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Abstract. In this paper, we consider SETAFs due to Nielsen and Parsons, an extension of
Dung’s abstract argumentation frameworks that allow for collective attacks. We first pro-
vide a comprehensive analysis of the expressiveness of SETAFs under conflict-free, naive,
stable, complete, admissible and preferred semantics. Our analysis shows that SETAFs are
strictly more expressive than Dung AFs. Towards a uniform characterization of SETAFs
and Dung AFs we provide general results on expressiveness which take the maximum de-
gree of the collective attacks into account. Our results show that, for each k > 0, SETAFs
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only allow for collective attacks of at most k arguments.
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1 Introduction
Abstract argumentation frameworks (AFs) as introduced by Dung in his seminal paper [2] are a
core formalism in formal argumentation and have been extensively studied in the literature. A
popular line of research investigates extensions of Dung AFs that allow for a richer syntax (see,
e.g. [1]). In this work we consider SETAFs as introduced by Nielsen and Parsons [5] which gen-
eralize the binary attacks in Dung AFs to collective attacks such that a set of arguments B attacks
another argument a but no subset of B attacks a. The semantics as proposed in [5], make SETAFs
a conservative generalization of Dung AFs in the sense that a SETAF that has only simple attacks
is evaluated the same way as the corresponding Dung AF.

As illustrated in [5], there are several scenarios where arguments interact and can constitute
an attack on another argument only if these arguments are jointly taken into account. Represent-
ing such a situation in Dung AFs often require additional artificial arguments that “encodes” the
conjunction of arguments. This is also observed in a recent comprehensive investigation on trans-
lations between different abstract argumentation formalisms [6]. There, it is shown that SETAFs
allow for more straightforward and compact encodings of support between arguments than AFs
do. However, to the best of our knowledge, there has not been a thorough investigation to which
extent the concept of collective attacks increases the expressiveness of SETAFs compared to Dung
AFs.

Characterizations and comparisons of the expressiveness of argumentation formalisms (and
non-monotonic formalisms in general) have been identified as a fundamental basis in order to
understand the different capabilities of formalisms [3, 8, 9]. A successful notion to compare the
expressiveness of argumentation formalisms is the notion of the signature [3] of a formalisms
w.r.t. a semantics, that is the collection of all sets of extensions that can be expressed with at least
one argumentation framework. There exist exact characterizations for most of the semantics for
Dung AFs [3] and Abstract Dialectical Frameworks (ADFs) [7, 8, 9]. As already observed by
Polberg [6] collective attacks allow to enforce certain sets of extensions that cannot be obtained
with Dung AFs. However, there are no characterizations of the signatures for SETAFs and thus
the precise differences in expressiveness to Dung AFs and ADFs are still unclear. In this work
we investigate the signatures of SETAFs for conflict-free, naive, stable, complete, admissible and
preferred semantics. Moreover, we investigate whether the maximum degree of joint attacks affects
the expressiveness of SETAFs.

Contributions. The main contributions of our work are as follows.

• In Section 3 we provide full characterizations of the extension-based signatures of SETAFs
for conflict-free, naive, stable, complete, admissible and preferred semantics. By that we
characterize the exact difference in expressiveness between Dung AFs and SETAFs when
considering extension-based semantics.

• In Section 4 we study k-SETAF where attacks are restricted to at most k arguments attacking
another argument. Our characterizations of signatures for k-SETAFs for conflict-free, naive,
stable, admissible and preferred semantics show that the degree of the allowed attacks is
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crucial for the expressiveness. That is, k-SETAFs form a strict hierarchy of expressiveness
when considering different values for k.

Some of the technical proofs are omitted in the maint part of the paper but are provided in the
corresponding appendices.

2 Preliminaries
We first introduce formal definitions of argumentation frameworks following [2, 5] and then recall
the relevant work on signatures.

2.1 Argumentation Frameworks with collective attacks
Throughout the paper, we assume a countably infinite domain A of possible arguments.

Definition 1. A SETAF is a pair F = (A,R) where A ⊆ A is finite, and R ⊆ (2A \ ∅)× A is the
attack relation. A k-SETAF is a SETAF where for all (S, a) ∈ R we have |S| ≤ k. The collection
of all SETAFs (k-SETAFs) over A is given as AFA (AFkA).

We will call 1-SETAF, i.e. SETAFs that only allow for binary attacks, Dung argumentation
frameworks (AFs) as they are equivalent to the AFs introduced in [2]. We write S 7→R b if there is
a set S ′ ⊆ S with (S ′, b) ∈ R. Moreover, we write S ′ 7→R S if S ′ 7→R b for some b ∈ S. We drop
subscript R in 7→R if there is no ambiguity.

Definition 2. Given a SETAF F = (A,R), an argument a ∈ A is defended (in F ) by a set S ⊆ A
if for each B ⊆ A, such that B 7→R a, also S 7→R B. A set T of arguments is defended (in F ) by
S if each a ∈ T is defended by S (in F ).

Next, we introduce the semantics we study in this work. These are the naive, stable, preferred,
complete, and grounded semantics, which we will abbreviate by naive, stb, pref, com, and grd,
respectively. For a given semantics σ, σ(F ) denotes the set of extensions of F under σ.

Definition 3. Given a SETAF F = (A,R), a set S ⊆ A is conflict-free (in F ), if S ′ ∪ {a} 6⊆ S
for each (S ′, a) ∈ R. We denote the set of all conflict-free sets in F as cf(F ). S ∈ cf(F ) is called
admissible (in F ) if S defends itself. We denote the set of admissible sets in F as adm(F ). For a
conflict-free set S ∈ cf(F ), we say that

• S ∈ naive(F ), if there is no T ∈ cf(F ) with T ⊃ S,

• S ∈ stb(F ), if S 7→ a for all a ∈ A \ S,

• S ∈ pref(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) s.t. T ⊃ S,

• S ∈ com(F ), if S ∈ adm(F ) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(F ), if S =
⋂
T∈com(F ) T .
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As shown in [5], most of the fundamental properties of Dung AFs extend to SETAFs. We
have the same relations between the semantics, i.e. stb(F ) ⊆ pref(F ) ⊆ com(F ) ⊆ adm(F ) ⊆
cf(F ) and the grounded extension is the unique minimal complete extension for any SETAF F .
Moreover, Dung’s fundamental lemma generalizes to SETAF.

Lemma 1 ([5]). Given a SETAF F = (A,R), a set B ⊂ A, and arguments a, b ∈ A that are
defended by B. Then (a) B ∪ {a} is admissible in F and (b) B ∪ {a} defends b in F .

The following result is in the spirit of Dung’s fundamental lemma and is used later.

Lemma 2. Given a SETAF F = (A,R) and two sets S, T ⊆ A. If both S and T defend itself in F ,
then S ∪ T defends itself in F .

Proof. Towards a contradiction assume that S ∪ T does not defend itself, i.e. there exists a set
B ⊆ A with B 7→ (S ∪ T ) such that (S ∪ T ) 67→ B. Consider B 7→ S. Since (S ∪ T ) 67→ B also
S 67→ B and thus S does not defend itself in F which is a contradiction to the assumption. The
case where B 7→ T behaves symmetrically.

2.2 Signatures
The concept of signatures of argumentation semantics was introduced in [3] to characterize the
expressiveness of Dung AFs and has been extended to other argumentation frameworks [8, 9].
Signatures characterize all possible sets of extensions, argumentation frameworks can provide for
a given semantics.

Definition 4. The signature Σk
σ of a semantics σ is defined as

Σk
σ =

{
σ(F ) | F ∈ AFkA

}
.

For unrestricted SETAFs we use Σ∞σ = {σ(F ) | F ∈ AFA}.

For characterizing the signatures we make frequent use of the following concepts.

Definition 5. Given S ⊆ 2A, we use

(a) ArgsS to denote
⋃
S∈S S;

(b) dcl(S) to denote the downward-closure {S ′ ⊆ S | S ∈ S} of S; and

(c) PAttS to denote the set of potential conflicts {S ⊆ ArgsS | S 6∈ dcl(S)} in S.

We call S ⊆ 2A an extension-set (over A) if ArgsS is finite. The completion-sets CS(E) of E ⊆
ArgsS are given by CS(E) = {S ∈ S | E ⊆ S,@S ′ ∈ S, E ⊆ S ′ ⊂ S}.

As only extension-sets can appear in the signature of a semantics we will tacitly assume that
all sets S in our characterizations are extension-sets.
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Definition 6. Let S ⊆ 2A. We call S

• downward-closed if S = dcl(S);

• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S, S ′ ∈ S,
S ⊆ S ′ implies S = S ′;

• tight if for all S ∈ S and a ∈ ArgsS it holds that if S ∪ {a} /∈ S then there exists an s ∈ S
such that {a, s} ∈ PAttS;

• conflict-sensitive if for each A,B ∈ S such that A ∪ B /∈ S it holds that ∃a, b ∈ A ∪ B :
{a, b} ∈ PAttS;

• com-closed if for each T ⊆ S: if {a, b} 6∈ PAttS for each a, b ∈ ArgsT, then ArgsT has a
unique completion-set in S , i.e. |CS(ArgsT)| = 1.

The main results for Dung AFs are summarized in the following theorem.

Theorem 1 ([3]). Characterizations of the signatures for Dung AFs are as follows:

Σ1
cf = {S 6= ∅ | S is downward-closed and tight}

Σ1
naive = {S 6= ∅ | S is incomparable and dcl(S) is tight}
Σ1

stb = {S | S is incomparable and tight}
Σ1

adm = {S 6= ∅ | S is conflict-sensitive and contains ∅}
Σ1

pref = {S 6= ∅ | S is incomparable and conflict-sensitive}

Σ1
com ⊆ {S 6= ∅ | S is com-closed and

⋂
S ∈ S}

3 Signatures of SETAFs with unrestricted collective attacks
In this section we give full characterizations of the SETAF signatures for the semantics under
consideration. We start with the signatures of stable and preferred semantics. For both semantics
we have that an extension cannot be a subset of another extension and thus the extension-sets of
these semantics are incomparable. With the following construction we show that, in turn, each
incomparable extension-set S can be realized under stable and preferred semantics.

