not a stable extension of the underlying AF.

Basic relations between i-semantics carry over from
AF semantics, e.g., stbc(F) ⊆ ssc(F) ⊆ prc(CF ) ⊆
coc(CF ) ⊆ adc(F) ⊆ cfc(F) and stbc(F) ⊆ stgc(F) ⊆
nac(F) ⊆ cfc(F). As shown in (Dvorák, Rapberger,
and Woltran 2020a), we have stbc(F) ⊆ cl -stbad(F) ⊆
cl -stbcf (F) ⊆ cl -stg(F) ⊆ nac(F) and cl -stbad(F) ⊆
cl -ss(F) ⊆ prc(F). Moreover, each cl -σ-claim-set of F is
⊆-maximal in σc(F) for σ ∈ {pr ,na}.

Notation. We write F = (F, cl) as an abbreviation for
F = (A,R, cl) with AF F = (A,R) (similar for CAFs G or
H for which we denote the corresponding AFs by G and H ,
respectively). Also, we use the subscript-notation AF , RF ,
clF , and FF to indicate the affiliations.

3 Equivalence in CAFs
In this section, we discuss ordinary and strong equivalence
for CAFs. We introduce a novel kernel which character-
izes strong equivalence for cl-cf -stable and cl-stage seman-
tics; moreover, we show that the remaining semantics can be
characterized via known kernels for AFs.

Let us start with ordinary equivalence of CAFs.

Definition 3.1. Two CAFs F and G are ordinary equivalent
to each other w.r.t. a semantics ρ, in symbols F ≡ρo G, if
ρ(F) = ρ(G).

Example 3.2. Consider the following CAFs F and G:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

a1

a

b1

b

c1

c

a2

a

c2

c

Although F and G disagree only on the direction of the at-
tack between the arguments a1 and a2, we observe that F
and G are not ordinary equivalent under i-stable semantics:
stbc(F) = ∅ while G has the unique i-stable claim-set {a, c}
witnessed by the stable extension {a2, c1} of G.

If we consider instead cl-stable semantics, we observe
that the two CAFs agree on their outcome: First notice that
{a, c} is also cl-ad -stable (cl-cf -stable) in G (every stbc-
realization is admissible and has full claim-range). More-
over, we have that {a, c} is also cl-ad -stable (cl-cf -stable)
in F since the set {a1, c1} is admissible and defeats every
remaining claim. As a side remark, we mention that the
claim-set {a, c} has two realizations in F and G since both
of the sets {a1, c1}, {a2, c1} are conflict-free and have full
claim-range. We obtain that the CAFs F and G are ordinary
equivalent with respect to cl -stbad and cl -stbcf semantics.

There are only few relations between the semantics for
ordinary equivalence. We summarize them as follows:

Proposition 3.3. For any two CAFs F and G,

• F ≡ρo G ⇒ F ≡cl-pr
o G, ρ ∈ {adc, prc};

• F ≡coc
o G ⇒ F ≡ρo G, ρ ∈ {grc, cl -pr};

• F ≡cfc
o G ⇔ F ≡cl-na

o G;
• F ≡nac

o G ⇒ F ≡ρo G, ρ ∈ {cfc, cl -na}.
Interestingly, we observe that the relations for AF seman-

tics presented in (Oikarinen and Woltran 2011) do not carry
over to inherited semantics. This is due to the fact that i-
preferred (i-naive) semantics are not necessarily⊆-maximal
i-admissible (i-conflict-free) claim-sets; for CAFs, this role
is instead taken over by cl-preferred (cl-naive) semantics.

Example 3.4. Assume we are given two CAFs as follows:

a1

a

b1

b

F : a1

a

b1

b

a2

a

G :

Clearly, adc(F) = adc(G) = {∅, {a}, {b}, {a, b}}. On the
other hand, {a, b} is the unique i-preferred claim-set of F
while prc(G) = {{a}, {a, b}} witnessed by the extensions
{a1, a2} and {a1, b1}. Thus F ≡adc

o G 6⇒ F ≡prc
o G. The

example furthermore shows F ≡cfc
o G 6⇒ F ≡nac

o G since
cfc and adc as well as the respective variants of naive and
preferred semantics coincide in F and G.

The relations presented in Proposition 3.3 follow since cl-
preferred claim-sets are ⊆-maximal in adc(F), coc(F) and
prc(F) for any CAF F ; moreover, the i-grounded claim-set
is the⊆-minimal i-complete extension. Similar observations
hold for conflict-free and naive semantics; additionally, we
observe that F ≡ρo G, ρ ∈ {cl -na,nac}, implies F ≡cfc

o G
since cfc semantics satisfies downward closure (every sub-
set of a conflict-free set is conflict-free). We can construct
counter-examples for the remaining cases.

A crucial observation is that ordinary equivalence is not
robust when it comes to expansion of the frameworks, e.g.,
if an update in the knowledge base induces new arguments
or attacks. Let us illustrate this at the following example:

Example 3.5. Assume we are given an updated version of
F and G from Example 3.2 where an additional argument
has been introduced. Let F ′ and G′ be given as follows:

F ′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

G′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

F ′ and G′ no longer agree on their cl-ad -stable claim-
sets: In G′, the set {a2, c1} does not defeat claim d, thus
cl -stbad(G′) = ∅ while {a, c} remains cl-ad -stable in F ′.

Let us introduce a stronger notion of equivalence which
addresses such situations. We say that two CAFs are
strongly equivalent to each other if they possess the same
extensions independently of any such (simultaneous) expan-
sions of the frameworks. Before we can define this notion
formally, we require an additional concept which ensures
that the expansion of the frameworks is well-defined.



Definition 3.6. Two CAFs F and G are compatible to each
other if clF (a) = clG(a) for all a ∈ AF ∩ AG . The union
F ∪ G of two compatible CAFs F and G is defined compo-
nentwise, i.e., F ∪ G = (AF ∪AG , RF ∪RG , clF ∪ clG).

We are ready to introduce strong equivalence for CAFs.
Definition 3.7. Two compatible CAFs F and G are strongly
equivalent to each other w.r.t. a semantics ρ, in symbols
F ≡ρs G, iff ρ(F ∪H) = ρ(G ∪ H) for each CAF H which
is compatible with F and G.

The definition extends strong equivalence for AFs. We
write F ≡σs G to denote strong equivalence of two AFs F
and G w.r.t. the semantics σ.

Strong equivalence for AFs has been characterized via
syntactic equivalence of so-called (semantics-dependent)
kernels. Let us recall the definitions of the stable and the
naive kernel (Oikarinen and Woltran 2011; Baumann, Lins-
bichler, and Woltran 2016) as they exhibit interesting over-
laps with our novel kernel for cl-cf -stable semantics.
Definition 3.8. For an AF F = (A,R), we define the stable
kernel F sk = (A,Rsk) with

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R};
and the naive kernel Fnk = (A,Rnk) with

Rnk = R∪{(a, b) | a 6= b, {(a, a), (b, b), (b, a)}∩R 6= ∅}.
For a CAF F = (F, cl), we write Fsk (Fnk) to denote
(F sk, cl) ((Fnk, cl), respectively).

The stable kernel characterizes strong equivalence for sta-
ble and stage semantics, i.e., F ≡σs G iff F sk = Gsk for
σ ∈ {stb, stg} (Oikarinen and Woltran 2011); similarly,
F ≡σs G iff Fnk = Gnk for σ ∈ {cf ,na} (Baumann, Lins-
bichler, and Woltran 2016).
Example 3.9. For the CAF F from Example 3.2, the stable
kernel Fsk and the naive kernel Fnk are given as follows:

Fsk:

a1

a

b1

b

c1

c

a2

a

c2

c
Fnk:

a1

a

b1

b

c1

c

a2a c2

c

In the remaining part of this section, we characterize
strong equivalence for all semantics under consideration by
identifying appropriate kernels. Let us start with cl-cf -stable
semantics. An interesting observation is that the CAFs F ′
and G′ from Example 3.5 yield the same cl-cf -stable claim-
sets even after the argument d1 has been added. In fact, it can
be shown thatF and G yield the same cl-cf -stable claim-sets
under any possible expansion. The reason is that the direc-
tion of the attack between a1 and a2 is irrelevant since both
arguments possess the same claim a. Thus it suffices to in-
clude one of them in a cl-cf -stable claim-set in case not both
of them are attacked.

Let us now introduce the cf -stable kernel for CAFs.
Definition 3.10. For a CAF F = (A,R, cl), we define the
cf -stable kernel as Fcsk = (A,Rcsk, cl) with

Rcsk = R ∪ {(a, b) | a 6= b,

(a, a) ∈ R ∨ (cl(a) = cl(b) ∧ {(b, a), (b, b)} ∩R 6= ∅)}.
We denote the underlying AF (A,Rcsk) by F csk.

Example 3.11. Consider again our previous CAF F . We
construct the cf -stable kernel Fcsk of F as follows:

Fcsk:

a1

a
b1

b

c1
c

a2a c2
c

Remark 3.12. The cf -stable kernel consists of a combina-
tion of the stable and the naive kernel for AFs, where the
claim-independent part stems from the stable kernel while
the case where two arguments have the same claim relates to
the naive kernel. In a nutshell, it is save to introduce attacks
(a, b), a 6= b where a is self-attacking without changing sta-
ble semantics because attacks of this form neither interfere
with the conflict-free extensions of an AF nor change the
range of a conflict-free set. In case two arguments have the
same claim, it is irrelevant which of these arguments is in-
cluded in an extension. It is thus save to introduce attacks
between two arguments in case their union is conflicting.

In what follows, we will prove that the cf -kernel charac-
terizes strong equivalence for claim-level cf -stable and stage
semantics. To this end we will first discuss some general
observations. The following lemma states that two CAFs
having different arguments are not strongly equivalent.

Lemma 3.13. For any two compatible CAFs F and G,
AF 6= AG implies F 6≡ρs G for any considered semantics ρ.

Proof. W.l.o.g., we may assume that there is a ∈ AF with
a /∈ AG . To prove the statement, we distinguish the follow-
ing cases: (a) (a, a) /∈ RF and (b) (a, a) ∈ RF . We present
the construction for case (a): For a fresh argument x and a
fresh claim c, letH = (AH, RH, clH) with

AH = (AF ∪AG ∪ {x}) \ {a};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};

and clH(b) = clF (b) for b ∈ AF ∪ AG and clH(x) = c;
that is, we introduce a new argument having a fresh claim c
which attacks every argument except a. It can be checked
that {clH(a), c} ∈ ρ(F ∪ H) for every semantics under
consideration. Observe that {clH(a), c} is not a claim-
extension under any semantics in G∪H since a is not present
in G ∪ H and x does attack every remaining argument.

The following lemma implies that two strongly equivalent
CAFs F and G possess the same self-attacking arguments.

Lemma 3.14. For any two compatible CAFs F and G,
(a, a) ∈ RF∆RG implies F 6≡ρs G for any semantics ρ un-
der consideration.

The following lemma states that a CAF admits the same
cl-cf -stable (cl-stage) claim-sets as its cf -stable kernel.

Lemma 3.15. For any CAF F , ρ(F) = ρ(Fcsk) for the
semantics ρ ∈ {cl -stbcf , cl -stg}.

Moreover, it can be shown that syntactic equivalence of
cf -stable kernels of two CAFs F and G implies that the ker-
nels coincide under any possible expansion.



Lemma 3.16. For any two compatible CAFs F and G,
Fcsk = Gcsk implies (F ∪ H)csk = (G ∪ H)csk for any
CAFH compatible with F and G.

We are now ready to prove our first main result stating
that two CAFs F and G are strongly equivalent to each other
w.r.t. cl-cf -stable and cl-stage semantics if and only if their
cl-stable kernels coincide.
Theorem 3.17. For any two compatible CAFs F and G,
Fcsk = Gcsk iff F ≡ρs G for ρ ∈ {cl -stbcf , cl -stg}.
Proof. First suppose we have Fcsk = Gcsk. In this case,
(F ∪ H)csk = (G ∪ H)csk for any compatible CAF H by
Lemma 3.16. We infer ρ(F ∪H) = ρ((F ∪H)csk) as well
as ρ((G ∪ H)csk) = ρ(G ∪ H) from Lemma 3.15. Hence
F ≡ρs G follows.

Now suppose Fcsk 6= Gcsk. Due to Lemma 3.15 we may
assume ρ(Fcsk) = ρ(Gcsk); moreover, AF = AG(= A) by
Lemma 3.13. We thus have that RFcsk 6= RGcsk . W.l.o.g.,
let (a, b) ∈ RFcsk \RGcsk ; we apply Lemma 3.14 to assume
a 6= b. Moreover, observe that (a, a) /∈ RcskG (and thus,
(a, a) /∈ RcskF ) since otherwise (a, b) ∈ RGcsk by definition
of the cf -stable kernel. We distinguish the following cases:
(a) cl(a) 6= cl(b), and (b) cl(a) = cl(b).

(a) In case cl(a) 6= cl(b), consider two newly introduced ar-
guments x, y and fresh claims c, d. We consider the AF
H1 = (A ∪ {x, y}, R1, cl1) where

R1 = {(x, y)} ∪ {(y, h) | h ∈ A ∪ {x}}∪
{(x, h) | h ∈ A \ {a, b}},

and the function cl1 is given as follows: cl1(x) = c,
cl1(y) = d, and the other claims coincide with the given
ones, i.e. cl1(h) = clF (h) if h ∈ A. First observe that
{d} is i-stable in both Fcsk ∪ H1 and Gcsk ∪ H1 and
thus guarantees that ρ(Fcsk ∪H1) and ρ(Gcsk ∪H1) are
non-empty. It can be checked that S = {cl(a), c} is cl-
cf -stable and cl-stage in Fcsk ∪ H1 (since {a, x} is sta-
ble); on the other hand, S /∈ ρ(Gcsk ∪ H1) since b is not
defeated by {a, x}. However, this is our only candidate
since S has no other cf -realization in Gcsk ∪H1.

