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Abstract. Argumentation frameworks with collective attacks (SETAFs) have gained in-
creasing attention in recent years as they provide a natural extension of the well-known ab-
stract argumentation frameworks (AFs) due to Dung. Concerning complexity, it is known
that for the standard reasoning tasks in abstract argumentation, SETAFs show the same be-
havior as AFs, i.e. they are mainly located on the first or second level of the polynomial
hierarchy. However, while for AFs there is a rich literature on easier fragments, complexity
analyses in this direction are still missing for SETAFs. In particular, the well-known graph-
classes of acyclic AFs, even-cycle-free AFs, symmetric AFs, and bipartite AFs have been
shown tractable. In this paper, we aim to extend these results to the more general notion
of SETAFs. In particular, we provide various syntactic notions on SETAFs that naturally
generalize the graph properties for directed hypergraphs, and perform a complexity analysis
of the prominent credulous and skeptical acceptance problems for several different widely
used semantics.
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1 Introduction
Formal argumentation provides formalisms to resolve conflicts in potentially inconsistent or in-
complete knowledge, which is essential to draw conclusions of any kind in such a setting. In this
context, argumentation frameworks (AFs), introduced in the influential paper by Dung [5], turned
out to be a versatile system for reasoning tasks in an intuitive setting. In AFs we view arguments
just as abstract entities, represented by nodes in a directed graph, independent from their inter-
nal structure. Conflicts are modeled in form of attacks between these arguments, constituting the
edges of said graph representation. Different semantics have been defined for AFs and deliver sets
of arguments that are jointly acceptable given the topology of attacks in the AF at hand. However,
by their limited syntax it is hard to formalize certain naturally occurring statements in AFs, which
is why various generalizations of the standard formalism have been proposed, see, e.g. [1]. One
such generalization extends the syntax by collective attacks, i.e. a construction where a set T of
arguments attacks an argument h, but no proper subset of T does; the resulting class of frameworks
is often referred to as SETAFs. The underlying structure of SETAFs then is a directed hypergraph.
When they introduced SETAFs [22], Nielsen and Parsons argued that collective attacks naturally
appear in various contexts, e.g. when languages are not closed under conjunction. In fact, in certain
settings standard AFs require artificial additional arguments and attacks, while the same setting can
be natively represented in SETAFs. These observations have been backed up by recent practically
driven investigations [25]. Moreover, SETAFs have been proven to be strictly more expressive
than AFs, as shown in [11] by means of signatures. In spite of these advantages, there has not
yet been much work on computational aspects of SETAFs. The general complexity of the most
common reasoning tasks has been investigated in [12], where also an implementation of a solver
for SETAFs with answer-set programming has been introduced. Moreover, algorithmic approaches
for SETAFs have been studied in [15, 21].

The main aim of this paper is to deepen the complexity analysis of [12] which has shown that
the complexity of SETAFs coincides with the results for classical AFs in general. In particular, this
means that reasoning in many popular semantics is on the first or second level of the polynomial
hierarchy. To still achieve manageable runtimes with large instances, the approach we shall take
in this paper is to restrict the syntax of SETAFs. We propose certain constraints on the hypergraph
structure such that the induced class of frameworks is easy to reason on (i.e. the problems in ques-
tion are computable in polynomial time). On AFs this approach turned out to be fruitful: we say an
AF is acyclic, symmetric, or bipartite, if its attack relation is, respectively. The thereby obtained
graph classes are tractable fragments of AFs [2, 6, 7, 10]. Even though there exist translations
from SETAFs to AFs [23, 19], it is not at all clear whether tractability results for AFs carry over
to SETAFs. This is due to the fact that these translations can lead to an exponential blowup in the
number of arguments; moreover certain structural properties are lost in the translation.

In what follows, we thus focus on defining graph properties for SETAFs “from scratch” -
these can then be checked and exploited without a detour via AFs. Our main contributions can be
summarized as follows:

• Novel definitions for graph classes of directed hypergraphs: these notions are conservative
generalizations (i.e. in the special case of AFs they coincide with the respective classical
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notions) of well known properties of directed graphs such as acyclicity, symmetry, bipartite-
ness and 2-colorability. As a byproduct of the detailed analysis we state certain syntactical
and semantical properties of SETAFs within these classes.

• We pinpoint the complexity of credulous and skeptical reasoning in the respective graph
classes w.r.t. seven widely used argumentation semantics, that is admissible, grounded, com-
plete, preferred, stable, stage, and semi-stable [22, 12, 19]. We provide (efficient) algorithms
to reason on these computationally easy frameworks, and give negative results by providing
hardness results for classes that yield no computational speedup.

• We establish the status of tractable fragments for the classes acyclicity, even-cycle-freeness,
primal-bipartiteness, and self-attack-free full-symmetry. In fact, we not only show that these
classes are easy to reason in, but the respective properties can also be recognized efficiently.
This result allows one to perform such a check as a subroutine of a general-purpose SETAF-
solver such that the overall asymptotic runtime is polynomial in case the input framework
belongs to such a class.

Note that some proofs are not given in full length, they are carried out in detail in Appendix A.

2 Preliminaries

2.1 Argumentation Frameworks
Throughout the paper, we assume a countably infinite domain A of possible arguments.

Definition 1. A SETAF is a pair SF = (A,R) where A ⊆ A is finite, and R ⊆ (2A \ {∅}) × A
is the attack relation. For an attack (T, h) ∈ R we call T the tail and h the head of the attack.
SETAFs (A,R), where for all (T, h) ∈ R it holds that |T | = 1, amount to (standard Dung) AFs.
In that case, we usually write (t, h) to denote the set-attack ({t}, h).

Given a SETAF (A,R), we write S 7→R a if there is a set T ⊆ S with (T, a) ∈ R. Moreover,
we write S ′ 7→R S if S ′ 7→R a for some a ∈ S. We drop subscript R in 7→R if there is no ambiguity.
For S ⊆ A, we use S+

R to denote the set {a | S 7→R a} and define the range of S (w.r.t. R), denoted
S⊕R , as the set S ∪ S+

R .

Example 1. Consider the SETAF SF = (A,R) with A = {a, b, c, d} and R =
{({a, b}, c), ({a, c}, b), ({c}, d)}. For an illustration see Figure 1a - the dashed attacks are collec-
tive attacks.

We will now define special ‘kinds’ of attacks and fix the notions of redundancy-free and self-
attack-free SETAFs.

Definition 2. Given a SETAF SF = (A,R), an attack (T, h) ∈ R is redundant if there is an attack
(T ′, h) ∈ R with T ′ ⊂ T . A SETAF without redundant attacks is redundancy-free. An attack
(T, h) ∈ R is a self-attack if h ∈ T . A SETAF without self-attacks attacks is self-attack-free.
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a b

c d

(a) SETAF SF

a b

c d

(b) primal(SF )

Figure 1: An example SETAF and its primal graph.

Redundant attacks can be efficiently detected and then be omitted without changing the stan-
dard semantics [16, 23]. In the following we always assume redundancy-freeness for all SETAFs,
unless stated otherwise. The well-known notions of conflict and defense from classical Dung-
style-AFs naturally generalize to SETAFs.

Definition 3. Given a SETAF SF = (A,R), a set S ⊆ A is conflicting in SF if S 7→R a for some
a ∈ S. A set S ⊆ A is conflict-free in SF , if S is not conflicting in SF , i.e. if T ∪ {h} 6⊆ S for
each (T, h) ∈ R. cf(SF ) denotes the set of all conflict-free sets in SF .

Definition 4. Given a SETAF SF = (A,R), an argument a ∈ A is defended (in SF ) by a set
S ⊆ A if for each B ⊆ A, such that B 7→R a, also S 7→R B. A set T ⊆ A is defended (in SF ) by
S if each a ∈ T is defended by S (in SF ).

The semantics we study in this work are the grounded, admissible, complete, preferred, stable,
stage and semi-stable semantics, which we will abbreviate by grd, adm, com, pref, stb, stage and
sem respectively [12, 19, 22].

Definition 5. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF ). Then,

• S ∈ adm(SF ), if S defends itself in SF ,

• S ∈ com(SF ), if S ∈ adm(SF ) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(SF ), if S =
⋂
T∈com(SF ) T ,

• S ∈ pref(SF ), if S ∈ adm(SF ) and there is no T ∈ adm(SF ) s.t. T ⊃ S,

• S ∈ stb(SF ), if S 7→ a for all a ∈ A \ S,

• S ∈ stage(SF ), if @T ∈ cf(SF ) with T⊕R ⊃ S⊕R , and

• S ∈ sem(SF ), if S ∈ adm(SF ) and @T ∈ adm(SF ) s.t. T⊕R ⊃ S⊕R .
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Table 1: Extensions of the example SETAF SF from Example 1.

σ σ(SF )

cf {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, d}}
adm {∅, {a}, {a, b}, {a, c}, {a, b, d}}
com {{a}, {a, c}, {a, b, d}}
grd {{a}}
pref/stb/stage/sem {{a, c}, {a, b, d}}

For an example of the extensions of a SETAF see Table 1. The relationship between the se-
mantics has been clarified in [12, 19, 22] and matches with the relations between the semantics for
Dung AFs, i.e. for any SETAF SF :

stb(SF ) ⊆ sem(SF ) ⊆ pref(SF ) ⊆ com(SF ) ⊆ adm(SF ) ⊆ cf(SF ) (1)
stb(SF ) ⊆ stage(SF ) ⊆ cf(SF ). (2)

The following property also carries over from Dung AFs: For any SETAF SF , if stb(SF ) 6= ∅
then stb(SF ) = sem(SF ) = stage(SF ).