Definition 7. Given an incomparable extension-set S containing at least one non-empty set we
define the SETAF F stb

S = (ArgsS, R
stb
S ) with Rstb

S = {(S, a) | S ∈ S, a ∈ ArgsS \ S}.

Theorem 2. We have Σ∞stb = {S | S is incomparable} and Σ∞pref = Σ∞stb \ {∅}.

Proof Sketch (for stable). First, as stb(F ) ⊆ pref(F ) and the latter is incomparable by definition
we have that also stb(F ) is incomparable for any SETAF F .

For S = ∅ we can just consider the SETAF F∅ = ({a}, {({a}, a)}) with stb(F∅) = ∅. For
S = {∅} we can just consider the empty SETAF F{∅} = ({}, {}) with stb(F{∅}) = {∅}. Given an
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incomparable set S containing at least one non-empty set we, show that stb(F stb
S ) = S. stb(F stb

S ) ⊇
S: Consider S ∈ S. For each a ∈ ArgsS \ S we have S 7→ a by construction. Moreover, as
S is incomparable the set S is conflict-free and thus S ∈ stb(F stb

S ). stb(F stb
S ) ⊆ S: Consider

S ⊆ ArgsS, S 6∈ S. First, if there is an E ∈ S such that E ⊂ S then for each argument a ∈ S \ E
we have E 7→ a in F stb

S and thus S attacks itself. Hence, such an S is not stable. Alternatively, if
there is no E ∈ S such that E ⊆ S then (a) S does not attack any argument and (b) there is an
argument a ∈ E that is not contained in S. Hence, S is not stable in F stb

S .

By the above characterizations we can see that SETAFs are strictly more expressible than AFs
for preferred and stable semantics. While for AFs we require the extension-set S to be tight in
order to be realizable under stb and conflict-sensitive to be realizable under pref, we can realize
any extension-set S that is just incomparable with SETAFs. We borrow an example from [6, 8] to
illustrate this difference in expressiveness.

Example 1. Consider the extension-set S = {{a, b}, {b, c}, {a, c}}. As S is neither tight nor
conflict-sensitive there is no AF F with stb(F ) = S or pref(F ) = S [3]. Now consider the SETAF
G = ({a, b, c}, (({a, b}, c), ({a, c}, b), ({b, c}, a)). It is easy to verify that stb(G) = pref(G) = S.
♦

Remark 1. Interestingly Σ∞stb coincides with the stable signature for bipolar abstract dialectical
frameworks (BADF) [8, Thm. 22]. That is, although BADFs allow for strictly more notions of
attacks and even allows for support it does not provide more expressiveness than SETAFs when
using stable semantics. It is worth to mention that when realizing an extension-set with the con-
struction of [8, Thm. 22] one obtains a BADF whose acceptance conditions are all anti-monotonic,
i.e., when the condition holds for a model S ⊆ A then it holds for each model S ′ ⊂ S as well, and
one can show that such an BADF can always be transformed into an equivalent SETAF.

We next consider conflict-free and naive semantics. The characteristics of conflict-free sets is
that each subset is again conflict-free. We will show that this property of being downward-closed
is also sufficient to realize an extension-set with a SETAF.

Definition 8. Given a non-empty extension-set S we define the SETAF F cf
S = (ArgsS, R

cf
S ) with

Rcf
S = {(S, a) | S ∈ S, a ∈ ArgsS, S ∪ {a} ∈ PAttS}.

Lemma 3. For each extension-set S we have cf(F cf
S ) = dcl(S).

With the above result we obtain characterizations for the signatures of cf and naive.

Theorem 3. We have

• Σ∞cf = {S 6= ∅ | S is downward-closed} and

• Σ∞naive = {S 6= ∅ | S is incomparable}.

In contrast, for realization with AFs and cf we require S to be tight and downward-closed and
for naive we require that S is incomparable and that dcl(S) is tight.
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Example 2. Consider the extension-set S = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}. As S is not
tight there is no AF F with cf(F ) = S. Now consider the SETAF G = ({a, b, c}, (({a, b}, c),
({a, c}, b), ({b, c}, a)). It is easy to verify that cf(G) = S. ♦

In order the characterize the signature of admissible semantics in SETAFs we first generalize
the notion of an extension-set being conflict-sensitive to SETAFs. That is, instead of requiring that
if two sets A,B in the extension-set S whose union A ∪ B does not appear in S allow for a binary
conflict, we now only require that they allow for conflicts (A, b), (B, a) with a ∈ A, b ∈ B.

Definition 9. A set S ⊆ 2A is called set-conflict-sensitive if for each A,B ∈ S such that A∪B /∈ S
it holds that ∃b ∈ B : A ∪ {b} ∈ PAttS. Furthermore, S is said to be union-closed if ∅ ∈ S and
each pair A,B ∈ S satisfies A ∪B ∈ S. Let us also denote by ucl(S) the ⊆-minimal union-closed
extension-set such that S ⊆ ucl(S).

By Lemma 2, we have that all extension-sets realizable with the admissible semantics are set-
conflict-sensitive.

Lemma 4. For any SETAF F , adm(F ) is set-conflict-sensitive and contains ∅.

Furthermore, it turns out that S being set-conflict-sensitive (and containing the empty set) is
also sufficient for being realizable in SETAFs under admissible semantics. The following two
propositions give us some hint how to prove this claim: we reuse the conflict-free framework of
Definition 8 and combine it with a framework that realizes the union-closure of the extension-set.

Proposition 1. Let S be a set-conflict-sensitive extension-set that contains ∅. Then, we have that
S = dcl(S) ∩ ucl(S).

Proposition 2. Let F1 = (A1, R1) and F2 = (A2, R2) be two argumentation frameworks and let
S ⊆ (A1∩A2) be a set of arguments. Then, (1) S is conflict-free w.r.t. F1∪F2 = (A1∪A2, R1∪R2)
iff S is conflict-free w.r.t. both F1 and F2; and (2) if S is admissible w.r.t. both F1 and F2, then S
is admissible w.r.t. F1 ∪ F2 = (A1 ∪ A2, R1 ∪R2).

The next two lemmas analyze the SETAF F cf w.r.t. admissible semantics.

Lemma 5. Let S be a set-conflict-sensitive extension-set that contains ∅ and S ⊆ ArgsS be some
set of arguments such that S =

⋃
T for some subset T ⊆ S. Then, we have that S ∈ cf(F cf

S )
implies S ∈ S.

Lemma 6. Let S be a set-conflict-sensitive extension-set that contains ∅. Then, we have that
S ⊆ dcl(S) ⊆ adm(F cf

S ).

Finally, we expand F cf
S by additional arguments and attacks that ensure that only sets S ∈ S are

admissible in the resulting SETAF F adm
S . In particular, for each argument a we add an argument xa

that attacks a and itself, and is only attacked by sets S ∈ S.

Definition 10. Given an extension S set we define F ucl
S = (Aucl

S , R
ucl
S ) with Aucl

S = ArgsS ∪ {xa |
a ∈ ArgsS} and Rucl

S = {({xa}, a) | a ∈ ArgsS} ∪ {({xa}, xa) | a ∈ ArgsS} ∪ {(S, {xa}) | S ∈
S and a ∈ S}. We then define F adm

S = (Aadm
S , Radm

S ) = (F cf
S ∪ F ucl

S ).
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With the following lemma we show that F ucl
S can realize ucl(S).

Lemma 7. For every extension-set S that is set-conflict-sensitive and contains ∅, we have that
ucl(S) ⊆ adm(F ucl

S ).

Next we combine the results for the SETAFs F cf
S , F ucl

S to obtain that their union F adm
S realizes

admissible extension-sets S.

Lemma 8. For every extension-set S that is set-conflict-sensitive and contains ∅, we have that
adm(F adm

S ) = S.

Proof. From Proposition 1, we have that S = dcl(S)∩ucl(S). Then, from Lemmas 6 and 7, we get
that S ⊆ adm(F cf

S )∩adm(F ucl
S ). Furthermore, from Proposition 2, this implies that S ⊆ adm(F adm

S ).
Let us show that adm(F adm) ⊆ S also holds. Pick any A ∈ adm(F adm). Then, for every argument
a ∈ A (there is an attack ({xa}, a) ∈ Radm and, so) there must be an attack (Ta, {xa}) ∈ Radm with
Ta ⊆ A. Furthermore, by construction, we also have that Ta ∈ S and a ∈ Ta. Let T = {Ta ⊆ A |
a ∈ A} ⊆ S and C =

⋃
T. Then, we have that that C = A and, from Lemma 5 and the fact that

A ∈ adm(F adm
S ) ⊆ cf(F adm

S ) ⊆ cf(F cf
S ), it follows that, A ∈ S.

Now we can give an exact characterization of Σ∞adm.

Theorem 4. Σ∞adm = {S 6= ∅ | S is set-conflict-sensitive and contains ∅}.

AFs require that an extension-set S is conflict-sensitive in order to be realizable under ad-
missible semantics. Being set-conflict-sensitive is a strictly weaker condition as illustrated in the
following example.

Example 3. Consider the extension-set S = {∅, {a, b}, {b, c}, {a, c}}. As {a, b, c} 6∈ S but {a, b},
{b, c},∈ S and both {a, c} 6∈ PAttS and {b, c} 6∈ PAttS the set S is not conflict-sensitive. Thus, there
is no AF F with adm(F ) = S. Now consider the SETAF G = ({a, b, c}, (({a, b}, c), ({a, c}, b),
({b, c}, a)). It is easy to verify that adm(G) = S. ♦

Note also that the converse of Proposition 1 does not hold and that satisfying S = dcl(S) ∩
ucl(S) is a necessary, but not a sufficient condition. The following example illustrates this fact.