(b) Now consider the case cl(a) = cl(b) and observe that
(a, a), (b, b), (b, a) /∈ RcskG (otherwise (a, b) ∈ RGcsk ).
Since F and G contain the same self-attacks, we further-
more have (a, a), (b, b) /∈ RFcsk . Having established
this situation let us construct H2 as follows: For fresh
arguments x, y, z and fresh claims c, d, e, we consider
H2 = (A ∪ {x, y, z}, R2, cl2) where
R2 = {(a, h) | h ∈ (A ∪ {x}) \ {a, b}}∪

{(a, x), (x, x), (b, y), (y, y), (z, b), (b, z), (z, y)}
and as before we let cl2(h) = clF (h) for h ∈ A; for
the fresh arguments let cl2(x) = c, cl2(y) = d, as well
as cl2(z) = e. It can be checked that each CAF ad-
mits a stable extension; thus it suffices to show that the
cl-cf -stable claim-sets disagree. First observe that we
now have {cl2(a)} ∈ ρ(Gcsk ∪ H2) since {a, b} is
a stable extension in Gcsk ∪ H2. On the other hand,
we have that {cl2(a)} is neither cl -stbcf -realizable nor
cl -stg-realizable in Fcsk ∪H2.

In every case, we have found some H enforcing inequality,
i.e. ρ(Fcsk ∪ H) 6= ρ(Gcsk ∪ H). By Lemma 3.15, we get
ρ(F∪H) = ρ((F∪H)csk) = ρ(Fcsk∪H) 6= ρ(Gcsk∪H) =
ρ((G ∪ H)csk) = ρ(G ∪ H). It follows that F 6≡sρ G.

The remaining semantics under consideration can be char-
acterized via known AF kernels. We recall the AF kernels
from the literature (Oikarinen and Woltran 2011).

Definition 3.18. For an AF F = (A,R), we define the ad-
missible kernel F ak = (A,Rak) with

Rak = R\{(a, b) | a 6=b, (a, a)∈R, {(b, a),(b, b)}∩R 6=∅};
the complete kernel F gk = (A,Rgk) with

Rck = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R};
and the grounded kernel F gk = (A,Rgk) with

Rgk = R\{(a, b) | a 6=b, (b, b)∈R, {(b, a),(a, a)}∩R 6=∅}.
It has been shown that the grounded (complete) kernel

characterizes strong equivalence for grounded (complete)
semantics; moreover, for any two AFs F and G we have
F ≡σs G iff F ak = Gak for σ ∈ {ad , pr , ss} (Oikarinen
and Woltran 2011). We write F k(ρ) to denote the kernel
which characterizes strong equivalence for the semantics ρ.

To prove that strong equivalence for the remaining seman-
tics can be characterized using known AF kernels, we make
use of the following lemma which states that each CAF F
has the same σc-claim-sets as its kernel Fk(σ) for any AF
semantics σ under consideration; moreover, the cl-ad -stable
and cl-semi-stable claim-sets of F and Fak coincide.

Lemma 3.19. For any CAF F , (a) σc(Fk(σ)) = σc(F) for
any considered AF semantics σ; and (b) ρ(F) = ρ(Fak) for
ρ ∈ {cl -stbad , cl -ss}.

For inherited semantics, the result is immediate by known
results for AFs; for cl-ad -stable and cl-semi-stable seman-
tics, the statement follows by the additional observation that
the range of every admissible set of F remains unchanged.

It can be shown that two CAFs are strongly equivalent
under cl-ad -stable and cl-semi-stable semantics iff their ad-
missible kernels coincide.

Theorem 3.20. For any two compatible CAFs F and G,
F ≡ρs G iff F ak = Gak for ρ ∈ {cl -stbad , cl -ss}.

Moreover, each each inherited semantics σc can be char-
acterized by the respective kernel for σ.

Theorem 3.21. For any two compatible CAFs F and G,
F ≡σcs G iff F ≡σs G for any considered AF semantics σ.

Due to space limits, we shall omit the proofs of the above
theorems. The proofs proceed in the same way as the
proof of Theorem 3.17; first, we use Lemma 3.19 to show
F k(ρ) = Gk(ρ) implies strong equivalence of two CAFs F
and G w.r.t. ρ for the respective kernels F k(ρ) andGk(ρ). For
the other direction, we assume that the kernels of F and G
differ. Depending on the semantics, we consider different
cases for which we construct a CAF H which serves as a
witness to show F 6≡ρs G.



For cl-naive and cl-preferred semantics, it can be shown
that strong equivalence w.r.t. cl-naive and cl-preferred se-
mantics coincides with strong equivalence w.r.t. their inher-
ited counterparts. This implies that two CAFs are strongly
equivalent w.r.t. cl-preferred semantics iff their admissible
kernels coincide; likewise, two CAFs are strongly equiva-
lent w.r.t. cl-naive semantics iff their naive kernels coincide.

Theorem 3.22. For any two compatible CAFs F and G,
F ≡cl-σ

s G iff F ≡σcs G for σ ∈ {na, pr}.
The proof proceeds in a slightly different way: To show

F 6≡σcs G implies F 6≡cl-σ
s G, it can be assumed that F

and G disagree on their σc claim-sets. We construct counter-
examplesH satisfying cl -σ(F∪H) 6= cl -σ(G∪H) in such a
way that the claim-set which does not appear in either one of
the frameworks becomes a ⊆-maximal σc-claim-extension.

4 Renaming and Equivalence
In the previous section we were assuming that we are in-
terested in the actual arguments and not just the claims and
their interactions. In this section, we will also provide an-
other point of view which entirely abstracts from the under-
lying arguments and thus viewing a CAF as a collection of
claims and their relationships. To illustrate this, let us con-
sider the following example.
Example 4.1. Assume we are given again our CAF F from
Example 3.2 together with a CAF G as follows:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

x1

a

b1

b

c1

c

x2

a

c2

c

We observe that both CAFs are equivalent w.r.t. cl-cf -stable
semantics although the arguments a1 and a2 are not even
present in G while the same is true for x1 and x2 inF . More-
over, recalling the kernel for cl -stbcf from Theorem 3.17 we
observe that F and G would be even strongly equivalent if
this mismatch in argument names were not present. This
suggests that the usual notion of strong equivalence does not
handle situations where we are interested in claims only very
well. To illustrate this with a hands-on situation let us sup-
pose we are givenH in a way that a novel argument e1 with
claim e is given which attacks x1:

F ∪H:

a1

a

b1

b

c1

c

a2

a

c2

c

e1d x1 a

G ∪ H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

This is fine when insisting on the arguments, but on a claim-
level one could of course argue thatH did not yield the same
modification on both sides and thus disrupts the similarity
between F and G in an unintended way.

Our goal is hence to develop notions of equivalence which
handle situations like the aforementioned one in a more in-
tuitive way. The first step to formalize the underlying idea is
the following notion of a renaming.

Definition 4.2. For a CAFF and an arbitrary setA′ of argu-
ments we call a bijection f : AF → A′ s.t. for each a ∈ AF
we have clF (a) = clF (f(a)) a renaming for F .

We abuse notation and write f(F) for the CAF ob-
tained from renaming the arguments, i.e. f(F) is the CAF
(f(F ), clf ) := (f(A), Rf , clf ) where (a, b) ∈ Rf iff
(f−1(a), f−1(b)) ∈ RF and clf (f(a)) = clF (a).
Example 4.3. Consider again our previous CAF F . Let us
assume we are given A′ = {x1, x2, y1, z1, z2}. The renam-
ing f with ai 7→ xi, b1 7→ y1 and ci 7→ zi induces the
following CAF f(F):

F :

a1

a

b1

b

c1

c

a2

a

c2

c

f(F):

x1

a

y1

b

z1

c

x2

a

z2

c

We observe that f does not change the structure of F on
claim-level. In particular, cl -stbcf (F) = cl -stbcf (f(F)).

The last observation we made was no coincidence in the
specific situation. More precisely, for the semantics consid-
ered in this paper, renaming does not change the meaning of
our CAF.
Proposition 4.4. For a CAF F , an arbitrary set A′ of argu-
ments and a renaming f we have ρ(F) = ρ(f(F)) for any
semantics ρ considered in this paper.

Proof. We have E ∈ σ(F ) iff f(E) ∈ σ(f(F )) for the un-
derlying AF and since all semantics are defined by selecting
(subsets of) {cl(E) | E ∈ σ(F )}, the claim follows since
clF (a) = clF (f(a)) for each argument a.

Having formally established that names of arguments do
not change the given semantics, let us proceed with defining
notions of equivalence that build upon this insight.
Definition 4.5. Two CAFs F and G are ordinary equivalent
up to renaming to each other w.r.t. a semantics ρ, in symbols
F ≡ρor G, if there is some set A of arguments and some
renaming f : AF → A for F s.t. ρ(f(F)) = ρ(G).

So, informally speaking, Definition 4.5 requires that F
and G are equivalent, at least after the underlying arguments
are relabeled in a suitable way. However, in Proposition 4.4
we have actually already established that this adjustment is
superfluous for our semantics. More formally, we infer the
following result.
Proposition 4.6. For any two CAFs F and G, F ≡ρor G iff
F ≡ρo G for any semantics ρ under consideration.

Considering this result, it becomes apparent that we could
also require that ρ(f(F)) = ρ(G) holds for any renaming,
not just for one in particular.
Proposition 4.7. For two CAFs F and G we have that for
all semantics considered in this paper F ≡ρor G implies
ρ(f(F)) = ρ(G) for any renaming f for F .

Now we utilize the notion of a renaming in order to de-
fine a strong equivalence-like relation which is more suitable
than strong equivalence for situations like the one described
in Example 4.1.



Definition 4.8. Two compatible CAFs F and G are strongly
equivalent up to renaming to each other w.r.t. a semantics ρ,
in symbols F ≡ρsr G, if there is a renaming f : AF → AF
for F s.t. ρ(f(F)∪H) = ρ(G ∪H) for each CAFH which
is compatible with F and G.

Let us reconsider our motivating Example 4.1.

Example 4.9. Recall the CAFs F and G from before and
consider a renaming f which maps ai to xi and leaves the
remaining arguments unchanged. Augmenting both f(F)
and G withH, we obtain the following desired situation:

f(F)∪H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

G ∪ H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

Notice that Proposition 4.4 ensures that our renaming for F
only prevents H from introducing a novel argument, while
preserving the semantics of F .

Strong equivalence up to renaming implies the usual
strong equivalence. This can be obtained by setting f = id.

Proposition 4.10. For any two CAFs F and G, if F ≡ρs G,
then F ≡ρsr G.

Even without using Proposition 4.4 explicitly we can in-
fer that strong equivalence survives moving to a renamed
version of f as well.

Proposition 4.11. For any two compatible CAFs F and G,
if F ≡ρsr G, then f(F) ≡ρsr G for any renaming f for F .

Proof. We have ρ(g(F) ∪ H) = ρ(G ∪ H) for each H for
some renaming g because we assume F ≡ρsr G. Since f is a
bijection we find ρ(g(f−1(f(F))) ∪ H) = ρ(G ∪ H), thus
g ◦ f−1 is our witnessing renaming for f(F) ≡ρsr G.

Let us now come to the kernels. Since our notion of strong
equivalence up to renaming allows for changing the names
of the arguments, we expect our kernels to behave similarly.
More specifically, we also need to consider renamed ver-
sions of the CAFs before evaluating the kernels. However,
checking strong equivalence up to renaming will surely re-
quire to take the structure of the CAFs into consideration.
We thus define what we mean by a CAF isomorphism.

Definition 4.12. Two CAFs F and G are isomorphic to each
other iff there is a mapping f : AF → AG s.t. (1) f is a
renaming for F and (2) for all a, b ∈ AF , (a, b) ∈ RF iff
(f(a), f(b))∈RG . f is called isomorphism between F , G.

CAFsF and f(F) from Example 4.3 are isomorphic. The
given renaming f naturally is a CAF-isomorphism between
F and f(F). The following proposition collects basic prop-
erties of CAF isomorphisms.

Proposition 4.13. For any two CAFs F and G, (a) if F and
G are isomorphic, then ρ(F) = ρ(G) for any considered
semantics ρ; and (b) if f is a renaming for F , then F and
f(F) are isomorphic.

As it turns out, we obtain exactly the result we desire to:
We check strong equivalence up to renaming by choosing
the appropriate kernel for ρ, computing the kernels of F and
G and then checking whether those are isomorphic to each
other. Informally speaking, our tailored notion of equiva-
lence which does not take the names of arguments into ac-
count yields the exact same kernels after relabeling the ar-
guments in a suitable way.
Theorem 4.14. For any two CAFs F and G, F ≡ρsr G iff
Fk(ρ) and Gk(ρ) are isomorphic.

