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Abstract. At the heart of abstract argumentation lies the Dung’s argumentation framework.
Over the years, many of its extensions were proposed, ranging from the ones employing
various strengths and preferences to those that focus on researching new types of relations
between arguments. With such an amount of available structures, it is only natural to ask
whether one can move between the frameworks while still preserving the behavior of the
semantics, what would be the costs of such a process and what we gain or lose in it. The
aim of this work is to introduce new translations between the available frameworks and to
recall the existing ones when possible. Thus, our aim is to create a comprehensive study
on the intertranslatability of abstract argumentation frameworks. We also propose a trans-
lation classification system and new transformation approaches for structures with support.
Finally, we discuss the quality of our translations, point out what can be improved and if
possible, show the limits of the enhancements we can make.

1The author is a PhD student of Technical University of Vienna, Austria, and is currently em-
ployed by University College London, United Kingdom.
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1 Introduction
Over the last years, argumentation has become an influential subfield of artificial intel-
ligence, with applications ranging from legal reasoning [16] to dialogues and persua-
sion [60, 80] to medicine [46, 54] and eGovernment [6]. Various formalisms and classifi-
cations of types of argumentation have been created [83]. In principle, we can distinguish
two major lines of research: logic–based and abstract approaches. In the former [17],
we assume arguments have a certain logical structure. This provides us with means of
constructing the arguments from an underlying knowledge base and allows us to create
relations between them in terms of the properties of their structure [51]. In the abstract
approaches, with which we will work in this report, we consider arguments as abstract
atomic entities and focus entirely on the relations between them. Thus, we assume that
these elements have already been constructed, for instance from a given knowledge base,
and proceed with evaluating the obtained argumentation system. The answers are often
given in the form of sets of arguments that can be jointly accepted and meet our require-
ments. Finally, these results are interpreted in terms of the original knowledge base. This
three–step creation, evaluation and interpretation process is known as the argumentation
process or instantiation–based argumentation [24, 26]. Although abstract argumentation
can be seen as mostly concerned with the middle step, we will see that framework inter-
translatability often resembles the whole process itself.

At the heart of abstract argumentation lies the argumentation framework developed
by Phan Minh Dung [36]. Since the structure itself was relatively limited, as it took into
account only the conflict relation between the arguments, it inspired the search for more
general models [22]. Throughout the years, many of its extensions have been proposed,
ranging from the ones employing various strengths and preferences [5,14,62] to those that
focus on researching new types of relations between arguments [9,23,30,68,69,78]. Such
an amount of frameworks should not come as a surprise. Argumentation is a wide area with
numerous applications, in which one has to face different classes of problems. Frameworks
of a given type can be seen as tools to model particular issues and concepts, which on one
side gives us more insight into how to approach the problems, but on the other side affects
the framework’s design. When facing such an amount of available structures, it is only
natural to ask whether one can translate one framework into another and, if yes, what
would be the best way to do this. However, as framework intertranslatability is of both
practical and theoretical value, what we consider the “best” depends on how we intend to
use the transformations.

The ability to transform one framework into another can be used in designing various
argumentation–based applications. The majority of the existing structures does not have
a dedicated solver, thus a translation into one that does [45, 49] is of practical use. In
such a case we would be interested in an algorithm that preserves the behavior of the
semantics, however, it is the efficiency of the translation that is vital. We not only want the
algorithm to have a reasonable running time; we would also like the resulting framework
to retain a size that can be managed by its solver. Moreover, if our purpose is to solve a
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variety of problems for which different frameworks are suitable, translations would allow
us to choose the most adequate one to work “in the background”. Finally, what is also
important to notice is the need for a translation to exist, even if its performance leaves
a lot to be desired. A researcher would normally look for a translation that has certain
properties, like faithfulness or exactness, or show that such a translation cannot exist.
However, a programmer would still look for a working approach, even if it meant that it
would not possess all of the valuable attributes.

An efficient translation is still desirable from a research perspective. However, the
behavior of the semantics and what structural changes a framework has to undergo are
now more important than in the practical perspective. The answers given by a translated
framework can coincide with the initial ones, or they themselves need to be transformed
back, be it just by removing auxiliary elements or reinterpreting the target arguments in
terms of the source arguments. Here is where properties such as faithfulness or exactness
come into play. Every argumentation framework differs from another by some element
and a translation gives us an insight into how this element works and how it can or cannot
be simulated by other ones. We can try to transform one form of support into another,
support into attack, preference into an argument and so on. Moreover, we would like for
a given relation and its associated arguments to be translated in a “recognizable” way. By
this we understand that if we need auxiliary or meta arguments, we would expect them
to have some meaning that would explain the cause for its creation, or that framework
elements are not removed without a reason. All of those structural changes can connect or
detach parts of the framework in question. Depending on how intrusive the modifications
are, propagating the change in the source structure to the target one can become nearly
impossible without repeating the translation altogether. Therefore, the efficiency, seman-
tics behavior and structural changes can finally be used to compare both translations and
different argumentation frameworks and to analyze the frameworks’ expressive power.

Our work is meant to answer these questions as much as possible. The aim of this re-
port is to provide the translations between the aforementioned relation–introducing frame-
works and provide their analysis in terms of functional, syntactical, semantical and com-
plexity properties. In doing do, we create an in–depth compendium consisting of almost
ninety translations. The frameworks with support, such as bipolar argumentation frame-
works BAFs [28,30], argumentation frameworks with necessities AFNs [69], evidential ar-
gumentation systems EASs [73,78] and abstract dialectical frameworks ADFs [21,23,76],
are of particular interested to us. Although some methods have already been researched,
especially transformations from and into the Dung’s framework [9,18,21,28,64,68,69,73],
there are less results concerning moving between AF generalizations [30, 73, 78]. More-
over, the existing methods for frameworks with support can be mostly classified as coali-
tion approaches, i.e. the arguments in the target structure represent sets of arguments of
the source one, usually connected by support. In our research we propose alternative trans-
formations, based on the properties of the frameworks in question and the analysis carried
out in [28, 30] – the attack propagation and defender translations. The first one simulates
the behavior of support by combinations of attacks, while the latter transforms support to
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defense with the use of auxiliary arguments. We will show that similar principles can be
used for e.g. transforming a group attack into a binary attack.

We will start the report by recalling all the required argumentation frameworks in Sec-
tion 2. We will also recall the research on the semantics realizability [37, 43] in Dung’s
frameworks, which will prove useful in showing what translations from other frameworks
into AFs are possible and which are not. In Section 4 we will introduce various normal
forms and subclasses of the studied frameworks. Section 3 will be devoted to formaliz-
ing the concept of a translation and its properties and introducing a classification of our
approaches. The rest of the work will consist of translations themselves, one section per
framework, and pointers for future research. We close the introduction with providing
pointers to appropriate translations in Table 1. The abbreviations of the frameworks are as
follows:

• AF – Dung’s Framework

• SETAF – Framework for Arguing with Sets of Attacking Arguments

• AFRA – Argumentation Framework with Recursive Attacks

• EAF – Extended Argumentation Framework

• EAFC – Extended Argumentation Framework with Collective Defense Attacks

• BAF – Bipolar Argumentation Framework

• AFN – Argumentation Framework with Necessities

• EAS – Evidential Argumentation System

• ADF – Abstract Dialectical Framework

The table should be read in the following way; frameworks in the first column stand
for source frameworks, while the ones in the first row are the target frameworks. A given
cell contains a number that is either associated with an appropriate translation, or with the
relevant section if a translation is not defined or the issue is more complicated (in this case,
the number is preceded by Sec.).
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Table 1: Translation Chart of Argumentation Frameworks
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2 Background
In this section we will recall the argumentation frameworks used in our study. We will go
through them one by one, starting from the original framework by Dung (AF for short)
[36], through the set attack (SETAF) [68], recursive attack (AFRA) [9], to bipolar ones
(BAF, AFN, EAS) [30, 69, 72] and abstract dialectical framework (ADF) [23]. Moreover,
we will also recall the extended argumentation framework (EAF) and its collective version
(EAFC) [62,66], which use higher–level attacks to express preferences. In many cases we
will provide additional results and analysis that will become useful in the later parts of this
work. At the end of this section we will also briefly go through the research on signatures
in Dung’s framework, i.e. descriptions of sets of arguments that can be jointly accepted
as a collection of extensions under certain semantics. However, before we start, we would
like to introduce some basic concepts and notation.

Argumentation frameworks, along with their associated semantics, are the basic tools
for abstract argumentation. The framework itself is primarily built from arguments and
various relations between them, however, it can also contain information such as prefer-
ences, probabilities, labels and more. While the framework represents a given problem,
the semantics are meant to “solve it”. A semantics encompasses what we consider a ra-
tional opinion; for example, we would like to be able to defend our position and prefer
not to contradict ourselves. This is grasped by admissibility and conflict–freeness. We
might also take a stand in which we can provide a counterargument to whatever our op-
ponent says, which brings us to the notion of stability. Semantics can return the “answer”
in various formats, such as sets of arguments, three or four–valued labelings, rankings and
more [1, 7, 56]. We will be interested in the first two types and thus focus on extension–
based (for sets) and labeling–based (for three–valued labelings) semantics in this work.

There are many abstract argumentation frameworks available [22], far more than
we can analyze in this work. We will only focus on the aforementioned structures
and refer to them by their abbreviations. By a framework type we will understand
T ∈ {AF, SETAF,AFRA,EAF,EAFC,BAF,AFN,EAS,ADF}. Every argumen-
tation framework has at least one element, be it syntactical or semantical, distinguishing it
from any other structure. However, they all have one single thing in common: a set of (ab-
stract) arguments. All other elements can be defined differently, including even the most
basic attack relation from Dung’s framework [36]. Thus, from now on we will assume that
we are working with a domain of abstract arguments U , unless stated otherwise. Although
it is typical to limit oneself to e.g. a countably infinite domain [37], it is often the case
that the translation does not preserve countability. In other words, even if we make certain
assumptions for the source domain, the target domain might not satisfy them. By FrTU we
will understand the collection of all frameworks of type T s.t. its set of arguments is a sub-
set of U . Our focus will be primarily on those frameworks in which the set of arguments
is finite, though please note that many of the results can be applied to the infinite cases as
well.

Apart from speaking about the argument domain, we will also need the semantics
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domain. It will define how the answers produced by a given semantics look like. Such a
domain can be a power set of the argument domain, typically used when we work with
extension–based semantics of most of the argumentation frameworks. It can also be a
collection of three–valued interpretations on argument subsets of U for the labeling–based
semantics. However, please note that it might not necessarily depend on arguments only
and can contain other framework elements, such as attacks in case of AFRAs (see Section
2.1.3). Consequently, the semantics domain ought to be stated explicitly, and we will
speak about the general domain Uσ for a given semantics σ. In certain cases it might
be more natural to look at the extensions or labelings w.r.t. the framework in question
and take into account a limited domain UFr

σ , where Fr is our framework of interest. For
example, if we speak about extension–based semantics and the set of arguments is A, then
UFr
σ can be 2A. The union of all such limited domains of all frameworks of a given type

will give us the general domain. In this light, a given semantics defined for frameworks
of a given type, can be seen as a function assigning to a particular framework a number
of answers it can produce, i.e. a subset of the limited (or general) semantics domain.
We will simply write σ(Fr) to denote the set of all extensions (labelings) produced by
the semantics σ for framework Fr. Of course, not every such subset of the domain will
actually correspond to the collection of all extensions or labelings a semantics can produce.
The set of all such subsets that are, in fact, possible, will form a semantics signature and
will be described in Section 2.4 for the Dung’s framework. We can now proceed with
introducing the argumentation frameworks we will be working with.

2.1 Conflict–Based Argumentation Frameworks

2.1.1 Binary Conflict: Dung’s Argumentation Framework

Let us now recall one of the most prominent structures in abstract argumentation – the
abstract argumentation framework by Dung [36] – and its semantics (a more detailed anal-
ysis can be found in [7]). The framework consists of the set of arguments and the set of
binary attacks between them:

Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair
F = (A,R), where A is a set of arguments and R ⊆ A×A represents an attack relation.

We say that an argument a attacks b iff aRb. Based on conflicts, we can derive a certain
indirect, positive relation between arguments, referred to as defense. To put it simply, an
argument is defended if all of its attackers are in turn attacked. By combining defense,
attacks and various notions of maximality, we obtain a number of semantics for AFs:

Definition 2.2. Let F = (A,R) be a Dung’s framework. An argument a ∈ A is defended
by a set E ⊆ A in F 1, if for every b ∈ A s.t. (b, a) ∈ R, there exists c ∈ E s.t. (c, b) ∈ R.
A set E ⊆ A is:

1Defense is often also referred to as acceptability: we say that a is acceptable w.r.t. E if E defends a.
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• conflict–free in F iff for each a, b ∈ E , (a, b) /∈ R.

• admissible in F iff it is conflict–free in F and defends in F all of its members.

• preferred in F iff it is maximal w.r.t. set inclusion admissible in F .

• complete in F iff it is admissible in F and all arguments defended by E are con-
tained in E .

• stable in F iff it is conflict–free in F and for each a ∈ A\E there exists an argument
b ∈ E s.t. (b, a) ∈ R.

We will often abbreviate the semantics with cf , adm, pref , comp and stb when using
the functional representation. Please note that the stable semantics is somewhat different
from the rest of the approaches in the sense that depending on the given framework, it
might not produce any extensions. This problem was addressed by introducing approaches
focused maximizing range, i.e. the amount of arguments covered by the extension both in
terms of acceptance and rejection [27]. Although we will not be dealing much with these
semantics in this work, the idea of range will be useful to us.

Definition 2.3. Let F = (A,R) be a Dung’s framework and E ⊆ A a set of arguments.
The set of arguments attacked by E is defined as E+ = {a ∈ A | ∃e ∈ E , (e, a) ∈ R}
and the set of attackers of E is E− = {a ∈ A | ∃e ∈ E , (a, e) ∈ R}. The set ERan =
E+ ∪ E is the range of E in F .

Definition 2.4. Let F = (A,R) be a Dung’s framework. A set of of arguments E ⊆ A is a
semi–stable extension of F iff it is range maximal w.r.t. set inclusion complete extension
of F . 2

To every argument in the framework which is not attacked by any other argument we
will refer as initial.

We close the list with the grounded semantics, abbreviated grd. It basically represents
the knowledge that we can only build from the initial arguments, i.e. starting with an empty
set we add all elements defended by the set and continue until nothing more is added. The
formal definition is given by the means of the characteristic function of F :

Definition 2.5. Let F = (A,R) be a Dung’s framework. The characteristic function of
F , FF : 2A → 2A, is defined as: FF (E ) = {a | a is defended by E in F}. The grounded
extension of F is the least fixed point of FF .

Also other semantics, in particular admissible and complete, can be defined in terms
of the characteristic operator:

Lemma 2.6. Let F = (A,R) be a Dung’s framework and E ⊆ A be a conflict–free set of
F . E is admissible in F iff E ⊆ FF (E ). E is complete in F iff E = FF (E ).

2It is easy to see that stable extension is a special case when E+ = A \ E .
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Please note that there is also an alternative, iterative way to compute the grounded
extension, which can be used also in frameworks in which e.g. the operator is no longer
monotonic:

Proposition 2.7. Let F = (A,R) be a Dung’s framework. The unique grounded extension
of F is defined as the outcome E of the following “algorithm”. Let us start with E = ∅:

1. put each argument a ∈ A which is not attacked in F into E ; if no such argument
exists, return E , and

2. remove from F all (new) arguments in E and all arguments attacked by them (to-
gether with all adjacent attacks) and continue with Step 1.

We would also like to recall several important lemmas and theorems from the original
paper on AFs [36]. The so–called Fundamental Lemma is as follows:

Lemma 2.8. Dung’s Fundamental Lemma Let F = (A,R) be a Dung’s framework,
E ⊆ A an admissible extension of F and a and b arguments that are defended by E in F .
Then E ′ = E ∪ {a} is admissible in F and b is defended by E ′ in F .

The next two theorems show some of the relations between the existing semantics.

Theorem 2.9. Let F = (A,R) be a Dung’s framework. Every stable extension of F is a
preferred extension, but not vice versa.

Theorem 2.10. Let F = (A,R) be a Dung’s framework. The following holds:

• every preferred extension of F is a complete extension of F , but not vice versa.

• the grounded extension of F is the least w.r.t. ⊆ complete extension of F .

• the complete extensions of F form a complete semilattice w.r.t. set inclusion. 3

Although in general the available semantics that satisfy the completeness requirements
produce different extensions, various AF subclasses have been identified on which at least
some of them coincide. Among the strongest of them is the well–founded class, already
described in the original paper [36]:

Definition 2.11. Let F = (A,R) be a Dung’s framework. F is well–founded iff there
exists no infinite sequence of arguments a0, a1, ..., an, ... s.t. for each i, ai+1 attacks ai.

Theorem 2.12. Every well–founded Dung’s argumentation framework has exactly one
complete extension which is grounded, preferred and stable.

We will now show the extensions of the presented semantics on an example.
3A partial order (B,≤) is a complete semilattice iff each nonempty subset of B has a glb and each

increasing sequence of B has a lub.
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Example 1. Consider the Dung’s framework F = (A,R) with A = {a, b, c, d, e} and the
attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted in Figure 1. It
has eight conflict–free extensions in total: {a, c},{a, d}, {b, d}, {a}, {b}, {c}, {d} and ∅.
As b is attacked by an unattacked argument, it cannot be defended against it and will not
be in any admissible extension. From this {a, c}, {a, d} and {a} are complete. We end up
with two preferred extensions, {a, c} and {a, d}. However, only {a, d} is stable, and {a}
is the grounded extension.

a b c d e

Figure 1: Sample Dung’s framework

The Dung’s framework has also more families of semantics, one of them being the
labeling–based [7, 25]. Instead of returning sets of accepted arguments, they produce
mappings in which an argument can be assigned status in, out, or undec:

Definition 2.13. Let F = (A,R) be a Dung’s framework. A three–valued labeling is a
total function Lab : A → {in, out, undec}4. An in–labeled argument is legally in iff
all its attackers are labeled out. An out–labeled argument is legally out iff at least one
its attacker is labeled in. An undec–labeled argument is legally undec iff not all of its
attackers are labeled out and it does not have an attacker that is labelled in.

By in(Lab), out(Lab) and undec(Lab) we will denote the arguments mapped respec-
tively to in, out and undec by Lab. We will also write a labeling Lab as a triple (I, O, U),
where I = in(Lab), O = out(Lab) and U = undec(Lab).

Definition 2.14. Let F = (A,R) be a Dung’s framework and Lab a three–valued labeling
on A. Lab is:

• conflict–free in F iff it holds that if a ∈ A is labeled in. then none of its attackers
is labeled in, and if it is labeled out, then it has at least one attacker labeled in.

• admissible in F iff each in–labeled argument is legally in and each out–labeled
argument is legally out.

• complete in F if it is admissible in F and every undec–labeled argument is legally
undec.

• preferred in F if it is complete in F and the set of arguments labeled in is maximal
w.r.t. set inclusion.

• grounded in F if it is complete in F and the set of arguments labeled in is minimal
w.r.t. set inclusion.

4Sometimes the t, f and u notation is also used.
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• stable in F if it is complete in F and the set of elements mapped to undec is empty.

We will shorten these semantics by adding the lab– prefix to the usual abbreviations.
The properties of the labeling–based semantics and their correspondence to the

extension–based family have already been studied in [7, 25].

Theorem 2.15. Let F = (A,R) be a Dung’s framework and E ⊆ A be a σ–extension
of F , where σ ∈ {admissible, complete, grounded, preferred, stable}. Then (E ,E+, A \
(E ∪ E+)) is a σ–labeling of F .

Let Lab be a σ–labeling of F , where σ ∈ {admissible, complete, grounded, preferred,
stable}. Then in(Lab) is a σ–extension of F .

Remark. Depending on the semantics, there can be more than one labeling corresponding
to a given extension. Let E− be the set of arguments that attack E . Obviously, E defends
its members iff E− ⊆ E+. Therefore, for a labeling to be admissible it suffices that the set
of out arguments contains E−; on the other hand, due to legality it cannot map more than
E+. This gives us a certain freedom in assignments. On the other hand, for example the
stable extensions are in one–to–one correspondence with the stable labelings.

Theorem 2.16. Let F = (A,R) be an AF. The following statements are equivalent:

• Lab is a grounded labeling of F .

• Lab is a complete labeling of F where in(Lab) is minimal w.r.t. ⊆ among all com-
plete labelings of F .

• Lab is a complete labeling of F where out(Lab) is minimal w.r.t. ⊆ among all
complete labelings of F .

• Lab is a complete labeling of F where undec(Lab) is maximal w.r.t. ⊆ among all
complete labelings of F .

Theorem 2.17. Let F = (A,R) be an AF. The following statements are equivalent:

• Lab is a preferred labeling of F .

• Lab is a complete labeling of F where in(Lab) is maximal w.r.t. ⊆ among all com-
plete labelings of F .

• Lab is a complete labeling of F where out(Lab) is maximal w.r.t. ⊆ among all
complete labelings of F .

Example 2. Let us come back to the framework F = (A,R) with A = {a, b, c, d, e}
and the attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted
in Figure 1 and described in Example 1. It had six admissible extensions, namely
{a, c}, {a, d}, {a}, {c}, {d} and ∅. Let us focus on the first one. We can observe that the
labeling ({a, c}, ∅, {b, d, e}) is not admissible, since c has an attacker not mapped to out;
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however, ({a, c}, {d}, {b, e}) already meets the requirements. This is not the only label-
ing corresponding to {a, c}; also ({a, c}, {b, d}, {e}) is admissible. It is also the complete
labeling associated with {a, c}; the first one does not qualify due to b not being legally
undec. We can observe that due to e being mapped to undec, this complete labeling cannot
be stable. On the other hand, the assignment ({a, d}, {b, c, e}, ∅) related to {a, d} meets
the stability requirements. Finally, ({a}, {b}, {c, d, e}) is our grounded labeling. Please
observe we cannot omit assigning out to b, as it would render the labeling not complete.

2.1.2 Set Conflict: Framework for Arguing with Sets of Attacking Arguments

Although AFs are quite powerful tools, permitting only binary conflict can be limiting
and cannot model certain situations in a natural manner. This has led to the development
of a number of more general structures. It can often be the case that a single argument
might not be enough to carry out an attack on another argument. For example, a piece of
evidence becomes incriminating only when put in bigger context, while alone it might not
point to anything specific. In order to grasp such problems, a framework with set form of
conflict was developed [68]:

Definition 2.18. A framework for arguing with sets of attacking arguments (SETAF
or CAF for short) is a pair SF = (A,R), where A stands for the set of arguments, and
R ⊆ (2A \ ∅)× A represents the (set) attack relation.

It might seem that this framework does not modify the Dung’s framework very sig-
nificantly. After all, frameworks with support appear to be much more complicated. As
we will also see below, the semantics are easily shifted into this new setting as well – it is
basically only the notion of attack that now takes sets and not just single arguments into
account. However, as we will see in Section 6.1, SETAFs go beyond Dung’s frameworks
and their semantics can give us a set of extensions that cannot be handled by the Dung’s
framework without the use of auxiliary arguments. We will also show that for certain types
of translations, SETAFs are more natural targets than AFs (see Sections 10.2 and 11.2).
Consequently, this structure should not be underestimated.

The semantics from Dung’s setting carry over naturally to the new one. Please note
that in what follows, by saying that a set of arguments E attacks an argument y we will
understand that there exists a set E ′ ⊆ E s.t. E ′Ry. All other notions follow accordingly:

Definition 2.19. Let SF = (A,R) be a SETAF. A set of arguments E ⊆ A defends an
argument a ∈ A in SF iff for every set of arguments B attacking a, E attacks at least one
member of B. Then set E ⊆ A is:

• conflict–free in SF if it does not attack itself, i.e. there is no s ∈ E s.t. E attacks s.

• admissible in SF iff it is conflict–free in SF and defends in SF all of its members.

• preferred in SF iff it is maximal w.r.t. set inclusion admissible in SF .
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• complete in SF iff it is admissible in SF and all arguments defended by E in SF
are contained in E .

• stable in SF iff it is conflict–free in SF and for all a ∈ A \ E , there is a E ′ ⊆ E ,
s.t.(E ′, a) ∈ R.

Like in the Dung’s setting, grounded semantics is based on a characteristic function.
The operator also preserves the relation to admissible and complete semantics.

Definition 2.20. Let SF = (A,R) be a SETAF. The characteristic function of SF is a
function FSF : 2A → 2A defined as FSF (E ) = {a | a is defended by E in SF}. The
grounded extension of SF is the least fixed point of FSF .

Lemma 2.21. Let SF = (A,R) be a SETAF and E ⊆ A a conflict–free extension of SF .
E is admissible in SF iff E ⊆ FSF (E ). E is complete in SF iff E = FSF (E ).

All basic properties of the Dung’s setting carry over to the SETAFs.

Lemma 2.22. SETAF Fundamental Lemma Let SF = (A,R) be a SETAF, E ⊆ A an
admissible extension of SF and a and b arguments that are defended by E in SF . Then
E ′ = E ∪ {a} is admissible in SF and b is defended by E ′ in SF .

Theorem 2.23. Let SF = (A,R) be a SETAF. Every stable extension of SF is a preferred
extension of SF , but not vice versa.

Theorem 2.24. Let SF = (A,R) be a SETAF. The following holds:

• every preferred extension of SF is a complete extension of SF , but not vice versa.

• the grounded extension of SF is the least w.r.t. ⊆ complete extension of SF .

• the complete extensions of SF form a complete semilattice w.r.t. set inclusion.

Finally, similarly as in AFs, we will introduce the set of attacked arguments in SETAFs.
We can observe that defense can be easily redefined with this notion, which will come in
handy when proving translations from SETAFs to certain other frameworks.

Definition 2.25. Let SF = (A,R) be a SETAF and E ⊆ A a set of arguments. The
discarded set of E is defined as E+ = {a | a ∈ A, ∃B ⊆ E , (B, a) ∈ R}. The range of
E is ERan = E ∪ E+.

Lemma 2.26. Let SF = (A,R) be a SETAF and E ⊆ A a conflict–free extension. E is
admissible iff for every set B ⊆ A s.t. ∃a ∈ E , (B, a) ∈ R, it holds that B ∩ E+ 6= ∅.

Example 3. Let us consider the SETAF SF = (A,R) with A = {a, b, c, d, e} and the
attack relationR = {({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a), ({b, d}, e)}, as depicted
in Figure 2. The admissible extensions of this framework are ∅, {b}, {b, c}, {c, e} and
{b, c, e}. Only ∅ and {b, c, e} are complete. The grounded extension is ∅, while {b, c, e} is
both preferred and stable.
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a e cb d

Figure 2: Sample SETAF

2.1.3 Recursive Binary Conflict: Argumentation Framework with Recursive At-
tacks

While the majority of the available generalizations of the Dung’s framework focuses on
augmenting the original structure with further relations or properties, the argumentation
framework with recursive attack (AFRA for short), just like SETAF, studies the concept
of attack further. In [8, 9] the authors argue that we should not only be able to attack
arguments, but the attacks themselves as well. In doing so, they raise the relation to the
level of arguments, thus making them appear explicitly in the extensions under a given
semantics5. Let us now formally define the framework and move on to the semantics.

Definition 2.27. An argumentation framework with recursive attacks (AFRA) is a pair
(A,R) where A is a set of arguments and R is a set of attacks, namely pairs (a,X) s.t.
a ∈ A and X ∈ A ∪R.

Given an attack α = (a,X) ∈ R, we will say that a is the source of α, denoted as
src(α) = a and X is the target of α, denoted as trg(α) = X . Due to the new structure of
attacks, one can introduce several notions of defeat:

Definition 2.28. Let FR = (A,R) be an AFRA, V ∈ R and W ∈ A ∪ R. V directly
defeats W in FR iff W = trg(V ).

Definition 2.29. Let FR = (A,R) be an AFRA and V,W ∈ R. If V directly defeats
src(W ) in FR, then V indirectly defeats W in FR.

Definition 2.30. Let FR = (A,R) be an AFRA, V ∈ R and W ∈ A ∪ R. V defeats W
in FR iff V directly or indirectly defeats W in FR. 6

The definition of acceptability is very similar to the one in the Dung’s framework. It is
naturally extended by defending not only arguments, but also attacks.

Definition 2.31. Let FR = (A,R) be an AFRA, E ⊆ A ∪ R and W ∈ A ∪ R. W is
acceptable w.r.t. E in FR iff ∀Z ∈ R s.t. Z defeats W in FR, ∃V ∈ E s.t. V defeats Z
in FR.

5Similar concept of attack–based semantics in the Dung’s setting, but without recursion, can be found
in [88].

6Please note that this general definition of defeats is for the ease of use and the usual restrictions still
apply. For example there will be no indirect defeat in case W is an argument, not a relation.
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Lemma 2.32. Let FR = (A,R) be an AFRA and E ⊆ A ∪ R. If an attack V ∈ R is
acceptable w.r.t. E in FR, then src(V ) is acceptable w.r.t. E in FR as well.

With these definitions, we can now move on to describing the semantics developed for
AFRA so far. Please note that in this setting, extensions no longer consist of arguments
only, but can also contain attacks.

Definition 2.33. Let FR = (A,R) be an AFRA and E ⊆ A ∪ R. E is conflict–free in
FR iff @V,W ∈ E s.t. V defeats W in FR.

As a side–effect of this formulation, every set consisting of arguments only is conflict–
free. Attacks need to be taken explicitly into account in order to “break” conflict–freeness.

Definition 2.34. Let FR = (A,R) be an AFRA. A set E ⊆ A ∪R is:

• an admissible extension of FR iff it is conflict–free in FR and each element of E
is acceptable w.r.t. E in FR.

• a preferred extension of FR is a maximal w.r.t. set inclusion admissible extension
of FR.

• a complete extension of FR iff it is admissible in FR and contains every element
of A ∪R that is acceptable w.rt. E in FR.

• a stable extension of FR iff it is conflict–free in FR and ∀V ∈ (A ∪ R) \ E ,
∃W ∈ E s.t. W defeats V in FR.

The grounded extension is again defined via the characteristic function, which is natu-
rally shifted to the new setting:

Definition 2.35. Let FR = (A,R) be an AFRA. The characteristic function of FR
FFR : 2A∪R → 2A∪R is defined as FFR(E ) = {V | V is acceptable w.r.t. E in FR}. The
grounded extension of FR is the least fixed point of FFR.

Please note that the discarded set can also be defined in the AFRA setting. However,
unlike in AFs and SETAFs, it consists of both arguments and attacks, not arguments only:

Definition 2.36. Let FR = (A,R) be an AFRA and E ⊆ A a set of arguments. The
discarded set of E in FR is defined as E+ = {a | a ∈ A ∪R, ∃b ∈ E s.t. b defeats a}.

Finally, we can observe that all the usual relations between the semantics from the
Dung’s setting carry over to AFRAs:

Lemma 2.37. AFRA Fundamental Lemma. Let FR = (A,R) be an AFRA, E ⊆ A ∪R
an admissible extension of FR and V, V ′ ∈ A ∪ R elements acceptable w.r.t. E in FR.
Then E ′ = E ∪ {V } is admissible in FR and V ′ is acceptable w.r.t. E ′ in FR.

Theorem 2.38. Let FR = (A,R) be an AFRA. The following holds:
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• the grounded extension of FR is the least w.r.t. set inclusion complete extension of
FR.

• every preferred extension of FR is complete in FR, but not vice versa.

• every stable extension of FR is preferred in FR, but not vice versa.

Example 4. (taken from [9]) Let us consider the AFRA FR = (A,R) where A =
{a, b, c, d, e, f, g} and R = {α, β, γ, δ, ε, η, ζ, ϑ, ι, κ}, with α = (a, b), β = (b, α),
γ = (c, α), δ = (c, d), ε = (e, δ), η = (d, ε), ζ = (a, f), ϑ = (f, a), ι = (f, g)
and κ = (g, g). The framework has in total 212 admissible extensions and we will
not list them here. The complete extensions are {b, c, e, β, γ} {b, c, e, f, β, γ, ϑ, ι} and
{a, b, c, e, β, γ, ζ}. The first one is grounded, while the latter two are preferred. None of
them is stable, since δ, ε, η and d are not defeated by any of the extensions.

a b

c

d

f

g
e

ι

κ

ϑ

ζ

α

δ

γ

ε

η

β

Figure 3: Sample AFRA

2.1.4 Conflict as Preference: Extended Argumentation Frameworks

The last framework we will consider in this section on conflict–based frameworks is the
extended argumentation framework EAF [15, 39, 41, 61, 63–66]. It extends the classical
Dung’s framework by introducing the notion of defense attacks, which occur between
arguments and standard conflicts. Their initial function was to “override” a given attack
due to the target’s importance. In practical situations we might sometimes be forced to
accept facts that are in conflict. For example, a hospital patient needs to undergo a certain
medical procedure p. It is, however, expensive e. We can observe that in this scenario, e
is a counterargument for p. Let us now assume it turns out that the procedure is necessary
to save the life of the patient s. Argument s as such is not in conflict with e; it is both true
that the procedure is expensive and that it is necessary. A more accurate way to model
this situation is by allowing s, due to its importance, to cancel the attack by e on p. In
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this case the patient would undergo the surgery, despite its price. The additional benefit of
having arguments that express the preferences is the fact that we can now argue not only
about the arguments, but also about their importance, as opposed to assuming a predefined
preference assignment to which every party has to agree. If, for some reason, it turned out
that the procedure is in fact not necessary to save his life and there is a cheaper alternative,
we would have a counterargument for s and a choice not to perform the initial procedure
after all. We can now proceed with the formal introduction of the extended argumentation
framework.

Definition 2.39. The extended argumentation framework (EAF for short) is a tuple
EF = (A,R,D), where A is a set of arguments, R ⊆ A × A is the attack rela-
tion, D ⊆ A × R is the defense attack relation and if (x, (y, z)), (x′, (z, y)) ∈ D, then
(x, x′), (x′, x) ∈ R.

We can observe that the EAF definition includes the symmetric attacks between (pref-
erence) arguments induced by the symmetric conflicts they can override. This restriction
was introduced based on the preference interpretation of the defense attack. If an argu-
ment c overrides attack from a to b, claiming e.g. that b is more preferred, and c′ overrides
attack from b to a, claiming that a is more preferred, then introducing a symmetric conflict
between c and c′ is a reasonable decision. We will discuss this restriction further in the
next section.

Although there are certain similarities, please note there are notable differences be-
tween the defense attacks and recursive attacks from AFRAs. The defense attacks exist
alongside the standard conflicts and can be directed only at them. The recursive attacks
replace the standard ones and can be of arbitrary depth. Moreover, since they are treated
on the same level as arguments, they appear in the extensions and are one of the reasons
why there are also significant semantical differences between EAF and AFRA.

Since now attacks can be overridden by other attacks, EAFs adopt the notion of “de-
feats” to denote the successful ones:

Definition 2.40. Let EF = (A,R,D) be an extended argumentation framework and E ⊆
A a set of arguments. An argument a defeats an argument b w.r.t. E in EF , denoted
defeatsE , iff (a, b) ∈ R and there is no argument c ∈ E s.t. (c, (a, b)) ∈ D. If a defeatsE b
in EF and b does not defeatE a in EF , then a strictly defeatsE b in EF .

From this also follows a simple proposition:

Proposition 2.41. LetEF = (A,R,D) be an extended argumentation framework, E ⊆ A
a set of arguments and a, b ∈ A. If a defeatsE b in EF , then for every E ′ ⊆ E , a defeatsE ′

b in EF .

We can now continue with the semantics. As seen in the example, preferences can
overrule certain attacks and thus make it possible for us to accept arguments that appear to
be in conflict. Thus, simply using Dung’s conflict–freeness in EAFs is insufficient.
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Definition 2.42. Let EF = (A,R,D) be an EAF. A set of arguments E ⊆ A is conflict–
free inEF iff for every a, b ∈ E , if (a, b) ∈ R, then (b, a) /∈ R and ∃c ∈ E s.t. (c, (a, b)) ∈
D.

Although conflict–freeness implies that there are no defeats in the set, a set without
defeats is not necessarily conflict–free, as observed in Example 5.

Proposition 2.43. Let EF = (A,R,D) be an EAF and E ⊆ A a conflict–free set of EF .
Then for any a, b ∈ E , a does not defeatE b.

Example 5 ( [62]). Let ({a, b, c, d}, {(a, b), (b, a), (c, d), (d, c)}, {(a, (d, c)), (b, (c, d)),
(c, (b, a)), (d, (a, b))}) be the EAF depicted in Figure 4. We can observe that if the sym-
metry requirement was dropped from conflict–freeness (i.e. the definition would boil down
to defeatsE ), then the set {a, b, c, d}would be conflict–free, which was against the intuition
of the authors [62].

a b

c

d

Figure 4: Sample EAF

Let us now continue with acceptability. In the Dung’s framework, an attacked argu-
ment “stays” attacked, i.e. it will be defeated by any set containing its attacker. In EAFs,
this is not the case – since attacks can be overridden, an argument can be “brought back”,
i.e. reinstated, which poses an additional challenge for defining defense.

Definition 2.44. Let EF = (A,R,D) be an EAF and E ⊆ A. A set of pairs RE =
{(x1, y1), ..., (xn, yn)} s.t. xi defeatsE yi in EF is a reinstatement set on E for a defeatE
by an argument c on argument b iff:

• (c, b) ∈ RE ,

•
⋃n
i=1 xi ⊆ E , and

• for every defeatingE pair (x, y) ∈ RE in EF and every defense attack (y′, (x, y)) ∈
D on this pair, there is some x′ s.t. (x′, y′) ∈ RE .
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The definition of acceptability is now as follows:

Definition 2.45. Let EF = (A,R,D) be an EAF. An argument a ∈ A is acceptable w.r.t.
a set of arguments E ⊆ A in EF iff for every argument b ∈ A s.t. b defeatsE a in EF ,
there is an argument c ∈ E s.t. c defeatsE b in EF and there is a reinstatement set on E
for this defeatE .

Please note that possessing a reinstatement set can also be verified with a defense attack
analysis:

Theorem 2.46. Let EF = (A,R,D) be a finite EAF and E ⊆ A a conflict–free extension
of EF . If an argument a ∈ E defeatsE an argument b ∈ A, then there is no reinstatement
set for this defeatE on E , iff there exists a sequence ((z1, (x1, y1)), ..., (zn, (xn, yn))) of
distinct defense attacks from D s.t.

• there is an argument g ∈ A s.t. xn = a, yn = b and zn = g,

• no two pairs (xi, yi) and (xj, yj) are the same for i 6= j,

• for every (zi, (xi, yi)) where 1 < i ≤ n, either no argument h in E defeatsE
zi or for every such defeat, there exists an argument l ∈ A s.t. (l, (h, zi)) ∈
{(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))}, and

• no argument in E defeatsE z1.

With this at hand, the semantics are defined in the usual manner.

Definition 2.47. Let EF = (A,R,D) be an EAF and E ⊆ A a conflict–free extension of
EF . E is:

• an admissible extension of EF iff every argument in E is acceptable w.r.t. E in
EF .

• a preferred extension of EF iff it is a maximal w.r.t. ⊆ admissible extension of
EF .

• a complete extension of EF iff it is admissible in EF and every argument accept-
able w.r.t. E in EF is in E .

• a stable extension of EF iff for every argument b /∈ E , ∃a ∈ E s.t. a defeatsE b in
EF .

Although the aforementioned semantics are defined quite similarly as in the Dung’s
framework, the fact that acceptability is understood differently has a strong effect on the
definition of the grounded semantics and its relation to e.g. complete extensions. We can
define the characteristic operator in a manner similar to AFs, however, in the case of EAFs
it is not necessarily monotonic. For these reasons, we will operate only on conflict–free
sets and follow the iterative definition of the grounded extension rather than the least–fixed
point one:
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Definition 2.48. Let EF = (A,R,D) be an EAF, E ⊆ A a set of arguments and let
2CF denote the set of all conflict–free subsets of A in EF . The characteristic function
FEF : 2CF → 2A of EF is defined as FEF (E ) = {a | a is acceptable w.r.t. E in EF}.

Definition 2.49. Let EF = (A,R,D) be an EAF. EF is finitary iff for every argument
a ∈ A, the set {b | (b, a) ∈ R} is finite and for every (a, b) ∈ R, the set {c | (c, (a, b)) ∈
D} is finite.

Definition 2.50. Let EF = (A,R,D) be a finitary EAF. For EF we define a sequence
of subsets of A s.t. F0

EF = ∅ and F i+1
EF = FEF (F iEF ). The grounded extension of EF is⋃∞

i=0(F iEF ).

In other words [64], the grounded extension can be obtained by starting with the empty
set and iteratively applying the operator – in this special case, we do in fact obtain a
monotonically increasing sequence of extensions.

Fortunately, the usual relation between the admissible and complete extensions and the
operator still holds.

Theorem 2.51. Let EF = (A,R,D) be an EAF and FEF its characteristic operator. A
conflict–free set E is admissible in EF iff E ⊆ FEF (E ) and complete in EF iff E =
FEF (E ).

Just like in the previous frameworks, we introduce the notion of the discarded set
to EAFs. It consists of those arguments that are defeated with reinstatement. We can
easily use it to redefine acceptability. However, we can also apply it in the case of stable
semantics. If a given attack becomes a defeat, then a defense attacker for it has to be
outside the set of accepted arguments. Consequently, it will be defeated itself due to the
requirements of the stable semantics. Therefore, we can easily show that the collection of
all defeats carried out by our set is in fact a reinstatement set for any of them. Although this
redefinition might appear a bit of an overkill in this case, some of the proofs will depend
on this property.

Definition 2.52. Let EF = (A,R,D) be an EAF and E ⊆ A a set of arguments. The
discarded set of E in EF is defined as E+ = {a | a ∈ A, ∃b ∈ E s.t. b defeatsE a and
there is a reinstatement set on E for this defeat}.

Lemma 2.53. Let EF = (A,R,D) be an EAF. The set E ⊆ A is a stable extension of
EF iff E is conflict–free and E+ = A \ E .

Although the usual relation between stable–preferred and complete–grounded exten-
sions does not hold in EAFs (we will discuss this issue further in Section 2.1.4.2), there is
still some connection between them:

Theorem 2.54. Let EF = (A,R,D) be a finitary EAF. The following holds:

• every preferred extension is complete, but not vice versa.
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• every stable extension is complete, but not vice versa.

• the grounded extension is a minimal complete extension, but not necessarily the least
one.

Example 6. Let us show the extensions of the presented semantics on an example. As-
sume an EAF ({a, b, c, d, e, f, g}, {(a, b), (b, c), (c, b), (c, d), (d, c), (d, e), (f, g), (g, f)},
{(f, (c, d)), (g, (d, c))}) depicted in Figure 5. It has in total twelve admissible exten-
sions: ∅, {a}, {f}, {g}, {a, f}, {a, g}, {c, g}, {d, f}, {a, d, f}, {a, c, g}, {c, e, g} and
{a, c, e, g}. Aside from that, we can observe that even though the set {a, c} defeats{a,c} d,
{a, c, f} does not – this is one of the reasons the characteristic operator is not monotone.
We have only three complete extensions – {a}, {a, d, f} and {a, c, e, g}. The latter two
are also our preferred and stable extensions, while the first one is grounded.

a b c d e

g

f

Figure 5: Sample EAF

2.1.4.1 Hierarchical EAFs

Apart from EAFs, the study in [62] also analyzes their particular subclass, referred to as
hierarchical. Hierarchy means that the framework is separated into levels w.r.t. the stan-
dard attack relation. By this we understand that the attacks in a given group do not affect
the arguments outside it. They can only be connected by defense attacks in a way that a
the defense attacking argument has to be on a higher level than the arguments participating
in the direct conflict.

Definition 2.55. An EAF HF = (A,R,D) is a hierarchical EAF (HEAF for short) iff
there exists a partition HFH = (((A1, R1), D1), ..., ((Aj, Rj), Dj), ...) s.t. A =

⋃∞
i=1Ai,

R =
⋃∞
i=1Ri, D =

⋃∞
i=1Di, for every i = 1...∞ (Ai, Ri) is a Dung’s framework, and

(c, (a, b)) ∈ Di implies (a, b) ∈ Ri, c ∈ Ai+1. 7

HF is a bounded hierarchical EAF iff its partition HFH is of the form
(((A1, R1), D1), . . ., ((An, Rn), Dn), where Dn = ∅.

7Please recall that partitioning means that all Ai, respectively Ri, Di sets, are disjoint.
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It is worth mentioning that on this class of EAFs, the characteristic operator becomes
monotonic and thus the grounded extension can be defined as the usual least fixed point.
Moreover, we also retrieve the relation between the stable–preferred semantics known
from the Dung’s setting:

Proposition 2.56. Let HF = (A,R,D) be a HEAF, FHF its characteristic operator and
E ,E ′ ⊆ A two conflict–free sets of HF s.t. E ⊆ E ′. Then FHF (E ) ⊆ FHF (E ′).

Definition 2.57. Let HF b = (A,R,D) be a bounded hierarchical EAF and FHF its char-
acteristic operator. The grounded extension of HF b is the least fixed point of FHF .

Along with Theorem 2.51, this gives us the typical relation between the grounded and
complete extensions:

Theorem 2.58. Let HF b = (A,R,D) be a bounded hierarchical EAF. The grounded
extension is the least complete extension of HF b.

Theorem 2.59. Let bh − EF = (A,R,D) be bounded hierarchical EAF. Every stable
extension of bh− EF of is preferred, but not vice versa.

Finally, we can identify classes of EAFs where the definition of conflict–freeness can
be replaced with a defeat–based one:

Lemma 2.60. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF s.t. there
are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R. A set E ⊆ A is a conflict–free
extension of EF iff there are no defeatsE in E .

a b

c

def

Figure 6: Sample EAF

Example 7. Let ({a, b, c, d, e, f}, {(a, b), (b, a), (c, d), (d, c), (e, d), (e, f), (f, e)},
{(c, (b, a)), (d, (a, b))}) be the EAF depicted in Figure 6. We can observe that the frame-
work can be partitioned in several ways; the one with the smallest amount of subframe-
works separates a and b from other arguments. We thus obtain a partition (P1, P2), where
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P1 = (({a, b}, {(a, b), (b, a)}), ∅) and P2 = (({c, d, e, f}, {(d, c), (c, d), (e, f), (f, e)}),
{(d, (a, b)), (c, (b, a))}). The admissible extensions of this framework are ∅, {c}, {e},
{f}, {a, c}, {a, e}, {c, e}, {c, f}, {d, f}, {b, d, f}, {a, c, f} and {a, c, e}. The complete
ones are ∅, {f}, {a, c}, {a, c, e}, {a, c, f} and {b, d, f}. The first is grounded and the
last three are both preferred and stable. We can observe that the stable extensions are
now preferred and the grounded extension is the least complete one. We thus retrieve the
traditional relations between the semantics.

2.1.4.2 EAF Controversies

EAFs are interesting tools, however, there are also certain controversies concerning their
design, which make full translations from EAFs to other frameworks problematic. They
are also the reason why the transformations have only been done for hierarchical EAFs so
far [64]. First of all, we will show on an example that the usual relation between the com-
plete and grounded extensions does not hold, as already mentioned in the previous section.
Second of all, we perform a similar analysis for the stable and preferred semantics. Please
note that we treat these problems simply as different design intuitions – after all, certain
families of ADF semantics behave in a very similar manner. Unfortunately, the issues
arising concerning the conflict–free semantics of EAFs and inducing the attacks between
defense attacking arguments are a bit more than that. We will describe these problems
mostly from the structural perspective. However, we will also show that certain notions
become somewhat counterintuitive when we consider EAF instantiations. Please note that
these problems were already observed by the authors in [66] and led to the proposal of
collective EAFs with modified definitions, which will be introduced in the next section.
Discussing them here is meant to serve as an explanation for some of the choices we will
have to make when translating between EAFs and other argumentation frameworks.

Let us start with the complete and grounded semantics. Unlike in AFs and various
other frameworks, the EAF complete extensions do not form a complete semilattice. As
a result, we no longer have the least complete extension, only a number of minimal ones.
Thus, although the grounded extension is still a complete set, it is not necessarily the least
complete one.

Example 8 ([9]). Let us consider the EAF ({a, b, c}, {(b, a), (c, b)}, {(b, (c, b))}) depicted
in Figure 7. The sets {a, c} and {b, c} are its complete extensions, with the first one also
being grounded.

c b a

Figure 7: Sample EAF
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Let us now consider the stable semantics. Unlike in any other framework, the stable
extensions might not be preferred extensions. Although it was claimed otherwise at first
[62], this issue was already noted in [39]. We will explain it on an example:

Example 9. Let EF = ({a, b, c, d}, {(a, b), (d, c)}, {(b, (d, c)), (c, (a, b))}) be the EAF
depicted in Figure 8. The set E1 = {a, d} is conflict–free; there are no attacks between a
and d to start with. Moreover, a defeatsE1 b and d defeatsE1 c. Thus, E1 is also a stable
extension. The set E2 = {a, b, c, d} is also conflict–free; for every attack there is a defense
attack and there are no symmetric conflicts in the framework. Since there are no arguments
not covered by the set, it is also trivially stable. Consequently, we have a stable extension
E1 which is not preferred.

a b c d

Figure 8: Sample EAF

In the definitions of EAFs we can observe that symmetric conflicts are induced between
arguments that defense attack symmetric conflicts. While the “is more preferred” reading
of the defense attack, presented at the beginning of this section, motivates this restriction,
defense attack can also possess different interpretations. To start with, preferences can
be used to handle knowledge we are not certain of, and thus to some extent can express
probabilities of arguments or relations [3, 4]. However, as seen in the following example,
such usage can create unexpected behaviors in the framework.

Example 10. Let us modify an example from [53]; during a robbery, the car of the guilty
part has been spotted. However, some witnesses say it was orange, while other claim it was
red. Due to human perception being imperfect and the two colors being somewhat similar,
it is possible that those two claims are not in actual conflict. Let us thus assume such an
error is very likely and thus would like to “override” the attacks between the testimonies.

We introduce the following arguments: o for the claim that the getaway car is orange,
r that it is red, and es for the perception error and color similarity. The intuitive repre-
sentation of this situation would be ({o, r, e}, {(o, r), (r, o)}, {(e, (o, r)), (e, (r, o))}), as
depicted in Figure 9. However, this framework is not a proper EAF. According to the
attack restriction, e should become a self–attacker, even though we can observe that such
modeling is counterintuitive and there is no reason in the meaning e that would make it
self–conflicting.

We can create more examples in the similar spirit with different defense attackers as
well, not just one. This issue has also been noticed in [66]. The authors look at a sub-
class of EAFs from the structured argumentation point of view and show that not for all
instantiations the induced attacks are constructed.
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A different – structural – issue of the induced attacks concerns the fact that
they are only generated for cycles of length two. Let us consider two frameworks
EF2 = ({a, b, c, d}, {(a, b), (b, a), (c, d), (d, c)}, {(c, (a, b)), (d, (b, a))}) and EF3 =
({a, b, c, d, e}, {(a, b), (b, c), (c, a)}, {(d, (c, a)), (e, (a, b)), (f, (b, c))}), depicted in Fig-
ure 9. In the first case, an attack cycle between c and d is induced from their respective
defense attacks. We can observe that the framework EF2 resembles EF1 from construc-
tion; we have an attack cycle and each attack has a corresponding defense attack. The only
difference is that the EF1 cycle is of length two, and the EF2 one of three. Nevertheless,
in the latter case no attacks between d, e and f are enforced, which appears to be a certain
inconsistency in the design.

e o r

(a) EF1

a

b

d c

(b) EF2

a b

cd f

e

(c) EF3

a b

cd f

e

(d) EF4

Figure 9: Sample EAFs

The next problem lies in conflict–freeness. Recall the framework ({a, b, c, d}, {(a, b),
(b, a), (c, d), (d, c)}, {(a, (d, c)), (b, (c, d)), (c, (b, a)), (d, (a, b))}) from Figure 4 and Ex-
ample 5, in which we discussed why conflict–freeness cannot be defined with defeats only.
Let us analyze the (a, b) attack; it is overridden by d, attack on which by c is in turn over-
ridden by b. We thus have a case in which b, even though somewhat indirectly, helps to
“cancel” an attack that is carried out against it. This is a cyclic behavior, perhaps unde-
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sirable, but in certain ways not much different from the self–defense that is permitted in
most of the semantics apart from grounded.

Let us now look at the framework EF4 = ({a, b, c, d, e}, {(a, b), (b, c), (c, a)},
{(d, (c, a)), (e, (a, b)), (f, (b, c)), (a, (e, d)), (b, (f, e)), (c, (d, f))}) depicted in Figure 9.
It is, in principle, a construction similar to the previously described structure. c is attacked
by b, but the attack can be overridden by f , the defense attack on which is overridden by
c in turn. Thus, c again promotes its own acceptance, and unlike in the first framework,
this situation is permitted. Similarly, in a very straightforward framework ({a, b}, {(a, b)},
{(b, (a, b))}), where b directly defense attacks the attack on it, {a, b} is still a conflict–free
extension. This self–reinstatement is permitted in EAF semantics, with the exception of
the grounded case. Therefore, again we are faced with a situation in which only cycles
of length two are treated uniquely by the definition, and there is an inconsistency within
the design. Please note that in [66], the authors created a modification of bounded hier-
archical EAFs, which included collective defense attacks and where the current notion of
conflict–freeness is replaced by requiring that no defeats are present in a given extension.
Their choice was to let instantiation create appropriate frameworks, rather than make such
restrictions on an abstract level. They also show that despite the change, their construction
still satisfied the rationality postulates [24]. Therefore, we now move on to describing the
new framework, and end this section.

2.1.4.3 EAFs with Collective Defense Attacks

In the previous section we have already noted that in order to address certain issues of
EAFs, the authors in [66] introduce a modification of the framework changing the current
notion of conflict–freeness and allowing defense attacks to be collective. Thus, in the new
approach, no additional attacks between arguments are induced:

Definition 2.61. An extended argumentation framework with collective defense at-
tacks (EAFC for short) is a tuple EFC = (A,R,D), where A is a set of argu-
ments, R ⊆ A × A is a set of attacks and D ⊆ (2A \ ∅) × R) is the set of col-
lective defense attacks. EFC is bounded hierarchical iff there exists a partition
δH = (((A1, R1), D1), ..., ((An, Rn), Dn)) s.t. Dn = ∅, A =

⋃n
i=1Ai, R =

⋃n
i=1Ri,

D =
⋃n
i=1Di, for every i = 1...n (Ai, Ri) is a Dung’s framework, and (c, (a, b)) ∈ Di

implies (a, b) ∈ Ri, c ⊆ Ai+1.

Although the study was limited to the bounded hierarchical subclass, we will define
the semantics for the general case. While the definition of conflict–freeness is changed,
the other notions are just adapted to collective defense attacks:

Definition 2.62. Let EFC = (A,R,D) be an extended argumentation framework with
collective defense attacks.

An argument a defeatsE an argument b ∈ A in EFC w.r.t. set E ⊆ A iff (a, b) ∈ R
and there is no c ⊆ A s.t. (c, (a, b)) ∈ D.
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A set of pairs RE = {(x1, y1), ..., (xn, yn)} s.t. xi defeatsE yi in EFC and for i =
1...n, xi ∈ E , is a reinstatement set on E for a defeatE by argument a on argument b iff
(a, b) ∈ RE and for every pair (x, y) ∈ RE and set of arguments c ⊆ A s.t. (c, (x, y)) ∈ D,
there is a pair (x′, y′) ∈ RE for some y′ ∈ c.

A set of arguments E ⊆ A is conflict–free inEFC iff for every a, b ∈ E , if (a, b) ∈ R,
then ∃c ⊆ A s.t. (c, (a, b)) ∈ D (i.e. there are no a, b ∈ E s.t. a defeatsE b in EFC).

The remaining semantics are defined in the same way as for standard EAFs, though
the fundamental lemma and monotonicity of the characteristic function hold only in the
bounded hierarchical case.

Proposition 2.63. Let EFC = (A,R,D) be a bounded hierarchical EAFC. If E ⊆ A is
an admissible extension of EFC and a, b ∈ A are acceptable w.r.t. E in EFC, then E ′ =
E ∪{a} is admissible in EFC and b is acceptable w.r.t. E ′ in EFC. For two conflict–free
extensions E ,E ′ ⊆ A of EFC s.t. E ⊆ E ′, it holds that FEF (E ) ⊆ FEF (E ′).

Finally, please note that just like we could verify reinstatement by defense attack anal-
ysis in EAFs, we can do it in EAFCs. The following theorem can be proved in a fashion
similar to Theorem 2.46:

Theorem 2.64. Let EFC = (A,R,D) be a finite EAFC and E ⊆ A be a conflict–
free extension of EFC. If an argument a ∈ E defeatsE an argument b ∈ A,
then there is no reinstatement set for this defeatE on E , iff there exists a sequence
((z1, (x1, y1)), ..., (zn, (xn, yn))) of distinct defense attacks from D s.t.

• there is a set of arguments argument g ⊆ A s.t. xn = a, yn = b and zn = g,

• no two pairs (xi, yi) and (xj, yj) are the same for i 6= j,

• for every (zi, (xi, yi)) where 1 < i ≤ n, either no argument h in E defeatsE any
argument z ∈ zi or for every such defeat, there exists a set of arguments l ⊆ A s.t.
(l, (h, z)) ∈ {(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))}, and

• no argument in E defeatsE any argument in z1.

Example 11. Let us consider the EAFC EFC = ({a, b, c, d, e, f}, {(c, f), (d, e), (f, a)},
{({f}, (d, e)), ({a, b, c}, (d, e)), ({e}, (c, f))}) depicted in Figure 10. First of all, ∅ is a
trivial admissible extension. We can also observe that none of the arguments b, c and d are
attacked; therefore, any combination of them will form an admissible extension as well,
and this gives us seven more sets. Next, we have the {e, f} extension; w.r.t. this set,
neither c defeats f nor d defeats e, and thus there is nothing to defend from. Adding any
of the {b, c, d} arguments does not change that, and we obtain the final seven extensions –
{b, e, f}, {c, e, f}, {d, e, f}, {b, c, e, f}, {b, d, e, f}, {c, d, e, f} and {b, c, d, e, f}. Out of
all the admissible sets, only {b, c, d} and {b, c, d, e, f} are complete, with the first being
the grounded extension and the latter the single preferred one. Furthermore, {b, c, d, e, f}
is our only stable set, as {b, c, d} does not defeat a.
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Figure 10: Sample EAFC

2.2 Support–Based Argumentation Frameworks
In the Dung’s framework, based on the existing conflicts we can derive defense, which can
be seen as a type of a positive indirect relation between arguments. However, with time it
was acknowledged that a structure going beyond that is required and that the defense can-
not account for all interactions between arguments that are not negative. Consequently,
the notion of support was introduced. There was an initial hope that just like in the case
of attack, we will be able to preserve a certain level of abstraction [28], and thus abstract
support and the bipolar argumentation framework [28–30] were introduced. However, var-
ious arguments against this claim have been found, and more specialized forms of support
have been researched. This includes deductive [19], necessary [69,70] and evidential sup-
ports [72,73,78], with the latter two developed in their own dedicated frameworks. In this
section, we will go through them one by one.

2.2.1 Abstract and Deductive Supports: Bipolar Argumentation Framework

We will start by introducing the abstract and deductive approaches. Let us first recall the
definition of a bipolar argumentation framework [30], which extends the Dung’s frame-
work by adding a new binary relation that is meant to account for support:

Definition 2.65. The bipolar argumentation framework (BAF for short) is a tuple
(A,R, S), where A is a set of arguments, R ⊆ A × A represents the attack relation
and S ⊆ A× A the support 8.

The first type of support studied in this setting is the abstract support [28]. The most
significant difference between this one and any other interpretation of support, or even

8Please note that in the original version from [28], it was also assumed that R ∩ S = ∅. However, this
restriction is dropped in later works.
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conflict, is the fact that it does not affect the acceptability of an argument. By this we
understand that an argument does not require its supporters or the arguments it supports
to be presented in an extension. Abstract support merely encompasses a certain, unde-
fined positive link between the two arguments and the presented research was focused on
studying the consequences of using it in a framework. This has lead to the development
of additional, indirect forms of conflict, which were later used to enhance the semantics
known from the Dung’s setting. The first developed type was the supported attack. Later,
in [29] the secondary attack was also introduced (first referred to as diverted).

Another type of a positive relation in BAFs, the deductive support [19] was introduced
in order to address certain issues with the coalition translation from BAFs to AFs [29]. We
say that a deductively supports b if acceptance of a implies the acceptance of b and not
acceptance of b implies non acceptance of a. Although originally used rather for coalitions
and meta–argumentation purposes, it is also studied in a standard setting in [30]. The
deductive behavior of support in BAFs is achieved by introducing another type of indirect
conflict, namely the mediated attack. Further study [30] also included the extended attack
in order to accommodate the handling of necessary support (we will discuss this form of
support in Section 2.2.2). Please note we will recall only one form of the extended attack,
as every other one is already subsumed by the existing notions (see Definition 2.82).

Definition 2.66. Let BF = (A,R, S) be a BAF and a, b ∈ A two arguments. There is:

• a supported attack from a to b in BF iff there exists an argument c s.t. there is a
sequence of supports from a to c (i.e. aS...Sc) and cRb.

• a secondary attack from a to b in BF iff there is an argument c s.t. cS...Sb and
aRc.

• a mediated attack from a to b in BF iff there is an argument c s.t. there is a
sequence of supports from b to c and aRc.

• an extended attack from a to b in BF iff there is an argument c s.t. there is a
sequence of supports form c to a (i.e. cS...Sa) and cRb.

The collections of the respective indirect attacks will be abbreviated to Rsup, Rsec,
Rmed and Rext. Please note that even though there are many types of conflicts available, it
does not mean that all of them need to be used – the choice depends on what we intend to
use a given BAF for. We can see the examples of all of the listed attacks in Figure 11 – the
indirect conflicts are marked in red.

What was noticed in [30] is that the combinations of different types of conflicts in the
framework would give us a basis to derive even more indirect attacks. This led e.g. to
the introduction of the super–mediated attack, which takes into account both direct and
supported attacks:

Definition 2.67. Let BF = (A,R, S) be a BAF and a, b ∈ A two arguments. There
is a super–mediated attack from a to b in BF iff there is an argument c s.t. there is a
sequence of supports from b to c and a direct or supported attacks c.
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a c b

(a) Supported attack

a c b

(b) Secondary attack

a c b

(c) Mediated attack

a c b

(d) Extended attack

Figure 11: Indirect attacks in BAFs

a c bd

Figure 12: Super–mediated attacks

An example of the super–mediated attack can be observed in Figure 12; in red we have
marked the existing supported and mediated conflicts, while the super ones are depicted in
blue.

In summary, we can observe that we can have indirect attacks built from direct ones
and the existing support, then additional indirect ones built on previous indirect ones and
support and so on. We will thus speak about first tier attacks, second tier attacks etc., and
leave it to the reader to choose which tiers of which conflicts are to be used. We therefore
propose a new definition of indirect attacks, though please note that it is not our intent to
replace the existing ones. We only want to grasp certain patterns that appear in BAFs and
be able to show whether some general properties hold, without being forced to assume a
fixed set of indirect attacks.

Definition 2.68. Let BF = (A,R, S) be a BAF. The tiered indirect attacks of BF are
as follows:

• Rind
0 = ∅

• Rind
1 = {Rsup

∅ , Rsec
∅ , Rmed

∅ , Rext
∅ }

• Rind
i = {Rsup

E , Rsec
E , Rmed

E , Rext
E | E ⊆ Rind

i−1} for i > 1, where:

– Rsup
E = {(a, b) | there exists an argument c s.t. there is a sequence of supports

from a to c and (c, b) ∈ R ∪
⋃

E}.
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– Rsec
E = {(a, b) | there exists an argument c s.t. there is a sequence of supports

from c to b and (a, c) ∈ R ∪
⋃

E}.
– Rmed

E = {(a, b) | there exists an argument c s.t. there is a sequence of supports
from b to c and (a, c) ∈ R ∪

⋃
E}.

– Rext
E = {(a, b) | there exists an argument c s.t. there is a sequence of supports

from c to a and (c, b) ∈ R ∪
⋃

E}.

With Rind we will denote the collection of all sets of indirect attacks
⋃∞
i=0R

ind
i .

In this notation, the set of super–mediated attacks is Rmed
Rsup . It is worth mentioning

that not all conflicts are created in a unique manner and especially the higher tier attacks
sets might not be disjoint. Furthermore, not every tier has to bring something new; for
example, Rsup = Rsup

Rsup .
Please note that although the presented definition might look intimidating at first, usu-

ally only some of the conflicts are studied at a time. What needs to be stated explicitly is
that BAFs were meant as a research framework for analyzing different types of supports
and their consequences. Therefore, there is no “absolute” way to choose what sort of indi-
rect attacks need to be taken into account and different interpretations of support might call
for different attacks. Our intent is merely to gather and organize the available approaches.
Moreover, even in the case of a set meaning of support, various modeling approaches can
be found (see Section 2.2.2). As a result, defining the semantics of BAFs is quite difficult.
We will now recall the two main styles.

The original approach [28] for handling abstract support used indirect attacks to
strengthen the notion of conflict–freeness and to introduce coherence restrictions, such
as not attacking and supporting the same argument. The definition of defense was left the
same as in the Dung’s setting (i.e. required direct attack against direct attack). One of the
reasons to motivate such choice was the fact that in BAFs, support is not seen as having the
same strength as attack. Moreover, since the argument did not require its (abstract) sup-
porters to be present in order to be accepted, there is no reason why having its supporters
attacked should render the argument unacceptable.

The new approach [30] defined the semantics of BAFs through the translations to AFs
and was meant to handle more than just abstract support. The argumentation graph was
extended with the desired indirect attacks and the support relation removed. The remaining
structure was then basically a Dung’s framework and its extensions gave us the results of
the original BAF under the desired semantics. To this approach we will later refer to as
attack propagation translation (see Sections 3.3 and 9.1). What can also be observed is
that by elevating indirect attacks to the level of direct ones, we now can defend from and
with them. This approach is adequate for stronger forms of support, such as deductive,
where the presence of supporters does affect the status of an argument.

In what follows we will extend the semantics of [28] so that they can be parametrized
with the desired indirect attacks. We will also parametrize defense, so that one can choose
which types of conflicts should be taken into account.
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Definition 2.69. Let BF = (A,R, S) be a BAF, E ⊆ A and R′ ⊆ Rind the collections of
indirect attacks in BF that we want to consider. The set E defends a in BF w.r.t. R′ if
for every b ∈ A s.t. (b, a) ∈ (R ∪

⋃
R′), there exists c ∈ E s.t. (c, b) ∈ (R ∪

⋃
R′).

We can observe that if we assumeR′ = ∅, we are brought back to the Dung’s definition
of defense which is used in abstract support. We will now introduce two strengthened
forms of the AF conflict–freeness and the support closure. Please note that in addition to
the original definition, we will also include the inverse closure, present e.g. in the binary
version of AFNs (see Section 2.2.2.1).

Definition 2.70. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind the collections of indirect
attacks in BF . A set E ⊆ A is +conflict–free in BF w.r.t. R′ iff @a, b ∈ E s.t. (a, b) ∈
(R ∪

⋃
R′). E is safe in BF w.r.t. R′ iff @b ∈ A s.t. b is at the same time attacked by a

member of E in R ∪
⋃
R′ and either there is a sequence of supports from an element of

E to b, or b ∈ E . E is closed under S in BF iff ∀b ∈ E , a ∈ A, if bSa then a ∈ E . E is
inverse closed under S in BF iff ∀b ∈ E , a ∈ A, if aSb then a ∈ E .

We can now proceed with further semantics. Please note we will not assume that
conflict–freeness and defense are parametrized with the same types of indirect attacks.
This approach could be useful when we mix different types of support within the frame-
work. Moreover, strengthening conflict–freeness does not necessarily mean we want to
broaden the notion of defense, which was the case in abstract support. However, we will
keep the definition of stability almost the same as the original one [28], i.e. the same types
of attacks will be used for arguments inside and outside the extension.

Definition 2.71. LetBF = (A,R, S) be a BAF andR′ ⊆ Rind, R′′ ⊆ Rind two collections
of indirect attacks in BF . The set E ⊆ A is:

• d–admissible w.r.t. (R′, R′′) in BF iff it is +conflict–free w.r.t. R′ in BF and
defends all its elements w.r.t. R′′ in BF .

• s–admissible w.r.t. (R′, R′′) in BF iff it is safe w.r.t. R′ and defends all its elements
w.r.t. R′′ in BF .

• c–admissible w.r.t. (R′, R′′) in BF iff it is +conflict–free w.r.t. R′, closed for S and
defends all its elements w.r.t. R′′ in BF .

• i–admissible w.r.t. (R′, R′′) in BF iff it is +conflict–free w.r.t. R′, inverse closed
for S and defends all its elements w.r.t. R′′ in BF .

• d–/s–/c–/i–preferred w.r.t. (R′, R′′) in BF iff it is maximal w.r.t. set inclusion
d–/s–/c–/i–admissible w.r.t. (R′, R′′) in BF .

• stable w.r.t. R′ in BF iff it is +conflict–free w.r.t. R′ in BF and ∀b /∈ E , there is a
member of E attacking b in R ∪

⋃
R′.
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We can observe that the provided definition did not include the grounded and complete
semantics. We will come back to this problem in a moment and would like to discuss
certain general properties first:

Lemma 2.72. BAF Fundamental Lemma Let BF = (A,R, S) be a BAF, R′ ⊆
Rind, R′′ ⊆ Rind two collections of indirect attacks in BF , E ⊆ A a d–admissible exten-
sion w.r.t. (R′, R′′) and a, b ∈ A arguments defended by E w.r.t. R′′ in BF . If R′ = R′′,
then E ′ = E ∪{a} is d–admissible w.r.t. (R′, R′′) and b is defended by E w.r.t. R′′ in BF .

Unfortunately, this is the only general positive result we have. If we assume that R′ ⊂
R′′, R′′ ⊂ R′, or look at s–/c–/i–admissibility, we can find examples in which proceeding
with adding a defended argument can break +conflict–freeness or given us admissible
extensions of a different type:

Example 12. Let us consider the framework BF1 = ({a, b, c}, {(b, c)}, {(a, b)}) and
parametrize +conflict–freeness with {Rmed} and defense with ∅. We can observe that b
mediate attacks a. However, {a} is a d–admissible extension with our parametrization; it
is both +conflict–free and is not directly attacked by any other argument in the set. Sim-
ilarly, there are no arguments directly attacking b, and thus the argument is defended by
{a}. Unfortunately, the set {a, b} is not even +conflict–free, let alone d–admissible, due
to the indirect attack.

We can now analyze the framework BF2 = ({a, b}, {(a, b)}, {(a, b)}) in which a both
supports and attacks b. Let us parametrize +conflict–freeness with ∅ and defense with
{Rmed}. We can observe that a mediate attacks itself. However, as this is not a direct
attack {a} is +conflict–free. Furthermore, a attacks its own attacker – namely, itself – and
thus is defended by {a} w.r.t. {Rmed}. Thus, technically speaking, the set is d–admissible.
Moreover, for similar reasons, it also defends b, even though {a, b} is not +conflict–free to
start with.

Let us look at the same framework but from the point of safety. No supported or sec-
ondary attacks are introduced inBF2, while a (super) mediate attacks itself and b extended
attacks itself. We can observe that ∅ is easily s–admissible. Moreover, as long as we do
not parametrize defense with a collection of attacks that includes (super) mediated con-
flicts, a can be seen as an initial argument. Therefore, ∅ is s–admissible and defends a.
Unfortunately, {a} is not s–admissible; at the same time b is attacked and supported by the
set.

Let us now consider a simplified version of the previous framework with a single sup-
porting edge, i.e. BF3 = ({a, b}, ∅, {(a, b)}). ∅ is an admissible extension of any type.
Furthermore, as there are no attacks in the framework whatsoever, no additional indi-
rect conflicts of any type will be created and both a and b are defended by ∅ w.r.t. any
parametrization. However, we can observe that even though ∅ is c–admissible and defends
a, {a} is not c–admissible due to the absence of b. Similarly, ∅ is i–admissible and defends
b, but {b} is not i–admissible.

There are two ways the loss of admissibility can be addressed. Either we limit our-
selves to a particular collection of indirect conflicts for which certain properties can still
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hold, or we adapt the definition of defense. Both in AFNs and EAFs, which will be de-
scribed in the next sections, defense is extended in order to ensure that a given argument
is not only protected from attacks, but also sufficiently supported. The fact that the BAF
defense does include the support counterpart led to the loss of e.g. c–/i– admissibility in
our example. Unfortunately, this might mean that each type of admissible semantics may
require its own notion of acceptability. Due to the fact that in the newer works [30,31] the
focus on BAF semantics shifted from the d–/s–/i–/c–families to translation families that
will be described in Section 9.1, we leave this issue with defense for future work.

The fact that in principle, the BAF version of the Fundamental Lemma does not hold
is the main reason why we will not attempt to recreate most of the complete and grounded
semantics. Although the majority of the “ingredients” are already available, following the
Dung’s style definition would create semantics that are in principle not universally defined.
Let us look at the following example:

Example 13. Let BF1 = ({a, b}, {(b, b)}, {(a, b)}) be a BAF. Clearly, ∅ is +conflict–
free, safe, closed under support, and is an admissible extension of any type and with any
parametrization. We will now focus on the first tier attacks and assume the same conflicts
both in +conflict–freeness and defense. The combination of (a, b) support and (b, b) attack
creates a supported attack (a, b) and a mediated attack (b, a). No secondary or extended
conflict is produced.

Let us now consider defense being parametrized with either secondary attacks, or ex-
tended attacks, or no indirect attacks at all. In this case, a is an unattacked argument
and is thus defended by ∅. Therefore, ∅ cannot be considered complete if we assume the
“defended arguments are included in the extension” approach. Unfortunately, while {a}
is still +conflict–free and safe, it is no longer closed under support. Moreover, it will
never be; b directly attacks itself and cannot appear in a +conflict–free extension with any
parametrization and thus cannot be defended neither by {a} nor ∅. This means that no set
of arguments in BF1 qualifies for the c–complete extension.

We can now consider parametrization with the supported attack. Again, a is not at-
tacked by any argument, and thus is defended by ∅. However, even though ∅ is safe, {a}
is not – a at the same times supports and support attacks b. Since neither {a, b} nor {b}
can possibly be admissible in any way, our framework has no s–complete extensions.

LetBF2 = ({a, b}, {(a, a)}, {(a, b)}) be a modification ofBF1; in this case, it is a that
is a self–attacker, not b. There are no mediated attacks in this framework. Consequently, b
is an unattacked argument w.r.t. direct and mediated conflicts, and as such is defended by
the empty set. However, even though ∅ is i–admissible, {b} is not due to the absence of a.
Since a is a self–attacker, it will never be a part of any extension. Hence, our framework
has no i–complete extension w.r.t. the aforementioned conflicts.

The conclusion thus is that the complete semantics cannot be that easily shifted into
the BAF setting and that the general results are not very appealing. We may obtain better
results if we limit ourselves to particular types of indirect conflicts. Aside from that, we
can only define d–complete and d–grounded extensions if we assume the same parameters
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both for +conflict–freeness and defense.

Definition 2.73. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind be a collections of indirect
attacks in BF . A d–admissible extension E ⊆ A w.r.t. (R′, R′) of BF is d–complete
w.r.t. (R′, R′) in BF iff all arguments defended w.r.t. R′ by E are in E .