Example 4. Consider the extension-set S = {∅, {a}, {a, b}, {b, c}, {a, c}}. Then, we have that
dcl(S) = S ∪ {{b}, {c}} and ucl(S) = S ∪ {{a, b, c}}. It is easy to see that S = dcl(S) ∩ ucl(S),
but that S is not set-conflict-sensitive: pick A = {a} and B = {b, c}. Hence, S does not belong to
the signature of the admissible semantics. ♦

Finally, we consider the signature of complete semantics. First, recall that the completion-sets
CS(E) of a set E ⊆ ArgsS are the ⊆-minimal sets S ∈ S with E ⊆ S. Next we introduce the
notion of an extension-set to be set-com-closed which generalizes the concept of being com-closed
and allows for an exact characterization of the signature of complete semantics. The intuition is
that if we pick some elements from S then either the union of these sets has a unique completion
or we can draw an attack within this set.
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Definition 11. A set S ⊆ 2A is called set-com-closed iff for each T,U ⊆ S with T =
⋃

T,
U =

⋃
U the following holds: If T, U ∈ dcl(S) and |CS(T ∪ U)| 6= 1 then there is an argument

u ∈ U such that T ∪ {u} ∈ PAttS.

Intuitively the set of complete extensions is set-com-closed because whenever the union of
some complete extension has no conflict, by Lemma 2, then this union is admissible and there
is a unique minimal complete extensions containing this admissible set. Moreover, the grounded
extensions is the intersection of all complete extensions and complete as well.

Lemma 9. For every SETAF F we have that (a) the extension-set com(F ) is set-comp-closed and
(b)
⋂

com(F ) ∈ com(F ).

Our realization for complete semantics is based on the construction for the admissible seman-
tics given in Definition 10. First, given an extension-set S, by reduced(S) = {S\

⋂
S | S ∈ S},

we denote a reduced extension-set whose corresponding ground extension is empty. Let S′ =
reduced(S). We then realize S∗ = dcl(S′) ∩ ucl(S′) = {

⋃
T | T ⊆ S,

⋃
T ∈ dcl(S′) } and add

further attacks such that each set E ∈ S∗ defends all arguments of the unique set in CS(E). In the
following we use CS(E) to denote the unique element of CS(E) iff |CS(E)| = 1 and the empty set
otherwise.

Definition 12. Given an extension-set S, let S′ = reduced(S) and S∗ = dcl(S′)∩ ucl(S′). Then, by
F com
S = (Aadm

S , Rcom
S ) we denote a SETAF with Rcom

S = Radm
S∗ ∪ R′ and where R′ = {(A ∪ B, xa) |

A,B ∈ S′ \ {∅}, a ∈ CS′(A ∪B)}.

One can show that this construction realizes extension-sets with complete semantics whenever
possible.

Lemma 10. For every extension-set S that is set-comp-closed and satisfies
⋂

S ∈ S, we have that
com(F com

S ) = S.

This now gives a complete characterization of the signature for complete semantics.

Theorem 5. Σ∞com = {S 6= ∅ | S is set-comp-closed and
⋂
S ∈ S}.

Notice that when considering AFs not all extension-sets that are com-closed and satisfy
⋂

S ∈
S are realizable with the complete semantics and a full characterization of complete semantics is
an open problem [3]. This is in contrast to the above result which provides a full characterizations
for SETAFs.

Example 5. Consider the extension-set S= {∅, {a}, {b}, {c}, {a, b, c}, {a, d, e}, {b, d, f}, {x, c},
{x, d}} which cannot be realized with AFs [3, Example 8]. It is easy to verify that S set-comp-
closed and thus com(F com

S ) = S. ♦
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4 Signatures of SETAFs with Bounded Degree Collective At-
tacks

We now investigate how the degree of collective attacks affects the expressiveness, i.e. we study
k-SETAFs. Notice that in all the constructions of the last section we used attacks of unbounded
degree, i.e. the actual degree typically depended on the size of the extensions.

We first generalize the properties used in our signatures by adding a parameter k.

Definition 13. The possible conflicts in a k-SETAF w.r.t. an extension-set S are defined as PAttkS =
{S ⊆ ArgsS | |S| ≤ k+1 and S 6∈ dcl(S)}. An extension-set S ⊆ 2A is k-tight if for all S ∈ S and
a ∈ ArgsS it holds that if S ∪ {a} /∈ S then there exists a set S ′ ⊆ S, such that S ′ ∪ {a} ∈ PAttkS.

For k = 1 the notion of k-tight corresponds to the notion of tight on Dung AFs (see Defini-
tion 6) while for k ≥ ArgsS the notion of k-tight simplifies to: for all S ∈ S and a ∈ ArgsS either
S ∪ {a} ∈ S or there is no S ′ ∈ S with S ∪ {a} ⊆ S ′. Thus, S being∞-tight is implied by both S
being incomparable or S being downward-closed.

We start with presenting our results for the signatures for conflict-free and naive semantics.
We already know that conflict-free extension-sets must be downward-closed. In k-SETAFs we
additionally have that they must be k-tight which reflects that if S ∪ {a} is not conflict-free there
must be an attack in the set of degree at most k. The following construction allows us to also
realize such extension-sets.

Definition 14. For downward-closed and k-tight extension-sets S, let F cf,k
S = (ArgsS, R

cf,k
S ) be the

k-SETAF with Rcf,k
S = {(S, a) | S ⊆ ArgsS, a ∈ ArgsS, S ∪ {a} ∈ PAttkS}.

One can show that (a) for each S that is downward-closed and k-tight we have that cf(F cf,k
S ) =

S and (b) for each S that is incomparable and whose downward-closure is k-tight we have that
naive(F cf,k

S ) = S.

Theorem 6. We have that

• Σk
cf = {S 6= ∅ | S is downward-closed and k-tight} and

• Σk
naive = {S 6= ∅ | S is incomparable and dcl(S) is k-tight}.

The following example shows that the expressiveness of conflict-free and naive semantics
strictly increases with the degree k of the attacks.

Example 6. Consider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-sets S =
{S ⊆ A | |S| ≤ k+ 1} and T = {S ⊆ A | |S| = k+ 1}. We have that S is not k-tight, as A 6∈ S,
but for S = {a1, a2, . . . , ak+1}we have that every S ′ ⊂ {a1, a2, . . . , ak+1} satisfies S ′∪{ak+2} ∈ S
and thus S ′∪{ak+2} 6∈ PAttkS. Note that S ∪{ak+2} /∈ PAttkS because |S ∪{al+2}| > k+ 1. Hence,
S cannot be realized as conflict-free sets of any k-SETAF. However, one can easily verify that S is
(k + 1)-tight and thus can be realized as conflict-free sets of some (k + 1)-SETAF. Moreover, as
dcl(T) = S we have that dcl(T) is not k-tight, i.e. T cannot be realized as naive sets of a k-SETAF,
and dcl(T) is (k + 1)-tight, i.e. T can be realized as naive sets of a (k + 1)-SETAF. ♦
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Next we consider the stable signature for k-SETAFs. Again, the set of stable extensions of a
k-SETAF must be k-tight reflecting the fact that each argument which is not in an extension S must
be attacked by S via a degree k attack. The following construction expands F cf,k

S by arguments xs
that eliminate unwanted naive extensions of F cf,k

S .

Definition 15. When given an extension-set S that is incomparable and k-tight we can construct
the k-SETAF F stb

k = (A,R) based on F cf,k
S as follows:

A = ArgsS ∪ {xS | S 6∈ S and S ∈ naive(F cf,k
S )}

R = Rcf,k
S ∪ {({a}, xS), ({xS}, xS) | a ∈ ArgsS \ S}

One can show that for each S that is incomparable and k-tight we have that stb(F stb,k
S ) = S by

building on Theorem 6 and using similar arguments as in [3, Prop. 7].

Theorem 7. Σk
stb = {S | S is incomparable and k-tight}.

The above theorem gives a strict hierarchy of signatures Σk
stb which is illustrated in the follow-

ing example.

Example 7. Consider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-set T =
{S ⊆ A | |S| = k + 1} as in Example 6. Recall that T was not realizable by the naive semantics
because dcl(T) was not k-tight. It results that T is itself not k-tight either. Note that A 6∈ T, but
for {a1, a2, . . . , ak+1} ∈ S we have that any S ⊂ {a1, a2, . . . , ak+1} satisfies S ∪ {ak+2} ∈ dcl(T)
and thus S ∪ {ak+2} 6∈ PAttkT. Hence, T cannot be realized as stable extensions of a k-SETAF.
However, one can easily verify that T is (k+ 1)-tight and thus can be realized as stable extensions
of a (k + 1)-SETAF. ♦

Note that, for incomparable S, whenever dcl(S) is k-tight, also S is k-tight. Hence, for k-
SETAFs, the stable semantics is more expressible than the naive semantics. We next show that
stable semantics is indeed strictly more expressive than naive semantics.

Example 8. Consider the sets of arguments X = {x1, . . . xk+1}, Y = {y1, . . . yk+1} additional
arguments a, b and the extension-set S = {X ∪ {a}} ∪ {{b, yj} ∪X \ {xj} | 1 ≤ j ≤ k+ 1}. The
set S is k-tight as {a, b}, {a, yi}, {yi, yj}, {xi, yi} ∈ PAttkS. On the other hand, dcl(S) is not k-tight
as for the set X ∈ dcl(S) there is no X ′ ⊆ X such that |X ′| ≤ k and X ′∪{b} ∈ PAttkS. That is, the
extension-set S can be realized with a k-SETAF under stable semantics but not with a k-SETAF
under the naive semantics. ♦

Finally, we consider the signatures of the admissible and preferred semantics for k-SETAFs. It
turns out that a simple generalization of set-conflict-sensitive is not sufficient to characterize admis-
sible extension-sets. We thus introduce the more involved notion of k-defensive, which simplifies
to set-conflict-sensitive for k =∞ and to conflict-sensitive for k = 1.

Definition 16. A set S ⊆ 2A is called k-defensive if there exists a set P of pairs (AiS, b) with
AiS ⊆ S ∈ S and b ∈ ArgsS \ S and AiS ∪ {b} ∈ PAttkS, such that (i) for S, S ′ ∈ S with S ∪ S ′ 6∈ S
there is a pair (AiS, b) ∈ P with b ∈ S ′, and (ii) for each (AiS, b) ∈ P with b ∈ S ′ there is
(AjS′ , a) ∈ P with a ∈ AiS .
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Whenever the union of two admissible sets is not admissible then there (i) must be an attack
of degree ≤ k in this union and (ii) each admissible set must defend itself against all attacks we
introduce to establish (i), again using only attacks of degree ≤ k.