Proof. (⇐) Let Fk(ρ) and Gk(ρ) be isomorphic, witnessed
by the isomorphism f . We have f(Fk(ρ)) = Gk(ρ); more-
over, Fk(ρ) = Gk(ρ) implies (F ∪ H)k(ρ) = (G ∪ H)k(ρ)

for any compatible CAF H; extending f to H in a straight-
forward way yields f((F ∪ H)k(ρ)) = (G ∪ H)k(ρ). Since
(F ∪H)k(ρ) = (G ∪H)k(ρ) implies ρ(F ∪H) = ρ(G ∪H)
our isomorphism ensures ρ(F ∪H) = ρ(G ∪ H).

(⇒) Now assume the kernels Fk(ρ) and Gk(ρ) are not
isomorphic, i.e. for any renaming f , f(Fk(ρ)) 6= Gk(ρ).
Due to the properties of our kernel, there is some H s.t.
ρ(f(F) ∪H) 6= ρ(G ∪ H).

Example 4.15. For our CAFs F and G from Example 4.1
we see that —given ρ = cl -stbcf — the kernels are isomor-
phic. HenceF and G are strongly equivalent up to renaming.

5 Computational Complexity
In this section we examine the computational complexity of
deciding equivalence between two CAFs F and G for ev-
ery equivalence notion which has been established in this
paper. We assume the reader to be familiar with the poly-
nomial hierarchy. Moreover, by QSAT∃n (QSAT∀n) we de-
note the generic ΣP

n-complete (ΠP
n-complete) problem, i.e.

checking validity of a corresponding QBF. Our results re-
veal that ordinary equivalence can be computationally hard,
up to the third level of the polynomial hierarchy for both
variants of semi-stable and stage semantics as well as for i-
preferred semantics. For the remaining semantics under con-
sideration, the problem is ΠP

2 -complete; the only exception
is i-grounded semantics for which deciding ordinary equiv-
alence is P-complete. Moreover, we show that deciding
strong equivalence up to renaming extends the list of prob-
lems which lie in NP but are not known to be NP-complete.

First we present our complexity results for ordinary equiv-
alence. We formulate the following decision problem:

VER-OEρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are ordinary equivalent w.r.t. ρ.

We obtain the following computational complexity results
for deciding ordinary equivalence:
Theorem 5.1. VER-OEρ is
• P-complete for ρ=grc;
• ΠP

2 -complete for ρ ∈ {cfc, adc, coc,nac, cl -pr , cl -na,
stbc, cl -stbcf , cl -stbad , }; and

• ΠP
3 -complete for ρ∈{prc, ssc, stgc, cl -stg , cl -ss}.



In the following we will provide proofs for the results
from Theorem 5.1. To begin with, we show that verifying or-
dinary equivalence for i-grounded semantics is P-complete.
Proposition 5.2. Deciding VER-OEgrc is P-complete.

Proof. VER-OEgrc is in P since computing the grounded
extensions of F and G and comparing the claims can be
done in polynomial time. Hardness is by a reduction from
the verification problem VerCAF

grc for i-grounded semantics
(which is P-complete by (Dvorák and Woltran 2020)) by set-
ting F = F and G = (S, ∅, id) for an instance (F , S) of
VerCAF

grc . We obtain grc(F) = grc(G) iff S = grc(F).

Membership proofs for VER-OEρ, ρ 6= grc are by stan-
dard guess-and-check procedures for the complementary
problems: Guess a set of claims S and check whether it
holds that S ∈ F as well as S /∈ G. For the seman-
tics ρ ∈ {cfc, adc, coc,nac, stbc, cl -stbcf , cl -stbad}, the lat-
ter requires two NP-oracle calls; for ρ ∈ {cl -pr , cl -na}
we require four NP-oracle calls (recall that verification for
cl-preferred and cl-naive semantics is in DP

1 (Dvořák et al.
2021)), which shows that VER-OEρ is in ΠP

2 . For the se-
mantics ρ ∈ {prc, ssc, stgc, cl -ss, cl -stg}, we require two
ΣP

2 -oracle calls to check S ∈ F and S /∈ G; yielding ΠP
3 -

procedures for the decision problem VER-OEρ.
To show hardness of VER-OEρ for ρ 6= grc, we present

reductions from QSAT∀2 or QSAT∃2 , respectively. The over-
all idea is to construct two CAFs F , G where ρ(F) de-
pends on the particular instance of the source problem while
G serves as controlling entity. For a given instance Ψ =
Q1X1 . . . QnXnϕ of QSAT∀2 or QSAT∃2 , respectively, we
design the CAF F in a way such that ρ(F) depends on the
models of ϕ while G possesses every possible ρ-claim-set
which can be obtained in F by varying ϕ, i.e., ρ(G) is in-
dependent of the validity of Ψ. F is then constructed such
that Ψ is valid iff ρ(F) = ρ(G) (if we reduce QSAT∀2 ) or
ρ(F) 6= ρ(G) (in case we reduce QSAT∃2 ).

We will first discuss the hardness proofs for those seman-
tics for which VER-OEρ is ΠP

2 -complete. We outline the
underlying aforementioned idea for i-stable semantics.
Proposition 5.3. Deciding VER-OEρ is ΠP

2 -hard for ρ ∈
{stbc, cl -stbcf , cl -stbad}.

Proof. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance of QSAT∀2
where ϕ is identified with a set of clauses C over atoms in
V = Y ∪ Z. We construct two CAFs F = (AF , RF , clF )
and G = (AG , RG , id). The CAF F is given by

AF = V ∪ V̄ ∪ C with V̄ = {v̄ | v ∈ V };
RF = {(v, cl) | cl ∈ C, v ∈ cl} ∪ {(cl, cl) | cl ∈ C}∪

{(v̄, cl) | cl ∈ C,¬v ∈ cl} ∪ {(v, v̄), (v̄, v) | v ∈ V }
and clF (z) = clF (z̄) = z for z ∈ Z and clF (a) = a else;
that is, we introduce arguments for every clause and every
literal; a literal argument attacks a clause argument if the
corresponding literal is contained in the respective clause;
moreover, the clauses are self-attacking and every literal and
its negation attack each other. We assign every atom z ∈ Z
the same claim as its negation z̄; the remaining arguments

cl1c1 cl2 c2

y1

y1

ȳ1

ȳ1

z1

z1

z̄1

z1

(a) CAF F

y1

y1

ȳ1

ȳ1

z1

z1

(b) CAF G

Figure 1: Reduction from the proof of Proposition 5.3 for a formula
∀Y ∃Zϕ(Y,Z) where ϕ is given by the clauses {{y1, z1}, {ȳ2}}.

have their unique argument name as claim. The CAF G is
given by AG = V ∪ Ȳ ; RG = {(y, ȳ), (ȳ, y) | y ∈ Y }. An
example of the reduction is given in Figure 1. Observe that
the i-stable (cl-stable) claim-sets of G are given by sets of
the form Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z for Y ′ ⊆ Y .

It can be shown that Y ′ ∪{ȳ | y /∈ Y ′}∪Z is i-stable (cl-
stable) in F for every Y ′ ⊆ Y iff Ψ is valid. By design of
G, the latter is satisfied iff the i-stable (cl-stable) extensions
of F and G coincide. That is, Ψ is valid iff ρ(F) = ρ(G) for
ρ ∈ {stbc, cl -stbcf , cl -stbad}.

By modifying the constructions from the proof of Propo-
sition 5.3 we obtain ΠP

2 -hardness of VER-OEnac . For the
construction of F in the ΠP

2 -hardness proof of VER-OEρ,
ρ = {cfc, adc, cl -na, cl -pr}, we choose a slightly different
approach: For an instance Ψ = ∀Y ∃Zϕ(Y,Z) of QSAT∀2 ,
we construct F such that each literal in a clause cl is rep-
resented by an argument having claim cl; we furthermore
introduce arguments for each atom y ∈ Y and its negation;
finally, every two arguments representing negated literals at-
tack each other. We construct G in a way such that ρ(G) con-
tains precisely the claim-sets Y ′∪{ȳ | y /∈ Y ′}∪C. Similar
as above, it can be shown that Ψ is valid iff ρ(F) = ρ(G).
An appropriate adaptation and claim-assignment of the stan-
dard construction as presented in (Dvorák and Dunne 2018,
Reduction 3.6) yields ΠP

2 -hardness for i-complete semantics.
Turning now to the ΠP

3 -hardness results, we adjust our
general reduction scheme by targeting inequality of ρ(F)

and ρ(G) in case the given instance Ψ of QSAT∃3 is valid.
As an example, we present the construction from the ΠP

3 -
hardness proof for cl-semi-stable and cl-stage semantics.
Proposition 5.4. Deciding VER-OEρ is ΠP

3 -hard for ρ ∈
{cl -ss, cl -stg}.
Proof. Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of
QSAT∃3 , where ϕ is given by a set of clauses C over atoms
in V = X ∪ Y ∪ Z. We can assume that there is y0 ∈ Y
with y0 ∈ cl for all cl ∈ C (otherwise we can add such a y0

without changing the validity of Ψ). We write v̄ to denote
¬v for an atom v ∈ V , moreover, let V ′ = X ∪ Y . We
construct CAFs F = (AF , RF , clF ) and G = (AG , RG , id)
as follows: The CAF F is given by

AF= V ∪ V̄ ∪ C ∪ {ϕ1, ϕ2} ∪ {dv, dv̄ | v∈V ′ ∪ V̄ ′};
RF={(a, cl) |cl∈C, a∈cl, a∈V ∪V̄ }∪{(cl, ϕ) |cl∈C}∪

{(a, da), (da, da) |a∈V ′∪V̄ ′}∪{(ϕ1, ϕ2), (ϕ2, ϕ2)}
∪{(v, v̄), (v̄, v) | v∈V };



ϕ1

ϕ

ϕ2

ϕ

cl1 ϕ̄ cl2 ϕ̄ cl3 ϕ̄

x
x

x̄
x̄

y
y

ȳ
y

z1

z1

z̄1

z1

z2

z2

z̄2

z2

dx
dx

dx̄
dx̄

dy
dy

dȳ
dȳ

Figure 2: Construction of the CAF F from the proof from
Proposition 5.4 for the formula ∃X∀Y ∃Zϕ(X,Y, Z) with clauses
{{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

clF (v) = clF (v̄) = v for v ∈ Y ∪ Z; clF (cl) = ϕ̄ for cl ∈
C; clF (ϕ1) = clF (ϕ2) = ϕ; and clF (a) = a otherwise.
An example of this construction is given in Figure 2. We
observe that each set X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ} is
cl-semi-stable (cl-stage) in F for every X ′ ⊆ X (remember
that there is y0 ∈ Y which attacks every clause cl ∈ C).

We define G = (AG , RG , id) such that it has the cl-semi-
stable (cl-stage) claim-setsX ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e}
for every X ′ ⊆ X , e ∈ {ϕ, ϕ̄} with AG = V ∪ X̄ ∪ {ϕ, ϕ̄},
and RG = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}. It
is easy to see that G possesses exactly the desired cl-semi-
stable (cl-stage) claim-sets.

It can be checked that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ̄}
is cl-semi-stable (cl-stage) in F for every X ′ ⊆ X iff Ψ
is not valid. The former is satisfied iff F and G possess
the cl-semi-stable (cl-stage) claim-sets. Thus Ψ is valid iff
ρ(F) 6= ρ(G) for ρ ∈ {cl -ss, cl -stg}.

ΠP
3 -hardness of ordinary equivalence for i-semi-stable and

i-stage semantics is by adapting the ΠP
3 -hardness proof of the

concurrence problem for semi-stable semantics, i.e., decid-
ing whether ssc(F) = cl -ss(F) for a CAF F (Dvořák et al.
2021, Proposition 6). For i-preferred semantics, we modify
the standard reduction for preferred semantics (cf. (Dvorák
and Dunne 2018, Reduction 3.7)) via an appropriate claim-
assignment. This concludes the proof of Theorem 5.1.
Remark 5.5. The computational complexity results from
Theorem 5.1 extend to ordinary equivalence up to renaming
by Proposition 4.6 for any semantics under consideration.

Having established complexity results for ordinary equiv-
alence it remains to discuss the computational complexity of
strong equivalence and strong equivalence up to renaming.

VER-SEρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are strongly equivalent w.r.t. ρ.

Recall that in Section 3, we have shown that strong equiva-
lence of two CAFs F and G can be characterized via syntac-
tic equivalence of their kernels. Since the computation and
comparison of the kernels of F and G can be done in poly-
nomial time, we obtain tractability of strong equivalence for
every semantics under consideration.

Theorem 5.6. The problem VER-SEρ can be solved in poly-
nomial time for any semantics ρ considered in this paper.

Finally, we consider strong equivalence up to renaming.
An analogous decision problem be formulated as follows:

VER-SERρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are strongly equivalent up to re-

naming w.r.t. ρ.

As outlined above, the computation of the kernels lies in
P and is therefore negligible; the complexity of verifying
strong equivalence up to renaming thus stems entirely from
deciding whether two labelled graphs (i.e., the kernels of the
given CAFs) are isomorphic. As a consequence we obtain
that the complexity of VER-SERρ coincides with the com-
plexity of the famous graph isomorphism problem.
Theorem 5.7. The problem VER-SERρ is exactly as hard
as the graph isomorphism problem for any semantics ρ con-
sidered in this paper.

It is well-known that the graph isomorphism problem lies
in NP but is not known to be NP-complete (although the
latter is considered unlikely (Schöning 1988)).

6 Conclusion and Future Work
In this paper, we considered ordinary and strong equivalence
as well as novel equivalence notions based on argument re-
naming for CAFs w.r.t. all semantics for CAFs which have
been considered in the literature so far and provided a com-
plexity analysis of all considered equivalence notions.