Definition 2.74. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collections of indirect
attacks in BF . The d–characteristic operator d − FBF : 2A → 2A of BF w.r.t. R′ is
defined as d−FBF (E ) = {a | a is defended by E w.r.t. R′ in BF}.

We can easily observe that our operator is monotonic w.r.t. ⊆. If a given set E con-
tains arguments attacking given elements w.r.t. R′, then so does any E ′ s.t. E ⊆ E ′.
Moreover, we can observe that applying the operator to a +conflict–free set with the same
parametrization yields a +conflict–free set.

Lemma 2.75. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collections of indirect attacks
in BF and d− FR′

BF : 2A → 2A the d–characteristic operator of BF w.r.t. R′. Given two
sets of arguments E ,E ′ ⊆ A, if E ⊆ E ′, then d−FR′

BF (E ) ⊆ d−FR′
BF (E ′).

Lemma 2.76. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collection of indirect
attacks in BF . If a set E ⊆ A is +conflict–free w.r.t. R′, then so is d−FR′

BF (E ).

From this, the following properties follow:

Lemma 2.77. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect attacks
in BF and d − FR′

BF the d–characteristic operator of BF w.r.t. R′. A set of arguments
E ⊆ A that is +conflict–free w.r.t. R′, is d–admissible w.r.t. (R′, R′) iff E ⊆ d−FR′

BF (E ).
A set of arguments E ⊆ A that is +conflict–free w.r.t. R′, is d–complete w.r.t. (R′, R′) iff
E = d−FR′

BF (E ).

We can now define the d–grounded extension as the least fixed point of our operator
and observe that if we use the same parametrization, it is +conflict–free as well.

Definition 2.78. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind the collections of indirect
attacks in BF . The d–grounded extension of BF w.r.t. R′ is the least fixed point of the
d–characteristic operator of BF w.r.t. R′.

Proposition 2.79. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect
attacks in BF and E ⊆ A the d–grounded extension w.r.t. R′ of BF . E is +conflict–free
w.r.t. R′.

Theorem 2.80. Let BF = (A,R, S) be BAF and R′ ⊆ Rind the collections of indirect
attacks in BF . The following holds:

• every d–preferred extension of BF w.r.t. (R′, R′) is a d–complete extension of BF
w.r.t. (R′, R′), but not vice versa.
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• the d–grounded extension of BF w.r.t. R′ is the least w.r.t. set inclusion d–complete
extension of BF w.r.t. (R′, R′).

• every stable extension of BF w.r.t. R′ is a d–preferred extension w.r.t. (R′, R′), but
not vice versa.

The translation–based family of BAF semantics will be described in Section 9.1.

2.2.2 Necessary Support: Abstract Frameworks with Necessities

The introduction of abstract support started a new line of research into various types of
positive relations. One of them is the necessary support, first developed in [70]. We say
that an argument a necessary supports b if we need to assume a in order to accept b.
Consequently, argument’s supporters had to be present in an extension. Since cutting off
such supporters would now discard an argument, it was natural to expect that this sort of
indirect attack should be suitable for defense. Naturally, the abstract support and the BAF
semantics did not meet these requirements, and a new type of a framework was created.
We will recall its original form from [70], which was heavily inspired by BAFs and had
certain design issues. Then we will continue with the current definition [69] that introduces
a number of important changes and fixes.

2.2.2.1 Binary AFNs

Let us recall the original formulation of AFNs, presented in [70]:

Definition 2.81. A (binary) abstract argumentation framework with necessities (AFN)
is a tuple (A,R,N) where A is a set of arguments, R ⊆ A × A represents the attack
relation and N ⊆ A× A the necessity relation.

Support in AFNs leads to the development of additional notions of attack:

Definition 2.82. Let FN = (A,R,N) be an AFN and a, b ∈ A. There is an extended
necessity from a to b, denoted as aN+b, iff there is a sequence a1N ...N an (n ≥ 2)
where a1 = a and an = b. There is an extended attack of b by a, denoted as aR+b, iff
any of the following is the case: i) aR b, ii) ∃c ∈ A s.t. aR cN+b, or iii) ∃c ∈ A s.t. cR b
and cN+a.

The first two cases of extended attack correspond to direct and secondary ones from
BAF. The reasoning behind the last one is that if we accept a, we have to accept its sup-
porter c, and thus exclude b. Please note the more complex attacks formally do not appear
in any semantics; they are only used to show certain properties. Moreover, while the sec-
ondary attack is, in a certain sense, present in the semantics of set AFNs, the last type of
extended attack is dropped.

At the core of all AFN semantics are the concepts of acyclicity and coherence:
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Definition 2.83. Let FN = (A,R,N) be an argumentation framework with necessities.
An argument a ∈ A is necessity–cycle free (N–Cycle–Free) in FN iff it is not the case

that aN+a or that jointly bN+a and bN+b. A set of arguments S ⊆ A is N–Cycle–Free
in FN iff every s ∈ S is N–Cycle–Free in FN .

A set S ⊆ A is coherent in FN iff it is N–Cycle–Free and closed under N−1, i.e. if
a ∈ S then b ∈ S for each bN a. A set S is strongly coherent in FN iff it is coherent and
conflict–free w.r.t. R.

We can now proceed with explaining the semantics:

Definition 2.84. Let FN = (A,R,N) be an AFN. A set of arguments E ⊆ A is:

• stable in FN iff it is strongly coherent in FN and for each a ∈ A \ E either
∃e ∈ E , eR a or bN a for some b ∈ A \ E .

• admissible in FN iff E is strongly coherent in FN and if there is an argument
a ∈ E s.t. bRa, then for each coherent subset E ′ ⊆ A \ E s.t. b ∈ E ′, there exist
arguments e ∈ E , c ∈ E ′ s.t. eRc.

• preferred in FN iff it is maximal w.r.t. set inclusion admissible in FN .

Unfortunately, this formulation of AFN semantics can provide extensions that do not
follow the intuitions that the authors have presented in their paper, as visible in Example
14.

Example 14. Let FN = ({a, b, c}, {(c, b)}, {(a, b), (a, c)}) be the framework depicted in
Figure 13 (we use dotted lines to depict support).

a b c

Figure 13: Sample AFN

Intuitively, the admissible extensions should be ∅, {a} and {a, c}. No set containing
b can be considered admissible as it has no way of defending from the attack from c.
However, the Definition 2.84 in addition to the sets above considers {a, b} admissible:

• {a, b} is strongly coherent: it is N–Cycle–Free, includes the necessary supporters
and is conflict–free w.r.t. R. 9

• c attacks {a, b}. However, {a, b, c} \ {a, b} is simply {c} and it is the only set con-
taining c; it is unfortunately not coherent (does not include the necessary supporter
a). Hence there is no set we have to attack and the requirements are satisfied.

Due to these complications and the fact that the new version of AFNs does not seem
to suffer from such problems, we will not focus on this formulation anymore.

9However, please note it is not conflict–free w.r.t. R+.
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2.2.2.2 Set AFNs

In [70], apart from AFNs, their generalizations GAFNs were introduced. They allowed
support from a set of arguments. In the more recent work [69], the binary version of AFNs
was dropped in favor of the set approach completely. Moreover, some of the problems
with the previous semantics were fixed. The new formulation is thus as follows:

Definition 2.85. A (set) abstract argumentation framework with necessities (AFN) is a
tuple (A,R,N) where A is a set of arguments, R ⊆ A×A represents the attack relation
and N ⊆ (2A \ ∅)× A represents the necessity relation.

Although the definitions of N–Cycle–Freeness and being closed under N−1 can be
adapted to this setting, the concept of a powerful sequence has also been introduced:

Definition 2.86. Let FN = (A,R,N) be an AFN and E ⊆ A a set of arguments. An
argument a ∈ A is powerful in E iff a ∈ E and there is a sequence a0, ..., ak of elements
of E s.t. :

• ak = a,

• there is no B ⊆ A s.t. BNa0, and

• for 1 ≤ i ≤ k: for each B ⊆ A, if BNai then B ∩ {a0, ..., ai−1} 6= ∅.

Definition 2.87. Let FN = (A,R,N) be an AFN. A set of arguments E ⊆ A is coherent
in FN iff each a ∈ E is powerful in E . A coherent set if strongly coherent in FN iff it
is conflict–free w.r.t. R in FN .

We will abbreviate these basic semantics with coh and str-coh for functional represen-
tation. We can now continue introducing the usual notions:

Definition 2.88. Let FN = (A,R,N) be an AFN, E ⊆ A and a ∈ A. A set E defends a
in FN iff E ∪ {a} is coherent and for each b ∈ A, if bRa then for each coherent C ⊆ A
that contains b, there exist arguments e ∈ E , c ∈ C s.t. eRc. The characteristic function
of FN is defined as FFN : 2A → 2A where FFN(E ) = {a | E defends a in FN}.

Definition 2.89. Let FN = (A,R,N) be an AFN and E ⊆ A a set of arguments. The set
of arguments deactivated by E is defined by E+ = {a | ∃e ∈ E s.t. eRa or there is a
B ⊆ A s.t. BNa and E ∩B = ∅}.

Definition 2.90. Let FN = (A,R,N) be an AFN. A set of arguments E ⊆ A is :

• admissible in FN iff it is strongly coherent and defends all of its arguments in FN .

• preferred in FN iff it is maximal w.r.t. set inclusion admissible in FN .

• complete in FN iff it is admissible and contains any argument it defends in FN .
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• grounded in FN iff it is the least fixed–point of FFN .

• stable in FN iff it is complete in FN and E+ = A \ E .

Please note that the notion of the deactivated set in AFNs is somewhat weaker than the
usual definition of an E+ set. For example, in AFs, given two sets E and E ′ s.t. E ⊆ E ′,
it followed that E+ ⊆ E ′+. This is not the case with the deactivated set. Let us show it on
an example:

Example 15. Let FN = ({a, b, c}, ∅, {({a}, b), ({b}, c)}) be an AFN. The deactivated set
of {a} is {c} - c is supported by b, which is not present in the set. However, the deactivated
set of {a, b} is just ∅, as c now receives sufficient support form the set.

For this reason, we define an auxiliary notion for AFN that is meant to represent the
set of arguments for which all powerful sequences are attacked by a given set E . The fact
that this discarded set is a subset of the deactivated one can be shown quite easily based
on their definitions.

Definition 2.91. Let FN = (A,R,N) be an AFN. The set of arguments discarded by E
in FN is defined as E att = {a | every coherent set containing a is attacked by E}.

Lemma 2.92. Let FN = (A,R,N) be an AFN and E ⊆ A be a strongly coherent set.
Then E att ⊆ E+.

Using the E att set, we can redefine both defense and stability. In particular, we can
now use strongly coherent sets instead of complete as a basis for the stable extensions.

Lemma 2.93. Let FN = (A,R,N) be an AFN, E ⊆ A and a ∈ A. a is defended by E in
FN iff E ∪ {a} is coherent and ∀b ∈ A s.t. bRa, b ∈ E att.

Lemma 2.94. Let FN = (A,R,N) be an AFN. A set E ⊆ A is a stable in FN iff it is
strongly coherent and E att = A \ E .

Finally, the usual properties between the semantics carry over to AFNs:

Theorem 2.95. Let FN = (A,R,N) be an AFN. The following holds:

• the grounded extension of FN is the least w.r.t. ⊆ complete extension of FN .

• a preferred extension of FN is a maximal w.r.t. ⊆ complete extension of FN .

• each stable extension of FN is preferred in FN , but not vice versa.
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a

b cd e

f

Figure 14: Sample AFN

Example 16. Consider the AFN ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c), (f, d)},
{({b, c}, a), ({f}, f)}) depicted in Figure 14. The coherent sets include ∅, {a, b}, {a, c},
{b}, {c}, {d}, {e} and any of their combinations. We can observe that f does not appear
in any of them - it does not possess a powerful sequence in the framework. The strongly
coherent sets are ∅, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {b, c}, {b, e}, {c, d}, {d, e}, {a, b, c}
and {a, c, d}. ∅ is trivially admissible. So is {d}, due to the fact that its only attacker does
not posses a coherent set. However, {e} is not admissible; it does not attack one of the
coherent sets of a, namely {a, b}. Fortunately, {d, e} is already admissible. Due to the fact
that no coherent argument can attack d, no strongly coherent set containing b will be ad-
missible. The two final extensions are {a, c} and {a, c, d}; although c is supporting a and
a attacks e, the indirect conflict between c and e is not enough to consider c as defending
itself in the AFN terms. The sets {d}, {d, e} and {a, c, d} are our complete extensions,
with the first one being grounded and the latter two being preferred. In this case, both
{d, e} and {a, c, d} are stable.

2.2.3 Evidential Support: Evidential Argumentation Systems

Unattacked arguments serve as the strongest source of defense within AFs. However, in
many cases, the lack of an attack is insufficient to consider an argument acceptable. In
areas such as legal reasoning and medicine, one is required to support a claim with facts
or evidence to be convincing. For example, it does suffice to claim that a given person
committed a crime in order to sentence them. Instead, the prosecution has to prove the
guilt, by means of evidence. Similarly, medical diagnoses have to be supported by facts
such as symptoms or test results.

We can therefore distinguish between two types of arguments. The special arguments,
often referred to as prima facie or evidence, act as an indisputable source of truth and
can be accepted without further restrictions. In contrast, the standard arguments need to
be supported by the special ones in order to be considered acceptable. In order to handle
such reasoning, the evidential argumentation systems were created. Furthermore, since
standard arguments must be supported, evidential frameworks address one of the main
drawbacks of abstract support in BAFs [28], namely that an argument could be present
in an extension regardless of whether it is supported or not (see [71] for details). In this
section we introduce the framework and describe some of its properties, as presented in
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[77, 78].

Definition 2.96. An evidential argumentation system (EAS) is a tuple (A,R,E) where
A is a set of arguments, R ⊆ (2A \ ∅)× A is the attack relation, and E ⊆ (2A \ ∅)× A
is the support relation. We distinguish a special argument η ∈ A s.t. @(x, y) ∈ R where
η ∈ x; and @x where (x, η) ∈ R or (x, η) ∈ E.

We will refer to η as evidence or environment. The core idea of evidential argument
systems is that valid arguments (and attackers) need to trace back to the environment. It is
captured with the notions of e–support and e–supported attack.

Definition 2.97. Let ES = (A,R,E) be an EAS. An argument a ∈ A has evidential
support (e–support) from a set S ⊆ A iff a = η or there is a non-empty S ′ ⊆ S such that
S ′Ea and ∀x ∈ S ′, x has evidential support from S \ {a}.

An argument a has minimal e–support from a set S if there is no set S ′ ⊂ S such that
a has e–support from S ′.

Remark. Note that by this definition η has evidential support from any set.

In [77, 78], an alternative way to verify whether an argument is supported by evidence
is proposed:

Definition 2.98. Let ES = (A,R,E) be an EAS. Given a set of arguments X ⊆ A, a
sequence (a0, .., an) of distinct elements of X is an evidential sequence for an argument
a ∈ X in ES iff it is the case that an = a, a0 = η, and if n > 0, then for i = 1 to n there
exists a nonempty T ⊆ {a0, ..., ai−1} s.t. TEai.

Theorem 2.99. Let ES = (A,R,E) be an EAS, X ⊆ A a set of arguments and a ∈ A.
The argument a is e–supported by X in ES iff there exists an evidential sequence for a on
X ∪ {a} in ES.

Definition 2.100. Let ES = (A,R,E) be an EAS. A set S ⊆ A carries out an evidence
supported attack (e–supported attack) on a in ES iff (S ′, a) ∈ R where S ′ ⊆ S, and for
all s ∈ S ′, s has e–support from S in ES.

An e–supported attack by S on a is minimal iff there is no S ′ ⊂ S that carries out an
e–supported attack on a in ES.

Given these notions, we can define semantics for EASs built around the notion of
acceptability in a manner similar to those of Dung’s. However, in the latter, only the attack
relation was considered. For EASs, not only must arguments be defended from attacks,
but they must also have sufficient support in order to be acceptable:

Definition 2.101. Let ES = (A,R,E) be an EAS and S ⊆ A a set of arguments. An
argument a ∈ A is acceptable w.r.t. S in ES iff

• a is e–supported by S, and
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• given a minimal e–supported attack by a set T ⊆ A against a, it is the case that S
carries out an e–supported attack against a member of T .

Following the AFN notation, we will also introduce the strongly self–supporting sets,
which is meant to represent extensions that are both self–supporting and conflict–free:

Definition 2.102. Let ES = (A,R,E) be an EAS. A set of arguments S ⊆ A is:

• self–supporting in ES iff all arguments in S are e–supported by S.

• conflict–free in ES iff there is no a ∈ S and S ′ ⊆ S such that S ′Ra.

• strongly self–supporting in ES iff it is both self–supporting and conflict–free in
ES.

• admissible in ES iff it is conflict–free and all elements of S are acceptable w.r.t. S
in ES.

• preferred in ES iff it is maximal w.r.t. set inclusion admissible in ES.

• complete in ES iff it is admissible and all arguments acceptable w.r.t. S in ES are
in S.

• stable in ES iff it is strongly self–supporting and for any argument a e–supported
by A where a /∈ S, S e–support attacks either a or every set of arguments minimally
e–supporting a.

We will shorten self–supporting and its strong version to ssup and str-sup respectively
for functional representation. The rest of the semantics will be abbreviated in the usual
manner. Please note that a stable extension can be equivalently described using the notion
of a discarded set:

Definition 2.103. Let ES = (A,R,E) be an EAS and S ⊆ A a set of arguments. The
discarded set of S is defined as S+ = {a | for every self–supporting setC ⊆ A s.t. a ∈ C,
there exists S ′ ⊆ S and c ∈ C s.t. SRc}.

Lemma 2.104. Let ES = (A,R,E) be an EAS and S ⊆ A a set of arguments. Then, S is
a stable extension of ES iff it is strongly self–supporting and A \ S = S+.

Just like in the Dung’s setting, the grounded semantics is defined via the characteristic
function. Also its connection to the admissible and complete extensions holds.

Definition 2.105. Let ES = (A,R,E) be an EAS. The characteristic function of ES
FES : 2A → 2A is defined as: FES(S) = {a | a is acceptable w.r.t. S in ES}. The
grounded extension of a finitary framework ES = (A,R,E) is the least fixed point of
FES .
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Lemma 2.106. Let ES = (A,R,E) be an EAS. A conflict–free set of arguments S ⊆ A is
admissible inES iff S ⊆ FES(S). A conflict–free set S is complete inES iff S = FES(S).

In AFNs, the coherence of extensions and its role in defense are explicitly stated.
Although the use of self–supporting sets is not equivalently stressed in EASs, they are still
present in the background:

Lemma 2.107. Let ES = (A,R,E) be an EAS. If a set of arguments S ⊆ A is a minimal
e–support for an argument a ∈ A, then it is self–supporting.

By using Definition 2.100 and Lemma 2.107, we can connect self–support to e–support
attack as well:

Lemma 2.108. Let ES = (A,R,E) be an EAS. If a set of arguments S ⊆ A carries out
a minimal e–supported attacked on an argument a ∈ A, then it is self–supporting.

Lemma 2.109. Let ES = (A,R,E) be an EAS. If S ⊆ A is admissible in ES, then it is
self–supporting.

Finally, we can recall the EAS Fundamental Lemma and the relations between the EAS
semantics.

Lemma 2.110. EAS Fundamental Lemma Let ES = (A,R,E) be an EAS, S ⊆ A
an admissible extension of ES and x, y two arguments acceptable w.r.t. S in ES. Then
S ∪ {x} is admissible and y is acceptable w.r.t. S ∪ {x} in ES.

Lemma 2.111. Let ES = (A,R,E) be an EAS. A set S ⊆ A is an e–stable extension of
ES iff S = {a | a is not e–support attacked by S and is e–supported by S}.

Theorem 2.112. Let ES = (A,R,E) be an EAS. The following holds:

• every stable extension of ES is a preferred extension, but not vice versa.

• every preferred extension of ES is a complete extension, but not vice versa.

• the grounded extension of ES is the least w.r.t. set inclusion complete extension of
ES.

Example 17. Let ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c), ({c}, b), ({c}, d), ({d}, f),
({f}, f)}, {({η}, b), ({η}, c), ({η}, d), ({η}, f), ({d}, e)}) be the EAS depicted in Fig-
ure 15. The admissible extensions are ∅, {η}, {η, b}, {η, c}, {η, b, d} and {η, b, d, e},
with {η}, {η, c} and {η, b, d, e} being the complete ones. Obviously, the latter two are
preferred. However, only {η, b, d, e} is stable. Since a is not a valid argument (it is not
e–supported in the framework), we do not have to attack it. Although {η, c} attacks b and
d (and by this, also e), it is not in any way in conflict with f . The grounded extension is
just {η}.
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Figure 15: Sample EAS

2.3 Abstract Dialectical Frameworks
Abstract dialectical frameworks have been defined in [23] and till today various results as
to their semantics, instantiation and complexity have already been published in [21, 79,
84, 85, 87]. Although they can be seen as a type of framework with support, their design
differs from the traditional construction of argumentation frameworks. The main goal of
ADFs is to be able to express arbitrary relations and avoid the need of extending AFs by a
new relation sets each time they are needed. This is achieved by the means of acceptance
conditions, which define what sets of arguments related to a given argument should be
present for it to be accepted or rejected. In a certain sense, this form of representation can
be seen as dual to the one normally seen in argumentation frameworks. Instead of focusing
on separate links and saying “a supports b” or “c attacks b” and then checking if e.g. there
are no attacks in a given set of arguments, we look at collections of arguments related to the
one we are interested in and just evaluate the acceptance condition to say “with respect to
this set of arguments, this argument can(not) be accepted”. Only by checking the outcomes
of the conditions we can later say that “the relation between a and b is attacking” and so
on.

Definition 2.113. An abstract dialectical framework (ADF) is a tuple (A,L,C), where
A is a set of abstract arguments (nodes, statements), L ⊆ A× A is a set of links (edges)
and C = {Ca}a∈A is a set of acceptance conditions, one condition per each argument.
An acceptance condition is a total function Ca : 2par(a) → {in, out}, where par(a) =
{p ∈ A | (p, a) ∈ L} is the set of parents of an argument a.

Within ADFs, we distinguish a particular subclass called bipolar. It is particularly
valuable due to the fact bipolar ADFs appear to be of lower complexity than general ones
[87].

Definition 2.114. Let D = (A,L,C) be an ADF. A link (r, s) ∈ L is:

• supporting iff for noR ⊆ par(s) we have that Cs(R) = in and Cs(R∪{r}) = out.

• attacking iff for no R ⊆ par(s) we have that Cs(R) = out and Cs(R ∪ {r}) = in.

An ADF is bipolar (BADF for short) iff it contains only links that are supporting or
attacking.
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Remark. Please note that links can be both attacking and supporting (in which they are
also often called redundant), or neither – ADFs are able to express more than attack and
support.

We can also represent the acceptance conditions by propositional formulas over argu-
ments instead of “Boolean” functions [44]. In this case the condition Ca for an argument
a ∈ A is a propositional formula ϕa over the parents of a. Moreover, it is easy to see that
links L are somewhat redundant and can be extracted from the conditions. Thus, we will
use of shortened notation and assume an ADF D = (A,C) through the rest of this paper.
In order to recall the ADF semantics, we need to explain some basic notions first.

2.3.1 Interpretations and Decisiveness

Interpretations will be equally important both in labeling and extension–based semantics.
While in the first case the interpretations will be returned instead of sets of arguments, in
the latter they will be used to store accepted and rejected arguments in order to determine
their acceptability.

Please note that particularly in the propositional descriptions of ADFs, we can occa-
sionally observe a certain inconsistency in the notation, where the condition outcomes in
and out are interchangeably used with truth values t and f of the propositional formulas.
The reason why the conditions were not assigned the truth values from the very beginning
was the need to distinguish between the status of the condition of an argument and the
value a given argument is assigned in e.g. a labeling. However, since for any semantics
the truth assignment has to be in accordance with the condition (i.e. in paired with t, out
with f ), this abuse of notation is not overly problematic.

A two (three–valued) interpretation is simply a mapping that assigns truth values (re-
spectively {t, f} and {t, f ,u}) to arguments. We will be making use both of partial (i.e.
defined only for a subset of A) and full ones (defined for all elements of A). The truth
values can be compared with respect to truth ordering, i.e. f ≤t u ≤t t, or precision
(information) ordering: u ≤i t and u ≤i f . The latter will be used in the context of
labeling semantics. The pair ({t, f,u},≤i) forms a complete meet–semilattice with the
meet operation u assigning values in the following way: t u t = t, f u f = f and u in
all other cases. It can naturally be extended to interpretations: given two interpretations
v and v′ on A, we say that v′ contains more information, denoted v ≤i v′, iff for every
argument s ∈ A, v(s) ≤i v′(s). In the case v is three and v′ two–valued, we say that v′

extends v. This means that the elements mapped originally to u are now assigned either
t or f . The set of all two–valued interpretations extending v is denoted [v]2. The meet
operation can be adjusted in a similar fashion as the information ordering, i.e. the meet of
two interpretations v u v′ is an interpretation obtained by assigning to a given argument a
the value v(a) u v′(a).

Example 18. Let v = {a : t, b : t, c : f , d : u) be a three–valued interpretation. We
have two extending interpretations, namely v′ = {a : t, b : t, c : f , d : t) and v′′ = {a :
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t, b : t, c : f , d : f). Clearly, it holds that v ≤i v′ and v ≤i v′′. However, v′ and v′′ are
incomparable w.r.t. ≤i.

Let now w = {a : f , b : f , c : f , d : t) be another three–valued interpretation. The meet
of v and w gives us a new interpretation w′ = {a : u, b : u, c : f , d : u): as the assignments
of a, b and d differ between v and w, the resulting value is u. On the other hand, c is in
both cases f and thus retains its value.

We will use vx to denote a set of arguments mapped to x by v, where x is a given
truth–value.

The notion of decisiveness is a key concept in our extension–based semantics for ab-
stract dialectical frameworks. Let us assume an ADF D = (A,C). Given an acceptance
condition Cs for an argument s ∈ A and an interpretation v, we define a shorthand v(Cs)
as Cs(vt ∩ par(s)). For a given propositional formula ϕ and an interpretation v defined
over all of the atoms of the formula, v(ϕ) will just stand for the value of the formula un-
der v. However, apart from knowing the “current” value of an acceptance condition for a
given interpretation, we would also like to know if this interpretation is “final”. By this we
understand that no new information will cause the value to change. For example, given a
condition ϕs = a ∧ ¬b for an argument s dependent on a and b, knowing that b is true is
enough to map ϕs to out in a way that no matter the value of a, it will always stay out. In
order to verify whether our interpretation is decisive for a given argument, we will explore
how the interpretations “filling in” the missing values evaluate the argument’s condition.
We will refer to them as completions:

Definition 2.115. Let A be a collection of elements, E ⊆ A its subset and v a two–valued
interpretation defined on E . A completion of v to a set Z where E ⊆ Z ⊆ A, is an
interpretation v′ defined on Z in a way that ∀a ∈ E v(a) = v′(a). v′ is a t/f completion
of v iff all arguments in Z \ E are mapped respectively to t/f .

Remark. By the abuse of notation we will also talk about u–completions when comparing
extension and labeling–based approaches. It should be understood as a three–valued inter-
pretation that assigns u to the “missing” mappings of a given two–valued interpretation.

We would like to draw the attention to the similarity between the concepts of comple-
tion and extending interpretation. Basically, given a three–valued interpretation v defined
over A, the set [v]2 corresponds precisely to the set of completions to A of the two–valued
part of v. However, if we used the notion of an extension instead of a completion in a two–
valued setting, it could be easily mistaken for the extension understood as set of arguments,
not as an interpretation. Therefore, we will use our notation to avoid such collisions.

Definition 2.116. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and v a two–
valued interpretation defined on E . v is decisive for an argument s ∈ A iff for any two
completions vpar(s) and v′par(s) of v to E ∪ par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs).
s is decisively out/in w.r.t. v if v is decisive and all of its completions evaluate Cs to
respectively out, in.
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a b c d e

> ¬a ∨ c b ¬c ∧ ¬e ¬d

Figure 16: Sample ADF

Example 19. Let ({a, b, c, d, e}, {Ca = >, Cb = ¬a ∨ c, Cc = b, Cd = ¬c ∧ ¬e, Ce =
¬d}) be the ADF in Figure 16. Examples of decisively in interpretations for b include
v1 = {c : t}. This means that knowing that c is true, we know that the whole disjunction
(and thus the acceptance condition) are satisfied. Formally speaking, v1 is decisive as both
of its completions {c : t, a : f} and {c : t, a : t} satisfy the condition.

Remark. Please note that the existence of an interpretation that satisfies the acceptance
condition of an argument a (i.e. there is a set of parents s.t. the condition is in) implies the
existence of a decisively in interpretation for a and vice versa. Moreover, if an argument
is decisively out/in w.r.t. an interpretation, it holds that its acceptance condition is out/in.
It basically results from the definition of the completion and decisiveness. Finally, if an
argument a is decisively in/out w.r.t. a given interpretation, then it is decisively out w.r.t.
any of its completions, not necessarily the ones that are defined for all parents of a. For
example, given a condition Ca = b ∨ c ∨ d and an interpretation v = {b : t}, then a is
decisively in w.r.t. not only v, but v′ = {b : t, c : f} and v′′ = {b : t, c : f , d : t} as well.

2.3.2 Evaluations and Acyclicity

Acceptance conditions tell us on what other arguments a given argument depends. We can
see if they need to be accepted or rejected for the condition to be in our out and derive a
range of decisively in interpretation based on it. We can then focus on the arguments in
the condition and investigate them in a similar manner and continue this process until we
have a full picture telling us when, how, and if at all, the arguments can be accepted or
rejected, if they can be derived from initial arguments (i.e. those with acceptance condition
equivalent to >), include cyclic dependencies and so on. To this end, we have introduced
the notions of positive dependency functions and evaluations [75]. We choose to call it
positive dependencies rather than support in order not to confuse them with the notions of
attack and support links from BADFs and not to point to any particular interpretation of
support.

In the majority of the argumentation frameworks, the nature of a relation between the
arguments is stated openly in the structure of the framework, i.e. R is the attack, N is
the support and so on. This is not the case in ADFs and in order to obtain the arguments
that are required or should be avoided for the acceptance of a given argument, we will
make use of decisive interpretations. Naturally, it suffices to focus on the minimal ones,
by which we understand that both vt and vf are minimal w.r.t. ⊆. By min dec(x, s) we
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will denote the set of minimal two–valued interpretations that are decisively x for s, where
s is an argument and x ∈ {in, out}. We will explain this choice at the end of this section.

First of all, let us recall the concept of a positive dependency function. It basically
maps every argument to one of its minimal decisively in interpretations contained in a
given set:

Definition 2.117. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. A positive
dependency function on E is a function pdDE assigning every argument a ∈ E an inter-
pretation v ∈ min dec(in, a) s.t. vt ⊆ E or N for null iff no such interpretation can be
found. The function is sound iff no argument is mapped toN . pdDE is maximally sound on
E iff it is a sound function on E ′ ⊆ E and there is no sound positive dependency function
pd′DE on E ′′, where E ′ ⊂ E ′′ ⊆ E , s.t. ∀a ∈ E ′, pdDE (a) = pd′DE (a).

We will now trace the arguments that a given argument requires for its acceptance by
the use of dependency evaluations, within which we can distinguish standard, acyclic and
partially acyclic ones. While the last type might seem confusing, they will prove to be
valuable in translating ADFs into AFs and SETAFs (see Translations 85, 86 and 87).

Definition 2.118. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound pos-
itive dependency function of X defined over E ⊆ X . A standard positive dependency
evaluation for an argument e ∈ E in D based on pdDE is a pair (F,B), where F ⊆ E is a
set of arguments s.t. e ∈ F , and ∀a ∈ F, pdDE (a)t ⊆ F , and B =

⋃
a∈F pd

D
E (a)f .

We will refer to F as the pd–set of the evaluation and to B as the blocking set of the
evaluation.

Example 20. Let ({a, b, c, d, e}, {Ca = ⊥, Cb = a∧ c, Cc = d∧¬e, Cd = d, Ce = >}) be
the ADF depicted in Figure 17. The argument a has no standard evaluation, as it possesses
no decisively in interpretation to start with. Although the argument b has a decisively
in interpretation {a : t, c : t}, it depends on a and thus there does not exist a sound
pd–function from which we could construct an evaluation for b. For d we have a simple
evaluation ({d}, ∅), and based on it an evaluation ({c, d}, {e}) for c. Finally, e as an initial
argument has a trivial evaluation ({e}, ∅).

a b c d e

⊥ a ∧ c d ∧ ¬e d >

Figure 17: Sample ADF

While standard evaluations are already quite useful, we will also be interested in the
more specialized types, dealing with the issue of positive dependency cycles. The informal

54



understanding of a cycle is simply whether acceptance of an argument depends on this
argument. First of all, we will consider the partially acyclic evaluations. They can be seen
as refinement of the standard ones, where the arguments are separated into two groups; one
that can be ordered into a sequence s.t. each argument depends only on the predecessors,
and the other for which it is not possible, thus serving as a container for the cycles.

Definition 2.119. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound
positive dependency function of X defined over E ⊆ X .

A partially acyclic positive dependency evaluation based on pdDE for an argument
x ∈ E is a triple (F, (a0, ..., an), B), where F ∩{a0, ..., an} = ∅, (a0, ..., an) is a sequence
of distinct elements of E satisfying the requirements:

• if the sequence is non–empty, then an = x; otherwise, x ∈ F ,

• ∀ni=1, pd
D
E (ai)

t ⊆ F ∪ {a0, ..., ai−1}, pdDE (a0)
t ⊆ F ,

• ∀a ∈ F, pdDE (a)t ⊆ F , and

• ∀a ∈ F, ∃b ∈ F s.t. a ∈ pdDE (b).

Finally, B =
⋃
a∈F pd

D
E (a)f ∪

⋃n
i=0 pd

D
E (ai)

f . The sequence part of the evaluation will be
referred to as the pd–sequence.

We can now introduce the last type of evaluations: the acyclic ones, being a subclass
of partially acyclic. It simply requires the “cycle container” to be empty.

Definition 2.120. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound
positive dependency function of X defined over E ⊆ X . A partially acyclic evaluation
(F, (a0, ..., an), B) for an argument x ∈ E is an acyclic positive dependency evaluation
for x iff F = ∅. A set of arguments E ⊆ A is pd–acyclic iff every argument a ∈ E
possesses an acyclic pd–evaluation on this set.

We will use the shortened notation ((a0, ..., an), B) in order to denote the acyclic eval-
uations. We can also observe that the pd–acyclic sets are not unlike coherent and self–
supporting ones; we will abbreviate them with pdc. Furthermore, we will simply write
that an argument has a given type of evaluation on E if there is some pd–function on E
from which we can produce such an evaluation.

We will say a standard evaluation (F,B) based on pdDE can be made acyclic for an argu-
ment e ∈ F and w.r.t. pdDE iff there exists a way to order the elements of F into a sequence
satisfying the pd–sequence requirements for e. It is also easy to see that any evaluation
can be transformed into a standard one by joining the pd–set and the pd–sequence into a
single pd–set.

Example 21. Let us come back to the framework ({a, b, c, d, e}, {Ca = ⊥, Cb = a ∧
c, Cc = d ∧ ¬e, Cd = d, Ce = >}) from Example 20 and Figure 17. The standard evalu-
ation for e was ({e}, ∅). Since e does not depend on any other argument, it can be easily
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moved into the pd–sequence and the partially acyclic representation of the standard eval-
uation is (∅, (e), ∅). This evaluation also happens to be acyclic. Although the evaluation
for d looks similar, we can observe that the argument depends on itself, and thus the pd–
sequence will be empty. The partial representation is thus ({d}, (), ∅). Finally, let us look
at the evaluation for c. The evaluation ({c, d}, (), ∅) would not satisfy the partially acyclic
requirements, since no argument in the pd–set depends on c. Consequently, we can “push”
c into the sequence and obtain the evaluation ({d}, (c), {e}), which clearly shows where
the actual cycle occurs. Neither c nor d possess acyclic evaluations.

There are two ways we can “attack” an evaluation. Either we accept an argument that
needs to be rejected in order for the evaluation to hold (i.e. it is in the blocking set), or
we are able to discard an argument from the pd–sequence or the pd–set. This leads to the
following, more abstract formulation: 10

Definition 2.121. Let D = (A,C) be an ADF and (F, (a0, ..., an), B) a partially acyclic
evaluation on a set E ⊆ A for an argument a ∈ E . A two–valued interpretation v defined
on a subset ofA blocks (F, (a0, ..., an), B) iff ∃b ∈ B s.t. v(b) = t or ∃x ∈ {a0, ..., an}∪F
s.t. v(x) = f .

Remark. An evaluation can be self–blocking, i.e. some members of the pd–sequence or
the pd–set are present in the blocking set. Although an evaluation like that will never be
accepted in an extension, it can make a difference in what we consider a valid attacker.

Example 22. Recall the framework ({a, b, c, d, e}, {Ca = >, Cb = ¬a ∨ c, Cc = b, Cd =
¬c ∧ ¬e, Ce = ¬d}) from Example 19. For the argument b there exist two minimal
decisively in interpretations: v1 = {a : f} and v2 = {c : t}. The interpretations for a and
c are respectively w1 = ∅ and z1 = {b : t}. Therefore, on E = {a, b, c} we have two
pd–functions, namely pd1 = {a : w1, b : v1, c : z1} and pd2 = {a : w1, b : v2, c : z1}. If we
focus on acyclic evaluations with the minimal w.r.t. ⊆ sequences, we obtain one acyclic
evaluation for a: ((a), ∅), one for b: ((b), {a}) and one for c: ((b, c), {a}). Let us now
analyze E . We can observe that accepting a “forces” a cycle between b and c; we thus
look for a method that would detect the cycle. The acceptance conditions of all arguments
are satisfied, thus this simple check is not enough to verify if it occurs. Also the pd–
sequences of all arguments are contained in the set, thus the sequence check resembling
the one in AFNs or EAFs is also insufficient (see Sections 2.2.2 and 2.2.3). Only looking
at the whole evaluations shows us that b and c are both blocked by a through the blocking
set. Although b and c are technically pd–acyclic in E , we see that their evaluations are in
fact blocked and this type of conflict needs to be taken into account by the semantics.

We would now like to discuss the minimal interpretations and evaluations. Allowing
every type of interpretation would not affect our semantics, as we are mostly interested in

10Since every standard evaluation can be made partially acyclic and every acyclic evaluation is also a
partial one, we will only present the most general definition.
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the existence of an unblocked evaluation of a given type or in blocking all evaluations. Ex-
istence of an unblocked evaluation built with arbitrary interpretations implies the existence
of an evaluation built with minimal ones. We can always “remove” unnecessary elements
from an interpretation in order to trim it to minimal one. Moreover, if all evaluations are
blocked, then so are the ones constructed with the minimal interpretations. However, using
non–minimal interpretations can introduce “fake cycles”, i.e. show that a cycle exists even
if it is not the case. Consequently, if we want to ensure that e.g. every evaluation that can
be made acyclic (see Definition 2.171), minimality makes a difference.

Example 23. Let us consider a simple ADF ({a, b}, {Ca = >, Cb = >}). Both a and
b possess a single minimal decisively in interpretation that is just empty. However, if
we consider non–minimal ones, we would e.g. get interpretations {b : t} and {a : t}
for a and b respectively. A standard evaluation constructed with them cannot be made
acyclic and thus we get a false answer that there is a cycle in our framework. We can now
argue that these interpretations go beyond the parents of the arguments. However, limiting
ourselves to interpretations defined only for parents does not fix this issue. Consider a
small modification of our ADF: ({a, b}, {Ca = > ∨ b, Cb = > ∨ a}). We get the same
interpretations and evaluations as in the previous case, but we can observe that the links
from b to a and a to b are redundant, i.e. presence of one argument never affects the
outcome of the acceptance condition of the other. Although we can argue that there is a
cycle on the links as such, it should clearly be disregarded due to its inability to affect the
arguments.

We can introduce the concept of minimal evaluations. After all, not every evaluation
may be of interest to us. For example, it may contain redundant elements on which the ar-
gument of interest does not really depend, or they may unnecessarily long. Let us consider
an example.

Example 24. Let ({a, b, c, d}, {Ca = b ∨ c, Cb = c, Cc = >, Cd = ¬b ∨ c}) be the ADF
depicted in Figure 18. Let us focus on argument a and the following three acyclic evalua-
tions for it: ((c, a), ∅), ((c, b, a), ∅) and ((d, c, a), {b}). We can observe that a depends on
c, but it can be reached either directly or though b. Although the “longer” part is perfectly
fine, it can be seen as somewhat redundant due to the presence of a shorter route. Further-
more, the ((d, c, a), {b}) evaluation contains data useless for a – it includes the analysis of
argument d, which is not related to a at all.

Let us now consider argument d and its evaluations. It possesses an acyclic one
((d), {b}), which can also be changed into standard, and a purely standard one ({d}, ∅).
While the first one is created with the decisively in interpretation {b : f}, the other with
{d : t}. If we were to consider minimal evaluations based only on subset relations between
pd–sets and blocking sets, we can observe that the standard evaluation corresponding to
((d), {b}) would have been “lost”. Thus, in this approach a minimal evaluation of one type
may not necessarily be a minimal one of another type. While it does not create problems if
we are trying to answer the question if all standard evaluations of an argument are blocked,
it can make a difference if we distinguish between types of evaluations, like in the case of
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c

d

b ∨ c c

>

¬b ∨ d

Figure 18: Sample ADF

Translation 83. Consequently, a safe approach to minimality should take the pd–function
into account.

We close this section by formally defining minimal evaluations. Please note that we
will focus on minimality w.r.t. a given argument, not for the whole framework itself. Due
to the fact that from e.g. an acyclic evaluation we can always extract shorter evaluations for
arguments earlier in the sequence, assuming global minimality would not be particularly
informative.

Definition 2.122. Let D = (A,C) be an ADF and pdDE a positive dependency function on
a set E ⊆ A. Let a ∈ E and (F,B) a standard evaluation for a ∈ E . (F,B) is a minimal
standard evaluation for a w.r.t. pdDE if there is no other standard evaluation (F ′, B′) for
a based on pdDE s.t. F ′ ⊆ F and B′ ⊆ B.

Let (G,B) be an acyclic pd–evaluation for a ∈ E based on pdDE . (G,B) is a minimal
acyclic pd–evaluation for a w.r.t. pdDE if there is no other acyclic pd–evaluation (G′, B′)
for a based on pdDE s.t. B′ ⊆ B and G′ is a subsequence of G.

Let (F,G,B) be a partially acyclic pd–evaluation for a ∈ E based on pdDE . (F,G,B)
is a minimal partially acyclic pd–evaluation for a w.r.t. pdDE if there is no other partially
acyclic pd–evaluation (F ′, G′, B′) for a based on pdDE s.t. B′ ⊆ B, F ′ ⊆ F and G′ is a
subsequence of G.

2.3.3 Standard, Acyclic and Partially Acyclic Range

Just like in the Dung’s framework, the concept of range and the E+ set also appears in
ADFs. The original definition from [74] required the notion of conflict–freeness. We will
recall it here and later show that with the use of evaluations, we can drop the conflict–
freeness assumption. For more explanations and examples concerning this semantics,
please refer to Section 2.3.5.

Definition 2.123. Let D = (A,C) be an ADF. A set of arguments E ⊆ A is a conflict–
free extension of D if for all s ∈ E we have Cs(E ∩ par(s)) = in. E is a pd–acyclic
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conflict–free extension of D iff for every argument a ∈ E , there exists an unblocked
acyclic pd–evaluation on E w.r.t. vE .

The basic concept of range is based on decisive outing. We start with the arguments we
can accept and then look for ones that are decisively outed by our choice. Since discarding
one argument can also discard another that depends on it via a chain reaction, we repeat
this search until no further arguments can be found.

Definition 2.124. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and
vE a partial two–valued interpretation built as follows:

1. let M = E and for every a ∈ E set vE (a) = t,

2. for every argument b ∈ A \M that is decisively out w.r.t. vE , set vE (b) = f and add
b to M , and

3. now repeat the previous step until there are no new elements added to M .

By E+ we understand the set of arguments vfE and we will refer to it as the discarded set.
vE now forms a range interpretation of E , where the usual range is denoted as ERan and
equals E ∪ E+.

We can also redefine this notion by the use of standard evaluations, which limits the
algorithm to a single iteration. Moreover, it allows us to find arguments decisively outed
by a set of arguments without the conflict–freeness assumption.

Lemma 2.125. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A |
for every standard dependency evaluation (F,B) for a inD, B∩E 6= ∅}. If E is conflict–
free, then X = E+.

The notions of the discarded set and the range are quite strong in the sense that they
require an explicit “attack” on arguments that take part in dependency cycles. This is
not always a desirable property. Depending on the approach we might not treat cyclic
arguments as valid and hence want them “out of the way”. The original definition is as
follows:

Definition 2.126. Deprecated Let D = (A,C) be an ADF, E ⊆ A a conflict–free exten-
sion of D and vaE a partial two–valued interpretation built as follows:

1. let M = E . For every a ∈M set vaE (a) = t,

2. for every argument b ∈ A \M s.t. every acyclic pd–evaluation of b in A is blocked
by vaE , set vaE (b) = f and add b to M , and

3. repeat the previous step until there are no new elements added to M .

By E a+ we understand the set of arguments mapped to f by vaE and refer to it as acyclic
discarded set of E . We refer to vaE as acyclic range interpretation of E .
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However, it turns out that with this iterative approach, it suffices to focus on blocking
an evaluation through the blocking set only:

Lemma 2.127. LetD = (A,C) be an ADF, E ⊆ A be a pd–acyclic conflict–free extension
of D, vaE its acyclic range interpretation and a ∈ A an argument s.t. it has at least one
acyclic pd–evaluation ((a0, ..., an), B) on A. The interpretation vaE blocks the evaluation
iff E ∩B 6= ∅.

The analysis above brings us to a conclusion that the algorithm from the original defi-
nition of the acyclic range in fact terminates after the first iteration. Consequently, we can
rephrase it in the following way, similar to Lemma 2.125:

Lemma 2.128. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A |
for every acyclic pd–evaluation (F,B) for a, B∩E 6= ∅}. If E is pd–acyclic conflict–free,
then X ∩ E = ∅. If E is conflict–free, then X \ E = E+.

The last type of range we will consider, the partially acyclic one, will be used in one
family of our semantics. It can be seen as a certain middle ground between the standard
and acyclic range. We discard the arguments if we block all of its acyclic pd–evaluations,
unless it is based on a “cycle” that we are ready to accept.

Definition 2.129. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. The
partially acyclic discarded set of E is E p+ = {a ∈ A | there is no partially acyclic
evaluation (F ′, G′, B′) for a s.t. F ′ ⊆ E and B′ ∩ E = ∅}.

Lemma 2.130. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and E p+ its
partially acyclic discarded set. If E is conflict–free in D, then E ∩ E p+ = ∅.

Definition 2.131. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and
E p+ its partially acyclic discarded set. The partially acyclic range of E in the interpreta-
tion vpE mapping to t all and only arguments in E and mapping to f all and only arguments
in E p+.

We can observe that there is a subset relation between the three versions of the dis-
carded set:

Lemma 2.132. Let D = (A,C) be an ADF and E ⊆ A a conflict–free extension of D.
Then E+ ⊆ E p+ ⊆ E a+. If E is pd–acyclic conflict–free, then E p+ = E a+.

Example 25. Let us consider the framework ({a, b, c, d, e}, {Ca = a ∧ ¬b, Cb = a, Cc =
¬b, Cd = ¬a, Ce = d, Cf = f}) depicted in Figure 19 and focus on the conflict–free set
{a}. We will now compute its standard range. First of all, the interpretation v = {a : t}
decisively outs d. We update v and now have {a : t, d : f}. Our new interpretation now
decisively outs e and we can extend it to {a : t, d : f , e : f}. No further arguments can be
falsified, as for both b and c the conditions are in w.r.t. {a} and even though the condition
of f is for now out, a completion of v mapping f to t can make it in. Let us now compute
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the standard range in the evaluation manner. For b we have an evaluation ({a, b}, {b}),
for c ({c}, {b}), for d ({d}, {a}), ({d, e}, {a}) for e and finally ({f}, ∅) for f . We can
observe that only the evaluations for d and e are blocked by {a}. In any case, the standard
range of the set {a} is v = {a : t, d : f , e : f}

Let us now consider the acyclic range. The evaluations for e and d can be made acyclic,
and as their blocking sets contain a, it is easy to see that both of the arguments will also
be falsified in the acyclic range. Since f possesses no acyclic evaluation, it will also be in
the discarded set. Finally, the evaluation ({a, b}, {b}) for b cannot be made acyclic and the
argument will be falsified for the same reason as f . Therefore, the acyclic range of {a} is
w = {a : t, b : f , d : f , e : f , f : f}.

In the partially acyclic case, the arguments d, e and f will also be mapped to f by
the range. However, even though argument b does not possess an acyclic evaluation, the
partially acyclic representation ({a}, (b), {b}) of the standard one ({a, b}, {b}) has its pd–
set contained in {a}. Consequently, the argument does not meet the partially acyclic range
requirements.

a b cdef

a ∧ ¬b a ¬b¬adf

Figure 19: Sample ADF

2.3.4 Labeling–Based Semantics of ADFs

The two approaches towards labeling–based semantics of ADFs were developed in [21,
84]. They are based on the notion of a characteristic operator. While in the Dung’s setting
the operator worked with sets, here three valued interpretations are used.

Definition 2.133. Let D = (A,C = {ϕa}a∈A) be an ADF and VA be the set of all three–
valued interpretations defined on A, a an argument in A and v an interpretation in VS . The
three–valued characteristic operator of D is a function ΓD : VA → VA s.t. ΓD(v) = v′

with v′(a) =
d
w∈[v]2 w(ϕa).

Recall that verifying the value of an acceptance condition under a set of extensions of
a three–valued interpretation [v]2 is just like testing its value against the completions of the
two–valued part of v. Thus, an argument that is t/f in ΓD(v) is decisively in/out w.r.t. the
two–valued sub–interpretation of v (see also Theorems 2.148 and 2.149).

Remark. It is easy to see that in a certain sense this operator allows self–justification and
self–falsification. Take, for example, a self–supporter; if we generate an interpretation in
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which it is false then, obviously, it will remain false. Same follows if we assume it to be
true. This results from the fact that the operator functions on interpretations defined on all
arguments, thus allowing a self–dependent argument to affect its status. The same is true
if we consider bigger positive dependency cycles.

The labeling–based semantics are now as follows:

Definition 2.134. Let D = (A,C = {ϕa}a∈A) be an ADF and v be a three–valued inter-
pretation for D and ΓD its characteristic operator. v is:

• a three–valued model of D iff for all a ∈ A we have that v(a) 6= u implies that
v(a) = v(ϕa).

• an admissible labeling of D iff v ≤i ΓD(v).

• a complete labeling of D iff v = ΓD(v).

• a preferred labeling of D iff it is ≤i–maximal admissible labeling of D.

• a grounded labeling of D iff it is the least fixpoint of ΓD.

We will shorten the semantics tomod3, lab−adm, lab−comp, lab−pref and lab−grd
for functional representation.

The stable semantics is a slightly different case. Although formally we receive a set,
not an interpretation, this makes no difference for stability. As nothing is left undecided,
there is a one–to–one correspondence between the extensions and labelings. The current
state of the art definition, presented in [21, 84] is based on the concepts of reduct and
grounded semantics:

Definition 2.135. Let D = (A,L,C) be an ADF and E ⊆ A a set of arguments. A reduct
of D w.r.t. E is a framework DE = (E , LE , CE ), where LE = L∩ (E ×E ) and for e ∈ E
we set CE

e = ϕe[b/f : b /∈ E ].

Definition 2.136. Let D = (A,L,C = {ϕa}a∈A) be an ADF, M ⊆ A be a model of D
and DM = (M,LM , CM) a reduct of D w.r.t. M . Let gv be the grounded model of DM .
Model M is stable iff M = gvt.

Example 26. We will now show the extensions of all of the semantics and their sub–
semantics on an example. Let ({a, b, c, d}, {Ca = ¬b, Cb = ¬a, Cc = b ∧ ¬d, Cd = d})
be an ADF, as depicted in Figure 20. Its possible labelings are visible in Table 2. As there
are over twenty possible three–valued models, we will not list them.
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a b c d

¬b ¬a b ∧ ¬d d

Figure 20: Sample ADF

Table 2: Labelings of the ADF from Figure 20.

ADM

{a : f , b : t, c : u, d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : f},
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : u, d : u},
{a : u, b : u, c : u, d : t}, {a : t, b : f , c : f , d : t}, {a : t, b : f , c : f , d : f},
{a : f , b : t, c : u, d : u}, {a : t, b : f , c : u, d : t}, {a : f , b : t, c : u, d : f},
{a : t, b : f , c : f , d : u}, {a : t, b : f , c : u, d : f}, {a : u, b : u, c : u, d : u}

COMP
{a : t, b : f , c : f , d : f}, {a : f , b : t, c : u, d : u}, {a : f , b : t, c : f , d : t},
{a : t, b : f , c : f , d : u}, {a : u, b : u, c : u, d : f}, {a : f , b : t, c : t, d : f},
{a : t, b : f , c : f , d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : u}

PREF
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : f , d : f},
{a : t, b : f , c : f , d : t}

STB {a : t, b : f , c : f , d : f}, {a : f , b : t, c : t, d : f}
GRD {a : u, b : u, c : u, d : u}

2.3.5 Extension–Based Semantics of ADFs

In [74] we have developed a family of extension–based semantics and created a classifi-
cation of them w.r.t. positive dependency cycles. We have distinguished four categories
and used an xy− prefixing system to denote them. The x stated whether only acyclic - a -
arguments can be accepted in an extensions, or would cyclic - c - also do the trick. y then
meant if we need to “defend” only from acyclic - again, a - arguments, or of this restriction
is not necessary - c. In [75], we have further split the ca– type into two groups and referred
to them as ca1 and ca2. While the first approach assumed that we do not need to defend
from any cyclic argument, the latter made an exception for the arguments that are based
on a cycle that we have accepted in an extension. We will now recall all of the semantics
and refer the reader to the original work for proofs and further explanations.

In the Dung’s setting, conflict–freeness meant that the elements of an extension could
not attack one another. This is also the common interpretation in various other AF gen-
eralizations, including the bipolar ones such as AFNs and EASs [69, 72]. Providing an
argument with the required support is then a separate condition. In ADFs, where we lose
the set representation of relations in favor of abstraction, not including “attackers” and
accepting “supporters” is combined into one notion. It basically takes the intuition of “ar-
guments that can stand together” [12] to a higher level, which simply leads to satisfying
the acceptance conditions. The pd–acyclic version of conflict–freeness needs to take into
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account also the attacks on the evaluation level (see Example 22). This brings us to the
following definitions, previously briefly introduced in Section 2.3.3:

Definition 2.123. Let D = (A,C) be an ADF. A set of arguments E ⊆ A is a conflict–
free extension of D if for all s ∈ E we have Cs(E ∩ par(s)) = in. E is a pd–acyclic
conflict–free extension of D iff for every argument a ∈ E , there exists an unblocked
acyclic pd–evaluation on E w.r.t. vE .

The two semantics will be abbreviated with cf and acy-cf respectively. Please note
that conflict–free (pd–acyclic conflict–free) extensions can be also viewed as standard
(acyclic) pd–evaluations that are not self–blocking. Every set for which an acceptance
condition is in can be made into a trivial decisively in evaluation by assigning f to ab-
sent arguments. From it, a minimal interpretation can be extracted, and we can observe
that its t part will be contained in the extension in question, and the f outside it. We can
thus gather such interpretations for the arguments in an extension and obtain an unblocked
standard evaluation. If we are dealing with a pd–acyclic conflict–free extensions, then as
a result of Theorem 2.146, we can recombine the unblocked acyclic pd–evaluations for ar-
guments in the set and obtain (at least) one that has a pd–sequence containing all and only
arguments in the extension. Similarly, if a standard evaluation (F,B) is not self–blocking,
then clearly Ca(F ∩ par(a)) = in for an a ∈ F and F is conflict–free. If (F,B) is an
acyclic evaluation, then we can clearly “trim” it down for a given a in the pd–sequence
and obtain an unblocked acyclic pd–evaluation for every argument in F . Thus, we obtain
our pd–acyclic conflict–free sets.

The concept of a model (short form mod) basically follows the intuition that if some-
thing can be accepted, it should be accepted. It was meant as a basis for the stable seman-
tics, as could have already been observed in Section 2.3.4. However, we would like to note
that there is more than one way to produce stable extensions and we do not need to make
use of reducts:

Definition 2.137. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is a
model of D if ∀ s ∈ A, Cs(E ∩ par(s)) = in implies s ∈ E .

Theorem 2.138. Let D = (A,C) be an ADF. A model E ⊆ A of D is a stable extension
of D iff it is pd–acyclic conflict–free in D.

Lemma 2.139. A set E ⊆ A is stable in D iff it is a pd–acyclic conflict–free extension of
D s.t. E a+ = A \ E .

Let us now continue with the grounded and acyclic grounded semantics. Just like in
the Dung’s setting, they preserve the unique–status property. Moreover, the first one is
defined in the terms of a special operator:

Definition 2.140. Let Γ′D(A,R) = (acc(A,R), reb(A,R)), where acc(A,R) = {r ∈ S |
A ⊆ S ′ ⊆ (S\R) ⇒ Cr(S

′ ∩ par(s)) = in} and reb(A,R) = {r ∈ S | A ⊆ S ′ ⊆
(S\R) ⇒ Cr(S

′ ∩ par(s)) = out}. Then E is the grounded model of D iff for some
E ′ ⊆ S, (E,E ′) is the least fix–point of Γ′D.
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Although it might look complicated at first, acc and reb are nothing more than means of
retrieving decisively in/out arguments via a set representation (see [75] for more details).
Therefore, there exists an alternative way to compute the grounded extension, in line with
Proposition 2.7:

Proposition 2.141. Let D = (A,C) be an ADF and v an empty interpretation. For every
argument a ∈ A that is decisively in w.r.t. v, set v(a) = t and for every argument
b ∈ A that is decisively out w.r.t. v, set v(b) = f . Repeat the procedure until no further
assignments can be done. The grounded extension of D is then vt.

The acyclic version is very similar; however, instead of working with the standard
range construction, it uses the acyclic version.

Definition 2.142. Let D = (A,C) be an ADF and v an empty interpretation. For every
argument a ∈ A that is decisively in w.r.t. v, set v(a) = t. For every argument b ∈ A s.t.
all of its acyclic pd–evaluations are blocked by v, set v(b) = f . Repeat the procedure until
no further assignments can be done. The acyclic grounded extension of D is then vt.

Just like in the conflict–free case, we will shorten the semantics to grd and acy-grd.
The rest of the extension–based semantics will be abbreviated in the usual manner with an
appropriate xy– prefix.

Let us now focus on admissible, preferred and complete semantics. What is important
to understand is the fact that even though there are significant differences between the aa,
ac, cc and ca families, the core concept remains the same – admissibility representing a de-
fensible stand, preferred extensions being maximally admissible, and complete accepting
whatever they defend. By replacing defense with decisiveness w.r.t. range, we basically
obtain the ADF semantics. The differences lie in which range should be chosen, and if
acyclicity of the extension is also desired.

Definition 2.143. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is a:

• a cc–admissible extension of D iff it is conflict–free in D and every e ∈ E is
decisively in w.r.t. standard range vE .

• an aa–admissible extension of D iff it is pd–acyclic conflict–free in D and every
e ∈ E is has an acyclic pd–evaluation ((a0, .., an, B) on E s.t. all members of B are
mapped to f by the acyclic range vaE .

• a ac–admissible extension of D iff it is pd–acyclic conflict–free in D and every
e ∈ E has an acyclic pd–evaluation ((a0, .., an, B) on E s.t. all members of B are
mapped to f by the standard range vE .

• a ca1–admissible extension of D iff it is conflict–free in D and every e ∈ E is
decisively in w.r.t. acyclic range vaE .
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• a ca2–admissible extension of D iff it is conflict–free ind D and every e ∈ E is
decisively in w.r.t. partially acyclic range vpE .

Please note that even though the usage of pd–acyclicity in the case of aa and ac families
was to be expected, when it comes to semantics acyclic on the inside we have to deal with
the “second” level of conflict visible in the blocking sets of acyclic evaluations. This gives
rise to another level of “defense”, where not only we check if arguments are decisively in
w.r.t. range, but also need to protect their evaluations.

Example 27. Recall the framework ({a, b, c, d, e}, {Ca = >, Cb = ¬a ∨ c, Cc = b, Cd =
¬c ∧ ¬e, Ce = ¬d}) from Example 19. The acyclic evaluation for b was ((b), {a}) and
((b, c), {a}) for c. Consider the set E = {b, c}. Its discarded set is just {d}, indepen-
dently of the type. Technically speaking, E is pd–acyclic conflict–free. Moreover, both
arguments are decisively in w.r.t. (any) range interpretation. However, again we can ob-
serve that accepting a will force a cycle between b and c, even though the conditions of
arguments will remain satisfied. Consequently, acyclicity requires a separate level of “de-
fense”.

Remark. It is worth mentioning that if an argument possesses an evaluation (of any type)
s.t. the pd–sequence is in the set and the blocking set is in the discarded set of appropriate
type, it is decisively in w.r.t. the respective range – this is due to the fact that range
simply becomes a completion of the decisively in interpretation used in the construction
of the evaluation. Thus, explicitly requiring decisiveness in case of aa and ac–admissible
semantics is redundant – even though decisiveness does not imply a protected acyclic
evaluation, a protected evaluation does lead to decisiveness.

A stronger relation can be observed between standard evaluations and decisiveness.
Every argument in a conflict–free extension will have a standard evaluation on this set
s.t. the blocking set is disjoint from the extension. The extension itself can be seen as a
single standard evaluation in which the pd–set is disjoint from the blocking set. A ca or
cc–admissible extension can also be seen as a standard evaluation for which the blocking
set is falsified by the range. While decisiveness of an argument did not imply acyclicity
due to the fact that not every decisively in interpretation for an argument will be used to
create a acyclic pd–evaluation, we are less restricted in the standard case. Any decisively
in interpretation s.t. its true part is contained in a conflict–free extension is good enough
for a standard evaluation.

Definition 2.144. LetD = (A,C) be an ADF. A set E ⊆ A is an xy–preferred extensions
of D, where x, y ∈ {a, c}, iff it is maximal w.r.t. set inclusion xy–admissible extension of
D.

Definition 2.145. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is a:

• a cc–complete extension of D iff it is cc–admissible in D and every a ∈ A that is
decisively in w.r.t. vE , is in E .
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• a ac–complete extension of D iff it is ac–admissible in D and every a ∈ A that is
decisively in w.r.t. vE , is in E .

• an aa–complete extension of D iff it is aa–admissible in D and every a ∈ A that is
decisively in w.r.t. vaE , is in E .

• a ca1–complete extension of D iff it is ca1–admissible in D and every a ∈ A \ E a+

that is decisively in w.r.t. vaE , is in E .

• a ca2–complete extension of D iff it is ca2–admissible in D and every a ∈ A that is
decisively in w.r.t. vpE , is in E .

The final theorem we want to recall in this section is valuable not for the relation
between the pd–acyclic conflict–free and grounded extensions, but for it consequences
and the way it is proved (see [75]). The meaning behind it is that while every argument
in a pd–acyclic conflict–free extension has an unblocked evaluation and can be assigned
different decisively in interpretations by the related pd–functions, we can create a single
“big” acyclic pd–evaluation for the whole extension:

Theorem 2.146. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is pd–
acyclic conflict–free iff it is the grounded extension of the reductDE = (E , CE ) ofD w.r.t.
E .

Example 28. Let us look at the ADF ({a, b, c, d, e}, {Ca = e, Cb = d ∨ (c ∧ e), Cc = ¬e,
Cd = >, Ce = a ∧ b}) depicted in Figure 21. ∅, {c}, {d}, {b, d}, {c, d}, {b, c, d} and
{a, b, d, e} are its conflict–free extensions, with the acyclic ones being ∅, {c}, {d}, {b, d},
{c, d} and {b, c, d}.

From the available conflict–free extensions only two are models. ∅ and {c} do not
qualify as they do not include d, which has an acceptance condition that is always satisfied.
Presence of d evaluates the condition of b to in, and thus the {d} and {c, d} conflict–free
extensions are also not models. Also the condition of c is satisfied under {b, d} and we
need to exclude this set as well. We are thus left with {b, c, d} and {a, b, d, e} and as no
arguments outside the sets have satisfied acceptance conditions w.r.t. them, we obtain our
two models. The first extension is also pd–acyclic conflict–free and as a result, the single
stable model of our framework.

The easy ac– and cc–admissible extensions are ∅, {d} and {b, d}. Since d is an initial
argument, it can be accepted without any restrictions. The presence of d makes b accept-
able independently of what happens to c and e, thus we do not have to analyze the conflict
between them in this context. The last cc–admissible extension is {a, b, d, e} and again,
since d is present, the conflict can be disregarded. This is also the only cc–admissible
extension that is not ac–admissible.

Let us now move to semantics acyclic on the “outside”, starting with the aa approach.
The ac– and cc–admissible extensions ∅, {d} and {b, d} are also aa–admissible. However,
we can observe a cyclic positive dependency between a and b and {a, b, d, e} cannot be
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aa–admissible. Since we only have to defend against acyclic attackers, {c}, {b, c, d} and
{c, d} are additional aa–extensions. Finally, all of those sets, including {a, b, d, e}, are ca1
and ca2–admissible.

The extension {b, d} will be cc and ac–complete, but not aa, ca1 and ca2–complete as
a and e will be automatically in the acyclic range. On the other hand, {b, c, d} will be aa,
ca1 and ca2–complete, but not cc and ac–complete. Finally, {a, b, d, e} will be ca1, ca2 and
cc–complete.

The set {a, b, d, e} is our only cc–preferred extension, {b, d} is ac–preferred and
{b, c, d} is aa–preferred. Finally, the ca1 and ca2–preferred extensions are {b, c, d} and
{a, b, d, e}.

For the grounded cases, assume an empty interpretation v. It is easy to see that only d
is decisively in w.r.t. v and that there are no decisively out arguments. However, now that
we have the d : t assignment, b can be also decisively assumed. Again, no decisive outing
occurs, and next round returns us no new assignments. Thus, the grounded extension is
{b, d}. When it comes to acyclic case, we can again trivially accept d. However, since a
and e have no acyclic pd–evaluations, they are mapped to f . By accepting dwe can assume
b, and from the rejection of e follows c. Consequently, our acyclic grounded extension will
be {b, d, c} and contains the standard one {b, d}.

e

a

b

c

d

e

d ∨ (c ∧ e)

¬e

>a ∧ b

Figure 21: Sample ADF

2.3.6 Properties of ADF Semantics

In this section we will recall the properties of the ADF semantics [21, 74, 75], which will
prove useful in proving a number of translations.

Theorem 2.147. Let D = (A,C) be an ADF. The following holds:

• each preferred labeling is a complete labeling, but not vice versa.

• the grounded model is the ≤i–least complete labeling.
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• the complete labelings of D form a complete meet–semilattice w.r.t. ≤i.

Theorem 2.148. Let D = (A,C) be an ADF, v be a three–valued interpretation on A and
v′ its (maximal) two–valued sub–interpretation. v is admissible iff all arguments mapped
to t are decisively in w.r.t. v′ and all arguments mapped to f are decisively out w.r.t. v′.

Theorem 2.149. LetD = (A,C) be an ADF, v an admissible labeling and v′ its (maximal)
two–valued sub–interpretation. v is complete iff all arguments decisively out w.r.t. v′ are
mapped to f by v and all arguments decisively in w.r.t. v′ are mapped to t by v.

Proposition 2.150. Let D = (A,C) be an ADF, E ⊆ A a standard and S ⊆ A a pd–
acyclic conflict–free extension of D, with vE , vpE , vaE , vS , vpS and vaS as their corresponding
standard, partially acyclic and acyclic range interpretations. Let s ∈ A be an argument.
The following holds:

• if vE (s) = f , then s is decisively out w.r.t. vE . The same holds or vpE , but not for vaE .

• if vS(s) = f , then s is decisively out w.r.t. vS . The same holds for vpE and vaE .

• if vE (s) = f , then Cs(E ∩ par(s)) = out. The same holds or vpE , but not for vaE .

• if vS(s) = f , then Cs(S ∩ par(s)) = out. The same holds for vpE and vaE .

Lemma 2.151. Let D = (A,C) be an ADF and E and E ′ two conflict–free extensions s.t.
E ⊆ E ′. It follows that vE ′ is a completion of vE to some set A′ ⊆ A.

Let E and E ′ be two pd–acyclic conflict–free extensions s.t. E ⊆ E ′. It follows that
vaE ′ is a completion of vaE to some set A′ ⊆ A and that vpE ′ is a completion of vpE to some
set A′′ ⊆ A.

Lemma 2.152. Let D = (A,C) be an ADF. The following holds:

• every ac–admissible extension of D is cc–admissible in D.

• every ac–admissible extension of D is aa–admissible in D.

• every aa–admissible extension of D is ca2–admissible in D.

• every cc–admissible extension of D is ca2–admissible in D.

• every ca2–admissible extension of D is ca1–admissible in D.

• not every ca1–admissible extension of D is ca2–admissible in D.

Lemma 2.153. Let D = (A,C) be an ADF. Let xy and x’y’ be two admissible sub–
semantics, where x, x′, y, y′ ∈ {a, c}, s.t. every xy–admissible extension is also x’y’–
admissible (see Lemma 2.152). Then every xy–preferred extension of D is contained in
some x’y’–preferred extension of D.
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Lemma 2.154. CC/AC/AA Fundamental Lemma: Let D = (A,C) be an ADF, E a
cc(ac)–admissible extension of D, vE its range interpretation and a, b ∈ A two arguments
decisively in w.r.t. vE . Then E ′ = E ∪ {a} is cc(ac)–admissible in D and b is decisively
in w.r.t. v′E .

Let E be an aa–admissible extension of D, vaE its acyclic range interpretation and
a, b ∈ A two arguments decisively in w.r.t. vaE . Then E ′ = E ∪ {a} is aa–admissible in D
and b is decisively in w.r.t. v′aE .

Lemma 2.155. Weak CA1 Fundamental Lemma: Let D = (A,C) be an ADF, E ⊆ A a
ca1–admissible extension, vaE its acyclic range interpretation and a, b ∈ A\E a+ arguments
decisively in w.r.t. vE . Then E ′ = E ∪ {a} is ca1–admissible in D, b is decisively in w.r.t.
vE ′ , but it is not necessarily in A \ E ′a+.

Lemma 2.156. CA2 Fundamental Lemma Let D = (A,C) be an ADF, E ⊆ A an ca2–
admissible extension of D, vpE its partially acyclic range interpretation and a, b ∈ A two
arguments decisively in w.r.t. vpE . Then E ′ = E ∪ {a} is ca2–admissible in D and b is
decisively in w.r.t. v′pE .

Lemma 2.157. Let D = (A,C) be an ADF. It holds that:

• every ac–complete extension of D is cc–complete in D.

• every aa–complete extension of D is ca1–complete in D.

• every aa–complete extension of D is ca2–complete in D.

• not every ca1–complete extension of D is ca2–complete in D and vice versa.

We can now continue with an ADF version of Theorem 2.10 from the Dung’s setting:

Theorem 2.158. Let D = (A,C) be an ADF. The following holds:

• every xy–preferred extension of D is an xy–complete extension of D for x, y ∈
{a, c}, but not vice versa.

• the grounded extension of D might not be an aa–, ca1– or ca2–complete extension
of D.

• the grounded extension of D is the least w.r.t. set inclusion ac(cc)–complete exten-
sion of D.

• the acyclic grounded extension of D is the least w.r.t. set inclusion aa–complete
extension of D and a minimal ca1(ca2)–complete extension of D.

• the cc–, ac– and aa–complete extensions ofD form complete meet–semilattices w.r.t.
set inclusion.
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• the ca1 and ca2–complete extensions of D may not form complete meet–semilattices
w.r.t. set inclusion.

Lemma 2.159. Let D = (A,C) be an ADF and E ⊆ A a model of D. Then E a+ = A \E
and E p+ = A \ E .

Lemma 2.160. Let D = (A,C) be an ADF. Every model of D is ca1/ca2–complete in D,
but not necessarily ca1/ca2–preferred in D.

Lemma 2.161. LetD = (A,C) be an ADF. Every stable extension ofD is an aa–preferred
in D, but not vice versa. It is not necessarily a cc/ac/ca1/ca2–preferred extension of D.

Lemma 2.162. Let D = (A,C) be an ADF. Every xy–preferred extension of D is a maxi-
mal w.r.t. ⊆ xy–complete extension of D for x, y ∈ {a, c}.

CA1–ADM

CA2–ADM

CC–ADM AA–ADM

AC–ADM

CA1–PREF

CA2–PREF

CC–PREF AA–PREF

AC–PREF

⊆
⊆ ⊆

⊆ ⊆

CA2–CMPCA1–CMP

MODEL STABLE

AA–PREF

CA2–CMP CA1–CMP

CC–CMP AA–CMP

AC–CMPGRD

ACY–GRD

Figure 22: The relations between given extension–based sub–semantics. x→ y should be
read as extensions of x are extensions of y. x ⊆ y should be read as any extension of x is
contained in some extension of y.

2.3.7 Comparison of Extension–Based and Labeling–Based Semantics

In this section we will briefly recall the relation between the families of ADF semantics
and refer the reader for further details and proofs to [75]. In order to compare extensions
and labelings we will use the notion of correspondence:
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Definition 2.163. Let D = (A,C) be an ADF, v a three–valued interpretation over A and
E ⊆ A a set of arguments. v and E correspond iff vt = E .

By the abuse of notation we will also use the notion of a u–completion, which should
be understood as a three–valued interpretation that assigns u to the “missing” mappings
of a given two–valued interpretation.

Theorem 2.164. Let D = (A,C) be an ADF, E ⊆ A a conflict–free and S ⊆ A a pd–
acyclic conflict–free extension of D. The u–completions of vE , vpE , vS , vpS and vaS to A are
three–valued models of D. The u–completion of vaE might not be a three–valued model of
D.

Theorem 2.165. Let D = (A,C) be an ADF and v be a three–valued model of D. Then
vt is a conflict–free set of D.

Theorem 2.166. Let D = (A,C) be an ADF. The following holds:

• let E be a cc–admissible extension of D. Then the u–completion of vE is an admis-
sible labeling of D.

• let E be an ac–admissible extension of D. Then the u–completion of vE is an ad-
missible labeling of D.

• let E be an aa–admissible extension of D. Then the u–completion of vaE is an
admissible labeling of D.

• let E be an ca2–admissible extension of D. Then the u–completion of vpE is an
admissible labeling of D.

• let v be an admissible labeling of D. Then vt is a ca1 and ca2–admissible extension
of D.

• let E be ca1–admissible extension of D. There might be no admissible labeling of
D corresponding to E .

Remark. Please note that although every admissible labeling has a corresponding ca2–
admissible extension and vice versa, just like in the Dung’s framework it does not need to
be a one–to–one relation. The u–completion of a given range produces only one of many
admissible labelings that have common t mappings.

Theorem 2.167. Let D = (A,C) be an ADF. The following holds:

• let E ⊆ A be an aa–, ac–, cc– or ca1–preferred extension of D. There might not
exist a corresponding preferred labeling of D.