Lemma 11. For any SETAF F we have that adm(F ) is k-defensive and contains ∅.

Remark 2. For k = 1, we can make all the elements of P symmetric and thus the second condition
of the above definition holds trivially true. That is, the notion of 1-defensive reduces to being
conflict-sensitive, cf. Definition 6. For unbounded k, each set (AiS, b) can be replaced by (S, b)
without violating either of the two conditions in the above definition. Condition (i) then simplifies
to for S, S ′ ∈ S with S∪S ′ 6∈ S there is a b ∈ S ′ with (S, b). Then condition (ii) is trivially satisfied
and set-defensive reduces to being set-conflict-sensitive.

Similarly as done in Section 3 for SETAFs of unbounded attack degree, we build the k-SETAF
for the admissible semantics with several modules, starting with the module that exploits conflict-
freeness.

Definition 17. When given a k-defensive extension-set S and a set P that meets the conditions of
Definition 16 we define the k-SETAF F cf,k

S,P = (ArgsS, P ).

We are now able to obtain similar results for this module as for the corresponding module in
general SETAFs.

Lemma 12. Let S be a k-defensive signature that contains ∅, P be some set that meets the condi-
tions of Definition 16 and S ⊆ ArgsS be some set of arguments such that S =

⋃
T for some subset

T ⊆ S. Then, we have that S ∈ cf(F cf,k
S,P ) implies S ∈ S.

Lemma 13. Let S be a k-defensive signature with ∅ ∈ S. Then, S ⊆ dcl(S) ⊆ adm(F cf,k
S,P ).

Towards our defense module we recall the notion of defense-formulas from [3].

Definition 18 ([3]). Given an extension-set S, the defense-formula DS
a of an argument a ∈ ArgsS

in S is defined as
∨
S∈S s.t. a∈S

∧
s∈S\{a} s.

DS
a given as (a logically equivalent) CNF is called CNF-defense-formula CDS

a of a in S.

The defense formula DS
a tells us which arguments must be in the extension in order to defend

the argument a. We can exploit this by using the following technical lemma.

Lemma 14 ([3]). Given an extension-set S and an argument a ∈ ArgsS, then for each S ⊆ ArgsS
with a ∈ S: (S \ {a}) is a model of DS

a (resp. CDS
a) iff there exists an S ′ ⊆ S with a ∈ S ′ such that

S ′ ∈ S.

For our defense module we adjust the corresponding parts from the canonical defense-argu-
mentation-framework in [3] to our setting with k-SETAFs.

12



Definition 19. Given an extension-set S, we call F def
S = (Adef

S , R
def
S ) with

Adef
S =ArgsS ∪

⋃
a∈ArgsS

{αaγ | γ ∈ CDS
a}

Rdef
S =

⋃
a∈ArgsS

{({b}, αaγ), ({αaγ}, αaγ), ({αaγ}, a) | γ ∈ CDS
a, b ∈ γ}

the defense-argumentation-framework of S, and let F adm,k
S,P = F cf,k

S,P ∪ F
def
S .

We next show that this defense framework ensures that only sets in S or the union of such sets
are admissible.

Lemma 15. For every extension-set S that contains ∅, we have that S ∈ adm(F def
S ) iff S =

⋃
T

for some T ⊆ S.

When combining the two modules to a SETAF F adm,k
S,P by the Lemmas 12, 13 and Lemma 15

we get a SETAF that realizes admissible extension-sets.

Lemma 16. For every extension-set S that is k-defensive and contains ∅, adm(F adm
S,P ) = S.

We now can state the exact characterization of the admissible signature in k-SETAFs.

Theorem 8. We have that

• Σk
adm = {S 6= ∅ | S is k-defensive and contains ∅} and

• Σk
pref = {S 6= ∅ | S is incomparable and k-defensive}.

Notice that we omitted complete semantics for k-SETAFs. This is due to the fact that find-
ing an exact characterization is a hard problem (open even for Dung AFs) and our under-/over-
approximations are rather tedious.

5 Discussion and Related Work
Discussion of our Results. In this work we characterized the signatures of SETAFs and SETAFs
with bounded degree attacks. Our results on signatures of general SETAFs are summarized in the
following theorem which is by Theorems 2-5.

Theorem 9. Characterizations of the signatures for general SETAFs are as follows:

Σ∞cf = {S 6= ∅ | S is downward-closed}
Σ∞naive = {S 6= ∅ | S is incomparable}

Σ∞stb = {S | S is incomparable}
Σ∞adm = {S 6= ∅ | S is set-conflict-sensitive and contains ∅}
Σ∞pref = {S 6= ∅ | S is incomparable}

Σ∞com = {S 6= ∅ | S is set com-closed and
⋂

S ∈ S}
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Our results on signatures of k-SETAFs are summarized in the following theorem which is
by Theorems 6-8.

Theorem 10. Characterizations of the signatures for k-SETAFs are as follows:

Σk
cf = {S 6= ∅ | S is downward-closed and k-tight}

Σk
naive = {S 6= ∅ | S is incomparable and dcl(S) is k-tight}
Σk

stb = {S | S is incomparable and k-tight}
Σk

adm = {S 6= ∅ | S is k-defensive and contains ∅}
Σk

pref = {S 6= ∅ | S is incomparable and k-defensive}

We highlight some interesting findings: (1) For all the semantics SETAFs are strictly more
expressive than AFs (even for degree 2 attacks). (2) For SETAFs the signatures of stable, preferred
and naive coincide which is in contrast to Dung AFs and k-SETAFs where we have strict subset
relations, i.e. Σk

naive ⊂ Σk
stb \ {∅} ⊂ Σk

pref for 1 ≤ k < ∞. (3) When considering the signatures of
k-SETAFs the expressiveness strictly increases with k for all of the semantics. (4) For stable se-
mantics the signature of SETAFs coincides with the signature of Abstract Dialectical Frameworks,
which allow for way more complex relations between arguments.

Related Work. The work closest to ours is by Linsbichler et al. [4] and by Polberg [6]. The
former studies SETAFs as a sub-class of ADFs with 3-valued semantics. In order to meet the 3-
valued setting the extension-based semantics of SETAFs are redefined as 3-valued semantics. They
then provide an algorithmic framework that tests whether a given set of 3-valued extensions can
be realized as SETAF. Their results allow to compare the expressiveness of admissible, complete,
preferred, and stable semantics in AFs, SETAFs, and ADFs, but do not provide an explicit charac-
terization of the sets that can be realized as SETAFs. Moreover, the setting with 3-valued semantics
is more restrictive than the extension-based view and thus these results do not translate to the orig-
inal definition of Dung AF and SETAF semantics. The work of Polberg [6, Section 4.4.1] studies
translations between different abstract argumentation formalisms in the extension-based setting. It
already shows that there are certain sets of extensions that can be realized by SETAFs but cannot
be realized with AFs, in order to show that certain translations are impossible. However, the exact
expressiveness of SETAFs is not investigated any further.

Acknowledgements. This research has been supported by FWF through projects I2854 and
P30168.

References
[1] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of dung frameworks

and their role in formal argumentation. IEEE Intelligent Systems, 29(1):30–38, 2014.

14



[2] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.
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A Proofs of Section 3

A.1 Signatures of stable and preferred semantics

We split the proof of Theorem 2 into two propositions.

Proposition 3. Σ∞stb = {S | S is incomparable}

Proof. First, as stb(F ) ⊆ pref(F ) and the latter is incomparable by definition we have that also
stb(F ) is incomparable for any SETAF F .

For S = ∅ we can just consider the SETAF F∅ = ({a}, {({a}, a)}) with stb(F∅) = ∅. For
S = {∅} we can just consider the empty SETAF F{∅} = ({}, {}) with stb(F{∅}) = {∅}. Given an
incomparable set S containing at least one non-empty set we construct the SETAF F stb = (A,R)
(cf. Definition 7). We have that stb(F stb) = S. stb(F stb) ⊇ S: Consider S ∈ S. For each
a ∈ ArgsS \ S we have (S, a) ∈ R by construction. Moreover, as S is incomparable the set S is
conflict-free and thus S ∈ stb(F stb). stb(F stb) ⊆ S: Consider S ⊆ ArgsS, S 6∈ S. First, if there
is an E ∈ S such that E ⊂ S then for each argument a ∈ S \ E we have (E, a) ∈ R and thus S
attacks itself. Hence, such an S is not stable. Alternatively, if there is no E ∈ S such that E ⊆ S
then (a) S does not attack any argument and (b) there is an argument a ∈ E that is not contained
in S. Hence, S is not stable in F stb.

Next consider preferred semantics. By definition the set of preferred extensions in incompara-
ble. We next show that being incomparable is also sufficient for an extension-set S to be realizable
under preferred semantics.

Proposition 4. Σ∞pref = {S 6= ∅ | S is incomparable}

Proof. First, pref(F ) is incomparable and non-empty by definition (for any SETAF F ). For S =
{∅} we can just consider the empty SETAF F{∅} = ({a}, {({a}), a}) with pref(F{∅}) = {∅}.
Given an incomparable set S containing at least one non-empty set we again consider the SETAF
F stb = (A,R) (cf. Definition 7). We have that pref(F stb) = S.

pref(F stb) ⊇ S: Consider S ∈ S. For each a ∈ ArgsS \ S we have (S, a) ∈ R by construction.
Moreover, as S is incomparable the set S is conflict-free and thus S ∈ stb(F stb).

pref(F stb) ⊆ S: Consider S ⊆ ArgsS, S 6∈ S. First, if there is an E ∈ S such that E ⊂ S,
then there is an argument a ∈ S \ E such that (E, a) ∈ R and thus S attacks itself and thus is
neither conflict-free nor preferred. Thus let us consider the case where there is no E ∈ S such that
E ⊆ S. Then S does not attack any argument. Notice that by construction all arguments, except
those arguments contained in all sets S ∈ S (we call them skeptically accepted arguments), are
attacked by at least one set S ∈ S. If S contains an argument that is not skeptically accepted, S
cannot be admissible as it is attacked and has no outgoing attacks. On the other hand side if S only
contains skeptically accepted arguments then it is a strict subset of some set in S and thus cannot
be ⊆-maximal among the admissible sets. That is, S 6∈ pref(F stb).
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A.2 Signatures of grounded, conflict-free and naive semantics
First, we consider grounded semantics. Grounded semantics, in SETAFs as well as in AFs, is
a unique status semantics, i.e. it always yields a unique extensions. Thus it can only realize
extension-sets that contain exactly one extension.