Our characterization results for strong equivalence are
in line with existing studies for related argumentation for-
malisms (Oikarinen and Woltran 2011; Dvorák, Rapberger,
and Woltran 2020b); in addition, we adapt an argument-
independent view by considering equivalence under renam-
ing. Equivalence of logic-based argumentation has been
studied in (Amgoud, Besnard, and Vesic 2014); they show
that under certain conditions on the underlying logic, unnec-
essary arguments can be removed while retaining (strong)
equivalence. In contrast to their work, our studies are in-
dependent of the underlying formalism of the instantiated
argumentation system as we do not impose any further con-
straints on the arguments or their claims; in this way, it
is even possible to test equivalence between argumentation
systems stemming from entirely different base formalisms.

For future work, we want to extend our strong equivalence
studies by considering certain constraints of the framework
modifications. What has been commonly investigated in the
literature are normal expansions where attacks can only be
introduced if they involve newly added arguments (observe
that in the proof of Theorem 3.17, the expansion in case (a)
satisfy this criteria while H in case (b) introduces also new
attacks between existing arguments). We moreover want to
adapt our strong equivalence notion to arbitrary CAFs, not
only compatible ones, by relaxing the notion of framework
expansions. Another point on our agenda is to consider cer-
tain sub-classes of CAFs, which have been introduced in the
literature, e.g., well-formed CAFs which impose restrictions
on the attack relation.
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A Ordinary equivalence relations and
counter-examples (cf. Proposition 3.3)

Theorem A.1. The results depicted in Table 1 hold.

In contrast to the positive results, counter-examples carry
over from known results for AFs (cf. (Oikarinen and Woltran
2011)) as the following lemma shows.

Lemma A.2. For two AF semantics σ and τ , if σ(F ) =
σ(G) 6⇒ τ(F ) = τ(G) for some AFs F , G, then σc(F) =
σc(G) 6⇒ τc(F) = τc(G) for some CAFs F , G.

Proof. Consider such two AFs F and G with σ(F ) = σ(G)
and τ(F ) 6= τ(G) and let F = (F, id), G = (G, id).

Example 3.4 (ctd.) Observe ρ(F) = ρ(G) for ρ ∈
{cfc, adc, cl -na, cl -pr}; the claim-extensions of F and G
disagree for the remaining semantics ρ′ 6= ρ, yielding
counter-examples for ρ(F) = ρ(G)⇒ ρ′(F) = ρ′(G).

Example A.3. Consider the following two CAFs F and G:

a1

a

F : a1

a

b1

b

c1

c

G :

We have ρ(F) = ρ(G) = {{a}} for the semantics
ρ ∈ {stbc, ssc, stgc, cl -stbcf , cl -stbad , cl -ss, cl -stg} and
disagree for any semantics ρ′ 6= ρ under consideration. Thus
F ≡ρo G does not imply F ≡ρ′o G for any semantics ρ′ 6= ρ.

Example A.4. Let F , G as in Example A.3 and let F ′
with RF ′ = RF \ {(b1, a1)}. Then ρ(F) 6= ρ(G) for
ρ ∈ {cfc,nac, cl -na} and ρ′(F) = ρ′(G) for any semantics
ρ′ 6= ρ under consideration, yielding the respective counter-
examples.

Example A.5. Consider the CAFs F , G from Example A.3
and let clG(c1) = b, then ρ(F) = ρ(G) = {{a}} (only) for
ρ ∈ {stbc, ssc, stgc}. In this case we have counter-examples
for F ≡ρo G ⇒ F ≡ρ

′
o G for any semantics ρ′ 6= ρ.

Example A.6. Consider the following CAFs F and G:

a1

a

b1

b

F : a1

a

b1

b

b2

b

G :

ρ(F) = ρ(G) for ρ ∈ {cl -stbcf , cl -stbad , cl -ss, cl -stg}
(not exclusively) but ρ′(F) 6= ρ′(G) for ρ′ ∈ {stbc, ssc,
stgc}.
Example A.7. Consider the CAFs F , G from Exam-
ple A.6 and let clG(b2) = c. Then ρ(F) = ρ(G) for
ρ ∈ {cfc,nac, adc, grc, coc, prc, cl -na, cl -pr} and ρ′(F) 6=
ρ′(G) for ρ′ 6= ρ.

Example A.8. Consider the following CAFs F and G:

a1

a

b1

b

F : a1

a

b1

b a2

a

G :

Then ρ(F) = ρ(G) for ρ ∈ {cfc, cl -stbcf , cl -stg ,nac,
cl -na, grc} which is not the case for the remaining seman-
tics.

Example A.9. Consider the CAF G from Example A.8 and
let F = ({b}, ∅, id), then ρ(F) = ρ(G) for ρ ∈ {adc,
coc, prc, stbc, ssc, stgc, cl -pr , cl -stbad , cl -ss} and ρ′(F) 6=
ρ′(G) for ρ′ 6= ρ.

Example A.10. Consider the following CAFs F and G:

a1

a

b1

b

F : a1

a

c1

c

G :

Then ρ(F) = ρ(G) = ∅ for ρ ∈ {cl -stbcf , cl -stbad} while
ρ′(F) = {{b}} 6= {{c}} = ρ′(G) for ρ′ ∈ {cl -stg , cl -ss}.
Example A.11. Consider the following CAFs F and G:

a1

a

b1

b

F : a1

a

b1

b

G :

Then ρ(F) = ρ(G) = {{b}} for ρ ∈ {cl -stg , cl -ss} while
ρ′(F) = ∅ 6= {{b}} = ρ′(G) for ρ′ ∈ {cl -stbcf , cl -stbad}.

B Differnt arguments or self-attacks -
criteria to disprove strong equivalence

(Proofs of Lemmata 3.13 and 3.14)
We will make use of the following lemma.

Lemma B.1. Given a CAF F = (F, cl), a set of claims
S ⊆ cl(A). Then S ⊆ S′ for some S′ ∈ stbc(F) implies
that for all semantics ρ 6= {grc} under consideration, there
is S′′ ∈ ρ(F) with S ⊆ S′′.
Proof. The statement follows from known relations between
semantics and since the cl-preferred (cl-naive) claim-sets
are precisely the subset-maximal i-preferred (i-naive) claim-
sets. Thus S ∈ prc(F) implies there is S′ ∈ cl -pr(F) with
S′ ⊆ S and S ∈ nac(F) implies there is S′ ∈ cl -na(F)
with S′ ⊆ S.

Lemma 3.13. For any two compatible CAFs F and G,
AF 6= AG implies F 6≡ρs G for any considered semantics ρ.

Proof. W.l.o.g., we may assume that there is a ∈ AF with
a /∈ AG . To prove the statement, we distinguish the follow-
ing cases: (a) (a, a) /∈ RF and (b) (a, a) ∈ RF .

• In case (a, a) /∈ RF , we recall the following construc-
tion: For a fresh argument x and a fresh claim c, let
H = (AH, RH, clH) with

AH = (AF ∪AG ∪ {x}) \ {a};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};

and clH(b) = clF (b) for b ∈ AF ∪ AG and clH(x) = c;
that is, we introduce a new argument having a fresh claim
c which attacks every argument except a. Observe that
{clH(a), c} ∈ grc(F∪H) and {clH(a), c} ∈ stbc(F∪H)
since {a, x} is conflict-free, and x is unattacked and at-
tacks all remaining arguments except a in F ∪ H; thus
there is S ∈ ρ(F ∪ H) with {clH(a), c} ⊆ S for every
semantics ρ under consideration by Lemma B.1. On the
other hand, {clH(a), c} /∈ cf (G ∪ H) since x attacks ev-
ery occurrence of clH(a) in G; therefore, {clH(a), c} /∈
ρ(G ∪ H).



cfc nac adc coc grc prc stbc ssc stgc cl -na cl -pr cl -stbcf cl -stbad cl -ss cl -stg
cfc 3 3.4 A.2 A.2 A.2 A.2 A.2 A.2 A.2 3 A.8 3.4 3.4 3.4 3.4
nac 3 3 A.2 A.2 A.2 A.2 A.2 A.2 A.2 3 A.8 A.7 A.8 A.8 A.7
adc A.2 A.2 3 A.2 A.2 A.2 A.2 A.2 A.2 A.4 3 3.4 3.4 3.4 3.4
coc A.2 A.2 A.2 3 3 A.2 A.2 A.2 A.2 A.4 3 A.7 A.7 A.7 A.7
grc A.2 A.2 A.2 A.2 3 A.2 A.2 A.2 A.2 A.4 A.8 A.7 A.7 A.7 A.7
prc A.2 A.2 A.2 A.2 A.2 3 A.2 A.2 A.2 A.4 3 A.7 A.7 A.7 A.7
stbc A.2 A.2 A.2 A.2 A.2 A.2 3 A.2 A.2 A.3 A.3 A.5 A.5 A.5 A.5
ssc A.2 A.2 A.2 A.2 A.2 A.2 A.2 3 A.2 A.3 A.3 A.5 A.5 A.5 A.5
stgc A.2 A.2 A.2 A.2 A.2 A.2 A.2 A.2 3 A.3 A.3 A.5 A.5 A.5 A.5
cl -na 3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3 A.8 3.4 3.4 3.4 3.4
cl -pr 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 A.4 3 3.4 3.4 3.4 3.4

cl -stbcf A.3 A.3 A.3 A.3 A.3 A.3 A.6 A.6 A.6 A.3 A.3 3 A.8 A.8 A.10
cl -stbad A.3 A.3 A.3 A.3 A.3 A.3 A.6 A.6 A.6 A.3 A.3 A.9 3 A.10 A.9
cl -ss A.3 A.3 A.3 A.3 A.3 A.3 A.6 A.6 A.6 A.3 A.3 A.9 A.11 3 A.9
cl -stg A.3 A.3 A.3 A.3 A.3 A.3 A.6 A.6 A.6 A.3 A.3 A.11 A.8 A.8 3

Table 1: Ordinary equivalence relations. 3 indicates ρ(F) = ρ(G) ⇒ ρ′(F) = ρ′(G) for the semantics ρ, ρ′ and for any two CAFs F , G
(cf. Prop. 3.3). The given references for the other cases refer to the respective counter-examples.

• Now, let (a, a) ∈ RF . For a fresh argument x and a fresh
claim c, letH = (AH, RH, clH) with

AH = AF ∪AG ∪ {x};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};

and clH(b) = clF (b) for b ∈ AF , clH(b) = clG(b) for
b ∈ AG ; and clH(x) = c; that is, the new argument x at-
tacks every argument in AF ∪AG except a. Observe that
a is unattacked in G ∪ H since a is a newly introduced
argument in G ∪ H1 by assumption a /∈ AG . Therefore
{clH(a), c} ∈ grc(G∪H) since {a, x} is conflict-free and
unattacked; moreover, {clH(a), c} ∈ stbc(G ∪ H) since
{a, x} is conflict-free and attacks all remaining arguments
in G ∪H . By Lemma B.1, {clH(a), c} is thus contained
in some ρ-claim-set for every semantics ρ under consider-
ation. On the other hand, {clH(a), c} /∈ cf (F ∪H) since
every realisation of {clH(a), c} is conflicting: a is self-
attacking and x attacks every other occurrence of clH(a).
Thus {clH(a), c} /∈ ρ(F ∪ HH) for each considered se-
mantics ρ.

In both cases, we found a witness H showing that ρ(F ∪
H) 6= ρ(G ∪ H). Thus the statement follows.

Lemma 3.14. For any two compatible CAFs F and G,
(a, a) ∈ RF∆RG implies F 6≡ρs G for any semantics ρ un-
der consideration.

Proof. By Lemma 3.13, we may assume that AF = AG(=
A), i.e., a is contained in both CAFs F and G. W.l.o.g., let
(a, a) ∈ RF and (a, a) /∈ RG . Now, for a fresh argument x
and a fresh claim c, letH = (A,RH, clH) with

RH = {(x, b) | b ∈ A \ {a}}
and clH(b) = clF (b) for b ∈ A and clH(x) = c.
Then {clH(a), c} has no cf -realisation in F ∪ H since a
is self-attacking and x attacks every remaining occurrence
of clH(a) in F ∪ H. On the other hand, {clH(a), c} ∈
grc(G ∪ H) and {clH(a), c} ∈ stbc(G ∪ H) since {a, x}

is conflict-free and attacks every other argument, more-
over, x is unattacked. By Lemma B.1, for all semantics ρ,
there is S ∈ ρ(G ∪ H) which contains {clH(a), c}. Thus
F 6≡ρs G.

C Towards characterizing strong equivalence
for cl-cf -stable and cl-stage semantics
(Proofs of the Lemmata 3.15 and 3.16)

Lemma 3.15. For any CAF F , ρ(F) = ρ(Fcsk) for the
semantics ρ ∈ {cl -stbcf , cl -stg}.
Proof. Consider a CAF F = (F, cl). We show (a) cf (F ) =
cf (F csk) and (b) for all E ∈ cf (F ), EB

F = EB
Fcsk .

(a) Clearly, cf (F csk) ⊆ cf (F ). Now, let E ∈ cf (F ) and
assume E /∈ cf (F csk), that is, there is a, b ∈ E such that
(a, b) ∈ Rcsk. But then either (a, a) ∈ R or {(b, a), (b, b)}∩
R 6= ∅ by the definition of the cf -stable kernel, contradiction
to the conflict-freeness of E in F .