• let E ⊆ A be a ca2–preferred extension of D. The u–completion of vpE to A is a
preferred labeling of D.
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• let v be a preferred labeling of D. Then vt is a ca2–complete extension of D, but
it does not have to be aa–, ac–, cc– or ca1–complete or aa–, ac–, cc–, ca1– or
ca2–preferred in D.

Theorem 2.168. Let D = (A,C) be an ADF. The following holds:

• let E be a cc–complete extension of D. The u–completion of vE is a complete
labeling of D.

• let E be an ac–complete extension of D. The u–completion of vE is a complete
labeling of D.

• let E be an aa–complete extension of D. The u–completion of vaE is a complete
labeling of D.

• let E be a ca2–complete extension of D. The u–completion of vpE is a complete
labeling of D.

• let v be a complete labeling of D. The set vt might not be a cc–, ac–, aa–, ca1– or
ca2–complete extension of D.

• let v be a complete labeling of D. There exists a ca2–complete extension E of D s.t.
vt ⊆ E .

• let E be a ca1–complete extension of D. There might be no corresponding complete
labeling of D.

As the grounded semantics has a very clear meaning, it is no wonder that both available
approaches coincide, as already noted in [21].

Theorem 2.169. Let D = (A,C) be an ADF. Given the two–valued grounded extension
E ⊆ A of D and the grounded labeling v of D, it holds that vt = E .

However, the best we can find for the acyclic grounded extension is an associated
complete labeling. It will of course not be the least one, since that corresponds to the
standard grounded semantics.

Theorem 2.170. Let D = (A,C) be an ADF and E its acyclic grounded extension. The
u–completion of the acyclic range of E is a complete labeling of D.

The results are summarized in Figure 23. Please note we do not include the transitive
relations here, such as grounded extension having a corresponding complete labeling due
to grounded labeling being complete.
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CF

LAB–ADM
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AC–ADMAA–ADM CC–ADM

AA–PRF

AC–PRF

CC–PRF

CA1–PRF

CA2–CMP

LAB–PRF

CA2–PRF

CA1–CMP LAB–CMP

AA–CMPAC–CMPCC–CMP CA2–CMP ACY–GRD GRD

LAB–GRD

Figure 23: The relations between extension–based and labeling–based semantics. x →
y should be read as every extension/labeling of type x has a corresponding label-
ing/extensions of type y.

Example 29. Let us consider a simple framework ({a, b}, {Ca = a, Cb = b}) depicted in
Figure 24. Its cc,ca1 and ca2–complete extensions are ∅, {a}, {b} and {a, b}, while the aa
and ac one is just ∅. Thus, we obtain one cc, ca1 and ca2–preferred extension {a, b} and a
single aa and ac–preferred one – ∅.

The complete labelings for this framework are {a : u, b : u}, {a : u, b : f}, {a : f , b :
u}, {a : f , b : f}, {a : t, b : u}, {a : t, b : f}, {a : u, b : t}, {a : f , b : t} and finally
{a : t, b : t}. The first four correspond to ∅, then both {a} and {b} have two labelings, and
finally we receive {a, b}. In this case, our results in compliance with the cc, ca1 and ca2–
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complete extensions. The preferred labelings are {a : f , b : f},{a : t, b : f}, {a : f , b : t}
and {a : t, b : t}, again producing the sets ∅, {a}, {b} and {a, b}. We can observe that {a}
and {b} are not preferred extensions of any family.

a b

a b

Figure 24: Sample ADF

Example 30. Let us consider a simple framework ({a, b, c, d}, {Ca = ¬c, Cb = ¬d, Cc =
c, Cd = d}) depicted in Figure 25. Its extensions and labelings will be listed in Tables
3 and 4. Although there are many admissible labelings, in the end they produce the fol-
lowing sets: ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c} and {c, d}. Similar follows for the
complete labelings. The preferred ones correspond to {a, b}, {a, d}, {b, c} and {c, d}.

We can observe that in our example, every admissible labeling will produce a ca1
and ca2–admissible extension and vice versa. However, even though every aa, cc and
ac–admissible extension will have a corresponding labeling, it does not hold in the other
direction. Although every complete extension of a given type will have a corresponding
complete labeling, the sets {a} and {b} produced by some of the complete labelings are
not complete extensions in any of the families. Finally, we can see that the ac–preferred
extension ∅ has no corresponding preferred labeling.

a bc d

¬c ¬dc d

Figure 25: Sample ADF

2.3.8 Sub–Semantics Coincidence: the AADF+ Subclass

With this amount of different families of semantics available in ADFs, it is natural to ask
what are the conditions under which all xy–subtypes of a given semantics coincide, e.g.
when is every aa–admissible extension is also cc–admissible and so on. In this section
we will describe a subclass of ADFs for which our classification system collapses. More-
over, this class will also provide a more precise correspondence between the extension and
labeling–based approaches. We will refer to the frameworks in this subclass as the positive
dependency acyclic abstract dialectical frameworks and denote them as AADF+s.
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Table 3: Extensions of the ADF from Figure 25.

ADM

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

COMP

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

PREF

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

Table 4: Labelings of the ADF from Figure 25.

ADM

{a : u, b : u, c : u, d : u}, {a : u, b : u, c : f , d : u}, {a : u, b : u, c : u, d : f},
{a : u, b : u, c : f , d : f}, {a : u, b : u, c : t, d : u}, {a : u, b : u, c : u, d : t},
{a : u, b : u, c : t, d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : t, d : f},
{a : u, b : f , c : u, d : t}, {a : u, b : f , c : f , d : t}, {a : u, b : f , c : t, d : t},
{a : u, b : t, c : u, d : f}, {a : u, b : t, c : f , d : f}, {a : u, b : t, c : t, d : f},
{a : f , b : u, c : t, d : u}, {a : f , b : u, c : t, d : f}, {a : f , b : u, c : t, d : t},
{a : f , b : f , c : t, d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : u, c : f , d : u},
{a : t, b : u, c : f , d : f}, {a : t, b : u, c : f , d : t}, {a : t, b : f , c : f , d : t},
{a : t, b : t, c : f , d : f}

COMP
{a : u, b : u, c : u, d : u}, {a : f , b : u, c : t, d : u}, {a : u, b : f , c : u, d : t},
{a : u, b : t, c : u, d : f}, {a : t, b : u, c : f , d : u}, {a : t, b : t, c : f , d : f},
{a : t, b : f , c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : f , b : f , c : t, d : t},

PREF
{a : t, b : t, c : f , d : f}, {a : t, b : f , c : f , d : t}, {a : f , b : t, c : t, d : f},
{a : f , b : f , c : t, d : t},

Definition 2.171. Let D = (A,C) be an ADF. D is an AADF+ iff for every standard
evaluation (F,B) of D and the pd–function pdD it was created with, we can construct an
acyclic pd–evaluation ((a0, ..., an), B) based on pdD s.t. F = {a0, ..., an}.

In other words, a framework is an AADF+ if we can make every standard evaluation
in it acyclic. Since every standard evaluation can be represented as a partially acyclic one,
we can also say that we are dealing with an AADF+ if every partially acyclic evaluation
is in fact acyclic. The following example shows possible frameworks satisfying and not
satisfying our definition:

Example 31. LetD1 = ({a, b, c, d, e}, {Ca = >, Cb = ¬a∨c, Cc = b, Cd = ¬c∧¬e, Ce =
¬d}) be the ADF previously analyzed in Example 19 and visible in Figure 16. For every
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a b c d e

> a ∨ ¬c b ¬c ∧ ¬e ¬d

Figure 26: Sample AADF+

argument we can create an acyclic pd–evaluation. However, in some cases we also have
a standard evaluation that cannot be made acyclic. We can consider the decisively in
interpretations vb = {c : t} and vc = {b : t} for b and c respectively and use them
to construct a standard evaluation ({b, c}, ∅). There is no way to order the pd–set w.r.t.
vb and vc s.t. the pd–sequence requirements would be satisfied. Therefore, D1 is not an
AADF+. Neither are the frameworks depicted in Figures 24 and 25.

We can now consider a modification of D1 depicted in Figure 26. Our framework is
now D2 = ({a, b, c, d, e}, {Ca = >, Cb = a ∨ ¬c, Cc = b, Cd = ¬c ∧ ¬e, Ce = ¬d}).
The minimal decisively in interpretations for our arguments are now as follows: va = ∅,
v1b = {a : t}, v2b = {c : f}, vc = {b : t}, vd = {c : f , e : f}, ve = {d : f}. We can observe
that all of the interpretations with the exception of v1b and vc satisfy the a0 requirements of
a pd–sequence in an acyclic evaluation. Let us consider a standard evaluation containing
c. We can observe it would have to contain b as well; if the associated interpretation is v1b ,
then a needs to be in the pd–set as well. It is easy to see that {a, b, c} clearly satisfies the
requirements of a pd–sequence. If the interpretation associated with b is v2b , then {b, c} is
a pd–sequence as well. Therefore, given any subset of arguments, if we order it in a way
that a precedes b and b precedes c (if they are present), then all of the resulting sequences
would meet the pd–sequence restrictions. Thus, the framework is an AADF+.

Theorem 2.172. Let D = (A,C) be an AADF+. The following holds:

• every conflict–free extension of D is pd–acyclic conflict–free in D,

• every model of D is stable in D,

• given a conflict–free set of arguments E ⊆ A, E+ = E p+ = E a+,

• the aa–, cc–, ac–, ca1 and ca2–admissible extensions of D coincide,

• the aa–, cc–, ac–, ca1 and ca2–complete extensions of D coincide,

• the aa–, cc–, ac–, ca1 and ca2–preferred extensions of D coincide, and

• the grounded and acyclic grounded extensions of D coincide.

Theorem 2.173. Let D = (A,C) be an AADF+. The following holds:
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• every admissible labeling of D has a corresponding aa–, cc–, ac–, ca1 and ca2–
admissible extension of D and vice versa.

• every complete labeling of D has a corresponding aa–, cc–, ac–, ca1 and ca2–
complete extension of D and vice versa.

• every preferred labeling of D has a corresponding aa–, cc–, ac–, ca1 and ca2–
preferred extension of D and vice versa.

Finally, it is natural to ask what is the relation between the AADF+ and BADF sub-
classes. The answer is that while there exist frameworks belonging to both, there are also
some belonging to one, but not the other. Let us look at an example.

Example 32. Let ({a, b, c}, {Ca = >, Cb = >, Cc = (a∨b)∧(¬a∨¬b)}) be a simple ADF.
We can observe that c has a condition that is simply an xor on the remaining two arguments.
This framework is not a BADF; the links from a and b to c are neither supporting nor
attacking. The condition of c is out w.r.t. ∅, and will turn to in for {a} and {b}. However,
it will then turn to out again for {a, b}. Nevertheless, this simple framework is an AADF+.

Let ({a}, {Ca = a}) be another simple framework. There is only one link in the
framework – namely, (a, a) – and it is easy to show that it is a supporting one. Thus, our
structure is in fact a BADF. However, the only minimal decisively in interpretation for a is
va = {a : f}, and we cannot use it to construct an acyclic pd–evaluation for a. Therefore,
we are clearly not dealing with an AADF+.

To show that the subclasses are not disjoint, the easiest way is to take a Dung–style
ADF. A structure where only attacks are present, e.g. ({a, b, c}, {Ca = >, Cb = ¬a, Cc =
¬b}), is both a BADF and an AADF+.

2.3.9 Conceptual Differences Between ADFs and Different Argumentation Frame-
works

Among all of the argumentation frameworks that we have recalled in this work, the abstract
dialectical frameworks clearly stand out. Their definition is visibly different from all the
other structures. In this section we will compare acceptance conditions and the relations
between the arguments defined explicitly in the framework structure. We will also discuss
the problems arising from the differences between them, as they will have an impact on
translating other argumentation frameworks into ADFs.

However, before we continue, we will first discuss the falsum arguments in ADFs.
One of the things special about ADFs is their ability contain the “non existent” or “false”
arguments. In a Dung’s framework, an unattacked argument represents the knowledge
we are certain of and as such, will be included in a grounded extension. In an ADF,
this argument will be assigned a condition equivalent to >. However, we also have the
arguments with ⊥ condition, which stand for statements we know not to be true and that
neither they nor anything building upon them should ever be accepted. We refer to them as
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falsum arguments. Please observe that although self–attacking arguments do not appear in
extensions as well, they do not represent knowledge we know to be false – a self–attacker is
always assigned an undecided status and as such needs to be defended from. Consequently,
its handling is quite different. Falsum arguments in behavior resemble invalid arguments
in AFNs and EAFs with the difference that not being valid (i.e. not having a powerful or
evidential sequence) is a semantical property, while having a condition that can never be
satisfied is more of a structural one. In what follows we will show that the differences
between ADFs and other bipolar frameworks can cause undesirable falsum arguments to
be created during a translation if certain consistency prerequisites are not met (see also
Section 4.4).

The more direct descendants of the Dung’s framework, including BAFs, EASs and
AFNs, explicitly state “this is a supporter”, “this is an attacker” and so on. Thus, in order
to know if an argument can be accepted along with other arguments, i.e. whether it is not
attacked by them or receives sufficient support, we need to go through all the relations
it is a target of. ADFs work somehow the other way around. Acceptance conditions
“zoom out” from singular relations and given a set of arguments, they tell us whether the
argument can be accepted or not. A condition speaks in terms of requirements and tells us
what arguments need to be present or cannot be assumed for it to be satisfied, and whether
it is always the case, happens only sometimes, or if it needs to be like this because certain
different arguments were assumed. Thus, the focus is put on what would usually be seen
as a target of a relation, while other frameworks put the source in center. In ADFs, in
order to say if a parent of argument is a supporter, attacker or none of these, we analyze
all the models and countermodels of the formula (or the mappings, if the condition is in
a functional form), not its structure, i.e. this argument appears as a positive literal, this as
a negative and so forth. This is especially visible in the definitions of an ADF–attacker
and ADF–supporter (see Definition 2.114). This is also one of the reasons why finding
support cycles in ADFs is more difficult than in other support frameworks. Finally, since
the role of parent is derived from how it affects the behavior of an argument, not whether
it is in e.g. the support relation N , E, or however it is designated in other structures, an
attacker or a supporter in a different framework may not necessarily have the same role in
a corresponding ADF. The following examples will make this issue more visible.

Example 33. Let us consider an AFN FN1 = ({a, b}, {(b, a)}, {({b}, a)}) depicted in
Figure 27a, where argument a is at the same time supported and attacked by b. In a cer-
tain sense, a is somewhat difficult to describe – although it depends on b, this dependency
cannot be classified as positive or negative, and thus the status of a is more or less unde-
cided. Of course, a can never appear in any extension. However, in most of the bipolar
frameworks it is still treated as a valid attacker that one needs to defend from. In the ADF
setting, there is no set of arguments that would in the acceptance condition of a – whether
we include or exclude b, we are always either attacked or missing support. It can also be
seen as a b ∧ ¬b formula. Basically speaking, we receive a falsum argument, which is in-
terpreted as I do not exist. This nonexistence is visible in the extensions of the framework,
i.e. whether the argument is present or not, it does not affect the extensions. This also
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means that we do not have to defend from such arguments and thus, there is an important
difference between the design of ADFs and other argumentation frameworks.

At this point one might want to say “let us assume this situation does not occur and
we do not produce falsum arguments”. However, simply adding a restriction that there are
e.g. no two arguments a and b s.t. bRa and {b}Na in an AFN is not sufficient to bypass
this problem and obtain a desirable translation to ADFs. The problem can occur when an
attacking argument is just a part of the supporting set, not the set itself.

Example 34. Let us analyze an AFN FN2 = ({a, b, c, d}, {(a, d), (b, a), (d, c)},
{({b, c}, a)}) depicted in Figure 27b. We have that a is again attacked by b, and either
b or c needs to be present in order to accept a. If we were to defend from a, we would
need to either accept its attacker or cut off its support. In the AFN setting, we would need
to either accept b in the set, or attack both b and c, since the two coherent sets that we need
to attack are {a, b} and {a, c}. In ADF, only the set {c} (or, equivalently, interpretation
{b : f , c : t}) can satisfy the acceptance condition of a, thus assuming b or discarding c is
sufficient. This can be seen as considering b primarily as an attacker. As a result, {d} is
ADF, but not AFN admissible.

a

b

(a) FN1

a

b c

d

(b) FN2

Figure 27: Sample AFNs

A similar issue appears in extended argumentation frameworks, though normally they
do not qualify as bipolar. This is due to the fact that defense attack can be translated into
a particular form of support in ADFs (see Section 8.6.1), to which we normally refer to as
overpowering. Consequently, the problem of consistency needs to be handled here as well.
In this case, if an argument carries out an attack on another argument and at the same time
defense attacks this conflict, we can obtain an initial argument, i.e. one with acceptance
condition being equivalent to verum. Let us look at an example:

Example 35. Let EF1 = ({a, b}, {(a, b)}, {(a, (a, b))}) be the EAF depicted in Figure
28a. Its admissible extensions are ∅, {a} and {a, b}. The combination of attack and de-
fense attack can be read as “b cannot be accepted if a is accepted, unless a is accepted”
which propositionally, gives us a tautology. This is not a desirable reading – not only it
removes the relations, but also produces different extensions. The (arbitrary) admissible
extensions of the corresponding ADF ({a, b}, {Ca = >, Cb = >}) would be ∅, {a}, {b}
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and {a, b}. Since in our EAF, b requires a in an extension, we can consider modifying
our ADF by changing the acceptance condition of b from > to a. It would now produce
the desirable extensions, namely ∅, {a} and {a, b}. Unfortunately, this is not a long–term
method.

Let EF2 = ({a, b, c}, {(a, b), (c, a)}, {(a, (a, b))}) be a modification of our EAF, visi-
ble in Figure 28b; we basically include a new argument attacking a. Its admissible exten-
sions are ∅, {c} and {c, b}. However, if we include the attack into our ADF, the admissible
extension of ({a, b, c}, {Ca = ¬a, Cb = a, Cc = >}) are ∅ and {c}. Since a is set to
support b, an attack on it renders b unacceptable.

a

b

(a) EF1

a

b

c

(b) EF2

Figure 28: Sample EAFs

Please note this does not in any way imply that arguments can be assigned only a sin-
gle permanent “role” in ADFs, e.g. “attacker” or “supporter”. The framework supports
changes and an argument can on one occasion be required, while quite the opposite on
another (XOR and XNOR acceptance conditions are very simple examples). A more ac-
curate description is that an argument should have a defined role “at a point”, i.e. w.r.t. a
given set of arguments. ADFs ensure consistency, not constancy.

Although our examples used AFNs and EAFs for comparison, similar situations occur
when we consider EASs and current BAFs, where the consistency constraint between the
relations was dropped. Moreover, due to their advanced systems of indirect attacks, further
discussion on them in context of ADFs will be given in Section 9.4. We do not consider
the difference in treatment of arguments that both attack and support at the same time to
be an error on either side. It is more a side effect of varying intuitions, design choices
and permitting or rejecting such behaviors falls into the category with odd and even at-
tack cycles, support cycles or self–attackers. If we were to represent the situation as a
propositional formula, it is like comparing atom based and literal based evaluation. The
same issue arises when we consider standard and ultimate versions of logic programming
semantics, as already noted in [84]. Our answer to this problem is to use a method adapt-
ing the inconsistent frameworks to ADFs. We refer to it as the bypass method; in case an
argument a is directly supported and attacked by the same argument b, we introduce an
auxiliary bypass argument b′ for b in a way that b supports b′ and b′ support a in place of
b. Therefore, in our work we will identify subclasses or normal forms of the mentioned
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frameworks that can be shifted straightforwardly into ADFs and ones that require addi-
tional modifications. Although the method will be described more in detail in appropriate
sections (see Sections 10.6 and 11.5), we will close the section with showing a sample of
it on the considered examples.

Example 36. Let us come back to AFN FN1 = ({a, b}, {(b, a)}, {({b}, a)}) from Ex-
ample 33. By introducing a bypass argument for b and making it support a, we ob-
tain another AFN ({a, b, bb}, {(b, a)}, {({b}, bb), ({bb}, a)}). The corresponding ADF
D1 = ({a, b, bb}, {Ca = ¬b ∧ bb, Cb = >, Cbb = b}) depicted in Figure 29a no longer
turns a into a falsum argument.

Example 37. Now let us considerFN2 = ({a, b, c, d}, {(a, d), (b, a), (d, c)}, {({b, c}, a)})
from Example 34. We again introduce a bypass for b and obtain a framework
D2 = ({a, b, c, d, bb}, {(a, d), (b, a), (d, c)}, {({b}, bb), ({bb, c}, a)}) depicted in Figure
29b. It still holds that {d} is not AFN admissible. The corresponding ADF is now
({a, b, c, d, bb}, {Ca = ¬b ∧ (bb ∨ c), Cb = >, Cc = ¬d, Cd = ¬a, Cbb = b}) and this time
{d} is no longer admissible; its range interpretation falsifies c only and cannot prevent
acceptance of b and bb, and thus not of a.

Example 38. Finally, we will show the bypass method applied to EAFs from Example
35. For the EAF ({a, b, c}, {(a, b), (c, a)}, {(a, (a, b))}), we create a bypass ADF D3 =
({a, b, c, ab}, {Ca = ¬c, Cb = ¬a ∨ ab, Cc = >, Cab = a}) depicted in Figure 29c. It
produces the following (arbitrary) admissible extensions - ∅, {c}, {b, c}. We can observe
that they are in agreement with the EAF ones. If we go back to the original EAF ({a, b},
{(a, b)}, {(a, (a, b))}), the corresponding bypass ADF D4 = ({a, b, ab}, {Ca = >, Cb =
¬a ∨ ab, Cab = a}) from Figure 29d gives us sets ∅, {a}, {a, ab}, {a, ab, b}, which after
removing ab return to the desired collection.

2.4 Signatures and Realizability of Argumentation Semantics
The majority of research dedicated to a given argumentation framework is often focused
on creating new semantics, analyzing their complexity and producing new algorithms for
their computation. However, there is also another line of study, focusing on the expressive
power of argumentation frameworks and their semantics [13,37,38,40,43,82,86]. Within
this group is the research on realizability, which tries to answer the question whether,
given a set of desired extensions, it is possible to create a framework producing exactly
this set under a given semantics. Although this line of study has a number of important
applications, from the point of view of intertranslatability of argumentation frameworks it
is particularly relevant for establishing whether a translation is possible or if an existing
transformation can be improved.

Unfortunately, the research on realizability is still quite new. It involves mostly Dung’s
argumentation frameworks [37,38,43,50] and abstract dialectical frameworks [59,82] and

82



a

bb

b

¬b ∧ bb

b

>

(a) D1

a

bbb c

d

¬b ∧ (bb ∨ c)

b> ¬d

¬a

(b) D2

a

ab

b

c

>

¬c

ab

¬a ∨ ab

(c) D3

a

ab

b

>

ab
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Figure 29: Bypass ADFs

is an ongoing line of research. For example, sufficient conditions for realizing complete
semantics are still an open research problem. Moreover, the majority of the available
studies are focused on single semantics only. By this we understand that while we can
establish whether there exists a framework in which a set of extensions E can be realized
under a σ–semantics and a framework realizing a set of extensions E ′ under a different
semantics σ′, it would be also valuable to know if there is a framework meeting both of
these requirements. The multi–dimensional signatures would be very useful in our study
due to our focus on generic translations; so far, the only work dealing with this topic
is [38]. Finally, the majority of the available studies are, in a certain sense, very “precise”.
They check whether exactly the given collection of extensions, not something “similar” to
it, can be realized under the semantics in question. Although these results are important
when comparing the power of two frameworks, from the intertranslatability perspective
we would be interested in a more relaxed approach. By this we understand that even if a
given set of extensions is not “good enough”, by introducing auxiliary arguments (or in the
worst case, also extensions) we can derive a new extension set that is. The only exception
here is the study in [43], which shows that given enough auxiliary arguments, we can
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realize any collection of preferred or semi–stable labelings in the Dung’s framework. For
us this means that due to the relation between the extensions and labelings in AFs stated in
Theorem 2.15, with the use of auxiliary arguments any framework can be translated into
the Dung’s framework under the preferred and semi–stable semantics.

Let us now recall the AF signature and realizability research done in [37]. The signa-
ture of a given AF semantics σ is understood as a collection of all sets of σ–extensions that
can ever be produced by a Dung’s framework. We will now assume that we are working
with an argument domain U and a collection of argumentation frameworks AFU s.t. for
every X = (A,R) ∈ AFU , A ⊆ U and A is non-empty and finite.

Definition 2.174. Let σ ∈ {conflict–free, admissible, preferred, complete, stable,
grounded} be an AF semantics. The signature of σ is defined as ΣAF

σ = {σ(F ) | F ∈
AFU}.

In what follows we will describe the necessary and sufficient conditions for a set of
extensions to belong to the signature of a given AF semantics σ.

Definition 2.175. Let S ⊆ 2U be a collection of sets of arguments. Then ArgS =
⋃

E∈S E
stands for the collection of all arguments occurring in the sets in S and PairS = {(a, b) |
∃E ∈ S s.t. {a, b} ⊆ E} is the collection of pairs of arguments that occur in any set in S.

Definition 2.176. Let S ⊆ 2U . The downward–closure of S is defined as dcl(S) =
{E ′ ⊆ E | E ∈ S}. Given a set of arguments E ⊆ U , the completion–sets CS(E ) of E in
S is the collection of ⊆–minimal sets E ′ ∈ S where E ⊆ E ′. Then S is:

• downward closed if S = dcl(S).

• incomparable if for each E ,E ′ ∈ S, E ⊆ E ′ implies E = E ′.

• tight if for all E ∈ S and a ∈ ArgS it holds that if E ∪ {a} /∈ S then there exists an
s ∈ E s.t. (a, s) /∈ PairS .

• adm-closed if for each E ,E ′ ∈ S it holds that if (a, b) ∈ PairS for each a, b ∈
E ∪ E ′, then E ∪ E ′ ∈ S.

• com-closed if for each T ⊆ S the following holds: if (a, b) ∈ PairS for each
a, b ∈ ArgT , then there exists a unique completion–set E ∈ CS(ArgT ).

Downward closure means that if we accept a set of arguments, we accept every of its
subset as well. Although most of the semantics do not produce sets that are downward
closed, conflict–freeness does – it is easy to see that if there are no conflicts in a set of
arguments, then there are no conflicts in any of its subsets. The tightness requirement
grasps the idea that if an argument does not occur in some extension then there must be a
reason for that, the simplest one in the case of AFs being the presence of some conflict.
The adm–closed property means that if a union of two extensions is not an extension on its
own, then there must be some conflict between the two sets in question. The com–closed
requirement is simply meant to ensure the least upper bound property for the semilattice
structure of complete semantics (see Theorem 2.10).
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Example 39. Taken from [37]. Let us consider the extension set S1 = {{a, b}, {a, c},
{b, c}}. It is not downward closed due to the absence of sets ∅, {a}, {b} and {c}.
It is also not tight, since there is no reason to, for instance, exclude c from exten-
sion {a, b} ((a, c) and (b, c) are both contained in PairS1). On the other hand, the set
{{a, b}, {a, c}, {b, d}, {c, d}} is easily checked to be tight.

Let S2 = {{a, b}, {a, d, e}, {b, c, e}} be a collection of extensions. We can observe
that S is adm–closed, since for each pair of extensions, there exists a pair of arguments not
contained in PairS2: b, d ∈ {a, b} ∪ {a, d, e} and (b, d) /∈ PairS2; a, c ∈ {a, b} ∪ {b, c, e}
and (a, c) /∈ PairS2; c, d ∈ {a, d, e} ∪ {b, c, e} and (c, d) /∈ PairS2 . However, we also
observe that S is not tight; the set {a, b} ∪ {e} is not in S, but both (a, e) and (b, e) are
contained in PairS2 .

Finally, let us consider S3 = {∅, {a}, {b}, {a, b, c}}. The collection is com–closed, in
particular, as CS3({a} ∪ {b}) = {{a, b, c}}. Observe that since {a, b} /∈ S3, but (a, b) ∈
PairS3 , S3 is not adm–closed.

Although the work in [37] is much more in–depth and shows a number of relations
between properties and explains the construction of an argumentation framework for a
given set of extensions that meets the desired requirements, we are only interested in the
following results:

Theorem 2.177. The signatures for the considered semantics are given by the following
collections of extension–sets:

• ΣAF
cf = {S 6= ∅ | S is downward–closed and tight}.

• ΣAF
stable = {S | S is incomparable and tight}.

• ΣAF
adm = {S 6= ∅ | S is adm–closed and contains ∅}.

• ΣAF
pref = {S 6= ∅ | S is incomparable and adm–closed}.

Although no sufficient conditions are known for the complete semantics, the necessary
ones will still be useful to us.

Proposition 2.178. For each F ∈ AFU , the set of complete extensions com(F ) of F is a
non–empty, com–closed extension–set with (

⋂
E∈com(F ) E ) ∈ com(F ).

While the last condition might at first seem confusing, it basically describes the
grounded extension – the least complete one. Finally, we will recall the results from [43],
where in realizing preferred and semi–stable labelings, auxiliary arguments were allowed.
Given a labeling v defined over A and a set of arguments A′ ⊆ A, by v|A′ we will denote
the subinterpretation of v defined over A′.

Theorem 2.179. Let A ⊆ U , LabA a collection of three–valued labelings over A and
L ⊆ LabA. There exists a finite AF F s.t. for σ ∈ {preferred, semi–stable}, L = {v|A |
v ∈ σ(F )}.
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With the following example we close the background section of our work.

Example 40. Let us come back to Example 39. We could have observed that the set
{{a, b}, {a, c}, {b, d}, {c, d}} was tight. As it is also incomparable, it fits the stable sig-
nature. By adding the extensions ∅, {a}, {b}, {c} and {d}, we create a collection that
is still tight, but additionally downward closed. Thus, there is a framework producing
exactly the conflict–free and stable extensions that we have listed. In particular, the AF
({a, b, c, d}, {(a, d), (b, c), (c, b), (d, a)}) satisfies these requirements.

Let us come back to the adm–closed collection S2 = {{a, b}, {a, d, e}, {b, c, e}}. As
it is already incomparable, it fits the preferred signature. For example, the framework
({a, b, c, d, e, f}, {(a, c), (c, a), (b, d), (d, b), (c, f), (d, f), (f, e), (f, f)}) produces S3 un-
der the preferred semantics.

We can now consider the collection S3 = {∅, {a}, {b}, {a, b, c}}. By adding the
set {a, b}, we can make it adm–closed. As it already contains ∅, it now fits the admis-
sible signature. One of the frameworks producing such a set of admissible extensions is
({a, b, c, d, e}, {(a, d), (b, e), (d, d), (e, e), (d, c), (e, c)}).
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3 Introduction to Translations
A translation is, simply speaking, a way to convert one formalism into another. It can
also be seen as just a function, where to an element A of a given type we assign an el-
ement B of another, though not necessarily different, type. In our case we will be in-
terested in translations between argumentation frameworks and assume framework types
{AF, SETAF,AFRA,EAS,BAF,AFN,EAFC,EAF,ADF}, as explained in Sec-
tion 2. Moreover, unless stated otherwise, we will focus on those frameworks that have a
finite set of arguments.

The research on the translations between argumentation frameworks can be roughly
split into three main strands. One concerns the analysis of argumentation semantics; for
example, we can transform a given AF into another AF s.t. the stable extensions of the
former coincide with the preferred ones of the latter. We are thus working with a single
framework type, but different source and target semantics. This is referred to as the in-
tertranslatability of argumentation semantics and has been studied only in the context of
AFs [42]. Another strand is somewhat dual; we translate a framework of one type into
another so that the source extensions are in a relation to the target ones under a given se-
mantics. For example, we might want to transform a given EAS into an AF s.t. the stable
extensions of the latter can be transformed into the stable extensions of the former. Thus,
we deal with different framework types, but use similar semantics. This is in general what
we will understand as the intertranslatability of argumentation frameworks and what will
be the primary focus of the remainder of this work (Sections 5 to 12). To the last case, in
which we work with the same framework type and similar semantics, we will refer to as
the normal form translations. The purpose of these approaches is to obtain a framework
that is either “equivalent” or as close to the original one as possible, but has some desirable
structural properties. For example, we can transform a given AFN into an AFN in which
every argument possesses a powerful sequence. We will analyze these methods in Section
4.

Although translations can be seen as functions mapping one framework to another, we
are usually not interested in just some random assignments. We use and create transla-
tions for a reason, and depending on this reason we want them to have certain properties.
Moreover, there is often more than one way to transform one framework into another. It
is thus natural to ask what are the differences between the available approaches both on
the conceptual and the “physical” level. The majority of this section will be devoted to ad-
dressing this issue. We will give an abstract definition of a translation, describe the groups
of properties that will be of interest to us in the context of this work, and provide a rough
classification of the transformation types. Please note that in some cases it will be diffi-
cult to give concrete definitions due to differences between the frameworks. However, we
hope that the provided discussion and analysis will clearly show our intents and motivate
the design choices.

Following this introduction to our translation classification system, starting from Sec-
tion 4 we will be introducing both new and existing translations. When necessary, we will
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also extend and complete the results available in the literature. We will also provide the
property analysis of all the approaches and possible ways of improving them. Addition-
ally, we will discuss the normal forms that the translated framework might possess, both
depending and irrelevant of the forms of the source framework. We therefore create a
comprehensive compendium on the intertranslatability of argumentation frameworks that
consists of almost ninety methods. Please note that we will use two schemes in this work
for describing translations and their associated semantics theorems. Along the classical “if
then” definitions, we will use our own system which explicitly states the relevant domains
and properties. Thanks to this distinction, the readers looking for a particular translation
do not have to familiarize themselves with the entirety of our work and the big picture
is still there for those interested in it. Moreover, it also makes the comparison with the
existing results much easier. However, what also has to be mentioned is that the usual def-
initions can sometimes contain methods both for retrieving source extensions from target
ones and producing target extensions from the source ones. Our redefinitions will focus
solely on the target–to–source directions.

3.1 Translation & Casting Function
In this section we will give the definition of a framework translation, define the similarity
relation between the argumentation semantics and introduce the notion of a semantics
casting function that will be used to transform the target extensions (or labelings) into the
source ones. However, before we do so, we need to discuss a certain issue first.

In Section 2 we have explained that all argumentation frameworks share the set of ab-
stract arguments in their definition. The keyword here is abstract. Since no content of
the arguments is stored, this means that two argument domains become somewhat indis-
tinguishable due to their abstractness. However, it is quite often the case that the target
arguments can in fact represent structures built from the source arguments and possibly
other elements of the original framework (see for example Sections 6.1, 10.1, 11.1 and
12). Therefore, we need to be able to say if and how one domain is different from another.
Without it, the comparison of the answers produced by the source and target semantics can
become impossible.

This means that in some ways, our work is not entirely contained in the field of ab-
stract argumentation. Some of the approaches we will present can be qualified as meta–
level argumentation [18, 28, 30, 64]. However, many of them are also not dissimilar to
instantiation–based argumentation methods [24, 26]. In this context, a translation can be
perceived as an additional “loop” in the argumentation process. An argumentation frame-
work, which is instantiated with a given knowledge base, now itself becomes a source for
instantiating the target framework. The resulting target extensions then need to be reinter-
preted w.r.t. the source arguments before both of them can be compared, similarly as the
source extensions would be reinterpreted w.r.t. the underlying knowledge base. In such a
case, the difference between abstract domains can be seen as the difference between the
underlying knowledge bases or other data sources with respect to which the extensions

88



need to be recast. This implies that we have e.g. some auxiliary data structure storing
the content of target arguments. We leave it to the reader to decide how he or she wants
to view the argument domains. It is only important that we can mark given domains as
different and have some means of shifting between them

We can now define what we understand as a framework translation. Bearing in mind
the previous discussion, we will make it explicit with what types of framework we work
with and what are the argument domains they are built on.

Definition 3.1. Let T, T ′ be two distinct types of abstract argumentation frameworks,
UT ,UT ′ two domains of arguments and FrT , F rT

′ the collections of all frameworks
of type T and T ′ on the respective domains. A framework translation is a function
Tr : DT → DT ′ , where DT ⊆ FrT and DT ′ ⊆ FrT

′ .

Previously, we have mentioned that we look for translations s.t. the target and source
extensions are related and the semantics on both sides are similar. We will now specify
what similar and related mean. Concerning the first issue, not all of the semantics are
named the same in all frameworks, best example being the presence of subtypes in ADFs.
Moreover, not all of the semantics defined for one framework are also introduced in an-
other – while we have e.g. strongly coherent (i.e. coherent and conflict–free) extensions in
AFNs, we only have conflict–freeness in AFs. Therefore, to this end we introduce the sim-
ilarity relation between semantics of different frameworks. Please note that this relation is
in principle not transitive, though it is symmetric.

Definition 3.2. Let T, T ′ be two distinct types of abstract argumentation frameworks and
σT and σT ′ their semantics. We define the similarity relation between the semantics,
denoted σT ∼ σT ′ , the following way:

• if σT ∼ σT ′ , then σT ′ ∼ σT .

• for T, T ′ ∈ {AF, SETAF,AFRA,AFN,EAS,EAF,EAFC} and σT , σ
′
T ∈

{conflict–free, admissible, complete, preferred, grounded, stable}, σT ∼ σT ′ if
σT = σ′T .

• for T ∈ {AF, SETAF,AFRA}, cfT ∼ str-cohAFN .

• for T ∈ {AF, SETAF,AFRA}, cfT ∼ cf -supEAS .

• str-ssupEAS ∼ str-cohAFN .

• for T ∈ {AF, SETAF,AFRA}:

– cfT ∼ cfADF and cfT ∼ acy-cfADF ,

– stbT ∼ stbADF and stbT ∼ modADF ,

– grdT ∼ grdADF and grdT ∼ acy-grdADF , and

– for σT ∈ {admissible, complete, preferred} and x, y ∈ {a, c}, σT ∼ xy-σADF .
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• for T ∈ {AFN,EAS}:

– cohAFN ∼ pdcADF and ssupEAS ∼ pdcADF ,

– str-cohAFN ∼ acy-cfADF and str-ssupEAS ∼ acy-cfADF ,

– grdAFN ∼ acy-grdADF and grdEAS ∼ acy-grdADF ,

– stbAFN ∼ stbADF and stbEAS ∼ stbADF , and

– for σT ∈ {admissible, complete, preferred}, σT ∼ aa-σADF .

• for T ∈ {EAF,EAFC}:

– cfT ∼ cfADF ,

– stbT ∼ modADF ,

– grdT ∼ acy-grdADF , and

– for σT ∈ {admissible, complete, preferred}, σT ∼ ca2-σADF .

We can observe that the BAF semantics were not included in this listing. This is due to
the fact that they can be parametrized in various ways and depending on the used indirect
conflicts, the similarity might or might not be there. Thus, in this case we will depend
more on the naming convention, and the precise parametrization will be provided in the
relevant sections.

We can now focus on the relation between the answers produced by the semantics in
the target and source frameworks. Now, it can happen that this connection is trivial. For
example, the produced answers can perfectly coincide. This is typically the relation we
aim for if we intend to compare the expressive power of given formalisms. Due to the
nature of the research on the semantics signatures, it is also the relation we focus on when
we are concerned with establishing whether a given translation is possible or not.

However, if we want to use the target framework as a “solver” for the source one, then
we want to have a working translation, even if it is not a simple one. In many cases, the
argument domains of the source and target structures might be different and the relation
between the extensions much more complicated. If we are lucky, we might only have to
remove some auxiliary arguments. Nevertheless, the target arguments might also represent
e.g. sets of source arguments (see Section 3.3) or inference trees [81]. Additionally, they
can also carry pieces of information that are relevant for the construction of the translated
framework, but are not important from the semantics point of view (see Section 12), which
complicates the matters even further.

This wide scope of the relations between the extensions calls for some sort of a func-
tion that would allow us to cast the target answers into the source ones. One could
thus say that the extensions are “related” if it is possible to define a function SC s.t.
σ(X) = SC (σ(Tr(X)), where Tr is a translation, X a source framework and σ a se-
mantics. We will refer to it later as the collective approach. Unfortunately, this definition
allows more than we would like, as it permits addition and removal of certain extensions.
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In our study we want to focus on manipulating single extensions to retrieve the desired
ones. Thus, the formula σ(X) = {SC (E ) | E ∈ σ(Tr(X))} is closer to what we want
the “relation between extensions” to stand for. We will refer to this as the singular ap-
proach. Please note that casting an extension may require access to the source or target
framework, for example in case some arguments need to be removed. Thus, if we want to
use SC for computing the actual extensions, labelings or any sort of answers produced by
the semantics, we need to take the frameworks into account as well.

Definition 3.3. Let T, T ′ be two distinct types of abstract argumentation frameworks and
Tr : DT → DT ′ a translation between them, where DT and DT ′ are collections of frame-
works of given types. Let σT and σT ′ be two similar semantics and X ∈ DT a source
framework.

The singular semantics casting function forX under translation Tr and semantics σT

is a function SCX
σT : σT

′
(Tr(X))→ σT (X) mapping target answers to source answers.

The collective semantics casting function for X under translation Tr and semantics
σT is a function CSCX

σT : {σT ′
(Tr(X))} → {σT (X)} mapping the set of all target

answers to a set of source answers.
By SC Tr

σT (CSC Tr
σT respectively) we will denote the assignment of a singular (collec-

tive) semantics casting function to every X ∈ DT .

Please note that one can define the collective function in a simpler manner, as in its
current state it can be seen as just a single pair rather than a function. However, we prefer
to use consistent notation between the approaches. From now on, by semantics casting
function we will understand the singular one, unless stated otherwise.

Let us now introduce the concept of the strength of a translation. Not in all cases
casting the target extensions will give us all and only the answers we wanted. It can
happen that we end up with too many or not enough extensions. This brings us to the
following definition:

Definition 3.4. Let T, T ′ be two distinct types of abstract argumentation frameworks and
Tr : DT → DT ′ a translation between them, where DT and DT ′ are collections of frame-
works of given types. Let σT and σT ′ be two similar semantics and SC Tr

σT the singular
semantics casting functions for DT . The translation Tr is then a:

• ⊆–weak translation under (σ, SC Tr
σT ) if for every X ∈ DT , σT (X) ⊆

SCX
σT [σT

′
(Tr(X))].11

• ⊇–weak translation under (σ, SC Tr
σT ) if for every X ∈ DT , σT (X) ⊇

SCX
σT [σT

′
(Tr(X))].

• strong translation under (σ, SC Tr
σT ) if for every X ∈ DT , σT (X) =

SCX
σT [σT

′
(Tr(X))].

11Recall that for a function f : D → C, f [D] denotes the image of D, i.e. the set {c ∈ C | c = f(d) for
some d ∈ D}.
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We will of course be interested in the collections of extension functions that are “of the
same type”. Although in certain cases the SC function might be a bit more involved, in
majority it will be identity, removal or union casting, or possibly a combination of them.
In the case of labeling–based semantics, we will also consider the addition function.

The first (and the simplest) type – the identity casting – basically returns the exten-
sions the way they are, without any further modifications. This of course implies that our
semantics domains are the same, though please note it does not necessarily mean that the
argument domains are the same as well. Although it is normally a safe assumption, there
are exceptions. Not in all frameworks semantics produce answers dependent on arguments
only. For example, AFRA semantics return sets of arguments and attacks. Consequently,
while an AF obtained from an AFRA has a different domain of arguments than the source
framework, the semantics domains is the same and the identity casting function can be
used (see Section 7.1.1).

The removal casting function is used when we have to “filter out” auxiliary elements
showing up in the target extensions or labelings. These elements can be additional argu-
ments, conflicts, and more. For the removal to work, we have to assume that the source
and target semantics domains are related. We believe a subset relation between the two to
be adequate. However, formally defining what “filtering out” means can be a bit tricky. If
we work with extension–based semantics, we simply remove arguments. Therefore, the
casted target extension is in fact a subset of the target set before casting. If we deal with
labelings, we need to remove assignments. Hence, the casted labeling is a subinterpreta-
tions of the target one. Semantics can produce answers of various types and researching
the more complex ones might force us to use additional notions. We will thus introduce a
new operator ⊆· to denote this general containment relation. For extensions and labelings,
it will have the meaning we have just explained. Instead of redefining the casting function
in the future, we can simply extend this operator to handle other types of answers.

The addition casting function is dual to removal and will primarily be used in the con-
text of the labeling–based semantics. On various occasions, a translation can delete certain
arguments from the source framework (see e.g. Section 4.3). Very often the arguments
qualifying for removal are those that would not appear in any extensions, which means
that most of the semantics are not affected by this modification. However, in the labeling–
based semantics, the produced interpretation is defined on all arguments in framework.
Therefore, the casting function has to revert the removal caused by the translation, and
thus the target results need to be “extended back” to the original ones.

Finally, we have the union casting function, which is particularly useful in e.g. coali-
tion translations. In this approach we assume that the target arguments are sets of source
arguments. As a result, the target extensions are now sets of sets of source arguments.
Thus, performing a union of all the elements in the target set gives us the source exten-
sion. Please note that in the case of labelings, the situation is a bit more complicated; a
given source argument can appear in a number of target set arguments, including some be-
ing accepted and some being rejected. Consequently, while the sets of arguments mapped
to in, out and undec in the target are disjoint, the

⋃
in,
⋃
out and

⋃
undec do not have

92



to be. Retrieval of the original labeling becomes more complicated and since the only
labeling related translations we will deal with concerns ADFs, we will come back to this
problem in Section 12.1.5. For now, we will give a simplified definition suitable only in
the extension–based approaches. The main types of casting functions are illustrated in
Example 41.

Definition 3.5. The sub relation ⊆· is defined the following way. For two sets A and B,
A ⊆· B iff A ⊆ B. For two labelings v and v′ on sets A,A′ respectively, where A ⊆ A′,
v ⊆· v′ iff ∀a ∈ A, v(a) = v′(a).

Definition 3.6. Let T, T ′ be two distinct types of abstract argumentation frameworks, Tr
a translation between them, σT and σT ′ two similar semantics on domains UσT and UσT ′

respectively, X an argumentation framework of type T and SCX
σT its semantics casting

function. The function is:

• an identity casting if UσT = UσT ′ and for any E ∈ σT ′
(Tr(X)), SCX

σT (E ) = E .

• a removal casting if UσT ⊆ UσT ′ and for any E ∈ σT ′
(Tr(X)), SCX

σT (E ) ⊆· E .

• an addition casting if UσT ′ ⊆ UσT and for any E ∈ σT ′
(Tr(X)), E ⊆· SCX

σT (E ).

• a union casting if UσT ′ = 2UσT and for any E ∈ σT ′
(Tr(X)), SCX

σT (E ) =
⋃
E .

Please observe that identity can be seen as a special type of a removal and addition
casting. This is by design; just because for a given translation the extension casting func-
tions will be in majority strictly removal (or strictly additions), there will always be some
framework for which filtering out or adding arguments will not be necessary. We will say
that the casting functions for a translation are removals (or additions) if there are some
frameworks for which the functions are not identities.

Example 41. Let us consider a very simple translation from AF to SETAF (Trans-
lation 17). It only involves changing binary attacks to single–element set at-
tacks. The SETAF representation of an AF ({a, b, c}, {(a, b), (b, a), (b, c)}) is
({a, b, c}, {({a}, b), ({b}, a), ({b}, c)}). The admissible extensions of both frameworks
are the same, namely ∅, {a}, {b} and {a, c}. By Theorem 5.2 the extensions will agree
for all AF–produced SETAFs. This is thus a strong translation under admissible semantics
and identity casting.

Let us now consider the same AF as an AFRA (Translation 18). The translated frame-
work is identical its source, we only label the attacks: ({a, b, c}, {r1 = (a, b), r2 =
(b, a), r3 = (b, c)}). The complete extensions of the AF are ∅, {b} and {a, c}. However,
the AFRA ones are ∅, {b, r2, r3} and {a, c, r1}. We can thus observe that our semantics
casting function is a removal and we need to get rid of attacks from the AFRA extensions
in order to retrieve the AF ones.

Let us now consider a simple AFN ({a, b, c, d}, {(c, d), (d, a)}, {({a, b}, c}). In the
coalition translation for AFNs to AFs (Translation 61), for every AFN argument we create
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AF arguments representing its minimal coherent sets. Since a, b and d require no sup-
port, we create the set arguments {a}, {b} and {d} for them. The argument c has two
minimal coherent sets; {a, c} and {b, c}. Finally, any argument containing c will have to
carry out an attack on {d}; similarly for the (d, a) attack. Thus, our corresponding AF
is ({{a}, {b}, {d}, {a, c}, {b, c}}, {({a, c}, {d}), ({b, c}, {d}), ({d}, {a}), ({d}, {a, c}}).
We can observe {a, c} is an admissible extension of our AFN, while the AF produces
{{a, c}} and {{a}, {a, c}} for it. We use union casting to retrieve our original extension.

In our research we will consider one more type of semantics casting function, to which
we will refer as extraction. This type is specific to transformations from ADFs to other
frameworks and will be described in Section 12. The intuition behind it is that the argu-
ments in the target structure contain information relevant for the construction of a frame-
work, but not for its evaluation. Consequently, the data important from the semantics
perspective needs to be extracted from the arguments first and only later analyzed in the
context of the source extensions or labelings.

3.2 Properties of Translations
In this section we will describe the properties of translations. We will distinguish four
main attribute groups – functional, syntactical, semantical and computational. The func-
tional properties concern looking at a translation more as a function, analyzing its do-
main, codomain and the uniqueness of the mappings. The syntactical properties focus on
changes in the structure of the framework during translation. Please note that by this we
understand something more than just “this framework has support, this one does not” or
“this one has group attack, the other only binary”. Our focus is on problems like the change
of argument domain, the loss or gain of arguments and relations, and whether the elements
of the source framework are uniquely represented in the target structure or not. The next
group of properties concerns the semantics of the frameworks, i.e. whether all extensions
can be retrieved or too many/not enough are produced by the target framework, for how
many semantics does the translation “work”, is it exact, faithful and so on. This analysis
will be most important to us. The final group of properties covers the translation difficulty,
the knowledge required to perform the transformation, its computational complexity, mod-
ularity, and difference in size of the source and target framework. Although this group is
important for practical purposes, we will mostly focus on other types of properties.

3.2.1 Functional Properties

Let us start with the functional properties of a translation. First of all, a transformation
can be defined for all the frameworks of a given type, or only for a group of them meeting
certain requirements. There can be various reasons for such limitations, one of them being
that a particular framework subclass can be transformed more easily. The most trivial
example involves a situation when one framework generalizes the other; we can shift an
AF to an AFN easily, while going back from arbitrary AFNs to AFs requires a bit of
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work. However, if we considered only AFNs with the empty support relation, which
basically represent Dung’s frameworks (see Sections 5 and 10.1), then the problem would
be nonexistent. We will thus refer to translations that can handle any framework of a given
type as full, and to ones that can not, as partial or source–subclass. In contrast, we can
now ask ourselves whether the translation can produce any framework of the target type,
or will they all belong to a particular subclass. Again, to give the most basic example,
an AF translated to a SETAF (see Section 5) will not need to use sets of attacks of size
bigger than 1. Should it be possible to obtain any target framework, then the translation
will be basically a surjection. In any other case, we will refer to it as the target–subclass.
Since the subclass descriptions, both source and target, depend on the frameworks we are
dealing with, we will not define any abstract properties they might have here and refer the
reader to the appropriate sections.

Although already the target–subclass property can tell us a bit about the relative
strength of the frameworks, another interesting question concerns whether it is possible to
obtain the same target framework with more than one source structure. A positive answer
can point to loss of some data contained in the initial structure. Moreover, in this case we
would also like to know if there is any particular relation between the source frameworks
that would allow us to pinpoint the cause for this similarity. We will refer to translations in
which a target framework can be obtained only from a single source structure as injective.
Otherwise, we will say that the translation is overlapping. This brings us to the following
definition:

Definition 3.7. Let T, T ′ be two distinct types of abstract argumentation frameworks and
FrT , F rT

′ the collections of all frameworks of type T and T ′. A framework translation
Tr : DT → DT ′ , where DT ⊆ FrT and DT ′ ⊆ FrT

′ , is:

• full if DT = FrT .

• partial or source–subclass if DT ⊆ FrT .

• surjective if DT ′
= FrT

′ .

• target–subclass if DT ′ ⊆ FrT
′ .

• injective if for all X,X ′ ∈ DT , if Tr(X) = Tr(X ′) then X = X ′.

• overlapping if there exists X,X ′ ∈ DT s.t. X 6= X ′ and Tr(X) = Tr(X ′).

3.2.2 Syntactical Properties

This group of properties concerns the syntactical changes the source undergoes during the
transformation to the target framework. First of all, the type of arguments in the target
framework might not be the same as in the original one. Moreover, even if they are, we
might want to have access to additional arguments s.t. we know they cannot appear in the
source domain. Due to the fact that the structure of arguments is in no way stored by an
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abstract argumentation framework, it is important to note on the domain change, since it
implies we need to additionally store the change somewhere. Typically, frameworks with
support are translated into AFs by the use of coalitions, i.e. the arguments in a resulting AF
correspond to sets of arguments of the source structure. Although their content is related to
the elements in the initial framework, each source argument can be represented by multiple
ones in the target structure. Similarly, certain arguments may not be represented at all,
for example arguments not possessing coherent sets will not appear in any AF argument
translated from an AFN (see Translation 61). Independently of the argument types, there
might also be a need for additional arguments, possibly not related to the source ones, even
if they do have some meaning attached. Similar analysis can be done in case of relations,
however, it is difficult to give any concrete definitions without taking into account the
frameworks in question. Consequently, the provided definitions will not be very precise at
this point, but more details will be given when dealing with particular translations.

Definition 3.8. Let T, T ′ be two distinct types of abstract argumentation frameworks, DT ,
DT ′ collections of the frameworks of the respective types and UT , UT ′ their argument
domains. A framework translation Tr : DT → DT ′ is:

• argument domain preserving if UT = UT ′ .

• argument domain altering if UT 6= UT ′ .

• weakly domain altering if UT ⊆ UT ′ or UT ⊇ UT ′ and elements in UT and UT ′

are of the same type.

• argument introducing if not every argument in the framework Tr(X) represents
an argument from a framework X ∈ DT or arguments in X can be represented by
more than one argument in Tr(X).

• argument removing if there is an argument in a framework X ∈ DT that is not
represented by any argument in the framework Tr(X).

• relation introducing if not every relation of a given type occurring between given
arguments in the framework Tr(X) represents a relation in framework X ∈ DT or
relation in X can be represented by more than one relation in Tr(X).

• relation removing if not every relation of a given type occurring between given
arguments in a framework X ∈ DT is represented by a relation in the framework
Tr(X).

• induced relation removing if a relation is removed only if one of its arguments is
removed.

• induced relation adding if it is argument introducing an a relation is added only if
one of its arguments is also an added one.
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• structure preserving if no elements are removed or added during the translation.

Whenever a translation is removing some elements, we will just refer to it as lossy.
Please note that while preserving and altering a domain are mutually exclusive properties,
it is not necessarily the case with removal and introduction of arguments and relations.
One can remove arguments or relations that are e.g. not valid due to support cycles, but
still introduce auxiliary elements later in order to be able to translate the framework into
a different one. For example, translating an ADF into an AF w.r.t. the cc–family of se-
mantics (see Translation 85) introduces auxiliary arguments due to support cycles, but also
arguments not possessing standard evaluations (i.e. falsum arguments and ones building
up on them) do not appear in the target framework.

Finally, please note that our list is by no means exhaustive. In [42] properties such
as covering, embedding and monotonicity were introduced. Covering and embedding are
related to how removing and introducing argument elements works. However, since they
were defined with AFs as source and target frameworks, their definitions are not easily
shifted into our setting and thus we believe that the current notions are sufficient for our
purposes. Although monotonicity of a translation is an interesting notion, its study will be
left for future work.

3.2.3 Semantical Properties

The point of semantical properties is to describe how the semantics behave between the
target and source framework. Therefore, they depend not only on the translation itself, but
also on the semantics casting function we decide to use along with it. This means that a
single translation, when associated two different casting functions, may exhibit different
semantical properties. Additionally, we can observe that this group of attributes cannot be
clearly separated from syntactical properties, since the structure of the framework clearly
affects the extensions it produces. The answer to the question of how we need to manipu-
late the extensions of the target framework to retrieve the ones from the source framework
depends on how the target framework looks like, particularly compared to the initial one. A
change in the arguments domain and using auxiliary elements can have a major impact on
the extensions. Nevertheless, there are a number of properties that can be clearly separated
from the syntactical ones.

The first of the semantical properties we will take into account is whether a given
translation and its semantics casting functions are specialized to work (i.e. be strong) for
a particular semantics, or whether they can be more general and hold for a number of
them. For example, in order to retrieve SETAF extension from an EAS, we only need to
remove the evidence argument from the produced sets. Such a translation works for all
the usual semantics (see Section 6.4). If we transform an AFN into an AF (see Section
10.1), we have one easy translation aimed at conflict–freeness and another, somewhat
more complicated and expensive, preserving a number of semantics. Thus, in our work,
we will distinguish between specialized and generic translations, and focus on the latter.
However, please note that the definition of these properties will not be very formal. From
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the technical side, the extension casting functions defined for e.g. the admissible and
complete semantics in the SETAF–EAS example would be different due to the change
of domains and codomains caused by the change of semantics. However, it is easy to
see that they follow the same principle (removal of evidence) and since every complete
extension is admissible for both frameworks, the complete semantics casting functions
would be “contained” in the admissible ones. Thus, by saying that a translation is generic,
we will assume that the casting functions associated to the semantics follow the same
principles. Finally, we will set the border between the specialized and generic approach
at two, i.e. translations handling two or less semantics will be qualified as specialized,
while three or more as generic. This choice is more a matter of taste and observation
rather than an established rule. Our translations emerge from analyzing the differences
between the target and source frameworks and the design choices behind their semantics,
not by having a single given semantics in mind. Thus, even if they can be sometimes
complicated, in general they work for at least three major semantics, namely complete,
preferred and grounded (usually also stability is included). Consequently, this is where we
decided to set the border.

Another property concerns the semantics domains, which can agree or be different
independently of the arguments domains. For example, one can use different source and
target semantics families, such as extension–based on one side and labeling–based on the
other. Thus, the semantics domains can differ even if the argument ones do not. Although
in our approach we will use the same source and target semantics classes, special cases can
be found even under this restriction. While in general it does hold that a different semantics
domain implies a different argument domain if we stay within the same semantics class,
the AFRA framework is an exception to this rule. In AFRA, the extensions contain both
arguments and attacks, not just arguments. When translated into AFs, the attacks form
new arguments and thus the corresponding AF will have a semantics domain the same
with AFRA, but a different argument one (see Section 7.1). Therefore, the change in the
semantics domain needs to be distinguished from the change in the argument domain.

The strength of a translation and the nature of the semantics casting functions can
also be seen as semantical properties. The strength tells us if all extensions (or any other
answers), too many or not enough are produced by the target framework, while the use of
a particular casting function can tell us whether e.g. there are auxiliary arguments showing
up in the extensions. Please note that the fact that the framework itself can use auxiliary
arguments does not imply that the casting function will be a removal. For example, if the
auxiliary arguments are just self–attackers, they will never show up in the extensions (see
Section 12.1.3 for an example). Consequently, just like in the case of semantics domain,
this question is separate from the syntactical counterpart.

Although the properties mentioned above are interesting and should not be neglected,
one of the most important semantical properties concerns faithfulness and exactness of
the translation. Faithfulness, along with modularity and polynomiality, is one of the most
studied properties of translations and appears also in research on intertranslatability of var-
ious nonmonotonic reasoning formalisms, including default logic, autoepistemic logic and
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more [52, 57, 58]. As a consequence, there is also no single definition of faithfulness. The
notion is often overloaded or specialized for a given formalism, giving rise to formulations
that are not always equivalent:

Faithful translations can be defined in two ways, which are equivalent when
new variables are not allowed. In particular, a translation is faithful if each
theory T1 is translated into a theory T2 such that either:

1. between the extensions of T1 and the extensions of T2 there is a bijection
such that the associated extensions of T1 and T2 are equivalent, or

2. for every extension of T1 there exists an equivalent extension of T2 and
vice versa.

These two definitions can be adapted to the case in which new variables are
allowed by replacing “equivalence” with “var–equivalence”. However, they
no longer coincide. Indeed, the second definition allows a single extension of
T1 to be associated to several extensions of T2. ( [58])

By combining the two approaches with various notions of equivalence, we can obtain
a number of definitions of faithfulness. In what follows we will use two of them and
show that what we understand as faithfulness recreates the research done on intertrans-
latability of semantics [42]. In this approach, a translation in which both the source and
target extensions were precisely the same was called exact, while a bijective one where
we could retrieve the source extensions by removing auxiliary arguments from target ones
was referred to as faithful.

We may notice that first and foremost a faithful translation has to be strong – we can
obtain every desired source extension and there are no unrelated target ones produced.
Further restrictions that we can add concern the semantics domain, argument domain and
the semantics casting function. In [57], faithfulness requires that the extensions of the
initial theory, which is based on some language L, and the extensions of the translated one
coincide up to L. This means that even if the used language extends L or we have some
auxiliary elements showing up, the extensions can be projected w.r.t. L. However, since
we are working with abstract argumentation, no actual content of the arguments is stored
by the framework and thus it is difficult to speak about faithfulness without assuming that
the argument domains are similar between the source and the target frameworks. Any
domain projection would require us to have the access to some auxiliary data structure in
which contents of arguments are stored, and allowing such access for projection purposes
would go against the meaning of faithful translations. As the semantics domain depends
on (at least) the argument domain, we will have sufficient means to compare the extensions
between our structures and no further assumptions need to be done for now.

Let us now analyze the issue of equivalence. What the semantics produce can be equiv-
alent in a number of ways, without even going into auxiliary arguments. For example, we
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can work with the complete extensions on one framework and assume the complete label-
ings on the other. Even though this would be a one–to–one relation in case of e.g. AFs, we
cannot put a simple “=” between the two approaches. However, since in this work we are
not interested in mixing extension–based and labeling–based semantics, we will provide
our definitions under the assumption that the source and target semantics belong to the
same class. This means that for “pure” equivalence we can simply use the identity exten-
sion casting function, which basically brings us to the definition of exact translations [42].
If we allow auxiliary variables, we can use removal casting in the definition. The bijective
relation between the extensions can be handled by requiring the semantics casting func-
tions to be bijective. By joining removal and bijection, we obtain the faithful translations
as defined in [42].

Definition 3.9. Let T, T ′ be two distinct types of abstract argumentation frameworks,
DT , DT ′ collections of the frameworks of the respective types and UT , UT ′ their ar-
gument domains. Let σT and σT ′ be two similar semantics on domains UσT and UσT ′ ,
Tr : DT → DT ′ a framework translation and SC Tr

σT the semantics casting functions for
Tr and semantics σT . We say that Tr is:

• generic if the translation and the semantics casting functions can be applied to three
or more semantics in a strong manner.

• specialized if the translation and the semantics casting functions can be applied to
two or less semantics in a strong manner.

• semantics domain preserving for σT if UσT = UσT ′ .

• weakly semantics domain altering for σT if UσT ⊆ UσT ′ or UσT ⊇ UσT ′ and
elements in UσT and UσT ′ are of the same type.

• semantics domain altering for σT if UσT 6= UσT ′ .

• semantics bijective under (σT , SC Tr
σT ) iff it is strong under (σT , SC Tr

σT ) and every
semantics casting function in SC Tr

σT is bijective.

• faithful under (σT , SC Tr
σT ) iff it is semantics bijective and the semantics casting

functions are removals or additions.

• exact under (σT , SC Tr
σT ) iff it is semantics bijective and the semantics casting func-

tions are identities.

Please note that [42] also introduces the weak versions of exactness and faithfulness. In
this approach for a given translation there is a certain predefined collection of extensions
referred to as the remainder sets. Such sets are always removed from the collection of
extensions a given semantics produces for a framework and whatever is left has to conform
to the normal exact and faithful definitions. Clearly, this manipulation can no longer be
handled by the singular semantics casting functions and qualifies for collective approach.
Therefore, we will not focus on these properties further.
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3.2.4 Computational Properties

Last, but not least, we have the group of properties concerning how difficult and expen-
sive to actually compute the translation for a given framework. Although this group is
important from the practical perspective, many properties here will be only sketched and
analyzing the complexity of translations will be left mostly for future work.

We have already mentioned that the faithfulness, modularity and polynomiality are
among the most studied properties of translations. While the first one qualified as a se-
mantical property, the other two fall into complexity category. Modularity [55] tells us
whether the target framework can be obtained by joining separately translated parts of the
source framework. While normally this property allows more efficient translation of a
framework that had to undergo some update (i.e. addition of new elements), it also gives
us the opportunity to create parallel algorithms for a given translation. In case of AFs, we
“joined” the frameworks back together through the union of their corresponding parts, e.g.
two AFs (A1, R1) and (A2, R2) would produce (A1 ∪ A2, R1 ∪ R2). However, when we
move to the structures permitting group relations, this is clearly not the only way we can
proceed. Consider two AFNs ({a, b, c}, ∅, {({a}, c)}) and ({a, b, c}, ∅, {({b}, c)}). They
can be the parts of a framework ({a, b, c}, ∅, {({a}, c), ({b}, c)}) if we follow the union–
based approach. The support given to c is read as “both a and b need to be present to
accept a”. Nevertheless, the result ({a, b, c}, ∅, {({a, b}, c)}) also makes a lot of sense. In
this case, either a or b needs to be present to assume c, and splitting this framework into
our two initial ones can be used in analyzing powerful sequences for c. Consequently, a
given argumentation framework can be separated and put back together in various ways.
In our work we will focus on the union–based modularity that we described in the very
beginning. For most of the argumentation frameworks, the union of two structures will be
just the framework obtained by joining their respective elements. However, since ADFs
use acceptance conditions, not separate sets of relations, we need to describe how two
conditions can be made into one. The problem has been previously studied in [49] and
two operators have been proposed, one that can be seen as “conjunctive” and the other as
“disjunctive”.

Definition 3.10. Let D1 = (A1, L1, C1) and D2 = (A2, L2, C2) be two propositional
ADFs, i.e. C1 = {ϕa1}a∈A1 and C2 = {ϕa2}a∈A2 , where ϕai is a propositional formula over
a subset of Ai. Let A = A1 ∪A2 and L = L1 ∪L2. We define D1⊗D2 = (A,L,C⊗) and
D1 ⊕D2 = (A,L,C⊕), where:

C⊗ = {C1 ⊗s C2}s∈A and C1 ⊗s C2 =


ϕ1
s ∧ ϕ2

s if s ∈ A1 ∩ A2

ϕ1
s if s ∈ A1 \ A2

ϕ2
s otherwise

C⊕ = {C1 ⊕s C2}s∈A and C1 ⊕s C2 =


ϕ1
s ∨ ϕ2

s if s ∈ A1 ∩ A2

ϕ1
s if s ∈ A1 \ A2

ϕ2
s otherwise

We can observe that if A1 ∩ A2 = ∅, then D1 ⊗D2 = D1 ⊕D2. Which operator will

101



be used will depend on the translation in question.

Definition 3.11. Let D1 = (A1, L1, C1) and D2 = (A2, L2, C2) be two functional ADFs,
i.e. C1 = {Ca

1}a∈A1 and C2 = {Ca
2}a∈A2 , where Ca

i is a total function from the sets of
parents of a in framework Di to {in, out}. Let A = A1 ∪ A2 and L = L1 ∪ L2. The joint
parent set jpar(s) of an argument s ∈ A is defined as:

jpar(s) =


par1(s) ∪ par2(s) if s ∈ A1 ∩ A2

par1(s) if s ∈ A1 \ A2

par2(s) otherwise

We defineD1⊗D2 = (A,L,C⊗) andD1⊕D2 = (A,L,C⊕), whereC⊗ = {C1⊗sC2}s∈A,
C⊕ = {C1 ⊕s C2}s∈A and for a given subset of joint parents X ⊆ jpar(s), the condition
C1 ⊗s C2 ( C1 ⊗s C2 respectively) is defined as:

C1⊗sC2(X) =


in if Ci

s(X ∩ pari(s)) = in for all i ∈ {1, 2} and s ∈ A1 ∩ A2

out if Ci
s(X ∩ pari(s)) = out for any i ∈ {1, 2} and s ∈ A1 ∩ A2

C1
s (X) if s ∈ A1 \ A2

C2
s (X) otherwise

C1 ⊕s C2(X) =


out if Ci

s(X ∩ pari(s)) = out for all i ∈ {1, 2} and s ∈ A1 ∩ A2

in if Ci
s(X ∩ pari(s)) = in for any i ∈ {1, 2} and s ∈ A1 ∩ A2

C1
s (X) if s ∈ A1 \ A2

C2
s (X) otherwise

Polynomiality can stand for two things; running time of the translation or the size of the
produced framework12. To distinguish between the two, following [57] we will refer to the
other property as polysize. Although the size of the framework is usually understood as the
number of arguments, please note that in certain cases this will not be an adequate view.
This is particularly visible in the translations from frameworks with support to SETAFs
(see Sections 10.2 and 11.2). While the increase in the number of arguments is at worst
linear, the amount of created group attacks can be overwhelming. For example, if we did
not assume minimality in the defender translation from AFN to SETAF (Translation 65),
the amount of added group attacks form the coherent would be bounded by 2n with n
being the number of source arguments. While assuming minimality reduces this number
(it is no more than

(
n
bn/2c

)
by Sperner’s theorem), it naturally increases the running time

of the translation. As the number of attacks in the Dung’s framework is at most quadratic
w.r.t. the number of arguments, it is not really necessary to differentiate between the
polysize increase of attacks and the polysize increase of arguments. A SETAF in which
every (nonempty) set of arguments attacks every argument has (2n−1)∗n attacks and the
need to distinguish between the two elements is more apparent. Consequently, on certain

12Please note that [42] also introduces efficient translations which run in logarithmic time.
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occasions it needs to be stated with respect to what the polysize property does or does not
hold.

Finally, we will analyze what does the translation actually need in order to proceed: is
it just the structure of the framework that is required, or do we need to take into account
some semantical aspects? Answering this question is of practical value, particularly if we
use translations in order to reuse the solver of the target structure for working with the
source one. In the first case we just need to program a way to take framework as an input,
basically a parsing method. Otherwise, we might need to do some pre–solving of the
structure, which can require some effort. Please note that the border between structural
and semantical properties is not very clear. For example, shifting an AF (A,R) into an
AFN (Translation 21) requires only the addition of an empty support relation N = ∅.
The produced triple (A,R,N) is a fully functioning AFN that can be used to produce AF
extensions. This is clearly a purely “structural” translation. When we transform a SETAF
into an AF, then a set of arguments that carries out some attack ends up added as a new
argument in the resulting AF (Translation 25). This still is a structural approach. Let
us now assume we want to translate a support framework such as BAF into an AF [30].
The AF arguments are sets of source arguments just like in the SETAF–AF translation;
however, while in SETAF they represented groups that carried out attacks, in this case
they correspond to groups that are connected by support. Now we are not so certain
anymore whether this can really count as a structural approach. To create the support sets
we only “scan” through the relation, but the required analysis puts it closer to e.g. conflict–
free semantics rather than just adding the attack sets already defined in the framework.
Thus, this is more of a “semi–structural” approach. Finally, let us now assume that the
support framework in question is actually an AFN or EAS (see Translations 61 and 71).
In this case the we cannot create arguments from just arbitrary support sets. We need
to make sure that the support connections are valid, i.e. if they are acyclic or rooted
in evidence. This basically brings us to creating coherent or self–supporting sets. This is
now clearly a “semantical” translation and requires knowledge about semantical notions in
the framework, such as what sort of support is valid, in order to proceed. However, please
note that what we understand by a semantical translation is not as extreme as in [40],
where the extensions of a given semantics, such as grounded, need to be computed for
the transformation. In our approach, the semantical aspects rarely go beyond validity of
framework components (i.e. sequences and acyclic evaluations) and indirect conflicts.
Thus, we still stay in the “lower class” of semantical transformations.

Definition 3.12. Let T, T ′ be two distinct types of abstract argumentation frameworks,
DT , DT ′ collections of the frameworks of the respective types and Tr : DT → DT ′ a
framework translation. By fs we will understand the type of framework size. We say that
Tr is:

• modular if T, T ′ 6= ADF and for every X,X ′ ∈ DT s.t. X ∪ X ′ ∈ DT , it holds
that Tr(X) ∪ Tr(X ′) = Tr(X ∪X ′).

• δ–modular, where δ ∈ {⊗,⊕}, if:
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– T 6= ADF , T ′ = ADF , and for every X,X ′ ∈ DT s.t. X ∪X ′ ∈ DT , it holds
that Tr(X) δ Tr(X ′) = Tr(X ∪X ′), or

– T, T ′ = ADF , and for every X,X ′ ∈ DT s.t. X δX ′ ∈ DT , it holds that
Tr(X) δ Tr(X ′) = Tr(X δX ′), or

– T = ADF , T ′ 6= ADF , and for every X,X ′ ∈ DT s.t. X δX ′ ∈ DT , it holds
that Tr(X) ∪ Tr(X ′) = Tr(X δX ′).

• polynomial (polytime) w.r.t. fs if the running time of Tr is polynomial w.r.t. fs
size of the frameworks.

• polysize w.r.t. fs if for every X ∈ DT , the fs size of Tr(X) is polynomially large
w.r.t. the fs size of X .

• semantical if translating the framework strongly depends on the semantical notions
of the source framework or target framework.

• structural if translating the framework does not depend on any semantical notions
of the source or target framework.

• semi–structural if translating the framework can depend on or be similar to certain
weak semantical notions of the source or target framework.

Please note that when necessary, we might introduce more specialized notions of mod-
ularity. Nevertheless, they will still follow the idea of splitting and composing the frame-
works under a translation. We also stress the fact that we speak in terms of modularity
only w.r.t. those framework for which their union is still in the assumed framework do-
main. This will be particularly important in the case of source–subclass translations.

3.3 Classification of Translations
In the previous section we have described various properties that a translation can have.
However, we have not said much about the methods for creating translations. The transla-
tions in this work are not created at random; they follow certain concepts and ideas which
have resulted from the current approaches in the field and the analysis of the framework
types in question. In this section we will distinguish four main types of translations - ba-
sic, coalition, attack propagation and defender, though please note that they of course do
not account for all possible approaches. The separation is also rough at best; we will later
observe that there are translations that can be assigned more than one type.

The basic approach will concern the simple transformations, which are quite often just
generalizations and concern moving between comparable or from less to more structurally
complicated frameworks. On average they do not require auxiliary arguments and do not
change the domains. For example, in order to transform an AF into an AFN, we only need
to include the empty set for the support relation (see Translation 21). These are also the
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most desirable approaches from the practical point of view, since they will be in general
structural, computationally cheap and at least faithful.

The coalition, attack propagation and defender approaches are somewhat opposite to
basic and are used when the target structure cannot represent certain elements of the source
one. In the coalition case, we assume a particular structure of the arguments in the target
framework (very often just the sets of source arguments) and the “not handled” elements
are hidden away in these arguments. For example, AFs do not have a support relation in
their structure. Therefore, when transforming an EAS, we create self–supporting sets and
feed them to a Dung’s framework as arguments, thus hiding the evidential support from the
target structure (see Translation 71). The same is done to the group attack present in EASs.
The coalition approach is close to meta–level argumentation [64] and has the problem
of assuming that the arguments we are dealing with possess some structure. Since, by
principle, no abstract argumentation framework stores such data, one has to bear in mind
that it is necessary to remember such content in some auxiliary structure. Please note that
although the approach is named after the research in [28,29], our coalition construction is
more relaxed and closer to [30, 69, 73] rather than the original.