Proposition 5. Σ∞grd = {S | |S| = 1}

Proof. The grounded semantics always proposes a unique extension. An extension-set S = {S}
single set can be realized by the SETAF with arguments S and no attacks, i.e. by the SETAF
(S, ∅).

Next consider conflict-free sets. We have that if a set is conflict-free then also all it subsets are
conflict-free. As we show next, the fact that an extension-set is downward-closed is also sufficient
to realize it with a SETAF.
Lemma 3. (restated) For each extension-set S we have cf(F cf) = dcl(S).

Proof. Consider the SETAF F cf (see Definition 8) and let us show first that cf(F cf) ⊇ S. Pick any
S ∈ S and any attack (S ′, a) ∈ R with S ′ ⊆ S. By construction, we have that (S ′ ∪ {a}) ∈ PAttS
and, thus, that (S ′∪{a}) 6⊆ S. Hence, since S ′ ⊆ S, it follows that a /∈ S and that S is conflict-free.
Hence, we have that cf(F cf) ⊇ S and that dcl(cf(F cf)) ⊇ dcl(S). Furthermore, from Proposition 6,
we also have that cf(F cf) = dcl(F cf) and, thus, we get cf(F cf) ⊇ dcl(S). Let us show now that
cf(F ) ⊆ dcl(S) also holds. Pick S ∈ PAttS, some argument a ∈ S and let S ′ = S\{a}. Then, by
construction (S ′, a) ∈ R and, thus, S is not conflict-free.

Proposition 6. Σ∞cf = {S 6= ∅ | S is downward-closed}

Proof. By definition, if a set is conflict-free then all its subsets are conflict-free as well. Thus,
we have that cf(F ) is downward closed for all SETAFs F . We next consider the SETAF F cf (see
Definition 8). By Lemma 3 we have cf(F cf) = dcl(S) and thus also cf(F cf) = S.

Proposition 7. Σ∞naive = {S 6= ∅ | S is incomparable}

Proof. By definition, if a set is naive then all it is a maximal conflict-free set. Thus, we have that
naive(F ) is incomparable for all SETAFs F . We next consider the SETAF F cf (see Definition 8).
and show that naive(F cf) = S. First notice that by Lemma 3 we have cf(F ) = dcl(S). As S
contains exactly the⊆-maximal elements of dcl(S) and the naive extension of F are the⊆-maximal
elements of cf(F ) we obtain naive(F ) = S.

A.3 Signature of Admissible Semantics
This section is devoted to proof of Theorem 4.
Theorem 4. (restated) Σ∞adm = {S 6= ∅ | S is set-conflict-sensitive and contains ∅}.

We first show that the conditions of our characterization are indeed necessary.
Lemma 4. (restated) For any SETAF F we have that adm(F ) is set-conflict-sensitive and contains
{∅}.
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Proof. First, notice that the empty set is always admissible. Next assume there are two admissible
sets A, B such that the set C = A ∪ B is not admissible. By Lemma 2 the set C defends itself
against all attackers and thus there must be a conflict in C, i.e. there exists an attack (S, a) ∈ R
with S ⊆ C and a ∈ A.

• If a ∈ A then, as A is conflict-free, S∩B 6= ∅. Moreover, as A is admissible it has to defend
itself against (S, a), i.e. there is an attack (S ′, b) with S ′ ⊆ A and b ∈ S ∩ B. Hence, we
have S ′ ∪ {b} ∈ PAttadm(F ).

• If a ∈ B then, as B is conflict-free, S∩A 6= ∅. Moreover, as B is admissible it has to defend
itself against (S, a), i.e. there is an attack (S∗, c) with S∗ ⊆ B and c ∈ S ∩ A. Now, as A is
admissible as well, there is also an attack (S ′, b) with S ′ ⊆ A and b ∈ S∗ ⊆ B. Hence, we
have S ′ ∪ {b} ∈ PAttadm(F ).

We obtain that adm(F ) is set-conflict-sensitive.

Proposition 1 (restated) Let S be a set-conflict-sensitive extension-set that contains ∅. Then, we
have that S = dcl(S) ∩ ucl(S).

Proof. Pick any set-conflict-sensitive S and let S′ = dcl(S) and S′′ be the union closure of S′′. By
construction, we have that S′ is downward-closed, that S′′ is union-closed, that ∅ ∈ S′ ∩ S′′ and
that S′ ∩ S′′ ⊇ S. Hence, it only remains to be shown that S′ ∩ S′′ ⊆ S also holds. Suppose for the
sake of contradiction that there is some set S ∈ ((S′ ∩ S′′)\S). Since S ∈ S′, by construction, S
must be of the form S = A∪B with A,B ∈ S and, since S is set-conflict-sensitive, S /∈ S implies
that there is some b ∈ B such that (A ∪ {b}) ∈ PAttS. Furthermore, since S ∈ S′, there is also
some S ′ ∈ S such that S ⊆ S ′ and, thus, we have (A ∪ {b}) ⊆ (A ∪ B) ⊆ S ⊆ S ′ which is a
contradiction. Hence, it must be that S′ ∩ S′′ ⊆ S and S′ ∩ S′′ = S hold.

Now assuming that an extension-set satisfies the conditions of our characterization we step-
wise construct an AF realizing S. We start with the sub-AF that exploits the conflict-free condition
of admissible semantics to rule out set A ∪B 6∈ S for A,B ∈ S.

The proof of Proposition 2 is by the following two lemmas.

Lemma 17. Let F1 = (A1, R1) and F2 = (A2, R2) be two frameworks and let S ⊆ (A1∩A2) be a
set of arguments. Then, S is conflict-free w.r.t. F1 ∪ F2 = (A1 ∪ A2, R1 ∪R2) iff S is conflict-free
w.r.t. both F1 and F2.

Proof. Pick any (A, b) ∈ (R1 ∪ R2). Hence, (A, b) ∈ Ri for some i ∈ {1, 2} and, since S is
conflict-free w.r.t. both F1 and F2 (resp. F1 ∪F2), it follows that (A∪ {b}) 6⊆ S. That is, for every
attack (A, b) ∈ (R1 ∪ R2), we have that (A ∪ {b}) 6⊆ S and, thus, that in S is conflict-free w.r.t.
F1 ∪ F2 (resp. both F1 and F2).

Lemma 18. Let F1 = (A1, R1) and F2 = (A2, R2) be two frameworks and let S ⊆ (A1 ∩ A2) be
a set of arguments. If S is admissible w.r.t. both F1 and F2, then S is admissible w.r.t. F1 ∪ F2 =
(A1 ∪ A2, R1 ∪R2).
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Proof. First, note that since S is admissible w.r.t. both F1 and F2, it is also conflict-free w.r.t. both
F1 and F2 and, from Lemma 17, this implies that S is conflict-free w.r.t. F1 ∪ F2. Let us show us
that S also defends itself. Pick any b ∈ S and (A, b) ∈ (R1 ∪ R2). Hence, (A, b) ∈ Ri for some
i ∈ {1, 2} and, since S is admissible w.r.t. both F1 and F2, it follows that there is C ⊆ S and
a ∈ A such that (C, a) ∈ Ri. That is, for every argument b ∈ S and attack (A, b) ∈ (R1 ∪ R2),
there is some C ⊆ S and a ∈ A such that (C, a) ∈ (R1 ∪ R2) and, thus, that in S is admissible
w.r.t. F1 ∪ F2.

Lemma 5. (restated) Let S be a set-conflict-sensitive signature that contains ∅ and S ⊆ ArgsS be
some set of arguments such that S =

⋃
T for some subset T ⊆ S. Then, we have that S ∈ cf(F cf

S )
implies S ∈ S.

Proof. Let us define A ⊆ T such that
⋃
A ∈ S and there is no A′ ⊆ T such that A ⊂ A′ and⋃

A′ ∈ S. Note that such A always exists because
⋃
∅ = ∅ ∈ S. We also defineA =

⋃
A. Towards

a contradiction assume that A ⊂ T and pick any B ∈ T\A. Then, by construction, we have that
A,B ∈ S and that (A ∪B) /∈ S. Furthermore, since S is set-conflict-sensitive, it follows that there
is b ∈ B such that (A ∪ {b}) ∈ PAttS. This implies that there is an attack (A, b) ∈ Rcf

S and, thus,
(A ∪ {b}) /∈ cf(F cf

S ). Finally, since (A∪{b}) ⊆ (A∪B) ⊆ S and cf(F cf
S ) is downward-closed, this

implies S /∈ cf(F cf
S ) which is a contradiction with the assumption that S ∈ cf(F cf

S ). Hence, it must
be that A = T and, thus, that A = S holds. Since A ∈ S by construction, this implies S ∈ S.

Lemma 6. (restated) Let S be a set-conflict-sensitive signature that contains ∅, then S ⊆ dcl(S) ⊆
adm(F cf

S ).

Proof. Pick any set S ∈ dcl(S), any argument a ∈ S and any attack (S ′, a) ∈ Rcf. Then,
(S ∪ S ′) /∈ dcl(S) and, since S, S ′ ∈ S and S is conflict-sensitive, it follows that there is some
b ∈ S such that (S ∪ {b}) /∈ dcl(S). This implies that (S, b) ∈ Rcf and, thus, that S defends a
against (S ′, a). Hence, S defends itself against all attacks in Rcf.