2.2 Complexity

We assume the reader to have basic knowledge in computational complexity theory1, in particular
we make use of the complexity classes L (logarithmic space), P (polynomial time), NP (non-
deterministic polynomial time), coNP, ΣP

2 and ΠP
2 . For a given SETAF SF = (A,R) and an

argument a ∈ A, we consider the standard reasoning problems (under semantics σ) in formal
argumentation:

• Credulous acceptance Credσ: Is the argument a contained in at least one σ extension of SF ?,
and

• Skeptical acceptance Skeptσ: Is the argument a contained in all σ extensions of SF ?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted in Table 2.
As SETAFs generalize Dung AFs the hardness results for Dung AFs [2, 4, 8, 9, 17, 18] (for a sur-
vey see [10]) carry over to SETAFs. Also the same upper bounds hold for SETAFs [12]. However,
while the complexity results for AFs can be interpreted as complexity w.r.t. the number of argu-
ments |A|, the complexity results for SETAFs should be understood as complexity w.r.t. |A|+ |R|
(as |R| might be exponentially larger than |A|).

1For a gentle introduction to complexity theory in the context of formal argumentation, see [10].
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Table 2: Complexity for AFs and SETAFs (C-c denotes completeness for C).

grd adm com pref stb stage sem

Credσ P-c NP-c NP-c NP-c NP-c ΣP
2 -c ΣP

2 -c

Skeptσ P-c trivial P-c ΠP
2 -c coNP-c ΠP

2 -c ΠP
2 -c

3 Graph Classes
The directed hypergraph-structure of SETAFs is rather specific and to the best of the authors’
knowledge the hypergraph literature does not provide generalizations of common graph classes
to this kind of directed hypergraphs. Thus we first identify such generalizations for SETAFs for
the graph classes of interest. Then, we show the tractability of acyclicity and even-cycle-freeness
(the latter does not hold for stage semantics) in SETAFs, and that odd-cycle-freeness lowers the
complexity to the first level of the polynomial hierarchy as for AFs. Then, we adapt the notion
of symmetry in different natural ways, only one of which will turn out to lower the complexity of
reasoning as with symmetric AFs. Finally, we will adapt and analyze the notions of bipartiteness
and 2-colorability. Again we will see a drop in complexity only for a particular definition of this
property on hypergraphs. All of the classes generalize classical properties of directed graphs in a
way for SETAFs such that in the special case of AFs (i.e. for SETAFs where for each attack (T, h)
the tail T consists of exactly one argument) they coincide with said classical notions, respectively.
Finally, we will argue that these classes are not only efficient to reason on, but are also efficiently
recognizable. Hence, we can call them tractable fragments of argumentation frameworks with
collective attacks.

When defining these classes we will use the notion of the primal graph, an implementation of
the hypergraph structure of a SETAF into a directed graph. An illustration is given in Figure 1.

Definition 6. Given a SETAF SF = (A,R). Then its primal graph is defined as primal(SF ) =
(A′, R′), where A′ = A, and R′ = {(t, h) | (T, h) ∈ R, t ∈ T}.

3.1 Acyclicity
Akin to cycles in AFs, we define cycles on SETAFs as a sequence of arguments such that there is
an attack between each consecutive argument.

Definition 7. A cycle C of length |C| = n is a sequence of pairwise distinct arguments C =
(a1, a2, . . . , an, a1) such that for each ai there is an attack (Ai, ai+1) with ai ∈ Ai, and there is an
attack (An, a1) with an ∈ An. A SETAF is cyclic if it contains a cycle (otherwise it is acyclic),
even-cycle-free if it contains no cycles of even length, and odd-cycle-free if it contains no cycles
of odd length.

Note that a SETAF SF is acyclic if and only if its primal graph primal(SF ) is acyclic. It can
easily be seen that acyclic SETAFs are well founded [22], i.e. there is no infinite sequence of sets
B1, B2, . . . , such that for all i, Bi is the tail of an attack towards an argument in Bi−1. As shown
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in [22], this means grounded, complete, preferred, and stable semantics coincide. Moreover, as
therefore there always is at least one stable extension, stable, semi-stable and stage semantics coin-
cide as well, and the lower complexity of Credgrd and Skeptgrd carries over to the other semantics.
Together with the hardness from AFs, we immediately obtain our first result.

Theorem 1. For acyclic SETAFs the problems Credσ and Skeptσ for σ ∈
{grd, com, pref, stb, stage, sem} are P-complete. Moreover Credadm is P-complete.

For AFs we have that the absence of even-length cycles forms a tractable fragment for all
semantics under our consideration but stage. The key lemma is that every AF with more than one
complete extension has to have a cycle of even length [9]. This property also holds for SETAFs,
which in turn means even-cycle-free SETAFs have exactly one complete extension, namely the
grounded extension, which is then also the only preferred and semi-stable extension. Our proof
of this property follows along the lines of the respective known proof for AFs. Moreover, the
grounded extension is the only candidate for a stable extension, and thus for reasoning with stable
semantics it suffices to check whether the grounded extension is stable. Finally, note that the
hardness of Credstage and Skeptstage carries over from AFs (cf. [10]) to SETAFs.

Theorem 2. For even-cycle-free SETAFs the problems Credσ and Skeptσ for σ ∈
{com, pref, stb, sem} are P-complete. Moreover the problem Credadm is P-complete, the problem
Credstage is ΣP

2 -complete, and the problem Skeptstage is ΠP
2 -complete.

For odd-cycle free SETAFs the situation is just like with odd-cycle-free AFs [8]. If there
is a sequence of arguments (a1, a2, . . . ), we say a1 indirectly attacks the arguments a2∗i−1 and
indirectly defends the arguments a2∗i for i ≥ 1 (cf. [22]). As odd-cycle-free SETAFs are limited
controversial [22], i.e. there is no infinite sequence of arguments such that each argument indirectly
attacks and defends the next, they are coherent, i.e. stable and preferred semantics coincide, and
therefore we experience a drop of the complexity to the first level of the polynomial hierarchy.

Theorem 3. For odd-cycle-free SETAFs the problems Credσ for σ ∈ {adm, stb,
pref, com, stage, sem} are NP-complete, problems Skeptσ for σ ∈ {stb, pref, stage, sem} are
coNP-complete, and the problems Credgrd, Skeptgrd, and Skeptcom are P-complete.

3.2 Symmetry
In the following we provide two generalizations of symmetry2 for SETAFs. The first definition via
the primal graph is inspired by the notion of counter-attacks: an AF F = (A,R) is symmetric if
for every attack (a, b) ∈ R there is a counter-attack (b, a) ∈ R. As we will show, the correspond-
ing definition for SETAFs is not sufficiently restrictive to lower the complexity of the reasoning
problems in questions, except for a fast way to decide whether an argument is in the grounded
extension or not. For an illustration of the following definitions see Figure 2.

Definition 8. A SETAF SF = (A,R) is primal-symmetric iff for every attack (T, h) ∈ R and
t ∈ T there is an attack (H, t) ∈ R with h ∈ H .

2Further symmetry-notions for SETAFs have been investigated in [20].
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a b

c d

(a) Primal-symmetry

a

cb

(b) Full-symmetry

Figure 2: Different notions of symmetry.

As expected, a SETAF is primal-symmetric iff its primal graph is symmetric. Notice that
the notion of primal-symmetry coincides with the definition of symmetry of Abstract Dialectical
Frameworks in [3]. The next notion intuitively captures the “omnidirectionality” of symmetric
attacks: for every attack all involved arguments have to attack each other. In the definition of
fully-symmetry we distinguish between self-attacks and attacks which are not self-attacks.

Definition 9. A SETAF SF = (A,R) is fully-symmetric iff for every attack (T, h) ∈ R we either
have

• if h ∈ T , then ∀x ∈ T it holds (T, x) ∈ R, or

• if h 6∈ T , then ∀x ∈ S it holds (S \ {x}, x) ∈ R with S = T ∪ {h}.

We have that every fully-symmetric SETAF is primal-symmetric, the converse does not hold.
In symmetric AFs every argument defends itself against all incoming attacks, hence, admissible
sets coincide with conflict-free sets, and it becomes computationally easy to reason on admissible,
complete, and preferred extensions. However, this is not the case with our notions of symmetry for
SETAFs. Consider the fully-symmetric (and thus also primal-symmetric) SETAF from Figure 2b:
we have that for example the singleton set {a} is conflict-free, but {a} cannot defend itself against
the attacks towards a. That is, the argument for tractability from AFs does not transfer to SETAFs.
This corresponds to the the fact that we will obtain full hardness for the admissibility-based se-
mantics in question, when making no further restrictions on the graph structure.

For both notions of symmetry we have that an argument is in the grounded extension iff it is
not in the head of any attack, which can easily be checked in logarithmic space. This is by the
characterization of the grounded extension as least fixed point of the characteristic function[22],
i.e. the grounded extension can be computed by starting from the empty set and iteratively adding
all defended arguments. For primal-symmetric SETAFs with and without self-attacks, as well as
fully-symmetric SETAFs (allowing self-attacks) this is the only computational speedup we can get,
the remaining semantics maintain their full complexity.

In order to show the hardness for primal-symmetric SETAFs we provide a translation that
transforms each SETAF SF = (A,R) in a primal-symmetric SETAF SF ′: we construct SF ′ from
SF by adding, for each attack r = (T, h) and t ∈ T , mutually attacking arguments a1

r,t, a
2
r,t, the

(ineffective) counter-attack ({a1
r,t, a

2
r,t, h}, t), and attacks (t, a1

r,t), (t, a
2
r,t). It can be verified that

the resulting SETAF SF ′ is primal-symmetric, does not introduce self-attacks and preserves the
acceptance status of the original arguments.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 3: Illustration of SF 1
ϕ for a formula ϕ with atoms Y = {y1, y2, y3, y4}, and clauses C =

{{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

Theorem 4. For primal-symmetric SETAFs (with or without self-attacks) the problems Credgrd,
Skeptgrd and Skeptcom are in L, the complexity of the other problems under our consideration
coincides with the complexity for the general problems (see Table 2).