In the attack propagation and defender methods, instead of hiding problematic rela-
tions, we try to transform them into something that the target framework can handle. For
example, in the first case, we simulate the effect of support by combinations of attacks
(e.g. in Translation 73), while in the other we turn a supporter of an argument into its
defender from an auxiliary attacker (see Translation 75). The attack propagation idea has
been taken from [30], though as we will see in Sections 10.2 and 11.2, the original research
had certain technical deficiencies and did not take into account the various design choices
of the frameworks in question, in particular the problem of handling the support cycles.
The defender method was inspired by the discussion regarding the difference between sup-
port and defense done in [28], though recently it has separately appeared in [31]. Although
we still believe that there are types of support which cannot be handled by defense, in this
work we will show that with the use of auxiliary arguments, the necessary and evidential
types are not among them.

What is also worth mentioning is that although this classification was created with
translations from and to framework with support in mind, similar behaviors can be found
in conversions between attack–based structures. Semantics of e.g. AFRAs take not only
direct, but also indirect defeats into account. Consequently, this conflict needs to be prop-
agated when we attempt to transform AFRA into an AF (see Section 7.1). Similarly, the
flattening translations, though performed only for attack–based frameworks [18, 64], turn
out to follow a similar principle as the defender method. The types of conflicts that cannot
be handled by the target framework are changed into arguments, which are later defended
by the arguments carrying them out. Therefore, we will classify those two approach as
one.

The most important thing to note about the defender and propagation approaches, when
used in bipolar frameworks, is the fact that we assume that the acceptability of an argument
depends on the presence of its supporters. Since not all types of support have this property,
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one has to make this assumption explicit. When an argument cannot be accepted without
the sufficient support, the so–called “cutting off the support” qualifies as an attack suitable
for defense. This means that we can defeat an argument not just by directly attacking
it, but also by attacking its supporters – since without them the argument will not be
accepted, defeating supporters leads to defeating the argument in an indirect manner. What
attack propagation does is adding such indirect attacks to direct ones; the consequences of
support are then simulated by attacks and it can be safely removed from the framework.
The downside of this approach is that it detaches supporters from supported arguments
and as a side effect, this method is best used for semantics that are at least complete.

While the attack propagation focuses on the “if supporters are not accepted, the ar-
gument is not accepted” aspect of the necessary and evidential supports, the defender
approach is a slightly more positive approach. What ties arguments together in any type
of argumentation is defense; an argument needs it defenders to be present in an admissible
extension. Since we have the assumption that it also needs its supporters, transforming
support into defense is a natural idea. In the defender approach, we introduce additional
attackers claiming that the given arguments are unsupported; they are then in turn attacked
by the supporters and thus defense simulates the desired behavior. While the method
can be used for semantics that are at least admissible, it does introduce new arguments
into the framework. Please note that in a certain sense, the defender approach borders
meta–argumentation. Although we do not really “store” the meaning of the auxiliary ar-
guments and we do not need it to retrieve the desired extensions unlike in e.g. the coalition
approach, what they do is make statements about the support status of other arguments.
Without being aware of this, the method behind the translation would be harder to under-
stand.

What has to be clearly stated is that in the coalition, attack propagation and defender
approaches the validity of support links makes a huge difference. For example, in nec-
essary and evidential cases, self–supporters are not valid arguments and they will not be
represented by any coalition. Since the attacks carried out by them are ignored, or depend-
ing on how we want to view it, automatically defended from, we need to flush them out
from the attack propagation approach. Although we can leave them just as arguments that
will never be defended from the auxiliary attackers, a given argument has to be defended
not only by direct, but also indirect supporters – basically speaking, the whole evidential
or powerful sequence. This stems from the fact that not every “support path” is valid and if
we are not careful, we might end up transforming a support cycle into self–defense. While
the AFN, EAS and ADF semantics would handle the cycles, self–defense is not an issue in
majority of the semantics in any framework. Consequently, unlike in the basic translation,
these approaches will be semantical and relatively expensive in frameworks with support.
We close the section with charts showing where given translations types occur and refer
the reader to the provided sections for further details and examples. Please note that by the
notion of a chained translation we will understand a translation between two frameworks
that uses another framework as an intermediate step.
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Table 5: Translation Classification

A
F

SE
TA

F

A
FR

A

E
A

F

E
A

FC

B
A

F

A
FN

E
A

S

A
D

F

AF - Bas Bas Bas Ch Bas Bas Bas Bas

SETAF
Bas- Cl ,
Bas-Def

- Ch Ch Ch Ch Bas-Cl Bas Bas

AFRA
Bas-AP ,
Bas-Def

Ch - Ch Ch Bas Bas Ch Ch

EAF Bas-Def Bas Bas - Bas Ch Bas Ch Bas

EAFC Bas-Def Bas Ch
Bas-
Def

- Ch Bas Ch Bas

BAF

Bas-AP ,
Bas-AP -
Def
Bas-Cl

Ch Ch Ch Ch - Bas Bas Ch

AFN Cl , Bas
AP ,
Def

Ch Ch Ch Bas - Bas Bas

EAS Cl
AP ,
Def ,
Cl

Ch Ch Ch Bas
Bas ,

Bas-Cl
- Bas

ADF
Cl ,
Cl -Def

Cl -
Def ,
AP

Ch Ch Ch Ch ? ? -

Legend: Bas- basic translation, Cl - coalition translation, AP– attack propagation transla-
tion, Def - defender translation, Ch- chained translation, ? - unclassified translation

4 Framework Normal Forms & Subclasses
When analyzing argumentation frameworks, one can sometimes identify their subclasses
which have some desirable properties, such as agreement of semantics or lower com-
putational complexity. The majority of this research concerns the Dung’s framework
[10, 11, 34, 36], though certain subclasses have also been identified for EAFs (see Section
2.1.4) and for ADFs (Sections 2.3 and 2.3.8). However, the normal forms of a framework
are something more than subclasses. Again, their purpose is to have frameworks exhibiting
properties desirable from the point of view of e.g. computational complexity or seman-

107



Table 6: Translation Chart of Argumentation Frameworks

A
F

SE
TA

F

A
FR

A

E
A

F

E
A

FC

B
A

F

A
FN

E
A

S

A
D

F

A
F x 17 18 19

Sec.
5.3

20 21 22 23

SE
TA

F 25, 26,
27

x Sec. 6.6 Sec.
6.2

29 30 31

A
FR

A 32, 33
Sec.
7.6

x Sec. 7.2 34 35
Sec.
7.6

Sec.
7.5

E
A

F 38 40 42 x 36
Sec.
8.7

43,
44

Sec.
8.7

47,
48

E
A

FC 39 41
Sec.
8.4

37 x
Sec.
8.7

45,
46

Sec.
8.7

49,
50

B
A

F

51,52,
53, 54,
55, 57,

58

Sec. 9.5 x 59 60
Sec.
9.4

A
FN

61, 62
63,
65,
66

Sec.
10.7

Sec. 10.3 67 x 68
69,
70

E
A

S 71

72,
73,
75,
76

Sec. 11.6 77 78,79 x
80,
81

A
D

F 82, 83,
85, 86

87,
88

Sec. 12.4 89
Sec.
12.4

x

tics. Consequently, the collections of normal forms of frameworks can form subclasses
of their own. The difference lies in the fact that while a given framework can belong to
a subclass or not, a normal form is something we can transform the structure into. We
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create a new framework which might look differently, but is in a sense equivalent to the
initial one – in a similar manner one generates conjunctive or disjunctive normal forms of
propositional formulas. To the best of our knowledge, only the work in [35] also studies
the normal forms of frameworks, though only in the context of AFs. Moreover, the results
are relevant for computational and not translation purposes.

In what follows we will discuss minimal, consistent, and various validity normal forms
(or subclasses, when applicable). Moreover, we will also introduce the cleansed form for
ADFs. Please note that although we follow the “to the subclass you belong, to normal form
you transform” distinction, in some cases we will not provide a translation to a normal
form. Depending on whether we believe that such a translation exists, certain notions we
might count as normal forms and certain as subclasses. In such ambiguous cases we allow
the reader to refer to them or reclassify them as he or she pleases.

In principle, we have normal forms that add (replace) or remove certain elements in
order to simplify the framework structure or computation of the semantics. While replace-
ment can create a structure that does not exactly qualify as “bigger” or “smaller” than the
original, removal produces a so–called subframework:

Definition 4.1. Let F = (A,R) be a Dung’s framework. We say that GF = (A′, R′) is a
subframework of F , denoted GF v F , if A′ ⊆ A and R′ ⊆ R ∩ (A′ × A′). GF is a full
subframework induced by A′ ⊆ A if R′ = R ∩ (A′ × A′).

The notion of a (full) subframework can naturally be extended to other argumentation
frameworks. We can observe that if we are dealing with group relations, then following
this definition, only those relations that are carried out by sets fully contained in the new
argument set may carry over to the subframework. However, in the case of support in
AFNs, another way of obtaining N ′ can be considered more intuitive. Given that c is
supported by the set {a, b}, which is read as “a or b needs to be accepted in order to assume
c”, a subframework not containing b would completely remove this support. However, one
would rather expect the support to be trimmed down to “a is necessary for c”. This brings
us to the notion of the trimmed subframework:

Definition 4.2. Let FN = (A,R,N) be an AFN. We say that GFN = (A′, R′, N ′) is a

trimmed subframework of FN , denoted GFN

T

v FN , if A′ ⊆ A, R′ ⊆ R ∩ (A′ × A′),
and N ′ ⊆ {(C ′, a) | a ∈ A′, C ′ 6= ∅, ∃(C, a) ∈ N ∧C ′ ⊆ C ∩A′}. GFN is a full trimmed
subframework induced by A′ ⊆ A if R′ = R ∩ (A′ × A′) and N ′ = {(C ′, a) | a ∈
A′, C ′ 6= ∅,∃(C, a) ∈ N ∧ C ′ = C ∩ A′}.

The subframework notion is related to the notion of a reduct in ADFs. Let us recall the
original definition from Section 2.3.4:

Definition 2.135. Let D = (A,L,C) be an ADF and E ⊆ A a set of arguments. A reduct
of D w.r.t. E is a framework DE = (E , LE , CE ), where LE = L∩ (E ×E ) and for e ∈ E
we set CE

e = ϕe[b/f : b /∈ E ].
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Please note that this definition uses the propositional representation of ADFs. Thus,
we will also define an equivalent, functional version (see Definition 2.113 of ADFs):

Definition 4.3. Let D = (A,L,C) be an ADF and E ⊆ A a set of arguments. The reduct
ofD w.r.t. E is a frameworkDE = (E , LE , CE ), where LE = L∩(E×E ) and for e ∈ E ,
CE
e = Ce ∩ (2E × {in, out}).

In other words, we just remove those mappings which contain arguments from A \
E from a given acceptance condition. Thus, one can see an ADF subframework as a
framework containing some of the arguments and a subset of the assignments of a given
acceptance condition s.t. the subset is still the powerset of the arguments appearing in the
new condition.

It is easy to see that in many ways, the notion of a subframework is a broad one, and not
all subframeworks of a given framework are interesting for our purposes. By restricting
this concept, we will obtain most of our normal forms, such as minimal, weakly valid,
relation valid and cleansed. Let us now start with the first one.

4.1 Minimal and Redundancy–Free Forms
The minimal normal form of a framework is relevant to SETAFs, EAFCs, AFNs and EASs
– basically speaking, any frameworks that permit group relations. Similar in its purpose
is the redundancy–free form for ADFs. When faced with non binary relations, in certain
situations we can view some information as excessive. For example, when we know that
arguments a and b jointly attack c, the group attack from {a, b, d} on c is, in this case,
not relevant from the point of view of the standard semantics – defending from the first
would imply defense from the latter. In some cases, removing such redundancies might
even be necessary [48]. In what follows we will define the minimal normal form for the
listed frameworks, show that they in fact preserve the behavior of the semantics, and put
them into our translation system.

Please note that what we will describe is only one of the ways minimality can be un-
derstood. Our approach is purely structural based and “local”, i.e. imposes minimality on
the incoming relations. However, one can also consider imposing minimality on support
paths. Consider an AFN ({a, b, c}, ∅, {({a}, b), ({a}, c), ({b}, c)}), in which a supports b,
and c requires both a and b to hold. However, we can observe that removing the ({a}, c)
support from the framework would not change much – after all, a will always be present
in an extension containing c due to the relation of both arguments to b. Thus, in case one
argument supports both directly and indirectly another argument, we can decide to remove
the first one. Nevertheless, for now we will consider only the local minimality and leave
this approach for our future work.

4.1.1 SETAF Minimal Form

We will start with the minimal normal form of SETAFs. Basically speaking, we remove
non–minimal attacks from the framework. We can observe that this type of a structural
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change does not affect the semantics:

Definition 4.4. Let SF = (A,R) be a SETAF. The subframework SFmin = (A,R′) is

the minimal form of SF , denoted SFmin
min

v SF , iff R′ ⊆ R consists of all and only
elements (T, a) in R s.t. @T ′ ⊂ T, (T ′, a) ∈ R.

Theorem 4.5. Let SF = (A,R) be a SETAF and SFmin = (A,R′) its minimal form. A
set of arguments E ⊆ A is a σ–extension of SF , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, iff it is a σ–extension of SFmin.

By putting the normal form transformation into our system, we obtain the following
notions:

Translation 1. Let FrSETAF be the collection of all SETAFs and MinSETAF the collec-
tion of those SETAFs that are in minimal normal form, both based on argument domain
U . The minimal form translation min-TrSETAF : FrSETAF → MinSETAF is defined as
min-TrSETAF ((A,R)) = (A,R′), where R′ ⊆ R consists of all and only elements (T, a)
in R s.t. @T ′ ⊂ T, (T ′, a) ∈ R.

Redefinition of Theorem 4.5: Let σ ∈ {conflict–free, admissible, preferred, complete,
grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ. The
translation min-TrSETAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 1: Under the conflict–free, admissible, preferred, com-
plete, grounded and stable semantics and identity casting functions, the translation
min-TrSETAF is:

• full, target–subclass and overlapping

• argument domain preserving and attack relation removing

• generic, semantics domain preserving and exact

• structural

The translation min-TrSETAF is not modular.

Explanation. Since every SETAF can be transformed to the minimal normal form
and the frameworks that are already in that form are only a subclass of FrSETAF , the
translation is classified as full and target–subclass. As two different SETAFs can have
the same minimal normal form, for example both ({a, b, c}, {({a}, c), ({a, b}, c)}) and
({a, b, c}, {({a}, c), ({a, b}, c), ({a, b, c}, c)}) are mapped to ({a, b, c}, {({a}, c)}), our
assignment is overlapping. We can also easily observe that the translation is removing
certain relations; that was after all the whole point of this method. The domain preserving
and generic properties are a result of the definition of the translation and Theorem 4.5. The
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strength and exactness of the translation follow easily from the redefinition of this theo-
rem as well. The approach is also clearly structural; the modifications done to the attack
relation do not take any semantical notions into account.

The loss of modularity comes from the fact that we look for the “minimal” attacks in
the set. Consequently, we can split a framework in a way that the minimal attacks of its
subframeworks will be in fact comparable. Thus, the union of their translations might be
in fact outside MinSETAF . Consider the framework ({a, b, c}, {({a}, c), ({a, b}, c)}) and
its subframeworks ({a, b, c}, {({a}, c)}) and ({a, b, c}, {{a, b}, c)}). They are already in a
minimal form, however, their union is not, and it does not coincide with the minimal form
({a, b, c}, {({a}, c)}) of the original structure. �

Example 42. Let SF = ({a, b, c, d, e}, {({a, b}, c), ({a, d}, c), ({a, b, d}, c), ({e}, d),
({c, e}, b)}) be a SETAF. Its minimal form is SFmin = ({a, b, c, d, e}, {({a, b}, c),
({a, d}, c), ({e}, d), ({c, e}, b)}). Both are depicted in Figure 30. We can observe that
in SF , the set {c, e} has the power to defend c; as the set attacks both d and b, it prevents
all three attacks on c. Since attacks formed by the subsets of {a, b, d} are taken care of, so
is the one carried out by {a, b, d} itself and removing ({a, b, d}, c) from the attack relation
does not change the fact that {c, e} is admissible. If we considered a modification of SF
where the ({e}, d) attack is not present, then {c, e} would not be able to defend c from
the ({a, d}, c) and ({a, b, d}, c) – again, removing the latter would still not change the fact
that c is not acceptable.

a bd

c

e

(a) Sample SETAF SF

a bd

c

e

(b) Minimal form of SF

Figure 30: Sample SETAF and its minimal normal form framework

4.1.2 EAFC Minimal Form

Another framework for which we can introduce the minimal form is EAFC. Although the
attacks as such are binary, the defense attacks can be carried out by groups of arguments.
Thus, similarly as in SETAFs, we can consider removing some of the redundant sets.
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Definition 4.6. Let EFC = (A,R,D) be an EAFC. The subframework EFCmin =

(A,R,D′) is the minimal form of EFC, denoted EFCmin
min

v EFC, iff D′ ⊆ D con-
sists of all and only elements (T, a) in D s.t. @T ′ ⊂ T, (T ′, a) ∈ D.

Theorem 4.7. Let EFC = (A,R,D) be an EAFC and EFCmin = (A,R,D) its minimal
form. A set of arguments E ⊆ A is a σ–extension of EFC, where σ ∈ {conflict–free,
admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of EFCmin.

We can now put our results into the system. Analysis similar to the one given in the
SETAF minimal form can be carried out and therefore we will omit further explanations.

Translation 2. Let FrEAFC be the collection of all EAFCs and MinEAFC the collec-
tion of those EAFCs that are in minimal normal form, both based on argument domain
U . The minimal form translation min-TrEAFC : FrEAFC → MinEAFC is defined as
min-TrEAFC((A,R,D)) = (A,R,D′), where D′ ⊆ D consists of all and only elements
(T, a) in D s.t. @T ′ ⊂ T, (T ′, a) ∈ D.

Redefinition of Theorem 4.7: Let σ ∈ {conflict–free, admissible, preferred, complete,
grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ. The
translation min-TrEAFC is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 2: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and identity casting functions, the translationmin-TrEAFC

is:

• full, target–subclass and overlapping

• argument domain preserving and defense attack relation removing

• generic, semantics domain preserving and exact

• structural

The translation min-TrEAFC is not modular.

Example 43. Let us consider the EAFC EFC = ({a, b, c, d}, {(a, b), (d, c)},
{({b}, (d, c)), ({a, b}, (d, c)), ({c}, (a, b))}). Its minimal form is EFCmin = ({a, b, c, d},
{(a, b), (d, c)}, {({b}, (d, c)), ({c}, (a, b))}). Both are depicted in Figure 31. We can
observe that a defeats{a,d} b in EFCmin and that this defeat has a reinstatement set
{(a, b), (d, c)} on {a, d}. In other words, the defense attack on (a, b) carried out by {c}
is handled by the (d, c) attack, and the defense attack on (d, c) by {b} is nullified by the
(a, b) attack. In the same way, a defeats{a,d} b in EFC and the reinstatement set for this
defeat is still {(a, b), (d, c)}; in this case, (d, c) deals both with {b} and {a, b}. Moreover,
{a, b, c, d} is conflict–free in both frameworks; removing the ({a, b}, (d, c)) defense attack
does not change that as long as ({b}, (d, c)) is still present.
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a b c d

(a) Sample EAFC EFC

a b c d

(b) Minimal form of EFC

Figure 31: Sample EAFC and its minimal normal form framework

4.1.3 AFN Minimal Form

The AFN minimal form we have previously introduced in [77, 78]13. Although AFNs
permit only binary attack, we can filter out unnecessary support relations:

Definition 4.8. Let FN = (A,R,N) be an AFN. The subframework FNmin =

(A,R,N ′) is the minimal form of FN , denoted FNmin
min

v FN , iff N ′ ⊆ N consists of
all and only elements (T, a) in N s.t. @T ′ ⊂ T, (T ′, a) ∈ N .

Theorem 4.9. Let FN = (A,R,N) be an AFN and FNmin = (A,R,N ′) its minimal
form. A set of arguments E ⊆ A is a σ–extension in FN where σ ∈ {conflict–free, coher-
ent, admissible, preferred, complete, grounded, stable} iff it is a σ–extension in FNmin.

We can now put the minimal normal form translation into our system. Its properties
and their explanations resemble the ones given in the SETAF case and thus we will omit
that part of the analysis.

Translation 3. Let FrAFN be the collection of all AFNs and MinAFN the collec-
tion of those AFNs that are in minimal normal form, both based on argument domain
U . The minimal form translation min-TrAFN : FrAFN → MinAFN is defined as
min-TrAFN((A,R,N)) = (A,R,N ′), where N ′ ⊆ N ′ consists of all and only elements
(T, a) in N s.t. @T ′ ⊂ T, (T ′, a) ∈ N .

Redefinition of Theorem 4.9: Let σ ∈ {conflict–free, coherent, admissible, preferred,
complete, grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ.
The translation min-TrAFN is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 3: Under the conflict–free, coherent, admissible, preferred,
complete, grounded and stable semantics and identity casting functions, the translation
min-TrAFN is:

• full, target–subclass and overlapping

13Please note that conflict–free and coherent semantics were not explicitly stated in Theorem 4.7 in [78],
but were shown in the proofs [77].
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• argument domain preserving, attack relation preserving and support relation remov-
ing

• generic, semantics domain preserving and exact

• structural

The translation min-TrAFN is not modular.

Example 44. Let FN = ({a, b, c, d}, {(d, c), (c, b)}, {({a}, d), ({a, b}, d)}) be an AFN;
its minimal form is FNmin = ({a, b, c, d}, {(d, c), (c, b)}, {({a}, d)}). Both are depicted
in Figure 32. We can observe that c attacks one of the sets supporting d; however, as
the coherent set {a, d} still remains unattacked, argument c cannot defend itself from d.
Removing the non–minimal support ({a, b}, d) does not change this fact. If we were to
include an attack (c, a) into the set, then both coherent sets {a, d} and {a, b, d} would be
attacked and thus the redundant support does not provide any alternative evaluation path
that would avoid the (c, a) attack.

a b c d

(a) Sample AFN FN

a b c d

(b) Minimal form of FN

Figure 32: Sample AFN and its minimal normal form framework

4.1.4 EAS Minimal Form

Just like in the case of AFNs, the EAS minimal normal form has already been introduced in
[77,78]14. Again, we will reformulate the results so that it is clear how this transformation
fits into our system. In this framework we will have to deal with minimality both of the
attack and support relation:

Definition 4.10. Let ES = (A,R,E) be an EAS. The subframework ESmin =

(A,R′, E ′) is the minimal form of ES, denoted ESmin
min

v ES, iff R′ ⊆ R (respec-
tively E ′ ⊆ E) consists of all and only elements (T, a) in R (E) s.t. 6 ∃T ′ ⊂ T, (T ′, a) ∈ R
(E).

14Please note that conflict–free and self–supporting semantics were not explicitly stated in Theorem 3.16
in [78], but were shown in the proofs [77]
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Theorem 4.11. Let ES = (A,R,E) be an EAS and ESmin = (A,R′, E ′) its minimal
form. A set of arguments S ⊆ A is a σ–extension in ES where σ ∈ {conflict–free, sefl–
supporting, admissible, preferred, complete, grounded, stable} iff it is a σ–extension of
ESmin.

Translation 4. Let FrEAS be the collection of all EASs and MinEAS the collec-
tion of those EASs that are in minimal normal form, both based on argument domain
U . The minimal form translation min-TrEAS : FrEAS → MinEAS is defined as
min-TrEAS((A,R,E)) = (A,R′, E ′), where R′ ⊆ R (respectively E ′ ⊆ E) consists
of all and only elements (T, a) in R (E) s.t. @T ′ ⊂ T, (T ′, a) ∈ R (E).

Redefinition of Theorem 4.11: Let σ ∈ {conflict–free, sefl–supporting, admissible, pre-
ferred, complete, grounded, stable} be a semantics and SC Tr

σ the identity casting functions
for σ The translation min-TrEAS is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 4: Under the conflict–free, self–supporting, admissible, pre-
ferred, complete, grounded and stable semantics and identity casting functions, the trans-
lation min-TrEAS is:

• full, target–subclass and overlapping

• argument domain preserving, attack and support relation removing

• generic, semantics domain preserving and exact

• structural

The translation min-TrEAS is not modular.
Since the explanations for the properties of the translations are very similar to the ones

we have given in the case of SETAFs, we will omit them here.

Example 45. Let us consider an EAS ({η, a, b, c, d, e}, {({a, b}, c), ({d}, c), ({a, b, d}, c),
({e}, a), ({c, e}, b)}, {({η}, a), ({η}, b), ({η}, c), ({η}, e), ({a}, d), ({a, b}, d)}). Its
minimal form is ({η, a, b, c, d, e}, {({a, b}, c), ({d}, c), ({e}, a), ({c, e}, b)}, {({η}, a),
({η}, b), ({η}, c), ({η}, e), ({a}, d)}). Both are depicted in Figure 33. We can observe
that even though the {a, b} support for d is removed, the argument is still e–supported by
{η, a}. Moreover, in order to defend against d, one would have to attack all of its eviden-
tial sequences, which will always contain a. Thus e has the power to defend c against d
no matter whether the redundant support is present or not. Additionally, since it takes care
of the ({d}, c) attack, it also defends c from the {a, b, d} attack, and including it in the
framework is no longer necessary.

4.1.5 ADF Redundancy–Free Form

The minimal normal form for ADFs will be referred to as the redundancy–free
form, though please note there is a slight difference between how it works in ADFs
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η

(a) Sample EAS ES

a b c e

d

η

(b) Minimal form of ES

Figure 33: Sample EAS and its minimal normal form framework

and in other frameworks. In e.g. SETAFs, if an attack set is removed, it does
not mean that the attackers and targets become unrelated. For example, SF =
({a, b, c}, {({a}, c), ({b}, c), ({a, b}, c)}) contains a redundant conflict ({a, b}, c). Nev-
ertheless, even after we remove it, both a and b are still attackers of c. This means that
from the ADF perspective, these parents are not redundant, and the (functional) ADF cor-
responding both to SF and SFmin would be the same (see Section 6.5). The framework
is considered redundancy–free, even though SF is not. This behavior is another example
of the differences between ADFs and other structures that were described in Section 2.3.9.

Let us now proceed with defining the redundancy–free form. From each acceptance
condition, we will remove the origins of the redundant links, i.e. those links are both
supporting and attacking (see Section 2.3). Please note that this removal can be done both
with a “negative” reduct, i.e. the one we have recalled and in which removed arguments
are assumed to be false (Definitions 2.135 and 4.3), and with a positive one, where they are
assumed to be true [48]. This is a result of the fact that neither the presence nor absence
of the redundant parents affects the outcome of the condition.

Definition 4.12. Let D = (A,L,C) be an ADF, a ∈ A be an argument, Ca its acceptance
condition and E ⊆ par(a) the set of all parents of a s.t. for every e ∈ E , (e, a) ∈ L is not
redundant. The redundancy–free form of Ca, denoted CE

a , is the reduct of Ca w.r.t. E .
Then Dr = (A,Lr, Cr) is the redundancy–free form of D, where Lr ⊆ L is the set of all
links in L that are not redundant and Cr = {CE

a | Ca ∈ C, CE
a is the reduct of Ca w.r.t.

the set E of not redundant parents of a}.

Theorem 4.13. Let D = (A,L,C) be an ADF and Dr = (A,Lr, Cr) its redundancy–
free form. A set E ⊆ A is a σ–extension of D, where σ ∈ {conflict–free, pd–acyclic
conflict–free, model, stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–
preferred} and x, y ∈ {a, c} iff it is a σ–extension of Dr. A three–valued interpretation on
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A is a δ–labeling of D, where δ ∈ {three–valued model, admissible, preferred, complete,
grounded} iff it is a δ–labeling of Dr.

We can now put these results into our classification system. Please observe that the
translation has the same properties as the previous minimal normal forms; in particular, it
is generic, exact, and not modular.

Translation 5. Let FrADF be the collection of all ADFs and RFADF the collection of
those ADFs that do not contain redundant links, both of them on argument domain U .
The redundancy–free form translation rf -TrADF is defined as rf -TrADF ((A,L,C)) =
(A,L′, C ′), whereL′ ⊆ L is the set of links that are not redundant andC ′ = {C ′a | Ca ∈ C,
C ′a is the reduct of Ca w.r.t. the set of not redundant parents of a}.

Redefinition of Theorem 4.13: Let σ ∈ {conflict–free, pd–acyclic conflict–free, model,
stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–preferred}, where
x, y ∈ {a, c}, be an extension–based semantics and δ ∈ {three–valued model, admissible,
preferred, complete, grounded} a labeling–based semantics for ADFs. Let SC Tr

σ and
SC Tr

δ be identity casting functions for σ and δ. The translation rf -TrADF is strong and
semantics bijective under (σ, SC Tr

σ ) and (δ, SC Tr
δ ).

Analysis of Translation 5: Under the conflict–free, pd–acyclic conflict–free, xy–
admissible, xy–preferred, xy–complete, grounded, acyclic grounded, model, stable, three–
valued model, labeling admissible, labeling preferred, labeling complete and labeling
grounded semantics and identity casting functions, the translation rf -TrADF is:

• full, target–subclass and overlapping

• argument domain preserving and relation removing

• generic, semantics domain preserving and exact

• structural

The translation rf -TrADF is neither ⊕ nor ⊗–modular.

Explanation. The choice of domains in the translation and the fact that ADFs without
redundant links do not account for all the ADFs “out there” results in our approach being
full and target–subclass. As two different ADFs can be assigned a single redundancy–free
form, the translation is also overlapping. For example, let ({a, b}, {Ca = {∅ : in}, Cb =
{∅ : in}}) and ({a, b}, {Ca = {∅ : in, {b} : in}, Cb = {∅ : in}}) be two ADFs in
the functional representation. Their redundancy free forms are the same and identical to
the first framework. The translation obviously preserves both argument and semantics
domains. The exactness of our method and the fact it is generic follow from Theorem
4.13. The point of the approach is to remove “worthless” relations, thus classifying it as
relation removing should be clear. Furthermore, since it does not require any knowledge
on the ADF semantics and modifies the acceptance conditions in a structural manner, the
translation is structural.
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Just like the minimal normal form translations for other frameworks, rf -TrADF is
not modular w.r.t. any of the operators. We can repeat the previously given example in
the ADF setting. Consider the ADFs D1 = ({a, b, c}, {Ca = >, Cb = >, Cc = ¬a})
and D2 = ({a, b, c}, {Ca = >, Cb = >, Cc = ¬a ∨ ¬b}). The are both already in the
redundancy free–form. However, D1 ⊗ D2 = ({a, b, c}, {Ca = >, Cb = >, Cc = ¬a ∧
(¬a∨¬b)}) is not. In this case, the (b, c) link is redundant. Let nowD3 = ({a, b, c}, {Ca =
>, Cb = >, Cc = ¬a ∧ ¬b}). Again, it is in redundancy–free form, but the framework
D1 ⊕D3 = ({a, b, c}, {Ca = >, Cb = >, Cc = ¬a∨ (¬a∧¬b)}) is not. Also in this case
the (b, c) link becomes unnecessary. �

Example 46. Let D = ({a, b, c}, {Ca = (b ∧ c) ∨ c, Cb = a ∨ ¬a, Cc = >}) be
the ADF depicted in Figure 34a. The functional representation of the conditions is
Ca = {(∅, out), ({b}, out), ({c}, in), ({b, c}, in)}, Cb = {(∅, in), ({a}, in)} and Cc =
{(∅, in)}. We can observe that in this case, both (a, b) and (b, a) are redundant connec-
tions. Adding b to ∅ and {c} in no way changes the outcome of Ca; similar for a and ∅ in
Cb. By removing the respective mappings, we obtain conditions Cr

a = {(∅, out), ({c}, in)
and Cr

b = {(∅, in)}, corresponding to formulas c and >. The redundancy–free form of D
is thus ({a, b, c}, {Ca = c, Cb = >, Cc = >}), as seen in Figure 34b.

a b c

(b ∧ c) ∨ c a ∨ ¬a >

(a) Sample ADF

a b c

c > >

(b) Redundancy–free ADF

Figure 34: Sample ADF and its redundancy–free form

4.2 Cleansed Form
Previously, we have mentioned that ADFs have the ability to handle arguments that can
be interpreted as “I do not exist” or “I am known to be false” (see Section 2.3.9). Conse-
quently, anything derived from them is interpreted in the same manner. This ability can be
seen as unique to ADFs and thus the cleansed form will be considered only for this frame-
work. A falsum argument – or one depending on it – possesses no standard evaluation.
Consequently, it will not appear in a conflict–free extension and will always be automat-
ically falsified in any type of range (see discussion in Section 2.3.5, Lemmas 2.125 and
2.132). This means we can consider removing such arguments while still preserving all of
the extension–based semantics. However, due to the change in the set of arguments, the
labeling–based semantics will not remain completely unaffected.

The point of the cleansed form is to obtain a framework in which every argument has
a satisfiable acceptance condition, i.e. for every argument and its acceptance condition,
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there exists a set of arguments evaluating the condition to in. In order to create this form,
we can consider two procedures. In the first approach, resembling the original definition of
standard range (Definition 2.124), we can identify arguments possessing no in mappings
in their conditions, reduce the framework in order to remove them, and repeat the process
till no further modifications are required. The other approach, resembling the evaluation
definition of range (Lemma 2.125), would find arguments possessing no standard evalua-
tions and reduce the framework. Due to the fact that falsum arguments will not appear in
sound pd–functions, neither them nor arguments based on them can possess standard eval-
uations and thus the two methods are in fact equivalent. Consequently, we will proceed
with the simpler, single step method.

Definition 4.14. Let D = (A,L,C) be an ADF. The cleansed form of D is the reduct of
D w.r.t. A′, where A′ ⊆ A is the set of all and only arguments on A that possess a standard
evaluation on A.

Theorem 4.15. Let D = (A,L,C) be an ADF and Dc = (A′, L′, C ′) its cleansed form.
A set E ⊆ A is a σ–extension of D, where σ ∈ {conflict–free, pd–acyclic conflict–free,
model, stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–preferred}
and x, y ∈ {a, c}, iff it is a σ–extension of Dc.

Theorem 4.16. Let D = (A,L,C) be an ADF and Dc = (A′, L′, C ′) its cleansed form.
If v is σ–labeling of D, where σ ∈ {three–valued model, admissible, preferred, complete,
grounded}, then v|A′ is a σ–labeling of Dc 15. If v is a σ–labeling of Dc, then the f–
completion of v to A is a σ–labeling of D.

We can now put these results into our system. At this point the added value of our re-
definitions becomes more apparent. Although the results above are correct and follow the
typical “if then” construction, at first glance it can be difficult to notice that this translation,
when combined with using the f–completion for labeling retrieval, is not always strong.
Not every three valued model or admissible labeling of the original framework is brought
back. This is due to the fact that these semantics do not use any types of maximality and in
some cases, the u–completions would be sufficient as well. However, please note that this
weakness is caused by the used casting functions, not the fact that any labeling is really
“lost”, as will become visible in Example 47. Nevertheless, the more common scheme for
the semantics theorem can, even though not intentionally, mask such issues.

Translation 6. Let FrADF be the collection of all ADFs and CLADF the collection of
cleansed ADFs, both based on argument domain U . The cleansed normal form translation
cl-TrADF : FrADF → CLADF is defined as cl-TrADF ((A,L,C)) = (A′, L′, C ′), where
(A′, L′, C ′) is the reduct of (A,L,C) w.r.t. the set A′ = {a ∈ A | a has a standard
evaluation on A}.

15Recall that v|A stands for the subinterpretation of v defined over A.
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Redefinition of Theorem 4.15: Let σ ∈ {conflict–free, pd–acyclic conflict–free, model,
stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–preferred} where
x, y ∈ {a, c} be a semantics and let SC Tr

σ be the identity casting functions for σ. The
translation cl-TrADF is strong and semantics bijective under (σ, SC Tr

σ ).
Redefinition of Theorem 4.16: Let σ ∈ {three–valued model, admissible, preferred,
complete, grounded} be a semantics and let SC Tr

σ be the addition casting functions for σ
defined as SCX

σ (v) = v ∪ {(a, f) | a ∈ A \ A′}, where X = (A,C) ∈ FrADF , A′ is the
set of arguments of cl-TrADF (X), and v ∈ σ(cl-TrADF (x)). The translation cl-TrADF is
strong and semantics bijective under the preferred, complete and grounded semantics and
the defined casting functions. It is ⊇–weak under the three–valued model and admissible
semantics and the defined casting functions.
Analysis of Translation 6: Under the conflict–free, pd–acyclic conflict–free, model, sta-
ble, grounded, acyclic grounded, xy–admissible, xy–complete and xy–preferred semantics
for x, y ∈ {a, c} and their identity casting functions, and under the complete, preferred and
grounded labeling–based semantics and their addition casting functions, the translation
cl-TrADF is:

• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced relation removing

• generic and semantics domain preserving

• semi–structural

Translation cl-TrADF is neither ⊗ nor ⊕ modular. Under the conflict–free, pd–acyclic
conflict–free, model, stable, grounded, acyclic grounded, xy–admissible, xy–complete and
xy–preferred semantics for x, y ∈ {a, c} and their identity casting functions, the transla-
tion is exact. Under the complete, preferred and grounded labeling–based semantics and
their addition casting functions, the translation is faithful.

Explanation. Since any framework can be transformed into the cleansed form, the trans-
lation cl-TrADF is easily full. Moreover, only the cleansed ADFs can be produced, and
thus it is also target–subclass. Additionally, the translation is overlapping; we can see that
the frameworks ({a, b}, {Ca = >, Cb = ⊥}) and ({a, b, c}, {Ca = >, Cb = ⊥, Cc = ⊥})
will both be transformed into ({a}, {C ′a = >}). This approach is clearly both argument
and semantics domain preserving. From the amount of the handled semantics it also holds
that cl-TrADF is generic. Clearly, it is also argument removing – this is after all the point
of the translation. Relations between arguments are removed iff the deleted arguments
take part in them, thus we can speak about the induced removal. However, please note
that certain removals can cause the remaining relations to change their nature and become
redundant. Let us consider the framework ({a, b, c}, {Ca = >, Cb = ⊥, Cc = ¬a ∨ ¬b}).
The links from a and b to c are attacking. The cleansed form of this structure is
({a, c}, {C ′a = >, C ′c = ¬a ∨ >}) (the functional version of C ′c is {∅ : in, {a} : in}).
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Therefore, the link from a to c is now both attacking and supporting and is considered
redundant.

Possessing a standard evaluation is a rather basic requirement, in some ways even
more basic than conflict–freeness, and we can see that it is extension–based semantics
independent. It can be seen as verifying if an argument “exists”. Although it suffices
to construct the decisive interpretations by mapping to true those arguments for which
a condition is satisfied and assuming everything else is false, constructing an evaluation
from them requires some computation and thus we choose to classify this translation as
semi–structural.

Let us now focus on ⊗–modularity and let D1 = ({a}, {Ca = a}) and D2 =
({a}, {Ca = ¬a}) be two ADFs. We can observe that cl-TrADF (D1) = D1 and
cl-TrADF (D2) = D2. However, the framework D1 ⊗ D2 = ({a}, {Ca = a ∧ ¬a}) is
not in cleansed form; the condition of a is equivalent to ⊥. Consequently, the cleansed
form of this structure is the empty framework and thus cl-TrADF (D1)⊗ cl-TrADF (D2) 6=
cl-TrADF (D1 ⊗D2). Therefore, our translation is not ⊗–modular.

For ⊕–modularity, let us look at the frameworks D1 = ({a, b}, {Ca = ⊥, Cb = a})
and D2 = ({a, b}, {Ca = b, Cb = ⊥}). The cleansed form of both of them is the empty
framework. However, in the framework D1 ⊕D2 = ({a, b}, {Ca = b ∨ ⊥, Cb = a ∨ ⊥})
both arguments a and b possess standard evaluations and thus the structure will not be
affected by the translation. Clearly, it is not empty, and thus cl-TrADF is not ⊕–modular.

The fact that cl-TrADF is exact (faithful) under listed semantics comes from Theorems
4.15 and 4.16, their proofs and redefinitions. �

Example 47. Let D = ({a, b, c, d}, {Ca = ⊥, Cb = ¬a ∧ c, Cc = b ∨ d, Cd = a}) be
an ADF and DCln = ({b, c}, {Cb = c, Cc = b}) its cleansed form. We can observe that
“cleansing” the framework removed both the falsum argument a and argument d based
on it. Let us focus on ∅. Its standard, partially acyclic and acyclic discarded sets are
respectively {a, d}, {a, b, c, d} and {a, b, c, d} in D. When we look at DCln, we obtain
∅, {b, c} and {b, c}. Therefore, the cleansed discarded sets are the result of deleting from
the original sets the arguments that were removed by the translation. When we focus on
{b, c}, the discarded sets are all {a, d} in D and ∅ in DCln. In both of these frameworks,
b and c possess only standard evaluations that cannot be made acyclic. It is now easy to
show that the extensions of D and DCln coincide.

The admissible labelings of D are v1 = {a : u, b : u, c : u, d : u}, v2 = {a : u, b :
u, c : u, d : f}, v3 = {a : f , b : u, c : u, d : u}, v4 = {a : f , b : u, c : u, d : f},
v5 = {a : u, b : f , c : f , d : f}, v6 = {a : f , b : f , c : f , d : f}, all corresponding to the ∅
extension, and v7 = {a : f , b : t, c : t, d : u} and v8 = {a : f , b : t, c : t, d : f}, which
produce {b, c}. The answers produced by DCln are w1 = {b : u, c : u}, w2 = {b : f , c : f}
and w3 = {b : t, c : t}, which again are associated with extensions ∅ and {b, c}. We can
observe that although the sets of arguments accepted in both frameworks are the same,
there is a difference on those mapped to f and u. Nevertheless, one can easily observe
that DCln labelings can be easily obtained as limitations of the interpretations of D to
the set {b, c}. Moreover, some of the D answers are retrieved by extending DCln results
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with f mappings to arguments a and d. If we move to complete semantics (labelings v4,
v6, v8, and all w’s), the relation between the interpretations of both frameworks becomes
bijective. The f–completion also retrieves precisely the desired answers.

a b c d

⊥ ¬a ∧ c b ∨ d a

(a) Sample ADF D

b c

c b

(b) Cleansed form of D

Figure 35: Sample ADF and its cleansed form

4.3 Validity Forms
In bipolar frameworks we often deal with the concept of validity of an argument, which
based on current semantics is related to support cycles. A valid argument is one that
possesses at least one powerful/evidential sequence or an acyclic pd–evaluation in the
framework. The arguments that are not valid do not need to be defended from (or are
automatically defended from) and do not show up in any extensions. Therefore, remov-
ing them from a given framework will not affect the semantics. Filtering out the invalid
arguments will give us the weak validity from.

Independently of whether a framework is weakly valid or not, it can happen that not
all of the support that an argument receives can be considered valid or relevant. In other
words, not all of the supporters might be used in constructing a proper sequence or evalua-
tion for a given argument. Consequently, we may consider removing such relations, since
it will not affect how e.g. coherent or self–supporting sets look like. This brings us to the
relation valid form.

Unfortunately, neither weak nor relation validity forms ensure that the framework is
completely free from support cycles. In other words, despite the fact that every argu-
ment has a sequence (evaluation) and every relation can be used to construct a desirable
sequence (evaluation), there can exist a set of arguments E s.t. all arguments in E are suf-
ficiently supported by E , but the set is not coherent (self–supporting, pd–acyclic). Making
sure that every combination of valid supports is valid itself brings us to the strong validity
form. Please note that for now, we will not provide translations to strongly valid forms,
even though we believe they can be created. Consequently, we let the reader see them as
subclasses if he/she wishes to do so.

What needs to be said about all of the validity normal form translations is that, un-
like in the previously described approaches, they are indisputably semantical. This means
we can expect them to be computationally more expensive than other forms. However,
depending on how a given framework was obtained, it might already be in a given form.
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Moreover, due to the properties of the validity forms, certain transformations and seman-
tics can be simplified. The last – strongly valid – form will be most important to us. Even
though we do not have any strong form transformations yet, various translations from the
attack–based to bipolar frameworks will produce structures in this form (see for exam-
ple Translations 21, 22, 23, 29, 30 and 31). This form will allow us to simplify certain
translations, in particular the defender ones (see Sections 10.2.2 and 11.2.3). Let us now
introduce our three validity forms.

4.3.1 Weak Validity

In AFNs, EASs and aa–semantics of ADFs, arguments that are not acyclic do not appear
in any extensions and do not need to be defended from. Consequently, their removal does
not change the extensions we can obtain. Moreover, they are frequently “lost” when the
target framework of our translation does not have the validity concept. For example, this
is the case when we consider translations from bipolar frameworks to the attacked–based
structures (see e.g. Translations 61 and 71). Thus, in the weak validity form we simply
remove just undesired arguments. In what follows we will show how to transform AFNs,
EASs and ADFs into this form. The produced structures will be again subframeworks of
the original ones.

4.3.1.1 AFN Weak Validity

In the AFN case, we simply require arguments to possess at least one powerful sequence
in the framework. Equivalently, we can simply state that they are contained in a coherent
extension:

Definition 4.17. Let FN = (A,R,N) be an AFN and A′ = {a ∈ A | there exists a
powerful sequence for a on A}. The trimmed full subframework FNA′

= (A′, R′, N ′) of

FN induced by A′ is the weak validity form of FN . We denote it with FNA′ wvv FN .

We can observe that the only semantics affected by this translation is the conflict–free
semantics. This is due to the fact that in this case, the validity of an argument does not play
any role. However, starting from the coherent semantics, we have a one–to–one relation
between the extensions of the original framework and its weakly valid normal form.

Theorem 4.18. Let FN = (A,R,N) be an AFN and FNwv = (A′, R′, N ′) be its weak
validity form. A set E ⊆ A is a σ–extension of FN , where σ ∈ {coherent, strongly coher-
ent,admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of FNwv. If
E ⊆ A is a conflict–free extension of FN , then E ∩A′ is conflict–free in FNwv. If E ⊆ A′

is conflict–free in FNwv, then it is conflict–free in FN .

We can now change our definition into a translation, put it into the system and analyze
its properties.
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Translation 7. Let FrAFN be the collection of all AFNs and WV AFN the collection of
weakly valid AFNs, both based on argument domain U . The weakly valid normal form
translation wv-TrAFN : FrAFN → WV AFN is defined as wv-TrAFN((A,R,N)) =
(A′, R′, N ′), where (A′, R′, N ′) is the trimmed full subframework of (A,R,N) induced by
the set A′ = {a ∈ A | a has a powerful sequence on A}.

Redefinition of Theorem 4.18: Let σ ∈ {coherent, strongly coherent, admissible, com-
plete, preferred, grounded, stable} be a semantics and let SC Tr

σ be the identity cast-
ing functions for σ. The translation wv-TrAFN is strong and semantics bijective under
(σ, SC Tr

σ ). It is ⊇–weak under conflict–free semantics and identity casting functions.
Analysis of Translation 7: Under conflict–free, strongly coherent, coherent, admissible,
preferred, complete, grounded and stable semantics and their removal casting functions,
the translation wv-TrAFN is:

• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced attack and support rela-
tion removing

• generic and semantics domain preserving

• semantical

Translation wv-TrAFN is not modular. Under strongly coherent, coherent, admissible,
preferred, complete, grounded and stable semantics wv-TrAFN is generic and exact.

Explanation. Since any framework can be transformed into weakly valid form and
all the weakly valid frameworks do not account for all the possible AFNs, the trans-
lation is easily full and target–subclass. More than one framework can have the
same weakly valid form. For example, consider structures ({a, b}, ∅, {({b}, b)}) and
({a, b, c}, ∅, {({b}, b), ({c}, c)}) – they are both transformed into ({a}, ∅, ∅). Conse-
quently, wv-TrAFN is overlapping.

The translation clearly preserves the argument and semantics domain. It also is argu-
ment removing, which was the point of the whole approach. Since deleting an argument
causes us to delete any supporting and attacking edges related to it, we can classify it as
induced removal. Due to the amount of the handled semantics, wv-TrAFN is generic.
Moreover, as validity of an argument is a semantical notion in AFNs, the translation is
clearly semantical.

In order to show that our translation is not modular, let us consider two frameworks
FN1 = ({a, b}, ∅, {({a}, b)}) and FN2 = ({a, b}, ∅, {({b}, b)}). In the first case, b is
powerful in {a, b}, and in the other it is not. The weak validity forms of the two frame-
works are FNwv

1 = ({a, b}, ∅, {({a}, b)}) and FNwv
2 = ({a}, ∅, ∅) respectively. We can

observe that FNwv
1 = FN1. The union of FNwv

1 and FNwv
2 is simply FNwv

1 again. Let
us now look at the framework FN1 ∪ FN2 = ({a, b}, ∅, {({a}, b), ({b}, b)}). We can
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observe that b is no longer powerful in {a, b}. The weak validity form of FN1 ∪ FN2 is
({a, b}, ∅, ∅), which is different from FNwv

1 . Thus, translation wv-TrAFN is not modular.
The fact that it is exact under strongly coherent, coherent, admissible, preferred, com-

plete, grounded and stable semantics follows from Theorem 4.18 and its redefinition. We
cannot say this about conflict–free semantics, as under it wv-TrAFN is not even strong. �

a

b cd e

f

(a) Sample AFN FN

a

b cd e

(b) Weakly valid form of FN

Figure 36: Sample AFN and its weakly valid form

Example 48. We can consider the AFN FN = ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({f}, f)}) previously analyzed in Example 16 and for convenience
again depicted in Figure 36. The admissible extensions of FN are ∅, {d}, {a, c}, {d, e}
and {a, c, d}. The sets {d}, {d, e} and {a, c, d} are also complete, with the first one being
grounded and the latter two being preferred. In this case, both {d, e} and {a, c, d} are
stable.

The weakly valid form of FN is FNwv = ({a, b, c, d, e}, {(a, e), (d, b), (e, c)},
{({b, c}, a)}). Previously, d was defended by any set due to the fact that f possessed
no coherent set. In FNwv, it is trivially defended as it is not attacked at all. It is also easy
to observe that if a set of arguments could not defend against d in FN , then it cannot do
it in FNwv either and vice versa. Finally, we can observe that as f was not present in any
coherent set, it was not present in any extension either. With this at hand it can now be
easily shown that the extensions of FNwv are the same as in FN .

4.3.1.2 EAS Weak Validity

The EAS weak validity form is very similar to the AFN form. In this case, we simply re-
move the arguments not possessing an evidential sequence in the framework. Equivalently,
we can delete the arguments not appearing in any self–supporting set:

Definition 4.19. Let ES = (A,R,E) be an EAS and A′ = {a ∈ A | there exists at least
one evidential sequence for a on A}. The full subframework ESA′

= (A′, R′, E ′) of ES

induced by A′ is the weak validity form of ES. We denote it with ESA′ wvv ES.

Theorem 4.20. Let ES = (A,R,E) be an EAS and ESwv = (A′, R′, E ′) be its weak
validity form. A set S ⊆ A is a σ–extension of ES, where σ ∈ {self-supporting, strongly
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self–supporting, admissible, preferred, complete, grounded, stable}, iff it is a σ–extension
of ESwv. If S ⊆ A is a conflict–free extension of ES, then S∩A′ is conflict–free in ESwv.
If S ⊆ A′ is conflict–free in ESwv, then it is conflict–free in ES.

We can now put these results into our translation system in the same manner as in the
AFN case.

Translation 8. Let FrEAS be the collection of all EASs and WV EAS the collection of
weakly valid EASs, both based on argument domain U . The weakly valid normal form
translation wv-TrEAS : FrEAS → WV EAS is defined as wv-TrEAS((A,R,E)) =
(A′, R′, E ′), where (A′, R′, E ′) is the full subframework of (A,R,E) induced by the set
A′ = {a ∈ A | a has an evidential sequence on A}.

Redefinition of Theorem 4.20: Let σ ∈ {self–supporting, self–supporting conflict–
free, admissible, complete, preferred, grounded, stable} be a semantics and let SC Tr

σ be
the identity casting functions for σ. The translation wv-TrEAS is strong and semantics
bijective under (σ, SC Tr

σ ). It is ⊇–weak under the conflict–free semantics and identity
casting functions.
Analysis of Translation 8: Under conflict–free, self–supporting, self–supporting
conflict–free, admissible, complete, preferred, grounded and stable semantics and iden-
tity casting functions, the translation wv-TrEAS is:

• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced attack and support rela-
tion removing

• semantics domain preserving

• semantical

Translation wv-TrEAS is not modular. Under self–supporting, self–supporting conflict–
free, admissible, complete, preferred, grounded and stable semantics, it is exact and
generic.

Explanation. The explanations we have given in the AFN case (analysis of Translation
7) also hold in the EAS case. We will only provide a different example to show lack of
modularity. Consider a simple framework ES = ({η, a, b}, ∅, {({η}, a), ({a}, b)}) and its
two subframeworks ES1 = ({η, a, b}, ∅, {({η}, a)}) and ES2 = ({η, a, b}, ∅, {({a}, b)}).
We can observe that ES1 ∪ ES2 = ES. The framework ES is already in weak valid-
ity form and thus will not be affected by the translation. The weak validity forms of its
two subframeworks are ESwv1 = ({η, a}, ∅, {({η}, a)}) and ESwv2 = ({η}, ∅, ∅) respec-
tively. Their union is equal to ESwv1 , which is clearly not the same as ES. Therefore, our
translation is not modular. �
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Example 49. Let ES = ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c), ({b}, d), ({c}, b), ({c}, d),
({d}, f), ({e}, b), ({f}, f)}, {({η}, b), ({η}, d), ({η}, f), ({d}, e)}) be the EAS depicted
in Figure 37a. We can observe that neither a nor c can be present in an extension of ES
that is at least self–supporting; the arguments simply lack evidential support. Based on
Definition 2.101, we can also see that any set will always defend its arguments against
the attacks from a and c. Therefore, the admissible extensions of ES are ∅, {η}, {b} and
{e, d}. With the exception of ∅, they are all complete. η is the grounded extension of
ES and {b} and {e, d} are its preferred ones. Finally, {e, d} is the only stable extension.
The weakly valid form of ESwv = ({η, b, d, e, f}, {({b}, d), ({d}, f), ({e}, b), ({f}, f)},
{({η}, b), ({η}, d), ({d}, e), ({η}, f)}), visible in Figure 37b. It is easy to verify that the
admissible, complete, preferred, grounded and stable extensions it produces are exactly
the ones we could obtain from η.

a b c d e

fη

(a) ES

b d e

fη

(b) ESwv

Figure 37: Sample EAS and its weakly valid form

4.3.1.3 ADF Weak Validity

In the cleansed forms of ADFs, we were removing from the framework the arguments that
did not possess standard evaluations. In the weak validity form, we restrict this further
to acyclic pd–evaluations. The arguments for which there are no such evaluations cannot
appear in any aa–extensions and are automatically in the acyclic discarded set. Therefore,
their removal does not affect this type of semantics. Deleting the arguments and the rel-
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evant relations will be done with the help of the reduct (see Definitions 2.135 and 4.3).
However, unlike in the EAS and AFN case, where the powerful and evidential sequences
were not affected by the translation, the evaluations need to undergo some modifications.
The deleted arguments will not appear in the pd–sequences, but can appear in the blocking
sets. Consequently, the blocking sets and the decisively in interpretations for the remaining
arguments need to be adapted and reanalyzed.

Definition 4.21. Let D = (A,L,C) be an ADF and A′ = {a ∈ A | a has an acyclic
pd–evaluation on A}. The reduct DA′

= (A′, LA
′
, CA′

) of D w.r.t. A′ is the weak validity
form of D. We denote it with DA′ wvv D.

Theorem 4.22. LetD = (A,L,C) be an ADF andDwv = (A′, L′, C ′) be its weak validity
form. A set E ⊆ A is a σ–extension of D, where σ ∈ {pd–acyclic conflict–free, aa–
admissible, aa–preferred, aa–complete, acyclic grounded, stable}, iff it is a σ–extension
of Dwv.

We can observe that the weakly valid form is quite similar to cleansed – it is just a
different type of evaluation that is taken into account. Thus, not surprisingly, these two are
in fact related – every weakly valid ADF will also be cleansed:

Theorem 4.23. LetD = (A,L,C) be an ADF. IfD is weakly valid, then it is also cleansed,
but not vice versa.

We can now proceed with redefining the notions in accordance with the translation
system we have introduced and analyzing their properties. Please note while conflict–
free semantics did not behave that well in the case of weakly valid forms of AFNs and
EASs, they are retrieved exactly in the ADF case. This is due to the difference between
the definitions of this semantics in these frameworks (see Section 2.3.5) and the fact that
(pd–acyclic) conflict–freeness in ADFs is in fact similar to strong coherence and self–
supporting conflict–free sets in AFNs and EASs rather than pure conflict–freeness (see
Definition 3.2).

Translation 9. Let FrADF be the collection of all ADFs and WV ADF the collection of
weakly valid ADFs, both based on argument domain U . The weakly valid normal form
translation wv-TrADF : FrADF → WV ADF is defined as wv-TrADF ((A,L,C)) =
(A′, L′, C ′), where (A′, L′, C ′) is the reduct of (A,L,C) w.r.t. the set A′ = {a ∈ A | a has
an acyclic pd–evaluation on A}.

Redefinition of Theorem 4.22: Let σ ∈ {pd–acyclic conflict–free, aa–admissible, aa–
preferred, aa–complete, acyclic grounded, stable} be a semantics and let SC Tr

σ be the
identity casting functions for σ. The translation wv-TrEAS is strong and semantics bijec-
tive under (σ, SC Tr

σ ).
Analysis of Translation 9: Under the pd–acyclic conflict–free, aa–admissible, aa–
preferred, aa–complete, acyclic grounded and stable semantics and identity casting func-
tions, the translation wv-TrEAS is:
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• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced relation removing

• generic, semantics domain preserving and exact

• semantical

Translation wv-TrADF is neither ⊗ nor ⊕–modular.

Explanation. The explanations we have given in the AFN and EAS cases (analysis of
Translations 7 and 8) also hold in the ADF case. However, due to the different notions of
modularity in ADFs, this property requires further analysis.

In order to show that the translation is not⊗–modular, we can reuse the example given
in the AFN case. Let us consider the ADFD = ({a, b}, {Ca = >, Cb = a∧b}) and two of
its subframeworks D1 = ({a, b}, {Ca = >, Cb = a}) and D2 = ({a, b}, {Ca = >, Cb =
b}). Please observe that D1 ⊗ D2 = D. The weak validity forms of our frameworks are
Dwv = ({a}, {Ca = >}), Dwv

1 = ({a, b}, {Ca = >, Cb = a}) and Dwv
2 = ({a}, {Ca =

>}). We can observe thatDwv
1 ⊗Dwv

2 = ({a, b}, {Ca = >, Cb = a}), which is the same as
Dwv

1 and clearly different from Dwv. Thus, we can observe that the translation wv-TrADF

is not ⊗–modular.
In order to show that the translation is not⊕–modular, we can adapt the example given

in the EAS case. Consider a simple frameworkD = ({η, a, b}, {Cη = >, Ca = η∨a, Cb =
a ∨ b}) and its two subframeworks D1 = ({η, a, b}, {Cη = >, Ca = η, Cb = b}) and
D2 = ({η, a, b}, ∅, {Cη = >, Ca = a, Cb = a}). We can observe that every argument
in D has an acyclic pd–evaluation – ((η), ∅) for η, ((η, a), ∅) for a and ((η, a, b), ∅) for
b. Consequently, D is already in weak validity form and thus will not be affected by the
translation. Concerning D1, the argument b does not posses an acyclic pd–evaluation. In
the case of D2, both a and b do not have acyclic pd–evaluations. Therefore, the weak
validity forms of its two subframeworks are Dwv

1 = ({η, a}, {Cη = >, Ca = η}) and
Dwv

2 = ({η}, {Cη = >}) respectively. The framework Dwv
1 ⊕ Dwv

2 = ({η, a}, {Cη =
>, Ca = η}) is clearly different from D. Thus, translation wv-TrADF is not ⊕–modular.
�

Example 50. Let us come back to the ADFD = ({a, b, c, d, e}, {Ca = e, Cb = d∨(c∧e),
Cc = ¬e, Cd = >, Ce = a ∧ b}) previously analyzed in Example 28 and for con-
venience again depicted in Figure 38. The acyclic conflict–free extensions of D are
∅, {c}, {d}, {b, d}, {c, d} and {b, c, d}. Coincidentally, they are also our aa–admissible
sets, with {b, c, d} being our single complete, preferred, stable and acyclic grounded ex-
tension.

The minimal decisively in arguments for our arguments are va = {e : t}, v1b = {d : t},
v2b = {c : t, e : t}, vc = {e : f}, vd = ∅ and ve = {a : t, b : t}. We can observe
that there is a positive dependency cycle between a and e. Thus, we will need to remove
these arguments. Both c and d have trivial acyclic evaluations due to the fact that they both
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(b) Weakly valid form of D

Figure 38: Sample ADF and its weakly valid form

satisfy a0 requirements of a pd–sequence. Finally, even though v2b will not be used in an
acyclic evaluation, v1b is still good. Hence, b remains in the framework. The weakly valid
normal form of D is thus Dwv = ({b, c, d}, {Cb = d ∨ (c ∧ ⊥), Cc = >, Cd = >}). We
can choose to view the condition for b as simply Cb = d. The resulting framework is quite
straightforward and it is easy to see that its acyclic extensions coincide with the ones from
D.

4.3.2 Relation Validity

In weak validity, we have focused on removing those arguments that could not be derived
in an acyclic manner. However, just because an argument possesses a powerful (evidential)
sequence or acyclic pd–evaluation, it does not mean that all of its supporters will be used
to create such sequences (evaluations), as can be seen in the next example. Thus, the weak
validity form is insufficient for ensuring the validity of support. In this section we will
focus on the relation validity form, which removes undesirable support edges from the
framework. As such, it is again a subframework of the original structure. Please note that
in every framework, the relation valid form will be obtained slightly differently. Moreover,
for now we will limit ourselves only to a possible translation analysis in the ADF case.

Example 51. Let us consider the EAS ({η, a}, ∅, {({η}, a), ({η, a}, a)}) as depicted in
Figure 39. We can see that the framework is weakly valid, however, it is easy to see that
we could not obtain the e–support for a through the ({η, a}, a) relation.

4.3.2.1 AFN Relation Validity

In AFNs, removing invalid support relations cannot be done from an arbitrary framework.
This is due to the fact that if the argument is not valid in the first place due to e.g. a
support cycle, removing this relation would change it into a valid argument, which is not
a desirable behaviour:
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η

a

Figure 39: Strongly, but not relation valid EAS

Example 52. Assume a simple AFN ({a}, ∅, {({a}, a)}) where a is a self–supporter. The
({a}, a) support will not be used in any powerful sequence for a; in fact, no such sequence
exists. However, when we remove this relation and create the framework ({a}, ∅, ∅), a
becomes a valid argument with a trivial powerful sequence (a) and will even appear in the
grounded extension.

This brings us to the conclusion that we need to use weakly valid form as an interme-
diary step for the relation valid form:

Definition 4.24. Let FN = (A,R,N) be an AFN and FNwv = (A′, R′, N ′) its weakly
valid form. Let coh(X) denote the set of all coherent subsets of X ⊆ A′. The trimmed
subframework FN rv = (A′, R′, N ′′) of FNwv is the relation valid form of FN , denoted

FN rv
rv

v FN , iff N ′′ = {(X ∩
⋃
coh(A′ \ {a}) | (X, a) ∈ N ′}.

From Theorem 4.18 we know that the extensions that are at least coherent coincide
between FN and FNwv. Consequently, for these semantics it suffices to perform the
analysis for FNwv and FN rv in order to obtain the relation between FN and FN rv.

Theorem 4.25. Let FNwv = (A′, R′, N ′) be a weakly valid AFN and FN rv =
(A′, R′, N ′′) its relation valid form. A set E ⊆ A′ is a σ–extension of FNwv, where σ ∈
{conflict–free, coherent, strongly coherent, admissible, preferred, complete, grounded,
stable} iff it is a σ–extension of FN rv.

However, even though the conflict–free extensions of FNwv and FN rv coincide, it
is not the case in FN and FNwv. The removal of arguments means that two different
conflict–free extensions of FN can be mapped to a single set in FNwv and only one of
them will be “retrieved”. Thus, by combining Theorems 4.18 and 4.25, we obtain the
following result:

Theorem 4.26. Let FN = (A,R,N) be an AFN and FN rv = (A′, R′, N ′′) its relation
valid form. A set E ⊆ A is a σ–extension of FN , where σ ∈ {coherent, strongly coherent,
admissible, preferred, complete, grounded, stable} iff it is a σ–extension of FN rv. If
E ⊆ A is a conflict–free extension of FN , then E ∩A′ is conflict–free in FN rv. If E ⊆ A′

is conflict–free in FN rv, then it is conflict–free in FN .
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We can now put our results into the system. What we will do is break it into two steps;
first, we will do the analysis assuming that the source frameworks are weakly valid, and
then extend it to arbitrary frameworks.

Translation 10. Let WV AFN be the collection of all weakly valid AFNs and RV AFN the
collection of relation valid AFNs, both based on argument domain U . The relation valid
normal form from weakly valid form translation rwv-TrAFN : WV AFN → RV AFN is
defined as rwv-TrAFN((A,R,N)) = (A,R,N ′), where N ′ = {(X ∩

⋃
coh(A \ {a}) |

(X, a) ∈ N} and coh(X) denotes the set of all coherent subsets of X ⊆ A.

The semantics theorem relevant for this translation is simply Theorem 4.25:
Redefinition of Theorem 4.25: Let σ ∈ {conflict–free, coherent, strongly coherent,
admissible, complete, preferred, grounded, stable} be a semantics and let SC Tr

σ be the
identity casting functions for σ. The translation rwv-TrAFN is strong and semantics bi-
jective under (σ, SC Tr

σ ).
Analysis of Translation 10: Under the conflict–free, strongly coherent, coherent, ad-
missible, preferred, complete, grounded and stable semantics and their removal casting
functions, the translation rwv-TrAFN is:

• source–subclass, target–subclass, overlapping

• argument domain preserving, argument set preserving, attack relation preserving
and support relation removing

• generic and semantics domain preserving

• semantical and exact

Translation rwv-TrAFN is not modular.

Explanation. We can observe that both WV AFN and RV AFN do not account for
all possible AFNs. Consequently, the translation rwv-TrAFN is source and target–
subclass. Moreover, two weakly valid AFNs can be transformed into the same relation
valid form. Consider the frameworks FN1 = ({a, b, c}, ∅, {({a, c}, c), ({a, b, c}, c)})
and FN2 = ({a, b, c}, ∅, {({a, c}, c), ({a, b}, c)}). We can observe that the supports
sets in FN1 and FN2 are not the same. The relation valid form of both structures is
({a, b, c}, ∅, {({a}, c), ({a, b}, c)}). Thus, we can conclude that rwv-TrAFN is overlap-
ping.

All the properties concerning how the structure of the source framework is modified
can be observed clearly from Translation 10 itself. The approach is also clearly semantics
domain preserving and generic. Due to the fact that coherence and validity of a support
relation are semantical notions, we classify rwv-TrAFN as semantical. The fact that it is
exact under the listed semantics and identity casting functions follows from the (redefini-
tion of) Theorem 4.25.
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In order to show that the translation is not modular, let us consider the framework
FN = ({a, b, c}, ∅, {({a}, b), ({a, c}, b), ({b}, c)}) and two of its subframeworks FN1 =
({a, b, c}, ∅, {({a}, b), ({b}, c)}) and FN2 = ({a, b, c}, ∅, {({a, c}, b)}). We can observe
that FN1 ∪ FN2 = FN and that FN is weakly, but not relation valid. Nevertheless,
both of the subframeworks FN1 and FN2 are weakly and relation valid to start with.
Consequently, they will not be affected by the translation at all. Thus, rwv-TrAFN(FN1)∪
rwv-TrAFN(FN2) = FN . Since FN is not in relation valid form (the {a, c} support
needs to be reduced to {a}), then clearly FN 6= rwv-TrAFN(FN). Thus, our translation
is not modular. �

The version taking all types of AFNs into account is now:

Translation 11. Let FrAFN be the collection of all AFNs and RV AFN the collection
of weakly valid AFNs, both based on argument domain U . The weakly valid normal
form translation rv-TrAFN : FrAFN → RV AFN is defined as rv-TrAFN((A,R,N)) =
rwv-TrAFN(wv-TrAFN((A,R,N))).

Redefinition of Theorem 4.26: Let σ ∈ {coherent, strongly coherent, admissible, com-
plete, preferred, grounded, stable} be a semantics and let SC Tr

σ be the identity cast-
ing functions for σ. The translation rv-TrAFN is strong and semantics bijective under
(σ, SC Tr

σ ). It is ⊇–weak under conflict–free semantics and identity casting functions.
Analysis of Translation 11: Under the conflict–free, strongly coherent, coherent, ad-
missible, preferred, complete, grounded and stable semantics and their removal casting
functions, the translation rv-TrAFN is:

• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced attack removing, and
support relation removing

• semantics domain preserving

• semantical

Translation rv-TrAFN is not modular. Under coherent, strongly coherent, admissible,
preferred, complete, grounded and stable semantics rv-TrAFN is exact and generic.

Explanation. The properties of our translation will be simply an outcome of the prop-
erties of rwv-TrAFN and wv-TrAFN . The fact that the translation is full and target–
subclass follows easily from the fact that wv-TrAFN takes any framework as input and
that rwv-TrAFN returns relation valid structures. Since both of them are overlapping,
then so is rv-TrAFN . Similar follows for the argument and semantics domain preserv-
ing properties. Now, as rwv-TrAFN is argument preserving (attack relation preserving)
and wv-TrAFN is argument removing (induced attack removing), then rv-TrAFN is argu-
ment removing (induced attack removing). In both of the translations we remove support
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relations, but only in one case this removal is induced; therefore, rv-TrAFN is just sup-
port removing. The set of semantics on which both of the translations are generic is the
same as in the wv-TrAFN case. Consequently, rv-TrAFN is also classified as generic.
As wv-TrAFN is not modular, then neither is rv-TrAFN . Finally, both wv-TrAFN and
rwv-TrAFN are semantical and exact w.r.t. strongly coherent, coherent, admissible, pre-
ferred, complete, grounded and stable semantics. Therefore, these properties follow for
rv-TrAFN as well. �

Example 53. Let us consider an AFN ({a, b, c}, ∅, {({a, b}, a), ({b, c}, a)}), in which sets
{a, b} and {b, c} support a. We can observe that the framework is weakly valid – for b
and c we can consider trivial sequences (b) and (c), while for a, the sequence (b, a) is
powerful. It is also worth noting that the framework is in minimal normal form. Despite
weak validity, we can observe that e.g. the set {a, b} is entirely useful; namely, we can
never use a to derive a due to acyclicity requirements in the AFN semantics. Thus, the
framework is not in relation validity form and by brining it to it, we obtain the structure
({a, b, c}, ∅, {({b}, a), ({b, c}, a)}). It is easy to see that the powerful sequences created
for the arguments would be exactly the same in the relation valid and in the original frame-
work, thus leading to a correspondence between the source and target extensions. Finally,
we can observe that the new structure is not in minimal form.

4.3.2.2 EAS Relation Validity

The weakly valid intermediary step is not required when we consider EASs. This is due
to the fact that if an argument is not valid in the first place, removing a support relation is
not going help it anyway – only by adding a relation from a valid argument we can change
the status of this argument:

Example 54. We can consider a simple EAS ({a, η}, ∅, {({a}, a)}), corresponding to the
AFN from Example 52. It can be observe that a possesses no evidential sequence and
that its self–supporting link will never be used. We can remove this relation and obtain
the framework ({a, η}, ∅, ∅). The argument a still does not possess an evidential sequence
and the extensions remain unchanged.

Consequently, the relation valid translation for EASs is a single–step one, and pre-
serves the conflict–free semantics as well as those that are self–supporting:

Definition 4.27. Let ES = (A,R,E) be an EAS. The subframework ESrv = (A,R,E ′)

is the relation valid form of ES, denoted ESrv
rv

v ES, iff E ′ = {(X, a) ∈ E | there
exists a self–supporting set S ⊆ A \ {a} s.t. X ⊆ S}.

Theorem 4.28. Let ES = (A,R,E) be an EAS and ESrv = (A,R,E ′) its relation valid
form. A set S ⊆ A is a σ–extension of ES, where σ ∈ {conflict–free, self-supporting,
strongly self-supporting, admissible, preferred, complete, grounded, stable} iff it is a σ–
extension of ESrv.
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The relation valid form put into our system is now as follows:

Translation 12. Let FrEAS be the collection of all EASs andRV EAS the collection of rela-
tion valid EASs, both based on argument domain U . The relation valid normal form trans-
lation rv-TrEAS : FrEAS → RV EAS is defined as rv-TrEAS((A,R,E)) = (A,R,E ′),
where E ′ = {(X, a) ∈ E | there exists a self–supporting set S ⊆ A \ {a} s.t. X ⊆ S}.

Redefinition of Theorem 4.28: Let σ ∈ {conflict–free, self–supporting, strongly self–
supporting, admissible, complete, preferred, grounded, stable} be a semantics and let
SC Tr

σ be the identity casting functions for σ. The translation rv-TrEAS is strong and
semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 12: Under the conflict–free, self–supporting, strongly self–
supporting, admissible, complete, preferred, grounded and stable semantics and identity
casting functions, the translation rv-TrEAS is:

• full, target–subclass, overlapping

• argument domain preserving, argument and attack preserving, support relation re-
moving

• generic and semantics domain preserving

• semantical and exact

Translation rv-TrEAS is not modular.

Explanation. We can repeat the analysis we have done in the case of AFNs (Trans-
lation 10) to explain the properties of rv-TrEAS . Thus, we will only discuss the
modularity a little bit further. In order to show that the translation is not modu-
lar, we can reuse the example from the analysis of Translation 8. Consider a simple
framework ES = ({η, a, b}, ∅, {({η}, a), ({a}, b)}) and its two subframeworks ES1 =
({η, a, b}, ∅, {({η}, a)}) and ES2 = ({η, a, b}, ∅, {({a}, b)}). We can observe that
ES1 ∪ ES2 = ES. The framework ES is already in relation validity form and thus will
not be affected by the translation. The relation validity forms of its two subframeworks are
ESrv1 = ({η, a, b}, ∅, {({η}, a)}) and ESrv2 = ({η, a, b}, ∅, ∅) respectively. Their union is
equal to ESrv1 , which has different evidential support from ES. Therefore, our translation
is not modular. Even if we considered only the weakly valid frameworks as input, we
could still adapt the example given in the analysis of Translation 10 and again conclude
that our approach is not modular. �

Example 55. Let ({a, b, c, η}, ∅, {({η}, a), ({η, a}, a), ({b}, a), ({b, c}, a), ({η}, b)}) be
an EAS. We can observe that c does not possess an evidential sequence. Consequently, the
({b, c}, a) support is not interesting. However, neither is ({η, a}, a). By removing them we
obtain the framework ({a, b, c, η}, ∅, {({η}, a), ({b}, a), ({η}, b)}). Since the links that we
have removed are those that were not used in the construction of an evidential sequence, it
is easy to see that the sequences themselves remain unchanged.
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4.3.2.3 ADF Relation Validity

Finally, we come to ADFs. In this case, we cannot yet give a fully working translation,
but will provide an analysis showing where the challenges are. In ADFs, we deal with
links that do not necessarily fall into the “supporting” and “attacking” categories; when
they actually do, we work with the bipolar ADFs, which are only a subclass of the general
ones. Moreover, when we are dealing with AFNs and EASs, relations of different types are
clearly separate in the structure and removing one does not affect the other. For example,
if we wanted to remove an attack from a to b, the support from a to b would remain
unaffected. As already discussed in Section 2.3.9, ADFs take a more general view on
the acceptance of an argument and thus avoid this separation. For these two reasons, the
relation validity form for ADFs is not as straightforward as in other frameworks. We need
to identify which occurrences and of what arguments need to be removed and how to
proceed with the removal.