Lemma 7. (restated) For every extension-set S that is set-conflict-sensitive and contains ∅, we
have that adm(F ucl

S ) ⊇ ucl(S).

Proof. We show that adm(F ucl) ⊇ ucl(S). Let us first show that adm(F ucl) ⊇ S. Pick any A ∈ S,
a ∈ A and (S, a) ∈ Rucl. Then, by construction, we have that S = {xa} and, since a ∈ A, that
(A, xa) ∈ Rucl, so A also defends against all attacks in Rucl. Hence, we have that adm(F ucl) ⊇ S
hold. Pick now A,B ∈ S. Then, A,B ∈ adm(F ucl) and, thus, A ∪ B defends itself w.r.t. F ucl.
Furthermore, by construction, there are no attacks between elements of A ∪ B and thus A ∪ B ∈
adm(F ucl).

The following lemma completes the proof of Proposition 4.

Lemma 8. (restated) For every extension-set S that is set-conflict-sensitive and contains ∅ we
have adm(F adm) = S.
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Proof. We consider the SETAF F adm (see Definition 10) and show that adm(F adm) ⊇ S. First, note
that from Lemma 6, we have that adm(F cf) ⊇ S. Let us show that adm(F ′) ⊇ S also holds. Pick
any a ∈ S and (S ′, a) ∈ R′. Then, by construction, we have that S ′ = {xa} and, since a ∈ S, that
(S, xa) ∈ R′, so S also defends against all attacks in R′. Hence, we have that adm(F cf) ⊇ S and
adm(F ′) ⊇ S hold. From Lemma 18, this implies adm(F adm) ⊇ adm(F cf ∪ F ′) ⊇ S follows.

The other way around, Let us show that adm(F ) ⊆ S also holds. Pick any S ∈ adm(F ). Then,
for every argument a ∈ S (there is an attack ({xa}, a) ∈ Radm and, so) there must be an attack
(Ta, {xa}) ∈ Radm with Ta ⊆ S. Furthermore, by construction, we also have that Ta ∈ S and
a ∈ Ta. Let T = {Ta | a ∈ S} ⊆ S and C =

⋃
T. Then, we have that C = S and, from Lemma 5

and the fact that S ∈ adm(F adm
S ) ⊆ cf(F adm

S ) ⊆ cf(F cf
S ), this implies that S ∈ S.

A.4 Signature of Complete Semantics
In this section we provide a detailed proof for Theorem 5.
Theorem 5. (restated) Σ∞com = {S 6= ∅ | S is set-comp-closed and

⋂
S ∈ S}

The following Lemma shows that the signature of every SETAF is indeed set-comp-closed and
contains the intersection of all its elements.
Lemma 9. (restated) For every SETAF F we have that (a) the extension-set com(F ) is set-comp-
closed and (b)

⋂
com(F ) ∈ com(F ).

Proof. First, notice that
⋂

com(F ) = grd(F ) and as the grounded extension is complete we obtain
(b). In order to show (a) consider extension-sets T,U ⊆ com(F ) and sets T =

⋃
T, U =

⋃
U

such that T, U ∈ dcl(com(F )). From T, U ∈ dcl(com(F )), it follows that T, U ∈ cf(F ) and from
T =

⋃
T, U =

⋃
U with T,U ⊆ com(F ) it follows that T and U defend themselves. Hence,

we get T, U ∈ adm(F ). If in addition we have T ∪ U ∈ cf(F ), then by Lemma 2 we have
that T ∪ U ∈ adm(F ) and thus by Lemma 1 there is a unique ⊆-minimal complete extension
E ∈ com(F ) with T ∪ U ⊆ E, i.e. |Ccom(F )(T ∪ U)| = 1. If T ∪ U 6∈ cf(F ) then there exists an
attack (S, a) ∈ R with S ⊆ T ∪ U and a ∈ T ∪ U .

• If a ∈ T , as T is admissible, there is an attack (T ′, u) with T ′ ⊆ T and u ∈ S \ T ⊆ U .
Thus, T ∪ {u} ∈ PAttcom(F ).

• If a ∈ U , as U is admissible, there is an attack (U ′, s) with U ′ ⊆ U and s ∈ S \ U ⊆ T .
Now, as T is admissible, there is an attack (T ′, u) with T ′ ⊆ T and u ∈ U ′ ⊆ U . Thus
T ∪ {u} ∈ PAttcom(F ).

In both cases we have an u ∈ U such that T ∪ {u} ∈ PAttcom(F ) and thus com(F ) is set-comp-
closed.

The realization corresponding Theorem 5 is based on the construction for the admissible se-
mantics given in Definition 10. First, given an extension-set S, by reduced(S) = {S\

⋂
S | S ∈ S},

we denote a reduced extension-set whose corresponding ground extension is empty. Furthermore,
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by admcl(S) = {
⋃

T | T ⊆ S,
⋃

T ∈ dcl(S) } we denote the admissible closure of S, that is, the
minimal extension-set that includes S and is admissible realizable.
Lemma 10. (restated) For every extension-set S that is set-comp-closed and satisfies

⋂
S ∈ S, we

have that com(F com
S ) = S.

Proof. Consider the SETAF F com
S from Definition 12. Let S′ = reduced(S), S∗ = dcl(S′)∩ ucl(S′)

and let us show first that com(F com
S′ ) = S′. Notice that S′ is still set-comp-closed and ∅ ∈ S′.

Let us show that S∗ is set-conflict-sensitive. Consider T, U ∈ S∗ such that T ∪ U 6∈ S∗. Then,
by construction of S∗, we have that T ∪ U 6∈ dcl(S′) and thus Ccom(F )(T ∪ U) = ∅. Now as S′ is
set-comp-closed there is an argument u ∈ U such that T ∪ {u} ∈ PAttS. That is, for T, U ∈ S∗
such that T ∪ U 6∈ S∗ there is an argument u ∈ U such that T ∪ {u} ∈ PAttS.

Hence, the extension-set S∗ is set-conflict-sensitive and, from Lemma 8, it follows that
adm(F adm

S∗ ) = S∗. Now consider the new attacks in R′ and how they affect the admissibility of
sets. Notice that only auxiliary arguments xa are attacked and thus each set that is admissible in
F adm
S is admissible in F com

S∗ as well (Lemma 18). Hence, we have adm(F adm
S∗ ) ⊆ adm(F com

S′ ). Let
us show S′ ⊆ com(F com

S′ ). Consider S ∈ S′ ⊆ S∗. By the above, we have that S ∈ adm(F adm
S ),

and it remains to be shown that S does not defend any a ∈ ArgsS \ S, i.e., does not attack any
xa for a ∈ ArgsS \ S. By construction of F com

S′ the set S only attacks arguments xa with a ∈ S
and thus S ∈ com(F com

S′ ) follows. The other way around, let us show S′ ⊇ com(F com
S′ ). Consider

S ∈ adm(F com
S′ ). We next show that if S 6∈ S′ then S 6∈ com(F com

S′ ). To this end we consider two
cases.

• S ∈ adm(F com
S ) \ S∗: Notice that S∗ = adm(F adm

S∗ ). Consider a set S that is admissible
in F com

S′ but not in F adm
S∗ . This can only be because of the attacks introduced with R′. That

is, there is some xs with s ∈ S that prevents that S is admissible in F adm
S∗ and an attack

(A ∪ B, xs) ∈ R′ with which S defends itself against xs in F com
S′ . That is A,B ⊆ S and, by

the definition of R′, we have that there is a unique completion C = CS′(A ∪ B) and s ∈ C
(recall that inR′ we only draw attacks forA∪B with a unique completion). As C ∈ S′ ⊆ S∗
and s ∈ C, by construction, there is an attack (C, xs) in F adm

S∗ That is, if C ⊆ S then S
attacks xs in F adm

S∗ , a contradiction to our initial assumption. Hence we have C 6⊆ S. But
then we can argue as before that, in FS′ , S defends all arguments in C and thus S is not
complete.

• S ∈ S∗ \ S′: Then, there is a set T ⊆ S′ such that
⋃
T = S and S ∈ dcl(S′). As S′ is set-

comp-closed for eachA,B ∈ S′ withA,B ⊆ S we have a unique completion set CS′(A∪B)
(as A ∪ B ∈ dcl(S′) we cannot have a conflict in A ∪ B). Towards a contradiction assume
that for all A,B ∈ S′ such that A,B ⊆ S we have CS′(A ∪B) ⊆ S. Then we can iteratively
replace A,B ∈ T by CS′(A ∪ B) and we end up with a single set in T. But then S ∈ S′, a
contradiction. Thus there are two sets A,B ∈ S′ such that A,B ⊆ S and A ∪ B 6∈ S′, and
there is also a unique set C ∈ CS′(A ∪ B) with C 6⊆ S Let c ∈ C \ S, we next argue the S
defends c and thus is not complete. By construction A ∪ B (and thus S) attacks all xa with
a ∈ C. Now consider a set set D ∈ S∗ that attacks c. We have that (A ∪ B) ∪D 6∈ dcl(S′)
and thus there is an d′ ∈ D such that (A ∪ B) ∪ {d′} ∈ PAtt(S∗) = PAtt(S′). That is A ∪D
defends c against both possible kinds of attackers and thus defends c.
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Combining the both cases we obtain that if S 6∈ S′ then S 6∈ com(F com
S′ ). Finally, just note that

com(F com
S ) just adds to com(F com

S′ ) the arguments in
⋃
S as unstacked, Hence, S ∈ com(F com

S ) iff
(S\

⋂
S) ∈ com(F com

S′ ) and, thus, com(F com
S ) = S.