(b) Now, let E ∈ cf (F ) and observe that EB
F ⊆ EB

Fcsk .
Now, let c ∈ EB

Fcsk and assume c /∈ EB
F , that is, there is

b ∈ A with cl(b) = c which is not attacked by E in F but
there is a ∈ E such that (a, b) ∈ Rcsk. By definition of
the cf -stable kernel, either (a, a) ∈ R or cl(a) = cl(b) and
(b, a) ∈ R or (b, b) ∈ R, contradiction to E being conflict-
free in F csk.

Lemma 3.16. For any two compatible CAFs F and G,
Fcsk = Gcsk implies (F ∪ H)csk = (G ∪ H)csk for any
CAFH compatible with F and G.

Proof. First observe that (i) F ∪ H ⊆ Fcsk ∪ Hcsk ⊆
(F ∪ H)csk for every two CAFs F , H. Moreover, (ii)
Fcsk = Gcsk implies that F , G contain the same self-attacks
by definition of the cf -stable kernel.

Now, suppose Fcsk = Gcsk and let (a, b) ∈ (F ∪ H)csk.
We show that (a, b) ∈ (G ∪ H)csk (the other direction is
analogous): In case (a, b) ∈ F∪H, we have (a, b) ∈ Fcsk∪
Hcsk by (i). Since Fcsk∪Hcsk = Gcsk∪Hcsk we conclude



(a, b) ∈ (G ∪H)csk. In case (a, b) /∈ F ∪H, either (a, a) ∈
F ∪H or cl(a) = cl(b) and {(b, b), (b, a)} ∩ (F ∪H) 6= ∅.
In case (a, a) ∈ F ∪ H ((b, b) ∈ F ∪ H), we are done
since (a, a) ∈ G ∪H ((b, b) ∈ G ∪H) by (ii). Now, suppose
cl(a) = cl(b) and (b, a) ∈ F∪H, then (b, a) ∈ Fcsk∪Hcsk
by (i), thus also (b, a) ∈ Gcsk∪Hcsk by assumption Fcsk =
Gcsk. In case (b, a) ∈ G ∪ H, we get (a, b) ∈ (G ∪ H)csk;
else we have cl(a) = cl(b) and {(a, a), (b, b), (a, b)}∩ (G ∪
H) 6= ∅. By definition of the cf -stable kernel we get (a, b) ∈
(G ∪ H)csk.

D Strong equivalence results (Proofs of the
Theorems 3.20, 3.21, and 3.22)

Theorem 3.20. For any two compatible CAFs F and G,
F ≡ρs G iff F ak = Gak for ρ ∈ {cl -stbad , cl -ss}.
Proof. First suppose F ak = Gak and let H be a CAF
compatible with F , G. By Lemma 3.19, and since F ∪
H = (F ∪ H)ak by known results for AF strong equiv-
alence (Oikarinen and Woltran 2011, Lemma 5), we get
ρ(F ∪ H) = ρ((F ∪ H)ak) = ρ((G ∪ H)ak) = ρ(G ∪ H).
Therefore, F ≡ρs G.

Now assume Fak 6= Gak. We may assume ρ(Fak) =
ρ(Gak) by Lemma 3.19; moreover, AF = AG(= A) by
Lemma 3.13; also, F and G contain the same self-attacks by
Lemma 3.14. Thus there is (a, b) ∈ RakF ∆RakG ; w.l.o.g., let
(a, b) ∈ RakF . We distinguish three cases: (a) (a, a) /∈ RFak ;
(b) (a, a) ∈ RFak and cl(a) 6= cl(b); and (c) (a, a) ∈ RFak

and cl(a) = cl(b).

(a) In case (a, a) /∈ RFak , let H1 = (A ∪ {x, y}, R1, cl1)
with

R1 = {(b, y)} ∪ {(x, h) | h ∈ A \ {a, b}}
and cl1(h) = clF (h) if h ∈ A and cl1(x) = c, cl1(y) =
d for newly introduced arguments x, y and fresh claims
c, d.
Clearly, {a, x, y} ∈ stb(F ak ∪ H1) since a defends y
against b and x attacks every remaining argument. Conse-
quently, {cl1(a), c, d} ∈ stbc(Fak∪H1) ⊆ ρ(Fak∪H1).
On the other hand, we have that {cl1(a), c, d} is not ad-
missible in Gak ∪ H1 since it has no ad -realisation in
Gak ∪H1: Clearly, every candidate set must contain x, y,
which are the only arguments having claims c, d. The
only cf -realisation of {cl1(a), c, d} is {a, x, y} since ev-
ery other argument is attacked by x. Observe that y is
not defended against b by {a, x, y} in Gak ∪ H1, thus
{cl1(a), c, d} /∈ ρ(Gak ∪H1).

(b) In case (a, a) ∈ RFak , cl(a) 6= cl(b), let H2 = (A ∪
{x}, R2, cl2) with

R2 = {(x, h) | h ∈ A \ {a, b}}
for a fresh argument x with cl2(h) = clF (h) for h ∈ A
and cl2(x) = clF (a). First observe that (b, b) /∈ RakF
(and thus also not in RakG ), otherwise (a, b) /∈ RakF by
definition of the ad -stable kernel. It follows that E =
{b, x} is admissible in Gak ∪H2 since a does not attack b
and x attacks each remaining argument. Let S = cl2(E)

and observe that S ∪ EB
Gak∪H2

= S ∪ cl2(A \ {a}) =

cl2(A) since cl2(a) ∈ S. Thus we have S ∈ ρ(Gak∪H2).
On the other hand, S /∈ adc(Fak ∪ H2): Consider a
cf -realisation D of S. In case x /∈ D, we have that D
is not defended against x in F ak ∪ H2 since x attacks
any potential realization of cl2(a) in F which is not self-
attacking. Now assume x ∈ D, then also b ∈ D, since
x attacks any other possible choice of cl2(b) in F . In
this case we have that D is not defended against a in
Gak ∪ H2 and thus S /∈ adc(Fak ∪ H2). It follows that
ρ(Fak ∪H2) 6= ρ(Gak ∪H2).

(c) Now assume (a, a) ∈ RFak and cl(a) = cl(b). LetH3 =
(A ∪ {x, y}, R3, cl3) with

R3 = {(x, y), (y, x)} ∪ {(y, h | h ∈ A ∪ {x}}∪
{(x, h) | h ∈ A \ {a, b}}

and cl3(h) = clF (h) if h ∈ A and cl3(x) = c,
cl3(y) = d for newly introduced arguments x, y and fresh
claims c, d, that is, H3 coincides with the construction
H1 from case (a) in the Proof of Theorem 3.17. The ar-
gument y guarantees that cl -stbad(Fak ∪ H3) 6= ∅ and
cl -stbad(Gak ∪ H3) 6= ∅ since in both Fak ∪ H3 and
Gak ∪ H3, the claim-set {d} is i-stable witnessed by y
with claim d which attacks every argument in A ∪ {x}.
Moreover, we have that {cl3(b), c} ∈ cl -stbad(Gak∪H3)
(and thus {cl3(b), c} ∈ cl -ss(Gak ∪ H3)) since {b, x}
is conflict-free and defends itself in Gak ∪ H3—recall
that (b, b), (a, b) /∈ RakG and x attacks every remaining
argument except a. Since cl3(a) = cl3(b) it follows
that {b, x} has full claim-range. On the other hand, we
have that {cl3(b), c} has no ad -realisation in F ak ∪ H3:
Clearly, each candidate must contain x which is the only
argument having claim c. Thus {b, x} is the only cf -
realisation of {cl3(b), c} in F ak∪H3. Observe that {b, x}
is not admissible since b is not defended against the attack
from a. We obtain ρ(Fak ∪H3) 6= ρ(Gak ∪H3).

In every case, we have found a witnessH showing ρ(Fak ∪
H) 6= ρ(Gak ∪ H). By Lemma 3.19, we get ρ(F ∪ H) =
ρ((F ∪ H)ak) = ρ(Fak ∪ H) 6= ρ(Gak ∪ H) = ρ((G ∪
H)ak) = ρ(G ∪ H). It follows that F 6≡sρ G.

Theorem 3.21. For any two compatible CAFs F and G,
F ≡σcs G iff F ≡σs G for any considered AF semantics σ.

Proof. Clearly, F ≡σs G implies F ≡σcs F since σ(F ∪
H) = σ(G ∪H) implies σc(F ∪ H) = σc(G ∪ H) for any
CAFH which is compatible with F , G.

For the other direction, let F 6≡σs G. We may assume
AF = AG(= A) by Lemma 3.13; moreover F k(σ) 6= Gk(σ)

for the respective kernel which characterises the seman-
tics σ. Since F and G agree on their arguments, there
must be some attack (a, b) ∈ R

k(σ)
F ∆R

k(σ)
G . W.l.o.g., let

(a, b) ∈ RskF . By Lemma 3.14, we have a 6= b.

1. First, let σ ∈ {stb, stg}. Recall that stable and stage
semantics are characterised via the stable kernel. Since
(a, b) ∈ RskF , we conclude that a is not self-attacking in
F (which implies (a, a) /∈ RG by Lemma 3.14).



For fresh arguments x, y, z and fresh claims c, d, e, let
H1 = (A∪{x, y, z}, {(b, z)}∪{(x, h) | h ∈ (A∪{y})\
{a, b}} ∪ {(y, h) | h ∈ A ∪ {x, z}}, cl1) with cl1(h) =
clF (h) for h ∈ A, cl1(x) = c, cl1(y) = d, and cl1(z) =
e. First observe that {y} ∈ stb(F sk∪H1)∩stb(Gsk∪H1)
and thus stb(F sk ∪ H1) = stg(F sk ∪ H1); analogously
forGsk∪H1. Moreover, {a, x, z} ∈ stb(F sk∪H1) since
x attacks any remaining argument; thus {cl1(a), c, e} ∈
stbc(Fsk ∪ H1). On the other hand, {cl1(a), c, e} has no
stb-realisation in Gsk ∪H1 since {a, x, z} does not attack
b; every other realisation of {cl1(a), c, e} in Gsk ∪ H1 is
conflicting since z is attacked by b and x attacks every
remaining argument.

2. Next we consider the semantics which are charactierised
by the admissible kernel, i.e., let σ ∈ {ad , pr , ss}. Since
(a, b) ∈ RakF , we have either (a) (a, a) ∈ RakF and
{(b, a), (b, b)} /∈ RakF ; or (b) (a, a) /∈ RakF .

(a) For a fresh argument x and a fresh claim c, let H2 =
(A∪{x}, {(x, h) | h ∈ A\{a, b}}, cl2) with cl2(h) =
clF (h) for h ∈ A and cl2(x) = c. Then {b, x} ∈
ad(Gak ∪ H2) since b is not attacked by a in Gak

and defended against any other potential attack by x;
moreover, {b, x} semi-stable in Gak ∪ H2 since there
is no other set D ⊆ A ∪ {x} with x ∈ D⊕Gak∪H2

(be-
sides {x} which is a proper subset of {b, x}). Thus
{cl2(b), c} ∈ σc(Gak ∪ H1). On the other hand,
{b, x} /∈ ad(F ak ∪H2) since b is not defended against
a in F ak ∪H2. Thus {cl2(b), c} /∈ σc(Fak ∪H1).

(b) In case (a, a) /∈ RF , consider construction H1

from (1). {cl1(a), c, e} ∈ σc(Fak ∪ H1) since
{cl1(a), c, e} ∈ stbc(Fak ∪ H1); on the other hand,
{cl1(a), c, e} has no ad -realisation in Gak ∪ H1 since
z is not defended against b; every other realisation of
{cl1(a), c, e} in Gak ∪ H1 is conflicting since z is at-
tacked by b and x attacks every remaining argument.

3. For σ = co, we have either (a, a) /∈ RakF or (b, b) /∈ RakF .
The case (a, a) /∈ RakF is analogous to (2.b). It re-
mains to discuss the case (b, b) /∈ RakF . For fresh ar-
guments x, y and fresh claims c, d, let H3 = (A ∪
{x, y}, {(y, a), (y, y)} ∪ {(x, h) | h ∈ A \ {a, b}}, cl3)
with cl3(h) = clF (h) for h ∈ A, cl3(x) = c, cl3(y) = d.
Then {cl3(b), c} ∈ coc(Gak∪H3) since {b, x} is conflict-
free and x defends b against each attack; moreover, a
is not defended by {b, x} against y. On the other hand,
{cl3(b), c} /∈ coc(Fak ∪ H3) since the only conflict-free
sets containing x are {b, x}, which is not defended against
a; {x}, which does not realise cl3(b); and {a, x}, which
is not defended against y (and a has potentially a different
claim than b).

4. For σ = grd, either (a) (b, b) ∈ RakF and {(b, a), (a, a)} /∈
RakF ; or (b) (b, b) /∈ RakF . Observe that (b) coincides with
(3) where we constructed an expansion H3 yielding dif-
ferent i-grounded claim-sets in Fak ∪H3 and Gak ∪H3.
It remains to discuss the case (b, b) ∈ RakF . For fresh
arguments x, y and fresh claims c, d, let H4 = (A ∪
{x, y}, {(b, y)} ∪ {(x, h) | h ∈ A \ {a, b}}, cl3) with
cl4(h) = clF (h) for h ∈ A, cl4(x) = c, cl4(y) = d.