We will see the same hardness results for fully-symmetric SETAFs, but here the hardness re-
lies on the use of self-attacks. Stable, stage, and semi-stable semantics have already their full
complexity in symmetric AFs allowing self-attacks [10]. For the admissible, complete and pre-
ferred semantics, hardness can be shown with adjustments to the standard reductions. That is, we
substitute some of the occurring directed attacks (a, b) by classical symmetric attacks (a, b), (b, a),
and others by symmetric self-attacks ({a, b}, a), ({a, b}, b). For instance, for admissible semantics,
given a CNF-formula ϕwith clausesC over atoms Y we define SF 1

ϕ = (A′, R′) (cf. Figure 3), with
A′ = {ϕ}∪C∪Y ∪ Ȳ and R′ given by (a) the usual attacks {(y, ȳ), (ȳ, y) | y ∈ Y }, (b) symmetric
attacks from literals to clauses {(y, c), (c, y) | y ∈ c, c ∈ C} ∪ {(ȳ, c), (c, ȳ) | ȳ ∈ c, c ∈ C}, and
(c) the symmetric self-attacks {({c, ϕ}, ϕ), ({c, ϕ}, c) | c ∈ C}. The attacks (c) ensure that all c
have to be attacked in order to accept ϕ and that all c are unacceptable.

Theorem 5. For fully-symmetric SETAFs (allowing self-attacks) the problems Credgrd, Skeptgrd

and Skeptcom are in L, the complexity of credulous and skeptical acceptance for the other semantics
under our consideration coincides with the complexity for the general problems (see Table 2).

Investigations on symmetric AFs often distinguish between AFs with and without self-
attacks [10]. Indeed, also for self-attack-free fully-symmetric SETAFs we have that all naive ex-
tensions (i.e. ⊆-maximal conflict-free sets) are stable, hence, one can construct a stable extension
containing an arbitrary argument a by starting with the conflict-free set {a} and expanding it to
a maximal conflict-free set. As stable extensions are admissible, complete, preferred, stage, and
semi-stable, an argument is trivially credulously accepted w.r.t. these semantics. Similarly, it is
easy to decide whether an argument is in all extensions.

Theorem 6. For self-attack-free fully-symmetric SETAFs the problems Credσ are trivially
true for σ ∈ {adm, com, pref, stb, stage, sem}. The problems Skeptσ are in L for σ ∈
{grd, com, pref, stb, stage, sem}. Moreover, Credgrd is in L.
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y1 y2

z1 z2

(a) Primal-bipartiteness

y

z

(b) 2-colorability

Figure 4: Different notions of bipartiteness.

3.3 Bipartiteness
In the following we will provide two generalizations of bipartiteness; the first - primal-bipartiteness
- extends the idea of partitioning for directed hypergraphs, the second is a generalization of the no-
tion of 2-colorability. In directed graphs bipartiteness and 2-colorability coincide. However, this is
not the case in SETAFs with their directed hypergraph-structure. As it will turn out, 2-colorability
is not a sufficient condition for tractable reasoning, whereas primal-bipartiteness makes credulous
and skeptical reasoning P-easy. For an illustration of the respective definitions see Figure 4.

Definition 10. Let SF = (A,R) be a SETAF. Then SF is primal-bipartite iff its primal graph
primal(SF ) is bipartite, i.e. iff there is a partitioning of A into two sets (Y, Z), such that

• Y ∪ Z = A, Y ∩ Z = ∅, and

• for every (T, h) ∈ R either h ∈ Y and T ⊆ Z, or h ∈ Z and T ⊆ Y .

For bipartite AFs, Dunne provided an algorithm to enumerate the arguments that appear in
admissible sets [6]; this algorithm can be adapted for SETAFs (see Algorithm 1). Intuitively, the
algorithm considers the two sets of the partition separately. For each partition it iteratively removes
arguments that cannot be defended, and eventually ends up with an admissible set. The union of
the two admissible sets then forms a superset of every admissible set in the SETAF. As primal-
bipartite SETAFs are odd-cycle-free, they are coherent [22], which means preferred and stable
extensions coincide. This necessarily implies the existence of stable extensions, which means
they also coincide with stage and semi-stable extensions. These results suffice to pin down the
complexity of credulous and skeptical reasoning for the semantics under our consideration.

Theorem 7. For primal-bipartite SETAFs the problems Credσ and Skeptσ for σ ∈
{com, pref, stb, stage, sem} are P-complete. Moreover the problem Credadm is P-complete.

It is noteworthy that the complexity of deciding whether a set S of arguments is jointly cred-
ulously accepted w.r.t. preferred semantics in primal-bipartite SETAFs was already shown to be
NP-complete for bipartite AFs (and, hence, for SETAFs) in [6]; however, this only holds if the ar-
guments in question distribute over both partitions - for arguments that are all within one partition
this problem is in P, which directly follows from the fact that Algorithm 1 returns the set Yi of
credulously accepted arguments - which is itself an admissible set.
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Algorithm 1: Compute the set of credulously accepted arguments w.r.t. pref semantics
Input : A primal-bipartite SETAF SF = (A,R) with a partitioning (Y, Z)
Output: The admissible set Yi of credulously accepted arguments in Y

1 i := 0
2 Y0 := Y
3 R0 := R
4 repeat
5 i := i+ 1
6 Yi := Yi−1 \ {y | y ∈ Yi−1, there is some (Z ′, y) ∈ Ri−1 with Z ′ ⊆ Z such that

∀z ∈ Z ′ |{(Y ′, z) | (Y ′, z) ∈ Ri−1}| = 0}
7 Ri := Ri−1 \ {(Y ′, z) | Y ′ ⊆ Y, z ∈ Z, Y ′ 6⊆ Yi}
8 until Yi = Yi−1;

It is natural to ask whether the more general notion of 2-colorability also yields a computational
speedup. We capture this property for SETAFs by the following definition:

Definition 11. Let SF = (A,R) be a SETAF. Then SF is 2-colorable iff there is a partitioning of
A into two sets (Y, Z), such that

• Y ∪ Z = A, Y ∩ Z = ∅, and

• for every attack (T, h) ∈ R we have (T ∪ {h}) ∩ Y 6= ∅ and (T ∪ {h}) ∩ Z 6= ∅.

Note that both primal-bipartiteness and 2-colorability do not allow self-loops (a, a) with a
single argument in the tail, but 2-colorable SETAFs may contain self-attacks (T, h) with |T | ≥ 2.

For admissibility-based semantics that preserve the grounded extension (such as
grd, com, pref, stb, sem) it is easy to see that the problems remain hard in 2-colorable SETAFs:
intuitively, one can add two fresh arguments to any SETAF and add them to the tail T of every
attack (T, h) - they will be in each extension of the semantics in question, and other than that the
extensions will coincide with the original SETAF (this translation is faithful, cf. [18]). To establish
hardness for stage semantics we can adapt the existing reductions by replacing self-attacking argu-
ments by a construction with additional arguments such that 2-colorability is ensured, and replace
certain classical AF-attacks by collective attacks.

Theorem 8. For 2-colorable SETAFs the complexity of Credσ and Skeptσ for all semantics under
our consideration coincides with the complexity of the general problem (see Table 2).

3.4 Tractable Fragments
The (relatively speaking) low complexity of reasoning in SETAFs with the above described fea-
tures on its own is convenient, but to be able to fully exploit this fact we also show that these classes
are easily recognizable. As mentioned in [13], the respective AF-classes can be efficiently decided
by graph algorithms. As for acyclicity, even-cycle-freeness, and primal-bipartiteness it suffices
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Table 3: Tractable fragments in SETAFs.

grd adm com pref stb stage sem

General
Credσ P-c NP-c NP-c NP-c NP-c ΣP

2 -c ΣP
2 -c

Skeptσ P-c trivial P-c ΠP
2 -c coNP-c ΠP

2 -c ΠP
2 -c

Acyclicty
Credσ P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c trivial P-c P-c P-c P-c P-c

Even-cycle-freeness
Credσ P-c P-c P-c P-c P-c ΣP

2 -c P-c

Skeptσ P-c trivial P-c P-c P-c ΠP
2 -c P-c

self-attack-free

full-symmetry

Credσ in L trivial trivial trivial trivial trivial trivial

Skeptσ in L trivial in L in L in L in L in L

Primal-bipartiteness
Credσ P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c trivial P-c P-c P-c P-c P-c

to analyze the primal graph, these results carry over to SETAFs. Moreover, for primal-bipartite
SETAFs we can efficiently compute a partitioning, which is needed as input for Algorithm 1. Fi-
nally, we can test for full-symmetry efficiently as well: one (naive) approach is to just loop over
all attacks and check whether there are corresponding attacks towards each involved argument.
Likewise, a test for self-attack-freeness can be performed efficiently. Summarizing the results of
this work, we get the following theorem.

Theorem 9. Acyclicity, even-cycle-freeness, self-attack-free full-symmetry, and primal-
bipartiteness are tractable fragments for SETAFs.

In particular, for credulous and skeptical reasoning in the semantics under our consideration
the complexity landscape including tractable fragments in SETAFs is depicted in Table 3.

4 Conclusion
In this work, we introduced and analyzed various different syntactic classes for SETAFs. These
new notions are conservative generalizations of properties of directed graphs, namely acyclicity,
even/odd-cycle-freeness, symmetry, and bipartiteness, which have been shown to lower the com-
plexity for acceptance problems of AFs. The starting point for our definitions is the primal graph of
the SETAF, a structural embedding of directed hypergraph into a directed graph. Other than estab-
lishing basic properties, we performed a complete complexity analysis for credulous and skeptical
reasoning in classes of SETAFs with these generalized properties.

For the notions regarding cycles, we established the same properties for acyclicity, even-cycle-
freeness, and odd-cycle-freeness for SETAFs that also hold for AFs. This includes the fact that the
same upper and lower bounds on the complexity holds as in AFs, namely reasoning in acyclicity
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becomes tractable for all semantics under our consideration, even-cycle-freeness becomes tractable
for all semantics but stage, and in odd-cycle-free SETAFs the complexity drops to the first level of
the polynomial hierarchy. The symmetry notions we introduced generalize the concept of counter-
attacks. We have established that a symmetric primal graph is not a sufficient condition for a
SETAF to lower the complexity. The more restricting notion of full-symmetry yields a drop in
complexity, but only if one also requires the SETAFs to be self-attack-free. Allowing self-attacks,
even this notion does not yield a drop in the complexity for the semantics in question, which is
the case for admissible, preferred, and complete semantics in AFs. We also investigated notions
of bipartiteness. While in directed graphs bipartiteness and 2-colorability coincide, this in not the
case in directed hypergraphs. We provided an algorithm that allows one to reason efficiently on
primal-bipartite SETAFs, a result that does not apply for the more general notion of 2-colorable
SETAFs. Finally, we argued that these classes can also be efficiently recognized, which is a crucial
condition if one wants to implement the more efficient algorithms as a sub-routine of a general
SETAF-solver.