Given a set-comp-closed S with
⋂

S ∈ S. We first construct an AF for S′ = {S \
⋂
S | S ∈ S}

and then add the arguments of
⋂

S ∈ S as isolated arguments. Now consider S∗ = {
⋃
T | T ⊆

S′,
⋃

T ∈ dcl(S′)} and constructed the SETAF F adm for S∗. We now expand the SETAF F adm by
the following attacks

R′ = {(A ∪B, xa) | A,B ∈ S \ {∅}, a ∈ CS′(A ∪B)}

For F com = (Acom, Rcom) = (Aadm, Radm ∪ R′) we then have com(F com) = S′. We first show that
S∗ is admissible realizable by F adm. First, by construction of S′, we have ∅ ∈ S∗. It remains to
show that S∗ is also set-conflict-sensitive. Consider T, U ∈ S∗ such that T ∪ U 6∈ S∗. Then, by
construction of S∗, we have that T ∪ U 6∈ dcl(S′) and thus Ccom(F )(T ∪ U) = ∅. Now as S′ is set-
comp-closed there is an argument u ∈ U such that T ∪ {u} ∈ PAttS. That is, for T, U ∈ S∗ such
that T ∪ U 6∈ S∗ there is an argument u ∈ U such that T ∪ {u} ∈ PAttS. Hence, S∗ is set-conflict-
sensitive. By Theorem 4 we have that S∗ = adm(F adm). Now consider the new attacks in R′ and
how they affect the admissibility of sets. Notice that only auxiliary arguments xa are attacked and
thus each set that is admissible in F adm is admissible in F com as well, i.e. adm(F adm) ⊆ adm(F com).
S′ ⊆ com(F com): Consider S ∈ S′ ⊆ S∗. By the above we have S ∈ adm(F com) it remains to
show that S does not defend any a ∈ ArgsS \ S, i.e., does not attack any xa for a ∈ ArgsS \ S.
By construction of F com the Set S only attacks arguments xa with a ∈ S and thus S ∈ com(F com)
follows. S′ ⊇ com(F com): Now let us consider S ∈ adm(F com). We next show that if S 6∈ S′ then
S 6∈ com(F com). To this end we consider two cases.

• S ∈ S∗ \ S′: Then S contains two sets A,B ∈ S′ such that A ∪B 6∈ S′ and there is a unique
set C ∈ CS′(A ∪ B) with C 6⊆ S. Let c ∈ C \ S, we next argue the S defends c and thus is
not complete. By construction A ∪ B (and thus S) attacks all xa with a ∈ C. Now consider
a set set D ∈ S∗ that attacks c. We have that (A ∪ B) ∪ D 6∈ dcl(S′) and thus there is an
d′ ∈ D such that (A ∪ B) ∪ {d′} ∈ PAtt(S∗) = PAtt(S′). That is A ∪ D defends c against
both possible kinds of attackers and thus defends c.

• S ∈ adm(F com) \ S∗: Notice that S∗ = adm(F adm). Consider a set S that is admissible in
F com but not in F adm. This can only be because of the attacks introduce with R′. That is, S
contains A,B ∈ S′ and there is a unique set C ∈ CS′(A ∪ B) with C 6⊆ S. But then we can
argue as before that S defends C and thus is not complete.

Combining the both cases we obtain that if S 6∈ S′ then S 6∈ com(F com). Finally, by adding the
arguments

⋂
S to F com we obtain our realization of S, i.e. com(Acom ∪

⋂
S, Rcom) = S.
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B Proofs of Section 4

B.1 Signatures for Conflict-Free and Naive Semantics
The Proof of Theorem 6 is by the following two propositions.

Proposition 8. Σk
cf = {S 6= ∅ | S is downward-closed and k-tight}

Proof. First we show that cf(F ) is downward-closed and k-tight for every k-SETAF F . If S ∈
cf(F ) than no subset of S can contain a conflict as then S would contain that conflict as well,
i.e. all subsets are conflict-free as well and thus cf(F ) is downward-closed. Now consider an
argument a such that S ∪ {a} 6∈ cf(F ). Then S ∪ {a} attacks S ∪ {a}, that is either there is a set
S ′ ⊆ S ∪ {a} with (S ′, a) ∈ R or there is a set E with a ∈ E and (E, b) ∈ R for some b ∈ S. In
the former case S ′ ∪ {a} is of size ≤ k + 1 and S ′ ∪ {a} 6∈ dcl(cf(F )). In the latter case consider
S ′ = (E \ {a}) ∪ {b} which is of size ≤ k + 1 and S ′ ∪ {a} = E ∪ {b} 6∈ dcl(cf(F )). In both
cases we have S ′ ∪ {a} ∈ PAttkcf(F ) and thus the condition for cf(F ) being tight is satisfied.

Now consider F cf,k
S from Definition 14. We have that cf(F cf,k

S ) = S.
1) Let us show first that cf(F cf,k

S ) ⊇ S. Pick any S ∈ S and any attack (S ′, a) ∈ R with S ′ ⊆ S.
By construction, we have that (S ′ ∪ {a}) /∈ dcl(S) and, thus, that (S ′ ∪ {a}) 6⊆ S. Hence, since
S ′ ⊆ S, it follows that a /∈ S and that S is conflict-free. Hence, we have that cf(F cf,k

S ) ⊇ S.
2) Now consider cf(F cf,k

S ) ⊇ S. Pick S ⊆ ArgsS with S /∈ S as S is downward closed we have
that there is an S ′ ∈ S such that S ′ ⊆ S, and w.l.o.g. assume that S ′ is a maximal such set.
Pick a ∈ S \ S ′. As S is k-tight there is an attack (B, a) ∈ R for some B ⊆ S ′ and thus
S /∈ cf(F cf,k

S ).

Proposition 9. Σk
naive = {S 6= ∅ | S is incomparable and dcl(S) is k-tight}

Proof. First consider naive(F ) for some k-SETAF F . By definition naive(F ) is incomparable and
dcl(naive(F )) = cf(F ). Thus by Proposition 8 dcl(naive(F )) is k-tight

To realize a set S that is incomparable and such that dcl(S) is k-tight consider S′ = dcl(S)
and realize it by the construction of Proposition 8. Let F be the resulting SETAF. Then we have
that cf(F ) = S′ and by construction S contains exactly the ⊂-maximal elements of S′. Hence,
naive(F ) = S.

B.2 Signatures for Stable Semantics
Theorem 7. (restated) Σk

stb = {S | S is incomparable and k-tight}

Proof. First consider stb(F ) for some k-SETAF F . As stb(F ) ⊆ pref(F ) it is incomparable.
Now consider E ∈ stb(F ). By definition for each argument a 6∈ E there is an attack (B, a) with
|B| ≤ k. That is there is no E ′ ∈ stb(F ) with B ∪ {a} ⊆ E ′ and thus B ∪ {a} ∈ PAttstbF . That is
stb(F ) is also k-tight.

Now consider the SETAF F stb
k from Definition 15. We have that stb(F ) = S.

1) Let us show first that stb(F stb
k ) ⊇ S. Pick any S ∈ S and any attack (S ′, a) ∈ R with S ′ ⊆ S.

23



By construction, we have that (S ′ ∪ {a}) ∈ PAttS and, thus, that (S ′ ∪ {a}) 6⊆ S. Now consider
a ∈ ArgsS \ S. As S is k-tight there exists B ⊆ S, |B| ≤ k such that B ∪ {a} ∈ PAttS and thus
(B, a) ∈ R. Finally, consider xE ∈ {xS | S 6∈ S and S ⊆-maximal in dcl(S)}. We have that S
and E are incomparable and thus there is an argument a ∈ E such that ({a}, xE) ∈ R. That is,
S ∈ stb(F stb

k ).
2) Now consider stb(F stb

k ) ⊇ S. Pick S ⊆ ArgsS. If S 6∈ naive(F stb
k ) then it is not stable,

thus we will assume S ∈ naive(F stb
k ). Notice that by construction we have naive(F ) = {xS |

S ⊆-maximal in dcl(S)}. That is, there is an argument xS ∈ A with xS 6∈ S and S not attacking
xS . Thus, S 6∈ stb(F stb

k ).

B.3 Signatures of Admissible and Preferred Semantics
Remark 3. Given an extension-set S, if there exists a set P that meets the conditions of Defini-
tion 16 one such set can be computed by a fixed point iteration as follows. In an initial phase, for
each S ∈ S consider all subsets AiS of size min(k, |S|) and for b ∈ ArgsS \S and add (AiS, b) to P .
Then iteratively check condition (ii) and remove attacks that violate the condition from P . When
the fixed point is reached, i.e. P satisfies (ii), check condition (i). If (i) is valid we have found a set
P that meets the conditions of Definition 16, otherwise there is no such set.

In this section we provide a full proof for Theorem 8.

Theorem 8. (restated) Σk
adm = {S 6= ∅ | S is k-defensive and contains ∅} and Σk

pref = {S 6= ∅ |
S is incomparable and k-defensive}

We first show the result for admissible semantics.

Proposition 10. Σk
adm = {S 6= ∅ | S is k-defensive and contains ∅}

Lemma 11. (restated) For any SETAF F we have that adm(F ) is k-defensive and contains ∅.

Proof. First, notice that the empty set is always admissible. Now we consider the set P =
{(S, a) ∈ R | S ⊆ Argsadm(F )} and show that it satisfies the two conditions for S being k-
defensive.
1) Assume there are two admissible sets A, B such that the set C = A ∪ B is not admissible. By
Lemma 2 the set C defends itself against all attackers and thus there must be a conflict in C, i.e.
there exists an attack (S, a) ∈ R with S ⊆ C and a ∈ A.

• If a ∈ A then, as A is conflict-free, S∩B 6= ∅. Moreover, as A is admissible it has to defend
itself against (A, a), i.e. there is an attack (S ′, b) with S ′ ⊆ A and b ∈ S ∩ B. Hence, we
have (S ′, b) ∈ P .

• If a ∈ B then, as B is conflict-free, S∩A 6= ∅. Moreover, as B is admissible it has to defend
itself against (S, a), i.e. there is an attack (S∗, c) with S∗ ⊆ B and c ∈ S ∩ A. Now, as A is
admissible as well, there is also an attack (S ′, b) with S ′ ⊆ E and b ∈ S ′ ⊆ B. Hence, we
have (S ′, b) ∈ P .
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2) If (S, b) ∈ P then S attacks b in F . Thus each set S ′ ∈ adm(F ) with b ∈ S ′ defends itself
against S, i.e. for each S ′ ∈ adm(F ) with b ∈ S ′ there is a pair (Ajs, a) ∈ R with Ais ⊆ S ′ and
a ∈ S. Thus, also (Ajs, a) ∈ P and the second condition is satisfied.