Then x is unattacked and defends a inFak∪H4, which in
turn defends y. Thus {cl4(a), c, d} ∈ grc(Fak ∪H4). On
the other hand, we have {cl4(a), c, e} /∈ grc(Gak ∪ H4)
since y is not defended against b.

This concludes the proof for the semantics σ ∈ {stb, stg ,
ad , pr , ss, gr , co}: In every case, we have found a witness
H showing ρ(Fak∪H) 6= ρ(Gak∪H). By Lemma 3.19, we
get ρ(F ∪ H) = ρ((F ∪ H)ak) = ρ(Fak ∪ H) 6= ρ(Gak ∪
H) = ρ((G ∪ H)ak) = ρ(G ∪ H). Consequently, F 6≡sρ G.

Next we discuss conflict-free and naive semantics.

5. For σ ∈ {cf ,na}, first notice that we can assume
σc(F) = σc(G) otherwise let H = (∅, ∅, ∅); furthermore,
we can assume σ(F ) 6= σ(G); otherwise consider in-
stead F ∪ H and G ∪ H for a compatible CAF H with
σc(F ∪H) 6= σc(G ∪ H).
First consider the case that there is some E ∈
σ(F )∆σ(G) such that E is not conflict-free in F (or
G, respectively). W.l.o.g., let E ∈ σ(F ) such that E
is subset-minimal among σ(F )∆σ(G), i.e., there is no
E′ ∈ σ(F )∆σ(G) with E′ ( E; otherwise, exchange
the roles of F and G. For a fresh argument x and a fresh
claim c, let H5 = (A ∪ {x}, {(x, b) | b ∈ A \ E, cl5)
with cl5(b) = clF (b) for b ∈ A and cl5(x) = c. Then
cl5(E) ∪ {c} ∈ na(F ∪ H5) but {cl5(E) ∪ {c} has
no cf -realisation in G ∪ H5 since every subset of E is
conflicting and x attacks all remaining arguments, thus
cl5(E) ∪ {c} /∈ σc(G ∪ H5). Observe that this suffices to
conclude the proof for conflict-free semantics.
For naive semantics, assume that for all E ∈
σ(F )∆σ(G), E ∈ cf (F ) ∩ cf (G). We derive a con-
tradiction: W.l.o.g., let E ∈ σ(F ) such that E is subset-
minimal among σ(F )∆σ(G). Since E is conflict-free in
G, there is some E′ ∈ na(G) with E ⊆ E′. But then
E′ ∈ cf (G) and thus E ∈ cf (F ) by assumption, contra-
diction to E being a subset-maximal conflict-free exten-
sion in F .

We have shown F 6≡σcs G for every semantics σ under con-
sideration.

Theorem 3.22. For any two compatible CAFs F and G,
F ≡cl-σ

s G iff F ≡σcs G for σ ∈ {na, pr}.
Proof. If F ≡σcs G, then σc(F ∪H) = σc(G ∪ H) for every
compatible CAF H. F ≡cl-σ

s G follows since cl -σ(F ∪
H) are the subset-maximal i-naive claim-sets of F ∪H and,
analogously, cl -σ(G ∪ H) are the subset-maximal i-naive
claim-sets of G ∪ H.

Now assume F 6≡σcs G and let σ = pr (the proof for
σ = na is analogous). We may assumeAF = AG(= A) (by
Lemma 3.13); also, prc(F) 6= prc(G)(otherwise consider
instead F ∪ H and G ∪ H for a compatible CAF H with
prc(F ∪ H) 6= prc(G ∪ H)). The latter implies ad(F ) 6=
ad(G). Consider a subset-minimal set E ∈ ad(F )∆ad(G),
i.e., there is no E′ ∈ ad(F )∆ad(G) with E′ ( E. W.l.o.g.,
let E ∈ ad(F ).

In case there is no D ∈ ad(F ) ∩ ad(G) with D ( E, we
consider the following construction: For a fresh argument x
and a fresh claim c, let H1 = ((A ∪ {x}, {(x, b) | b ∈ (A \



E}, cl1) with cl1(b) = clF (b) for b ∈ A and cl1(x) = c.
Then E ∪ {x} ∈ ad(F ∪ H) since E ∪ {x} is conflict-
free and defends itself, thus cl(E) ∪ {c} ∈ adc(F ∪ H1).
Also observe that there is no other admissible set D with
D * E ∪ {x} which contains x, thus cl(E) ∪ {x} is a
subset-maximal i-admissible set in F ∪ H1. On the other
hand, cl(E) ∪ {x} has no ad -realisation in G ∪ H1 since
no subset of E is admissible in G by minimality of E and
x attacks every remaining argument. Thus cl(E) ∪ {c} /∈
cl -pr(G ∪ H1).

Observe that for naive semantics, this concludes the proof
since by minimality of E, we can always find a conflict-free
setE such that there is noD ∈ cf (F )∩cf (G) withD ( E.

In case of preferred semantics, we now assume that the
assumption is not satisfied, i.e., there isD ∈ ad(F )∩ad(G)
with D ( E. There is some a ∈ E such that a /∈ D for
any D ∈ ad(F ) ∩ ad(G) with D ( E: Otherwise every
argument a ∈ E is contained in some admissible setD ( E,
and thus

⋃{D ∈ ad(G) ∩ ad(F ) | D ( E} = E, i.e.,
the union of all admissible sets contained in E coincides
with E, which implies E is admissible in G, contradiction
to the assumption. We consider the following construction:
For fresh arguments x, y and fresh claims c, d, let H2 =
(A∪ {x, y}, {(a, y)} ∪ {(y, b) | b ∈ E} ∪ {(x, b) | b ∈ (A \
E)}, cl2) with cl1(b) = clF (b) for b ∈ A, cl2(y) = d and
cl2(x) = c. First observe that there is no D ( E such that
D ∈ ad(F ∪H2) (or D ∈ ad(G ∪H2) by the choice of a:
y attacks every argument b ∈ E and a is the only argument
which defends E against y. Similar as above, we conclude
that cl(E) ∪ {c} ∈ cl -pr(F ∪ H2) since E is admissible
in F ∪ H2 and x attacks every remaining argument; on the
other hand, cl(E)∪{c} /∈ cl -pr(G ∪H2) since no subset D
of E is admissible in G.

In every case, we have found a witness H such that
cl -σ(F ∪H) 6= cl -σ(G ∪ H), thus F 6≡cl-σ

s G.

E Computational Complexity of VER-OEρ

(Proof details of Theorem 5.1)
We make use of (variants of) the following standard con-
struction which has been already defined in the proof of
Proposition 5.3.

Reduction 1. For a formula ϕ which is given by a set of
clauses C over atoms in V we construct an AF F = (A,R)
with

A = V ∪ V̄ ∪ C with V̄ = {v̄ | v ∈ V };
R = {(v, cl) | cl ∈ C, v ∈ cl} ∪ {(cl, cl) | cl ∈ C}∪

{(v̄, cl) | cl ∈ C,¬v ∈ cl} ∪ {(v, v̄), (v̄, v) | v ∈ V }.

Proposition 5.3. Deciding VER-OEρ is ΠP
2 -hard for ρ ∈

{stbc, cl -stbcf , cl -stbad}.

Proof. Let ρ = stbc and let Ψ = ∀Y ∃Zϕ(Y, Z) be an in-
stance of QSAT∀2 where ϕ is given by a set of clauses C
over atoms in V = Y ∪ Z. We restate the constructions
of the two CAFs F = (AF , RF , clF ), G = (AG , RG , id):
For F we have AF = A, RF = R where (A,R) is the AF
from Reduction 1; clF (z) = clF (z̄) = z for z ∈ Z and

clF (a) = a else. The CAF G is given by AG = Y ∪ Ȳ ∪ Z
and RG = {(y, ȳ), (ȳ, y) | y ∈ Y }. We observe that
stbc(G) = {Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z | Y ′ ⊆ Y }.

We show Ψ is valid iff stbc(F) = stbc(G).
First assume Ψ is valid, let Y ′ ⊆ Y and consider a model

M = Y ′∪Z ′ of ϕ. Then the set of argumentsE = M ∪{v̄ |
v /∈M} is stable inF : Clearly,E is conflict-free; moreover,
E attacks every cl ∈ C since every clause cl is satisfied by
M : In case there is v ∈ M with v ∈ cl we have v ∈ E
with (v, cl) ∈ RF ; in case there is ¬v ∈ M we have v̄ ∈ E
with (v̄, cl) ∈ RF . Since clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪
Z we have shown that every such claim-set is contained in
stbc(F); stbc(F) = stbc(G) thus follows.

Now assume stbc(F) = stbc(G). Let Y ′ ⊆ Y , let E be a
stbc-realisation of Y ′∪{ȳ | y /∈ Y ′}∪Z and let Z ′ = E∩Z.
We show that M = Y ′ ∪ Z ′ is a model of ϕ: Consider an
arbitrary clause cl ∈ C. By assumption that E is stable in F
there is some a ∈ E such that (a, cl) ∈ RF . In case a = v
for some atom v ∈ V we have v ∈ cl; in this case v ∈ M
and thus cl is satisfied. In case a = v̄ for some atom v we
have ¬v ∈ cl; in this case v /∈M since v̄ ∈ E and thus cl is
satisfied. We obtain that M is a model of ϕ. We have shown
that for any Y ′ ⊆ Y there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a
model of ϕ; i.e., Ψ is valid.

ΠP
2 -hardness of VER-OEρ for ρ ∈ {cl -stbcf , cl -stbad}

follows since stbc(F) = cl -stbcf (F) = cl -stbad(F) and
stbc(G) = cl -stbcf (G) = cl -stbad(G).

Proposition E.1. Deciding VER-OEρ is ΠP
2 -hard, ρ ∈

{cfc, adc cl -na, cl -pr}.

Proof. We will first show the statement for cl-naive se-
mantics: Consider an instance Ψ = ∀Y ∃Zϕ(Y,Z) of
QSAT∀2 , where ϕ is a 3-CNF, given by a set of clauses
C = {cl1, . . . , cln} over atoms in V = Y ∪ Z. We con-
struct two CAFs F = (AF , RF , clF ), G = (AG , RG , id).
The CAF F is given by

AF = Y ∪ Ȳ ∪ {vi | v ∈ cli, cli ∈ C}∪
{v̄i | ¬v ∈ cli, cli ∈ C};

RF = {(vi, v̄j), (v̄j , vi), (v, v̄i), (v̄i, v),

(vi, v̄), (v̄, vi) | v ∈ V ; i, j ≤ n};
and clF (vi) = clF (v̄i) = i, clF (y) = y, and clF (ȳ) = ȳ.
We construct a CAF G having the cl-naive claim-sets Y ′ ∪
{ȳ | y /∈ Y ′} ∪ {1, . . . , n} for every Y ′ ⊆ Y by setting
AG = Y ∪ Ȳ ∪ {1, . . . , n} and RG = {(y, ȳ), (ȳ, y) | y ∈
Y }.

First assume Ψ is valid. Fix some Y ′ ⊆ Y . Since Ψ is
valid, there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of
ϕ. Let E = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {vi | v ∈ M} ∪ {v̄i | v /∈
M}. E is conflict-free since conflicts appear only between
arguments representing negated literals; moreover, since M
is a model of ϕ, we have that for each clause cl i there is
either a positive literal v ∈ cli with v ∈ M or a negative
literal v̄ ∈ cli with v /∈ M . Thus {1, . . . , n} ⊆ clF (E);
moreover, Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ clF (E). S = clF (E) is a
maximal cl-conflict-free claim-set since S ∪ {c} /∈ cf c(F)
for any c ∈ (Y ∪ Ȳ ) \ S as each realization of S ∪ {c}



contains y, ȳ for some y ∈ Y . It follows that Y ′ ∪ {ȳ | y /∈
Y ′}∪{1, . . . , n} ∈ cl -na(F) for every Y ′ ⊆ Y . Moreover,
there is no other cl-naive claim-set of F since every proper
superset has no cf -realisation in F as outlined above. We
have shown cl -na(F) = cl -na(G) in case Ψ is valid.

Now assume cl -na(F) = cl -na(G) and fix some Y ′ ⊆
Y . Let E be some cf -realisation of S = Y ′ ∪ {ȳ | y /∈
Y ′} ∪ {1, . . . , n}, let Z ′ = {z | zi ∈ E} and let M =
Y ′ ∪ Z ′. Now, consider an arbitrary clause cli. Since E cf -
realises S, there is some argument with claim i in E, that is,
either vi ∈ E or v̄i ∈ E for some v ∈ Y ∪ Z (observe that
yi ∈ E iff y ∈ E and ȳi ∈ E iff ȳ ∈ E, thus a further case
distinction for y ∈ Y , ȳ ∈ Ȳ is not required). In the former
case, we have v ∈ M and thus M satisfies cli, in the latter
case v /∈ M and thus cli is satisfied. We obtain that M is a
model of ϕ.

Since conflict-free semantics satisfy downward closure
(each subset of a conflict-free set is conflict-free), we have
cfc(F) = cfc(G) iff cl -na(F) = cl -na(G) and thus the
statement follows for i-conflict-free semantics. By sym-
metry of F and G we furthermore have ad(F ) = cf (F )
and ad(G) = cf (G) which implies adc(F) = cfc(F),
adc(G) = cfc(G), cl -pr(F) = cl -na(F), and cl -pr(G) =
cl -na(G). Thus ΠP

2 -hardness of VER-OEρ for i-admissible
and cl-preferred semantics follow.

Proposition E.2. Deciding VER-OEnac is ΠP
2 -hard.