Let us start with the description of a relation valid form. First of all, we can adapt the
definition known from AFNs and EASs. Thus, we would say that D = (A,L,C) is in
relation valid form iff for every argument a ∈ A and every S ⊆ par(a) s.t. Ca(S) = in,
there exists a pd–acyclic set E ⊆ A \ {a} s.t. S ⊆ E . However, as we can see in the
example below, this approach is not entirely adequate:

Example 56. Let us consider a simple ADF D = ({a, b, c}, {Ca = >, Cb = a ∨ ¬c, Cc =
b}). The functional form of Cb is {∅ : in, {a} : in, {c} : out, {a, c} : in}. All of
the arguments possess acyclic pd–evaluations: ((a), ∅) for a, ((a, b), ∅) and ((b), {c}) for b
and ((a, b, c), ∅) and ((b, c), {c}) for c. Thus, we can observe that every minimal decisively
in interpretation for an argument is used in some evaluation. However, the framework is
not in a relation valid form if we take the AFN (EAS) approach. The set {a, c}, which
satisfies the condition of b, is not included in any pd–acyclic set that does not contain b.
This is not an answer we want. In our opinion, b is more a self–attacker (i.e. supports c
that in turn can attack b) rather than self–supporter, and the AFN (EAS) formulation does
not behave in the intended way when we deal with overpowering support, which as such
is not present in those frameworks.

Let us now consider the other option, already mentioned in the example, that is focused
on minimal decisively in interpretations. However, again we can observe that it has its
drawbacks:

Example 57. Consider a simple framework ({a, b}, {Ca = >, Cb = a ∨ (a ∧ b)}). The
functional representations of the conditions would be Ca = {∅ : in} and Cb = {∅ :
out, {a} : in, {b} : out, {a, b} : in}. We can also read the structure as an EAS, where a
is playing the role of η. The (b, b) link is not a desirable one – although this self–support
is actually redundant, we would prefer it to be removed just like in any other framework.
However, b does not affect the outcome of the acceptance condition of b (see Section 4.1.5)
and thus will never show up in a minimal decisively in interpretation for b. Consequently,
the need for its removal will not be detected.
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The cause of the issue described in the example is the minimality of the interpreta-
tions. However, without it we basically come back to the AFN (EAS) approach, since
for every decisively in interpretation v, vt satisfies the acceptance condition of a given
argument. Therefore, we decide to limit ourselves to redundancy–free ADFs, as it makes
sure that every parent of a given argument will show up in an interpretation. Although the
redundancy–free form would also remove redundant attacking arguments (see e.g. SETAF
in Section 4.1.1), we will accept this solution for now. We thus obtain the following defi-
nition of relation validity:

Definition 4.29. Let D = (A,L,C) be a redundancy–free ADF. We say that D is in the
relation valid form iff every minimal decisively in interpretation of an argument a ∈ A
can be used in constructing an acyclic pd–evaluation for a.

The main issue why we we do not provide means to translate an ADF into a relation
valid forms concerns detecting which occurrences of given arguments to be removed from
an acceptance condition and how to proceed with the removal. Let us look at the following
example:

Example 58. We will consider two simple ADFs: D1 = ({a, b}, {Ca = >, Cb = a ∨ b})
and D2 = ({a, b, c}, {Ca = >, Cb = a Y c, Cc = b})16.

Let us start with D1. The functional representation of Cb is {∅ : out, {a} : in, {b} :
in, {a, b} : in}. We can observe that b has a decisively in interpretation v1 = {b : t} that
does not meet the relation validity requirements. In order to make v1 not decisively in, we
can consider two options; remove all of the occurrences of b from Cb or replace the assign-
ment of any set containing bwith out. In the first case, we receive C ′b = {∅ : out, {a} : in}
(equivalent to C ′b = a), which is the desired outcome. In other words, the reduct of the
condition w.r.t. arguments that appear in decisively in interpretations satisfying relation
validity conditions produced a correct new condition. Let us now consider the value re-
placement; we obtain the condition C ′′b = {∅ : out, {a} : in, {b} : out, {a, b} : out}
(equivalent to C ′′b = a ∧ ¬b). Although the new decisively in interpretations satisfy valid-
ity requirements, clearly the meaning of the condition has changed. The argument b, that
previously could be accepted in an extension, is now a self–attacker. Therefore, the value
replacement approach is not suitable for this framework.

Let us now consider D2. The functional representation of Cb is {∅ : out, {a} :
in, {c} : in, {a, c} : out}. Argument b has two minimal decisively in interpretations,
v1 = {a : t, c : f} and v2 = {a : f : c : t}. We can observe that v2 does not
satisfy our validity requirements and needs to be taken care of. Let us first consider
the reduct method, which worked in the previous framework. We obtain the condition
C ′b = {∅ : out, {a} : in} (or equivalently, C ′b = a). This is not a correct modification;
we can observe that while {a, b} was not aa–admissible in D2, it is aa–admissible in the
modified form D2 = ({a, b, c}, {Ca = >, Cb = a, Cc = b}). This is due to the fact that

16a Y c stands for the XOR of a and c and is equivalent to (a ∨ c) ∧ (¬a ∨ ¬c) and (a ∧ ¬c) ∨ (¬a ∧ c).
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c, even though assigned f , still occurs in v1. Therefore, not all of its occurrences are un-
desirable. However, we cannot just remove the {c} from the condition, as then it would
no longer be a total function. Therefore, we can consider changing its assignment to out.
The new condition is thus C ′′b = {∅ : out, {a} : in, {c} : out, {a, c} : out} (equivalent to
C ′′b = a ∧ ¬c). We can observe that v2 no longer appears as a decisively in interpretation
and that v1 is preserved. The modified framework will produce desirable extensions.

This example brings us to the conclusion that there is more than one way to adapt a
condition to the relation valid form and that not all methods are suitable in every possible
scenario. We thus leave obtaining a relation valid form translation and fine–tuning its
definition as an open issue for the future work. However, please note that just like in EASs,
we believe the translation will not have the weakly valid form prerequisite that is present
in AFNs. A cyclic argument that loses all of its support can receive a falsum acceptance
condition, which as we will explain in Section 4.2, does not affect the aa–semantics family.

4.3.3 Strong Validity

We now reach the most restrictive of all validity forms, the strong validity. Unfortunately,
we do not have translations to this form yet, though we believe that they exist (see Example
61). Consequently, we leave it to the reader to reclassify it as a subclass when required.

The point of strong validity is to reach a representation of the framework which, from
the support perspective, is free from any “impurities”, and in which the powerful (eviden-
tial, pd–acyclic) verification step is no longer required. Therefore, not only all arguments
and relations need to be valid, but also all the possible “paths” that the support relation
might create. In other words, if we have a set of arguments S s.t. every a ∈ S is suf-
ficiently supported through the N relation in an AFN (or the E relation in an EAS, or
satisfies the condition of a in an ADF), then the set is coherent (self–supporting or pd–
acyclic). Let us show that weak and relation validity forms do not remove all the support
cycles from the framework:

Example 59. Let us consider the EAS ES1 = ({η, a, b, c, d}, ∅, {({η}, a), ({η}, b),
({a}, c), ({b}, d), ({d}, c), ({c}, d)}) as depicted in Figure 40a. All arguments possess
an evidential sequence and the framework is weakly valid. Moreover, every support can
be used to construct an evidential sequence for an argument. However, even though set
{c, d} supports a and b through the support relation, it is clearly not self–supporting. Thus,
the framework is not strongly valid.

To such support cycles that still occur despite the weakly and relation valid forms we
will refer to as optional or hidden cycles. In other words, a given argument can be derived
both in acyclic and not acyclic manner. This situation cannot be simply fixed by removing
some support edges. The point is that all of those supports lead to powerful sequences (or
similar constructions) with which an argument can be derived. Consequently, removing
such links is not without effect on the semantics:
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Figure 40: Weakly and relation valid, but not strongly valid EASs

Example 60. In the framework ES1 = ({η, a, b, c, d}, ∅, {({η}, a), ({η}, b), ({a}, c),
({b}, d), ({d}, c), ({c}, d)}) from Figure 40a, removing the ({d}, c) and ({c}, d) supports
would not change the extensions of ES1 under any standard semantics.

However, let us consider a slight modification of ES1, the framework ES2 =
({η, a, b, c, d, e}, {({e}, a)}, {({η}, a), ({η}, b), ({η}, e), ({a}, c), ({b}, d), ({d}, c),
({c}, d)}) depicted in Figure 40b. Removing the ({d}, c) link would mean that all coher-
ent sets of c are attacked by {η, e} and that the argument will not appear in any admissible
extension, which is not the case in ES2.

Let us now go to the framework ES3 = ({η, a, b, c, d, e, f}, {({e}, a), ({f}, b),
({c}, e), ({d}, f)}, {({η}, a), ({η}, b), ({η}, e), ({η}, f), ({a}, c), ({b}, d), ({d}, c),
({c}, d)}) depicted in Figure 40c. We can observe that the sets {η, e} and {η, f} are
not admissible, even though {η, a, f} is. Let us now remove ({d}, c) and ({c}, d). This
means that the sets {η, b, c, d} and {η, a, c, d} are no longer self–supporting. As a result,
the sets {η, e} and {η, f} now become admissible, which is not the desired behavior.

Therefore, as we could have observed in the example, simply removing the support
links taking part in an optional cycle can “break” the behavior of the framework. Further-
more, such optional cycles can even exist between arguments that appear in the grounded
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extension, as was the case in e.g. ES1. The approach we want to pursue in the future will
focus on argument duplication. This means that a given argument can receive a number
of additional representations s.t. the obtained structure is in fact free from support cycles.
The construction resembles trying to build a support relation tree rooted at η, where we
introduce a duplicate argument whenever we come back to an element that has already
appeared in the structure. The duplicate also copies all the attacks carried out or received
by the original argument:

Example 61. We will now come back to the frameworks from Example 60 and show
their possible strongly valid forms. Let us start with ES1 = ({η, a, b, c, d}, ∅, {({η}, a),
({η}, b), ({a}, c), ({b}, d), ({d}, c), ({c}, d)}) from Figure 40a. The arguments c and d
took part in an optional cycle through the ({d}, c) and ({c}, d) support links. We thus
duplicate the arguments c and d and let them take over the problematic edges. This
brings us to the framework ESst1 = ({η, a, b, c, d, c′, d′}, ∅, {({η}, a), ({η}, b), ({a}, c),
({b}, d), ({d}, c′), ({c′}, d)}) from Figure 41a. We can observe that the resulting structure
is strongly valid. Moreover, replacing the occurrences of duplicate arguments with their
original ones in the extensions retrieves the answers of ES1.

Let ES2 = ({η, a, b, c, d, e, c′, d′}, {({e}, a)}, {({η}, a), ({η}, b), ({η}, e), ({a}, c),
({b}, d), ({d}, c), ({c}, d)}) be the framework depicted in Figure 40b. Its strongly
valid form is ESst2 = ({η, a, b, c, d, e}, {({e}, a)}, {({η}, a), ({η}, b), ({η}, e), ({a}, c),
({b}, d), ({d}, c′), ({c′}, d)}), visible in Figure 41b. In ES2, {η, b, d, c} was an admissi-
ble extension. It is no longer the case in ESst2 , since all coherent sets of c are attacked by
{η, c}. However, {η, b, d, c′} is admissible in ESst2 and by replacing c′ with the original c,
we retrieve the ES2 answer.

We end this example with the analysis of the EAS ES3 = ({η, a, b, c, d, e, f},
{({e}, a), ({f}, b), ({c}, e), ({d}, f)}, {({η}, a), ({η}, b), ({η}, e), ({η}, f), ({a}, c),
({b}, d), ({d}, c), ({c}, d)}) from Figure 40c. Its strong validity from is the frame-
work ESst3 = ({η, a, b, c, d, e, f, c′, d′}, {({e}, a), ({f}, b), ({c}, e), ({d}, f), ({c′}, e),
({d′}, f)}, {({η}, a), ({η}, b), ({η}, e), ({η}, f), ({a}, c), ({b}, d), ({d′}, c), ({c′}, d)})
that can be seen in Figure 41c. The sets {η, e} and {η, f} are not admissible in ES3. They
are also not admissible in ESst3 , as the first set cannot do anything about the attack from c′,
the other from d′. The set {η, a, f} is admissible in both frameworks – f deals with d and
c′, while e with a and d′. Therefore, again the transformation exhibits desired behavior.

Although we have focused on EASs in this analysis, it can be easily adapted to AFNs
and ADFs as well. We are now ready to introduce the strongly valid normal forms for our
frameworks and analyze their properties.

4.3.3.1 AFN Strong Validity

In the previous section, we could have observed that relation validity did not necessarily
mean that there are no support cycles in the framework. This means that that checking
whether every set of arguments sufficiently supporting a given argument (i.e. one that has

141



η

a b

c d

c’d’

(a) ESst1

η

a b

c d

c’d’

e

(b) ESst2

η

a b

c de f

c’d’

(c) ESst3

Figure 41: Strongly valid EASs

an element in common with every supporting set inN ) can be used in the construction of a
powerful sequence is not enough. Therefore, we strengthen this approach by requiring that
this restriction holds not just for one argument at a time, but for all of them simultaneously:

Definition 4.30. Let FN = (A,R,N) be an AFN. With sup(a) =
⋃
C⊆A,CNaC we will

denote all arguments supporting a and by suf(a) = {S | S ⊆ sup(a) and ∀C ⊆ s.t.
CNa, C ∩ S 6= ∅} all subsets of sup(a) that have an element in common with every
support set of a. The framework FN is strongly valid iff for every function f : A →
{S | a ∈ A, S ∈ suf(a)} we can create a powerful sequence (a0, ..., an) consisting of all
elements of A s.t. f(a0) = ∅ and f(ai) ⊆ {a0, ..., ai−1} for i > 0.
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As expected, a framework meeting the strong validity requirements is also weakly and
relation valid. Moreover, for frameworks in this form, it suffices to focus simply on sets in
which all arguments are supported, without being forced to do any analysis on the validity
of the support in order to ensure coherence:

Theorem 4.31. Let FN = (A,R,N) be an AFN. If FN is strongly valid, then it is weakly
and relation valid.

Theorem 4.32. Let FN = (A,R,N) be a strongly valid AFN. A set of arguments E ⊆ A
is coherent iff for every argument a ∈ E and set C ⊆ A s.t. CNa, C ∩ E 6= ∅.

We can observe that the support function f is in fact not much different from the notion
of a pd–function in ADFs and the construction of the powerful sequence with it is similar
to the creation of an acyclic evaluation. Hence, we can observe that this definition was
driven by our understanding of a strongly valid framework from the perspective of ADFs.
It will become more useful when comparing AFNs and ADFs. Nevertheless, this approach
is somewhat semantical and says little about the structural aspects of the framework in
question. We will now address this issue and propose an alternative way of looking at the
strongly valid frameworks. We can observe that for strongly valid frameworks, we can
create an ordering of the arguments s.t. independently of the used support function, the
ordering will form a powerful sequence:

Theorem 4.33. Let FN = (A,R,N) be an AFN. Let sup(a) =
⋃
C⊆A,CNaC denote all

arguments supporting a and suf(a) = {S | S ⊆ sup(a) and ∀C ⊆ s.t. CNa, C∩S 6= ∅}
stand for all subsets of sup(a) that have an element in common with every support set of
a. FN is strongly valid iff there exists a sequence (a0, ..., an) of all arguments in A s.t.
given any function f : A→ {S | a ∈ A, S ∈ suf(a)}, (a0, ..., an) is a powerful sequence
s.t. f(a0) = ∅ and f(ai) ⊆ {a0, ..., ai−1} for i > 0.

This “ultimate” sequence of arguments strongly resembles the idea of a topological
ordering for directed graphs. We can induce such graphs using the support relation and
using the previous theorems and their proofs, we can show that our sequence is indeed a
topological ordering for it. This means that the following property is true:

Theorem 4.34. Let FN = (A,R,N) be an AFN and SGFN = (A,N ′), where N ′ =
{(a, b) | ∃E ⊆ A, a ∈ E s.t. ENb}, the support graph induced by FN . FN is strongly
valid iff SGFN is a directed acyclic graph.

Hence, we have shown that what we understand by strong validity indeed coincides
with the directed acyclic graphs in the case of AFNs and thus gave both a semantical and
structural interpretation of this form.

Example 62. Let us consider the framework ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({f}, f)}), previously analyzed in Examples 16 and 48. We can

143



observe that the framework is not strongly valid; in particular, the only possible support
assignment for f is {f} and clearly we cannot create a powerful sequence with it. Simi-
larly, the support graph ({a, b, c, d, e, f}, {({b}, a), ({c}, a), ({f}, f)}) is not acyclic.

Let us now consider the framework ({a, b, d, e, f, g}, {(b, a), (b, c), (c, b), (c, d),
(d, f), (f, f)}, {({a, g}, c), ({d}, e), ({e}, f), ({g}, d), ({g}, f)}) depicted in Figure
42. We have two support functions, one assigning {g} to c and one assigning {a} to
c; all other assignments stay the same and are as follows. For a, b and g we have
simply ∅, for d we have {g}, for e we have {d}, and for f we have {e, g}. We can
observe that independently of the support function, the sequence (a, b, g, c, d, e, f) will
be a powerful sequence. Consequently, our framework is strongly valid. The sup-
port graph ({a, b, c, d, e, f, g}, {(a, c), (d, e), (e, f), (g, c), (g, d), (g, f)}) is also directed
acyclic – however, we can see that if we ignore the direction of the edges, acyclicity is
lost.

a b c d e

fg

Figure 42: Sample AFN

4.3.3.2 EAS Strong Validity

Let us now look at the strongly valid normal form in the context of EASs. The first
approach is in the same pd–function style as Definition 4.30. The construction is somewhat
simpler due to the differences between how group relations are interpreted in the evidential
support relation E and necessary support N .

Definition 4.35. Let ES = (A,R,E) be an EAS. The framework ES is strongly valid
iff for every function f : A → {S | a ∈ A, S ⊆ A, SEa} we can create an evidential
sequence (a0, ..., an) consisting of all elements of A s.t. f(a0) = ∅ and for i > 0 and
f(ai) ⊆ {a0, ..., ai−1} .

Just like in the case of AFNs, strongly valid frameworks are also weakly and relation
valid. Furthermore, we can replace the self–supporting extensions by sets that simply
support their members, i.e. e–support checks become unnecessary.

Theorem 4.36. Let ES = (A,R,E) be an EAS. If ES is strongly valid, then it is weakly
and relation valid.
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Theorem 4.37. Let ES = (A,R,E) be a strongly valid EAS. A set of arguments S ⊆ A
is self–supporting iff for every argument a ∈ S there is a set S ′ ⊆ S s.t. S ′Ea.

Similarly as strongly valid AFNs, strongly valid EASs possess (at least one) special
sequence of arguments s.t. independently of the chosen support function, it meets the
requirements of an evidential sequence. Consequently, a strongly valid EAS induced a
directed acyclic graph as well. However, we can recall that there was one significant
difference between powerful and evidential sequences, namely that the latter enforced the
existence of a supporting set for every non–η argument. This means that the induced
support graph is in fact rooted, with η being the obvious root. Therefore, the “structural”
aspects of a strongly valid EAS are not exactly the same as in AFNs:

Theorem 4.38. Let ES = (A,R,N) be an EAS. ES is strongly valid iff there exists a
sequence (a0, ..., an) of all arguments in A s.t. given any function f : A → {S | a ∈
A, S ⊆ A, SEa}, (a0, ..., an) is an evidential sequence s.t. f(a0) = ∅ and for i > 0 and
f(ai) ⊆ {a0, ..., ai−1}.

Theorem 4.39. Let ES = (A,R,E) be an EAS s.t. A 6= ∅ and SGES = (A,E ′), where
E ′ = {(a, b) | ∃X ⊆ A, a ∈ X s.t. XEb}, the support graph induced by ES. ES is
strongly valid iff SGES is a rooted directed acyclic graph s.t. η is the root.

Example 63. In Example 59 we have considered the EAS ({η, a, b, c, d}, ∅, {({η}, a),
({η}, b), ({a}, c), ({b}, d), ({d}, c), ({c}, d)}) and concluded it does not meet our strong
validity intuitions. Let us now describe this in terms of support functions. Independently
of the function, for η we have ∅ and for a and b we have {η}. It is only the assignments
for c and d that differ. We can first assign {a} to c and {b} to d; under these assumptions,
the sequence (η, a, b, c, d) is an evidential sequence. The same holds if we assign {a}
to c and {c} to d. If we choose to assign {d} to c and {b} to d, then (η, a, b, d, c) is an
evidential sequence. However, we finally come to the function that associates c with {d}
and d with {c}. We can observe that independently of how we order the arguments, we
will not obtain an evidential sequence. Hence, the framework is not strongly valid. If we
look at the support graph ({η, a, b, c, d}, {(η, a), (η, b), (a, c), (b, d), (d, c), (c, d)}), we
can also see that is not directed acyclic.

Let us now consider the EAS ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c), ({c}, b), ({c}, d),
({d}, f), ({f}, f)}, {({η}, b), ({η}, c), ({η}, d), ({η}, f), ({d}, e)}) previously described
in Example 17 and for convenience again depicted in Figure 43. We can observe it is not
strongly valid; although we do have support cycles as such, argument a does not posses
an evidential sequence at all. Hence, independently of the chosen support function, we
will never be able to order the arguments into an evidential sequence. If we look at the
support graph ({η, a, b, c, d, e, f}, {(η, b), (η, c), (η, d), (η, f), (d, e)}), we can observe it
is directed acyclic; however, it is not rooted at η.

We can now modify this framework by removing argument a and the associated attack.
We have a single support function assigning {η} to b, c, d and f and {d} to e. The
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Figure 43: Sample EAS

framework is trivially strongly valid; we can observe that the associated support graph
({η, b, c, d, e, f}, {(η, b), (η, c), (η, d), (η, f), (d, e)}) is both rooted and directed acyclic.

4.3.3.3 ADF Strong Validity

Finally, we come to the strongly valid ADFs. To put it simply, a framework is strongly
valid if every possible pd–function leads to an acyclic pd–evaluation covering all of the
arguments:

Definition 4.40. Let D = (A,L,C) be a redundancy–free ADF. The framework D is
strongly valid iff every pd–function pdDA on A is sound and the set A can be ordered into
a pd–sequence of an acyclic pd–evaluation on A w.r.t. pdDA .

Similarly as in AFNs and EASs, strong validity implies weak and relation validity. Ver-
ifying whether a set is pd–acyclic is reduced to checking whether there exists a (minimal)
decisively in interpretation s.t. its positive part is contained in the set.

Theorem 4.41. Let D = (A,L,C) be an ADF. If D is strongly valid, then it is weakly and
relation valid.

Theorem 4.42. Let D = (A,L,C) be a strongly valid ADF. A set of arguments E ⊆ A is
pd–acyclic iff for every argument a ∈ E there exists a minimal decisively in interpretation
va s.t. vta ⊆ E .

We can observe that the concept of the strongly valid form in ADFs is actually quite
close to the AADF+ subclass, which has been introduced in [75] (see Section 2.3.8). How-
ever, strong validity is in fact more restrictive, as it enforces the redundancy–freeness and
the fact that every argument has to have an evaluation, which is not the case in AADF+.

Theorem 4.43. Let D = (A,L,C) be an ADF. If D is strongly valid, then it is an AADF+.
If D is a redundancy–free cleansed AADF+, then it is strongly valid.

From this relation we can also make an observation that may be useful in the future.
Although the strong validity translation we hope to create would as such be focused on
preserving the aa–family of semantics, the relation of this normal form to the AADF+
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subclass means that strong validity is also valuable for other types. Of course, the trans-
lation for e.g. the cc–semantics would be different from the one for the aa–semantics.
Nevertheless, the strength of this form makes it useful also for semantics that do not deal
with support cycles.

Let us now focus on the alternative approach towards strong validity. The fact that
AFNs and EASs that were in strongly valid forms induced acyclic support graphs was not
particularly surprising. This method may also be simpler when compared to Definitions
4.30 and 4.35. However, creating and interpreting the support graph in ADFs is a little bit
more problematic than in these frameworks, which makes the structural interpretation of
this form somewhat less obvious.

A positive dependency graph can be induced from the positive parts of the minimal
decisively in interpretations appearing in the framework. However, just because an argu-
ment appears in the t–assignments of a decisively in interpretation, it does not mean that
the associated link is supporting in the context of Definition 2.114. In fact, it might be
neither supporting nor attacking, as can happen if we e.g. analyze a XOR or a XNOR
condition. Moreover, there is also the issue of redundant links. The sources of these links
do not have to appear in the minimal decisively in interpretations. However, by definition,
redundant links are those that are both supporting and attacking. Therefore, there might
be a link that is considered supporting based on the Definition 2.114, but does not appear
in the positive dependency graph. Finally, in order to be able to induce the graph, we need
to deal with the arguments that do not possess a decisively in interpretation in the first
place. This means that we either turn them into “self–supporters” in the positive depen-
dency graph in order to make a topological ordering impossible, or we limit ourselves to
ADFs in cleansed forms where this issue does not occur.

We can observe that some of these difficulties are the ones that caused us to draw a
line between AADF+s and strongly valid ADFs. Bearing in mind the discussion we have
carried out in Section 4.3.2.3 and the nature of the falsum arguments, we choose to define
the positive dependency graph only for the redundancy–free and cleansed ADF for the
time being. We choose to interpret the edges in this graph as representing the fact that a
given argument is, in some situation, necessary for the acceptance of another argument.
Therefore, the following version of the strong validity form can be introduced for ADFs:

Theorem 4.44. LetD = (A,L,C) be a redundancy–free ADF.D is strongly valid iff there
exists a sequence (a0, ..., an) of all arguments in A s.t. given any pd–function pd on A,
((a0, ..., an),

⋃n
i=0 pd(ai)) is an acyclic pd–evaluation.

Theorem 4.45. Let D = (A,L,C) be a redundancy–free and cleansed ADF and
PDGD = (A,L′), where L′ = {(a, b) | ∃v ∈ min dec(in, b) s.t. a ∈ vt}, its asso-
ciated positive dependency graph. D is strongly valid iff PDGD is a directed acyclic
graph.

With this example we close our section on strong validity in frameworks with support.
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a b c d e

> ¬a ∨ c b ¬c ∧ ¬e ¬d

Figure 44: Sample ADF

Example 64. Let ({a, b, c, d, e}, {Ca = >, Cb = ¬a∨c, Cc = b, Cd = ¬c∧¬e, Ce = ¬d})
be the ADF briefly described in Example 19 and for convenience again depicted in Figure
44. The minimal decisively in interpretations for our arguments are as follows: va = ∅ for
a, v1b = {a : f} and v2b = {c : t} for b, vc = {b : t} for c, vd = {c : f , e : f} for d and
ve = {d : f} for e. We can therefore create two pd–functions for this framework differing
only by the interpretation assigned to b. If we chose v1b , we can observe that the sequence
(a, b, c, d, e) is a part of an acyclic pd–evaluation ((a, b, c, d, e), {a, c, d, e}). However, if
we pick v2b , then due to the fact that the interpretation for b requires c and the one for c
requires b, it is not possible to create an acyclic pd–evaluation that would have all of our
arguments in its pd–sequence. Hence, our framework is not strongly valid. The positive
dependency graph for this framework is ({a, b, c, d, e}, {(c, b), (b, c)}) and is clearly not
directed acyclic.

Let us now analyze the ADF version of the AFN described in Example 62, i.e. the
framework ({a, b, c, d, e, f, g}, {Ca = ¬b, Cb = ¬c, Cc = ¬b ∧ (a ∨ g), Cd = ¬c ∧
g, Ce = d, Cf = ¬d ∧ ¬f ∧ e ∧ g, Cg = >}). The decisively in interpretation for
our arguments are the following: va = {b : f} for a, vb = {c : f} for b, v1c = {b :
f , a : t} and v2c = {b : f , g : t} for c, vd = {c : f , g : t} for d, ve = {d : t} for e,
vf = {d : f , f : f , e : t, g : t} for f and vg = ∅ for g. We can therefore construct
two sound pd–function on our set of arguments, one using v1c and the other using v2c .
However, independently of that, the sequence (g, a, b, c, d, e, f) is a part of an acyclic pd–
evaluation (which in both cases is ((g, a, b, c, d, e, f), {b, c, d, f})). Hence, our framework
is strongly valid. We can observe that the positive dependency graph is ({a, b, c, d, e, f, g},
{(a, c), (g, c), (g, d), (d, e), (e, f), (g, f)}) and it is directed acyclic.

Let ({a, b, c}, {Ca = (b ∧ c) ∨ c, Cb = a ∨ ¬a, Cc = >}) be the ADF previously
described in Example 46 depicted in Figure 34a. We can observe that this framework is an
AADF+; the minimal decisively in interpretations for b and c are empty and the one for a
is simply va = {c : t}. Hence, any standard pd–evaluation can be made acyclic. However,
both (a, b) and (b, a) are redundant connections, which means that our framework is not
strongly valid. Only by bringing it to the redundancy–free form ({a, b, c}, {Ca = c, Cb =
>, Cc = >}), we obtain validity.

4.4 Consistency Form
The consistency normal form will be especially relevant in the case of translations from
AFNs and EASs into ADFs. Basically speaking, this form needs to be considered when-
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ever we decide to transform a bipolar framework into an ADF. As already explained in
Section 2.3.9, not ensuring that a framework is in the consistency form can cause the re-
sulting ADF to produce undesirable extensions. Due to the relation of defense attack to
overpowering support in ADFs (see Section 8.6.1), EAFs also need to be taken into ac-
count, even though technically they do not qualify as support frameworks. Please note
that in this case, we will talk about the consistent subclass, not normal form, since we are
not convinced that a suitable translation exists. Moreover, for now we will not define the
consistent form for BAFs, as they will not be translated into ADFs (see Section 9.4).

Unlike the minimal form, the consistency form introduces auxiliary arguments and thus
is not a subframework. The point of the translation is to ensure that no argument is directly
attacked or supported by the same argument.This is done by changing the undesirable
direct support into an indirect one through an additional bypass argument. In what follows
we will consider the pure bypass consistency form and the self–attacker consistency form.
In the first approach, the bypass is just an intermediate argument in the support relation
and as such can appear in an extension. The translation is not very intrusive and has the
chance to be applicable to non–standard semantics as well. However, it can be faithful at
best. The other approach turns the bypass argument into a self–attacker, and although now
we can have exact translations, the method cannot be used with some of the semantics.

We close this section with the definitions of consistent AFNs and EASs; EAFs will be
described in Section 4.4.3. From now on when we will talk about consistency, we will
refer to the strong version, unless stated otherwise.

Definition 4.46. Let FN = (A,R,N) be a (set–form) AFN, a an argument in A and
X ⊆ A the set of attackers of a. We say that a is consistent iff @X ′ ⊆ X, X ′Na. a is
strongly consistent iff ∀B ⊆ A s.t. BNa, X ∩B = ∅. FN is (strongly) consistent iff all
of its arguments are (strongly) consistent.

Definition 4.47. Let ES = (A,R,E) be an EAS, a an argument in A, X the collection of
all and only arguments s.t. ∃X ′ ⊆ X ,X ′Ra andB the collection of all and only arguments
s.t. ∃B′ ⊆ B, B′Ea. a is strongly consistent iff X ∩ B = ∅. ES is (strongly) consistent
iff all of its arguments are (strongly) consistent.

4.4.1 Bypass Consistency Form

In Section 2.3.9 we have already discussed why the consistency form is needed and gave
a possible method for obtaining it. We recall two of the analyzed examples:

Example 34. Let us analyze an AFN FN2 = ({a, b, c, d}, {(a, d), (b, a), (d, c)},
{({b, c}, a)}) depicted in Figure 27b. We have that a is again attacked by b, and either
b or c needs to be present in order to accept a. If we were to defend from a, we would
need to either accept its attacker or cut off its support. In the AFN setting, we would need
to either accept b in the set, or attack both b and c, since the two coherent sets that we need
to attack are {a, b} and {a, c}. In ADF, only the set {c} (or, equivalently, interpretation
{b : f , c : t}) can satisfy the acceptance condition of a, thus assuming b or discarding c is
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sufficient. This can be seen as considering b primarily as an attacker. As a result, {d} is
ADF, but not AFN admissible.

Example 37. Now let us considerFN2 = ({a, b, c, d}, {(a, d), (b, a), (d, c)}, {({b, c}, a)})
from Example 34. We again introduce a bypass for b and obtain a framework
D2 = ({a, b, c, d, bb}, {(a, d), (b, a), (d, c)}, {({b}, bb), ({bb, c}, a)}) depicted in Figure
29b. It still holds that {d} is not AFN admissible. The corresponding ADF is now
({a, b, c, d, bb}, {Ca = ¬b ∧ (bb ∨ c), Cb = >, Cc = ¬d, Cd = ¬a, Cbb = b}) and this time
{d} is no longer admissible; its range interpretation falsifies c only and cannot prevent
acceptance of b and bb, and thus not of a.

In this section we will formalize the proposed method and show that it is indeed correct.

4.4.1.1 AFN Bypass Consistency Form

Let us now introduce the bypass consistency form of AFNs. The focus is on replacing
not the arguments that are not consistent, but on those that caused them to be so. To an
argument that is supporting and attacking another argument at the same time we will refer
to as the inconsistency origin:

Definition 4.48. Let FN = (A,R,N) be an AFN and a ∈ A an argument. The inconsis-
tency origin of a is defined as Oa = {b ∈ A | ∃B ⊆ A s.t. b ∈ B,BNa and bRa}.

We can observe that if a is strongly consistent, then Oa = ∅. By the abuse of notation,
we will write OE to denote the collection of all inconsistency origins of the arguments in
E ⊆ A.

For those arguments that caused the inconsistency, we now need introduce bypass
arguments. The bypasses are supported by their origins and, take their place in supporting
the target argument that was previously inconsistent. In order to make the translation more
readable, we will introduce the notion of a replacement function. The occurrences of a
given argument in the supporting sets of another argument are replaced with auxiliary
elements:

Definition 4.49. Let FN = (A,R,N) be an AFN and a ∈ A an argument. Given a set of
arguments S ⊆ A, the replacing arguments P b = {eb | e ∈ S} and a support (B, a) ∈ N ,
the replacement function is defined as:

rep(a, S, P b, (B, a)) =

{
(B, a) if B ∩ S = ∅
(B′, a) if B ∩ S 6= ∅, where B′ = (B \ S) ∪ {eb | e ∈ B ∩ S}

Translation 13. Let FN = (A,R,N) be an AFN and E ⊆ A the set of arguments that are
not strongly consistent. The strongly consistent AFN FN sc = (A′, R,N ′) corresponding
to FN is created as follows:

• we introduce the bypass arguments to A: A′ = A∪Ab, where Ab = {ab | a ∈ OE},
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• for every pair (B, a) ∈ N , we replace the arguments in B causing inconsistency of
a (if there is any) by their bypasses: we add rep(a,Oa, Ab, (B, a)) to N ′, and

• for every a ∈ OE , add the support to its bypass, i.e. put ({a}, ab) in N ′

Example 65. Let us consider the AFN FN1 = ({a, b, c, d, e}, {(a, b), (c, d), (d, a), (e, a),
(e, c)}, {({b, c}, d), ({d}, e)}) depicted in Figure 45a. Its admissible extensions are ∅, {c},
{a, c} and {b, d, e}. The set {c} attacks d, and since d is contained in every coherent set for
e, {c} defends itself. Moreover, it also defends a and we obtain the first three extensions.
Extension {b, d, e} attacks both a and c and defends its members. Additionally, the set is
coherent – b requires no support, d is (acyclically) supported by b and e by d. Based on
the presented analysis, the sets ∅, {a, c} and {b, d, e} are our complete extensions, with
the first being grounded and the latter two preferred and stable.

We can observe that the argument d is consistent, but not strongly consistent and
c is its inconsistency origin. Thus, we will introduce a bypass argument cb for c. It
will now be necessarily supported by c and take over the support from c to d. We
thus obtain the strongly consistent normal form framework FN sc = ({a, b, c, cb, d, e},
{(a, b), (c, d), (d, a), (e, a), (e, c)}, {({c}, cb), ({b, cb}, d), ({d}, e)}) from Figure 45b. Our
admissible extensions are now ∅, {c}, {c, cb}, {a, c}, {a, c, cb} and {b, d, e}, with ∅,
{a, c, cb} and {b, d, e} being the complete ones. Again, the first is also grounded and
the remaining two are preferred and stable. Therefore, we can observe that the original
extensions of FN1 can be retrieved by simply removing the bypass argument cb from the
extensions.

a b c

de

(a) FN1

a b cb

c

de

(b) Strongly consistent form of FN1

Figure 45: Sample AFN and its strongly consistent form

Theorem 4.50. Let FN = (A,R,N) be an AFN and FN sc = (A′, R,N ′) its correspond-
ing strongly consistent framework obtained through Translation 13. Let E ⊆ A, E ′ ⊆ A′

be sets of arguments and E b the (possibly empty) set of bypass arguments generated by
E in A′. If E is a σ–extension of FN , where σ ∈ {conflict–free, coherent, admissible,
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preferred, complete, grounded, stable}, then E ∪ E b is a σ–extension of FN sc. If E ′ is a
σ–extension of FN sc, then E ′ \ E b is a σ–extension of FN .

From this theorem we can also observe that e.g. validity and minimal forms are pre-
served by our translation.

Theorem 4.51. Let FN = (A,R,N) be an AFN and FN sc = (A′, R,N ′) its bypass
consistency form obtained through Translation 13. FN is weakly, relation and strongly
valid iff FN sc is. FN is in minimal form iff FN sc is.

We can now put our translation into the system and analyze its properties.
Redefinition of Translation 13: Let FrAFN be the collection of all AFNs on the domain
U and SConsAFN the collection of all strongly consistent AFNs on the domain U∪U b. For
a framework FN = (A,R,N), let E ⊆ A be the set of not strongly consistent arguments.
The bypass consistency form translation bc-TrAFN : FrAFN → SConsAFN is defined as
bc-TrAFN((A,R,N)) = (A′, R,N ′) for (A,R,N) ∈ FrAFN , where:

• A′ = A ∪ Ab, where Ab = {ab | a ∈ OE}, and

• N ′ = {({a}, ab) | a ∈ OE} ∪ {rep(a,Oa, Ab(B, a)) | (B, a) ∈ N}.

Redefinition of Theorem 4.50: Let σ ∈ {conflict–free, coherent, admissible, complete,
preferred, grounded, stable} be a semantics and SC Tr

σ the removal casting functions for
σ defined as SCX

σ (E ) = E ∩ A, where X ∈ FrAFN is an AFN with the set of arguments
A and E ∈ σ(bc-TrAFN(X)). The translation bc-TrAFN is strong under (σ, SC Tr

σ ). It is
semantics bijective under the complete, preferred, grounded and stable semantics and the
defined removal casting functions.
Analysis of Translation 13: Under the conflict–free, coherent, admissible, preferred,
complete, grounded and stable semantics and their removal casting functions, the transla-
tion bc-TrAFN is:

• full, target–subclass, injective

• weakly argument domain altering, argument introducing, induced support relation
introducing, support relation removing, attack relation preserving

• generic and weakly semantics domain altering

• structural

Translation bc-TrAFN is not modular. Under the complete, preferred, grounded, stable
and the removal casting functions, it is faithful.

Explanation. Any AFN can be taken as an input, even if it is in the consistency form
already. The produced AFNs will always be strongly consistent and it is easy to see this
does not cover all the possible AFNs. Thus, our approach is a target–subclass one. Our
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method is also easily seen to be injective; it suffices to remove the bypass argument and
reconnect the support to uniquely retrieve the source framework.

We can observe that both the semantics and argument domain are weakly altered – we
need access to bypass arguments that would not appear in any source framework. The
translation also introduces additional arguments – the bypasses – but does not delete any
existing ones. Technically speaking, we are removing and adding some support relations –
after all,N andN ′ are not comparable. However, we are rather dealing with a replacement;
a given argument is still supporting its target, just indirectly. Moreover, the change is only
in the “vicinity” of the bypass arguments. Since R does not undergo any changes, our
translation is clearly attack preserving. The fact that bc-TrAFN is generic can be easily
seen from the amount of semantics it handles. Finally, as the modifications done to the
framework do not depend in any way on the semantics, bc-TrAFN is structural.

Let us now show that our approach is, unfortunately, not modular. Consider a sim-
ple framework FN1 = ({a, b}, {(a, b)}, {({a}, b)}), in which a both supports and at-
tacks b. Its consistency normal form is FN ′1({a, ab, b}, {(a, b)}, {({ab}, b), ({a}, ab)}).
Let us look at two subframeworks FN2 = ({a, b}, ∅, {({a}, b)}) and FN3 =
({a, b}, {(a, b)}, ∅}) of FN2. Both of them are strongly consistent and will not be af-
fected by the translation. However, their union is again the original framework FN1, not
its strongly consistent form FN ′1, and as such is not even in SConsAFN . �

4.4.1.2 EAS Bypass Consistency Form

The consistency form and the semantics correspondence proofs for EASs follow the same
line of reasoning as for AFNs. We introduce a bypass argument whenever there is an
argument playing both attacking and supporting role and let the bypass take over the prob-
lematic support:

Definition 4.52. Let ES = (A,R,E) be an EAS and a ∈ A an argument. The incon-
sistency origin of a is defined as Oa = {b ∈ A | ∃B,B′ ⊆ As.t.b ∈ B ∩ B′, BEa and
B′Ra}.

We can observe that if a is strongly consistent, then Oa = ∅. By the abuse of notation,
we will write OE to denote the collection of all inconsistency origins of the arguments in
E ⊆ A.

For those arguments that caused the inconsistency, we now need introduce bypass
arguments. The bypasses are supported by their origins and, take their place in supporting
the target argument that was previously inconsistent. In order to make the translation more
readable, we will introduce the notion of a replacement function. The occurrences of a
given argument in the supporting sets of another argument are replaced with auxiliary
elements:

Definition 4.53. Let ES = (A,R,E) be an EAS and a ∈ A an argument. Given a set of
arguments S ⊆ A, the replacing arguments P b = {eb | e ∈ S} and a support (B, a) ∈ E,
the replacement function is defined as:
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rep(a, S, P b, (B, a)) =

{
(B, a) if B ∩ S = ∅
(B′, a) if B ∩ S 6= ∅, where B′ = (B \ S) ∪ {eb | e ∈ B ∩ S}

Translation 14. Let ES = (A,R,E) be an EAS and S ⊆ A the set of arguments that
are not strongly consistent. By the inconsistency origin of an argument e ∈ S we will
understand the set Oe = {a ∈ A | ∃B,B′ ⊆ As.t.a ∈ B,B′, BEe and B′Re}. The
union of the inconsistency origins of all arguments in S will be denoted OS . The strongly
consistent EAS ESsc = (A′, R,E ′) corresponding to ES is created as follows:

• we introduce the bypass arguments to A: A′ = A ∪Ab, where Ab = {ab | a ∈ OS},

• for every pair (B, a) ∈ E, replace the arguments causing inconsistency by their
bypasses, i.e. we add rep(a,Oa, Ab, (B, a)) to E ′, and

• for every a ∈ OS , add the support to its bypass, i.e. put ({a}, ab) in E ′.

Theorem 4.54. LetES = (A,R,E) be an EAS andESsc = (A′, R,E ′) its corresponding
strongly consistent framework obtained through Translation 14. Let S ⊆ A, S ′ ⊆ A′ be
sets of arguments and Sb the (possibly empty) set of bypass arguments generated by S in
A′. If S is a σ–extension of ES, where σ ∈ {conflict–free, self–supporting, admissible,
preferred, complete, grounded, stable}, then S ∪ Sb is a σ–extension of ESsc. If S ′ is a
σ–extension of ESsc then S ′ \ Sb is a σ–extension of ES.

Similarly as in the AFN case, the translation preserves the validity and minimal normal
forms.

Theorem 4.55. Let ES = (A,R,E) be an EAS and ESsc = (A′, R,E ′) its bypass con-
sistency form obtained through Translation 14. ES is weakly, relation and strongly valid
iff ESsc is. ES is in minimal form iff ESsc is.

We can now put our translation into the system and analyze its properties.
Redefinition of Translation 14: Let FrEAS be the collection of all EASs on the domain
U and SConsEAS the collection of all strongly consistent EASs on the domain U ∪U b. For
a framework ES = (A,R,E), let S ⊆ A be the set of not strongly consistent arguments.
The bypass consistency form translation bc-TrEAS : FrEAS → SConsEAS is defined as
bc-TrEAS((A,R,E)) = (A′, R,E ′) for (A,R,E) ∈ FrEAS , where:

• A′ = A ∪ Ab, where Ab = {ab | a ∈
⋃
e∈S O

e}, and

• E ′ = {({a}, ab) | a ∈ OS} ∪ {rep(a,Oa, Ab(B, a)) | (B, a) ∈ E}.

Redefinition of Theorem 4.54: Let σ ∈ {conflict–free, self–supporting, admissible, com-
plete, preferred, grounded, stable} be a semantics and SC Tr

σ the removal casting functions
for σ defined as SCX

σ (S) = S∩A, where X ∈ FrEAS is an EAS with the set of arguments
A and S ∈ σ(bc-TrEAS(X)). The translation bc-TrEAS is strong under (σ, SC Tr

σ ). It is
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semantics bijective under the complete, preferred, grounded and stable semantics and the
removal casting functions.
Analysis of Translation 13: Under the conflict–free, self–supporting, admissible, pre-
ferred, complete, grounded and stable semantics and their removal casting functions, the
translation bc-TrEAS is:

• full, target–subclass, injective

• weakly argument domain altering, argument introducing, induced support relation
introducing, support relation removing, attack relation preserving

• generic and weakly semantics domain altering

• structural

Translation bc-TrEAS is not modular. Under the complete, preferred, grounded and stable
semantics and the removal casting functions, it is faithful.

The same explanations as given in the AFN case hold for the EAS translation. Thus,
we will omit them.

4.4.2 The Self–Attacker Consistency Form

The bypass consistency form has the advantage of not affecting the attack relation and
only changing the length of existing supports. Consequently, this normal form has also
the chance of satisfying more demanding types of semantics, such as prudent or careful
[32, 33], if and when they are moved to AFNs and EASs. Or, in other words, if we looked
at these frameworks from the perspective of BAFs, then e.g. the safety constraints would
not be greatly affected and the created auxiliary attacks for bypass arguments would be the
same as for their origins. The price for this is that we need auxiliary arguments which show
up in the extensions. Thus, with this approach we can have faithful translations at best.
Consequently, we propose another way to obtain the consistent normal form, in which the
bypass arguments are also self–attacking. Since they will not appear in the extensions, we
can obtain an exact normal form translation, with the side effect that it might be less useful
for other types of semantics in the future. Unfortunately, this approach is not applicable
for stable semantics:

Example 66. Let us come back to the AFN FN1 = ({a, b, c, d, e}, {(a, b), (c, d), (d, a),
(e, a), (e, c)}, {({b, c}, d), ({d}, e)}) from Example 65, again depicted in Figure 46a.
Its admissible extensions were ∅, {c}, {a, c} and {b, d, e}. By introducing the cb bypass
and changing it into a self–attacker we obtain the strongly consistent normal form frame-
work FN sc = ({a, b, c, cb, d, e}, {(a, b), (c, d), (d, a), (e, a), (e, c), (cb, cb)}, {({c}, cb),
({b, cb}, d), ({d}, e)}) from Figure 46b. Our admissible extensions are now ∅, {c}, {a, c}
and {b, d, e}, with ∅, {a, c} and {b, d, e} being the complete ones. Again, the first is
also grounded and the remaining two are preferred. However, we can observe that while
{b, d, e} is a stable extension, {a, c} not anymore. It fails to attack cb in any way and thus
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does not meet the stability requirements. Fortunately, aside from stable semantics, we can
see that the original extensions of FN1 are exactly retrieved from FN2.

a b c

de

(a) FN1

a b cb

c

de

(b) Self–attacker strongly consistent form of
FN1

Figure 46: Sample AFN and its self–attacker strongly consistent form

We will now introduce a new translation type for obtaining a consistent framework
from the original one.

4.4.2.1 AFN Self–Attacker Consistency Form

The self–attacker consistency form transformation is just a slight modification of Trans-
lation 13 and we will still use the inconsistency origin and replacement functions from
Definitions 4.48 and 4.49. The only difference is in the modification of the attack relation:

Translation 15. Let FN = (A,R,N) be an AFN and E ⊆ A the set of arguments that are
not strongly consistent. The strongly consistent AFN FN sc = (A′, R′, N ′) corresponding
to FN is created as follows:

• we introduce the bypass arguments to A: A′ = A∪Ab, where Ab = {ab | a ∈ OE},

• the attack relation extends the existing one by adding bypass self–attacks: R′ =
R ∪ {(ab, ab) | ab ∈ Ab},

• for every pair (B, a) ∈ N , we replace the arguments in B causing inconsistency of
a (if there is any) by their bypasses: we add rep(a,Oa, Ab, (B, a)) to N ′, and

• for every a ∈ OE , add the support to its bypass, i.e. put ({a}, ab) in N ′.

Theorem 4.56. Let FN = (A,R,N) be an AFN and FN sc = (A′, R′, N ′) its correspond-
ing strongly consistent framework obtained through Translation 15. Let E b the (possibly
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empty) set of bypass arguments generated by a set E ⊆ A in A′. If a set of arguments E
is coherent in FN , then E ∪E b is pd–acyclic in FN sc. If E ′ ⊆ A′ is pd–acyclic in FN sc,
then E ′ ∩ A is coherent in E . E ⊆ A is a σ–extension of FN , where σ ∈ {conflict–free,
strongly coherent, admissible, preferred, complete, grounded}, iff it is a σ–extension of
FN sc. Every stable extension E of FN sc is stable in FN but not vice versa.

In order to address the issue of stability, one would have to provide means for attacking
the bypass arguments. If we add an attack from the origin to a bypass, we breach the
consistency restrictions and the whole approach is useless as a normal form. If we replace
the origin–bypass support by attack, we make it impossible for the arguments that attack
all coherent sets of the origin to attack all coherent sets of the bypass and breach the
stability requirements again, though from a different side. Propagating the attacks on the
origin to the bypass would require the use of group attack, which is not present in AFNs
(see attack propagation translations, e.g. Translation 63). Moreover, it would be quite an
expensive approach just to handle a rather minor local problem of inconsistency. Another
way of dealing with this problem would be to copy the support and attack relation the
origin receives to its bypass, thus avoiding the need for propagation. We would obtain
basically a duplicate argument attacked by the original one and although the inconsistency
originating and the initial argument would be resolved, we might be introducing a new
one. The original argument might be inconsistent itself and appear as a member of its
own support set, thus clashing on the bypass level with the attack it carries out. Although
by using some validity forms that will be presented in the next section we can prevent
inconsistent bypasses, such an approach seems rather excessive compared to the current
ones.

The validity and minimal forms are preserved by our translation in the same way they
were by Translation 13.

Theorem 4.57. Let FN = (A,R,N) be an AFN and FN sc = (A′, R,N ′) its self–attacker
consistency form obtained through Translation 15. FN is weakly, relation and strongly
valid iff FN sc is. FN is in minimal form iff FN sc is.

Redefinition of Translation 15: Let FrAFN be the collection of all AFNs on the domain
U and SConsAFN the collection of all strongly consistent AFNs on the domain U∪U b. For
a framework FN = (A,R,N), let E ⊆ A be the set of not strongly consistent arguments.
The self–attacker consistency form translation sa-TrAFN : FrAFN → SConsAFN is
defined as sa-TrAFN((A,R,N)) = (A′, R′, N ′) for (A,R,N) ∈ FrAFN , where:

• A′ = A ∪ Ab, where Ab = {ab | a ∈
⋃
e∈E O

e},

• R′ = R ∪ {(ab, ab) | a ∈ Ab}, and

• N ′ = {({a}, ab) | a ∈ OE} ∪ {rep(a,Oa, Ab(B, a)) | (B, a) ∈ N}.

Redefinition of Theorem 4.56: Let σ ∈ {conflict–free, coherent, strongly coherent,
admissible, complete, preferred, grounded} be a semantics and SC Tr

σ their identity casting
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functions. The translation sa-TrAFN is strong under (σ, SC Tr
σ ). With the exception of

coherent semantics, it is also semantics bijective. It is ⊇–weak under the stable semantics
and identity casting functions.
Analysis of Translation 15: Under the conflict–free, coherent, strongly coherent, ad-
missible, preferred, complete, grounded and stable semantics and their identity casting
functions, the translation sa-TrAFN is:

• full, target–subclass, injective

• weakly argument domain altering, argument introducing, induced support relation
introducing, support relation removing, induced attack relation introducing

• semantics domain preserving

• structural

Translation sa-TrAFN is not modular. Under the conflict–free, strongly coherent, admis-
sible, preferred, complete and grounded semantics and the identity casting functions, it is
generic and exact.

Explanation. Most of the properties can be explained the same way as it was done dur-
ing the analysis of Translation 13. Since R ⊆ R′, it should be clear that the translation
introduces new attacks. The same example can be used to show that this approach is also
not modular. The fact that the translation is exact for the standard semantics (with the
exception of stable) follows easily from the redefinition of Theorem 4.56. Moreover, this
time the semantics domain is preserved – the auxiliary arguments do not show up in the
extensions. �

4.4.2.2 EAS Self–Attacker Consistency Form

Similarly as in the AFN case, the EAS self–attacker consistency form is only a minor
modification of the bypass one. We only add additional conflicts for the bypass arguments:

Translation 16. Let ES = (A,R,E) be an EAS and S ⊆ A the set of arguments that are
not strongly consistent. The strongly consistent EAS ESsc = (A′, R,E ′) corresponding to
ES is created as follows:

• we introduce the bypass arguments to A: A′ = A ∪Ab, where Ab = {ab | a ∈ OS},

• the attack relation extends the existing one by adding bypass self attacks: R′ =
R ∪ {({ab}, ab) | ab ∈ Ab},

• for every pair (B, a) ∈ E, replace the arguments causing inconsistency by their
bypasses, i.e. we add rep(a,Oa, Ab, (B, a)) to E ′, and

• for every a ∈ OS , add the support to its bypass, i.e. put ({a}, ab) in E ′.
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Theorem 4.58. LetES = (A,R,E) be an EAS andESsc = (A′, R,E ′) its corresponding
strongly consistent framework obtained through Translation 16. Let S ⊆ A, S ′ ⊆ A′ be
sets of arguments and Sb the (possibly empty) set of bypass arguments generated by S in
A′. S is a σ–extension of ES, where σ ∈ {conflict–free, self–supporting conflict–free,
admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of ES.

Due to the fact that the actual support relation in both self–attacker and bypass forms
is the same, the same normal forms are preserved.

Theorem 4.59. Let ES = (A,R,E) be an EAS and ESsc = (A′, R,E ′) its self–attacker
consistency form obtained through Translation 16. ES is weakly, relation and strongly
valid iff ESsc is. ES is in minimal form iff ESsc is.

We can now put our translation into the system and analyze its properties.
Redefinition of Translation 16: Let FrEAS be the collection of all EASs on domain U
and SConsEAS the collection of all strongly consistent EASs on domain U ∪ U b. For a
framework ES = (A,R,E), let S ⊆ A be the set of not strongly consistent arguments.
The self–attacker consistency form translation sa-TrEAS : FrEAS → SConsEAS is de-
fined as sa-TrEAS((A,R,E)) = (A′, R′, E ′) for (A,R,E) ∈ FrEAS , where:

• A′ = A ∪ Ab, where Ab = {ab | a ∈
⋃
e∈S O

e},

• R′ = R ∪ {({ab}, ab) | ab ∈ Ab}, and

• E ′ = {({a}, ab) | a ∈ OS} ∪ {rep(a,Oa, Ab(B, a)) | (B, a) ∈ E}.

Redefinition of Theorem 4.58: Let σ ∈ {conflict–free, self–supporting conflict–free,
admissible, complete, preferred, grounded} be a semantics and SC Tr

σ the identity cast-
ing functions for σ. The translation sa-TrEAS is strong and semantics bijective under
(σ, SC Tr

σ ). The translation is ⊇–weak under stable semantics and identity casting func-
tions.
Analysis of Translation 15: Under the conflict–free, self–supporting conflict–free, ad-
missible, preferred, complete, grounded and stable semantics and their identity casting
functions, the translation sa-TrEAS is:

• full, target–subclass, injective

• weakly argument domain altering, argument introducing, induced support relation
introducing, support relation removing, induced attack relation introducing

• semantics domain preserving

• structural

Translation sa-TrEAS is not modular. With the exception of the stable semantics, the
translation is generic and exact under the listed semantics and identity casting functions.

The same explanations as given in the AFN self–attacker consistency translation hold
for the EAS version. Thus, we will omit them.
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4.4.3 Consistent EAF and EAFC Subclasses

Finally, we would also like to introduce a subclass of EAFs (EAFCs) referred to as
(strongly) consistent. The reason for introducing it is basically the same as in AFNs and
EASs; since defense attack can be translated into a particular form of support in ADFs
(see Section 8.6.1), the issue of being attacked and supported by the same argument arises
also in this framework. Already in Section 2.3.9 we could have observed that ignoring
inconsistencies produces framework with undesirable extensions. Therefore, in the con-
sistent EAF(C)s we intend to prevent situations where an argument is at the same time an
attacker and defense attacker of the same argument.

However, we are not aware of any method that would transform a given EAF or EAFC
into a consistent one. The sketch we have proposed in Section 2.3.9 created an ADF that
used support not related to defense attacks. Consequently, we will consider consistent
EAFs (EAFCs) a subclass, not a normal form for now. Please note that due to the fact that
EAFs allow only binary defense attacks, the consistent and strongly consistent subclass
will be one and the same thing.

Definition 4.60. Let EF = (A,R,D) be an EAF. EF is (strongly) consistent iff there is
no x, y, z ∈ A s.t. (x, y) ∈ R and (x, (z, y)) ∈ D.

Definition 4.61. Let EFC = (A,R,D) be an EAFC. EFC is consistent iff there is no
x, y, z ∈ A s.t. (x, y) ∈ R and ({x}, (z, y)) ∈ D. It is strongly consistent iff there is no
x, y, z ∈ A and X ⊆ A s.t. (x, y) ∈ R, x ∈ X and (X, (z, y)) ∈ D.

Example 67. Let us consider the EAF ({a, b, c, d}, {(c, a), (b, a)}, {(d, (c, a)), (c, (b, a))})
depicted in Figure 47a. We can observe that at the same time, c attacks a and defense
attacks the conflict (b, a). Thus, this is not a consistent framework.

We can also recall the framework ({a, b, c, d}, {(a, b), (b, a), (c, d), (d, c)}, {(a, (d, c)),
(b, (c, d)), (c, (b, a)), (d, (a, b))}) from Example 5, for convenience again depicted in Fig-
ure 47b. Although the structure is quite cyclic, it is still consistent; at no occasion is a
given argument a (direct) attacker and defense attacker of another argument. Similar holds
for EAFs from Examples 6 and 8.

4.5 Additional Framework Subclasses
We close this section with a list of various subclasses of the frameworks we are working
with that will become useful in the next parts of this work. Please note that the majority
of the introduced definitions will be quite straightforward. Many of our translations will
be target–subclass, and in many cases the produced frameworks will have some special
structural properties. Consequently, we have decided to gather the possible subclasses
into a single section. Additionally, we will show what types of normal forms they satisfy.
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ab c d

(a) Not strongly consistent EAF

a b

c

d

(b) Strongly consistent EAF

Figure 47: Examples of strongly and not strongly consistent EAFs

4.5.1 SETAF Subclasses

Concerning SETAF, there is one subclass worth mentioning explicitly, which is the Dung–
style SETAF. By this we understand that all sets of attacking arguments contain only a
single argument:

Definition 4.62. Let SF = (A,R) be a SETAF. SF is binary iff for every E ⊆ A s.t.
∃a, (E , a) ∈ R it holds that |E | = 1. With BinSETAF ⊆ FrSETAF we denote the binary
subclass of SETAFs.

Clearly, any binary SETAF is in minimal form. Moreover, we can easily create
SETAFs that are in minimal form but are not binary, and thus the relation between the
two is strict:

Lemma 4.63. Let SF = (A,R) be a SETAF. It holds that BinSETAF (MinSETAF .

4.5.2 AFRA Subclasses

For AFRAs, we would like to introduce the notion of the depth of a conflict and use it
to limit the level of recursion. It is important to note that not in every AFRA we can
determine how deep a given conflict is. For example, the AFRA depicted in Figure 48 is
basically one conflict cycle.

Definition 4.64. Let FR = (A,R) be an AFRA. The zero–depth conflicts of FR are
defined as R0 = R ∩ (A × A), i.e. they are directed at arguments only. The i–depth
conflicts of FR, where i > 0, are defined as Ri = R ∩ (A × Ri−1). FR is of recursion
depth i iff R =

⋃i
j=0Ri.

With RecAFRAi we will denote the subclass of AFRAs with recursion depth i. If i = 0,
then we call FR non–recursive.
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Figure 48: Cyclic AFRA

4.5.3 EAF and EAFC Subclasses

Apart from the previously considered strongly consistent and bounded hierarchical sub-
classes, three more types of EAF(C)s will be useful to use. The first encompasses the
frameworks in which no defense attacks occur. Another, excludes symmetric attacks from
the framework, which are responsible for the semantical differences between EAFs and
EAFCs (see Section 2.1.4). Finally, we simply distinguish the binary EAFCs, where all
defense attack are carried out by sets of size 1.

Definition 4.65. Let EF = (A,R,D) be an EAF(C). EF is without defense attacks iff
D = ∅. It is without symmetric attacks iff there are no a, b ∈ A s.t. (a, b), (b, a) ∈ R.

Definition 4.66. Let EFC = (A,R,D) be an EAFC. EFC is binary iff for every
(a, (b, c)) ∈ D, |a| = 1. With BinEAFC ( FrEAFC we denote the subclass of binary
EAFCs.

With NDefEAF (C) ( FrEAF (C) and NSymEAF (C) ( FrEAF (C) we will denote the
subclasses of EAF(C)s without defense attacks and symmetric attacks respectively. With
BinEAFC ( FrEAFC we mark the binary EAFCs.

We can observe that an EAF(C) without defense attacks is basically an AF. Conse-
quently, it is trivially bounded hierarchical and strongly consistent in both of the frame-
works. Lack of defense attacks in EAFCs also qualifies it as binary. The only less triv-
ial, though extremely useful property, is that bounded hierarchical frameworks are also
strongly consistent; this comes from the restriction that an attacker of an argument has to
be in the same layer as the argument it attacks, but the defense attacker has to be in the
next group.

Lemma 4.67. The following holds between the subclasses and normal forms of EAF(C)s:

• NDefEAF (C) ( BHEAF (C)

• NDefEAF (C) ( SConsEAF (C)
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• BHEAF (C) ( SConsEAF (C)

• NDefEAFC ( BinEAFC (MinEAFC

4.5.4 BAF Subclasses

A number of subclasses for BAFs can be distinguished. For future research, it would be
interesting to distinguish classes of BAFs on which the semantics classification collapses.
However, in our case we will focus only on three aspects. First, we consider BAFs without
support and those that are support acyclic. Additionally, we will introduce the notion of
support depth.

Definition 4.68. Let BF = (A,R, S) be a BAF. BF is without support iff S = ∅. It is
support acyclic iff the graph (A, S) is directed acyclic. BF is of support depth n if all
(simple) paths in the directed graph (A, S) are of length at most n,

With NSupBAF ( FrBAF , SAcyBAF ( FrBAF and SupBAFi ( FrBAF we denote
the subclasses of BAFs without support, with acyclic support and with support depth i
respectively.

It is easy to see that NSupBAF ( SAcyBAF . Since we did not really consider any
further normal forms for BAFs, we close this analysis only with a small remark on some
properties of BAFs without support:

Lemma 4.69. Let BF = (A,R, S) be a BAF with S = ∅. Then Rind = ∅. Every set of
arguments E ⊆ A is closed and inverse closed under S and if E is +conflict–free, it is
also safe.

4.5.5 AFN Subclasses

Just like in BAFs, we will distinguish subclasses without support and with a given support
depth. Due to the fact that AFNs permit support from groups of arguments, we can also
consider framework in which the sets carrying out support are only of size 1 or where at
most one supporting set exists per argument.

Definition 4.70. Let FN = (A,R,N) be an AFN and SGFN = (A,N ′), where N ′ =
{(a, b) | ∃E ⊆ A, a ∈ E s.t. ENb}, the support graph induced by FN . Then FN is:

• without support iff N = ∅.

• support binary iff for every S ⊆ A s.t. ∃a, (S, a) ∈ N it holds that |S| = 1.

• support singular iff for every argument a ∈ A, there exists at most one set S ⊆ A
s.t. (S, a) ∈ N .

• of support depth n if all (simple) paths in SGFN are of length at most n.
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• elementary with depth n if it is support binary, strongly valid and of support depth
n.

• well–structured if it is minimal, strongly consistent and strongly valid.

With NSupAFN ( FrAFN , SBinAFN ( FrAFN and SSigAFN ( FrAFN we denote
the subclasses of AFNs without support, support binary and support singular respectively.
We will use SupAFNn ⊂ FrAFN to refer to the subclass of AFNs with support depth n.
Finally, SEleAFNn = SBinAFN ∩ SV AFN ∩ SupAFNn stands for the elementary AFNs of
depth n and WStAFN = MinAFN ∩ SConsAFN ∩ SV AFN denotes the well–structured
frameworks.

We can now show some of the relations between our subclasses and normal forms
which will become useful in further parts of this work.

Lemma 4.71. The following holds between the subclasses and normal forms of AFNs:

• NSupAFN ( SConsAFN

• NSupAFN ( SBinAFN

• NSupAFN ( SSigAFN

• NSupAFN = SupAFN0 ∩ SV AFN

• SBinAFN (MinAFN

• SSigAFN (MinAFN

• SV AFN ( (WV AFN ∩RV AFN)

4.5.6 EAS Subclasses

In addition to the previously presented normal forms, we will also distinguish five sim-
ple EAS subclasses. The support and attack singular classes assumes that there exists at
most one supporting (attacking) set for every argument. The support and attack binary
frameworks allow their respective relations to be carried out by sets of size 1 only. The
all–supported subclass assumes that every argument is supported this way or the other,
independently of whether it is valid or not. This will become useful when translating from
EASs to other frameworks with support (see e.g. Section 11.4). Finally, we distinguish the
pure evidence supported frameworks, where every supporting set consists only of η. The
intersection of these two classes produces a type of frameworks which is often associated
with translations from attack–based structures to EASs.

Definition 4.72. Let ES = (A,R,E) be an EAS. It is:

• support singular iff for every argument a ∈ A there exists at most one set S ⊆ A
s.t. (S, a) ∈ E.
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• attack singular iff for every argument a ∈ A there exists at most one set S ⊆ A s.t.
(S, a) ∈ R.

• support binary iff for every S ⊆ A s.t. ∃a, (S, a) ∈ E it holds that |S| = 1.

• attack binary iff for every S ⊆ A s.t. ∃a, (S, a) ∈ R it holds that |S| = 1.

• all–supported iff for every a ∈ A \ {η} there is a set S ⊆ A s.t. (S, a) ∈ E.

• pure evidence supported iff every S ⊆ A s.t. ∃a, (S, a) ∈ E is of the form S =
{η}.

With ABinEAS ( FrEAS and ASigEAS ( FrEAS we denote the attack binary
and attack singular subclasses of EASs. Their support counterparts are ABinEAS and
SBinEAS . With AllSupEAS ( FrEAS we distinguish the all–supported EASs and use
EvSupEAS ( FrEAS to denote the pure evidence supported ones.

The following properties can be shown for the listed subclasses and the introduced
normal forms:

Lemma 4.73. The following holds between the subclasses and normal forms of EAFs:

• (ABinEAS ∪ ASigEAS) ∩ (SBinEAS ∪ SSigEAS)) (MinEAS .

• EvSupEAS ( (SBinEAS ∩ SSigEAS)

• EvSupEAS ( SConsEAS .

• (EvSupEAS ∩ AllSupEAS) ( (SConsEAS ∩ SV EAS)

• SV EAS ( (WV EAS ∩RV EAS)

• WV EAS ( AllSupEAS

4.5.7 ADF Subclasses

Finally, we come to the subclasses for ADFs. We will focus on distinguishing certain types
of conditions that correspond to various types of attacks – the binary, group and defense
conflicts. We will refer to them by the names of the frameworks that developed a given
relation.

Definition 4.74. Let D = (A,L,C) be an ADF. D is Dung–style (or AF–style) if for
every argument a ∈ A, Ca(∅) = in and for every nonempty E ⊆ par(a), Ca(E ) = out.
Equivalently, it is Dung–style if every condition is a conjunction of negated arguments or
>.

165



Definition 4.75. Let D = (A,L,C) be an ADF. D is SETAF–style if for every argument
a ∈ A, i) Ca(∅) = in, ii) if par(a) 6= ∅, then there exists E ⊆ par(a) s.t. Ca(E ) = out,
iii) and for every nonempty E ⊆ par(a) s.t. Ca(E ) = out, Ca(E ′) = out for every
E ⊆ E ′ ⊆ par(a). Equivalently, it is SETAF–style if every condition is a conjunction of
clauses containing only negated arguments or >.

Although we do not provide a functional description for EAF(C)–style conditions,
we choose to distinguish this subclass due to the relation between defense attacks and
overpowering support (see Section 8.6.1 for further discussion).

Definition 4.76. Let D = (A,L,C) be an ADF. D is EAFC–style if for every argument
a ∈ A, the condition Ca is a conjunction of clauses containing exactly one negated ar-
gument and an arbitrary amount of positive ones or Ca = >. D is EAF–style if it is
EAFC–style and no negation of an argument can appear in two different clauses.

To classes of frameworks containing the conditions of a given style we will refer to
as ADFAF ( FrADF , ADF SETAF ( FrADF , ADFEAFC ( FrADF and ADFEAF (
ADFEAFC .

We will now give some of the properties of our subclasses and repeat some of the
relations between the normal forms for easy access.

Lemma 4.77. The following holds between the subclasses and normal forms of ADFs:

• ADFAF ( (ADF SETAF ∩RFreeADF )

• ADF SETAF ( (BADF ∩ AADF+)

• ADF SETAF ( WV ADF

• ADF SETAF 6⊆ RFreeADF

• BADF 6⊆ AADF+ and AADF+ 6⊆ BADF

• WV ADF ( ClnADF

• SV ADF ( AADF+

• (AADF+ ∩RFreeADF ∩ ClnADF ) ⊆ SV ADF

• SV ADF ( (WV ADF ∩RV ADF )

• (RV ADF ∩ ClnADF ) ( WV ADF
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5 Translating AFs
The Dung’s framework is at the heart of abstract argumentation. Not surprisingly, all
other frameworks try to be “backward compatible” with it. By this we understand that
given a more advanced framework representing a given AF, the extensions under standard
semantics usually coincide for both structures. In this section we will recall how Dung’s
framework is retrieved by the structures from Section 2, including ADFs. In the majority
of the cases, the required modifications will be straightforward. We will also analyze every
translation from the point of view of the classification system we have introduced in this
work. Consequently, the readers will be given an opportunity to get more accustomed to it
before moving on to more complicated approaches. Our running example in this section
will be Example 1 from Section 2.1.1. We restate it here for the readers’ convenience:

Example 1. Consider the Dung’s framework F = (A,R) with A = {a, b, c, d, e} and the
attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted in Figure 1. It
has eight conflict–free extensions in total: {a, c},{a, d}, {b, d}, {a}, {b}, {c}, {d} and ∅.
As b is attacked by an unattacked argument, it cannot be defended against it and will not
be in any admissible extension. From this {a, c}, {a, d} and {a} are complete. We end up
with two preferred extensions, {a, c} and {a, d}. However, only {a, d} is stable, and {a}
is the grounded extension.

a b c d e

Figure 49: Sample Dung’s framework

5.1 AF as SETAF
SETAFs can naturally represent Dung’s framework by using attacking sets consisting of
just single elements [68, 73]. The correspondence of the semantics follows straightfor-
wardly from the definitions.

Translation 17. Let F = (A,R) be a Dung’s framework. The corresponding SETAF is
SF F = (A,R′), where R′ = {({a}, b) | (a, b) ∈ R}.

Please note that the SETAFs produced by our translation are clearly belong to the
BinSETAF subclass. Moreover, for any BinSETAF framework we can also easily imagine
a Dung’s framework from which it can be obtained and thus it is precisely the subclass
of AF obtained SETAFs. Since BinSETAF ⊂ MinSETAF (Lemma 4.63), the produced
frameworks also satisfy the minimal form:

Theorem 5.1. Let F = (A,R) be an AF and SF F its corresponding SETAF obtained
through Translation 17. SF F is in minimal form.
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Theorem 5.2. Let F = (A,R) be a Dung’s framework and SF F = (A,R′) its cor-
responding SETAF obtained through Translation 17. A set of arguments E ⊆ A is a
σ–extensions of F , where σ ∈ {conflict–free, admissible, preferred, complete, grounded,
stable} iff it is a σ–extension of SF F .

The presented translation and theorem can be moved into our system the following
way; we will also include the translation’s properties.
Redefinition of Translation 17: Let FrAF be the collection of all Dung’s frameworks and
BinSETAF the collection of all binary SETAFs, both based on argument domain U . The
translation TrAFSETAF : FrAF → BinSETAF is defined as TrAFSETAF ((A,R)) = (A,R′),
where R′ = {({a}, b) | (a, b) ∈ R} for a framework (A,R) ∈ FrAF .
Redefinition of Theorem 5.2: Let σ ∈ {conflict–free, admissible, preferred, complete,
grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ. The
translation TrAFSETAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 17: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and identity casting functions, the translation TrAFSETAF is:

• full, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• modular and structural

Translation 17 is classified as basic under the listed semantics and casting functions.

Explanation. The fullness and subclass properties follow from the redefinition of Transla-
tion 17. It is also easy to observe that the translation is nothing more than adding brackets
to an attack and no two different AFs can be translated into a single SETAF. Consequently,
our translation is an injection. The argument domain stays the same and although the bi-
nary attacks are now represented by single–element set attacks, no arguments or conflicts
are removed and thus the structure is preserved. The translation is also clearly generic and
semantics domain preserving. Exactness follows straightforwardly from the redefinition
of Theorem 5.2. Since the structure is preserved and every attack is translated indepen-
dently of another, we can observe that the translation is modular. Finally, as it does not
require any semantical notions from neither the source nor the target framework and does
not process the attack relation in any complicated manner, we can classify it as structural.
All of those properties qualify the Translation 17 as basic. �

Example 68. Let us come back to the framework F = (A,R), where A = {a, b, c, d, e}
and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, previously described in Example
1. The associated SETAF is SF F = (A,R′), where R′ = {({a}, b), ({c}, b), ({c}, d),
({d}, c), ({d}, e), ({e}, e)}. We can easily verify that ∅, {a}, {c}, {d}, {a, c} and {a, d}
are admissible in SF F . The complete extensions are {a}, {a, c} and {a, d}, with the first
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set being the grounded extension and the other two preferred. {a, d} is the stable extension
of SF F . We can observe that the produced sets are exactly the same as the ones we would
obtain from F .