In the future, tractability for SETAFs could be established by performing parametrized com-
plexity analysis, as it has been done for AFs [10, 14]. In particular, we understand these results as
a starting point for investigations in terms of backdoors (i.e. measuring and exploiting a bounded
distance of a given SETAF to a certain tractable class), along the lines of similar investigations for
AFs [13]. Moreover, it is important to analyze whether SETAFs that occur in applications belong
to any of the graph-classes introduced in this work. For example, it can be checked that the frame-
works generated for a particular application in [25]—even though they do not belong to one of our
tractable fragments—enjoy a (weak) symmetry-property, which allows one to reason in L on the
grounded extension. This can be shown using the same proof as for our primal-symmetry result.
Finally, as the purpose of the algorithms featured in this work was solely to illustrate the member-
ship to the respective complexity classes, undoubtedly they yield a potential for improvement and
optimization.
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A Proof Details
In order to carry out the missing proofs in detail, we introduce some additional notation. Transla-
tions (cf. [18]) are a special kind of reduction, they allow us to easily reduce decision problems on
SETAFs to other decision problems on SETAFs.

A (SETAF-)translation Tr is a function that takes a SETAF SF and outputs another SETAF
Tr(SF ) with specific properties; if every SETAF in the range of the translation shares a syntac-
tic property and certain semantic restrictions are preserved (i.e. certain relationships between the
extensions apply), we obtain a hardness-result for the class that is defined by the syntactic prop-
erty. First we will adapt the syntactic notions for translations that are originally defined for AFs
(see [18]) for SETAFs.

Definition 12. A (SETAF-)translation Tr is a function which maps SETAFs to SETAFs. Let SF =
(A,R) be a SETAF and Tr(SF ) = (A′, R′) its translated image. Moreover let σ, σ′ be two
semantics. A translation Tr is called

• efficient if for every SF its Tr(SF ) can be computed efficiently,

• embedding if for every SF = (A,R) we have A ⊆ A′ and R = R′ ∩ ((2A \ ∅)× A).

• exact for σ ⇒ σ′ if for every SETAF SF we have σ(SF ) = σ′(Tr(SF )),

• faithful for σ ⇒ σ′ if for every SETAF SF we have σ(SF ) = {E ∩ A | E ∈ σ′(Tr(SF ))}
and |σ(SF )| = |σ′(Tr(SF ))|,

• acceptance-preserving for σ ⇒ σ′ if for every SETAF SF we have σ(SF ) = {E ∩ A | E ∈
σ′(Tr(SF ))}.

We have that every exact translation is faithful, and every faithful translation is acceptance-
preserving. As we are often not so much interested in the translatability between different seman-
tics, but in the syntactic properties of the translations, we often use translations where σ = σ′, then
we just write “Tr is an exact/faithful/acceptance-preserving translation for σ”.

Moreover, we need the naive semantics to establish some results. A naive extension is a ⊆-
maximal conflict-free set; the set of all naive extensions of a SETAF SF is denoted by naive(SF ).
It is known that both Crednaive and Skeptnaive are in L [12].

Finally, we will distinguish between active and inactive attacks (cf. [16]). We call an attack
(T, a) inactive if there is another attack (S, b) with S ∪ {b} ⊆ T and all other attacks active. The
intuition is that inactive attacks can never be used to defend an argument in a extension and do not
contribute to the range of extensions. However, these attacks are still relevant as extensions have
to defend their arguments against inactive attacks.

A.1 Proof of Theorem 4
We start by providing a translation for σ ∈ {cf, adm, stb, pref, stage, sem} such that for every self-
attack-free SETAF SF its translation is primal-symmetric. Moreover we will establish that this
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translation is efficient and acceptance-preserving. Note that we use Tr1 only for self-attack-free
SETAFs. For an illustration of Tr1 see Figure 5.

Translation 1. Let SF = (A,R) be a SETAF. The SETAF-translation Tr1 is defined as
Tr1(SF ) = (A′, R′) with

A′ = A ∪ {a1
r,t, a

2
r,t | r = (T, h) ∈ R, t ∈ T},

R′ = R ∪ {(a1
r,t, a

2
r,t), (a

2
r,t, a

1
r,t), ({a1

r,t, a
2
r,t, h}, t),

(t, a1
r,t), (t, a

2
r,t) | r = (T, h) ∈ R, t ∈ T}

t1 . . . tn

ha1
r1,t1

a2
r1,t1

a1
r1,tn

a2
r1,tn

Figure 5: Illustration Translation Tr1. We have a SETAF with one attack r1 = ({t1, . . . , tn}, h).

Intuitively, for each attack in the original SETAF the translation Tr1 adds an attack towards
every attacker. Since the arguments a1

r and a2
r attack each other, this added attack is inactive, i.e.

cannot be used to defend arguments or extend the range of an extension. Hence, most semantics
do not change their extensions. Also in order to preserve admissibility we add an attack towards
the added arguments. We have that Tr1 is efficient and embedding.

Lemma 1. Let SF = (A,R) be a SETAF and let SF ′ = (A′, R′) = Tr1(SF ). Then for every
E ′ ∈ cf(SF ′) we have for E = E ′ ∩ A that E⊕R = E ′⊕R′ ∩ A.

Proof. “⊆”: Immediate by the fact that Tr1 is embedding and the monotonicity of (.)⊕.
“⊇”: Note that the set of active attacks towards arguments in A in SF ′ is the set of active attacks in
SF . The only active attacks towards arguments in A in SF ′ are from within A. The fact that in the
construction of SF ′ no further attacks between arguments in A is added concludes the proof.

This brings us to our first result that will allow us to settle the complexity of reasoning for
σ ∈ {cf, adm, stb, pref, stage, sem} in self-attack-free primal-symmetric SETAFs.

Lemma 2. Let σ ∈ {cf, adm, stb, pref, stage, sem}. Then Tr1 is an acceptance-preserving trans-
lation for σ ⇒ σ such that for every self-attack-free SETAF SF its translation SF ′ = Tr1(SF ) =
(A′, R′) is primal-symmetric.

Proof. First of all it is easy to verify that SF ′ is indeed primal-symmetric: For each of the
original attacks (T, h) and t ∈ T there is an attack ({a1

r,t, a
2
r,t, h}, t) which is accompanied by

(t, a1
r,t), (t, a

2
r,t) in order to make the new attack symmetric. Obviously also the attacks (a1

r,t, a
2
r,t),

(a2
r,t, a

1
r,t) are symmetric.
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We show that the translations is an acceptance-preserving translation separately for each of
the semantics. We follow the following scheme for each of the semantics σ: firstly we will show
constructively that for any extension E ∈ σ(SF ) there exists an extension E ′ ∈ σ(SF ′) such that
E ′∩A = E (“⇒”). Secondly we will show that for each extensionE ′ ∈ σ(SF ′) the corresponding
extension E = E ′ ∩ A is an extension E ∈ σ(SF ) (“⇐”).

1. For σ = cf:
“⇒”: Let E ∈ cf(SF ). Then also E ∈ cf(SF ′), as there are no attacks between elements of
A that are added in the construction.
“⇐”: Let E ′ ∈ cf(SF ) and let E = E ′ ∩ A. Then E ∈ cf(SF ), as there can be no attack
between arguments in A.

2. For σ = adm:
“⇒”: Let E ∈ adm(SF ) and let E ′ = E ∪ {a1

r,t | r = (T, h), t ∈ T,E 7→R t}. By
construction we have E ′ ∈ cf(SF ′). Assume towards contradiction some a ∈ E ′ is not
defended by E ′, i.e. there is an attack (T, a) ∈ R′ such that E ′ 67→R′ T . This means either
a ∈ A′ \A or a ∈ A. In the first case we have a = a1

r,t for some r = (T, h) ∈ R with t ∈ T .
We have that a defends itself against the attack from a2

r,t, the only remaining attack towards
a is from t. But since a ∈ E ′, by construction we have E 7→R t, which also means E ′ 7→R′ t,
so a is defended by E ′, which is a contradiction. In the second case we have a ∈ A. Since
a ∈ E and E ∈ adm(SF ) we know that a is defended against all attacks in R, i.e. all attacks
from within A. But since the only active attacks towards a are from within A, we have that
a is defended, which is a contradiction.
“⇐”: Let E ′ ∈ adm(SF ′) and let E = E ′ ∩ A. We know E ∈ cf(SF ). Let a ∈ E and let
(T, a) ∈ R be an attack towards a. Since E ′ is admissible in SF ′ we have E ′ 7→R′ T , i.e.
there is an attack (T ′, t) ∈ R′ such that t ∈ T and T ′ ⊆ E ′. Since the only active attacks
towards t are from within A, we also have that E 7→R t, which means a is defended by E in
SF .

3. For σ = stb:
“⇒”: Let E ∈ stb(SF ) and let E ′ = {a1

r,t | r = (T, h), t ∈ T, t 6∈ E}. We have E ∈
cf(SF ′) by construction. Moreover, since E ∈ stb(SF ), by Lemma 1 we have A ⊆ E ′⊕R′ ,
and by construction we have A′ \ A ⊆ E ′⊕R′ .
“⇐”: Let E ′ ∈ stb(SF ′) and let E = E ′ ∩ A. We know E ∈ cf(SF ), and, since E ′ ∈
stb(SF ′), by Lemma 1 we have A ⊆ E⊕R .