Proof. Consider an instance Ψ = ∀Y ∃Zϕ(Y,Z) of
QSAT∀2 , where ϕ is a 3-CNF, given by a set of clauses
C = {cl1, . . . , cln} over atoms in V = Y ∪ Z. We con-
struct two CAFs F = (AF , RF , clF ), G = (AG , RG , id),
where F modifies the standard construction (A,R) (cf. Re-
duction 1) as follows:

AF = A ∪ Y2 ∪ Ȳ2 ∪ Z2;

RF = (R \ {(cl, cl) | cl ∈ C})∪
{(y2, ȳ2) | y2 ∈ Y2} ∪ (y, ȳ2), (y2, ȳ) | y ∈ Y };

and clF (y2) = y, clF (ȳ2) = ȳ for y2 ∈ Y2; clF (z2) =
clF (z̄2) = z for z2 ∈ Z2; clF (cl) = ϕ̄ for cl ∈ C;
clF (a) = a else.

Observe that Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄} is i-naive for
every Y ′ ⊆ Y : Let E = Y ′2 ∪{ȳ2 | y2 /∈ Y ′2}∪Z2 ∪C ∪E′
with Y ′2 ⊆ Y2 and E′ ⊆ V ∪ V̄ is a non-conflicting subset-
maximal set of arguments which do not attack any cl ∈ C.
E is conflict-free and subset-maximal by the choice of E′;
moreover, clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄}.

We construct G = (AG , RG , clG) such that nac(G) =
{Y ′ ∪ {ȳ | y /∈ Y ′} ∪Z ∪ {ϕ̄} | Y ′ ⊆ Y } ∪ {Y ′ ∪ {ȳ | y /∈
Y ′} ∪ Z | Y ′ ⊆ Y }. Let

AG = Y1 ∪ Ȳ1 ∪ Y2 ∪ Ȳ2 ∪ Z ∪ {ϕ̄};
RF = {(yi, ȳi) | yi ∈ Yi, i ≤ 2}∪

{(a, b) | a ∈ Y1 ∪ Ȳ1, b ∈ Y2 ∪ Ȳ2 ∪ {ϕ̄}};
and clG(yi) = y, clG(ȳi) = ȳ for yi ∈ Yi; clG(z) = z,
clG(z̄) = z̄ for z ∈ Z; clG(ϕ̄) = ϕ̄. It can be checked that
G has precisely the desired i-naive extensions.

We show that Ψ is valid iff nac(F) = nac(G). First, as-
sume Ψ is valid and fix some Y ′ ⊆ Y . There is Z ′ ⊆ Z
such that M = Y ′ ∪ Z ′ is a model of ϕ. Let E = M ∪ {v̄ |
v /∈ M} ∪ Y ′2 ∪ {ȳ2 | y2 /∈ Y ′2} ∪ Z2. E is conflict-
free; moreover, E is subset-maximal among conflict-free
sets since any other argument a ∈ AF \ E is in conflict
with E: Since M is a model of ϕ, we have that for each
clause cl i there is either a positive literal v ∈ cl with v ∈M
or a negative literal v̄ ∈ cl with v /∈ M ; that is, each cl
is attacked in F . Also, E contains either v or v̄ for any
atom v ∈ Y ∪ Z ∪ Y2, thus any argument representing a
literal in F which is not a member of E is attacked by E.
It follows that Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∈ nac(F) for every
Y ′ ⊆ Y . Each i-naive claim-set is thus either of the form
Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄} or Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z.
Consequently, nac(F) = nac(G) in case Ψ is valid.

Now assume nac(F) = nac(G) and fix Y ′ ⊆ Y . Con-
sider a nac-realisation E of Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z and let
Z ′ = E ∩ Z. We show M = Y ′ ∪ Z ′ is a model of ϕ:
Consider an arbitrary clause cl ∈ C. Since E is a subset-
maximal conflict-free set of arguments we have E ∪ {cl} is
conflicting; that is, there is a ∈ E such that a attacks cl. In
case a = v for some atom v we have v ∈ cl; in case a = v̄
for some v we have v̄ ∈ cl. In the former case, v ∈ M and
thus cl is satisfied, in the latter case we have v /∈M and thus
cl is satisfied. We obtain that M is a model of ϕ.

We present a modification of the standard reduction for
AFs (cf. (Dvorák and Dunne 2018, Reduction 3.6)) .

Reduction 2. For a formula ϕ which is given by a set
of clauses C over atoms in V , let (A′, R′) be given as
in Reduction 1. We construct an AF F = (A,R) with
A = A′ ∪ {ϕ, ϕ̄} and

R = R′ ∪ {(cl, ϕ) | cl ∈ C} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}.

Proposition E.3. Deciding VER-OEcoc is ΠP
2 -hard.

Proof. Consider an instance Ψ = ∀Y ∃Zϕ(Y,Z) of
QSAT∀2 , where ϕ is given by a set of clauses C =
{cl1, . . . , cln} over atoms in V = Y ∪ Z. We may assume
that Z 6= ∅; i.e., there is some z0 ∈ Z. We construct two
CAFs F = (AF , RF , clF ), G = (AG , RG , clG), where F is
a modification of the standard construction (A,R) (cf. Re-
duction 2) with

AF = A ∪ {dv | v ∈ V };
RF = R ∪ {(dv, dv), (v, dv), (v̄, dv),

(dv, a) | v ∈ V, a ∈ V ∪ V̄ };

clF (ϕ̄) = z0, clF (z) = clF (z̄) = z and clF (a) = a else.
We observe that coc(F) contains Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z for
each Y ′ ⊆ Y as well as ∅. A witness is given by the com-
plete extension Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄}. Moreover,
since at least one of v, v̄ has to be contained in a complete
extension E in order to be defended we observe that no sub-
set of any Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z, Y ′ ⊆ Y , is i-complete in
F .



The CAF G is given by

AG =Y ∪ Ȳ ∪ Z ∪ {ϕ, ϕ̄, dϕ} ∪ {dy | y ∈ Y };
RG = {(y, ȳ), (ȳ, y) | y ∈ Y }) ∪ {(dv, dv), (v, dv), (v̄, dv),

(dv, a) | v ∈ Y ∪ {ϕ}, a ∈ AG};

and clG(ϕ̄) = z0 and clG(a) = a else. Observe that G
contains the i-complete claim-sets Y ′∪{ȳ | y /∈ Y ′}∪{ϕ}∪
Z and Y ′∪{ȳ | y /∈ Y ′}∪Z for Y ′ ⊆ Y as well as the empty
claim-set ∅. Given a complete extension E 6= ∅ of G, we
observe that either y or ȳ is contained in E for every y ∈ Y
since every a ∈ Y ∪ Ȳ ∪ {ϕ} ∪Z must be defended against
dy; similarly, either ϕ or ϕ̄ is contained in E. Thus there is
some Y ′ ⊆ Y such that Y ′∪{ȳ | y /∈ Y ′} ⊆ E. In case ϕ ∈
E we have thatE is of the form Y ′∪{ȳ | y /∈ Y ′}∪{ϕ}∪Z
for some Y ′ ⊆ Y since each Y ′∪{ȳ | y /∈ Y ′}∪{ϕ} defends
itself and Z in G; in case ϕ̄ ∈ E we have that E is of the
form Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ̄} ∪ Z for some Y ′ ⊆ Y since
each Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ̄} defends itself and Z in G. In
the former case, clG(E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} ∪Z, in
the latter case, clG(E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z.

We show Ψ is valid iff Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈
coc(F) for each Y ′ ⊆ Y .

Assume Ψ is valid; fix some Y ′ ⊆ Y . Then there is Z ′ ⊆
Z such that M = Y ′ ∪ Z ′ is a model of ϕ. We show that
E = M ∪ {v̄ | v /∈ M} ∪ {ϕ} is complete in F : E is
conflict-free; moreover, since M is a model of ϕ we have
that each clause cl ∈ C is attacked; consequently,E defends
ϕ against each attack. E contains each defended argument
since it attacks any remaining argument a /∈ E in F . Thus
clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} ∪ Z ∈ coc(F). As Y ′
was arbitrary, we have shown Y ′∪{ȳ | y /∈ Y ′}∪Z∪{ϕ} ∈
coc(F) for each Y ′ ⊆ Y .

Now assume Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈ coc(F) for
each Y ′ ⊆ Y . Fix some Y ′ ⊆ Y and let E be the complete
realization of Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} in F . We show
that M = Y ′ ∪ Z ′ with Z ′ = E ∩ Z is a model of ϕ: From
ϕ ∈ E we obtain that every clause cl ∈ C is attacked; that
is, for every cl ∈ C, there is a ∈ E with (a, cl) ∈ RG . In
case a = v for some v ∈ V , we have v ∈ M ∩ cl; in case
a = v̄ for some v ∈ V we have ¬v ∈ cl and v /∈ M—in
both cases, cl is satisfied, thus M is a model of ϕ. It follows
that Ψ is valid.

As outlined above, coc(F) contains Y ′∪{ȳ | y /∈ Y ′}∪Z
for each Y ′ ⊆ Y , moreover, ∅ ∈ coc(F) and Y ′ ∪ {ȳ | y /∈
Y ′}∪Z ∪{ϕ} ∈ coc(F) for each Y ′ ⊆ Y iff Ψ is valid. By
design of G we obtain Ψ is valid iff coc(F) = coc(G).

To show ΠP
3 -hardness of VER-OEssc and VER-OEstgc ,

we will make use of the following reduction, taken from
(Dvořák et al. 2021).

Reduction 3. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance
of QSAT ∃3 , where ϕ is given by a set of clauses C over
atoms in V = X∪Y ∪Z. Let V ′ = X∪Y and let x̄ denote
¬x. We can assume that there is y0 ∈ Y with y0 ∈ cl for all
cl ∈ C (otherwise we can add such a y0 without changing

the validity of Ψ). Let F = (A,R, cl) be given by

A = V ∪ V̄ ∪ C ∪ {d1, d2, ϕ, ϕ̄} ∪ {dv, dv̄ | v∈V ′};
R = {(a, cl) |cl∈C, a∈cl, a∈V ∪V̄ }∪{(cl, ϕ) | cl∈C}∪

{(a, da), (da, da) | a∈V ′∪V̄ ′} ∪ {(di, dj) | i = 1, 2}
∪ {(v, v̄), (v̄, v) | v∈V } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, d1)};

and cl(v) = cl(v̄) = v for v ∈ Y ∪ Z; cl(cli) = ϕ̄ for
i ≤ n; cl(d1) = cl(d2) = d; and cl(a) = a else.

Proposition E.4. Deciding VER-OEρ is ΠP
3 -hard, ρ ∈

{ssc, stgc}.
Proof. Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of
QSAT∃3 , where ϕ is given by a set of clauses C over atoms
in V = X ∪ Y ∪ Z. Let F be given as in (Dvořák et al.
2021) (cf. Reduction 3). In (Dvořák et al. 2021), it has been
shown that cl -ss(F) = cl -stg(F), moreover, Ψ is not valid
iff ssc(F) = cl -ss(F) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪
{e} | X ′ ⊆ X, e ∈ {ϕ, ϕ̄}}. It suffices to construct G in
such a way that ρ(G) = cl -ss(F): Then Ψ is not valid iff
ssc(G) = cl -ss(F) = ssc(F). We construct such a CAF
G = (AG , RG , id) by setting

AG = X ∪ X̄ ∪ Y ∪ Z ∪ {ϕ, ϕ̄}, and
RG = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}.

It is easy to see that G possesses exactly the desired i-semi-
stable claim-sets.

This concludes the proof for i-semi-stable semantics. ΠP
3 -

hardness of VER-OEstgc follows from the fact that ssc(F) =
stgc(F) and ssc(G) = stgc(G).

We recall the construction of F from the proof of Propo-
sition 5.4:

Reduction 4. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance
of QSAT ∃3 , where ϕ is given by a set of clauses C over
atoms in V = X∪Y ∪Z. Let V ′ = X∪Y and let x̄ denote
¬x. We can assume that there is y0 ∈ Y with y0 ∈ cl for all
cl ∈ C (otherwise we can add such a y0 without changing
the validity of Ψ). Let F ′ = (A′, R′, cl ′) be given as in
Reduction 3. We define F = (A,R, cl) with

A = (A′ \ {d1, d2, ϕ, ϕ̄}) ∪ {ϕ1, ϕ2};
R = R′|A ∪ {(cl, ϕ1) | cl∈C} ∪ {(ϕ1, ϕ2), (ϕ2, ϕ2)};

and cl ′(a) = cl(a) for a ∈ A′ \ {d1, d2, ϕ, ϕ̄}, cl(ϕ1) =
cl(ϕ2) = ϕ.