5.2 AF as AFRA
While in AFRA attacks can be directed both at other attacks and arguments, Dung’s frame-
work allows only the latter. Consequently, an AFRA framework corresponding to a given
AF is obtained quite trivially [9]. However, since according to AFRA semantics attacks
also need to be explicitly included in an extension, precisely retrieving the AF extensions
requires more work and the authors resolve this issue by introducing a the AFRA operator
→ AFRA. Thus, our semantics casting function will not be an identity anymore and the
semantics domain will not be the same.

Translation 18. Let F = (A,R) be a Dung’s framework. The corresponding AFRA is
FRF = (A,R).

We can observe that the produced AFRA will be a non–recursive one, i.e. it will
contain only attacks on arguments:

Theorem 5.3. Let F = (A,R) be an AF and FRF = (A,R) its corresponding AFRA
obtained through Translation 18. FRF ∈ RecAFRA0 is non–recursive.

Definition 5.4. Let FR = (A,R) be an AFRA. Given a set of arguments E ⊆ A,
E→AFRA , E ∪ {V ∈ R | src(v) ∈ E}.

The work in [9] gives us the following results:

Theorem 5.5. Let F = (A,R) be a Dung’s framework, FRF = (A,R) its corresponding
AFRA obtained through Translation 18 and σ ∈ {complete, preferred, grounded, stable}
a semantics. The set E ⊆ A ∪R is a σ–extension of FRF iff E = U→AFRA, where U is a
σ–extension of F .

We will extend the existing results by explaining what happens to the conflict–free and
admissible semantics. An AF–obtained AFRA does not have attacks on attacks. Thus, if
an argument a ∈ A is defended by a given set, so is any attack that has a as the source.
Since it also holds that if an attack is defended then so is its source by Lemma 2.32,
we can conclude that every complete extension E of an AF–obtained AFRA will be of
the form E = (E ∩ A)→AFRA (please refer to [9] for further explanations). Thus, the
correspondence between AF and AFRA complete extensions is bijective. However, as not
every argument (or attack in the AFRA case) that is defended needs to be included in an
admissible extension, we no longer (or rather, not yet) deal with a bijection. For example,
in a simple Dung’s framework in which a attacks b, the AF admissible extension {a}
would have two corresponding AFRA sets, namely {a} and {a, (a, b)}. Moreover, due to
the fact that it is the attacks that carry out the defeats and their sources do not necessarily
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have to be present in admissible extensions, we do not even deal with a strong translation
anymore when we consider removal casting functions. The extensions would have to be
completed with missing arguments in order to preserve admissibility. The loss of strength
also occurs when we go down to conflict–freeness. Since an attack has to appear in an
AFRA extension in order for the source and target elements to be considered conflicting,
two arguments that would not form a conflict–free extension in an AF can be conflict–free
in the corresponding AFRA.

Theorem 5.6. Let F = (A,R) be a Dung’s framework and FRF = (A,R) its correspond-
ing AFRA obtained by Translation 18. If E ⊆ A is an admissible (conflict–free) extension
of F , then E→AFRA is an admissible (conflict–free) extension of FRF . If E ′ ⊆ A ∪ R
is an admissible (conflict–free) extension of FRF , then E ′ ∩ A might not be admissible
(conflict–free) in F .

Example 69. Let us consider a simple AF F1 = ({a, b, c}, {(a, b), (b, c)}). We can observe
that in its associated AFRA, the argument c is defeated by the (b, c) attack, which in turns
is (indirectly) defeated by the attack (a, b). Moreover, there are no attacks defeating (a, b)
in the framework. Consequently, we can show that {c, (a, b)} is admissible and conflict–
free in the associated AFRA. However, the corresponding set {c} is not admissible in F1,
as c is not defended from b.

We can also look at the AF F2 = ({a}, {(a, a)}). The set {a} is conflict–free in its
associated AFRA, even though it is not conflict–free in F2.

With this, we can finally put the AF–AFRA translation into our system. We already
know that the produced AFRAs are non–recursive. However, for every AFRA that has only
attacks between arguments we can easily construct an AF producing it. Thus, RecAFRA0 is
the most accurate codomain for the translation.
Redefinition of Translation 18: Let FrAF be the collection of all Dung’s frameworks
and RecAFRA0 the collection of all AFRAs without recursive attacks, both on domain U .
The translation TrAFAFRA : FrAF → RecAFRA0 is defined as TrAFAFRA((A,R)) = (A,R) for
(A,R) ∈ FrAF .
Redefinition of Theorems 5.5 and 5.6: Let σ ∈ {complete, preferred, grounded, stable}
be a semantics and SC Tr

σ the removal casting functions for σ defined as SCX
σ (E ) = E∩A,

where X = (A,R) ∈ FrAF is a framework and E ∈ σ(TrAFAFRA(X)). The translation
TrAFAFRA is strong and semantics bijective under (σ, SC Tr

σ ).
Let δ ∈ {conflict–free, admissible} be a semantics and SC Tr

δ the removal casting
functions defined as for σ. The translation TrAFAFRA is ⊆–weak under (δ, SC Tr

δ ).
Analysis of Translation 18: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and the removal casting functions the translation TrAFAFRA
is:

• full, target–subclass and injective

• argument domain and structure preserving
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• generic and semantics domain altering

• modular and structural

Under the complete, preferred, grounded and stable semantics and the removal casting
functions the translation TrAFAFRA is faithful.

The translation TrAFAFRA is classified as basic under the listed semantics and casting
functions.

Explanation. Just like in the SETAF case, most of the mentioned properties can be easily
observed from the redefinitions of the translation and respective theorems. The translation
in no way affects the framework and is trivially modular and structural. The semantics
domain altering property is a result of the fact that AF extensions contain arguments only,
while AFRA sets also include attacks. The faithfulness of the translation under the listed
semantics can be easily observed from the redefinitions of Theorems 5.5 and 5.6. �

Example 70. Let us come back to the framework F = (A,R) previously described in
Example 1, where A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.
Its associated AFRA FRF looks exactly the same. For the sake of simplicity, we will label
the attacks: α = (a, b), β = (c, b), γ = (c, d), δ = (d, c), ε = (d, e) and ζ = (e, e). Due to
the amount of possible admissible and conflict–free extensions, we will not focus on these
semantics. FRF has three complete extensions; {a, α}, {a, c, α, β, γ} and {a, d, α, δ, ε}.
We can observe that the sets {a}, {a, c} and {a, d} associated with them are the complete
extensions of F . The set {a, α} is the grounded extension of FRF , while {a, c, α, β, γ}
and {a, d, α, δ, ε} are preferred. They again correspond to the desired results in F . Finally,
we can observe that {a, c, α, β, γ} is not stable; it defeats neither e nor ζ . Fortunately,
{a, d, α, δ, ε} meets the stability criterion, and again corresponds to the extension {a, d}
produced by F .

5.2.1 Improvements

In this section we will discuss certain possible changes to the translation that would im-
prove its strength w.r.t. admissible semantics. Although the current approach is already
satisfactory based on how other semantics behave, the discussion presented here is valu-
able for understanding how changing the casting function can improve the range of our
translation without affecting the way the target framework is obtained.

Theorem 5.7. Let F = (A,R) be a Dung’s framework, FRF = (A,R) its corresponding
AFRA obtained by Translation 18 and σ ∈ {admissible, complete, preferred, grounded,
stable} a semantics. If E ⊆ A is a conflict–free extension of F , then E→AFRA is a
conflict–free extension of FRF . If E ′ ⊆ A ∪ R is a conflict–free extension of FRF , then
E = (E ′ ∩ A) ∪ {src(x) | x ∈ E ′ ∩ R} might not be conflict–free in F . If E is a σ–
extension of F , then E→AFRA is a σ–extension of FRF . If E ′ ⊆ A ∪ R is a σ–extension
of FRF , then E = (E ′ ∩ A) ∪ {src(x) | x ∈ E ′ ∩R} is a σ–extension of F .
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Redefinition of of Theorem 5.7: Let σ ∈ {admissible, complete, preferred, grounded,
stable} be a semantics and SC Tr

σ the casting functions for it defined as SCX
σ (E ) = (E ′ ∩

A) ∪ {src(x) | x ∈ E ′ ∩R} where X = (A,R) ∈ FrAF 17 and E ∈ σ(TrAFAFRA(X)). The
translation TrAFAFRA is strong under (σ, SC Tr

σ ). It is⊆–weak under conflict–free semantics
and the defined casting functions. It is semantics bijective under complete, preferred,
grounded and stable semantics and the defined casting functions.

To show that the translation is not semantics bijective under admissibility and the de-
fined casting function, we can come back to the example from the proof of Theorem 5.6.
Among other AFRA admissible extensions, the framework ({a, b, c}, {(a, b), (b, c)}) pro-
duces sets {a}, {(a, b)} and {a, (a, b)}. Using the defined casting function, they will all
be mapped to an AF admissible extension {a}.

Please note that the presented casting function technically qualifies as a two–step one,
consisting of removal and extraction components. Consequently, as a whole, it does not
qualify as any of the main types. For the admissible semantics, the extensions before and
after casting will become incomparable. However, for the semantics that are at least com-
plete, the casting will basically come back to the original approach from the redefinitions
of Theorems 5.5 and 5.6. Thus, it can be reclassified as a removal again. Please note that
the only reason we permit it is the fact that the attacks show up in the extensions and thus
the extraction part of the casting process does not require access to any auxiliary structure
that holds the contents of arguments.
Analysis of Translation 18: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and casting functions in the redefinition of Theorem 5.7,
the translation TrAFAFRA is:

• full, target–subclass and injective

• argument domain and structure preserving

• generic and semantics domain altering

• modular and structural

Under the complete, preferred, grounded and stable semantics and the defined casting
functions, the translation is faithful.

The translation TrAFAFRA is classified as basic under the listed semantics and casting
functions.

Explanation. The main properties hold as with the previous analysis, since the translation
itself does not change. For the complete semantics the defined casting functions are in
fact just removals and behave exactly like the ones from redefinition of Theorems 5.5 and
5.6 (see proof of Theorem 5.7). Therefore, we again have faithfulness under complete,
preferred, grounded and stable semantics. �

17We can also take (A,R) as an AFRA, since the structure of the two frameworks is identical.
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Example 71. Let us consider a Dung’s framework F1 = ({a, b, c}, {(a, b), (b, c)}). The
set {c, (a, b)} is admissible in its associated AFRA. Using the removal casting function, it
was transformed into the set {c}, which was not admissible in F1. However, by performing
the removal–extraction function, we obtain the set {a, c}, which is indeed admissible in
F1.

We can now look again at the framework ({a, b, c, d, e}, {α = (a, b), β = (c, b), γ =
(c, d), δ = (d, c), ε = (d, e), ζ = (e, e)}) from Example 70. Its complete extensions were
{a, α}, {a, c, α, β, γ} and {a, d, α, δ, ε}. Independently of whether we use the original
casting function or its improvement, we still obtain the sets {a}, {a, c} and {a, d}.

At this point it is reasonable to ask whether it is even possible to create an AF–AFRA
translation that is faithful for admissible semantics. Our answer is: not likely. There are
two main issues that need to be handled in order for that to be possible; we need to make
sure that if an attack is accepted, then so is its source, and if an argument is accepted, then
so are the attacks it carries out. If we would like to connect the acceptance of one argument
with another in AFs, we could use defense against self–attacking auxiliary arguments.
However, this approach in AFRAs would only cause including new attacks in an extension
and not necessarily new arguments. For example, consider a framework ({a, b}, {(a, b)}).
The AF admissible extension {a} has two corresponding AFRA extensions using removal
casting function – {a} and {a, (a, b)} – or three with the source including one – {a},
{(a, b)} and {a, (a, b)}. Trying to tie (a, b) to a by the use of defense would require
adding an argument c and attacks (c, c), (a, c) and (c, (a, b)). Although from the usual,
argument–centered perspective a would be “defending” the (a, b) attack from c, in AFRA
it would be the (a, c) attack doing it, and thus presence of the source is again not required
in the extension. Thus, we are not aware of any method that would allow us to tackle the
first issue and are not convinced that a direct faithful translation for admissible semantics
exists. However, it appears that relating AF not to AFRA but AFRA–produced AFNs (see
Translation 35) could address this problem. This approach is weak under the admissible
semantics, i.e. the produced AFN does not return all the original extensions. However,
the ones that actually are created, appear to be exhibiting the property that we wanted here
(see Section 7.4 for a discussion).

Considering the possibility of creating a translation and casting function that would be
exact under any semantics, it does not appear to be very likely, perhaps with the exception
of unique status ones such as grounded. For exactness we need identity casting functions,
which implies the same semantics domains. Unless we produce AFRAs that contain no
attacks, there is no chance for that. Moreover, having no attacks means a framework can
give us only a single extension, which drastically limits our choice of semantics. The
way to produce an AF–AFRA exact translation for the grounded semantics would be to
compute the grounded AF extension first and delete any other arguments and all of the
attacks from the framework. We thus have an exact, but lossy translation, and semantical
to the point of being practically useless.
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5.3 AF as EAF
The additional attacks – defense attacks – in EAFs were introduced as means to express
and argue about preferences in the framework. Without them, the framework is just a
Dung’s framework and not surprisingly, AFs translate into EAFs with the empty set of
defense attacks.

Translation 19. Let F = (A,R) be a Dung’s framework. The corresponding EAF is
EF F = (A,R, ∅).

Just like in the previous translations, not every type of EAF can be produced from
an AF. Only those without defense attacks will be created, and for every such EAF with
D = ∅, we can construct an AF producing it. Thus, NDefEAF is the most accurate
codomain description for this translation. The fact that there are no defense attacks in
the framework also means that the target EAS belongs to two convenient subclasses by
Lemmas 4.67:

Theorem 5.8. Let F = (A,R) be an AF and EF F = (A,R, ∅) its corresponding EAF
obtained through Translation 19. EF F is in NDefEAF . It is also bounded hierarchical
and (strongly) consistent.

Since there are no defense attacks in the framework, every attack will result in a defeat
w.r.t. any set of arguments. Moreover, various definitions can be simplified:

Theorem 5.9. Let EF = (A,R,D) ∈ NDefEAF be an EAF without defense attacks.
The following holds:

• an argument a defeats an argument b w.r.t. any set of arguments E iff (a, b) ∈ R

• a set of arguments E ⊆ A is conflict–free extension of EF iff there are no a, b ∈ E
s.t. aRb

• given a set of arguments E ⊆ A, a set containing a pair {(x, y)} s.t. x defeatsE y is
a reinstatement set on E for the defeatE by x on y iff x ∈ E .

• an argument a ∈ A is acceptable w.r.t. a set of arguments E ⊆ A iff for every
argument b s.t. bRa, there is c ∈ E s.t. cRb

• a set of arguments E is a stable extension of EF iff for every argument b /∈ E ,
∃a ∈ E s.t. aRb

This brings us to a rather natural result concerning the behavior of the semantics:

Theorem 5.10. Let F = (A,R) be a Dung’s framework and EF F = (A,R, ∅) its cor-
responding EAF obtained through Translation 19. A set of arguments E ⊆ A is a σ–
extension of F , where σ ∈ {conflict–free, admissible, complete, preferred, grounded,
stable} iff it is a σ–extension of EF F .
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With the translation at hand, we can show how the results look when put into our
system.
Redefinition of Translation 19: Let FrAF be the collection of all Dung’s frameworks an
NDefEAF the collection of all EAFs with empty set of defense attacks, both on domain U .
The translation TrAFEAF : FrAF → NDefEAF is defined as TrAFEAF ((A,R)) = (A,R, ∅)
for (A,R) ∈ FrAF .
Redefinition of Theorem 5.10: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ its identity casting functions. The translation
TrAFEAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 19: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and identity casting functions, the translation TrAFEAF is:

• full, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• modular and structural

The translation TrAFEAF is classified as basic under the listed semantics and casting func-
tions.

Explanation. The fact that the translation is full and target–subclass can be already seen in
the redefinition of Translation 19. Since the only change to the framework is the addition of
the empty set accounting for the defense attacks, it is easy to see that no two different AFs
will be assigned a single EAF. Thus, our translation can be easily shown to be injective,
argument domain and structure preserving. The amount of handled translations shows
that the approach is also generic; since the argument domain stays the same and in both
frameworks extensions contain arguments only, the semantics domains also stay the same.
Exactness follows straightforwardly from Theorem 5.10. Modularity can also be easily
shown due to the fact that the set of arguments and attacks is in no way affected by the
translation. The simplicity of this translation qualifies it as basic. �

Example 72. Let us come back to the framework F = (A,R) previously described in
Example 1, where A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.
The associated EAF is simply EF F = (A,R, ∅). Due to the lack of any defense attacks,
every attack becomes a defeatE w.r.t. any E ⊆ A. Moreover, every attack forms a trivial
reinstatement set for itself. Therefore, we can easily verify that ∅, {a}, {c}, {d}, {a, c} and
{a, d} are admissible extensions of EF F , which is exactly what F produces. {a} is the
grounded extension and {a, c}, {a, d} are preferred. These three sets are also the complete
extensions of EF F . Finally, {a, d} is the stable extension of EF F . We can observe that
the produced sets are exactly the same as the ones we would obtain from F .
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Please note that translating an AF into an EAFC proceeds in exactly the same manner
as for EAFs and yields the same results. Thus, we will not give the full definitions here.
It is only worth noticing that due to the fact that the produced EAFCs do not have any
defense attacks, the framework is also in minimal form.

5.4 AF as BAF
We now reach the first framework with support. The way BAFs generalize AFs is quite
straightforward. Although it is only briefly stated in [28], we retrieve the Dung’s frame-
work by just adding the empty support relation:

Translation 20. Let F = (A,R) be a Dung’s framework. The corresponding BAF is
BF F = (A,R, S), where S = ∅.

We can observe that due to the lack of any support in the framework, no indirect attacks
of any type will be created. Consequently, trying to parametrize +conflict–freeness and
defense with any types of conflicts will always boil down to using the direct attacks in
R only. Moreover, we can recall Lemma 4.69 to see that we no longer need to consider
safety and support closure:

Lemma 4.69. Let BF = (A,R, S) be a BAF with S = ∅. Then Rind = ∅. Every set of
arguments E ⊆ A is closed and inverse closed under S and if E is +conflict–free, it is
also safe.

Therefore, we can observe that the d–/s–/c–/i–classification of the BAF semantics is
not really necessary here. However, technically speaking, only the d–family is fully de-
fined under the constraint that we use the same parametrization for +conflict–freeness and
defense. Therefore, we will provide results only for these semantics, though it should be
clear that the other approaches will behave in the same way.

Theorem 5.11. Let F = (A,R) be an AF and BF F = (A,R, S) its corresponding BAF
obtained through Translation 20. Let R′, R′′ ⊆ Rind be arbitrary sets of indirect attacks.
A set of arguments E ⊆ A is conflict–free in F iff it is +conflict–free in BF F w.r.t. R′.
E ⊆ A is stable in F iff it is stable in BF F w.r.t. R′. E is a σ–extension of AF, where
σ ∈ {admissible, complete, preferred, grounded} iff it is a d–σ–extension of BF F w.r.t.
(R′, R′′).

We can now put the results into our system.
Redefinition of Translation 20: Let FrAF be the collection of all Dung’s frameworks
and NSupBAF the collection of all BAFs the empty support relation, both on domain U .
The translation TrAFBAF : FrAF → NSupBAF is defined as TrAFBAF ((A,R)) = (A,R, ∅)
for (A,R) ∈ FrAF .
Redefinition of Theorem 5.11: Let σAF ∈ {conflict–free, admissible, complete, pre-
ferred, grounded, stable} be an AF semantics semantics and σBAF ∈ {+conflict–free,
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d–admissible, d–complete, d–preferred, d–grounded, d–stable} a similar BAF semantics
with arbitrary R′, R′′ ⊆ Rind. Let SC Tr

σ be the identity casting functions for σ. The
translation TrAFBAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 20: Under the (+) conflict–free, (d–) admissible, (d–) complete,
(d–) preferred, (d–) grounded and stable semantics with arbitrary parameterizingR′, R′′ ⊆
Rind and identity casting functions, the translation TrAFBAF is:

• full, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• modular and structural

The translation TrAFBAF is classified as basic under the listed semantics and casting func-
tions.

Explanation. The functional and structural properties of the translation can be easily
observed from the redefinition of Translation 20. The amount of handled semantics qualify
the approach as generic. Its exactness follows from the redefinition of Theorem 5.11. The
translation is trivially structural. Since the only change is the addition of the empty set
accounting for the support relation and no arguments or attacks are added or removed,
modularity of the approach follows easily. All of this qualifies the translation TrAFBAF as
basic. �

Example 73. Let us come back to the framework F = (A,R) from Example 1, where
A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The associated
BAF is BF F = (A,R, ∅). We can observe that no indirect conflicts of any type can be
produced in this framework. Therefore, independently of the used parametrization, the
conflict–freeness and defense in BF F will boil down to considering only direct conflicts,
which is equivalent to conflict–freeness and defense in F . Consequently, we can easily
verify that ∅, {a}, {c}, {d}, {a, c} and {a, d} are d–/i–/s–/c–admissible in BF F . The
last two sets are also d–/i–/s–/c–preferred, with {a, d} being stable. Finally, {a}, {a, c}
and {a, d} are d–complete and {a} is d–grounded. We can observe that the produced
extensions correspond to the ones we would obtain from F .

5.5 AF as AFN
AFNs retrieve AFs in a fashion very similar to BAFs and EAFs [69]. Again, it suffices to
assume that no support relation occurs in the framework:

Translation 21. Let F = (A,R) be a Dung’s framework. The corresponding AFN is
FNF = (A,R,N), where N = ∅.
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The AF–produced AFNs belong to the NSupAFN subclass, which exhibits all of the
normal forms we have analyzed in Section 4. All of them follow trivially from the fact
that no support is present:

Theorem 5.12. Let F = (A,R) be an AF and FNF = (A,R,N) its corresponding AFN
obtained through Translation 21. FNF is minimal, (strongly) consistent, and weakly,
relation and strongly valid.

Hence, our AFNs are both elementary and well–structured. It is also worth mention-
ing, that in AFNs without support, conflict–free and strongly coherent extensions coincide
and thus AF conflict–free extensions can be obtained from two semantics. Moreover, the
coherent extensions become somewhat pointless – they simply return the power set of
arguments.

Theorem 5.13. Let F = (A,R) be a Dung’s framework and FNF = (A,R,N) its cor-
responding AFN obtained through Translation 21. A set of arguments E ⊆ A is a σ–
extensions of F , where σ ∈ {conflict–free, admissible, preferred, complete, grounded,
stable} iff it is a σ–extension of FNF .

We can now put the existing results into our system. Please note that the AF–AFN
translation exhibits the same properties as the AF–BAF one. Therefore, we will omit
further explanations of the properties.
Redefinition of Translation 21: Let FrAF be the collection of all Dung’s frameworks
and NSupAFN the collection of all AFNs with empty support relation, both on argument
domain U . The translation TrAFAFN : FrAF → NSupAFN is defined as TrAFAFN((A,R)) =
(A,R, ∅) for (A,R) ∈ FrAF .
Redefinition of Theorem 5.13: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ its identity semantics casting functions. The
translation TrAFAFN is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 21: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and identity casting functions, the translation TrAFAFN is:

• full, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• modular and structural

The translation TrAFAFN is classified as basic under the listed semantics and casting func-
tions.

Example 74. We will again continue with the AF from Example 1, i.e. F = (A,R) where
A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The associated
AFN is FNF = (A,R, ∅). We can observe that every argument a ∈ A has a trivial
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(minimal) coherent set {a}. Therefore, a set of arguments E ⊆ A attacks all coherent sets
of a given argument in FNF iff it attacks this argument directly. Moreover, any subset of
A is coherent in FNF . Consequently, it is easy to check that the sets ∅, {c}, {d}, {a},
{a, c} and {a, d} are both strongly coherent and defend their members. Thus, they are
the admissible extensions of FNF . The latter three are also complete, with {a} being
grounded and {a, c}, {a, d} preferred. Finally, {a, d} is stable in FNF . These answers
are in agreement with the extensions produced by F .

5.6 AF as EAS
Converting an AF into an EAS requires two things. First of all, we need to transform the
binary attack to group form, which is a very simple modification. Then, unlike in any other
framework, we need to adapt the support relation. In EASs, the unsupported arguments
are not considered valid, and leaving an empty support relation would give us a framework
returning {η} or ∅ as our extensions. Validity comes from evidence, and therefore we
need to both add the evidence argument to the structure and include the support from it to
every AF argument. The translation is basically the same as first transforming the AF into
SETAF, and then exploiting the SETAF–EAS translation (see [73] or Section 6.4). This
brings us to the following formulation:

Translation 22. Let F = (A,R) be a Dung’s framework. The corresponding EAS is
ESF = (A ∪ {η}, R′, E), where R′ = {({a}, b) | (a, b) ∈ R} and E = {({η}, a) | a ∈
A}.

The EASs produced by AFs belong to the intersection of various subclasses of EASs.
First of all, we produce attack binary and support binary EASs. Moreover, every sup-
porting set is just {η} and every argument receives support from it. The intersection of
ABinEAS , EvSupEAS and AllSupEAS finally gives us the description of the subclass
AFEAS of AF–produced EASs. Due to Lemma 4.73, AFEAS satisfies all of the EAS
normal forms from Section 4:

Theorem 5.14. Let F = (A,R) be a Dung’s framework and ESF = (A ∪ {η}, R′, E) its
corresponding EAS obtained through Translation 22. ESF is minimal, consistent, weakly,
relation and strongly valid.

We can observe that the original extensions can be retrieved by removing η from the
target answers:

Theorem 5.15. Let F = (A,R) be a Dung’s framework and ESF = (A ∪ {η}, R′, E)
its corresponding EAS obtained through Translation 22. A set of arguments S ⊆ A is a
σ–extensions of F , where σ ∈ {conflict–free, admissible, preferred, complete, grounded,
stable} if S ∪ {η} is a σ–extension of ESF . Moreover, if S ⊆ A is conflict–free in F , then
it is also conflict–free in ESF . A set of arguments S ′ ⊆ A ∪ {η} is a σ–extension of ESF

if S ′ \ {η} is a σ–extension of F .
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Please note that ∅ is also trivially admissible and conflict–free in ESF . Moreover, due
to the additional argument η, a bigger number of conflict–free extensions will be created.
However, filtering out η brings back exactly the sets created in F . We can also observe
that adding η to the sets in the powerset of A will give us all the self–supporting sets in the
target ES. From the properties of the evidential frameworks, it is easy to see that every
complete extension will contain η, which is not the case in admissible semantics (note the
empty set). Therefore, from complete semantics on, the relation between the target and
source extensions is in fact one–to–one.
Redefinition of Translation 22: Let FrAF be the collection of all Dung’s frameworks
on domain U and AFEAS the EASs with single element attacks and every argument being
supported by and only by evidence on domain U ∪{η}. The translation TrAFEAS : FrAF →
AFEAS is defined as TrAFEAS((A,R)) = (A′, R′, E) for (A,R) ∈ FrAF , where A′ =
A ∪ {η}, R′ = {({a}, b) | (a, b) ∈ R and E = {({η}, a) | a ∈ A}.
Redefinition of Theorem 5.15: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ their removal casting functions defined as
SCX

σ (S) = S ∩ A, where X = (A,R) ∈ FrAF and S ∈ σ(TrAFEAS(X)). The translation
TrAFEAS is strong under (σ, SC Tr

σ ). It is semantics bijective under the complete, preferred,
grounded and stable semantics and their removal casting functions.
Analysis of Translation 22: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and the removal casting functions, the translation TrAFEAS
is:

• full, target–subclass and injective

• weakly argument domain altering, argument introducing, induced support introduc-
ing and attack relation preserving

• generic and weakly semantics domain altering

• modular and semi–structural

Under the complete, preferred, grounded and stable semantics and the removal casting
functions, the translation is faithful.

The translation TrAFEAS is classified as basic under the listed semantics and casting
functions.

Explanation. Since any Dung’s framework can be translated into an EAS and AFEAS

clearly does not account for all the possible evidential frameworks, the translation is full
and target–subclass. Clearly, it cannot be the case that two different AFs produce the same
EAS – they would differ in the same manner as their source frameworks do. Thus, our
approach is also injective. The structural properties of TrAFEAS can be easily observed from
the way Translation 22 is defined. Due to the amount of handled semantics, the translation
is generic. From Theorem 5.15 we can also see that the semantics domain is only weakly
altered. The transformation can be classified as semi–structural. Although adding the evi-
dence argument is just a structural modification that is required by the definition of EASs,
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the fact that we add support from it to every other argument comes from our knowledge
on how unsupported arguments would be treated by the EAS semantics. Faithfulness is a
result of the redefinition of Theorem 5.15. TrAFEAS is also easily seen to be modular. �

Please note that under the admissible semantics, the translation TrAFEAS is actually
weakly faithful according to the classification from [42] (see also Section 3.2.3). This
means that there is a bijection between the admissible extensions of a source AF and the
admissible extensions of the produced EAS if we exclude the ∅ from the latter.

Example 75. We will again continue with the AF from Example 1, i.e. F = (A,R) where
A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The associated EAS
is ESF = (A ∪ {η}, R,E), where E = {({η}, a), ({η}, b), ({η}, c), ({η}, d), ({η}, e)}.
For every argument a ∈ A, {η, a} is a minimal self–supporting set. In fact, empty set and
every subset of A ∪ {η} that contains η are self–supporting in ESF . Since η cannot be
attacked and every attack in ES is binary, acceptability in ESF boils down to verifying
whether every attacker of a given argument is also (directly) attacked. Therefore, we can
show that ∅, {η}, {η, c}, {η, d}, {η, a}, {η, a, c} and {η, a, d} are admissible in ESF . By
removing η, we obtain all the admissible extensions of F , though we can observe that ∅ is
obtained both from ∅ and {η}. All of the sets {η, a}, {η, a, c} and {η, a, d} are complete
in ESF . Removing the evidence argument again retrieves the desired extensions of F .
However, this time we can observe that the relation is one–to–one. The first extension is
also the grounded one and the remaining two are preferred. Finally, {η, a, d} is the stable
set of ESF ; we can observe that {η, a, c} does not attack e, even though it possesses a
self–supporting set on A ∪ {η}.

5.6.1 Improvements

Although faithful translations are quite satisfactory, we could ask ourselves whether it is
possible to create a full and exact translation from AFs to EASs. The general answer is: no.
EASs require the presence of an evidence argument in the framework. In our approach, we
have added it as a separate argument and weakly altered the argument domain in order to
make sure that the source framework did not contain such an argument before. The reason
for that is that not in every AF we can find a suitable argument that could play the role
of evidence. For example, we can imagine a simple framework ({a, b}, {(a, b), (b, a)})
with two symmetrically attacking arguments. The η argument is not allowed to attack
any other argument and thus neither a nor b can take over its function. Consequently, the
introduction of another argument is unavoidable. This brings us to the following result,
which in fact holds for any other framework we are considering in this work:

Theorem 5.16. Let FrAF be the collection of all AFs on a domain UAF and FrEAS the
collection of all EASs on a domain UEAS . There exists no full translation from FrAF to
FrEAS that is exact under admissible, complete, preferred, grounded and stable semantics
and their identity casting functions.
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However, we can observe that since conflict–freeness does not take into account the
support relation, an exact approach is possible in this case – we simply do not include η or
any support from it.

5.7 AF as ADF
Although it was already stated before that ADFs properly generalize the Dung’s frame-
work, not in all cases formal proofs were given. By “properly” we mean that the extensions
under a σ–semantics of a given Dung’s framework are the same as of the corresponding
ADF. In this section we will show how to translate AFs into ADFs and that the extensions
of both structures coincide under the semantics we have presented in Section 2.3.5. Results
for other semantics families can be found in [21] and are based on the same translation that
we will present here.

The translation of AFs to ADFs is pretty straightforward. Let a ∈ A be an argument
and X = {x1, .., xn} the set of arguments attacking a. Whenever any of xi′s is present in
a given set, a cannot be accepted. Only when all of them are absent, we can assume a.
Consequently, for any set Y ⊆ A s.t. Y ∩ X 6= ∅, the condition of a is out. Since the
acceptance condition is technically defined only for the set of parents, which in this case
is precisely X , it is easy to see that only ∅ will be mapped to in. The boolean version is
just atta = ¬x1 ∧ ... ∧ ¬xn; we will abbreviate this construction with

∧
¬X .

Translation 23. Let F = (A,R) be a Dung’s framework and Xa = {x1, ..., xna} the
collection of attackers of an argument a ∈ A. The ADF corresponding to F is DF =
(A,R,C), where C = {Ca}a∈A and every Ca is created in the following way:

• Functional form: Ca(∅) = in and for all nonempty B ⊆ Xa, Ca(B) = out

• Propositional form: Ca = atta =
∧
¬Xa. In case Xa is empty, it is simply >

Remark. Let (A,R,C) be an ADF obtained from a Dung’s framework (A,R) by the trans-
lation above. The acceptance condition for an argument s ∈ S can be equivalently de-
scribed as

∧
¬par(s), or simply > if par(s) = ∅. It is easy to see that every decisively in

interpretation will map all arguments of par(s) to f and a minimal one will consist only
of these mappings. Consequently, any decisively out interpretation will assign t to at least
one element of par(s). If the condition is> (and par(s) = ∅) then obviously no decisively
out interpretation exists. It is also worth noticing that in this case, every interpretation that
falsifies the condition of s is at the same time decisive for s.

Before we continue showing how semantics behave after the translation, we would
first like to note that the sub–semantics classification of ADFs collapses on Dung–style
frameworks (see Definition 4.74). Since the system is built around the positive dependency
cycles and the Dung’s framework does not use any support relations, the fact that Dung–
style ADFs are also AADF+s should not be surprising. Moreover, the are also BADFs,
and the simplicity of AF produced ADFs qualify them for all of the normal forms we have
described in Section 4. Thus, by Lemma 4.77, we can conclude the following:
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Theorem 5.17. Let F = (A,R) be a Dung’s framework andDF = (A,C) its correspond-
ing ADF obtained through Translation 23. Then DF is an AADF+ and a BADF. It is also
redundancy–free, weakly, relation and strongly valid and cleansed.

We can now introduce certain theorems that will simplify the proof on the relation
between the extensions of AFs and their corresponding ADFs. Since all the extension–
based sub–semantics coincide by Theorem 2.172, we do not need to analyze the acyclic
semantics.

Theorem 5.18. Let F = (A,R) be a Dung’s framework, DF = (A,R,C) its correspond-
ing ADF obtained through Translation 23 and E ⊆ A a set of arguments. The following
holds:

• E− in F equals the union of parents of all arguments in E in DF .

• E is conflict–free in F iff it is conflict–free in DF .

• if E is conflict–free, then E+ in F coincides with the discarded set of E in DF .

Theorem 5.19. Let F = (A,R) be a Dung’s framework, DF = (A,R,C) its correspond-
ing ADF obtained through Translation 23. Let E ⊆ A be a conflict–free set of F and DF

and a ∈ A an argument. E defends a in F iff a is decisively in w.r.t. vE in DF .

The above brings out to the following, final result. Please note that by Theorems 2.172
and 5.17 our classification collapses, it does not really matter what type of prefixing we
assume.

Theorem 5.20. Let F = (A,R) be a Dung’s framework and DF = (A,R,C) its corre-
sponding ADF obtained through Translation 23. A set of arguments E ⊆ A is a conflict–
free extension of F iff it is (pd–acyclic) conflict–free in DF . E ⊆ A is a stable extensions
of F iff it is (stable) model of DF . E ⊆ A is a grounded extensions of F iff it is (acyclic)
grounded in DF . E ⊆ A is a σ extensions of F , where where σ ∈ {admissible, preferred,
complete} iff it is an xy–σ–extension of DF for x, y ∈ {a, c}.

We can now put the results into our system:
Redefinition of Translation 23: Let FrAF be the collection of all Dung’s frameworks
and ADFAF the AF–style ADFs, both on domain U . The translation TrAFADF : FrAF →
ADFAF is defined as TrAFADF ((A,R)) = (A,R,C) for (A,R) ∈ FrAF , where C = {Ca |
a ∈ A} and given the set X ⊆ A of attackers of a, Ca is defined as a) Ca(∅) = in and for
all nonempty B ⊆ X , Ca(B) = out; or b) Ca = > if X = ∅ and Ca =

∧
¬X otherwise.

Please note that due to the difference in the way semantics are called and the fact that
a given AF semantics can coincide more than with one ADF semantics, we need to use the
similarity notion (see Definition 3.2).
Redefinition of Theorem 5.20: Let σAF ∈ {conflict–free, admissible, complete, pre-
ferred, grounded, stable} be an AF semantics and let σADF ∈ {conflict–free, pd–acyclic
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conflict–free, xy–admissible, xy–complete, xy–preferred, grounded, acyclic grounded,
model, stable} for x, y ∈ {a, c} be a similar ADF semantics. Let SC Tr

σ the identity
casting functions for σ. The translation TrAFADF is strong and semantics bijective under
(σ, SC Tr

σ ).
Analysis of Translation 23: Under the (pd–acyclic) conflict–free, (xy–) admissible,
(xy–) complete, (xy–) preferred, (acyclic) grounded and (stable) model semantics with
x, y ∈ {a, c} and the identity casting functions, the translation TrAFADF is:

• full, target–subclass and injective

• argument domain preserving and structure preserving

• generic, semantics domain preserving and exact

• ⊗–modular and structural

The translation is not ⊕–modular. The translation TrAFADF is classified as basic under the
listed semantics and casting functions.

Explanation. Any Dung’s framework can be translated into an ADF and the produced
ADFAF class does not account for all the possible frameworks. Thus, the translation is
full and target–subclass. There is clearly a one to one relation between the set of attackers
of a given argument and the propositional formula (or function) created from them. Since
no arguments are added or removed, a given ADF can be produced only by a single AF and
the translation is injective. For similar reasons, the approach is also structure preserving –
no argument or relation is removed or added, and the nature of the relation stays the same
(see Theorem 5.17 and Lemma 4.77). Further structural and semantical properties follow
easily from the definition of Translation 23 and Theorem 5.20 and their redefinitions. The
translation is also structural – although the attacks need to be transformed into acceptance
conditions, no ADF semantics or any knowledge on them is required to do this.

We will now discuss modularity. Let F1 = (A1, R1), F2 = (A2, R2) and F3 =
(A1 ∪ A2, R1 ∪ R2). We can observe that conditions of arguments in AF–style ADFs
are simply conjunctions of the negations of their parents. Moreover, the parents of a given
argument are the same in TrAFADF (A1)⊗ TrAFADF (A2) as in TrAFADF (A3). Consequently, us-
ing Definition 3.10 we can show that the conjunction of given two conditions will be the
same as the condition produced just from F3 in the first place. Thus,⊗–modularity is quite
clear. On the other hand, ⊕–joining can produce a condition that is not even AF–style and
thus we cannot speak of ⊕–modularity. �

Example 76. Let us consider the framework Example 1 for the last time. Our AF is
F = (A,R) where A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.
The associated ADF is DF = (A,R,C), where C = {Ca = >, Cb = ¬a ∧ ¬c, Cc = ¬d,
Cd = ¬c, Ce = ¬d ∧ ¬e} (see Figure 50). We can observe that our ADF is strongly
valid. Hence, it suffices to focus on acyclic evaluations. The minimal evaluations for our
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a b c d e

> ¬a ∧ ¬c ¬d ¬c ¬d ∧ ¬e

Figure 50: ADF associated with F

arguments a, b, c, d and e are ((a), ∅), ((b), {a, c}), ((c), {d}), ((d), {c}) and ((e), {d, e})
respectively. The conflict–free (and pd–acyclic conflict–free) extensions of DF are E1 =
∅, E2 = {a}, E3 = {b}, E4 = {c}, E5 = {d}, E6 = {a, c}, E7 = {a, d} and E8 = {b, d}.
Their associated discarded sets of any type are E+

1 = ∅, E+
2 = {b}, E+

3 = ∅, E+
4 = {b, d},

E+
5 = {c, e}, E+

6 = {b, d}, E+
7 = {b, c, e} and E+

8 = {c, e}. We can observe that only
E7 = {a, d} is a model; w.r.t. the extensions E5 and E8, the condition Ca is satisfied. For
others, Ce evaluates to in. E7 is also our stable extension. With the exception of E3 and
E8, all of our sets are admissible extensions of any type of DF . We can observe that b is
not decisively in w.r.t. the ranges of E3 and E8 (i.e. {a, c} is not a subset of E+

3 and E+
8 ).

From there, only E2, E6 and E7 are complete. In the case of the remaining admissible sets
E1, E4 and E5, we can see that a is decisively in w.r.t. their ranges, but is not contained in
them. Finally, E2 is the grounded extension of DF (both acyclic and standard), and E6 and
E7 are the preferred sets of any type. These answers correspond exactly to the extensions
produced by F .

5.8 Summary
In this section we have presented how AFs can be handled by every other argumentation
framework we work with in this report – SETAF, AFRA, EAF, EAFC, BAF, AFN, EAS
and ADF. We could have observed that all of the translations were quite straightforward
and classified as basic. Only in two cases (AFRAs and EASs) we did not obtain exactness.
The summary on the properties of our translations is visible in Table 7.
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Table 7: Translations from AFs to other frameworks

Properties SETAF AFRA EAF BAF AFN EAS ADF

Translation 17 18 19 20 21 22 23

Strength

cf exact ⊆–weak exact exact exact strong exact

adm exact
⊆–

weak
strong exact exact exact strong exact

comp exact faithful exact exact exact faithful exact
pref exact faithful exact exact exact faithful exact
grd exact faithful exact exact exact faithful exact
stb exact faithful exact exact exact faithful exact

full full full full full full full

Functional target–
subclass

target–subclass target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

injective injective injective injective injective injective injective

argument
domain

preserving

argument
domain

preserving

argument
domain

preserving

argument
domain

preserving

argument
domain

preserving

weakly
argument
domain
altering

argument
domain

preserving

Syntactical structure
preserving

structure
preserving

structure
preserving

structure
preserving

structure
preserving

argument
introducing

structure
preserving

induced
support

introducing

generic generic generic generic generic generic generic

Semantical
semantics
domain

preserving

semantics
domain
altering

semantics
domain

preserving

semantics
domain

preserving

semantics
domain

preserving

weakly
semantics
domain
altering

semantics
domain

preserving

Computational structural structural structural structural structural
semi–

structural
structural

modular modular modular modular modular modular ⊗–modular
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6 Translating SETAFs
In this section we will present five translations from SETAFs to other argumentation frame-
works. The translations to EASs and ADFs will not be much different than the approaches
from AFs to these structures – they are both capable of expressing group attack easily.
However, the translations from SETAFs to AFs and AFNs are more complicated and these
are the first coalition and defender approaches we will analyze in this work. In fact, as
we will see, it is not possible to create easy, exact translations for these frameworks. We
thus obtain our first structure clearly going beyond Dung’s in terms of expressiveness. Our
running example in this section will be Example 3 from Section 2.1.2. We restate it here
for the readers’ convenience:

Example 3. Let us consider the SETAF SF = (A,R) with A = {a, b, c, d, e} and the
attack relationR = {({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a), ({b, d}, e)}, as depicted
in Figure 2. The admissible extensions of this framework are ∅, {b}, {b, c}, {c, e} and
{b, c, e}. Only ∅ and {b, c, e} are complete. The grounded extension is ∅, while {b, c, e} is
both preferred and stable.

a e cb d

Figure 51: Sample SETAF

6.1 SETAF as AF
In this section we will discuss two translations from SETAFs to AFs – one inspired by the
coalition, the other by the defender approach. We will then propose some improvements
to the first translation and show that no full exact SETAF–AF transformation can exist.

6.1.1 Basic Coalition Translation

One way of translating a SETAF to an AF is by combining the already existing SETAF–
EAS and EAS–AF transformations from Sections 6.4 and 11.1. However, this direction
introduces the support from evidence, which is not that intuitive when shifting between
purely attack–based frameworks. Consequently, the approach can be somewhat simplified.

What we will consider first is a SETAF–AF translation inspired by the coalition ap-
proach. The Dung’s framework handles only the binary, not the group attack. Thus, our
approach is to “hide” the advanced conflicts within the arguments. The AF arguments will
now correspond to sets of SETAF arguments, including both the single–element sets to
represent the original arguments and multi–element sets for the collections of arguments
that carry out attacks.

What needs to be handled now is the propagation of conflicts. Naturally, the attacks
carried out against a given argument in SETAF need to be propagated to the group conflict–
arguments containing this argument in the corresponding AF. Moreover, we can also say
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that a given (AF) argument carries out an attack if any of its (SETAF) argument subsets
does. This brings us to the following translation:

Translation 24. Deprecated Let SF = (A,R) be a SETAF. Its corresponding AF F SF =
(A′, R′) is built the following way:

• let arg(S) = {{a} | a ∈ S}, where S ⊆ A, be a function returning a collection of
single element sets composed of elements of S,

• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack some argument
in A,

• A′ = arg(A) ∪ att(A), and

• R′ = {(X, Y ) | ∃y ∈ Y,X ′ ⊆ Xs.t.(X ′, y) ∈ R}.

Please note that we decide to take the size of the attacking set into account when
creating att(A) so that it is disjoint from arg(A). Although dropping this restriction would
not change the resulting framework, it does make a difference when we consider certain
improvements (see Section 6.1.3).

We can observe that the translation does not behave well when it comes to conflict–
freeness, i.e. a conflict–free extension of F SF might not be conflict–free in SF . This is
due to the fact that that the attack arguments containing arguments in a conflict–free set of
F SF might not necessarily be in the set:

Example 77. Consider a SETAF ({a, b, c}, {({a, b}, c)}) with a single group attack.
The set {a, b, c} is not conflict–free in this case. The corresponding AF is now
({{a}, {b}, {c}, {a, b}}, {({a, b}, c)}). Even though the set {{a}, {b}, {a, b}, {c}} is not
conflict–free, {{a}, {b}, {c}} is.

Since conflict–freeness is not preserved anyway, it means that not all of the conflicts
we have created in AFs are really necessary – they can reduce the number of undesirable
extensions produced by F SF , but do not “fix” the issue. Consequently, we can get rid of
the subset–propagation step and simplify the attack relation a bit. The fact that introduc-
ing additional attacks from the “bigger” sets in the deprecated Translation 24 is not vital
follows from the properties of the minimal normal form for SETAFs. Even though the
amount of attacks an argument receives can change, due to a subset relation between them
the defense itself is not affected. This brings us to a slightly simpler formulation:

Translation 25. Let SF = (A,R) be a SETAF. Its corresponding AF F SF = (A′, R′) is
built the following way:

• let arg(S) = {{a} | a ∈ S}, where S ⊆ A, be a function returning a collection of
single element sets composed of elements of S,
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• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack some argument
in A,

• A′ = arg(A) ∪ att(A), and

• R′ = {(X, Y ) | ∃y ∈ Y s.t.(X, y) ∈ R}.

Nevertheless, we can observe that the translation still produces a large number of addi-
tional arguments. The amount of attacks we can have in a SETAF is bounded by n× |A|,
i.e. every non–empty subset of arguments can attack every argument. Even if we remove
the single–element attacks, we are left with a possible exponential blow up. This explicitly
shows that we are leaving the domain of purely basic translations.

Theorem 6.1. Let SF = (A,R) be a SETAF and F SF its corresponding AF obtained by
Translation 25. If E ⊆ A is a σ–extension of SF , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then arg(E ) ∪ att(E ) is a σ–extension of F SF . If
a set of arguments E ′ ⊆ A′ is a σ′–extension of F SF , where σ′ ∈ {admissible, preferred,
complete, grounded, stable}, then

⋃
E ′ is a σ–extension of SF .

The redefinitions of our translations and theorems are now as follows. Please note that
in this case, we will not provide a description of the subclass of produced AFs:
Redefinition of Translation 25: Let FrSETAF be the collection of all SETAFs based on
domain U and FrAF the collection of all AFs based on the domain 2U . The translation
TrSETAFAF : FrSETAF → FrAF is defined as TrSETAFAF ((A,R)) = (A′, R′), where A′ =
{{a} | a ∈ A} ∪ {S ′ | S ′ ⊆ A ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R} and R′ = {(X, Y ) |
∃y ∈ Y s.t.(X, y) ∈ R} for a framework (A,R) ∈ FrSETAF .
Redefinition of Theorem 6.1: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the union casting functions for σ. The translation
TrSETAFAF is strong under (σ, SC Tr

σ ) and ⊆–weak under the conflict–free semantics and
union casting functions. It is semantics bijective under the complete, preferred, grounded
and stable semantics and union casting functions.
Analysis of Translation 25: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrSETAFAF is:

• full, target–subclass and injective

• argument domain altering, argument introducing, induced attack relation introduc-
ing

• generic and semantics domain altering

• structural

The translation TrSETAFAF is not modular. We classify TrSETAFAF as basic–coalition hybrid
under the listed semantics and casting functions.
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Explanation. Any SETAF can be transformed into an AF and thus our approach is classi-
fied as full. Structurally speaking, any type of an AF can be produced by our translation.
We can observe that if we translated an AF into a SETAF and then “came back”, the same
framework would have been obtained. However, we no longer use U as the target domain,
but 2U . This means that if we take into account the nature of the arguments in AFs, we
can construct frameworks that cannot be produced by our translation. For example an AF
({{a, b, c}}, ∅) consisting of a single (attack style) argument {a, b, c} and no conflict what-
soever is not a structure the translation TrSETAFAF can produce. Therefore, the presented
approach is target–subclass.

We can observe that the translation is injective. Two different frameworks producing
the same AF would have to have the same set of arguments, otherwise the argument set in
the target AF would not agree. Moreover, we can observe that for a given SETAF attack
(X, y), (X, {y}) is presented in the AF, and there are no attacks in R′ carried out against
single–element sets that would not originate from the source SETAF. This means that the
two SETAFs would have to have the same attacks as well. Since they also had to have the
same arguments, our two “different” frameworks could not have been different after all.
Thus, TrSETAFAF is injective.

The translation is clearly both argument and semantics domain altering. Moreover, we
also introduce new arguments that would take over the group attack. However, we can
observe that every group attack from the source SETAF is in fact represented in the target
AF – this means we do not remove any information. Nevertheless, we have additional
conflicts in the target AF, which although derivable from the existing ones, are used to
account for the shift in the group attack representation. Since they occur between the
added arguments, they can be classified as induced. The fact that we can consider those
attacks really as additional can be more seen in the explanation concerning the lack of
modularity in the translation. The amount of handled semantics (in a strong manner)
makes the translation generic. The approach is also clearly a structural one.

The reason why our translation is not modular is the creation of ad-
ditional attacks between att arguments. Let us consider two SETAFs
SF1 = ({a, b, c, d}, {({a, b}, c)}) and SF2 = ({a, b, c, d}, {({c, d}, a)}). The
translation produces F SF1 = ({{a}, {b}, {c}, {d}, {a, b}}, {({a, b}, {c})}) and
F SF2 = ({{a}, {b}, {c}, {d}, {c, d}}, {({c, d}, {a})}). The AF associated with
SF1 ∪ SF2 is ({{a}, {b}, {c}, {d}, {a, b}, {c, d}}, {({a, b}, {c}), ({c, d}, {a}),
({a, b}, {c, d}), ({c, d}, {a, b})}), which is not the same as F SF1 ∪ F SF2 – in this case,
the ({a, b}, {c, d}) and ({c, d}, {a, b}) attacks are not present. This difference is not just
a “cosmetic” change – without the additional conflicts, there would be no set defending c
against the {a, b} attack and no set defending a against the {c, d} attack. As a result, the
admissible extensions would not be retrieved.

The target argument domain is a powerset of the source one. Moreover, we use the
additional arguments to take over the group attack not handled by the Dung’s framework.
This classifies TrSETAFAF as a coalition translation. However, the simplicity of the transla-
tion w.r.t. typical coalition approaches brings it closer to basic translations. Therefore, we
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decide to classify TrSETAFAF as a hybrid. �

What is worth mentioning is that the deprecated version of Translation 25 does not
have exactly the same properties as the new version, even though in both cases the
Theorem 6.1 holds (the version for the other translation just has a slightly modified
proof). The deprecated approach is overlapping. The addition of subset attacks means
that the frameworks in which they did and did not occur in the first place are trans-
lated into the same AF. For example, the SETAFs ({a, b, c, d}, {({a}, b), ({a, c}, d)})
and ({a, b, c, d}, {({a}, b), ({a, c}, b), ({a, c}, d)}) would both be transformed into the AF
({{a}, {b}, {c}, {d}, {a, c}}, {({a}, {b}), ({a, c}, {b}), ({a, c}, {d})}).

Example 78. Let us consider the SETAF SF = (A,R) with A = {a, b, c, d, e} and
the attack relation R = {({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a), ({b, d}, e)}, pre-
viously analyzed in Example 3. The associated AF created using Translation 25 is
F SF = (A′, R′), where A′ = {{a}, {b}, {c}, {d}, {e}, {b, d}} and R′ = {({a}, {c}),
({a}, {b}), ({b}, {a}), ({c}, {d}), ({e}, {a}), ({b, d}, {e}), ({c}, {b, d}), ({a}, {b, d})}.
We can observe that the set {{b}, {d}, {e}} is conflict–free in F SF , even though {b, d, e}
is not conflict–free in F . The admissible extensions of our framework are ∅, {{b}},
{{b}, {c}}, {{c}, {e}} and {{b}, {c}, {e}}. They correspond to the sets ∅, {b}, {b, c},
{c, e} and {b, c, e}, which were our original extensions. The complete extensions are ∅
and {{b}, {c}, {e}}, with the former being grounded and the latter preferred and stable.
This again is in agreement with the sets produced by SF .

{a}

{b} {c} {d} {e} {b,d}

Figure 52: Coalition AF for a SETAF

6.1.2 Basic Defender Translation

In [64], a meta–level argumentation framework has been introduced. Among others, the
work also provided translations from SETAFs to this structure. The target arguments are
now statements about the elements of the source framework, such as whether an argument
is justified, rejected, or defeats another argument. As an intermediary step, the framework
undergoes an “expansion”. The chosen attacks, independently of whether they are binary
or group ones, now become arguments that carry out a conflict against the previous tar-
get. Furthermore, with the use of auxiliary arguments, they need to be defended by the
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arguments that were the source of the attack (see Figure 53). Only then the arguments are
transformed into meta–level statements – an argument x becomes x is justified, x′ is made
into x is rejected, and ({x}, y) is assigned {x} defeats y.

In what follows we will present a translation corresponding to the expansion step of
the meta–level approach with a minor modification. Although the logic–based meta–level
AFs introduced in [64] are powerful tools, our focus is on explaining and understanding
the way the translation works. Moreover, in this way we avoid a more intrusive domain
change and thus can create a faithful translation. We therefore refer the reader to the
original paper for further details and will use a (structurally speaking) simplified version of
the framework. We will also focus on the case where all of the attacks are substituted in the
expansion step and adapt the definitions and theorems from [64] accordingly 18. Finally,
while the primed arguments are introduced only for those arguments that participate in
attacks during the expansion step, the meta–level framework contains the rejected version
for every argument. Although this difference does not affect the strength of the translation
in any way, we choose not to make a distinction between attackers and non–attackers and
follow the meta approach.

x1

x2

x3

y

(a) Sample SETAF

x1

x2

x3

x′1

x′2

x′3

({x1,x2,x3},y) y

(b) SETAF expansion

Figure 53: Group attack expansion

We can observe that the construction we have just described is in fact what we have
classified as the defender approach (see Section 3.3). Moreover, it bears a striking resem-
blance to the results of a chaining the SETAF–AFN and the defender AFN–AF (strongly
valid version) translations (see Translations 29 and 66). Please note that in this approach,
both group and binary attacks undergo a transformation, not just the group ones, like in
Translation 25. Moreover, while previously we only stored the attacking set, here the
whole conflict (i.e. both source and target) becomes the new argument.

Translation 26. Let SF = (A,R) be a SETAF. Its corresponding defender AF is F SF
def =

(A′, R′), where:
18Please note that although expanding a SETAF in [64] still, technically speaking, gives us a SETAF, all

the attacks are in fact binary and thus adapting it to an AF form is trivial.
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• A′ = A ∪R ∪X ′, where X ′ = {x′ | x ∈ A}, and

• R′ = {(x, x′) | x′ ∈ X ′} ∪ {(x′, (X, y)) | x ∈ X, (X, y) ∈ R} ∪ {((X, y), y) |
(X, y) ∈ R}.

We can observe that just like in Translation 25, the conflict–free semantics is not pre-
served. However, while in the previous case conflict–freeness still held if the translated
SETAF was actually a Dung’s framework, in this approach it is lost completely:

Example 79. Let ({a}, {({a}, a)}) be the AF–style SETAF consisting of a single self–
attacking argument that is depicted in Figure 54a. The corresponding defender AF is now
({a, a′, ({a}, a)}, {(a, a′), (a′, ({a}, a)), (({a}, a), a)}) (see Figure 54b). We can observe
that while {a} is not conflict–free in the source framework, it is in the target one. However,
it is not admissible in any of the structures.

a

(a) SETAF with self–attacker

a a’ ({a}, a)

(b) SETAF expansion

Figure 54: Self–attack expansion

Let us now focus on analyzing the semantics. As expected, the translation gains
strength starting from the admissible semantics, not the conflict–free. Please note that
in the construction of the target extensions we will use the concept of the discarded set
(see Definition 2.25).

Theorem 6.2. Let SF = (A,R) be a SETAF, F SF
def = (A′, R′) its corresponding defender

AF obtained through Translation 26 and σ ∈ {admissible, preferred, complete, grounded,
stable} a semantics. If E ⊆ A is conflict–free in SF , then E ∪ {(X, y) | X ⊆ E} ∪ {x′ |
x′ ∈ X ′, x ∈ (A \ E )} is conflict–free in F SF

def . If E ⊆ A is a σ–extension of SF , then
E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} is a σ–extension of F SF
def . If E ′ ⊆ A′ is

a σ–extension of F SF
def , then E ′ ∩ A is a σ–extension of SF .

We can now put the expansion translation into our classification system:
Redefinition of Translation 26: Let FrSETAF be the collection of all SETAFs on domain
U and FrAF the collection of all AFs based on domain U ∪ U ′ ∪ ((2U \ ∅) × U). The
translation def -TrSETAFAF : FrSETAF → FrAF is defined as def -TrSETAFAF ((A,R)) =
(A′, R′), where A′ = A ∪ R ∪ X ′, where X ′ = {x′ | ∃X ⊆ A, y ∈ As.t. x ∈ X
and (X, y) ∈ R} and R′ = {(x, x′) | x′ ∈ X ′} ∪ {(x′, (X, y)) | x ∈ X, (X, y) ∈
R} ∪ {((X, y), y) | (X, y) ∈ R}.
Redefinition of Theorem 6.2: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
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SCX
σ (E ) = E ∩ A, where X ∈ FrSETAF is a framework with set of arguments A and

E ∈ σ(def -TrSETAFAF (X)). The translation def -TrSETAFAF is strong under (σ, SC Tr
σ ) and

⊆–weak under conflict–free semantics and the removal casting functions. It is semantics
bijective under the complete, preferred, grounded and stable semantics and the defined
removal casting functions.
Analysis of Translation 26: Under the conflict–free, admissible, preferred, com-
plete, grounded and stable semantics and removal casting functions, the translation
def -TrSETAFAF is:

• full, target–subclass and injective

• argument domain altering, argument introducing and induced attack introducing

• generic, semantics domain altering

• semi–structural and modular

Under the complete, preferred, grounded and stable semantics and removal casting func-
tions, def -TrSETAFAF is faithful. Translation def -TrSETAFAF is classified as basic–defender
hybrid under the listed semantics and casting functions.

Explanation. Any SETAF can be translated into an AF and thus the translation is full.
However, not every AF constructed with the given argument domain can be produced by
a SETAF. Let us consider a very simple attack ({a}, b). It becomes expanded into (a, a′),
(a′, (a, b)) and ((a, b), b). Consequently, a sequence of attacks of length 1 is transformed
into a sequence of length 3. It is not possible to obtain an AF with a sequence of length
2. This is only one of the examples of Dung’s frameworks that we cannot obtain through
the defender translation. Consequently, def -TrSETAFAF is target–subclass, but for now we
cannot describe the subclass fully. Let us now analyze whether the translation is injective.
Let us assume it is not and that we have two different SETAFs SF1 = (A1, R1) and
SF2 = (A2, R2) that produce the same AF F = (A′, R′). A′ is obtained by joining
arguments, attacks, and primed versions of arguments that took part in carrying out the
attacks. Consequently, it has to be the case that A1 ∪ R1 ∪ X ′1 = A2 ∪ R2 ∪ X ′2. Since
R1 and R2 are defined over a domain different than A and X sets, then R1 = R2 and thus
A1 ∪X ′1 = A2 ∪X ′2. Since X ′1 and X ′2 are induced by the attack relations, then R1 = R2

implies X ′1 = X ′2. Since due to the domain change we assumed that the set of arguments
is disjoint from the set of primed arguments, A1 = A2. Thus, our two SETAFs are in fact
not different and the translation is injective.

The fact that the translation is domain altering and argument introducing can be ob-
served from the definition itself. Again, we do not deal with relation removal; the attack
arguments and the conflict they carry out at the target represent the relation in the source
SETAF. However, we also include the primed versions of arguments, which as such are
auxiliary and require additional conflicts. Thus, we say that the translation introduces
induced attacks.
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Our approach is clearly generic and semantics domain altering. We also exploit defense
in order to tie a conflict argument to the conflict sources; consequently, we qualify our
approach as semi–structural. We can observe our translation is modular; every attack is
expanded separately and the union of two SETAFs will not produce a conflict that was not
in one of the frameworks before.

From the redefinition of Theorem 6.2 we can see that our approach is seman-
tics bijective, and since we are dealing with removal casting functions, def -TrSETAFAF

is faithful for complete, preferred, grounded and stable semantics. Please note that
the translation is not bijective under the admissible semantics. We can look at the
framework ({x1, x2, x3, x′1, x′2, x′3, ({x1, x2, x3}, y), y}, {(x1, x′1), (x2, x

′
2), (x3, x

′
3), (x′1,

({x1, x2, x3}, y)), (x′2, ({x1, x2, x3}, y)), (x′3, ({x1, x2, x3}, y)), (({x1, x2, x3}, y), y)})
from Figure 53. In this case, both {x1, x2, x3} and {x1, x2, x3, ({x1, x2, x3}, y)} are ad-
missible extensions of the target AF, and at the same time they correspond to the set
{x1, x2, x3} in the source SETAF.

We have already discussed that the translation follows the defender pattern. However,
since it is a relatively simple one, we decide to classify it as a basic–defender hybrid. �

Example 80. Let us come back to the SF = (A,R) with the set of arguments
A = {a, b, c, d, e} and the attack relation R = {({a}, c), ({a}, b), ({b}, a), ({c}, d),
({e}, a), ({b, d}, e)}, previously analyzed in Example 3 and visible in Figure 55a.
The associated AF created using Translation 26 is F SF = (A′, R′), where A′ =
{a, b, c, d, e, a′, b′, c′, d′, e′, ({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a), ({b, d}, e)} and
R′ = {(a, a′), (b, b′), (c, c′), (d, d′), (e, e′), (a′, ({a}, c)), (a′, ({a}, b)), (b′, ({b}, a)),
(c′, ({c}, d)), (e′, ({e}, a)), (b′, ({b, d}, e)), (d′, ({b, d}, e)), (({a}, c), c), (({a}, b), b),
(({b}, a), a), (({c}, d), d), (({e}, a), a), (({b, d}, e), e)}. We can see it depicted in Fig-
ure 55b. The admissible extensions of F SF are ∅, {b, a′, ({b}, a)}, {b, c, a′, ({b}, a)},
{b, c, a′, ({b}, a), ({c}, d)}, {b, c, a′, d′, ({b}, a), ({c}, d)}, {c, e, a′, d′, ({c}, d), ({e}, a)},
{b, c, e, a′, d′, ({b}, a), ({c}, d)} and {b, c, e, a′, d′, ({b}, a), ({c}, d), ({e}, a)}. They cor-
respond to the sets ∅, {b}, {b, c}, {c, e} and {b, c, e}, which are the admissible extensions
of SF . We can observe that the sets {b, c} and {b, c, e} can be produced by more than one
extension of F SF . Out of all of these sets, ∅ and {b, c, e, a′, d′, ({b}, a), ({c}, d), ({e}, a)}
are complete, which is the desired answer. The first set is also grounded, while the other
one is preferred and stable.

6.1.3 Improvements

In this section we have presented two approaches towards translating SETAFs into AFs.
We have observed that the first translation (Translation 25) was strong and semantics bi-
jective, while the other (Translation 26) faithful. Often it holds that strong and bijective
transformations can be upgraded to faithful ones, and the first approach is not an excep-
tion. Consequently, we will explain how it can be enhanced and what are the side effects
of the improvement. However, most importantly, we will show that for certain semantics
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Figure 55: A SETAF and its meta–level AF

it is not possible to create an exact SETAF-AF translation at all. Thus, the results we have
presented can, in a certain sense, be the best we can hope for.

In the proof of Theorem 6.1 we could have observed that the complete extensions of
AFs obtained through translation TrSETAFAF always include the sources of the attackers.
Consequently, the information carried by the att arguments is in fact redundant under
complete, and thus preferred, grounded and stable semantics. Therefore, we can simply
consider removing those arguments from an extension, and adapt our approach to work
with removal, not coalition casting functions. Unfortunately, this means that the admissi-
ble extensions are no longer preserved.

Translation 27. Let SF = (A,R) be a SETAF. Its corresponding AF F SF = (A′, R′) is
built the following way:

• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack some argument
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in A,

• A′ = A ∪ att(A), and

• R′ = {(X, Y ) | ∃y ∈ Y s.t.(X, y) ∈ R or ({X}, y) ∈ R}.

Theorem 6.3. Let SF = (A,R) be a SETAF and F SF = (A′, R′) its corresponding AF
obtained by Translation 27. If E ⊆ A is a σ–extension of SF , where σ ∈ {conflict −
−free, admissible, complete, preferred, grounded, stable} then E ∪ att(E ) is a σ–
extension of F SF . If a set of arguments E ′ ⊆ A′ is a σ–extension of F SF , where
σ ∈ {complete, preferred, grounded, stable}, then E ′ ∩ A is a σ–extension of SF .

The proof of this theorem is a simple adaptation of the original one from Theorem 6.1.
When we redefine this translation into our system, we obtain the following:
Redefinition of Translation 27: Let FrSETAF be the collection of all SETAFs based on
domain U and FrAF the collection of all AFs based on the domain U ∪2U . The translation
imp-TrSETAFAF : FrSETAF → FrAF is defined as imp-TrSETAFAF ((A,R)) = (A′, R′),
where A′ = A ∪ {S ′ | S ′ ⊆ A ∧ |S ′| ≥ 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R} and R′ = {(X, Y ) |
∃y ∈ Y s.t.(X, y) ∈ R or ({X}, y) ∈ R} for a framework (A,R) ∈ FrSETAF .
Redefinition of Theorem 6.3: Let σ ∈ {complete, preferred, grounded, stable} be a se-
mantics and SC Tr

σ the removal casting functions for σ defined as SCX
σ (E ) = E∩A, where

X ∈ FrSETAF is a framework with set of arguments A and E ∈ σ(imp-TrSETAFAF (X)).
The translation imp-TrSETAFAF is strong and semantics–bijective under (σ, SC Tr

σ ). It is
⊆–weak under the conflict–free and admissible semantics and removal casting functions.

By combining the existing properties of the original form of this translation and adding
the removal casting functions, we can conclude that imp-TrSETAFAF is faithful under com-
plete, preferred, grounded and stable semantics and the defined casting functions. How-
ever, we decide not to change the classification of this translation from basic–coalition to
e.g. basic. The group arguments still represent the attacks, even though we remove them
from extensions. We could decide to use the auxiliary arguments of the same type as the
existing ones and thus go with a basic and weakly domain altering translation. However,
we then lose the conflict information and thus our approach would be relation removing
and lossy. Consequently, the choice is left to the reader, as depending on the application
of the translation, one property can be more desirable than another.

Although for the time being we are not sure whether a faithful translation for admis-
sible semantics can be created, we know that no exact one can exist. Let us first describe
the SETAF we are going to use [37].

Example 81. Let SF = ({x, y, z}, {({x, y}, z), ({y, z}, x), ({x, z}, y)}) be a SETAF de-
picted in Figure 56. The conflict–free extensions of SF are ∅, {x}, {y}, {z}, {x, y},
{x, z} and {y, z}, out of which ∅, {x, y}, {x, z} and {y, z} are admissible. They are also
complete. Furthermore, the last three are preferred and stable. ∅ is the grounded extension.

197



x

y z

Figure 56: Framework SF

We can now start with the analysis of the sets of extensions (Definitions 2.175, 2.176
and 2.177). Let us focus on the collection S1 = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}}.
The arguments in S1 are ArgS1 = {x, y, z} and the pair collection is PairS1 =
{(x, x), (y, y), (z, z), (x, y), (x, z), (y, z), (y, x), (z, x), (z, y)}. We can observe that S1 is
downward–closed. However, it is not tight; for example, {x, y} ∪ {z} /∈ S1, but both
{z, x} and {z, y} are in PairS1 . Therefore, S1 does not meet the signature requirements
for conflict–freeness in AFs.

We can now focus on the collection S2 = {∅, {x, y}, {x, z}, {y, z}}. The set of ar-
guments of S2 and the PairS2 collection are the same as in the S1 case. We can observe
that S2 is not adm–closed. Consider the sets {x, y} and {x, z}; for every a, b ∈ {x, y, z},
(a, b) ∈ PairS2 . However, {x, y, z} /∈ S2. This means that our collection does not fit the
admissible signature in AFs. Moreover, we can observe that S2 is not com–closed. We can
consider the subset {{x, y}, {y, z}} of S2. Every pair made out of arguments in {x, y, z}
is in PairS2 . However, the completion–sets collection Cs of {x, y, z} is empty, and thus
the com–closed requirements are not met. Although the complete signature is not yet fully
analyzed, being com–closed is one of the necessary properties for a set of extensions.

We can now consider S3 = {∅, {x, y}, {x, z}, {y, z}}. The same analysis as in the S2

case holds; the collection is still not adm–closed. Thus, even though it is incomparable, it
does not fit the preferred semantics signature. We can reiterate the explanation for S1 to
show that S3 is not tight. Consequently, the stable signature requirements are not satisfied.

In summary, we can observe that the extensions of our framework SF from Example
81 fail every AF signature we have analyzed. This means that there are no chances for a
strong and full translation that would use the identity casting functions. Consequently, no
exact and full translation from SETAFs to AFs can be constructed.

Theorem 6.4. Let FrSETAF be the collection of all SETAFs on a domain USETAF and
FrAF the collection of all AFs on a domain UAF . There exists no full translation from
FrSETAF to FrAF that is exact under conflict–free, admissible, complete, preferred and
stable semantics and identity casting functions for them.

Please note that an exact translation for the grounded semantics will exist. Since only
a single extension is produced, every argument not present in it can be removed from the
framework. We thus obtain a trivial, though expensive and extremely semantical transla-
tion.
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6.2 SETAF as BAF
We can now try to compare SETAFs to BAFs. In the coalition–style SETAF–AF Trans-
lation 25 we could have observed that the arguments representing attacks were somehow
detached from the arguments that originally carried them out. We also had to propa-
gate conflicts from the attack arguments to attack arguments. In Translation 26, this was
addressed by connecting the relevant framework elements through defense. However, an-
other way to approach it is to connect attack arguments and standard arguments through
support:

Example 82. Let us consider a simple SETAF depicted in Figure 57a. In order to trans-
form it to a BAF, we can add the attack arguments to the framework and add support to
them from the arguments that carry them out, as visible in Figure 57b.

The fact that in order to accept e.g. {a, b}, we need to accept both a and b, can be read
as necessary support from a and b to {a, b}. We can now choose to include the secondary
attack in our analysis, which in this case would permit {a, b} to attack {c, d}, which is a
desirable reading. Additionally, we would demand inverse closure of the BAF extensions
in order to make sure that the supporters of a given argument are in fact present in an
extension. However, what would also be very useful is including a certain “group” version
of supported attack and closure.

One of the issues we had before in conflict–freeness was the fact that e.g. a, b and
c could be jointly accepted in the target framework. However, if we observe that the
presence of a and b is sufficient for the {a, b} argument, then it makes sense to derive a
supported conflict from a and b to c. Nevertheless, this is a group form of attack, and as
such it is not present in BAFs.

The previously analyzed translations were not semantics bijective under admissibility.
This was due to the fact that we did not always have to accept attack arguments in an ex-
tension even though it was perfectly possible. For example, in our case both {a, b, {a, b}}
and {a, b} could be considered d and i–admissible. By enforcing closure, we could en-
sure that only the first set was produced, and thus retrieve a one–to–one relation with the
SETAF extensions. However, since more than one supporter can be required in order to
accept an attack argument, the closure we would need would be a group one, not the one
present in Definition 2.70.

This example has shown that it might be possible to create a SETAF–BAF translation
that would behave better than any of the SETAF–AF approaches we have considered. It
has also shown that even though supported attack and closure are more associated with
deductive support rather than necessary [30], certain applications motivate their use with
this interpretation of support as well. Nevertheless, the group versions that we would like
to use in our method are not yet present in BAFs. Those aspects that are already defined
reflect the way necessary support is modeled in AFNs. Consequently, we will continue
with this approach in the next section.
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Figure 57: Sample SETAF and its possible BAF representation

6.3 SETAF as AFN
The translation from SETAFs to AFNs is simpler than into AFs, even though both of the
structures use binary attack. Since we have support at hand, the argument representing a
given group attack is no longer detached from the ones that originally carry out the attack.
Moreover, attacking the argument contained in a group attack is sufficient for defending
ourselves from the actual attack argument. Consequently, the conflict propagation that we
have observed in the SETAF–AF translation (Translation 25) is no longer an issue. This
brings us to the following definition:

Translation 28. Deprecated Let SF = (A,R) be a SETAF. Its corresponding AFN
FNSF = (A′, R′, N) is built the following way:

• let arg(S) = {{a} | a ∈ S}, where S ⊆ A, be a function returning a collection of
single element sets composed of elements of S,

• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack an argument in
A,

• A′ = arg(A) ∪ att(A),

• R′ = {(X, {y}) | (X, y) ∈ R}, and

• N = {({X}, Y ) | X ∈ arg(A), Y ∈ att(A), X ⊆ Y }.
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However, the described approach can be further simplified, similarly to Translation 27.
Due to the fact that an attack argument cannot appear without its supporters in a coherent
(and thus admissible) extension, we do not “lose” any of the semantics as it was in the AF
case. Therefore, we will work with the following formulation:

Translation 29. Let SF = (A,R) be a SETAF. Its corresponding AFN FNSF =
(A′, R′, N) is built the following way:

• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack an argument in
A,

• A′ = A ∪ att(A),

• R′ = {(X, y) | (X, y) ∈ R or ({X}, y) ∈ R}, and

• N = {({X}, Y ) | X ∈ A, Y ∈ att(A), X ∈ Y }.