4. For σ = pref:
“⇒”: Let E ∈ pref(SF ) and let E ′ = {a1

r,t | r = (T, h), t ∈ T,E 7→R t}. We already
know E ′ ∈ adm(SF ′). Assume towards contradiction there is a set S ′ ∈ adm(SF ′) such
that S ′ ⊃ E ′, i.e. there is an argument a ∈ A′ such that a ∈ S ′ \E ′. This means either a ∈ A
or a ∈ A′ \ A. Let S = S ′ ∩ A, we know S ∈ adm(SF ). In the first case we would have
S ⊃ E, which is a contradiction to the assumption that S ∈ pref(SF ). In the second case
we have a ∈ A′ \A, i.e. a = a1

r,t (or a = a2
r,t, in which case the proof continues analogously)

for some r = (T, h) ∈ R and t ∈ T . Since a is attacked by t, in order to defend it we
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have S ′ 7→R′ t. Since the only active attacks towards t are from within A, there must be an
attack (T ′, t) ∈ R such that T ′ ⊆ S ′. We know E ′ 67→R′ t by construction, so there is an
argument b ∈ A such that b ∈ S ′ \ E ′, but since S ∈ adm(SF ) and S ⊃ E again we have a
contradiction to the assumption that S ∈ pref(SF ).
“⇐”: Let E ′ ∈ pref(SF ′) and let E = E ′ ∩ A. We know E ∈ adm(SF ). Assume towards
contradiction there is a set S ∈ adm(SF ) such that S ⊃ E. Let S ′ = S ∪ (E ′ \ E).
By construction we have S ′ ⊃ E ′. Moreover we have S ′ ∈ adm(SF ′): assume towards
contradiction there is an argument a ∈ S ′ that is not defended by S ′, i.e. there is an attack
(T, a) ∈ R′ such that S ′ 67→R′ T . We either have a ∈ A or a ∈ A′ \ A. In the first case a
defends itself against attacks from A′ \ A, and it is defended against attacks from A, since
a ∈ S and S ∈ adm(SF ). In the second case we have a = a1

r,t (or a = a2
r,t, in which case the

proof continues analogously) for some r = (T, h) ∈ R and t ∈ T . We have that a defends
itself against the attack from a2

r,t. It is also attacked from t, but we have S ′ 7→R′ t: since
a ∈ S ′ and a ∈ A′ \ A by construction of S ′ we have a ∈ E ′, but since E ′ ∈ adm(SF ′) we
have E ′ 7→R′ t. The argument t can only be actively attacked from within A (since there are
no other active attacks towards t in R′) and, hence, S ′ 7→R′ t. This shows S ′ ∈ adm(SF ′),
and since S ′ ⊃ E ′ we have a contradiction to the assumption E ′ ∈ pref(SF ′).

5. For σ = stage:
“⇒”: Let E ∈ stage(SF ) and let E ′ = {a1

r,t | r = (T, h), t ∈ T, t 6∈ E}. We have
E ′ ∈ cf(SF ′) by construction. Assume towards contradiction there is a set S ′ ∈ cf(SF ′)
such that S ′⊕R′ ⊃ E ′⊕R′ . Let S = S ′ ∩ A. We know S ∈ cf(SF ). Moreover we have S⊕R ⊇ E⊕R
by Lemma 1. S ′⊕R′ ⊃ E ′⊕R′ means there is an argument a ∈ S ′⊕R′ \ E ′⊕R′ . This means either
a ∈ A or a ∈ A′ \ A. Since we have A′ \ A ⊆ S ′⊕R′ by construction, the second option is
impossible. So there is an argument a ∈ A such that a ∈ S ′⊕R′ \ E ′⊕R′ , but then a ∈ S⊕R \ E

⊕
R ,

so S⊕ ⊃ E⊕, which is a contradiction to our assumption E ∈ stage(SF ).
“⇐”: Let E ′ ∈ stage(SF ′) and let E = E ′ ∩ A. We know E ∈ cf(SF ). Assume towards
contradiction there is a set S ∈ cf(SF ) such that S⊕R ⊃ E⊕R . Let S ′ = {a1

r,t | r = (T, h), t ∈
T, t 6∈ S}. We have S ′ ∈ cf(SF ′) by construction. As before we have A′ \ A ⊆ S ′⊕R′ .
Moreover, by Lemma 1 we have S ′⊕R′ ∩ A ⊃ E ′⊕R′ ∩ A, so we have S ′⊕R′ ⊃ E ′⊕R′ , which is a
contradiction to the assumption E ′ ∈ stage(SF ′).

6. For σ = sem:
“⇒”: Let E ∈ sem(SF ) and let E ′ = {a1

r,t | r = (T, h), t ∈ T,E 7→R t}. We already
know E ′ ∈ adm(SF ′). Assume towards contradiction there is a set S ′ ∈ adm(SF ′) such
that S ′⊕R′ ⊃ E ′⊕R′ . Let S = S ′ ∩ A. We know S ∈ adm(SF ). Moreover by Lemma 1 we
have S⊕R ⊇ E⊕R . From S ′⊕R′ ⊃ E ′⊕R′ we know there is an argument a ∈ A′ such that a ∈ S ′⊕R′

but a 6∈ E ′⊕R′ . This means either a ∈ A or a ∈ A′ \ A. In the first case by Lemma 1 we
get S⊕R ⊃ E⊕R , which is a contradiction to our assumption E ∈ sem(SF ). In the second
case we have a = a1

r,t (or a = a2
r,t, in which case the proof continues analogously) for some

r = (T, h) ∈ R and t ∈ T . We have S ′ 7→R′ t in order to defend a. But by construction
of E ′ we have E ′ 67→R′ t, hence, E 67→R t, but since S 7→R t we have S⊕R ⊃ E⊕R , which is a
contradiction to our assumption E ∈ sem(SF ).
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Table 4: The complexity for primal-symmetric SETAFs.

adm stb pref com grd stage sem

Credσ NP-c NP-c NP-c NP-c in L ΣP
2 -c ΣP

2 -c

Skeptσ trivial coNP-c ΠP
2 -c in L in L ΠP

2 -c ΠP
2 -c

“⇐”: Let E ′ ∈ sem(SF ′) and let E = E ′ ∩ A. We know E ∈ adm(SF ). Assume towards
contradiction there is a set S ∈ adm(SF ) such that S⊕R ⊃ E⊕R . Let S ′ = {a1

r,t | r =
(T, h), t ∈ T, S 7→R t}. By construction we have S ′ ∈ adm(SF ′). By Lemma 1 we have
S ′⊕R′ ∩ A ⊇ E ′⊕R′ ∩ A. Moreover we have S ′⊕R′ ∩ A′ \ A ⊇ E ′⊕R′ ∩ A′ \ A: Assume otherwise,
i.e. there is an argument a ∈ A′ \ A such that a ∈ E ′⊕R′ \ S ′⊕R′ . We have a = a1

r,t (or a = a2
r,t,

in which case the proof continues analogously) for some r = (T, h) ∈ R and t ∈ T . We
either have a ∈ E ′ or t ∈ E ′. In the first case in order to defend a we would have E ′ 7→R′ t.
The argument t can only be attacked from within A, so we would also have S 7→R t and,
hence, S ′ 7→R′ t, which means a ∈ S ′⊕R′ , which is a contradiction. In the second case we
have t ∈ E ′, which means t ∈ E⊕R , so by assumption t ∈ S⊕R , and then again by construction
a ∈ S ′⊕R′ (either because t ∈ S ′ or because S 7→R t).

In the following we show that deciding whether an argument is in the grounded extension of a
primal-symmetric SETAF is doable efficiently, namely in L.

Lemma 3. Let SF = (A,R) be a primal-symmetric SETAF. Then an argument a ∈ A is in the
grounded extension G iff a is not in the head of any attack, i.e. there is no attack (T, a) ∈ R.

Proof. Consider the construction of G with the characteristic function FSF . In the first step, ex-
actly the arguments that are not in the head of an attack are added (which concludes the “⇐”-
direction).
Now there are no arguments left that are defended by FSF (∅): towards contradiction assume there
is an argument a that is defended by FSF (∅), but not in it. There is at least one attack (T, a) ∈ R,
otherwise a would be in FSF (∅). In order to defend a we would have FSF (∅) 7→R T , i.e. there is
an attack (T ′, t) with T ′ ⊆ FSF (∅) and t ∈ T . But since SF is primal-symmetric there is another
attack (T ′′, e) ∈ R such that t ∈ T ′′ and e ∈ T ′, which is a contradiction, since the arguments in
FSF (∅) are not in the head of any attack. This means FSF (∅) = FSF (FSF (∅)), which concludes
the “⇒”-direction.

To conclude the proof, the memberships of the respective problems follow from the respective
results for arbitrary SETAFs. By Lemma 2 we get the respective hardness results for Credσ and
Skeptσ for σ ∈ {adm, stb, pref, stage, sem}. The hardness of Credcom follows from the identity
Credcom = Credadm. Finally, the L-membership of Credgrd, Skeptgrd, and Skeptcom follows from
Lemma 3. Summarizing the previous results we have the full complexity landscape for primal-
symmetric SETAFs.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 6: Illustration of SF 1
ϕ for a formula ϕ with Y = {y1, y2, y3, y4}, and C =

{{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

A.2 Proof of Theorem 5
First we will show that reasoning on the grounded extension is efficient, in particular we have that
the following lemma allows us to decide our reasoning problems w.r.t. grd semantics in L.

Lemma 4. Let SF = (A,R) be a fully-symmetric SETAF. Then an argument a ∈ A is in the
grounded extension G of SF iff it is not involved in any attack.

Proof. For the⇒-direction consider the construction of G via the characteristic function FSF . In
the first step, exactly the arguments that are not involved in any attacks are added. As every other
argument is now attacked (i.e. not defended by FSF (∅)), a fix point is reached. The⇐-direction
follows from the definition of the grounded extension.

To show that reasoning w.r.t. adm semantics has the full complexity in fully-symmetric
SETAFs, consider the following fully-symmetric variation of the standard reduction. For an il-
lustration of the next reduction see Figure 6.