Lemma E.5. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance
of QSAT∃3 and let F = (A,R, cl) be given as in Reduc-
tion 4. Then each cl-semi-stable and each cl-stage claim-set
of F is of the form X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} for
some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}.
Proof. We will first prove the statement for cl-semi-stable
semantics: As cl -ss(F) ⊆ prc(F), it suffices to prove the
statement for each i-preferred claim-set S. First observe that
S cannot contain both a, ā for a ∈ X ∪{ϕ} since there is no
cfc-realization containing both a, ā. It remains to show that
X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e} ⊆ S for someX ′ ⊆ X and



e ∈ {ϕ, ϕ̄}. S contains X ′ ∪ {x̄ | x /∈ X ′} for some X ′ ⊆
X: Assume there is x ∈ X such that x, x̄ /∈ S. Consider a
prc-realization E of S and let D = E ∪ {x}. D is conflict-
free since x̄, dx /∈ E, moreover, cli /∈ E for each clause cl
with (x, cl) ∈ R, since cl is not defended against the attack
(x, cl). Also, D is admissible since E does not contain the
only attacker x̄ of x and D ⊃ E, contradiction to E being
preferred in F . S contains Y ∪Z: Assume there is v ∈ Y ∪Z
such that v /∈ S. Consider a prc-realization E of S and let
D = E ∪ {v}. D is admissible since v̄ /∈ E by assumption
v /∈ S and D ⊃ E, contradiction to E being preferred in F .
S contains either ϕ or ϕ̄: Towards a contradiction, assume
ϕ, ϕ̄ /∈ S. Consider a prc-realization E of S; in case there
is cl ∈ C such that cl /∈ E+

F , let E′ = E ∪ {cl}. Then cl is
defended against every attack since E contains either v or v̄
for every V thusE′ is admissible andE ( E′, contradiction
to E being preferred in F . In case there is no such cl ∈ C
we have ϕ is defended. Then E′ = E ∪ {ϕ} is admissible
and properly extends E, contradiction to E being preferred
in F .

For cl-stage semantics, consider some S ∈ cl -stg(F).
We will first show that S contains either ϕ or ϕ̄: Towards a
contradiction, assume ϕ, ϕ̄ /∈ S. As S is cl-stage, there is
an cfc-realization E of S such that cl(E) ∪ EB

F is maximal
among conflict-free claim-sets. In case ϕ ∈ cl(E) ∪ EB

F
we have ϕ ∈ E since there is no conflict-free set of argu-
ments which attacks every occurrence of ϕ, contradiction to
ϕ /∈ S. In case ϕ /∈ cl(E) ∪ EB

F there is some argument
a ∈ E which is in conflict with ϕ, by construction, a = cl
for some cl ∈ C. It follows that either ϕ or ϕ̄ is contained
in S. To show that S contains X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z,
consider again some cl -stg-realisation E of S and assume
there is v ∈ V such that v, v̄ /∈ E. Then E is in conflict
with both v, v̄ otherwise cl(E ∪ {v}) would properly ex-
tend the claim-range of S, contradiction to S ∈ cl -stg(F).
Also, the attacking arguments are in C by construction, thus
ϕ̄ ∈ S. Let E′ = (E \ v+

F ) ∪ {v}, that is, we remove every
cl ∈ C which is in conflict with v and add v. E′ is conflict-
free since v̄ /∈ E and every argument which is attacked by v
has been removed; also observe that we remove only argu-
ments cl ∈ C since v̄ /∈ E and every other argument which
is attacked by v (in case there is some) is self-attacking.
Now, if there is some cl ∈ C such that E′′ = {cl} ∪ E′
is conflict-free, we have found a set of arguments whose
claim-range properly extends the claim-range ofE: Observe
that clF (E′′) = clF (E) ∪ {v} and E′′BF ⊇ EB

F , moreover,
v /∈ EB

F . In case there is no such cl ∈ C which can be added
to E′ we have that E′ attacks every occurrence of ϕ̄ thus
ϕ̄ ∈ E′BF . Thus we have clF (E′) ∪ E′BF ⊃ clF (E) ∪ EB

F .
In both cases, we have derived a contradiction to S being
cl-stage in F .

Proposition 5.4. Deciding VER-OEρ is ΠP
3 -hard for ρ ∈

{cl -ss, cl -stg}.

Proof. Proof by reduction from QSAT∃3 : Consider an in-
stance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT∃3 , where ϕ is
given by a set of clauses C over atoms in V = X ∪ Y ∪ Z.

We assume that there is some y0 ∈ Y which appears in ev-
ery clause cl ∈ C. Let F = (AF , RF , clF ) be defined
as in Reduction 4. By Lemma E.5, each cl-semi-stable
(cl-stage) claim-set of F is of the form X ′ ∪ {x̄ | x /∈
X ′} ∪ Y ∪ Z ∪ {e} for X ′ ⊆ X , e ∈ {ϕ, ϕ̄}. Additionally,
we observe that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} ∈ ρ(F),
ρ ∈ {cl -ss, cl -stg}, for everyX ′ ⊆ X since there is y0 ∈ Y
which attacks each clause cl ∈ C.

We define G = (AG , RG , clG) such that G has exactly the
cl-semi-stable (cl-stage) claim-setsX ′∪{x̄ | x /∈ X ′}∪Y ∪
Z ∪ {e} for every X ′ ⊆ X , e ∈ {ϕ, ϕ̄} by setting

AG = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ, ϕ̄};
RG = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)};

and clG = id.
Now assume Ψ is valid. Then there is X ′ ⊆ X such

that Ψ′ = ∀Y ∃Zϕ(X ′, Y, Z) is valid (ϕ(X ′, Y, Z) is the
formula which arises after replacing each x ∈ X with >
in case x ∈ X ′ and ⊥ if x /∈ X ′). We show that S =
X ′∪{x̄ | x /∈ X ′}∪Y ∪Z ∪{ϕ̄} /∈ cl -ss(F) (the proof for
ρ = cl -stg is analogous): Towards a contradiction, assume
there is a cl -ss-realizationE of S. Then there is cl ∈ C such
that cl ∈ E, moreover, ϕ /∈ EB

F since ϕ2 is not attacked by
E in F . Let Y ′ = E∩Y and consider the setD = M ∪{v̄ |
v /∈ M} ∪ {ϕ}, where M = X ′ ∪ Y ′ ∪ Z ′ is a model of ϕ
(since Ψ′ is valid, there is such a Z ′ ⊆ Z). It can be checked
that D is admissible; moreover, D attacks the same dummy-
arguments dv , dv̄ for v ∈ V . Since D contains ϕ, it follows
that clF (D)∪DB

F ⊃ clF (E)∪EB
F , i.e., the claim-range of

D is a proper superset of the claim-range ofE, contradiction
to S ∈ cl -ss(F).

In case Ψ is not valid, one can show that for all X ′ ⊆ X ,
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ̄} ∈ cl -ss(F) (the proof
is analogous for cl-stage claim-sets): Let X ′ ⊆ X . Since
Ψ is not valid, there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z,
X ′ ∪ Y ′ ∪ Z ′ is not a model of ϕ. Fix such a Y ′ ⊆ Y and
some Z ′ ⊆ Z and let E = V ′ ∪ {v̄ | v /∈ V ′} ∪ {cl},
where V = X ∪Y ′∪Z ′ and cl ∈ C is some clause which is
unattacked by V ′∪{v̄ | v /∈ V ′}. E cl -ss-realises X ′∪{x̄ |
x /∈ X ′}∪Y ∪Z ∪{ϕ̄} since for all Z ′′ ⊆ Z, there is some
cl′ ∈ C such thatD = V ′∪{v̄ | v /∈ V ′}, V = X∪Y ′∪Z ′′
does not attack cl. That is, there is no conflict-free set of
arguments D which contains X ′ ∪{x̄ | x /∈ X ′}∪Y ′ ∪{ȳ |
y /∈ Y ′} and has both ϕ and ϕ̄ in its claim-range. Thus
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ̄} ∈ cl -ss(F) for every
X ′ ⊆ X and therefore cl -ss(F) = cl -ss(G).

Proposition E.6. Deciding VER-OEprc is ΠP
3 -hard.

Proof. We show hardness via a reduction from QSAT∃3 .
Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT∃3 ,
where ϕ is given by a set of clauses C over atoms in
V = X ∪ Y ∪ Z. W.l.o.g., we can assume there is y0 ∈ Y
which is contained in each clause cl ∈ C. We construct two
CAFs F = (AF , RF , clF ), G = (AG , RG , clG). Let (A,R)
be given as in Reduction 1. We construct F with

AF = A ∪ {ϕ, ϕ̄};
RF = R ∪ {(cl, ϕ) | cl ∈ C} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ̄)}∪

{(ϕ̄, z), (ϕ̄, z̄) | z ∈ Z};



and clF (y) = clF (ȳ) = y for y ∈ Y and clF (v) = v else;
that is, F is the standard construction for preferred seman-
tics on AF level.

We construct the CAF G such that prc(G) = {V ′ ∪ {v̄ |
v /∈ V ′} ∪ Y ∪ {ϕ} | V ′ ⊆ X ∪ Z} ∪ {X ′ ∪ {x̄ | x /∈
X ′} ∪ Y | X ′ ⊆ X}. This can be achieved by setting

AG = Xi ∪ X̄i ∪ Y ∪ Z ∪ Z̄ ∪ {ϕ}
for two copies Xi, X̄i, i ≤ 2, of X and X̄ , respectively;

RG = {(vi, v̄j), (v̄i, vj) | vi, vj ∈ X1 ∪X2}∪
{(v, v̄), (v̄, v) | v ∈ Z}∪
{(a, b), (b, a) | a ∈ A′ ∪ {ϕ}, b ∈ X2 ∪ X̄2}

where A′ = X1 ∪ X̄1 ∪ Z ∪ Z̄; moreover, clG(xi) = x,
clG(x̄i) = x̄, and clG(a) = a for all remaining a ∈ AG .

First observe that {V ′ ∪ {v̄ | v /∈ V ′} ∪ Y ∪ {ϕ} | V ′ ⊆
X ∪ Z} ⊆ prc(F) since y0 ∈ cl for every clause cl, that is,
for every atom v ∈ V \ {y0}, we can choose either v or v̄ as
long as y0 is contained in E ⊆ AF , we have that E defends
ϕ against each attack.

In case Ψ is not valid, consider some X ′ ⊆ X . Since Ψ
is not valid, there is some Y ′ ⊆ Y such that for all Z ′ ⊆ Z,
some clause cl ∈ C is not satisfied. It follows that E =
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ | y /∈ Y ′} is preferred in F :
Clearly, E is conflict-free and defends itself. Now assume
there is a ∈ A \ E such that E ∪ {a} ∈ ad(F ). In case
a = ϕ we have that each cl ∈ C is attacked, that is, for
every clause cl ∈ C there is v ∈ X ′ ∪ Y ′ such that either
v ∈ X ′ ∪ Y ′ with v ∈ cl or v /∈ X ′ ∪ Y ′ with 6= v ∈ cl.
Thus X ′ ∪ Y ′ is a model of ϕ, contradiction to Ψ being not
valid. Observe that the case a ∈ Z ∪ Z̄ requires ϕ ∈ E,
otherwise a is not defended against ϕ̄. We have thus shown
that cl(E) = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∈ prc(F) for every
X ′ ⊆ X .

We show that every i-preferred set of F is either of the
form (a) V ′∪{v̄ | v /∈ V ′}∪Y ∪{ϕ} for some V ′ ⊆ X ∪Z
or (b)X ′∪{x̄ | x /∈ X ′}∪Y for someX ′ ⊆ X . As outlined
above, any such set is i-preferred in F , thus it remains to
show that there is no other i-preferred set in F . First notice
that each i-preferred claim-set of F contains X ′ ∪ {x̄ | x /∈
X ′} ∪ Y for some X ′ ⊆ X since every preferred set E
of F contains X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ | y /∈ Y ′}
for some X ′ ⊆ X , Y ′ ⊆ Y by construction. Now assume
there is S ⊆ cl(AF ) such that S ∈ prc(F) and S is not of
the form (a) or (b). Let E be a prc-realisation of S. First
assume ϕ /∈ E. Then z, z̄ /∈ E for any z ∈ Z since ϕ
is the only argument which defends z, z̄ against ϕ̄. By the
above consideration there are X ′ ⊆ X , Y ′ ⊆ Y such that
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ E. Observe that
a /∈ E for any a ∈ (X \X ′)∪{x̄ | x ∈ X ′}∪(Y \Y ′)∪{ȳ |
y ∈ Y ′} since v, v̄ are mutually attacking for any v ∈ X∪Y .
Since every remaining argument is either attacked by E or
self-attacking it follows that S = X ′ ∪ {x̄ | x /∈ X ′} ∪
Y . In case ϕ ∈ E, we have that every z, z̄ is defended
against ϕ̄. Thus E contains either z or z̄ for every z ∈ Z
by subset-maximality of E. Thus there is Z ′ ⊆ Z such that
E = V ′ ∪ {v̄ | v /∈ V ′} ∪ {ϕ}. Since every remaining
argument is either attacked by E or self-attacking, we have

S = V ′ ∪ {v̄ | v /∈ V ′} ∪ Y ∪ {ϕ} for some V ′ ⊆ X ∪ Z.
It follows that prc(F) = prc(G).

Now assume prc(F) = prc(G) and consider some X ′ ⊆
X . Let E be a prc-realisation of X ′∪ {̄x̄ | x /∈ X ′}∪Y and
let Y ′ = E∩Y . We show that for allZ ′ ⊆ Z,X ′∪Y ′∪Z ′ is
not a model of ϕ. Fix some Z ′ ⊆ Z and let M = X ′ ∪Y ′ ∪
Z ′. SinceE is preferred in F we have that ϕ is not defended
by E ∪ Z ′ ∪ {z̄ | z /∈ Z ′}; i.e., there is some cl ∈ C such
that E∪Z ′∪{z̄ | z /∈ Z ′} does not attack cl. Consequently,
for all v ∈ V , in case v ∈ cl we have v /∈ M , and in case
6= v ∈ cl we have v ∈ M . It follows that M is not a model
of ϕ.

It follows that Ψ is not valid iff prc(F) = prc(G).