The SETAF–produced AFNs have a number of interesting properties. First of all, it
is support binary, i.e. every supporting set will consist of precisely one argument. This
means that the minimality of the target AFN is independent of the minimality of the source
SETAF. By tracing the support edges in the graph we obtain paths of length 1 – attack
arguments are only supported by the normal arguments carrying out the conflict, and no
normal argument needs support through N . We can also observe that the attack arguments
cannot be directly attacked. Moreover, we have no support cycles, and by using Theorem
4.34 we can show that our framework is strongly valid. Therefore, our AFN is on the
intersection of the SBinAFN , SupAFN1 , SConsAFN and SV AFN classes, which puts it in
the group of well–structured and elementary AFNs of depth 1. However, please note that
it is still not the most accurate description of the produced frameworks. The listed classes
do not grasp the fact that an argument can be supported or attacked, but not both at the
same time, and that every support argument has to carry out an attack. Nevertheless, by
Lemma 4.71, we already have all of the desired normal forms:

Theorem 6.5. Let SF = (A,R) be a SETAF and FNSF = (A′, R′, N) its corresponding
AFN obtained through Translation 29. FNSF is minimal, (strongly) consistent, weakly,
relation and strongly valid.

We can now move on to the semantics analysis. Please note that this translation does
not straightforwardly preserve conflict–freeness. Let us explain it on an example.

Example 83. Let SF1 = ({a, b, c}, {({a, b}, c)}) be a SETAF. In total, we
create four arguments for the corresponding AFN: A1 = {a}, A2 = {b},
A3 = {c} and A4 = {a, b}. This gives us a framework FNSF

1 =
({A1, A2, A3, A4}, {(A4, A3)}, {({A1}, A4), ({A2}, A4)}). While the set {a, b, c} is not
conflict free in SF1, {A1, A2, A3} (i.e. {{a}, {b}, {c}}) is conflict–free in FNSF

1 . Only
if we take into account the attack arguments induced by the members of the set, we will
have that {A1, A2, A3, A4} (i.e. {{a}, {b}, {a, b}, {c}}) is not AFN conflict–free.
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Theorem 6.6. Let SF = (A,R) be a SETAF and FNSF = (A′, R′, N) its corresponding
AFN obtained by Translation 29. If E is conflict–free in SF , then E is conflict–free in
FNSF . If E is a σ–extension of SF , where σ ∈ {conflict–free, admissible, preferred,
complete, grounded, stable}, then E ′ = E ∪att(E ) is a σ–extension of FNSF . If E ′ ⊆ A′

is conflict–free in FNSF , then E = E ′ ∩ A might not be conflict–free in SF . If E ′ is a
σ′–extension of FNSF , where σ′ ∈ {admissible, preferred, complete, grounded, stable},
then E = E ′ ∩ A is a σ′–extension of SF .

Please note that the same proof, but with minor adjustments, can be used to show that
Theorem also holds for the deprecated Translation 28.

We can now enter our translation into the system.
Redefinition of Translation 29: Let FrSETAF be the collection of all SETAFs on domain
U and WStAFN ∩ SEleAFN1 the collection of well–structured and elementary AFNs of
depth 1 on domain U ∪ (2U \ ∅). The translation TrSETAFAFN : FrSETAF → (WStAFN ∩
SEleAFN1 ) is defined as TrSETAFAFN ((A,R)) = (A′, R′, N) for (A,R) ∈ FrSF , where
A′ = A ∪ att(A) for att(A) = {S ′ | S ′ ⊆ A ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R},
R′ = {(X, y) | (X, y) ∈ R or ({X}, y) ∈ R} and N = {({X}, Y ) | X ∈ A, Y ∈
att(A), X ∈ Y }.
Redefinition of Theorem 6.6: Let σ ∈ {admissible, complete, preferred, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X ∈ FrSETAF is a framework with set of arguments A and
E ∈ σ(TrSETAFAFN (X)). The translation TrSETAFAFN is strong under (σ, SC Tr

σ ). It is ⊆–weak
under the conflict–free semantics and removal casting functions. It is semantics bijec-
tive under complete, preferred, grounded and stable semantics and their removal casting
functions.
Analysis of Translation 29: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation TrSETAFAFN is:

• full, target–subclass and injective

• argument domain altering, argument introducing, induced support relation introduc-
ing, attack relation preserving

• generic and semantics domain altering

• structural and modular

Translation TrSETAFAFN is faithful under the complete, preferred, grounded and stable se-
mantics and removal casting functions. We classify the translation as a basic–coalition
approach under the listed semantics and casting functions.

Explanation. Many of the properties are similar as in Translation 25. Thus, we will
only remark on some of them. Let us show why the translation is injective. We can
consider two SETAFs SF1 = (A1, R1) and SF2 = (A2, R2) producing the same AFN
FN = (A,R,N). From the construction of A we can observe that it has to be the case
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that A1 = A2. The attack relation R in FN also shows that R1 and R2 have to be the
same and thus SF1 = SF2. The framework adds a support relation between the new
attack arguments and normal arguments, thus we can talk about induced introducing. It is
however attack relation preserving, even though the group attacks can now be expressed
with arguments.

Unlike the Translation 25, TrSETAFAFN is easily shown to be modular. Joining two
SETAFs will not produce arguments or attacks that were not present in at least one of
the frameworks. Consequently, in the case of TrSETAFAFN , the set of arguments and attacks
in the AFN created by the union of translated SETAFs or translation of the union will be
the same. Similar follows for the support relation. The fact that the translation is faithful
under complete, preferred, grounded and stable semantics and the defined removal casting
functions follows from the redefinition of Theorem 6.6. �

Please note we can try to reclassify this translation as basic. However, the same expla-
nation as in the case of Translation 27 holds. We would have to discard the content of the
attack arguments and accept that the translation would become lossy.

Example 84. Let us come back to the SF = (A,R) with the set of arguments A =
{a, b, c, d, e} and the attack relation R = {({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a),
({b, d}, e)}, previously analyzed in Example 3. The associated AFN created using Trans-
lation 29 is FNSF = (A′, R′, N), where A′ = {a, b, c, d, e, {b, d}}, R′ = {(a, c), (a, b),
(b, a), (c, d), (e, a), ({b, d}, e)} and N = {({b}, {b, d}), ({d}, {b, d})}. We can see it de-
picted in Figure 58. It is worth nothing that {b, d} possesses only one minimal coherent
set on A′, namely {b, d, {b, d}}. Consequently, both {a} and {c} attack all coherent sets
of the attack argument {b, d}. The admissible extensions of FNSF include ∅, {b}, {b, c},
{c, e} and {b, c, e}, which were the desired answers. In this case, no filtering is needed.
The complete extensions are ∅ and {b, c, e}, with the first being grounded and the other
both preferred and stable. Thus, we retrieve the original extensions of SF .

a

b c d e {b,d}

Figure 58: An AFN created for a SETAF
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6.3.1 Improvements

At this point we can ask ourselves the question whether it is possible to create a full and
exact translation from SETAFs to AFNs. Due to the fact that the signatures of the AFN
semantics are not yet researched, we cannot give a complete answer at this point. However,
we can show that a collection of admissible (preferred) extensions of a given AFN in
fact meets the signature requirements of the AF admissible (preferred) semantics (please
consult Section 10.1.1). This, jointly with the fact that SETAF semantics go beyond what
AFs can express (see Section 6.1.3), means that the following holds:

Theorem 6.7. Let FrSETAF be the collection of all SETAFs on the domain USETAF and
FrAFN the collection of all AFNs on the domain UAFN . There does not exist a full trans-
lation from FrSETAF to FrAFN that is exact under the admissible (preferred) semantics
and identity casting functions.

Please note that due to the fact that the stable semantics for AFNs do not conform to
the stable AF signature, it is possible that an exact translation from SETAFs to AFNs can
be created in this case. We leave answering this question for future work.

6.4 SETAF as EAS
The translation of SETAFs into EASs was proposed in [73]. Since EASs structurally per-
mit set conflict in the same way as SETAFs, the only thing required for preserving the
behavior of semantics is including the support from evidence to every argument. The
approach is quite straightforward and the same analysis as done in case of AF–EAS trans-
lation (see Section 5.6) holds here.

Translation 30. Let SF = (A,R) be a SETAF. The corresponding EAS is ESSF =
(A′, R,E), where A′ = A ∪ {η} and E = {({η}, a) | a ∈ A}.

The EASs produced by SETAFs are not that far from those produced by AFs and again
we find ourselves at an intersection of various subclasses. The only difference is that in
the SETAF case, there are no restrictions concerning the attack relation. Thus, we still
deal with support binary EASs, where every supporting set is just {η} and every argument
receives support from it. Consequently, the intersection of EvSupEAS and AllSupEAS

finally gives us the description of the subclass SETAFEAS of SETAF–produced EASs.
This class satisfies all of the EAS normal forms from Section 4 with the exception of the
minimal one:

Theorem 6.8. Let SF = (A,R) be a SETAF and ESSF = (A′, R,E) its corresponding
EAS obtained through Translation 30. ESSF is consistent, weakly, relation and strongly
valid. If SF is minimal, then so is ESSF .

Please note that just like in the AF–EAS case, ∅ is trivially admissible and conflict–
free in ESSF . Consequently, the ∅ extension in SF can be obtained both from ∅ and

204



{η}. The amount of conflict–free extensions also increases due to the fact that η cannot
attack (or be attacked) in the framework – in other words, every SETAF conflict–free set
will have two corresponding EAS ones. We can also observe that every subset of SETAF
arguments (extended with η) will be self supporting in the target framework. We can now
recall the theorem concerning the behavior of the semantics and proceed with entering the
translation into our system:

Theorem 6.9. Let SF = (A,R) be a SETAF and ESSF = (A′, R,E) its corresponding
EAS obtained by Translation 30. A set of arguments S ⊆ A is a σ–extension of SF , where
σ ∈ {conflict–free, admissible, preferred, complete, grounded, stable} 19, iff S ∪ {η} is a
σ–extension of ESSF .

Redefinition of Translation 30: Let FrSETAF be the collection of all SETAFs on domain
U and SETAFEAS the EASs with every argument being supported by and only evidence
on domain U ∪ {η}. The translation TrSETAFEAS : FrSETAF → SETAFEAS is defined as
TrSETAFEAS ((A,R)) = (A′, R,E), where A′ = A ∪ {η} and E = {({η}, a) | a ∈ A}.

The reason for our choice of the domains is to make sure that η, or however we want
to designate the evidence argument, is not in U . Although EASs can be translated into
SETAFs (see Translations 73 and 75) and SETAFs back to EASs, the η argument cannot
be “reused”. During the EAS–SETAF shift, the existing evidence can start carrying out
attacks. Consequently, it does not meet EAS evidence requirements anymore and during
the SETAF–EAS translation, a new argument playing this role needs to be added.
Redefinition of Theorem 6.9: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ their removal casting functions defined as
SCX

σ (S) = S ∩A, where X = (A,R) ∈ FrSETAF and S ∈ σ(TrSETAFEAS (X)). The trans-
lation TrSETAFEAS is strong under (σ, SC Tr

σ ). It is semantics bijective under the complete,
preferred, grounded and stable semantics and the removal casting functions.

The same explanations as in the analysis of Translation 22 hold; thus, we will omit
them here.
Analysis of Translation 30: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and the removal casting functions, the translation TrSETAFEAS

is:

• full, target–subclass and injective

• weakly argument domain altering, argument introducing, induced support introduc-
ing and attack relation preserving

• generic and weakly semantics domain altering

• modular and semi–structural
19Although the complete semantics was defined only later [78], the results still hold.
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Under the complete, preferred, grounded and stable semantics and the removal casting
functions, the translation is faithful.

The translation TrSETAFEAS is classified as basic under the listed semantics and casting
functions.

Again, similarly as in the AF–EAS approach, translation TrSETAFEAS is in fact weakly
faithful (see Section 3.2.3) under the admissible semantics. This means that if we exclude
the empty set from the EAS extensions, there is a bijection between what is left and the
original SETAF answers. Moreover, for the same reasons as in Section 5.6.1, our results
cannot be further improved. The translation will always add the η argument that will need
to be removed:

Theorem 6.10. Let FrSETAF be the collection of all SETAFs on domain USETAF and
FrEAS the collection of all EASs on domain UAF . There exists no full translation from
FrSETAF to FrEAS that is exact under conflict–free, admissible, complete, preferred and
stable semantics and identity casting functions for them.

Example 85. We will again continue with the framework SF = (A,R) with the set of
arguments A = {a, b, c, d, e} and the attack relation R = {({a}, c), ({a}, b), ({b}, a),
({c}, d), ({e}, a), ({b, d}, e)}, previously analyzed in Example 3. The associated EAS
is quite straightforward; it is simply ESSF = (A ∪ {η}, R,E), where E = {({η}, a),
({η}, b), ({η}, c), ({η}, d), ({η}, e)}. We can observe that for every argument a ∈ A,
{η, a} is a minimal self–supporting set for a. This also means that every set of arguments
that contains η also e–supports every other argument in ESSF . To every conflict (X, y)
in R, we can create an associated minimal e–supported attack X ∪ {η}. Since η cannot
be attacked, then defense can occur only through attacking an argument in X . We can
therefore show that ∅, {η}, {η, b}, {η, b, c}, {η, c, e} and {η, b, c, e} are admissible in
ESSF . By filtering out η, we obtain the admissible extensions of SF . We can observe that
∅ can be produced both from ∅ and {η}. The complete extensions of ESSF are {η} and
{η, b, c, e}. This gives us the desired SF sets. This time, the relation is one–to–one. We
can easily show that the grounded, stable and preferred extensions of both frameworks are
also in correspondence.

6.5 SETAF as ADF
The hidden conjunctive nature of the Dung’s framework has already been noted by the
authors of SETAF. In a certain sense, it is reflected by the translation from AFs to ADFs
(see Section 5.7). The intuition behind SETAF was to somehow relax this constraint by
allowing a disjunctive behavior, which again has its counterpart in ADFs. Let a be an
argument and X = {X1, ..., Xn} the collection of all and only sets attacking a, i.e. sets
s.t. XiRa. Only the presence of all members of Xi, not just some of them, renders a
unacceptable w.r.t. a set of arguments. Therefore given any set of arguments Y that does
not include any of the attackers, i.e. there is no Xi s.t. Xi ⊆ Y , the acceptance condition
of a is in. Consequently, for any other set it is out. The propositional version is simply
atta =

∨
¬X1 ∧ ... ∧

∨
¬Xn, where Xi = {xi1, ..., xini} and

∨
¬Xi = ¬xi1 ∨ ... ∨ ¬xini .
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Translation 31. Let SF = (A,R) be a SETAF. Its corresponding ADF DSF = (A,L,C)
is the following:

1. for every x, y ∈ A s.t. ∃B ⊆ A, x ∈ B and BRy, add (x, y) to L, and

2. for every argument a ∈ A create an acceptance conditionCa. LetX = {X1, ..., Xn}
be the collection of all sets of arguments s.t. XiRa:

• the functional acceptance condition maps to out all and only subsetsB ⊆
⋃
X

s.t. ∃Xi ∈ X for which Xi ⊆ B. All remaining subsets are in.

• the propositional acceptance condition is Ca = atta =
∨
¬X1 ∧ ... ∧

∨
¬Xn.

In case X is empty, it is simply >.

Remark. Let a ∈ A be an arbitrary argument, Xa = {Xa
1 , ..., X

a
n} the collection of the

sets of arguments that attack it and let Ca be its acceptance condition created as above. If
we focus on the functional representation, we can see that an interpretation v is decisively
in for a iff ∀B ⊆ par(s) s.t. Ca(B) = out, ∃b ∈ B, v(b) = f . This means we prevent
an attacking set from appearing by falsifying at least one member of every such set, which
naturally corresponds to the way we would defend in SETAFs. In terms of propositional
representation, we want to make sure that all disjunctions corresponding to the elements
of Xa will always evaluate to true, which is achieved by setting at least one argument
of every clause to f . In other words, assuming that the condition is of the form Ca =∨
¬Xa

1 ∧ ...∧
∨
¬Xa

n, it would be the case that for a decisively in interpretation v, ∀Xa
i ∈

Xa, vf ∩Xa
i 6= ∅.

Any minimal interpretation v will try to minimize vf and naturally does not contain
any t mappings, i.e. vt = ∅. Consequently, a pd–evaluation built with v would be of the
form ((a), vf ). Interpretations for which a would be decisively out map to t all members
of at least one attacking set, i.e. given an interpretation z, ∃Xa

i ∈ Xa s.t. ∀x ∈ Xa
i ,

z(x) = t. This also naturally means that z outs the condition, i.e. Ca(zt ∩ par(a)) = out.
Finally, any interpretation z′ which outs Ca, is also decisively out for a.

Just like in the case of AFs, it is no surprise that SETAF–style ADFs will be AADF+s
and BADFs as well. They will also be in the cleansed form and weakly valid form. How-
ever, since the redundancy–freeness of the produced ADF depends on the minimality of
the source SETAF and as such is required for relation and strong validity (see the discus-
sion in Section 4.3.2.3), further forms require some assumptions on the source framework.

Theorem 6.11. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. Then DSF is an AADF+ and a BADF. It is also
cleansed and weakly valid. If SF is minimal, then DSF is redundancy–free, relation and
strongly valid.

Please note that it can happen that DSF is redundancy–free, even if SF is not, as
already noted in Section 4.1.5. Just because the source framework is not minimal and some
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attacks are going to be removed, it does not necessarily mean that the related arguments
will not be attackers of a given argument anymore.

We can now show the relation between a given SETAF and its corresponding ADF.

Theorem 6.12. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. A set of arguments E is a conflict–free extension of
SF iff it is a conflict–free extension of DSF .

Lemma 6.13. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. Let E be a conflict–free extension of SF (and thus
of DSF ). The discarded set of E in SF coincides with the discarded set of E in DSF .

Lemma 6.14. Let SF = (A,R) be a SETAF andDSF = (A,L,C) its corresponding ADF
obtained through Translation 31. A conflict–free set of arguments E defends an argument
a ∈ A in SF iff a is decisively in w.r.t. vE in DSF .

With this at hand, we come to the final result. Please note that since by Theorems
2.172 and 6.11 our classification collapses, it does not really matter what type of prefixing
we assume.

Theorem 6.15. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. A set of arguments E ⊆ A is a conflict–free ex-
tensions of SF iff it is (pd–acyclic) conflict–free in DF . E ⊆ A is a stable extensions of
SF iff it is (stable) model of DF . E ⊆ A is a grounded extensions of SF iff it is (acyclic)
grounded inDF . E ⊆ A is a σ extensions of SF , where where σ ∈ {admissible, preferred,
complete} iff it is an xy–σ–extension of DF for x, y ∈ {a, c}.

We can now put the translation into our system.
Redefinition of Translation 31: Let FrSETAF be the collection of all SETAFs and
SETAFADF the collection of all SETAF–style ADFs, both based on argument domain U .
The translation TrSETAFADF : FrSETAF → SETAFADF is defined as TrSETAFADF ((A,R)) =
(A,L,C) for a framework (A,R) ∈ FrSETAF , where L = {(x, y) | ∃X ⊆ A, x ∈
X, (X, y) ∈ R} and C = {Ca | a ∈ A} and given the collection X = {X1, ..., Xn} of all
sets of arguments s.t. XiRa, Ca is defined as a) Ca(B) = out for B ⊆

⋃
X s.t. ∃Xi ∈

X,Xi ⊆ B and Ca(B) = in for remaining B ⊆
⋃
X; or b) Ca =

∨
¬X1 ∧ ... ∧

∨
¬Xn

if X 6= ∅ and Ca = > otherwise.
Redefinition of Theorem 6.15: Let σSETAF ∈ {conflict–free, admissible, complete, pre-
ferred, grounded, stable} be a SETAF semantics and σADF ∈ {conflict–free, pd–acyclic
conflict–free, xy–admissible, xy–complete, xy–preferred, grounded, acyclic grounded,
model, stable} a similar ADF semantics with x, y ∈ {a, c}. Let SC Tr

σ be the identity
casting functions for σ. The translation TrSETAFADF is strong and semantics bijective under
(σ, SC Tr

σ ).
Analysis of Translation 31: Under the (pd–acyclic) conflict–free, (xy–) admissible,
(xy–) complete, (xy–) preferred, (acyclic) grounded and (stable) model semantics with
x, y ∈ {a, c} and the identity casting functions, the translation TrSETAFADF is:
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• full, target–subclass and overlapping

• argument domain preserving and structure preserving

• generic, semantics domain preserving and exact

• ⊗–modular and structural

The translation is not⊕–modular. The translation TrSETAFADF is classified as basic under the
listed semantics and casting functions.

Explanation. Any SETAF can be translated into an ADF and clearly SETAF–style ADFs
do not account for all possible frameworks. Consequently, our approach is full and target–
subclass. Unfortunately, it is also overlapping.

Consider the SETAFs SF1 = ({a, b, c, d}, {({a, b}, c), ({a, d}, c), ({a, b, d}, c)}) and
SF2 = ({a, b, c, d}, {({a, b}, c), ({a, d}, c)}). We can observe that SF2 is in fact the min-
imal form of SF1. Upon being translated into ADFs, the argument c would have the same
(functional) condition in both frameworks, namely Cc = {∅ = in, {a} = in, {b} =
in, {d} = in, {a, b} = out, {a, d} = out, {a, b, d} = out}. Please note the proposi-
tional versions would not be exactly the same, though still equivalent. Nevertheless, it
appears that the translation can be made injective if we limit our domain only to minimal
SETAFs. Clearly, TrSETAFADF is argument and semantics domain preserving and generic.
We can observe that no arguments are added or removed during the translation. Moreover,
as seen from the definition of L, all connections are preserved between the arguments. The
links are also considered attacking (see Theorem 6.11), even though some are redundant.
Therefore, despite the fact that the translation is overlapping, it is structure preserving, and
this state of affairs is unavoidable due to the differences between ADFs and SETAFs (see
Section 2.3.9).

Our translation is clearly structural. Its exactness follows easily from Theorem 6.15
and its redefinition. The lack of ⊕–modularity follows from the fact that AFs are special
cases of SETAFs and the AF–ADF translation is not ⊕–modular (see analysis of Transla-
tion 23). Please note that this type of modularity can come in handy when different, not
union–based, joining of frameworks is considered. However, the approach is ⊗–modular,
and the explanation is similar to the AF case. �

Example 86. We now come back to our SETAF for the last time. Let SF = (A,R)
be a framework with the set of arguments A = {a, b, c, d, e} and the attack relation
R = {({a}, c), ({a}, b), ({b}, a), ({c}, d), ({e}, a), ({b, d}, e)}, previously analyzed in
Example 3. The associated ADF is DSF = (A,L,C), where L = {(a, b), (b, a), (a, c),
(c, d), (e, a), (b, e), (d, e)} and the set acceptance conditionsC is as follows; Ca = ¬b∧¬e,
Cb = ¬a, Cc = ¬a, Cd = ¬c and Ce = ¬b ∨ ¬d (see Figure 59). DSF is an AADF+

and therefore we can focus on acyclic evaluations only. With the exception of e, ev-
ery argument has a single minimal evaluation. For a we produce ((a), {b, e}), for b we
have ((b), {a}), then ((c), {a}) for c and ((d), {c}) for d. Concerning e, we have two
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evaluations, namely ((e), {b}) and ((e), {d}). The conflict–free (and at the same time,
pd–acyclic conflict–free) extensions of DSF are E1 = ∅, E2 = {a}, E3 = {b}, E4 = {c},
E5 = {d}, E6 = {e}, E7 = {a, d}, E8 = {b, c}, E9 = {b, d}, E10 = {b, e}, E11 = {c, e},
E12 = {d, e} and E13 = {b, c, e}. Their discarded sets of any type are respectively
E+
1 = E+

5 = ∅, E+
2 = E+

7 = {b, c}, E+
3 = E+

6 = E+
10 = E+

12 = {a}, E+
4 = {d},

E+
8 = E+

11 = E+
13 = {a, d} and E+

9 = {a, e}. Therefore, from these conflict–free ex-
tensions, only E1, E3, E8, E11 and E13 are admissible in DSF (independently of the used
prefixing). The sets E1 and E13 are also complete. For every other extension, we can find
an argument decisively in w.r.t. its range that is outside the set; for E3, it is c, for E8 it’s
e, for E11 it is b. E1 is also our standard and acyclic grounded extension, while E13 is
preferred, model and stable. These answers are exactly the same as in the original SETAF
SF .

a e cb d

¬b ∧ ¬e¬a ¬a ¬c¬b ∨ ¬d

Figure 59: ADF associated with SF

6.6 SETAF as Other Frameworks
Although we have discussed various translations, we have not analyzed the conversions
from SETAFs to AFRAs, EAFs and EAFCs. To the best of our knowledge, these ap-
proaches were not discussed in the literature. Moreover, if they were and we have just
overlooked them, we do not think that the resulting SETAF–AFRA and SETAF–AF trans-
lations would be much different from the SETAF–AF transformations. Furthermore, even
though EAFCs permit group relations, their nature is more positive than negative (see Sec-
tion 8). Therefore, it is quite probable that again we would come back to the described
construction. Consequently, for now we propose that the SETAF–AF–AFRA/EAF/EAFC
chained translation should be used.

6.7 Summary
In this section we have focused on translating SETAFs, the first of our frameworks that
cannot be translated exactly into AFs. We could have observed that out of all the ap-
proaches, it is the coalition SETAF–AF translation that was the weakest. Moreover, it
suffered from the loss of modularity, which is not the case in any other approach. The only
case in which we have managed to obtain exact results is the SETAF–ADF translation.
However, please note that even though formally the SETAF–EAS approach is classified as
faithful, it in fact satisfies the weakly exact restrictions from [42] that were mentioned in
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Section 3.2.3. After all, for any (non–empty) evidential framework, it suffices to remove
the evidence argument to retrieve the source SETAF. Although the presented SETAF–AFN
translation is only faithful, it might be possible that an exact translation can be obtained
for the stable semantics. Due to the lack of research on semantics signatures in AFNs, this
task is left for future work. The summary of our results can be seen in Table 8.

Table 8: Translations from SETAFs to other frameworks

Properties AF AFN EAS ADF

Translation 25 26 29 30 31

Strength

cf ⊆–weak ⊆–weak strong exact
adm strong strong strong strong exact
comp strong faithful faithful faithful exact
pref strong faithful faithful faithful exact
grd strong faithful faithful faithful exact
stb strong faithful faithful faithful exact

full full full full full

Functional target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

injective injective injective injective overlapping

argument
domain
altering

argument
domain
altering

argument
domain
altering

weakly
argument
domain
altering

argument
domain

preserving

Syntactical argument
introducing

argument
introducing

argument
introducing

argument
introducing

structure
preserving

induced
attack

introducing

induced
attack

introducing

induced
support

introducing

induced
support

introducing

generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain
altering

semantics
domain
altering

weakly
semantics
domain
altering

semantics
domain

preserving

Computational structural
semi–

structural
structural

semi–
structural

structural

modular modular modular ⊗–modular
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7 Translating AFRAs

7.1 AFRA as AF
In this section we will show how AFRAs can be translated to AFs, BAFs and AFNs.
Additionally, we will also provide a discussion on the differences between recursive and
defense attacks (i.e. EAFs). As we might recall, the most prominent difference between
the semantics of AFRA and any other frameworks concerned the explicit presence of at-
tacks in the extensions. Consequently, in order to obtain the desired correspondence, the
AFRA conflicts will be transformed into arguments in the target frameworks. The indirect
defeats can then be turned into actual attacks or simulated with indirect conflicts derived
from support. Depending on how (if at all) we choose to connect the AFRA attacks to their
sources in the target frameworks, we will differentiate between basic, attack propagation
and defender approaches.

7.1.1 Standard Translation

The translation from AFRAs into AFs was introduced in [9]. Recall that AFRAs, unlike
AFs, elevate attacks to the level of arguments and allow them to appear in the extensions.
Consequently, in order to go back to AFs – or in fact, any other more “traditional” frame-
work – the attacks need to be transformed into arguments so that we can simulate the way
they are treated in AFRAs. However, in the Dung’s framework, the attack argument can
become detached from it sources, and thus the propagation of indirect conflicts becomes
necessary:

Translation 32. Let FR = (A,R) be an AFRA. The corresponding AF F FR = (A′, R′)
is defined as follows:

• A′ = A ∪R, and

• R′ = {(V,W ) | V,W ∈ A ∪R and V defeats W}.

Theorem 7.1. Let FR = (A,R) be an AFRA and F FR = (A′, R′) its corresponding AF
obtained through Translation 32. Then S ⊆ A ∪ R is a σ–extension of FR, where σ ∈
{conflict–free, admissible, preferred, complete, stable, grounded} iff S is a σ–extension of
F FR.

The redefinitions of the available results are now the following:
Redefinition of Translation 32: Let FrAFRA be the collection of all AFRAs on the
domain U and FrAF the collection of all AFs on the domain

⋃∞
i=1 U i, where U1 = U and

U i = U × U i−1 for i > 1. The translation TrAFRAAF : FrAFRA → FrAF is defined as
TrAFRAAF ((A,R)) = (A′, R′), where A′ = A ∪ R and R′ = {(V,W ) | V,W ∈ A ∪ R and
V defeats W}.
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Redefinition of Theorem 7.1: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ. The
translation TrAFRAAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 32: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and identity casting functions, the translation TrAFRAAF is:

• full, target–subclass and injective

• argument domain altering, argument introducing and induced attack relation intro-
ducing

• generic, semantics domain preserving and exact

• semi–structural

Translation TrAFRAAF is not modular. It is classified as basic–attack propagation hybrid
under the listed semantics and casting functions.

Explanation. Since every AFRA can be translated into an AF, the translation is full.
However, it is target–subclass, and there are two reasons for this situation. First of all,
taking into account how the domain for FrAF is defined, we can observe that not every
choice of arguments can represent an AFRA (for example, argument (c, d) cannot appear
on its own, c and d ought to be present). Similar follows for attacks – for example, if
argument c is attacked, then so should any argument (c, x). However, putting the domain
aside, we cannot produce an AF that would consist only of two (different) arguments a
and b and an attack (a, b). Let us assume the opposite and try to “reconstruct” the possible
AFRA. Since b does not attack anything, it has to be an argument. Thus, it can only be the
case that a represents an attack argument. The only candidate for its source is b and thus
we have an AFRA ({b}, {a = (b, b)}). However, TrAFRAAF is ({a, b}, {(a, b), (a, a)}), not
({a, b}, {(a, b)}). Therefore, it appears that with this translation we cannot produce an AF
that would consist only of two arguments and a single conflict between them.

The translation is clearly injective due to the way the argument set is defined in the
target AF – it cannot be the case that two different AFRAs would produce the same union
of arguments and attacks.

Clearly, the argument domain is not the same between the two frameworks – AFs now
have to include conflicts as arguments. Nevertheless, the semantics domain is the same.
The translation introduces new arguments that represent the attacks and as every conflict
receives such representation, the approach is not relation removing. It is however induced
attack relation introducing, as the previously indirect defeats between conflicts in AFRAs
become direct attacks between their AF representations. From the redefinition of Theorem
7.1 we can see that TrAFRAAF is generic and exact. However, please note that this result is
not entirely uncontroversial. After all, we need to be able to “read back” some arguments
as conflicts, which is something we wanted to avoid in exact approaches. Consequently,
even though for now we classify the AFRA–AF translation as an exact one, it is a property
open for discussion.
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The translation is quite simple and the only reason we are not classifying it as semi–
structural is the fact that it is not just direct defeats, but also indirect ones, that are taken
into account in the construction of the new conflict set. Indirect defeats between two con-
flicts are as such not represented in the structure of AFRA and are a semantical notion,
even though a minor one. Nevertheless, without being aware of them and using only the
direct defeats we would not have a translation preserving the behavior of the semantics.
This is also the reason why this approach exhibits the behavior of attack propagation trans-
lations and thus is classified as a hybrid.

It is also the indirect conflicts that cause the loss of modularity in TrAFRAAF . Let
us consider an AFRA FR1 = ({a, b, c}, {(a, b), (b, c)}) and two of its subframe-
works FR2 = ({a, b, c}, {(a, b)}) and FR3 = ({a, b, c}, {(b, c)}). Their associ-
ated AFs are F1 = ({a, b, c, (a, b), (b, c)}, {((a, b), b), ((b, c), c), ((a, b), (b, c))}), F2 =
({a, b, c, (a, b)}, {((a, b), b)}) and F3 = ({a, b, c, (b, c)}, {((b, c), c)}) respectively. We
can observe that the union of F2 and F3 is different from F1 – the ((a, b), (b, c)) conflict is
not present. Consequently, TrAFRAAF is not modular. �

Example 87. Let us consider the AFRA FR = (A,R) from Example 4, where A =
{a, b, c, d, e, f, g} and R = {α, β, γ, δ, ε, η, ζ, ϑ, ι, κ}, with α = (a, b), β = (b, α), γ =
(c, α), δ = (c, d), ε = (e, δ), η = (d, ε), ζ = (a, f), ϑ = (f, a), ι = (f, g) and κ = (g, g).
We depict it again in Figure 60a for readers’ convenience. The direct defeats in FR are
D = {(α, b), (β, α), (γ, α), (δ, d), (ε, δ), (η, ε), (ζ, f), (ϑ, a), (ι, g), (κ, g)}. The indirect
defeats are I = {(ϑ, α), (ϑ, ζ), (α, β), (δ, η), (ζ, ϑ), (ζ, ι), (ι, κ), (κ, κ)}. According
to Translation 32, the associated AF is therefore F FR = (A ∪ R,D ∪ I). We can see it
depicted in Figure 60b. Due to the huge amount of possible admissible extensions, we will
focus on more advanced semantics. We can observe that c, e and γ are the only unattacked
arguments in this framework. γ defends β and b. This gives us our grounded extension
{b, c, e, β, γ}, which is the same as in FR. The η, ε and δ conflict arguments form an odd
length cycle. Neither them nor d will appear in any of extension, and thus we can ignore
this part of F FR. We can now select ϑ, which leads to the acceptance of ι and f , thus
producing another complete extension {b, c, e, f, β, γ, ϑ, ι}. Alternatively, we can accept
ζ and a and obtain the set {a, b, c, e, β, γ, ζ}. This gives us the three complete extensions
of F FR. We can observe that the latter two are preferred. Due to the aforementioned cycle,
no subset of A ∪ R is stable. We therefore retrieve all and only extensions produced by
FR.

7.1.2 Defender Translation

Although the standard AFRA–AF translation is already exact, it is not the only approach
available in the literature. In what follows we would like to recall the metalevel trans-
lations that, although mostly used in the context of frameworks that have second order
attacks (i.e. single recursion), can be extended to AFRAs. In the first approach [18], the
target arguments make statements about the source arguments and conflicts; this includes
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Figure 60: AFRA FR and its associated AF

whether an argument can be “accepted” Acc and if a given attack is “in force” F or “not
in force” NF, as seen in Figure 6120.

However, this approach is not entirely sufficient for AFRAs. The “deepest” attack is
not made into an argument, which means it will not show up in the extension of the target
AF. Since it can appear in an extension of the source AFRA, we have a semantical mis-
match. In the other approach, the meta–arguments make statements whether an argument
is “justified” j, “rejected” r, or “defeats” def either another argument or conflict [64], as
seen in Figure 62.

20Please note that the presented frameworks correspond to the definitions given in [18], not to the provided
examples, which are closer to the method later introduced in [64].
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(a) Sample AFRA/EAF

Acc(a) NF(a,b) F(a,b) Acc(b)

Acc(c)

(b) Corresponding meta–level AF

Figure 61: Sample AFRA/EAF and its meta–level AF from [18]

We can observe that all conflicts in the framework receive their respective arguments
in this approach. However, the translation was analyzed only in the context of EAFs, in
which recursion is much more limited than in AFRAs. The general approach was only
sketched out and thus we will now prove that it is indeed correct. However, please note
that just like in the SETAF–AF case (see Section 6.1.2), we will not recall the structure
of the logic–based meta–level AFs used in [64] and use a simpler framework. The j(x)
and def(x, y) arguments will revert to the arguments and conflicts that they represent and
we will use x′ to stand for r(x). For further meta–level analysis we refer the reader to the
original paper. Our interest is in adjusting the approach in a way we can create a faithful
translation.

The transformation is now as follows; arguments, their primed versions and conflicts
become the target arguments. We now have three types of conflicts in the target AF. The
first type consists of attacks by arguments on their primed versions. In the second type, if a
given argument is a source of an AFRA attack, then the primed argument corresponding to
it attacks this conflict. Finally, we connect the conflict arguments with their targets. This
brings us to the following formulation:

Translation 33. Let FR = (A,R) be an AFRA. The corresponding AF is F FR
m = (A′, R′)

for A′ = A ∪ R ∪X ′, where X ′ = {x′ | x ∈ A}, and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) |
a ∈ R, src(a) = x} ∪ {(a, b) | a ∈ R, b ∈ A ∪R, trg(a) = b}.

Please note that unlike in the standard translation, not all of the semantics are preserved
by the meta–level one. This comes from the fact that in an AFRA admissible extensions,
an attack does not need to be accompanied by its source. However, since in the meta–level
framework the attack source becomes the only defender against the Rej arguments, its
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(b) Corresponding meta–level AF

Figure 62: Sample AFRA/EAF and its meta–level AF from [64]

presence is forced. Similar issues arise e.g. in the AFRA–AFN translation (see Section
7.4). Moreover, unlike in the previous approach, the indirect defeats do not become direct
conflicts. This leads to the fact that also the conflict–free semantics is preserved only “one
way”.

Theorem 7.2. Let FR = (A,R) be an AFRA and F FR
m = (A′, R′) its corresponding

AF obtained through Translation 33. If E ⊆ A ∪ R is a σ–extension of FR, where σ ∈
{conflict–free, complete, preferred, grounded, stable}, then E ′ = E ∪{x′ | x ∈ (A∩E+)}
is a σ–extension of F FR

m , where E+ = {x | ∃y ∈ E s.t. y defeats x} is the discarded set
of E in FR. This does not necessarily hold for admissible semantics. If E ′ ⊆ A′ is a σ′–
extension of F FR

m , where σ′ ∈ {admissible, complete, preferred, grounded, stable}, then
E = E ′∩(A∪R) is a σ′–extension of FR. This does not necessarily hold for conflict–free
semantics.

The redefinitions of the available results are now the following:
Redefinition of Translation 33: Let FrAFRA be the collection of all AFRAs on the
domain U and FrAF the collection of all AFs on the domain U ′ ∪

⋃∞
i=1 U i, where U1 = U
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and U i = U × U i−1 for i > 1. The translation m-TrAFRAAF : FrAFRA → FrAF is defined
as m-TrAFRAAF ((A,R)) = (A′, R′), where A′ = A ∪ R ∪ X ′ for X ′ = {x′ | x ∈ A}
and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) | a ∈ R, src(a) = x} ∪ {(a, b) | a ∈ R, b ∈
A ∪R, trg(a) = b}.
Redefinition of Theorem 7.2: Let σ ∈ {complete, preferred, grounded, stable} be
a semantics and SC Tr

σ the removal casting functions for σ defined as EX
σ (E ) = E ∩

(A ∪ R) for a framework X = (A,R) ∈ FrAFRA and E ∈ σ(m-TrAFRAAF (X)). The
translation m-TrAFRAAF is strong and semantics bijective under (σ, SC Tr

σ ). It is ⊆–weak
under the conflict–free semantics and ⊇–weak under the admissible semantics and the
defined semantics casting functions.
Analysis of Translation 33: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and the defined removal casting functions, the translation
m-TrAFRAAF is:

• full, target–subclass and injective

• argument domain altering, argument introducing and induced attack relation intro-
ducing

• generic and semantics domain altering

• semi–structural and modular

Translation m-TrAFRAAF is faithful under the complete, preferred, grounded and stable se-
mantics and the defined removal casting functions. It is classified as basic–defender under
the listed semantics and casting functions.

Explanation. Since every AFRA can be translated into an AF, the translation is full.
However, even though we do not provide a full description of how the target AFs can look
like, there are some frameworks that cannot be produced. For example, the translation
m-TrAFRAAF cannot create a self–attacker. Moreover, every AFRA uniquely defines the set
of arguments in the obtained Dung’s framework and the translation has to be injective.

We can observe that neither the argument nor semantics domain is preserved in this
translation. Since every conflict is represented by an argument in the target structure,
our approach is not relation removing. It is induced attack relation introducing due to
the conflicts related to the primed arguments. Because of the amount of the semantics
handled in a strong manner, m-TrAFRAAF is generic. Moreover, as it is semantics bijective
for complete, preferred, grounded and stable semantics and removal casting functions are
used (Theorem 7.2), we classify it as faithful.

This translation exploits the concept of defense in order to tie the conflicts to their
sources. Consequently, we qualify it as semi–structural. Fortunately, this approach is
modular. We can observe there is no attack propagation as in the standard AFRA–AF
translation; a given conflict is connected via defense precisely to its source and attacks
only its direct target. Therefore, there is no argument or attack in a translation of a union
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of two frameworks that would not be present in the union of their translations, and no
elements are lost in the process. �

a b

c

α

β

γ
δ

(a) Sample AFRA

a a’ α b

b’β

γcc’δ

(b) The associated AF

Figure 63: Meta–level translation for AFRAs

Example 88. Let us look at the AFRA FR = ({a, b, c}, {α, β, γ, δ}) depicted in Figure
63a, where α = (a, b), β = (b, a), γ = (b, c) and δ = (c, β). According to Translation
33, its associated AF is F FR = (A′, R′), where A′ = {a, b, c, a′, b′, c′, α, β, γ, δ} and
R′ = {(a, a′), (b, b′), (c, c′), (a′, α), (b′, β), (b′, γ), (c′, δ), (α, b), (β, a), (γ, c), (δ, β)}.
We can see it in Figure 63b. The admissible extensions of FR are ∅, {α}, {a, α}, {c, α},
{a, c, α}, {α, δ}, {a, α, δ}, {c, α, δ}, {a, c, α, δ}, {β, γ} and {b, β, γ}. Out of these sets,
∅, {a, c, α, δ} and {b, β, γ} are complete. The first extension is the grounded extension,
while the other two are preferred and stable.

Let us now focus on F FR. Its admissible sets are ∅, {a, b′, α}, {a, c, b′, α},
{a, c, b′, α, δ} and {b, a′, c′, β, γ}. They correspond to extensions ∅, {a, α}, {a, c, α},
{a, c, α, δ} and {b, β, γ}. We can observe that not all of the admissible extensions of FR
are retrieved. Due to the fact that defense enforces the presence of the source of an attack
in an admissible set, the answers {α}, {c, α}, {α, δ}, {a, α, δ}, {c, α, δ} and {β, γ} are
lost. However, the complete extensions of F FR are ∅, {a, c, b′, α, δ} and {b, a′, c′, β, γ},
which corresponds to the sets produced by FR. It is easy to verify that the grounded and
preferred extensions between FR and F FR are also related in the desired manner.

7.1.3 Improvements

The Translation 32 is already exact; consequently, the only improvements could concern
the argument domain and modularity. Unfortunately, it does not appear that much can
be done in this area without the loss of exactness. Even if we used attack semantics for
AFs [88] in order to address the issue of domain alteration, it would not solve the issue
of recursive attacks. Thus, argument domain change is inevitable. Obtaining modularity
would require preventing indirect defeats showing up as attacks in the target AF. However,
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without them the Translation 32 would no longer preserve the behavior of the semantics.
A possible solution is to connect the attacks to their sources (e.g. via defender approach),
however, as we have observed in Translation 33, it leads to loss of exactness since the
auxiliary primed arguments appear in the extensions. Turning them into self–attackers
would prevent them from showing up, but it easy to see that the semantics would no
longer be preserved – we would lose the ability to defend from an attack with an indirect
defeat. Therefore, we decide not to pursue any further improvements to the AFRA–AF
translations.

7.2 AFRA as EAF
Out of all of the frameworks we have looked at in this work, only AFRAs and EAFs allow
attacks on attacks, even though in different extent. However, as already noted in [9], the
two frameworks are quite different from the semantics perspective. Additionally, in [8], the
EAF+ framework was proposed, which added recursion to defense attacks. Nevertheless,
the provided results focused on the EAF–AFRA direction, not the other way around. We
will now try to show some of the issues in the AFRA–EAF approach.

For the sake of this analysis, we will limit ourselves to the case where only attacks
directed at arguments can be attacked. Moreover, we will use frameworks on which both
EAF and EAFC semantics would coincide, i.e. we do not permit symmetric attacks be-
tween arguments in AFRA. Finally, we will focus our analysis on the semantics that are at
least complete. AFRAs produce a lot of admissible extensions, which makes their analysis
quite difficult – we could observe that the framework in Example 4 had over two hundred
admissible extensions, while only three complete ones. Moreover, EAF extensions con-
tain only arguments, while AFRA semantics produce collections of both arguments and
attacks. Therefore, we would like to exploit the fact that defending an attack implies de-
fending its source argument (see Lemma 2.32) and and thus in case of complete semantics
we can at least partially disregard the conflicts appearing in extensions in our comparison.

Example 89. Adapted from [62]. Let us consider the AFRA FR =
({a, b, c, d, e, f, g}, {α = (a, b), β = (d, c), γ = (b, (d, c)), δ = (c, (a, b)), ε =
(b, e), ζ = (e, f), η = (f, g)}) from Figure 64. Please recall that any set of arguments can
be considered conflict–free; only the inclusion of attacks into the extension can change
the situation. The framework has 108 admissible extensions and we will not list them
here. The complete ones are {a, d}, {a, d, e, g, α, β, ζ} and {a, b, c, d, f, γ, δ, ε, η}. The
latter two are preferred and stable, while the first one is grounded.

Let us now consider the EAF obtained from our AFRA, where the set of arguments
remains the same and the conflicts are split into argument–argument and argument–attack
ones:

Example 90. [62] Let us consider the EAF EF = ({a, b, c, d, e, f, g}, {(a, b), (d, c),
(b, e), (e, f), (f, g)}, {(b, (d, c)), (c, (a, b))}) from Figure 65. It has a number of conflict–
free extensions and thus we will focus only on some of them. We can observe that the sets
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Figure 64: Framework FR

{a, b} and {c, d} are not conflict–free. However, {a, b, c}, {b, c, d} and {a, b, c, d} already
are. This is due to the fact that attacks are no longer defeats when the defense attacks are
present. Additionally, also {a, d, e, g} and {b, c, a, d, f} are conflict–free. The admissible
extensions of EF include ∅, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d}, {a, d, e}, {b, c, f},
{a, b, c, f}, {b, c, d, f}, {a, d, e, g}, {a, b, c, d} and {a, b, c, d, f}. We can observe that the
set E = {b, c} is admissible. Neither a nor d defeatE any of its elements, and thus there
is nothing to defend from. The set {a, d, e} is admissible since the defeat of b by a has a
reinstatement set {(d, c), (a, b)} – the defense attack on (a, b) by c is reinstated with (d, c),
and (d, c), that is defense attacked by b, is reinstated with (a, b). Although the behavior
appears cyclic, it suffices for defense.

Out of the listed admissible extensions, {a, d, e, g} and {a, b, c, d, f} are complete.
We can observe they are incomparable and do not follow the typical semilattice structure
of complete extensions – this is another consequence of the fact that the characteristic
operator of EAFs (and EAFCs) is not monotonic. The grounded extension is {a, d, e, g};
it is minimal, but not the least complete extensions. Both {a, d, e, g} and {a, d, b, c, d, f}
are stable and preferred.

a b c d

e f g

Figure 65: Framework EF associated with FR

We can now compare our two frameworks FR and EF . We can observe that EF does
not recreate all of the complete extensions of FR – namely, the extension correspond-
ing to {a, d} is missing. This means that that also the grounded extensions between the
frameworks are different, even though the preferred and the stable are related. The afore-
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mentioned issues are caused by different definitions of acceptability in both frameworks
and different treatment of attacks. In particular, in the described example we can observe
that the characteristic operator of FR was monotonic, while the one in the associated EF
was not. Consequently, we can also expect the relation between the admissible extensions
to be somewhat complicated.

Although the stable and preferred semantics were in some correspondence between
the source and target frameworks in our example, we have only focused on the single–
recursion AFRAs without symmetric attacks. Consequently, creating a dedicated AFRA–
EAF translation is not beneficial, particularly taking into account the benefits of the
AFRA–AF–EAF chain. Not only all of the desired semantics are preserved and every
AFRA can be translated, but the produced EAF belongs to various normal forms and sub-
classes that can make computation easier and preserve monotonicity of the characteristic
operator. Therefore, we have decided not to continue the AFRA–EAF analysis and use the
chained approach from now on.

7.3 AFRA as BAF
We have already seen that the translation from AFRAs to AFs is fully “working”. How-
ever, it is based on defeats, not the attacks in R, and suffers from the loss of modularity.
In a certain sense, if we see the relation between an attack and its source as support, di-
rect defeats would correspond to direct attacks and indirect defeats to secondary attacks.
However, in AFRA, a conflict can appear without its source in an admissible extension
(complete ones always include the sources due to Lemma 2.32). This brings us to the
abstract interpretation of support, developed in the early BAFs.

Translation 34. Let FR = (A,R) be an AFRA. Its corresponding BAF BF FR =
(A′, R′, S ′) is defined in the following way:

• A′ = A ∪R,

• R′ = {(X, Y ) | X ∈ R, Y ∈ A ∪R, Y = trg(X)}, and

• S ′ = {(X, Y ) | Y ∈ R,X ∈ A,X = src(Y )}.
Let us now focus on the semantics. The proof that the extensions of FR and BF FR

are in a close relation is quite straightforward. This is due to the fact that the used BAF
semantics do not have any explicit requirements concerning the support relation, unlike
e.g. in AFNs and EASs. Everything is handled with the indirect attacks, and as direct and
secondary conflicts encompass both types of defeats in AFRAs, the rest follows easily:

Theorem 7.3. Let FR = (A,R) be an AFRA and BF FR = (A′, R′, S) its corresponding
BAF obtained through Translation 34. Let Rsec be the collection of first–tier secondary
attacks in BF FR. E ⊆ A ∪ R is a conflict–free (stable, d–grounded) extension of FR
iff it is +conflict–free (stable, d–grounded) in BF FR w.r.t. Rsec. E is a σ–extension of
FR, where σ ∈ {admissible, complete, preferred}, iff it is a d–σ–extension of FR w.r.t.
(Rsec, Rsec).
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We can now put this translation into our system. Although we have not introduced too
many BAF subclasses in our work, mostly due to the fact that both attacks and support are
binary and the semantics do not deal with support cycles, it is easy to see that not all BAFs
can be produced by our translation. The support graph can be seen as a forest, where each
tree consists precisely of one edge. Clearly, this cannot account for all the possible support
relations that can appear in BAFs.
Redefinition of Translation 34: Let FrAFRA be the collection of all AFRAs on domain
U and FrBAF be the collection of all BAFs on the domain

⋃∞
i=1 U i, where U1 = U and

U i = U × U i−1 for i > 1. The translation TrAFRABAF : FrAFRA → FrBAF is defined
as TrAFRABAF ((A,R)) = (A′, R′, S), where A′ = A ∪ R, R′ = {(X, Y ) | X ∈ R, Y ∈
A ∪R, Y = trg(X)} and S ′ = {(X, Y ) | Y ∈ R,X ∈ A,X = src(Y )}.
Redefinition of Theorem 7.3: Let σAFRA ∈ {conflict–free, admissible, complete,
preferred, grounded, stable} be an AFRA semantics and σBAF ∈ {+conflict–free, d–
admissible, d–complete, d–preferred, d–grounded, stable} a similar BAF semantics. Let
SC Tr

σ be the identity casting functions for σ. Translation TrAFRABAF is strong and semantics
bijective under σ and SC Tr

σ .
Analysis of Translation 34: Under the (+) conflict–free, (d–) admissible, (d–) com-
plete, (d–) preferred, (d–) grounded and stable semantics and identity casting functions,
the translation TrAFRABAF is:

• full, target–subclass and injective

• argument domain altering, argument introducing, attack relation preserving, induced
support relation introducing

• generic, semantics domain preserving and exact

• semi–structural and modular

Translation TrAFRABAF is classified as basic under the listed semantics and casting functions.

Explanation. Since any AFRA can be translated into a BAF, the translation is full. Based
on the previous discussion, it is also target–subclass. The translation is easily injective
for the same reasons the AFRA–AF Translation 32 was – the way the set of arguments is
defined in the target BAF clearly describes the source framework. Similarly, the current
approach is also argument domain altering, argument introducing, generic and semantics
domain preserving. However, this time it is attack relation preserving – although the con-
flicts are now represented with arguments, only the direct defeats are taken into account.
Clearly, the approach is also induced support introducing.

We choose to classify our translation as semi–structural. By adding support, we sim-
ulate the indirect defeats in AFRA with indirect conflicts in BAF. Consequently, we are
using some semantical notions of BAFs, even though very basic ones. In contrast, a purely
structural translation (i.e. producing (A′, R′, ∅) instead of (A′, R′, S)) would not preserve
the extensions between the source and target frameworks in a strong manner.
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The fact that the translation is exact follows straightforwardly from Theorem 7.3 and
its redefinition. Moreover, the approach can be easily shown to be modular. Let FR1 =
(A1, R1) and FR2 = (A2, R2) be two frameworks. Let FR3 = FR1 ∪ FR2 = (A1 ∪
A2, R1 ∪ R2). Let us now consider the frameworks TrAFRABAF (FR1) ∪ TrAFRABAF (FR2) and
TrAFRABAF (FR3); we can observe that the set of arguments is identical in both cases and
equal to A1 ∪ R1 ∪ A2 ∪ R2. Concerning the attacks, we receive R′1 = {(X, Y ) | X ∈
R1, Y ∈ A1 ∪R1, Y = trg(X)}∪{(X, Y ) | X ∈ R2, Y ∈ A2 ∪R2, Y = trg(X)} for the
first structure andR′2 = {(X, Y ) | X ∈ (R1∪R2), Y ∈ (A1∪R1∪A2∪R2), Y = trg(X)}
for the other. Clearly, R′1 ⊆ R′2. Assume there is some pair (X, Y ) in R′2, not in R′1. It can
only be the case thatX ∈ R1 and Y ∈ (A2∪R2), orX ∈ R2 and Y ∈ (A1∪R1). However,
due to the restriction that Y = trg(X), it has to be the case that if Y ∈ (A2 ∪ R2), then
Y ∈ (A1 ∪ R1) and vice versa – the attack X can after all be targeted at an element that
appears in its own framework as well. Consequently, if (X, Y ) ∈ R′2, then (X, Y ) ∈ R′1
and the two sets are equal. The support analysis is quite straightforward and similar to this
one and we can thus conclude that the translation TrAFRABAF is modular. �

a α

bβ

γcδ

Figure 66: An AFRA–produced BAF

Example 91. Let us come back to the framework from Example 88 and Figure 63a, i.e.
FR = ({a, b, c}, {α, β, γ, δ}), where α = (a, b), β = (b, a), γ = (b, c) and δ = (c, β).
The BAF associated with FR is BF FR = (A′, R′, S ′), where A′ = {a, b, c, α, β, γ, δ},
R′ = {(α, b), (β, a), (γ, c), (δ, β)} and S ′ = {(a, α), (b, β), (b, γ), (c, δ)}. The secondary
attacks in BF FR are Rsec = {(γ, δ), (α, γ), (α, β), (β, α)}. We can see they correspond
to the indirect defeats in FR. BF FR, along with the secondary attacks marked in red,
can be seen in Figure 66. From now on we will assume that the BAF semantics are
parametrized with secondary attacks. The d–admissible sets of BF FR are therefore ∅,
{α}, {a, α}, {c, α}, {a, c, α}, {α, δ}, {a, α, δ}, {c, α, δ}, {a, c, α, δ}, {β, γ} and {b, β, γ},
which is in accordance with the admissible extensions of FR. Due to the fact that every
argument in A′ is (directly or secondary) attacked, it is easy to see that ∅ is a d–complete
extension of BF FR. {α} is unfortunately not d–complete; it defends c and δ from γ and a
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from β. Consequently, only {a, c, α, δ} becomes d–complete. Similarly, we can observe
that {β, γ} defends b and as such does not qualify as a d–complete extension. However,
{b, β, γ}meets all the requirements. We thus obtain the three desired complete extensions.
We can observe that all of them are also inverse closed. Our d–grounded extension is ∅,
while {a, c, α, δ} and {b, β, γ} are d–preferred. These two sets are also stable in BF FR;
all of the elements of A′ not contained in them are either directly or secondary attacked.
We can conclude that the extensions produced by BF FR are exactly the same as the ones
created with FR.

7.4 AFRA as AFN
In the previous sections we have analyzed the AFRA–AF and AFRA–BAF translations.
We have observed that abstract support, joined with secondary attack, is sufficient for an
exact and modular transformation from AFRAs to BAFs. However, this type of support
is unique to BAFs only, while the necessary one that appears in AFNs is connected to
deductive and evidential supports (see Sections 9.2 and 10.5). Moreover, it resembles
the positive dependencies in ADFs more closely than abstract support. Consequently, we
would like to see whether AFRAs can be conveniently expressed with AFNs.

Translation 35. Let FR = (A,R) be an AFRA. Its corresponding AFN FNFR =
(A′, R′, N ′) is defined in the following way:

• A′ = A ∪R,

• R′ = {(X, Y ) | X ∈ R, Y ∈ A ∪R, Y = trg(X)}, and

• N ′ = {({X}, Y ) | Y ∈ R,X ∈ A,X = src(Y )}.

The produced AFNs are not very complicated. First of all, they are support binary
and singular, which also makes them minimal by Lemma 4.71. Moreover, they are of
support depth 1. Since only the attack arguments can attack and only the standard ones can
support, the target frameworks are also (strongly) consistent. Finally, the binary version
of the support graph (A,N) is (directed) acyclic, which by Theorem 4.34 means that the
produced AFNs are strongly valid. Consequently, our frameworks belong to the subclass
of well–structured and elementary AFNs with support depth 1. In other words, all of the
normal forms are satisfied:

Theorem 7.4. Let FR = (A,R) be an AFRA and FNFR = (A′, R′, N ′) its corresponding
AFN obtained through Translation 35. FNFR is minimal, (strongly) consistent, weakly,
strongly and relation valid.

However, please notice that WStAFN ∩ SEleAFN1 is not the most accurate description
of FNFR. The produced frameworks are further restricted with requiring that every ar-
gument receiving support carries out an attack and every argument carrying out an attack
requires support. Furthermore, every argument carries out at most one attack – we do not
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have any conflict propagation that was present in the AFRA–AF approach. Nevertheless,
the current description is sufficient for our purposes.

We can observe that, structurally, Translation 35 to AFNs is similar to Translation 34
to BAFs. However, different interpretation of support means that the extensions produced
by both frameworks will be different. Necessary support leads to the fact that an argu-
ment cannot be accepted without its supporters (if they exist). Consequently, unlike in
the AFRA–BAF approach, the admissible semantics will not be strongly preserved. How-
ever, using only the extensions obtained from the corresponding AFN could be used to
strengthen the AFRA semantics and retain only these sets in which attacks are not “de-
tached” from their origins, which was an issue in the AF–AFRA translation (see Section
5.2.1 for a discussion).

Definition 7.5. Let FR = (A,R) be an AFRA and E ⊆ A ∪R be a set its elements. The
source–complete set of E is E src = E ∪ {src(V ) | V ∈ E ∩R}.

Please note that if E src is conflict–free and admissible, then so is E by Lemma 2.32.
By the same lemma, it also holds that if E is a complete extensions, then E = E src.

Theorem 7.6. Let FR = (A,R) be an AFRA and FNFR = (A′, R′, N ′) its corresponding
AFN obtained through Translation 35. If a set E ⊆ A ∪ R is a σ–extension of FR,
where σ ∈ {conflict–free, complete, preferred, grounded, stable}, then it is a σ–extension
of FNFR. If E = E src is admissible in FR, then it is admissible in FNFR and if it is
conflict–free in FR, it is strongly coherent inFNFR. It might not be the case for E 6= E src.

Not every conflict–free extension of FNFR is conflict–free in FR. If a set E ′ ⊆ A′

is strongly coherent in FNFR, then it is conflict–free in FR. If a set E ′ ⊆ A′ is a σ′–
extension of FNFR, where σ′ ∈ {admissible, complete, preferred, grounded, stable}, then
E ′ is a σ′–extension of FR.

We can thus conclude that while complete, preferred, grounded and stable extensions
coincide between the two frameworks, the target AFNs produce “too many” conflict–free
ones and “not enough” admissible ones. We can now reformulate and analyze our transla-
tion:
Redefinition of Translation 35: Let FrAFRA be the collection of all AFRAs on domain
U and WStAFN ∩ SEleAFN1 be the collection of well–structured and elementary AFNs
with support depth 1 on the domain

⋃∞
i=1 U i, where U1 = U and U i = U × U i−1 for

i > 1. The translation TrAFRAAFN : FrAFRA → (WStAFN ∩ SEleAFN1 ) is defined as
TrAFRAAFN ((A,R)) = (A′, R′, N ′), where A′ = A ∪ R, R′ = {(X, Y ) | X ∈ R, Y ∈
A ∪R, Y = trg(X)} and N ′ = {({X}, Y ) | Y ∈ R,X ∈ A,X = src(Y )}.
Redefinition of Theorem 7.6: Let σ ∈ {complete, preferred, grounded, stable} be a
semantics and SC Tr

σ the identity casting functions for σ. Translation TrAFRAAFN is strong and
semantics bijective under σ and SC Tr

σ . It is ⊆–weak under conflict–free semantics and
identity casting functions and ⊇–weak under admissible semantics and identity casting
functions.
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Please note the same explanations hold as in the AFRA–BAF translation. Conse-
quently, we will omit further discussion.
Analysis of Translation 35: Under the conflict–free, admissible, complete, preferred,
grounded and stable semantics and identity casting functions, the translation TrAFRAAFN is:

• full, target–subclass and injective

• argument domain altering, argument introducing, attack relation preserving, induced
support relation introducing

• generic and semantics domain preserving

• semi–structural and modular

Under the complete, preferred, grounded and stable semantics and identity casting func-
tions, TrAFRAAFN is exact. It is classified as basic under the listed semantics and casting
functions.

Example 92. Let us come back to the framework from Example 88 and Figure 63a, i.e.
FR = ({a, b, c}, {α, β, γ, δ}), where α = (a, b), β = (b, a), γ = (b, c) and δ = (c, β).
The AFN associated with FR is FNFR = (A′, R′, N ′), where A′ = {a, b, c, α, β, γ, δ},
R′ = {(α, b), (β, a), (γ, c), (δ, β)} and N ′ = {({a}, α), ({b}, β), ({b}, γ), ({c}, δ)}.
Structurally speaking, the framework looks the same as the BAF in Figure 66 without
the secondary attacks that were marked in red. For every argument in A′, we can create
a single minimal coherent set containing it; for every argument x ∈ A, this set is simply
{x}. For every argument that was created from R, this set consists of the attack it repre-
sents and its source, i.e. we obtain sets {a, α}, {b, β}, {b, γ} and {c, δ}. The admissible
sets of FNFR are ∅, {a, α}, {a, c, α}, {a, c, α, δ} and {b, β, γ}. Although all of these sets
are admissible in FR, we can observe that some of the admissible sets of FR, such as
{α}, are not admissible in FNFR. This is due to the interpretation of necessary support,
which enforces the presence of the source of a given conflict in the extension. Out of these
extensions, ∅, {a, c, α, δ} and {b, β, γ} are complete in FNFR. This time we retrieve all
and only complete extension of FR. Our grounded extension is ∅, while {a, c, α, δ} and
{b, β, γ} are preferred and stable. This again is in accordance with the sets produced by
FR.

7.4.1 Improvements

We could have observed that the presented AFRA–AFN translation is weak when it comes
to conflict–free and admissible semantics. This can be addressed, however, the required
modifications would cause this translation to resemble the AFRA–AF approach. In the
proof of Theorem 7.6 we have observed that the loss of strength in the case of conflict–
freeness was due to the fact that indirect conflicts are not taken into account in the AFN
version of the semantics. This can be addressed by transforming the indirect defeats into
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direct conflicts. However, this brings us to Translation 32 and causes the loss of modu-
larity. Moreover, the support which ties the attacks to their sources becomes redundant,
and its presence is the only thing weakening the admissible semantics. Thus, its removal
brings us back to the AFRA–AF translation. Although the AFRA–AF and AFRA–AFN
have certain structural differences, it is the change in modularity that appears to be the
most prominent. Consequently, one needs to choose between the conflict–free and ad-
missible semantics and modularity. Since the decision depends on the application of the
translation, we leave it to the reader to define which of the approaches is more desirable.

7.5 AFRA as ADF
Although it will only become visible in the next section, ADFs can handle a certain level
of recursion that appears in EAFs. Unfortunately, the recursion available in AFRAs can
be deeper than that and thus the construction becomes more complicated. Moreover, for
the time being, there are no semantics available for ADFs that would list links in the
extensions. Consequently, an AFRA–ADF translation with auxiliary arguments represent-
ing the recursive conflicts is the most reasonable way to proceed. We propose to use a
chained translation AFRA–AF–ADF or AFRA–AFN–ADF in order to transforms AFRAs
to ADFs. We do not believe there is any gain in pursuing a direct method. Unfortunately,
for the reasons mentioned in Section 9.4, we cannot use the BAF bypass.

We can note that independently of the chosen bypass framework (see Theorems 5.17
and 10.19), the produced ADF will have all the desirable normal forms – redundancy–
free, cleansed, weak, relation and strongly valid. Moreover, it will be both a BADF and
an AADF+, and thus any family of ADF semantics can be used for computing the AFRA
ones. Although most of the properties of the produced ADF will be an outcome of the
properties of the chained translations, there is an exception in the AFN case. The AFRA–
AFN–ADF chain will be an injective translation, even though the AFN–ADF translation
in principle is not. This is due to the fact that the input AFN for the AFN–ADF part will
be always in minimal form.

7.6 AFRA as Other Frameworks
In this section we have not discussed translating AFRAs to SETAFs and EASs. There
appears to be no advantage of group attack over binary attack when it comes to the han-
dling of the recursive conflicts. Consequently, we propose to use a chained translation
to SETAFs, be it through AF or AFN bypass. The translation to EASs would be almost
identical as to AFNs – the only difference would be the addition of the evidence argument,
transforming conflict to group form, and adding evidential support to every normal argu-
ment. In other words, modifications similar to the ones from AFN–EAS Translation 68
apply here. Therefore, there appears to be no gain in defining an AFRA–EAS translation
directly and thus we decide to use a chained one with AF or AFN as bypass.
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7.7 Summary
In this section we have presented four translations from AFRAs to other argumentation
frameworks. This included the existing translations from AFRAs to AFs [9, 64] and two
new ones to BAFs and AFNs. In all of those cases we had to introduce auxiliary arguments
to account for the recursive attacks. The only actual differences between these methods
concern the strength of the translation and modularity. We could have observed that out of
the available approaches, the AFRA–BAF translation appears to be the most interesting.
It is the only transformation that is both modular and exact under any semantics. In the
original AFRA–AF approach [9] we lose modularity, while in the AFRA–AFN case the
conflict–free and admissible semantics are not that well preserved. Finally, the defender
AF translation [64] is not exact under any semantics anymore, even though it is modular.
The summary of our results is visible in Table 9.
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Table 9: Translations from AFRAs to other frameworks

Properties AF BAF AFN

Translation 32 33 34 35

Strength

cf exact ⊆–weak exact ⊆–weak
adm exact ⊇–weak exact ⊇–weak
comp exact faithful exact exact
pref exact faithful exact exact
grd exact faithful exact exact
stb exact faithful exact exact

full full full full

Functional target–
subclass

target–
subclass

target–
subclass

target–
subclass

injective injective injective injective

argument
domain
altering

argument
domain
altering

argument
domain
altering

argument
domain
altering

Syntactical argument
introducing

argument
introducing

argument
introducing

argument
introducing

induced
attack

introducing

induced
attack

introducing

induced
support

introducing

induced
support

introducing

generic generic generic generic

Semantical
semantics
domain

preserving

semantics
domain
altering

semantics
domain

preserving

semantics
domain

preserving

Computational semi–
structural

semi–
structural

semi–
structural

semi–
structural

modular modular modular
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8 Translating EAFs and EAFCs
In Section 2.1.4 we have extensively discussed the extended argumentation framework
and noted that its semantics do not follow the usual pattern. By this we understand that
the characteristic operator is not necessarily monotonic, which led to the fact that the
complete semantics do not conform to the usual semilattice structure and the grounded
extension cannot be defined as the least complete set. Moreover, the stable extensions
are not necessarily preferred. These design choices mean that translating an EAF to any
framework (and semantics) is not a trivial task. Therefore, most of the transformations
are performed only for bounded hierarchical EAFs, a special EAF subclass on which the
characteristic operator defined on conflict–free extensions is monotonic, where conflict–
freeness can be defined using defeats, and the usual relations between stable–preferred
and complete–grounded extensions hold (see Lemma 2.60, Theorem 2.59 and Definition
2.57).

Please note that although we will mainly focus on EAFs, when possible we will also
make a note on their collective generalization, EAFCs, where defense attacks can be car-
ried out by groups of arguments. The reason why we do not separate those two frame-
works, even though e.g. AFs and SETAFs differ in a similar way and did receive separate
sections, is semantics. Due to their unusual nature, most of the analysis for those two
frameworks will be the same and thus separating them could blur the picture. Moreover,
the conflict–free semantics in EAFs and EAFCs can differ on frameworks with symmet-
ric attacks (see Section 2.1.4 and Example 5). Since conflict–freeness is the most basic
semantics, changing this notion affects every other type of extension we can obtain. Con-
sequently, providing translations for EAFs and EAFCs alongside can let the reader choose
what is more adequate for EAFs – the original semantics, or the EAFC–style ones. This is
of course under the assumption we have an approach that can handle an EAF subclass on
which both approaches differ.

We will start this section by showing how certain EAFCs can be compiled back to
EAFs and vice versa. Since most of our translations will be limited to bounded hierar-
chical versions of these frameworks – on which their semantics agree – we will often get
an EAFC translation simply through chaining or merging the approaches. We will then
move on to showing EAF translations to AFs, AFRAs, SETAFs and AFNs. Finally, we
will present the ADF transformation, the only one in which we are not strictly limited to
bounded hierarchical frameworks.

8.1 EAFC and EAF
Due to the difference in the conflict–free semantics of EAFs and EAFCs, the translations
between the two can only be done on a subclass of these frameworks where the definitions
coincide. Therefore, we need to assume that our frameworks belong either to the bounded
hierarchical subclasses BHEAF and BHEAFC or to those without symmetric attacks –
NSymEAF and NSymEAFC . Let us start with th EAF–EAFC translation. The approach
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is very simple and not unlike the AF–SETAF translation:

Translation 36. LetEF = (A,R,D) be a bounded hierarchical EAF or an EAF s.t. there
are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R. The EAFC corresponding to EF
is EFCEF = (A,R,D′), where D′ = {({c}, (a, b)) | (c, (a, b)) ∈ D}.

The resulting EAFC can be described quite easily, as it will inherit any properties of the
source EAF. Moreover, since all defense attacks will be carried out by sets of arguments
of size 1, it will be in fact a binary EAFC.

Theorem 8.1. Let EF = (A,R,D) be an EAF and EFCEF = (A,R,D′) its corre-
sponding EAFC obtained through Translation 36. EFCEF is a binary EAFC. If EF is
bounded hierarchical, then so is EFCEF . If EF has no symmetric attacks, then neither
does EFCEF . If EF is (strongly) consistent, then so is EFCEF .

Theorem 8.2. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF s.t. there
are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R and EFCEF its corresponding
EAFC obtained trough Translation 36. A set E ⊆ A is a σ–extension of EF , where σ ∈
{conflict–free, admissible, complete, preferred, grounded, stable}, iff it is a σ–extension
of EFC.

The redefinition of this translation is quite straightforward. The properties are also
easily visible from the transformation and require no further explanations.
Redefinition of Translation 36: Let BHEAF ∪ NSymEAF be the collection of all
EAFs that are bounded hierarchical or without symmetric attacks and let BinEAFC ∩
(BHEAF ∪ NSymEAF ) the collection of all binary EAFCs that are bounded hierarchi-
cal or without symmetric attacks, both based on argument domain U . The translation
TrEAFEAFC : (BHEAF ∪ NSymEAF ) → (BinEAFC ∩ (BHEAF ∪ NSymEAF )) is defined
as TrEAFEAFC((A,R,D)) = (A,R,D′), where D′ = {({c}, (a, b)) | (c, (a, b)) ∈ D} for a
framework (A,R,D) ∈ (BHEAF ∪NSymEAF ).
Redefinition of Theorem 8.2: Let σ ∈ {conflict–free, admissible, preferred, complete,
grounded, stable} be a semantics and SC Tr

σ the identity casting functions for σ. The
translation TrEAFEAFC is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 36: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and identity casting functions, the translation TrEAFEAFC is:

• source–subclass, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• structural and modular
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Translation TrEAFEAFC is classified as basic under the listed semantics and casting functions.
In order to translate EAFCs into EAFs we can reuse the SETAF–AF methods (see Sec-

tion 6.1). Since most of the EAF translations follow the defender approach, we will create
the EAFC–EAF one in the same style. This means that group defense attacks become new
arguments that now need to be defended by the arguments carrying them out, as visible in
Figure 67.

a

b

c

d

e

(a) Sample EAFC

a

b

c

a’

b’

c’

({a,b, c}, (d, e))

d

e

(b) Corresponding EAF

Figure 67: Sample EAFC and its corresponding EAF

Translation 37. Let EFC = (A,R,D) be a bounded hierarchical EAFC or an EAFC s.t.
there are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R. The corresponding EAF is
EFEFC = (A′, R′, D′), where:

• A′ = A ∪ GrD ∪ X ′, where GrD = {(a, (b, c)) | (a, (b, c)) ∈ D, |a| > 1} and
X ′ = {x′ | ∃(a, (b, e)) ∈ GrD, x ∈ a},

• R′ = R ∪ {(x, x′) | x ∈ X ′} ∪ {(x′, (a, (b, c))) | (a, (b, c)) ∈ GrD, x ∈ a}, and

• D′ = D \GrD ∪ {((a, b), b) | (a, b) ∈ GrD, b ∈ R}.
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We can observe that the produced EAF belongs to the same subclass as EAFC. The
translation does not introduce any symmetric attacks or cycles that would make it not
hierarchical anymore. Furthermore, if a given argument was not attacking another one
and defense attacking this conflict, then it does not do so in the produced EAF and thus
consistency is also preserved.

Theorem 8.3. Let EFC = (A,R,D) be an EAFC and EFEFC = (A′, R′, D′) its cor-
responding EAF obtained through Translation 37. If EFC is bounded hierarchical, then
so is EFEFC . If EFC has no symmetric attacks, then neither does EFEFC . If EFC is
(strongly) consistent, then so is EFEFC .

The way we retrieve the extensions in this case resembles the construction from the
defender SETAF–AF translation (Translation 26). Unfortunately, just like in this case, the
conflict–free semantics is preserved only one way:

Theorem 8.4. Let EFC = (A,R,D) be a bounded hierarchical EAFC or an EAFC
s.t. there are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R and EFEFC its
corresponding EAFC obtained trough Translation 37. If E ⊆ A is a σ–extension of
EFC, where σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable} then
E ′ = E ∪ {(a, (b, c)) | (a, (b, c)) ∈ GrD, a ⊆ E} ∪ {x′ | E defeatsE x and there is a
reinstatement set for this defeat on E} is a σ–extension of EFEFC . If E ′ ⊆ A′ is a σ′–
extension ofEFEFC , where σ′ ∈ {admissible, complete, preferred, grounded, stable} then
E = E ′ ∩ A is a σ′–extension of EFC. This does not necessarily hold for conflict–free
semantics.