Reduction 1. Let ϕ be a CNF-formula with a set of clauses C over propositional atoms Y . We
define SF 1

ϕ = (A′, R′), where

A′ = {ϕ} ∪ C ∪ Y ∪ Ȳ
R′ = {({c, ϕ}, ϕ), ({c, ϕ}, c) | c ∈ C} ∪ {(y, ȳ), (ȳ, y) | y ∈ Y } ∪

{(y, c), (c, y) | y ∈ c, c ∈ C} ∪ {(ȳ, c), (c, ȳ) | ȳ ∈ c, c ∈ C}

The only changes to the standard reduction are some additional attacks in order to make the
SETAF fully-symmetric, and that the attacks between ϕ and arguments c ∈ C are now self-attacks.
These attacks between ϕ and the arguments inC are always inactive, which means ϕ cannot defend
itself against the attacks from the arguments in C. This means ϕ can only be in an admissible set,
if all c ∈ C are attacked by arguments y ∈ Y and ȳ ∈ Ȳ , which lets us construct a satisfying truth
assignment (see next lemma).

Lemma 5. Let ϕ be a CNF-formula with a set of clauses C over propositional atoms Y . Then ϕ
is satisfiable iff ϕ is credulously accepted in SF 1

ϕ w.r.t. adm semantics.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

ϕ̄

ϕ′

Figure 7: Illustration of SF 2
φ for φ = ∀Y ∃Zϕ(Y,Z) with Y = {y1, y2}, Z = {z1, z2}, and C =

{{y1, y2, z1}, {ȳ1, ȳ2, z̄2)}, {ȳ2, z̄1, z2}}. Note that the attacks between ϕ̄ and z ∈ Z (and z̄ ∈ Z̄ re-
spectively) are of the form ({ϕ̄, z}, z), ({ϕ̄, z}, ϕ̄), ({ϕ̄, z̄}, z̄), and ({ϕ̄, z̄}, ϕ̄) respectively, and overlay in
this illustration only in the interest of presentability.

Proof. First note that, as there can never be an active attack towards ϕ in SF 1
ϕ, no c ∈ C can be

defended against the attack from c and ϕ, therefore no such c can be in an admissible set.
“⇒”: Assume ϕ is satisfiable, i.e. there is a truth assignment I such that I � ϕ. We can construct
an admissible set in the following way: let E = {ϕ}∪{y | y ∈ I}∪{ȳ | y ∈ Y \I}. E is conflict-
free by construction. Moreover note that, as E was constructed from a satisfying assignment, each
c ∈ C is attacked, which means ϕ is defended against all attacks towards it, and also each y, ȳ ∈ E
is defended against the attacks from the arguments c. Finally, each of the arguments y, ȳ ∈ E
defends itself against the attack from its dual literal.
“⇐”: Assume there is an admissible set E ⊆ A′ such that ϕ ∈ E. In order to defend ϕ we have
E 7→R′ c for all c ∈ C. We have that for each y ∈ Y , at most one of y and ȳ is in E. Now let I be
an interpretation such that y ∈ I ⇔ y ∈ E for y ∈ Y . We have I � ϕ, as for each clause c at least
one of its literals attacks c in E.

To further show that also reasoning w.r.t. pref semantics has the full complexity in fully-
symmetric SETAFs, consider the following fully-symmetric variation of the standard reduction
to show ΠP

2 -hardness for Skeptpref. For an illustration of the next reduction see Figure 7.

Reduction 2. Let φ = ∀Y ∃ZC be a QBF 2
∀ formula with sets of propositional atoms Y , Z and a

conjunctive formula ϕ over a set of clauses C. We define SF 2
φ = (A′, R′), where

A′ = {ϕ, ϕ̄, ϕ′} ∪ C ∪ Y ∪ Ȳ ∪ Z ∪ Z̄
R′ = {({c, ϕ}, ϕ), ({c, ϕ}, c) | c ∈ C} ∪ {(y, ȳ), (ȳ, y) | y ∈ Y } ∪

{(y, c), (c, y) | y ∈ c, c ∈ C} ∪ {(ȳ, c), (c, ȳ) | ȳ ∈ c, c ∈ C} ∪
{(ϕ, ϕ̄), (ϕ̄, ϕ), ({ϕ̄, ϕ′}, ϕ̄), ({ϕ̄, ϕ′}, ϕ′)} ∪
{({z, ϕ̄}, z), ({z, ϕ̄}, ϕ̄), ({z̄, ϕ̄}, z̄), ({z̄, ϕ̄}, ϕ̄) | z ∈ Z}

Similar to Reduction 1, in Reduction 2 we add additional attacks in order to make the SETAF
fully-symmetric. As in the standard reduction for the ΠP

2 -hardness of Skeptpref (cf. [10]) we have
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that a QBF 2
∀ formula φ is true iff the argument ϕ is skeptically accepted w.r.t. pref semantics in

SF 2
φ (see next lemma). The attacks between the argument ϕ̄ and the arguments z (or z̄ respec-

tively) are also self-attacks, because otherwise the arguments z (or z̄ respectively) would defend
themselves against the attacks from ϕ̄, while only ϕ should (actively) attack ϕ̄. Moreover, we do
not want ϕ̄ in an admissible set, but a self-loop (ϕ̄, ϕ̄) would make SF 2

φ redundant. To ensure ϕ̄
is in no admissible set we introduce ϕ′, which would have to be attacked in order to defend ϕ̄, but
this is impossible. We have that ϕ′ is in a preferred extension iff ϕ is in the extension.

Lemma 6. Let φ = ∀Y ∃ZC be a QBF 2
∀ formula with sets of propositional atoms Y and Z and a

conjunctive formula ϕ over a set of clauses C. Then φ is true iff ϕ is skeptically accepted in SF 2
φ

w.r.t. pref semantics.

Proof. First note that the argument ϕ̄ cannot be in an admissible set, as it is attacked by ϕ′ and
the only attack towards ϕ′ is an inactive attacks. As with the previous reduction we have that no
argument c ∈ C can be in an admissible set: the only active attack towards ϕ is from ϕ̄, which is
in no admissible set.
“⇒”: Assume φ is true, i.e. for every partial interpretation IY ⊆ Y there is a partial interpretation
IZ ⊆ Z such that IY ∪ IZ � ϕ. Note that each IY corresponds to an admissible set S = {y |
y ∈ IY } ∪ {ȳ | y ∈ Y \ IY }. Every admissible set E ∈ adm(SF 2

φ) that has z ∈ E for some
z ∈ Z has to have ϕ ∈ E in order to defend z against the attack from ϕ̄. Now ϕ is in E iff the
arguments from Y ∪ Ȳ ∪Z ∪ Z̄ attack all arguments c ∈ C, i.e. if the corresponding interpretation
I = (E ∩ Y ) ∪ (E ∩ Z) makes ϕ true. Since we assumed φ to be true, we know that for each
partial assignment IY (and, hence, for each admissible set) there is such a partial assignment IZ ,
therefore ϕ is in every preferred extension of SF 2

φ .
“⇐”: Assume ϕ is in every preferred extension of SF 2

φ . As we know each partial assignment
IY ⊆ Y corresponds to an admissible set S in SF 2

φ and for each admissible set S there is an
extension E ∈ pref(SF 2

φ) such that E ⊇ S, and since we know ϕ can only be in an admissible
set E is the corresponding interpretation I = (E ∩ Y ) ∪ (E ∩ Z) makes ϕ true, we get that for
each such partial assignment IY there is an assignment IZ ⊆ Z such that IY ∪ IZ � ϕ, i.e. φ is
true.

Already we have all information to pinpoint the complexity of reasoning in fully-symmetric
SETAFs. The membership for Credσ for σ ∈ {cf, adm, stb, pref, com, stage, sem} follows from
the general case, likewise the membership for Skeptσ for σ ∈ {stb, pref, stage, sem} follows
from the general case. The L-membership for Credgrd follows from Lemma 4, from the iden-
tity Credgrd = Skeptgrd = Skeptcom we get the respective membership proofs for Skeptgrd and
Skeptcom. The problems Credσ and Skeptσ for σ ∈ {stb, stage, sem} already have their full hard-
ness for symmetric AFs allowing self-attacks (see [10]). The NP-hardness of Credadm follows
from Lemma 5, then the hardness of Credcom and Credpref immediately follow by the identity
Credadm = Credcom = Credpref. Finally, the ΠP

2 -hardness of Skeptpref follows from Lemma 6.
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Table 5: The complexity for redundancy-free self-attack-free fully-symmetric SETAFs.

adm stb pref com grd stage sem

Credσ trivial trivial trivial trivial in L trivial trivial

Skeptσ trivial in L in L in L in L in L in L

A.3 Proof of Theorem 6
Lemma 7. Let SF = (A,R) be a self-attack-free, fully-symmetric SETAF. Then we have
naive(SF ) = stb(SF ).

Proof. We know that every stable extension is naive, it remains to show that for self-attack-free,
fully-symmetric SETAFs every naive extension is stable. Towards contradiction assume there is
a naive extension E ∈ naive(SF ) such that there is an argument a ∈ A \ E⊕R . Since E is
a naive extension, we have that E ∪ {a} is not conflict-free, i.e. there is an attack (T, b) with
T ∪ {b} ⊆ E ∪ {a}. As SF is fully symmetric we then also have an attack ((T ∪ {b}) \ {a}, a).
But then we have that a ∈ E⊕R , which is a contradiction.

This suffices to establish the complexity of reasoning in self-attack-free fully-symmetric
SETAFs for the semantics under our consideration: since there are no self-attacks, for every ar-
gument a the set {a} is conflict-free, which means Credcf is trivially true. Moreover, since for
every conflict-free set S there is a naive extension E with E ⊆ S this carries over to Crednaive.
As by Lemma 7 we have that naive(SF ) = stb(SF ), we know that also stb(SF ) = stage(SF ) =
sem(SF ) for any self-attack-free fully-symmetric SETAF SF , since there is always at least one
naive extension. Likewise we get Credstb = Credstage = Credsem. As every stable extension is
admissible, preferred, and complete, this also carries over to Credadm, Credpref, and Credcom.