We obtain that adm(F ) is set-conflict-sensitive.

Lemma 12. (restated) Let S be a k-defensive signature that contains ∅, P a set that meets the
conditions of Definition 16 and S ⊆ ArgsS be some set of arguments such that S =

⋃
T for some

subset T ⊆ S. Then, we have that S ∈ cf(F cf
S,P ) implies S ∈ S.

Proof. Consider a SETAF F cf
S,P as given in Definition 17. Let us define A ⊆ T such that

⋃
A ∈ S

and there is no A′ ⊆ T such that A ⊂ A′ and
⋃
A′ ∈ S. Note that such A always exists because⋃

∅ = ∅ ∈ S. We also define A =
⋃
A. Towards a contradiction assume A ⊂ T and pick any

B ∈ T\A. Then, by construction, we have thatA,B ∈ S, (A∪B) ⊆ S and that (A ∪B) /∈ S. Fur-
thermore, since S is k-defensive, it follows that there are A′ ⊆ A and b ∈ B such that |A′| ≤ k and
(A′, b) ∈ P . This implies that there is an attack (A′, b) ∈ Rcf

S,P and, thus, (A′ ∪ {b}) /∈ cf(F cf
S,P ). Fi-

nally, since (A′∪{b}) ⊆ (A∪B) ⊆ S and cf(F cf
S,P ) is downward-closed, this implies S /∈ cf(F cf

S,P )

which is a contradiction with the assumption that S ∈ cf(F cf
S,P ). Hence, it must be that A = T and,

thus, that A = S holds. Since A ∈ S holds by construction, this implies S ∈ S.

Lemma 13. (restated) Let S be a k-defensive signature that contains ∅, Then S ⊆ dcl(S) ⊆
adm(F cf

S,P ).

Proof. Pick any set S ∈ dcl(S), any argument a ∈ S and any attack (S ′, a) ∈ Rcf
S,P . Then,

(S ∪ S ′) /∈ dcl(S) and, since S, S ′ ∈ S and S is k-defensive it follows that there are some S∗ ⊆ S,
b ∈ S ′ such that (S∗, b) ∈ P . This implies that (S∗, b) ∈ Rcf

S,P and, thus, that S defends a against
(S ′, a). Hence, S defends itself against all attacks in Rcf

S,P .

Lemma 15. (restated) For every extension-set S that contains ∅ we have that S ∈ adm(F def
S ) iff

S =
⋃

T for some T ⊆ S.

Proof. First notice that there are no conflicts between arguments in ArgsS and all arguments not in
ArgsS are self-attacking. It thus suffices to show that S defends itself in F def

S iff S =
⋃
T for some

T ⊆ S.
⇒: Let S ∈ adm(F def

S ) and consider an argument a ∈ S. S attacks all the arguments αaγ that
attack a and by construction this implies that S contains a model M of CDS

a. By Lemma 14 we
have M ∪ {a} ∈ S. As this holds for each argument a ∈ S there is a T ⊆ S such that S =

⋃
T.

⇐: Let T ⊆ S and S =
⋃

T. Consider a ∈ S and a set T ∈ T corresponding with a ∈ T . By
Lemma 14 we have that T \ {a} is a model of CDS

a and thus attacks all of the arguments αaγ . That
is a is defended by S. Hence, S ∈ adm(F def

S .

Lemma 16. (restated) For every extension-set S that is k-defensive and contains ∅ we have that
adm(F adm

S,P ) = S.
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Proof. We consider the k-SETAF F adm
S,P = F cf

S,P ∪ F
def
S from Definition 19. and show that S =

adm(F adm
S,P ).

• S ⊆ adm(F adm
S,P ): We have that, by Lemma 13 S ⊆ adm(F cf

S,P ) and, by Lemma 15, S ⊆
adm(F def

S ). Hence, by Lemma 18, S ⊆ adm(F adm
S,P ).

• S ⊇ adm(F adm
S,P ): Consider S ∈ adm(F adm

S,P ) which by definition is conflict-free in F adm
S,P .

Notice that, attacks from F cf
S,P cannot be used to defend against attacks from F def

S and vice
versa. Thus, by Lemma 17 and the above observation, S ∈ adm(F cf

S,P ) and S ∈ adm(F def
S ).

By Lemma 15 we have that S =
⋃
T for some T ⊆ S. Now by Lemma 12 we have that if

such an S is in cf(F cf
S,P ) then S ∈ S. As we already know that S ∈ adm(F cf

S,P ) ⊆ S we obtain
S ∈ S.

Finally we consider the signature for preferred semantics.

Proposition 11. Σk
pref = {S 6= ∅ | S is incomparable and k-defensive}

Proof. First consider the set pref(F ) for an arbitrary SETAF F = (A,R). The extension-set
pref(F ) is incomparable by the definition of preferred semantics.

Now we consider the set P = {(S, a) ∈ R | S ⊆ Argsadm(F )} and show that it satisfies the
two conditions for S being k-defensive.
1) Consider arbitrary extensions E, T ∈ pref(F ) with E 6= T . By the maximality of E and T we
have that E ∪ T 6∈ pref(F ), E ∪ T is not contained in any preferred extension, and, by Lemma 2,
we know that E ∪ T defends itself against all attackers.

That is, there is a conflict (B, a) ∈ R such that B ⊆ E ∪ T and a ∈ E ∪ T .

• If a ∈ E then, as E is conflict-free, B∩T 6= ∅. Moreover, as E is admissible it has to defend
itself against (B, a), i.e. there is an attack (S, b) with S ⊆ E and b ∈ B ∩ T . Hence, we
have (S, b) ∈ P .

• If a ∈ T then, as T is conflict-free, B∩E 6= ∅. Moreover, as T is admissible it has to defend
itself against (B, a), i.e. there is an attack (S ′, c) with S ′ ⊆ T and c ∈ B ∩ E. Now, as E
is admissible as well, there is also an attack (S, b) with S ⊆ E and b ∈ S ⊆ T . Hence, we
have (S, b) ∈ P .

2) If (S, b) ∈ P then S attacks b in F . Thus each set S ′ ∈ pref(F ) with b ∈ S ′ defends itself
against S, i.e. for each S ′ ∈ pref(F ) with b ∈ S ′ there is a pair (Ajs, a) ∈ R with Ais ⊆ S ′ and
a ∈ S. Thus, also (Ajs, a) ∈ P and the second condition is satisfied.

We obtain that pref(F ) is k-defensive.
Now consider an extension-set S that is incomparable and k-conflict-sensitive. The set S′ =

S ∪ {∅} is k-conflict-sensitive and contains the empty set. By Proposition 10 there is a k-SETH
F such that adm(F ) = S′. As the preferred extensions are the ⊆-maximal admissible sets we also
have pref(F ) = S.
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Proposition 12. Every k-tight incomparable extension-set is also k-defensive.

Proof. Consider some k-tight incomparable extension-set S. We define P as the set of pairs (S ′, a)
with S ′∪{a} ∈ PAttkS and S ′ ⊆ S ∈ S. We next show that P meets the conditions of Definition 16.

• condition (i): Consider S, T ∈ S with S ∪ T 6∈ S. Then there is a t ∈ T \ S such that
S ∪ {t} 6∈ S and as S is k-tight there is a set S ′ ⊆ S with S ′ ∪ {t} ∈ PAttkS. Thus (S ′, t) ∈ P
and the condition is satisfied

• condition (ii): Now consider a set T ∈ S that is attacked by (S ′, t) ∈ P , i.e. t ∈ T . We have
that S ′ must contain an argument s such that T ∪ {s} 6∈ S otherwise, as S is incomparable,
S ′ ∪ {t} ⊆ T and thus S ′ ∪ {t} 6∈ PAttkS. Then as S is tight there is a pair (T ′, s) ∈ P with
T ′ ⊆ T and hence also this condition is satisfied.

As the constructed P satisfies both conditions of Definition 16 we obtain that S is k-defensive.

Example 9. Reconsider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-set T =
{S ⊆ A | |S| = k+1} from Example 7. We next argue that the extension set T is not k-defensive.
For the sets S1 = {a1, a2, . . . , ak+1} and S2 = {a2, a2, . . . , ak+2}, we need S ′ ⊂ S1 and t ∈ S2

such that S ′ ∪ {t} ∈ PAttkS. Indeed the only option for t is ak + 2 as otherwise S ′ ∪ {t} ⊆ S.
But we also have that for any S ′ ⊂ S the set S ∪ {ak+2} is contained in some T ∈ T and thus
S ∪ {ak+2} 6∈ PAttkT.

Hence, T cannot be realized as preferred extensions/admissible sets of a k-SETAF. However,
one can easily verify that T is (k+ 1)-defensive and thus T can be realized as preferred extensions
of a (k+1)-SETAF as well as T∪{∅} can be realized as admissible extensions of a (k+1)-SETAF.
♦

Note that, for incomparable S, whenever S is k-tight, also S is k-defensive. Hence, for k-
SETAFs, the preferred semantics is more expressible than the semantics semantics. We next show
that preferred semantics is indeed strictly more expressive than stable semantics.

Example 10. We consider the argument set A = B ∪ C ∪ {e} with B = {b1, b2, . . . , bk+1},
C = {c1, c2, . . . , ck+1} and the extension-set S that contains (i) the set B, and (ii) the sets B ∪
{ci, e} \ {bi} for 1 ≤ i ≤ k + 1. It is easy to verify that S is incomparable. We next argue that the
set S is not k-tight. Consider B ∈ S and the argument e. We have that S ∪ {e} 6∈ S but for each
S ′ ⊂ S with |S ′| ≤ k the set S ′∪{e} is contained in one of the sets in S and thus S ′∪{e} 6∈ PAttkS.
That is, S is not tight and can not be realized with a k-SETAF under stable semantics. However,
one can easily verify that S is conflict-sensitive and thus S can be realized with a 1-SETAF (and
more general with a k-SETAF for any k ≥ 1) under preferred semantics. ♦
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