Now by Lemma 4 we get that it suffices to check whether an argument is involved in any attack
to know if it is in the grounded extension, hence, the problems Credgrd, Skeptgrd, and Skeptcom

are in L.
Now note that since for every attack (T, h) the set T is conflict-free (as the SETAF is

redundancy-free there cannot be an attack within T ), we can construct a naive extension E such
that an arbitrary argument a that is involved in at least one attack is not in E. Hence, to decide
Skeptσ for σ ∈ {naive, stb, pref, stage, sem} it also suffices to check whether an argument is in-
volved in any attack, which can be done in L. The results are summarized in Table 5.

A.4 Proof of Theorem 7
The proof of this theorem mainly concerns the correctness and completeness of Algorithm 1. Let
SF = (A,R) be a SETAF with a partitioning (Y, Z). As in the algorithm for AFs [6], our adapta-
tion iteratively removes arguments that cannot be defended. This algorithm has to be executed for
both the set Y and the set Z to get all credulously accepted arguments of a SETAF SF . Assume we
start with Y . In step 6 of the i-th iteration of the of the algorithm we remove every argument y that
is attacked via an attack (Z ′, y) (as SF is primal-bipartite Z ′ must be a subset of Z) such that there
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are no defenders against the attack left, i.e. no z ∈ Z ′ is attacked by a subset of the arguments left
in Yi−1. In step 7 we remove all attacks that origin from already removed arguments; they cannot
be part of a defending attack. More formally, the correctness and completeness of Algorithm 1 is
shown in the following.

Lemma 8 (cf.[6]). Let SF = (A,R) be a primal-bipartite SETAF with a partitioning (Y, Z), then
an argument a ∈ Y is credulously accepted w.r.t. pref semantics iff it is in the set returned by
Algorithm 1.
Moreover the set returned by Algorithm 1 is admissible in SF .

Proof. “⇒”: We will show inductively that for every iteration of the algorithm the arguments that
are removed in step 6 are not defensible and the attacks that are removed in step 7 cannot be part
of a defending attack. For the first iteration this is the case, as we construct Y1 by only removing
those arguments y ∈ Y from Y that are attacked by an attack (Z ′, y) on which no counter-attack
exists. Moreover we remove all attacks (Y ′, z) towards arguments z ∈ Z such that for one of the
arguments y′ ∈ Y ′ we already showed it is not defensible, as they cannot defend any argument
in an admissible set. Likewise, assuming this property holds for the i − 1-th iteration, in the i-th
iteration we only remove arguments that are not defensible and attacks that cannot play a role in
admissible sets.
Assume towards contradiction an argument y ∈ Y is credulously accepted, but not in the set S
that is returned by the algorithm. This means at some iteration i the argument y is removed, but,
as established, this means it is not defensible, which is a contradiction to the assumption is it
credulously accepted.
“⇐”: Let S be the set that is returned by the algorithm. Assume we have x ∈ S for some argument
x ∈ Y . As we have S ⊆ Y , we know S is conflict-free in SF . Moreover we know that S defends
x: towards contradiction assume otherwise, i.e. there is an attack (Z ′, x) towards x such that S does
not attack Z ′. But then x would be removed in step 6, which is a contradiction to the assumption
that x ∈ S.

Algorithm 1 runs in polynomial time: there can be at most |Y | iterations; step 6 is efficient, as
all involved sets are bounded by the number of attacks and the number of arguments involved in
an attack; step 7 is also efficient, as it suffices to check for every attack towards arguments z ∈ Z.

Note that by symmetry this algorithm also works for arguments z ∈ Z such that it is sufficient
to compute all credulously accepted arguments of a primal-bipartite SETAF SF . Hence, Credpref

is P-easy for this subclass. We will now show that this result carries over to other semantics under
our consideration. We know that primal-bipartite SETAFs have no odd-cycles, and therefore are
coherent, which implies pref(SF ) = stb(SF ). Note that as there always is at least one preferred
extension there also always is a stable extension, which further implies stb(SF ) = sem(SF ) =
stage(SF ). The following lemma also holds for AFs (see [24]).

Lemma 9. Let SF = (A,R) be a SETAF with pref(SF ) = stb(SF ). Then an argument a ∈ A
is skeptically accepted w.r.t. pref semantics iff for every attack (T, a) ∈ R towards a we have that
T 6⊆ E for every preferred extension E ∈ pref(SF ).
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Proof. “⇒”: Assume an argument a ∈ A is in every preferred extension of SF and let (T, a) be an
arbitrary attack towards a. Then T cannot be a subset of any preferred extension E, as we would
have T ∪ {a} ⊆ E, which is not conflict-free.
“⇐”: Assume in every extension E ∈ pref(SF ) we have for every attack (T, a) towards a that
T 6⊆ E. This means for every attack there is some t ∈ T such that t 6∈ E. But as E is stable by
assumption, this means t is attacked, and, hence, a is defended against all attacks.

By a result of [6] we know that even for bipartite AFs F = (A,R) with a partitioning (Y, Z)
it is NP-complete to decide for sets S ⊆ A if the arguments are jointly credulously accepted w.r.t.
pref semantics. This hardness-result carries over to SETAFs. However, if we restrict the problem to
deciding whether a set S ⊆ Y is jointly credulously accepted, this problem becomes P-easy even
for SETAFs, as this is the case iff every single argument a ∈ S is credulously accepted, which we
established can be decided in polynomial time with Algorithm 1.

Lemma 10. Let SF = (A,R) be a primal-bipartite SETAF with a partitioning (Y, Z). Then for
any set Y ′ ⊆ Y there is a preferred extension E ⊇ Y ′ iff every argument y′ ∈ Y ′ is credulously
accepted w.r.t. pref semantics.

Proof. By Lemma 8 we have that an argument a ∈ Y is credulously accepted w.r.t. pref semantics
iff it is in the set S returned by Algorithm 1, and we have S ∈ adm(SF ). This means that all
credulously accepted arguments a ∈ Y are also jointly credulously accepted in SF , which also
means that every subset Y ′ ⊆ Y that consists only of credulously accepted arguments is jointly
credulously accepted w.r.t. adm, which in turn means they are jointly credulously accepted w.r.t.
pref semantics, as every admissible set is part of a subset-maximal admissible set.

Again, by symmetry, this result also applies for sets Z ′ ⊆ Z. The respective hardness proofs
follow from the hardness of bipartite AFs. As already established, Algorithm 1 can be used to
efficiently (namely, in polynomial time) compute the set of credulously accepted arguments w.r.t.
pref semantics, which carries over to com and adm, and as primal-bipartite SETAFs are coherent
and preferred and stable semantics coincide, also to stb, stage, and sem. For the P-membership
of Skeptσ for σ ∈ {stb, pref, stage, sem} we use the same identity stb(SF ) = pref(SF ) =
stage(SF ) = sem(SF ), and note that to check if an argument a ∈ A is skeptically accepted w.r.t.
pref semantics by Lemma 9 we know that it suffices to check if for every attack (T, a) towards a
the set T is jointly credulously accepted, which, by Lemma 10, can be done in polynomial time,
as it suffices to check if every argument in T is credulously accepted. Finally, the L membership
of Skeptnaive follows from the general case, and the trivial results for Credcf and Crednaive follow
from the fact that every primal-bipartite SETAF has no self-loops (i.e. every argument a ∈ A is in
the conflict-free set {a}, and, hence, in a naive extension). The results are summarized in Table 6

A.5 Proof of Theorem 8
We will show that we can translate every SETAF SF into a 2-colorable SETAF Tr(SF ) with an
acceptance-preserving translation Tr. This holds for the semantics σ ∈ {stb, pref, com, grd, sem}.
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Table 6: The complexity of primal-bipartite SETAFs.

adm stb pref com grd stage sem

Credσ P-c P-c P-c P-c P-c P-c P-c

Skeptσ trivial P-c P-c P-c P-c P-c P-c

To this end we use a translation where we add two fresh arguments as another attacker to the tail
of every attack. This is captured by translation Tr2.

Translation 2. Let SF = (A,R) be a SETAF. The SETAF translation Tr2 is defined as Tr2(SF ) =
(A′, R′) with

A′ = A ∪ {a∗a, a∗b},
R′ = {(T ∪ {a∗a, a∗b}, h) | (T, h) ∈ R}

This translation is efficient. It remains to show that Tr2 is acceptance-preserving.

Lemma 11. The SETAF-translation Tr2 is acceptance preserving for σ ⇒ σ with σ ∈ {stb, pref,
com, grd, sem} such that Tr2(SF ) is 2-colorable for every SETAF SF .

Proof. We have that the fresh arguments a∗a, a
∗
b are not attacked and, hence, in the grounded ex-

tension, and as every σ-extension contains the grounded extension, they are skeptically accepted
w.r.t. σ. Moreover, for any set S ⊆ A it holds that S ∈ σ(SF ) iff S ′ = (S ∪ {a∗a, a∗b}) ∈ σ(SF ′),
which can easily be seen for each of the semantics in question. Furthermore, as a∗a and a∗b are part
of every attack, every partitioning (Y, Z) with a∗a ∈ Y and a∗b ∈ Z is a valid 2-coloring.

Note that this translation does not work as a reduction for semantics based on conflict-free sets,
as for every attack (T, h) in the translation the set T ∪{h} is conflict-free. To show the hardness of
our reasoning tasks for stage semantics we introduce another reduction from the ΠP

2 -hard QBF 2
∀

problem, such that the constructed SETAF is always 2-colorable. For an illustration of SFΦ
3 see

Figure 8.

Reduction 3. Let Φ = ∀Y ∃ZC be a QBF 2
∀ -formula with at least 2 clauses where in each clause

at least one positive and at least one negative literal occurs, consisting of a set of clauses C over
sets of propositional atoms Y and Z. We define the SETAF SFΦ

3 = (A,R), where

A = {ϕ, ϕ̄′, ϕ̄, ϕ′, ϕ′′, ϕ′′′} ∪ C ∪ Y ∪ Ȳ ∪ Z ∪ Z̄ ∪
{y′, y′′, y′′′, ȳ′, ȳ′′, ȳ′′′ | y ∈ Y },

R = {(x, x̄), (x̄, x) | x ∈ Y ∪ Z} ∪ {({x | x̄ ∈ c} ∪ {x̄ | x ∈ c}, c) | c ∈ C} ∪
{({c | c ∈ C}, ϕ̄′), (ϕ̄′, ϕ), (ϕ̄, ϕ), (ϕ, ϕ̄)} ∪
{({ϕ, ϕ′}, ϕ′′), ({ϕ, ϕ′}, ϕ′′′), ({ϕ′′, ϕ′′′}, ϕ′′), ({ϕ′′, ϕ′′′}, ϕ′′′)} ∪
{({y, y′}, y′′), ({y, y′}, y′′′), ({y′′, y′′′}, y′′), ({y′′, y′′′}, y′′′) | y ∈ Y } ∪
{({ȳ, ȳ′}, ȳ′′), ({ȳ, ȳ′}, ȳ′′′), ({ȳ′′, ȳ′′′}, ȳ′′), ({ȳ′′, ȳ′′′}, ȳ′′′) | ȳ ∈ Ȳ }
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ȳ′′1
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Figure 8: Illustration of SFΦ
3 for Φ = ∀Y ∃Zϕ(Y,Z) with Y = {y1, y2}, Z = {z1, z2}, and ϕ =

{{y1, ȳ2, z̄1}, {ȳ1, y2, z2)}, {y2, z1, z̄2}}. The coloring of the arguments corresponds to a possible parti-
tioning that shows the 2-colorability of SFΦ

3 , i.e. we have that no attack is monochromatic.

We have (as we will show in Lemma 13) that arguments y′ and ȳ′ are in every stage extension,
and the arguments y′′ and y′′′ (or ȳ′′ and ȳ′′′ respectively) cannot be in a conflict-free set together,
so the only way to have both in the range of a stage extension is to have y (or ȳ respectively) in this
extension. This way every combination of arguments from Y and Ȳ (that correspond to a partial
interpretation over variables Y ) is in an incomparable stage extension.

It is not immediate why SFΦ
3 is always 2-colorable; for this we need to have for each clause c ∈

C to have at least one positive and at least one negative literal, as otherwise this partitioning could
produce a monochromatic edge (i.e. an edge such that all involved arguments are in just one of Y
or Z). Moreover we assume there are at least two clauses; these two constraints do not affect the
hardness of the QBF 2

∀ problem. Consider a partitioning (A,B) where A = ({cx, ϕ̄, ϕ̄′, ϕ′, ϕ′′} ∪
{ȳ, y′, y′′, ȳ′′ | y ∈ Y } ∪ {z̄ | z ∈ Z}) and B = ({c | c ∈ C \ {cx}} ∪ {ϕ, ϕ′′′} ∪ {y, ȳ′, ȳ′′, y′′ |
y ∈ Y } ∪ {z | z ∈ Z} ∪ {ϕ′′′}), where cx is an arbitrary clause. Then one can check that
(A,B) is a partitioning such that SFΦ

3 is 2-colorable (the coloring in Figure 8 corresponds to such
a partitioning).

The following proof follows the structure of [9].

Lemma 12. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then for every extension E ∈
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stage(SFΦ
3 ) we have {ϕ′′, ϕ′′′} 6⊆ E, {y′′, y′′′} 6⊆ E, and {ȳ′′, ȳ′′′} 6⊆ E for each y ∈ Y . Moreover

we have x ∈ E iff x̄ 6∈ E for each x ∈ Y ∪ Z ∪ {ϕ}.

Proof. The first statement immediately follows from the fact that E is conflict-free. Moreover
we have that at at least one of x and x̄ is in E: towards contradiction assume otherwise, i.e.
{x, x̄} ∩E = ∅. If x = ϕ, then E ′ = E ∪ {ϕ̄} is conflict-free with E ′⊕R ⊃ E⊕R . If x ∈ Y ∪ Z, then
E ′ = (E \ {c | c ∈ C, there is some (T, c) ∈ R such that T ⊆ E ∪{x}}∪{x} is conflict-free with
E ′⊕R ⊃ E⊕R . By conflict-freeness we also have that at most one of x and x̄ is in E.

Lemma 13. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then {x′ | x ∈ Y ∪ Ȳ ∪ {ϕ}} ⊆ E
for every E ∈ stage(SFΦ

3 ).

Proof. Towards contradiction assume E ∈ stage(SFΦ
3 ) and x′ 6∈ E for some x ∈ Y ∪ Ȳ ∪ {ϕ},

then we have E ′ = (E ∪ {x′}) \ {x′′, x′′′} ∈ cf(SFΦ
3 ) with E ′⊕R ⊃ E⊕R , which is a contradiction to

the assumption E ∈ stage(SFΦ
3 ).

Lemma 14. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then ϕ is in every stage extension
iff Φ is true.

Proof. “⇒”: Assume Φ is false, we show that then there is an extension E ∈ stage(SFΦ
3 ) such

that ϕ 6∈ E. As Φ is false, there is a partial interpretation IY such that for each partial interpretation
IZ we have that at least one clause is not true, i.e. in the corresponding set of arguments at least one
argument c ∈ C is attacked. As by Lemma 12 and since ϕ̄′ is not attacked, the only way to have
{y′′, y′′′ | y ∈ IY } ∪ {ϕ̄′} ⊆ E⊕R is if we also have ϕ̄′ ∈ E, we know that such a stage extension E
with ϕ̄′ ∈ E exists, but this extension can only have ϕ 6∈ E.
“⇐”: Assume Φ is true, and let, towards contradiction, E ∈ stage(SFΦ

3 ) with ϕ 6∈ E. We know
that for each partial interpretation IY there is a partial interpretation IZ such that IY ∪ IZ makes ϕ
true. Let IY = E ∩ Y and let IZ be such a partial interpretation such that IY ∪ IZ makes ϕ true.
Moreover let E ′ = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)} ∪ C ∪ (E ∩ (Y ′ ∪ Y ′′ ∪ Y ′′′ ∪ Ȳ ′ ∪
Ȳ ′′ ∪ Ȳ ′′′)) ∪ {ϕ, ϕ′}. One can check that E ′ is conflict-free in SFΦ

3 , also we have E ′⊕R ⊃ E⊕R :
by construction the ranges of E ′ and E coincide on all arguments but arguments c ∈ C and on the
arguments ϕ′′ and ϕ′′′, where we have C ⊆ E ′⊕R and {ϕ′′, ϕ′′′} ⊆ E ′⊕R , but {ϕ′′, ϕ′′′} 6⊆ E⊕R . This
is a contradiction to the assumption E ∈ stage(SFΦ

3 ).

These results give us the complexity landscape for 2-colorable SETAFs: they have the
full complexity, i.e. 2-colorability does not allow us to reason more efficiently. The member-
ship follows from the general case. We obtain the hardness for Credσ and for Skeptσ with
σ ∈ {stb, pref, com, grd, sem} by Lemma 11. The hardness of Credadm follows from the iden-
tity Credadm = Credpref. The hardness of Credstage follows from Lemma 14, likewise the hardness
of Skeptstage follows from Lemma 14 and the fact that by Lemma 12 we then have ϕ̄ is in every
extension E ∈ stage(SFΦ

3 ) iff Φ is false.
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Table 7: The complexity of 2-colorable SETAFs.

adm stb pref com grd stage sem

Credσ NP-c NP-c NP-c NP-c P-c ΣP
2 -c ΣP

2 -c

Skeptσ trivial coNP-c ΠP
2 -c P-c P-c ΠP

2 -c ΠP
2 -c
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[18] Dvořák, W., Woltran, S.: On the intertranslatability of argumentation semantics. J. Artif.
Intell. Res. (JAIR) 41, 445–475 (2011)

[19] Flouris, G., Bikakis, A.: A comprehensive study of argumentation frameworks
with sets of attacking arguments. Int. J. Approx. Reason. 109, 55–86 (2019).
https://doi.org/10.1016/j.ijar.2019.03.006

[20] König, M.: Graph-Classes of Argumentation Frameworks with Collective Attacks. Master’s
thesis, TU Wien (2020), http://permalink.obvsg.at/AC15750327

29

http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://ceur-ws.org/Vol-2171/paper_2.pdf
http://ceur-ws.org/Vol-2672/paper_4.pdf
http://permalink.obvsg.at/AC15750327


[21] Nielsen, S.H., Parsons, S.: Computing preferred extensions for argumentation systems
with sets of attacking arguments. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Computa-
tional Models of Argument: Proceedings of COMMA 2006, September 11-12, 2006, Liv-
erpool, UK. Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 97–108.
IOS Press (2006), http://www.booksonline.iospress.nl/Content/View.
aspx?piid=1930

[22] Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) Ar-
gumentation in Multi-Agent Systems, Third International Workshop, ArgMAS 2006, Hako-
date, Japan, May 8, 2006, Revised Selected and Invited Papers. Lecture Notes in Computer
Science, vol. 4766, pp. 54–73. Springer (2006). https://doi.org/10.1007/978-3-540-75526-5 4

[23] Polberg, S.: Developing the Abstract Dialectical Framework. Ph.D. thesis, Vienna University
of Technology, Institute of Information Systems (2017), https://permalink.obvsg.
at/AC13773888

[24] Vreeswik, G.A.W., Prakken, H.: Credulous and sceptical argument games for preferred se-
mantics. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds.) Pro-
ceedings of Logics in Artificial Intelligence. pp. 239–253. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000)

[25] Yun, B., Vesic, S., Croitoru, M.: Toward a more efficient generation of structured argumen-
tation graphs. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Computational Models of
Argument - Proceedings of COMMA 2018, Warsaw, Poland, 12-14 September 2018. Fron-
tiers in Artificial Intelligence and Applications, vol. 305, pp. 205–212. IOS Press (2018).
https://doi.org/10.3233/978-1-61499-906-5-205

30

http://www.booksonline.iospress.nl/Content/View.aspx?piid=1930
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1930
https://permalink.obvsg.at/AC13773888
https://permalink.obvsg.at/AC13773888

	Introduction
	Preliminaries
	Argumentation Frameworks
	Complexity

	Graph Classes
	Acyclicity
	Symmetry
	Bipartiteness
	Tractable Fragments

	Conclusion
	Proof Details
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8