The can now redefine and analyze our EAFC–EAF translation. The property analysis
is almost the same as in the case of the defender SETAF–AF translation (Translation 26)
and thus will be omitted.
Redefinition of Translation 37: Let BHEAFC ∪ NSymEAFC be the collection of all
EAFCs that are bounded hierarchical or without symmetric attacks on domain U and
let BHEAF ∪ NSymEAF be the collection of all EAFs that are bounded hierarchical or
without symmetric attacks on domain U∪GD(U)∪U ′, whereGD(U) = (2U \∅)×(U×U).
The translation TrEAFCEAF : (BHEAFC ∪ NSymEAFC) → (BHEAFC ∪ NSymEAF ) is
defined as TrEAFCEAF ((A,R,D)) = (A′, R′, D′), where:

• A′ = A ∪ GrD ∪ X ′, where GrD = {(a, (b, c)) | (a, (b, c)) ∈ D, |a| > 1} and
X ′ = {x′ | ∃(a, (b, e)) ∈ GrD, x ∈ a},

• R′ = R ∪ {(x, x′) | x ∈ X ′} ∪ {(x′, (a, (b, c))) | (a, (b, c)) ∈ GrD, x ∈ a}, and

• D′ = D \GrD ∪ {((a, b), b) | (a, b) ∈ GrD, b ∈ R}.

Redefinition of Theorem 8.4: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAFC ∪ NSymEAFC and E ∈
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σ(TrEAFCEAF (X)). The translation TrEAFCEAF is strong under (σ, SC Tr
σ ). It is ⊆–weak under

conflict–free semantics and removal casting functions. For complete, preferred, grounded
and stable semantics, the translation is semantics bijective.
Analysis of Translation 37: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation TrEAFCEAF is:

• source–subclass, target–subclass and injective

• argument domain altering, argument introducing and induced attack introducing

• generic and semantics domain altering

• semi–structural and modular

Under the complete, preferred, grounded and stable semantics and removal casting func-
tions, TrEAFCEAF is faithful. Translation TrEAFCEAF is classified as basic–defender hybrid under
the listed semantics and casting functions.

8.1.1 Improvements

One of the most important improvements that can be done to the presented translations
concerns fullness, i.e. devising a way such that every type of EAF(C) can undergo a
translation. Unfortunately, we are not aware of any solution for now, and this task is
left for future work. The EAF–EAFC translation is already exact and modular; however,
the EAFC–EAF is only faithful, and weak under the conflict–free semantics. Due to the
lack of research on the semantic signatures of both frameworks, we do not know whether
exactness is achievable. We only expect it not to be the case based on the SETAF–AF
relation.

8.2 EAF as AF
The translation from EAFs to AFs is similar to the defender SETAF–AF and AFRA–AF
approaches (see Sections 6.1.2 and 7.1.2). The conflicts in the source framework become
new arguments in the target structure and are connected to the arguments carrying them
out via defense [18,47,64]. In Figures 61 and 62 in Section 7.1.2 we have depicted the two
main approaches. In the first work [18], only direct attacks would receive corresponding
arguments, while in the other method [64] both direct and defense conflicts would undergo
a transformation. This difference affected the behavior of the semantics in AFRA–AF
transformation due to the fact that conflicts appear in extensions. However, as already
noted in [47], any of the methods is acceptable for EAFs. We will follow the construction
introduced in [64] due to the fact that we have worked with it in the previous SETAF and
AFRA translations.

It is important to note that even though the conflict expansion approach performed well
with other argumentation frameworks [18, 64], it misbehaves when it comes to EAFs. By
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this we understand that the extensions produced by the target AFs are not always related
to the ones in the source EAF. Let us look at the following examples:

Example 93. Let EF1 = ({a, b}, {(a, b)}, {(b, (a, b))}) be the EAF depicted in Figure
68a [64]. We can observe it is not a hierarchical one. It has a single preferred exten-
sion {a, b}. However, the corresponding AF ({a, b, a′, b′, (a, b), (b, (a, b))}, {(a, a′), (b, b′),
(a′, (a, b)), (b′, (b, (a, b))), ((a, b), b), ((b, (a, b)), (a, b))}), visible in Figure 68b has two
preferred extensions – {a, (a, b), b′} and {a, b, (b, (a, b))}. We can observe the first one
does not correspond to the preferred extension of EF1.

a b

(a) EF1

a a’ (a,b) b

b’(b, (a,b))

(b) Corresponding defender AF

Figure 68: EF1 and its corresponding AF from [64]

Example 94 (Adapted from [9]). Let us consider the framework EF2 =
({a, b, c}, {(b, a), (c, b)}, {(b, (c, b))}) depicted in Figure 69a. The sets {a, c} and {b, c}
are complete extensions of EF2. The set {a, c} is also the grounded extension. How-
ever, the complete extensions of the corresponding AF visible in Figure 69b are {c},
{b, c, a′, (b, a), (b, (c, b))} and {a, c, b′, (c, b)}, where {c} is also grounded. Therefore,
again we obtain a mismatch between the EAF and AF extensions.

c b a

(a) EF2

c c’ (c,b) b

b’(b, (c,b))

(b, a)aa’

(b) Corresponding defender AF

Figure 69: EF2 and its corresponding AF
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Unfortunately, such issues were to be expected. We have already noted at the begin-
ning of this section that the EAF semantics are structurally different from e.g. the AF
and SETAF ones. By this we understand the lack of monotonicity of the characteristic
operator and the defeats, i.e. an argument defeated by a given set E is not necessarily
defeated by E ′ ⊇ E . The presented conflict expansion does not build a gap between
the non–monotonic EAF and monotonic AF semantics. As observed in the example with
the self–reinstating argument, the inclusion of defeats in an extension, as done in the pre-
sented approach, can make comparable EAF extensions incomparable in the target AF.
Therefore, the EAF–AF translation is limited to bounded hierarchical EAFs, on which the
characteristic operator becomes monotonic (see Section 2.1.4) and the self–reinstatement
is no longer an issue.

We can now proceed with introducing the translation. Please note that just like in
the SETAF–AF and AFRA–AF approaches (see Sections 6.1.2 and 7.1.2), we will use
a simplified version of the original meta–level framework [64]. However, it is only the
naming of the arguments that is, in fact, different, and thus the original results still hold
[64]. Please note we will also reuse the src and trg notation from AFRAs. This means that
given a (direct or defense) attack x = (a, b), src(x) = a and trg(x) = b, where depending
on the type of conflict, b is either an argument or a direct attack.

Translation 38. Let bh − EF = (A,R,D) be a bounded hierarchical EAF. Its corre-
sponding AF is FEF = (A′, R′) for A′ = A∪R∪D ∪X ′, where X ′ = {x′ | x ∈ A}, and
R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) | a ∈ R ∪D, src(a) = x} ∪ {(a, b) | trg(a) = b, and
either (a ∈ R and b ∈ A), or (a ∈ D and b ∈ R)}.

The original results concerning the semantics spoke in terms of skeptical and credulous
acceptance and focused on semantics that were at least complete. However, the proofs
also include the admissible semantics and do in fact show the correspondence between
the source and target extensions. Please note that skeptical acceptance as such is not
analyzed in the case of admissible semantics – due to the fact that ∅ is always admissible,
no argument can be skeptically justified.

Theorem 8.5. Let bh−EF = (A,R,D) be a bounded hierarchical EAF, FEF = (A′, R′)
its corresponding AF obtained by Translation 38 and σ ∈ {admissible, complete,
grounded, preferred, stable} a semantics. Argument a ∈ A is a credulously, respectively
skeptically (if applicable), justified argument of bh − EF under the semantics σ iff it is a
credulously, respectively skeptically, justified argument of FEF under σ.

Theorem 8.6. Let bh − EF = (A,R,D) be a bounded hierarchical EAF and FEF =
(A′, R′) its corresponding AF obtained by Translation 38. If E ⊆ A is a σ–extension of
bh− EF for σ ∈ {conflict–free, admissible, complete, grounded, preferred, stable}, then
there is a σ–extension E ′ ⊆ A′ of FEF s.t. E = E ′ ∩ A. If E ′ ⊆ A′ is a σ′–extension of
FEF for σ′ ∈ {admissible, complete, grounded, preferred, stable}, then E = E ′ ∩ A is a
σ′–extension of bh− EF . This does not necessarily hold for conflict–free semantics.
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Please note we have included the results for conflict–free semantics as well. The proof
of that is trivial and can be easily adapted from e.g. Theorem 6.2. Although the correspon-
dence between the admissible extensions of bh−EF and FEF is not one–to–one (we have
some freedom when it comes to the addition of primed versions of arguments that do not
carry out attacks), it is such when we consider the complete semantics. The bounded hier-
archical nature of the EAFs we consider means that sooner or later, defense of any conflict
or primed argument in the target AF can be tracked back to the usual arguments. Please
note it would not necessarily be the case if we considered arbitrary EAFs; we can again
look at Example 93, in which the EAF complete extension {a} had two corresponding AF
complete ones, {a} and {a, b′, (a, b)}.

We can now proceed to redefine and analyze the translation:
Redefinition of Translation 38: Let BHEAF be the collection of all bounded hier-
archical EAFs based on domain U and FrAF the collection of all AFs based on the
domain U ′ ∪

⋃3
i=1 U i, where U1 = U and U i = U × U i−1 for i > 1 The transla-

tion TrEAFAF : BHEAF → FrAF is defined as TrEAFAF ((A,R,D)) = (A′, R′), where
A′ = A ∪R ∪D ∪X ′, where X ′ = {x′ | x ∈ A}, and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) |
a ∈ R ∪D, src(a) = x} ∪ {(a, b) | trg(a) = b, and either (a ∈ R and b ∈ A), or (a ∈ D
and b ∈ R)} for a framework (A,R,D) ∈ BHEAF .
Redefinition of Theorem 8.6: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAF is a bounded hierarchical EAF
and E ∈ σ(TrEAFAF (X)). The translation TrEAFAF is strong under (σ, SC Tr

σ ). It is ⊆–weak
under the conflict–free semantics and the defined casting function. It is semantics bijective
under complete, grounded, preferred and stable semantics.
Analysis of Translation 38: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrEAFAF is:

• source–subclass, target–subclass and injective

• argument domain altering, argument introducing, induced attack relation introduc-
ing

• generic and semantics domain altering

• semi–structural and modular

The translation TrEAFAF is faithful under complete, preferred, grounded and stable seman-
tics and the defined removal casting functions. We classify TrEAFAF as a basic–defender
hybrid under the listed semantics and casting functions.

Explanation. The translation only works with bounded hierarchical EAFs; consequently,
it is source–subclass. Although we do not have a precise description of the subclass of
AFs that can be obtained with this transformation, there exist frameworks that cannot be
produced. For example, an AF containing a self–attacking argument cannot be created
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with this approach. We can observe that the set of arguments in the target AF is uniquely
defined by the structure of the source EAF. Consequently the translation is injective.

Both argument and semantics domain is altered. Due to the presence of the primed
arguments, we classify the translation as argument introducing. It is not relation removing
– every attack and defense attack is represented in the target structure, even if by the
use of auxiliary arguments. Having said that, adding the primed arguments requires new
attacks, and thus their introduction is induced. The amount of handled semantics makes
the translation generic. We also classify it as semi–structural, as it uses the defense to
connect the arguments with the attacks and defense attacks they carry out. Just like in the
SETAF and AFRA cases (see Section 6.1.2 and 7.1.2), the translation is modular. Every
conflict is separately “expanded” and no propagation is present. �

8.2.1 EAFC as AF

The extended argumentation frameworks we have used in Examples 93 and 94 do not have
symmetric attacks. This means that we can use the defeat–based definition of conflict–
freeness to obtain the desired extensions, even though the frameworks are not bounded
hierarchical. Consequently, if we represented these structures as collective EAFs, their
extensions would remain the same. Therefore, our previous analysis holds for EAFCs as
well, and thus a translation from EAFCs to AFs needs to be limited to bounded hierarchical
frameworks as well (see Definition 2.61).

Having said that, an EAFC–AF translation is in fact a merge between the presented
EAFC–EAF and EAF–AF approaches. In other words, conflicts still become new argu-
ments that are defended by their sources, with the difference being that now a source can
be more than a single argument. However, since group attacks of size bigger than 1 al-
ready undergo this treatment in the EAFC–EAF step (see Translation 37), they need to be
omitted in the EAF–AF one. Consequently, simple chaining would be overly redundant.
An example of this method can be seen in Figure 70.

The EAFC–AF translation is now a simple modification of the EAF–AF one. Like
previously, we reuse the AFRA src and trg notation, with the difference that the source of
a defense attack is now a set:

Translation 39. Let bh−EFC = (A,R,D) be a bounded hierarchical EAFC. Its corre-
sponding AF is FEFC = (A′, R′) for A′ = A ∪ R ∪D ∪X ′, where X ′ = {x′ | x ∈ A},
and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) | a ∈ R, src(a) = x} ∪ {(x′, a) | a ∈ D, x ∈
src(a)} ∪ {(a, b) | trg(a) = b, and either (a ∈ R and b ∈ A), or (a ∈ D and b ∈ R)}.

We can observe that the modification done to the EAF–AF translation is not a drastic
one. Thus, the original proof can be adapted, and the existing semantical results carry
over:

Theorem 8.7. Let bh− EFC = (A,R,D) be a bounded hierarchical EAFC and FEF =
(A′, R′) its corresponding AF obtained by Translation 39. If E ⊆ A is a σ–extension of
bh−EFC for σ ∈ {conflict–free, admissible, complete, grounded, preferred, stable}, then
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(a) Sample EAFC
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b

c

a’

b’

c’

({a,b, c}, (d, e)) (d, e)

d’ d

e e’

(b) Corresponding defender AF

Figure 70: Sample EAFC and its corresponding AF

there is a σ–extension E ′ ⊆ A′ of FEFC s.t. E = E ′ ∩ A. If E ′ ⊆ A′ is a σ′–extension of
FEFC for σ′ ∈ {admissible, complete, grounded, preferred, stable}, then E = E ′ ∩ A
is a σ′–extension of bh−EFC. This does not necessarily hold for conflict–free semantics.

The EAFC–AF translation has the same properties as the EAF–AF one and thus we
will omit the explanations. Only the target domain needs to be slightly adjusted in order
to account for the group defense attacks.
Redefinition of Translation 39: LetBHEAFC be the collection of all bounded hierarchi-
cal EAFCs based on domain U and FrAF the collection of all AFs based on the domain
U ′ ∪

⋃2
i=1 U i ∪ (U × U2), where U1 = U and U i = U × U i−1 for i > 1. The transla-

tion TrEAFCAF : BHEAFC → FrAF is defined as TrEAFCAF ((A,R,D)) = (A′, R′), where
A′ = A ∪R ∪D ∪X ′, where X ′ = {x′ | x ∈ A}, and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) |
a ∈ R, src(a) = x} ∪ {(x′, a) | a ∈ D, x ∈ src(a)} ∪ {(a, b) | trg(a) = b, and either
(a ∈ R and b ∈ A), or (a ∈ D and b ∈ R)} for a framework (A,R,D) ∈ BHEAFC .
Redefinition of Theorem 8.7: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAFC is a bounded hierarchical EAFC
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and E ∈ σ(TrEAFCAF (X)). The translation TrEAFCAF is strong under (σ, SC Tr
σ ). It is ⊆–

weak under the conflict–free semantics and the defined casting function. It is semantics
bijective under complete, grounded, preferred and stable semantics.
Analysis of Translation 39: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrEAFCAF is:

• source–subclass, target–subclass and injective

• argument domain altering, argument introducing, induced attack relation introduc-
ing

• generic and semantics domain altering

• semi–structural and modular

The translation TrEAFCAF is faithful under the complete, preferred, grounded and stable
semantics and the defined removal casting functions. We classify TrEAFCAF as a basic–
defender hybrid under the listed semantics and casting functions.

8.2.2 Improvements

The EAF–AF translation we have introduced is modular and faithful for semantics that
are also complete. Unfortunately, the approach is also source–subclass. Consequently, we
would like to know whether a full and/or exact translation is even possible and if a wider
range of semantics can be obtained.

Let us first start with the general EAFs. We can come back to the previously ana-
lyzed Example 90. The framework EF = ({a, b, c, d, e, f, g}, {(a, b), (d, c), (b, e), (e, f),
(f, g)}, {(b, (d, c)), (c, (a, b))}) had numerous conflict–free extensions. However, what is
important is that {a, b, c} was one, while {a, b} was not. Consequently, the set of exten-
sions cf(EF ) is not downward closed and thus there is no AF F s.t. cf(EF ) = cf(F )
(see Definitions 2.176 and 2.177).

The EF framework had only two complete extensions - {a, d, e, g} and {a, b, c, d, f}.
Although the com–closed requirement is satisfied, the intersection of the two sets
– {a, d} – is not present. Consequently, by Proposition 2.178 there cannot be an
AF F s.t. comp(F ) = {{a, d, e, g}, {a, b, c, d, f}}. Finally, concerning the sta-
ble semantics, we can come back to Example 9. The described framework EF ′ =
({a, b, c, d}, {(a, b), (d, c)}, {(b, (d, c)), (c, (a, b))}) had two stable extensions, {a, d} and
{a, b, c, d}. They are clearly comparable and thus breach the stable signature of AFs (see
Definition 2.177). This brings us to the following result:

Theorem 8.8. Let FrEAF be the collection of all EAFs on a domain UEAF and FrAF the
collection of all AFs on a domain UAF . There does not exist a full translation from FrEAF

to FrAF that is exact under conflict–free, complete and stable semantics and their identity
casting functions.
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Since the EAFC representation of our EAF EF has the same extensions due to lack of
symmetric attacks, this result can be reiterated also for them:

Theorem 8.9. Let FrEAFC be the collection of all EAFCs on a domain UEAFC and FrAF

the collection of all AFs on a domain UAF . There does not exist a full translation from
FrEAFC to FrAF that is exact under conflict–free, complete and stable semantics and
their identity casting functions.

Please note it does not appear that even a faithful translation can be created for the
complete semantics – no addition of auxiliary arguments in a way that still a removal
casting function can be used will bring e.g. the missing intersection set in our EF .

The question concerning whether there exist exact translations from EAFs and EAFCs
to AFs for the admissible and preferred semantics is unfortunately still open. Therefore,
we hope to answer it in the future.

We can now limit ourselves to the bounded hierarchical EAFs. We can observe
that when it comes to conflict–free semantics, again the answer concerning exactness is
“no”. The conflict–free extensions of a simple bh–EAF ({a, b, c}, {(a, b)}, {(c, (a, b))})
are ∅, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}. Due to the absence of the set {a, b}, our col-
lection is not downward closed and thus does not fit the AF conflict–freeness signature. It
however does appear that due to the fact that now the stable extensions are incomparable,
we might be able to realize them. Unfortunately, this is all we are able to say – the question
concerning admissible and preferred semantics is still open, and only the necessary con-
ditions are known for complete. Therefore, the search for exact translations for bounded
hierarchical frameworks is again left for future work.

8.3 EAF as SETAF
Although we did not focus on translating group attack into defense attack, there is a way
to express the combination of direct and defense conflicts as group conflicts. An EAF
argument cannot be accepted if its attacker is present and every relevant defense attacker
is absent. Thus, with the use of auxiliary arguments representing the rejection of a given
defense attacker, the described situation can be expressed with group attacks. Let us look
at the following example:

Example 95. Let us assume a simple framework EF1 = ({a, b, c}, {(a, b)}, {(c, (a, b))})
visible in Figure 71a that will be our main example for defense attack transformation in
this section. The set {b} is a conflict–free extension, i.e. the argument can stand on its
own. However, it requires the presence of c in order to be accepted whenever a is around.
In other words, while {a, b} is not conflict–free, {a, b, c} is. Concerning admissibility, we
receive the following extensions: ∅, ∅, {a}, {c}, {a, c}, {b, c} and {a, b, c}.

A similar situation occurs in our SETAF in which c prevents the acceptance of c′ and
thus can stop the group attack on b carried out by {a, c′}, as seen in Figure 71b. The
framework SF1 = ({a, b, c, c′}, {({a, c′}, b), ({c}, c′)}) gives us the following conflict–
free extensions: ∅, {a}, {c}, {c′}, {b}, {a, b}, {a, c}, {a, c′}, {b, c}, {b, c′} and {a, b, c}.
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We can observe that if we remove the auxiliary argument c′ from the extensions (with
the exception of {a, b}), we retrieve the conflict–free extensions of EF1. However, if we
limit ourselves to admissible sets – ∅, {a}, {c}, {a, c}, {b, c} and {a, b, c} – we obtain the
desired result.

a b

c

(a) EF1

a

c’c

b

(b) Corresponding SF1

Figure 71: Sample EAF and its corresponding SETAF

Our translation is now as follows. Please note that for similar reasons as in the EAF–
AF case, we need to limit ourselves to the bounded hierarchical frameworks:

Translation 40. Let bh − EF = (A,R,D) be a bounded hierarchical EAF. Its corre-
sponding SETAF is SFEF = (A′, R′), where:

• A′ = A ∪X ′, where X ′ = {x′ | x ∈ A, ∃y ∈ R s.t. (x, y) ∈ D}, and

• R′ = {({x}, x′) | x′ ∈ X ′} ∪ {(datt′(x, y) ∪ {x}, y) | (x, y) ∈ R}, where
datt′(x, y) = {c′ | (c, (x, y)) ∈ D}.

Although due to the restrictions on the source frameworks not every type of a SETAF
can be produced, for now it suffices to know that the target framework will always be
minimal. This is simply a result of the fact that each attack set will contain a unique,
unprimed argument representing the direct attacker.

Theorem 8.10. Let bh − EF = (A,R,D) be a bounded hierarchical EAF and SFEF =
(A′, R′) its corresponding SETAF obtained through Translation 40. SFEF is minimal.

Let us now focus on the semantics. As already observed in Example 95, the conflict–
free semantics will be preserved only one–way:

Theorem 8.11. Let bh − EF = (A,R,D) be a bounded hierarchical EAF and SFEF =
(A′, R′) its corresponding SETAF obtained through Translation 40. If E ⊆ A is a
σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable}, then E ′ = E ∪ {x′ | x′ ∈ X ′, x ∈ E+} is a σ–extension of SFEF .
If E ′ ⊆ A′ is a σ′–extension of SFEF , where σ′ ∈ {admissible, complete, preferred,
grounded, stable}, then E ′ ∩ A is a σ′–extension of bh − EF . This does not necessarily
hold for conflict–free semantics.
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We can now put these results into our system:
Redefinition of Translation 40: Let BHEAF be the collection of all bounded hierar-
chical EAFs based on domain U and MinSETAF the collection of all minimal SETAFs
based on the domain U ∪ U ′. The translation TrEAFSETAF : BHEAF → MinSETAF is de-
fined as TrEAFSETAF ((A,R,D)) = (A′, R′) for a framework (A,R,D) ∈ BHEAF , where
A′ = A ∪X ′ with X ′ = {x′ | x ∈ A,∃y ∈ R s.t. (x, y) ∈ D}, and R′ = {({x}, x′) | x′ ∈
X ′} ∪ {(datt′(x, y) ∪ {x}, y) | (x, y) ∈ R} s.t. datt′(x, y) = {c′ | (c, (x, y)) ∈ D}.
Redefinition of Theorem 8.11: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAF is a bounded hierarchical EAF
and E ∈ σ(TrEAFSETAF (X)). The translation TrEAFSETAF is strong under (σ, SC Tr

σ ). It is
⊆–weak under the conflict–free semantics and the defined casting function. It is semantics
bijective under complete, grounded, preferred and stable semantics.
Analysis of Translation 40: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrEAFSETAF is:

• source–subclass, target–subclass and injective

• weakly argument domain altering, argument introducing, induced attack relation
introducing

• generic and weakly semantics domain altering

• structural

The translation TrEAFSETAF is not modular. It is faithful under complete, preferred, grounded
and stable semantics and the defined removal casting functions. We classify TrEAFSETAF as
a basic under the listed semantics and casting functions.

Explanation. Our translation is designed for bounded hierarchical EAFs only, thus
it is source–subclass. This restriction also makes it impossible to produce certain
SETAFs. However, we can observe that the subclass of minimal framework is not
the most accurate description possible. For example, let us consider the framework
SF1 = ({a, b, c}, {({a, b}, c), ({c}, a), ({c}, b)). First of all, a and b carry out a group
attack on c. We can observe that one of them has to be a primed argument, representing
the rejection of a defense attacker, and as such needs to be attacked by the original argu-
ment – in this case, it can only be c. Thus, c has to be its own defense attacker, which
violates the bounded hierarchical restrictions on the source EAFs.

For every produced SETAF, it is rather straightforward to recreate the EAF creating
it. The source arguments can be retrieved easily by filtering out the primed elements.
Moreover, the primed arguments can only be attacked by their originals. Thus, they clearly
point to the defense attacker of the conflict represented by the single not primed argument
appearing in the group attack. Therefore, it is not possible that two different EAFs will
produce the same SETAF, and our translation is injective.
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Our translation alters the argument and semantics domains, though only weakly.
Moreover, we introduce the auxiliary arguments and their related conflicts. The
amount of handled semantics classifies our approach as generic. However, it is not
modular. Let us consider two frameworks EF1 = ({a, b}, {(a, b)}, ∅) and EF2 =
({a, b, c}, {(a, b)}, {(c, (a, b))}). Their union is simply EF2 and its corresponding SF2

is ({a, b, c, c′}, {({c}, c′), ({a, c′}, b)}), as seen in Example 95. However, the SETAF re-
lated toEF1 is SF1 = ({a, b}, {({a}, b)}). We can observe that SF1∪SF2 is not the same
as SF2 – the set of attacks is different. Therefore, our approach is not modular. �

a b

c

def

(a) Sample EAF

a b

c’c

d’def

(b) Associated SETAF

Figure 72: Sample EAF and its associated SETAF

Example 96. Let us come back to the bounded hierarchical EAF EF = ({a, b, c, d, e, f},
{(a, b), (b, a), (c, d), (d, c), (e, d), (e, f), (f, e)}, {(c, (b, a)), (d, (a, b))}) previously de-
scribed in Example 7. We can see it depicted in Figure 72a. The associated SETAF, vis-
ible in Figure 72b, is SFEF = ({a, b, c, d, e, f, c′, d′}, {({a, d′}, b), ({b, c′}, a), ({c}, d),
({d}, c), ({e}, d), ({e}, f), ({f}, e), ({c}, c′), ({d}, d′)}). The admissible sets of SFEF

are ∅, {c}, {e}, {f}, {a, c}, {c, d′}, {c, e}, {c, f}, {d, f}, {e, d′}, {a, c, e}, {a, c, f},
{a, e, d′}, {a, c, d′}, {b, d, f}, {c, e, d′}, {c, f, d′}, {d, f, c′}, {a, c, f, d′}, {a, c, e, d′} and
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{b, d, f, c′}. When we remove the primed arguments, we obtain all and only extensions
of EF , though please note that the relation is not one–to–one (e.g. the set {c} can be ob-
tained both from {c} and {c, d′}). The complete extensions of SFEF are ∅, {f}, {a, c, d′},
{a, c, e, d′}, {a, c, f, d′} and {b, d, f, c′}. We can again retrieve all the desired complete
extensions of EF . It is worth observing that this time, the relation is one–to–one. ∅, just
like in EF , is the grounded extension of SFEF . The sets {a, c, e, d′}, {a, c, f, d′} and
{b, d, f, c′} are both stable and preferred, which is in correspondence with the answers
obtained from EF .

8.3.1 EAFC as SETAF

In the EAFs, defense attacks are carried out by single arguments only and thus every
direct attack would be assigned a unique group attack in the result of the EAF–SETAF
translation. In EAFCs, we do not have this benefit, although the construction follows
similar principles as in the EAF case. Previously, an argument could not be accepted if its
attacker were present and all of the defense attackers absent. Now, an argument cannot be
accepted if its attacker is present and at least one argument out of each relevant defense
attacking set is absent. An example of this behavior can be observed in Figure 73; we
can observe that the group defense attack ({a, b, c}, (d, e)) is transformed into three group
attacks – ({a′, d}, e), ({b′, d}, e) and ({c′, d}, e).

a

b

c

d

e

(a) Sample EAFC

a

b

c

a’

b’

c’

d
e

(b) Related SETAF

Figure 73: Sample EAFC and a related SETAF

Let us now introduce the translation; please note that once again, we need to restrict
ourselves to bounded hierarchical target frameworks.

Translation 41. Let bh−EFC = (A,R,D) be a bounded hierarchical EAFC. Its corre-
sponding SETAF is SFEFC = (A′, R′), where:

• A′ = A ∪X ′, where X ′ = {x′ | ∃y ∈ R,B ⊆ A s.t. x ∈ B and (B, y) ∈ D}, and
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• R′ = {({x}, x′) | x′ ∈ X ′} ∪ {(G ∪ {x}, y) | (x, y) ∈ R,G ⊆
⋃
gdatt′(x, y)

s.t. ∀C ∈ gdatt′(x, y), G ∩ C 6= ∅}, where gdatt′(x, y) = {{c′1, ...c′n} |
({c1, ..., cn}, (x, y)) ∈ D}.

It is important to notice that according to this translation, the SETAF depicted in Figure
73 would be the minimal form of the framework associated with the presented EAF, not
the framework itself. The wayG sets are constructed allows certain redundant (though still
correct) sets of attackers to show up in the target SETAF. Consequently, a minimal EAFC
can be turned into a non–minimal SETAF. We can thus decide to limit ourselves to minimal
G’s in the construction of R′. However, doing so can make the target SETAFs minimal,
even if the source EAFCs are not. Therefore, we leave the decision on the creation of
group attacks to the reader, and perform the analysis of the current version.

The proof of Theorem 8.12 can be easily adapted in order to show that the semantics
behave similarly in the EAFC–SETAF case as in the EAF–SETAF one:

Theorem 8.12. Let bh − EFC = (A,R,D) be a bounded hierarchical EAFC and
SFEFC = (A′, R′) its corresponding SETAF obtained through Translation 41. If E ⊆ A
is a σ–extension of bh−EFC, where σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable}, then E ′ = E ∪ {x′ | x′ ∈ X ′, x ∈ E+} is a σ–extension of SFEFC .
If E ′ ⊆ A′ is a σ′–extension of SFEFC , where σ′ ∈ {admissible, complete, preferred,
grounded, stable}, then E ′ ∩A is a σ′–extension of bh−EFC. This does not necessarily
hold for conflict–free semantics.

Redefinition of Translation 41: Let BHEAFC be the collection of all bounded hier-
archical EAFCs based on domain U and FrSETAF the collection of all SETAFs based
on the domain U ∪ U ′. The translation TrEAFCSETAF : BHEAFC → FrSETAF is defined
as TrEAFCSETAF ((A,R,D)) = (A′, R′) for a framework (A,R,D) ∈ BHEAFC , where
A′ = A ∪ X ′ with X ′ = {x′ | ∃y ∈ R,B ⊆ A s.t. x ∈ B and (B, y) ∈ D}, and
R′ = {({x}, x′) | x′ ∈ X ′} ∪ {(G ∪ {x}, y) | (x, y) ∈ R,G ⊆

⋃
gdatt′(x, y) s.t. ∀C ∈

gdatt′(x, y), G ∩ C 6= ∅}, where gdatt′(x, y) = {{c′1, ...c′n} | ({c1, ..., cn}, (x, y)) ∈ D}.
Redefinition of Theorem 8.12: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAFC is a bounded hierarchical EAFC
and E ∈ σ(TrEAFCSETAF (X)). The translation TrEAFCSETAF is strong under (σ, SC Tr

σ ). It is
⊆–weak under the conflict–free semantics and the defined casting function. It is semantics
bijective under complete, grounded, preferred and stable semantics.

A lot of the properties carry over from the EAF–SETAF translations. The only differ-
ence is that our approach is now overlapping due to the reasons explained before:
Analysis of Translation 41: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrEAFSETAF is:

• source–subclass, target–subclass and overlapping

• weakly argument domain altering, argument introducing, induced attack relation
introducing
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• generic and weakly semantics domain altering

• structural

The translation TrEAFCSETAF is not modular. It is faithful under the complete, preferred,
grounded and stable semantics and the defined removal casting functions. We classify
TrEAFCSETAF as a basic under the listed semantics and casting functions.

8.3.2 Improvements

The EAF(C)–SETAF translations are faithful for semantics that are also complete. Un-
fortunately, they are both source–subclass and lack modularity. In order to obtain a faith-
ful and modular translation, we can simply chain the EAF(C)–AF and AF–SETAF ap-
proaches. However, our aim was to show how the group attack can handle defense attacks
without forcing the presence of arguments representing conflicts, rather than to create an-
other faithful and modular translation. Therefore, we will limit ourselves to the discussion
on whether full and exact translations are possible from EAF(C)s to SETAFs.

Unfortunately, the results echo our conclusions for AFs. SETAF complete extensions
also form a complete semilattice and the stable extensions need to be incomparable (see
Theorems 2.23 and 2.24). Moreover, even though the signatures for SETAF semantics are
not yet known, it can be easily shown that if a given set of arguments is conflict–free, then
so is any of its subsets. Consequently, we can repeat the analysis done in Section 8.2.2,
which brings us to the following results:

Theorem 8.13. Let FrEAF be the collection of all EAFs on a domain UEAF and FrSETAF

the collection of all SETAFs on a domain USETAF . There does not exist a full translation
from FrEAF to FrSETAF that is exact under conflict–free, complete and stable semantics
and their identity casting functions.

Theorem 8.14. Let FrEAFC be the collection of all EAFCs on a domain UEAFC and
FrSETAF the collection of all AFs on a domain USETAF . There does not exist a full trans-
lation from FrEAFC to FrSETAF that is exact under conflict–free, complete and stable
semantics and their identity casting functions.

8.4 EAF as AFRA
Structurally speaking, the AFRA framework permits deeper recursion than EAFs do. Con-
sequently, ifEF = (A,R,D) is an EAF, then FR = (A,R∪D) is an AFRA. However, as
observed in [9] and in Section 7.2, the two frameworks have a different approach towards
the semantics:

Example 97. Let us recall the framework EF1 = ({a, b, c, d}, {(a, b), (b, a), (c, d),
(d, c)}, {(a, (d, c)), (b, (c, d)), (c, (b, a)), (d, (a, b))}) described in Example 5 and
[62]. For convenience, we depict it again in Figure 74. According to Defini-
tion 2.42, the set {a, b, c, d} is not conflict–free in EF1. However, both {a, b, c, d}
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and {a, b, c, d, (a, (d, c)), (b, (c, d)), (c, (b, a)), (d, (a, b))} are conflict–free in FR1 =
({a, b, c, d}, {(a, b), (b, a), (c, d), (d, c), (a, (d, c)), (b, (c, d)), (c, (b, a)), (d, (a, b))}). The
latter extension is even admissible, preferred and stable in FR1, while it clearly has no
corresponding extension in EF1.

a b

c

d

Figure 74: Sample EAF

The issue with conflict–freeness can be considered negligible, particularly since the
EAFC generalization of EAFs (see Section 2.1.4.3) relaxes the definition of this semantics.
It is also the main reason for the lack of correspondence w.r.t. admissible, preferred and
stable semantics. However, the complete and grounded semantics behave differently even
when we put conflict–freeness aside.

Example 98 (Taken from [9]). Let us consider the framework EF2 = ({a, b, c},
{(b, a), (c, b)}, {(b, (c, b))}) previously analyzed in Example 94. The sets {a, c}
and {b, c} are complete extensions of EF2. The set {a, c} is also the grounded
extension. However, the complete extensions of the corresponding AFRA FR2 =
({a, b, c}, {(b, a), (c, b), (b, (c, b))}) are {c}, {b, c, (b, a), (b, (c, b))} and {a, c, (c, b)}, with
{c} being the grounded one.

The conclusion is that for any EAF semantics, we can find a framework s.t. the AFRA
extensions will not correspond to the original sets. The design of the frameworks is very
different, even if, structurally speaking, they are not far apart. In this section we will
complete the analysis done in [9] and analyze an EAF–AFRA translation which, like in
the AF case, its restricted to bounded hierarchical EAFs. In this case the monotonicity
of the characteristic operator is retrieved and the stratification of the framework prevents
issues such as self–reinstatement.

Translation 42. Let bh − EF = (A,R,D) be a bounded hierarchical EAF. Its corre-
sponding AFRA is FREF = (A,R ∪D).

We can observe that not every type of AFRA can be created with this translation. The
produced framework only has none to single recursion of attacks, i.e. attacks can be carried
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out only on arguments or on attacks targeted at arguments. Consequently, FREF belongs
to the subclass RecAFRA0 ∪RecAFRA1 . Please note this is not the most accurate description.
Due to the fact that the source EAFs are bounded hierarchical, the resulting AFRAs can
also be separated into certain levels. Nevertheless, we will not focus on analyzing stratified
AFRAs. Let us now continue with the analysis of the semantics. Unfortunately, conflict–
freeness and admissibility are preserved only one–way:

Theorem 8.15. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FREF =
(A,R ∪ D) its corresponding AFRA obtained through Translation 42. If E ⊆ A is a
σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, grounded, pre-
ferred, stable}, then there is a σ–extension E ′ ⊆ (A∪R∪D) of FREF s.t. E = E ′∩A. If
E ′ ⊆ A ∪R ∪D is a σ′–extension of FREF , where σ′ ∈ {complete, grounded, preferred,
stable}, then E = E ′ ∩ A is a σ′–extension of bh − EF . This does not necessarily hold
for conflict–free and admissible semantics.

We can now redefine these results and put them into our system:
Redefinition of Translation 42: Let BHEAF be the collection of all bounded hierar-
chical EAFs and RecAFRA0 ∪ RecAFRA1 the collection of zero or single–recursion AFRAs,
both based on domain U . The translation TrEAFAFRA : BHEAF → (RecAFRA0 ∪ RecAFRA1 )
is defined as TrEAFAFRA((A,R,D)) = (A,R ∪D) for a framework (A,R,D) ∈ BHEAF .
Redefinition of Theorem 8.15: Let σ ∈ {complete, preferred, grounded, stable} be a se-
mantics and SC Tr

σ the removal casting functions for σ defined as SCX
σ (E ) = E∩A, where

X = (A,R,D) ∈ BHEAF is a bounded hierarchical EAF and E ∈ σ(TrEAFAFRA(X)). The
translation TrEAFAFRA is strong under (σ, SC Tr

σ ). It is ⊆–weak under the conflict–free and
admissible semantics and the defined casting function. It is semantics bijective under com-
plete, grounded, preferred and stable semantics.

The presented translation is quite straightforward and thus we will omit further expla-
nations.
Analysis of Translation 42: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and union casting functions, the translation TrEAFAFRA is:

• source–subclass, target–subclass and injective

• argument domain and structure preserving

• generic and semantics domain altering

• structural and modular

The translation TrEAFAFRA is faithful under the complete, preferred, grounded and stable se-
mantics and the defined removal casting functions. We classify TrEAFAFRA as a basic trans-
lation under the listed semantics and casting functions.

Please note that AFRAs do not permit conflicts from sets of arguments. Consequently,
the most reasonable way to translate an EAFC into an AFRA is to use the EAF bypass.
Please note than unlike in the EAFC–AF translation, simple chaining is sufficient.
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8.4.1 Improvements

It is easy to see that due to the nature of the AFRA semantics, an exact translation from
EAFs to AFRAs is not possible, even when we assume that the source framework is
bounded hierarchical. AFRA extensions will consist of arguments only if there are no
conflicts in the structure to start with, which is possible only for very particular EAFs or
unique status semantics. Similar results hold for EAFCs.

Theorem 8.16. Let FrEAF be the collection of all EAFs on a domain UEAF and FrAFRA

the collection of all AFRAs on a domain UAFRA. There is no full translation from FrEAF

to FrAFRA that is exact under conflict–free, admissible, complete, preferred and sta-
ble semantics and their identity casting functions. Let BHEAF be the collection of all
bounded hierarchical EAFs on a domain UEAF . There is no full translation from BHEAF

to FrAFRA that is exact under conflict–free, admissible, complete, preferred and stable
semantics and their identity casting functions.

Theorem 8.17. Let FrEAFC be the collection of all EAFCs on a domain UEAFC and
FrAFRA the collection of all AFRAs on a domain UAFRA. There is no full translation from
FrEAFC to FrAFRA that is exact under conflict–free, admissible, complete, preferred and
stable semantics and their identity casting functions. Let BHEAFC be the collection of
all bounded hierarchical EAFCs on a domain UEAFC . There is no full translation from
BHEAFC to FrAFRA that is exact under conflict–free, admissible, complete, preferred and
stable semantics and their identity casting functions.

The only possible improvement we can consider relates to the strength of our transla-
tion under the admissible semantics. A strong relation can be achieved by adjusting the
semantics casting function in the same way as done in Section 5.2.1. Nevertheless, it is not
sufficient for faithfulness, and we are not convinced this property can be in fact achieved.

8.5 EAF as AFN
There are two ways we can transform an EAF into an AFN. The first one follows the
same principles as the AFRA–AFN approach, where conflicts become new arguments and
are connected to their sources through support. However, another approach can be seen
as more interesting, particularly when we try to compare the defense attacks to different
forms of support (more on this in Section 8.6.1).

Example 99. Let us assume a simple framework EF1 = ({a, b, c}, {(a, b)}, {(c, (a, b))})
visible in Figure 75a. The set {b} is a conflict–free extension, i.e. the argument can
stand on its own. However, it requires the presence of c in order to be accepted when-
ever a is around. In other words, while {a, b} is not conflict–free, {a, b, c} is. The
same situation occurs in an AFN in which c is set as a supporter of b and a indirectly
attacks b through another supporting argument, as seen in Figure 75b. The framework
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(a) EF1
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(b) Corresponding FN1

Figure 75: Sample EAF and its corresponding AFN

FN1 = ({a, a′, b, c}, {(a, a′)}, {({a′, c}, b)}) gives us the following strongly coherent ex-
tensions: ∅, {a}, {a′}, {c}, {a, c}, {a′, c}, {a′, b}, {a′, b, c}, {a, b, c}. We can observe that
if we remove the auxiliary argument a′, we retrieve the conflict–free extensions of EF1.

Therefore, as observed in the example, the defense attack can be seen as a particular
form of necessary group support, when accompanied by an additional argument (in our
case, a′). This auxiliary argument can be read similarly as in the EAF–AF translation –
either as a is rejected, or, perhaps more accurately, as the attack from a is not in force. We
can observe that in a certain sense, the presented construction is dual to the EAF–SETAF
approach. Previously, it was the positive defense attack relation that was simulated with
combination of conflicts, and in our case it is the negative direct attack relation that is
simulated with a mix of conflict and support. Unfortunately, not every EAF can undergo
such a translation – the resulting AFN can contain support cycles and produce only some
of the extensions of the original structure. Therefore, we will need to restrict ourselves to
bounded hierarchical EAFs also in this case.

Example 100. Let us come to the framework EF2 =
({a, b, c}, {(b, a), (c, b)}, {(b, (c, b))}) depicted in Figure 76a and analyzed in Examples
94 and 98. The corresponding AFN FN2 = ({a, b, c, c′}, {(c, c′), (b, c)}, {({b, c′}, b)}) is
visible in Figure 76b. The sets {a, c} and {b, c} are complete extensions of EF2, with
{a, c} being the grounded one. Both of the complete extensions are also preferred and
stable. However, FN2 has only one complete extension, namely {a, c}, which is also the
grounded, preferred and stable extension. Argument b has only one powerful sequence
(c′, b) that is attacked by c. Unlike in EAFs, b cannot reinstate itself in AFN semantics,
and not all of the source extensions are retrieved.

c b a

(a) EF2

c c’ b a

(b) Corresponding FN2

Figure 76: EAF with a self–reinstating argument and its corresponding AFN
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We can now formally introduce our EAF–AFN translation. Given an EAF (A,R,D),
with RD ⊆ R we will denote the set of those attacks, for which there exists a defense
attack, i.e. RD = {(x, y) | (x, y) ∈ R, ∃c ∈ A s.t. (c, (x, y)) ∈ D}. The set of arguments
is extended with primed version of arguments that carry out such attacks inRD. Moreover,
the original and primed arguments are then connected with conflict. The attacks in RD are
then removed from the framework and transformed into support along with the conflicts
in D:

Translation 43. Let bh − EF = (A,R,D) be a bounded hierarchical EAF. Its corre-
sponding AFN is FNEF = (A′, R′, N ′), where:

• A′ = A ∪X ′, where X ′ = {x′ | x ∈ A, ∃y ∈ A s.t. (x, y) ∈ RD},

• R′ = (R \RD) ∪ {(x, x′) | x′ ∈ X ′}, and

• N ′ = {(datt(x, y) ∪ {x′}, y) | (x, y) ∈ RD}, where datt(x, y) = {c | (c, (x, y)) ∈
D}.

We can observe that the produced AFN exhibits a number of desirable properties.
In particular, it meets all of the introduced normal form requirements, thus producing a
well–structured AFN. However, a given support set can contain more than one argument.
Therefore, the target AFNs will not be support binary and thus not elementary.

Theorem 8.18. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 43. FNEF is (strongly)
consistent, minimal, weakly, relation and strongly valid.

Let us now prove how semantics behave after the translation. Due to the fact that a
defense attack argument does not always need to be accepted along with the arguments
carrying it out, conflict–freeness is preserved only one–way.

Theorem 8.19. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 43. If E ⊆ A is a
conflict–free extension of bh − EF , then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ A \ E} is strongly
coherent in FNEF . If E ⊆ A is a σ–extension of bh−EF , where σ ∈ {conflict–free, ad-
missible, complete, preferred, grounded, stable}, then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ E+} is
a σ–extension of FNEF . If E ′ ⊆ A′ is a σ′–extension of FNEF , where σ′ ∈ {admissible,
complete, preferred, grounded, stable}, then E ′ ∩ A is a σ′–extension of bh − EF . This
does not necessarily hold for conflict–free semantics.

We can now redefine and analyze our results:
Redefinition of Translation 43: Let BHEAF be the collection of all bounded hier-
archical EAFs on domain U and WStAFN the collection of all well–structured AFNs
on domain U ∪ U ′. The translation TrEAFAFN : BHEAF → WStAFN is defined as
TrEAFAFN((A,R,D)) = (A′, R′, N ′) for a framework (A,R,D) ∈ BHEAF , where:
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• A′ = A ∪ X ′, where X ′ = {x′ | x ∈ A,∃y ∈ A s.t. (x, y) ∈ RD} and RD =
{(x, y) | (x, y) ∈ R, ∃c ∈ A s.t. (c, (x, y)) ∈ D},

• R′ = (R \RD) ∪ {(x, x′) | x′ ∈ X ′}, and

• N ′ = {(datt(x, y) ∪ {x′}, y) | (x, y) ∈ RD}, where datt(x, y) = {c | (c, (x, y)) ∈
D}.

Redefinition of Theorem 8.19: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAF and E ∈ σ(TrEAFAFN(X)). The
translation TrEAFAFN is strong under (σ, SC Tr

σ ). It is ⊆–weak under conflict–free semantics
and removal casting functions. For complete, preferred, grounded and stable semantics,
the translation is semantics bijective.
Analysis of Translation 43: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation TrEAFAFN is:

• source–subclass, target–subclass and injective

• weakly argument domain altering, argument introducing, induced attack introduc-
ing, support introducing

• generic and weakly semantics domain altering

• semi–structural

Translation TrEAFAFN is not modular. Under the complete, preferred, grounded and stable se-
mantics and removal casting functions, TrEAFAFN is faithful. Translation TrEAFAFN is classified
as basic under the listed semantics and casting functions.

Explanation. It is easy to see that our translation is both source and target–subclass.
However, it is also injective. Although the new set of arguments does not necessarily
uniquely define the source EAF, the attack set retrieves part of the original one. Then, the
support sets precisely correspond to the defense attacks and the primed argument shows
which element was the direct attacker. Therefore, we can reconstruct the original structure.

We can observe that the translation TrEAFAFN performs a number of modifications of the
source EAF. Both the argument and semantics domain are altered. The primed arguments
are introduced and along with them the relevant attacks. The translation can make a direct
attacker become an indirect one (i.e. one that attacks the support of an argument). How-
ever, the conflict is preserved. The defense attacks are also represented in the framework,
though more as supporters. Nevertheless, since the translation is injective, we do not lose
data. Finally, the translation is support introducing - for example, the newly introduced
arguments need to be connected to the targets.

Due to the amount of the handled semantics (in a strong manner), we classify the
translation as generic. Furthermore, we also consider it a semi–structural approach. We
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use the indirect attacks in AFNs and the fact that an argument does not have to be rejected
as long as there exists a suitable coherent set for it, in order to simulate the behavior of
conflicts that can themselves be attacked.

Our translation is unfortunately not modular. Let us consider two frameworks EF1 =
({a, b}, {(a, b)}, ∅) and EF2 = ({a, b, c}, {(a, b)}, {(c, (a, b))}). Their union is simply
EF2 and its corresponding FN2 is ({a, a′, b, c}, {(a, a′)}, {({a′, c}, b)}), as seen in Ex-
ample 99. However, the AFN related to EF1 is FN1 = ({a, b}, {(a, b)}, ∅) (there is no
defense attack, so no support relation is introduced). We can observe that FN1 ∪ FN2

is not the same as FN2 – the set of attacks is different. Therefore, our approach is not
modular. �

The other EAF–AFN translation can be seen as a chain of EAF–AFRA and AFRA–
AFN approaches. It introduces both the direct and defense attacks as new arguments and
connects them to their sources via support. Although normally we would not focus on
the analysis of a chained translation, this one has an interesting property that none of the
translations building it do. Namely, both EAF–AFRA and AFRA–AFN transformations
have problems with the admissible semantics – one created too many extensions, the other
– not enough. However, chaining them nullifies this effect.

Translation 44. Let bh − EF = (A,R,D) be a bounded hierarchical EAF. Its corre-
sponding AFN is FNEF = (A′, R′, N ′), where:

• A′ = A ∪R ∪D,

• R′ = {((a, b), b) | (a, b) ∈ R, b ∈ A}∪{((c, (a, b)), (a, b)) | (c, (a, b)) ∈ D, (a, b) ∈
R}, and

• N ′ = {({a}, (a, b)) | (a, b) ∈ R, a ∈ A} ∪ {({c}, (c, (a, b))) | (c, (a, b)) ∈ D, c ∈
A}.

We can observe that the resulting AFN is, structurally speaking, the same as in the
AFRA–AFN case (see Theorem 7.4). The only difference between the approaches is the
depth of the attacks represented by the attack arguments, which is not relevant for normal
forms.

Theorem 8.20. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 44. Then FNEF is
(strongly) consistent, minimal, weakly, relation and strongly valid.

The constructed AFNs are moreover support binary and of support depth 1. This puts
our framework in the class of well–structured and elementary AFNs. We can now move
on to the semantics. As noted before, the admissible semantics will be preserved by the
translation:
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Theorem 8.21. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 44. If a set E ⊆ A is
a σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable}, then there is a σ–extension E ′ ⊆ A′ of FNEF s.t. E ′ ∩ A = E . If
a set E ′ ⊆ A′ is a σ′–extension of FNEF , where σ′ ∈ {admissible, complete, preferred,
grounded, stable}, then E = E ′ ∩ A is a σ′–extension of bh− EF .

We can now put this translation into the system and analyze its properties. In order to
differentiate between this approach and the previous one, we will prefix it with c− standing
for chained.
Redefinition of Translation 44: Let BHEAF be the collection of all bounded hierarchi-
cal EAFs on domain U and WStAFN ∩SEleAFN1 the collection of all well–structured and
elementary AFNs of support depth 1 on domain

⋃3
i=1 U i, where U1 = U and U i = U×U i−1

for i > 1. The translation c-TrEAFAFN : BHEAF → WStAFN ∩ SEleAFN1 is defined as
c-TrEAFAFN((A,R,D)) = (A′, R′, N ′) for a framework (A,R,D) ∈ BHEAF , where:

• A′ = A ∪R ∪D,

• R′ = {((a, b), b) | (a, b) ∈ R, b ∈ A}∪{((c, (a, b)), (a, b)) | (c, (a, b)) ∈ D, (a, b) ∈
R}, and

• N ′ = {({a}, (a, b)) | (a, b) ∈ R, a ∈ A} ∪ {({c}, (c, (a, b))) | (c, (a, b)) ∈ D, c ∈
A}.

Redefinition of Theorem 8.21: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAF and E ∈ σ(c-TrEAFAFN(X)).
The translation c-TrEAFAFN is strong under (σ, SC Tr

σ ). It is ⊆–weak under conflict–free
semantics and removal casting functions. For complete, preferred, grounded and stable
semantics, the translation is semantics bijective.

The properties of our translation are simply a result of properties of EAF–AFRA and
AFRA–AFN and thus we will omit the explanations.
Analysis of Translation 44: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation c-TrEAFAFN is:

• source–subclass, target–subclass and injective

• argument domain altering, argument introducing, attack relation preserving, support
relation introducing

• generic and semantics domain altering

• semi–structural and modular
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Under the complete, preferred, grounded and stable semantics and removal casting func-
tions, c-TrEAFAFN is faithful. Translation c-TrEAFAFN is classified as basic under the listed
semantics and casting functions.

Another reason why we decided to introduce both of these approaches is their relation
to the EAF–AF translations, both to the one we analyzed [64], and to the one we briefly
recalled [18] (see Figure 78). When we translated EAFs to AFs, defense was used e.g.
to tie a defense attack argument to the argument actually carrying out the attack. In the
defender AFN–SETAF translation, which will be described in Section 10.2.2, defense was
used to tie a supported argument to its supporter in a similar fashion. Consequently, we
can decide to modify the EAF–AF approach by reverting the defender transformation.
There are now two ways to do this; firstly, we can remove the primed arguments and
introduced support links between conflicts and their sources, as seen in Figure 77 for
the [64]. However, it is also the primed arguments we can decide to keep – both primed
arguments and those that carry out a defense attacks are in fact the defenders of the target of
the conflict in question. Consequently, it is them we can transform into group supporters,
as performed in Figure 78 on the [18] approach.

We can now observe that reverting defense to support in fact gave us both of our EAF–
AFN translations, which is an interesting reminder that a given translation can be obtained
by starting from various different perspectives and that while usually it is the support that
is replaced by attacks, the other way around is also possible.

8.5.1 EAFC as AFN

In order to translate EAFCs to AFNs, we can quite straightforwardly adapt the EAF–
AFN translations. The changes done to Translation 43 are similar to the ones done to the
EAF–SETAF approach in order to make it suitable for EAFCs. We now need to ensure
that every set supporting a given argument contains at at least one argument from every
defense attacking set (see Figure 79). Due to the way support works in AFNs, this ensures
that an argument can be accepted only if a relevant primed argument or a whole defense
attacking set is present:

Translation 45. Let bh−EFC = (A,R,D) be a bounded hierarchical EAFC. Its corre-
sponding AFN is FNEFC = (A′, R′, N ′), where:

• A′ = A ∪X ′, where X ′ = {x′ | x ∈ A, ∃y ∈ A s.t. (x, y) ∈ RD},

• R′ = (R \RD) ∪ {(x, x′) | x′ ∈ X ′}, and

• N ′ = {G ∪ {x′}, y) | (x, y) ∈ RD, G ⊆
⋃
gdatt(x, y) s.t. ∀C ∈ gdatt(x, y), G ∩

C 6= ∅}, where gdatt(x, y) = {C | (C, (x, y)) ∈ D}.

Please note that the current construction of the supporting sets introduces certain re-
dundant relations in the target AFN. Thus, as explained in Section 8.3.1, the choice on
whether to restrict ourselves to minimal sets is left to the reader. Nevertheless, aside from
minimality, the results presented in Theorem 8.18 hold in EAFCs as well:
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a b

c

(a) Sample EAF

a a’ (a,b) b b’

(c,(a,b))

c’

c

(b) Corresponding AF in [64] style

a (a,b) b

(c,(a,b))

c

(c) AFN version of the meta–level AF with support replacing defense

Figure 77: Sample EAF, its [64] meta–level AF and AFN with defense replacement

Theorem 8.22. Let bh − EFC = (A,R,D) be a bounded hierarchical EAFC and
FNEFC = (A′, R′, N ′) its corresponding AFN obtained through Translation 45. FNEFC

is strongly consistent, weakly, relation and strongly valid.

Let us now focus on the semantics. We can easily adapt the proof of Theorem 8.19 in
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a b

c

(a) Sample EAF

a a’ (a,b) b

c

(b) Corresponding meta–level AF

a a’

c

b

(c) AFN version of the meta–level AF with support replacing defense

Figure 78: Sample EAF and its [18] meta–level AF and AFN with support replacement

a

b

c

d

e

(a) Sample EAFC

a

b

c

d’d
e

(b) Related AFN

Figure 79: Sample EAFC and related AFN

order to show that the following holds:
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Theorem 8.23. Let bh − EFC = (A,R,D) be a bounded hierarchical EAFC and
FNEF = (A′, R′, N ′) its corresponding AFN obtained through Translation 45. If E ⊆ A
is a conflict–free extension of bh − EFC, then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ A \ E}
is strongly coherent in FNEFC . If E ⊆ A is a σ–extension of bh − EFC, where
σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable}, then E ′ = E∪{x′ |
x′ ∈ X, x ∈ E+} is a σ–extension of FNEFC . If E ′ ⊆ A′ is a σ′–extension of FNEFC ,
where σ′ ∈ {admissible, complete, preferred, grounded, stable}, then E ′ ∩ A is a σ′–
extension of bh− EFC. This does not necessarily hold for conflict–free semantics.

The translation is entered into our system similarly to Translation 43.
Redefinition of Translation 45: Let BHEAFC be the collection of all bounded hier-
archical EAFCs on domain U and WStAFN the collection of all well–structured AFNs
on domain U ∪ U ′. The translation TrEAFCAFN : BHEAFC → WStAFN is defined as
TrEAFCAFN ((A,R,D)) = (A′, R′, N ′) for a framework (A,R,D) ∈ BHEAFC , where:

• A′ = A ∪X ′, where X ′ = {x′ | x ∈ A, ∃y ∈ A s.t. (x, y) ∈ RD},

• R′ = (R \RD) ∪ {(x, x′) | x′ ∈ X ′}, and

• N ′ = {G ∪ {x′}, y) | (x, y) ∈ RD, G ⊆
⋃
gdatt(x, y) s.t. ∀C ∈ gdatt(x, y), G ∩

C 6= ∅}, where gdatt(x, y) = {C | (C, (x, y)) ∈ D}.

Redefinition of Theorem 8.23: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAFC and E ∈ σ(TrEAFCAFN (X)). The
translation TrEAFCAFN is strong under (σ, SC Tr

σ ). It is⊆–weak under conflict–free semantics
and removal casting functions. For complete, preferred, grounded and stable semantics,
the translation is semantics bijective.

The same analysis as for Translation 43 holds; the only difference is that now, our
approach is overlapping, similarly as in Translation 41.
Analysis of Translation 45: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation TrEAFCAFN is:

• source–subclass, target–subclass and overlapping

• weakly argument domain altering, argument introducing, induced attack introduc-
ing, support introducing

• generic and weakly semantics domain altering

• semi–structural

Translation TrEAFCAFN is not modular. Under the complete, preferred, grounded and sta-
ble semantics and removal casting functions, TrEAFCAFN is faithful. Translation TrEAFCAFN is
classified as basic under the listed semantics and casting functions.
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We can now adapt the other EAF–AFN transformation. The only required modification
of Translation 44 is ensuring that all of the arguments taking part in a defense attack
support the relevant attack argument, as visible in Figure 80. Similar change, though
attack related, was performed e.g. in the EAFC–AF Translation 39.

a

b

c

d

e

(a) Sample EAFC

a

b

c

({a,b, c}, (d, e)) (d, e)

d

e

(b) Related AFN

Figure 80: Sample EAFC and related AFN

The translation is now as follows:

Translation 46. Let bh−EFC = (A,R,D) be a bounded hierarchical EAFC. Its corre-
sponding AFN is FNEFC = (A′, R′, N ′), where:

• A′ = A ∪R ∪D,

• R′ = {((a, b), b) | (a, b) ∈ R, b ∈ A} ∪ {((C, (a, b)), (a, b)) | (C, (a, b)) ∈
D, (a, b) ∈ R}, and

• N ′ = {({a}, (a, b)) | (a, b) ∈ R, a ∈ A} ∪ {({c}, (C, (a, b))) | (C, (a, b)) ∈ D, c ∈
C}.

We can observe that even though our AFN is no longer singular, it satisfies the same
normal forms as in the EAF–AFN case (see Theorem 8.20). Moreover, the proof Theorem
8.21 and the analysis of Translation 44 can also be easily adapted to the EAFC–AFN case.
Thus, we will omit further explanations.

Theorem 8.24. Let bh − EFC = (A,R,D) be a bounded hierarchical EAFC and
FNEFC = (A′, R′, N ′) its corresponding AFN obtained through Translation 44. FNEFC

is strongly consistent, minimal, weakly, relation and strongly valid.

Theorem 8.25. Let bh − EFC = (A,R,D) be a bounded hierarchical EAFC and
FNEFC = (A′, R′, N ′) its corresponding AFN obtained through Translation 46. If a
set E ⊆ A is a σ–extension of bh − EFC, where σ ∈ {conflict–free, admissible, com-
plete, preferred, grounded, stable}, then there is a σ–extension E ′ ⊆ A′ of FNEFC s.t.
E ′ ∩ A = E . If a set E ′ ⊆ A′ is a σ′–extension of FNEFC , where σ′ ∈ {admissible,
complete, preferred, grounded, stable}, then E = E ′ ∩A is a σ′–extension of bh−EFC.
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Redefinition of Translation 46: LetBHEAFC be the collection of all bounded hierarchi-
cal EAFCs on domain U andWStAFN∩SEleAFN1 the collection of all well–structured and
elementary AFNs of support depth 1 on domain

⋃3
i=1 U i, where U1 = U and U i = U×U i−1

for i > 1. The translation c-TrEAFCAFN : BHEAFC → WStAFN ∩ SEleAFN1 is defined as
c-TrEAFCAFN ((A,R,D)) = (A′, R′, N ′) for a framework (A,R,D) ∈ BHEAFC , where:

• A′ = A ∪R ∪D,

• R′ = {((a, b), b) | (a, b) ∈ R, b ∈ A}∪{((c, (a, b)), (a, b)) | (c, (a, b)) ∈ D, (a, b) ∈
R}, and

• N ′ = {({a}, (a, b)) | (a, b) ∈ R, a ∈ A} ∪ {({c}, (c, (a, b))) | (c, (a, b)) ∈ D, c ∈
A}.

Redefinition of Theorem 8.25: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the removal casting functions for σ defined as
SCX

σ (E ) = E ∩ A, where X = (A,R,D) ∈ BHEAFC and E ∈ σ(c-TrEAFCAFN (X)).
The translation c-TrEAFCAFN is strong under (σ, SC Tr

σ ). It is ⊆–weak under the conflict–free
semantics and removal casting functions. For complete, preferred, grounded and stable
semantics, the translation is semantics bijective.
Analysis of Translation 46: Under the conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation c-TrEAFCAFN

is:

• source–subclass, target–subclass and injective

• argument domain altering, argument introducing, attack relation preserving, support
relation introducing

• generic and semantics domain altering

• semi–structural and modular

Under the complete, preferred, grounded and stable semantics and removal casting func-
tions, c-TrEAFCAFN is faithful. Translation c-TrEAFCAFN is classified as basic under the listed
semantics and casting functions.

8.5.2 Improvements

Just like in the EAF(C)–AF case, our translations are faithful for semantics that are at least
complete. Moreover, one of them is modular. Unfortunately, even though AFN semantics
signatures have not yet been analyzed, we can already say that for some of the semantics,
a full and exact EAF(C)–AFN translation is not possible.

We can observe that conflict–free semantics for AFNs are defined in the same way as
for AFs and focus solely on the attack relation. Consequently, the conflict–free extensions
of an AFN (A,R,N), are the same as of a Dung’s framework (A,R). This means that the
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analysis done in Section 8.2.2 can be repeated here in order to show that no full and exact
translation from EAFs to AFNs is possible under the conflict–free semantics.

According to Theorem 2.95, the AFN grounded extension is the least complete one.
This means that there cannot exist an AFN that would realize under the complete semantics
a collection of extensions that does not contain the least element. As seen in Example 90,
the set of complete extensions of a given EAF does not have to have the least element.
Hence, a full and exact (under the complete semantics) EAF(C)–AFN translation is also
not possible. Due to the fact that EAF stable extension can be comparable w.r.t. ⊆, and
AFN ones cannot, the same negative result holds for the stable semantics (see Example 9).

Theorem 8.26. Let FrEAF be the collection of all EAFs on a domain UEAF and FrAFN

the collection of all AFNs on a domain UAFN . There does not exist a full translation from
FrEAF to FrAFN that is exact under conflict–free, complete and stable semantics and
their identity casting functions.

Theorem 8.27. Let FrEAFC be the collection of all EAFCs on a domain UEAF and FrAFN

the collection of all AFNs on a domain UAFN . There does not exist a full translation from
FrEAFC to FrAFN that is exact under conflict–free, complete and stable semantics and
their identity casting functions.

For the same reasons as in Section 8.2.2, the question concerning the admissible and
preferred semantics and the exactness analysis for bounded hierarchical frameworks are
left for future work.

8.6 EAF and EAFC as ADF
We can now proceed with translating EAFs and EAFCs to ADFs. To the best of our
knowledge, this is also the only case in which we are not limited to bounded hierarchical
frameworks only, even though now we have to face the issue of inconsistency (see Section
4.4.3). We will first describe how defense attacks can be handled by what we informally re-
fer to as the overpowering support. It is a type of a positive relation between arguments that
can override incoming conflicts, but itself is not always necessary for acceptance. We will
then introduce the EAF translations, first limited for frameworks meeting the EAF–EAFC
translation requirements, and then differing between the consistent and general structures.
Finally, we introduce the EAFC translations, that are not limited to the frameworks that
are bounded hierarchical or without symmetric attacks anymore.

8.6.1 Defense Attack as a Form of Support

In this section we will focus on explaining how the defense attacks can be seen as a form
of support and show that certain issues described in Section 2.1.4.2 can be, in fact, seen as
attempts at handling support cycles.

Just like defense, defense attack is a type of a positive, indirect relation towards the
“defended” argument. The difference is that while in the first case it is also a negative
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relation towards the argument carrying out the attack, in the latter the attacker and the
defense attacker might be unrelated and accepted together in an extension. However, not
all interpretations of support can describe this behavior directly. In the abstract case, the
presence of the supporter is not required for the acceptance of an argument, which cor-
rectly grasps the fact that a defense attacker does not always accompany the defended
argument. Unfortunately, if a (direct) attacker appears, so has to an appropriate defense
attacker, and thus abstract support is insufficient. The necessary, and thus evidential and
deductive supports, have the opposite problem. This is one of the reasons we had to use
auxiliary arguments in the EAF–AFN translations. However, the “if attacker is accepted,
then accept defense attacker” reasoning can be quite easily expressed with the acceptance
conditions in ADFs, as observed in Figure 81. However, most importantly, ADFs possess
the family of ca–semantics, which exhibits the same behaviors as EAF semantics and that
made exact translations to other frameworks impossible.

a b

c

(a) Sample EAF

a b c

> ¬a ∨ c >

(b) Corresponding ADF

Figure 81: Sample EAF and its corresponding ADF

Example 101. Let us come back to the framework EF = ({a, b, c}, {(b, a), (c, b)},
{(b, (c, b))}) depicted in Figure 82a and previously analyzed in Examples 94 and 100.
Its corresponding ADF is D = ({a, b, c}, {Ca = ¬b, Cb = ¬c ∨ b, Cc = >) visible in
Figure 82b. The sets {a, c} and {b, c} are complete extensions of EF , with {a, c} being
the grounded one. Both of the complete extensions are also preferred and stable. The fact
that {b, c} is an extension shows us that self–reinstatement is sufficient for acceptance.
However, as also {a, c} is admitted, it also points to the fact that it is not sufficient for
defense. This is perfectly grasped by the ca2–semantics of ADFs. In the D case, {a, c}
and {b, c} are ca2–complete and ca2–preferred. Moreover, {a, c} is the acyclic grounded
extension. It is worth nothing that the stable extensions of EF are not stable extensions
of D – the set {b, c} is not acyclic. They are however models, which play the same role in
ca2–semantics as stability does in the aa–family.

The fact that defense attacks form what we have previously described as optional or
hidden cycles (see Section 4.3.3) can explain some of the issues we have described in
Section 2.1.4.2. The symmetric attack restriction of conflict–freeness can be seen as an
attempt to deal with defense attack cycles. Furthermore, it is also cycles that made the
stable extensions comparable. With the following examples we close this section and
move on to the translations.
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c b a

(a) Sample EAF

c b a

¬b¬c ∨ b>

(b) Corresponding ADF

Figure 82: Sample EAF and its corresponding ADF

Example 102. Let us come back to Example 5 and let ({a, b, c, d}, {(a, b), (b, a), (c, d),
(d, c)}, {(a, (d, c)), (b, (c, d)), (c, (b, a)), (d, (a, b))}) be the EAF depicted in Figure 83a.
This framework motivated the conflict–freeness definition that treated symmetric attacks
as a special case. The set {a, b, c, d} was not considered conflict–free, even though there
were no defeats in it. We can observe that this extension activates all the “support” cycles
in the framework, which perhaps can be more easily seen in the associated ADF in Figure
83b. b cannot be accepted without d due to the attack from a and d cannot be accepted
without b due to the attack from c. Similarly, presence of a in a sense forces and requires
the presence of c. Therefore, the restrictive definition of conflict–freeness can be seen as
an attempt to limit this behavior.

a b

c

d

(a) Sample EAF

a b

c

d

¬b ∨ c

¬a ∨ d

¬d ∨ a

¬c ∨ b

(b) Corresponding ADF

Figure 83: Sample EAF and corresponding ADF

Example 103. Let us come back to the Example 9 and the EAF ({a, b, c, d}, {(a, b),
(d, c)}, {(b, (d, c)), (c, (a, b))}) depicted in Figure 84a. Both {a, d} and {a, b, c, d} are its
stable extensions. If we look at the associated ADF depicted in Figure 84b, the optional
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cycle between b and c might be more visible. It is the reason why {a, b, c, d}, in which the
cycle becomes active, would not be considered e.g. ADF or AFN stable. However, both
of the extensions are ADF models.

a b c d

(a) Sample EAF

a b c d

> ¬a ∨ c ¬d ∨ b >

(b) Corresponding ADF

Figure 84: Sample EAF and corresponding ADF

8.6.2 EAF as ADF

Just as it will be required in translations from bipolar frameworks to ADFs, in the EAF–
ADF approach we need to distinguish between the consistent and not necessarily con-
sistent EAFs. Not doing so can produce unintended extensions, as explained in Sections
2.3.9 and 4.4.3. What we will do is provide one translation specialized at consistent frame-
works and the other not making such restrictions. Unfortunately, while right now we can
handle frameworks that are not bounded hierarchical, we have a problem arising from the
original definition of conflict–freeness. As we have explained in the previous section, the
distinction between symmetric attacks could have been viewed as an attempt to deal with
support cycles in the extensions. In this sense, the ca2 semantics – due to the fact that the
cycles are accepted in extensions – can produce more extensions than desired. If we look
back at Example 102, we can observe that the set {a, b, c, d} was not conflict–free in the
source, while it was in the associated ADF. However, the set is not pd–acyclic conflict–
free. Nevertheless, since this cycle detection in EAFs is not thorough (see Section 2.1.4.2),
the (inside) acyclic semantics of ADFs would not be applicable in a variety of other cases.
However, the ca2 family fits perfectly if we assume that no symmetric attacks are present.
Therefore, even though we do not claim that a full EAF translation is impossible, we limit
ourselves to their subclass.

8.6.2.1 Consistent EAF

The way we transform EAFs into ADFs is quite straightforward and could have already
been witnessed in the previous section. For a given attack by b on a, we create a disjunction
with a negated literal ¬b representing an attacker and positive literals standing for the
defense attacks on the (b, a) conflict. A conjunction of all such formulas gives us the
condition for a.
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Translation 47. Let EF = (A,R,D) be an EAF s.t. it is bounded hierarchical, or
(strongly) consistent and without symmetric attacks. For a conflict (b, a) ∈ R, let
Db,a = {c | (c, (b, a)) ∈ D} denote the arguments defense attacking (b, a). The ADF
associated with EF is DEFC = (A,L,C), where L = {(a, b) | (a, b) ∈ R or ∃x s.t.
(a, (x, b)) ∈ D} and C = {Ca | a ∈ A} is the set of acceptance conditions, where every
condition Ca is created in the following way:

• functional form:

– for a subset of parents B ⊆ par(a), if there exists x ∈ B s.t. (x, a) ∈ R and
@b ∈ B s.t. (b, (x, a)) ∈ D, then Ca(B) = out; otherwise, Ca(B) = in

• propositional form:

– let b ∈ A be an argument s.t. (b, a) ∈ R. The attack formula corresponding to
b is attba = ¬b ∨

∨
Db,a. If Db,a is empty, then it is simply ¬b.

– the acceptance condition is the conjunction of all such attba parts: Ca =∧
b∈A,(b,a)∈R att

b
a. In case a is not attacked at all, it is simply >.

When we looked at Dung–style frameworks, an acceptance condition was either > or
a conjunction of negated literals. In case of SETAFs, it was > or conjunction of clauses
consisting of negations of arguments. In EAFs, we will have either > or conjunctions of
clauses s.t. there is exactly negated argument in the clause (there are no restrictions on
positive ones). Furthermore, we can say that this negation is unique, i.e. our translation
cannot produce an expression of the form (¬a∨ b)∧ (¬a∨ c). We will refer to conditions
of this type as EAF–style, though please note that due to varying intuitions concerning
EAF structure, we will not make any restrictions concerning conflicts induced by the pref-
erences on symmetric attacks. This means that we will refer to an ADF as EAF–style
whenever all of the conditions are follow this style and each condition is based only on the
incoming relations and not on the conditions of other arguments. Furthermore, the fact that
we either assume consistent frameworks or introduce bypass arguments (more on this in
the next section) means that no argument appearing as a negative literal in one clause can
appear as a positive one in another. Therefore, the class of EAF–style ADFs is somewhat
bigger than the class of EAF–produced ADFs.

In this translation we could have observed that no consistency restrictions were put
on the bounded hierarchical EAFs. This is because the hierarchical EAFs are already
(strongly) consistent (see Lemma 4.67).

Theorem 8.28. Let EF = (A,R,D) be an EAF s.t. it is bounded hierarchical, or
(strongly) consistent and without symmetric attacks. Let DEF = (A,L,C) be its corre-
sponding ADF obtained through Translation 47. DEF is a BADF. It is also in redundancy–
free, cleansed, and weakly valid form. It is not necessarily an AADF+ and does not have
to be in relation or strongly valid form. If EF is bounded hierarchical, then DEF is an
AADF+ and is in relation and strongly valid forms.
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Let us now proceed with the semantics. First of all, we can observe that the conflict–
free sets and the (partially acyclic) discarded sets coincide between the source EAF and
the target ADF:

Theorem 8.29. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,L,C) be its corresponding ADF obtained
through Translation 47. A set of arguments E ⊆ A is a conflict–free extension of EF iff it
is conflict–free in DEF .

Lemma 8.30. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. Let E be a conflict–free extension of EF (and thus of DEF ). The
discarded set of E in EF coincides with the partially acyclic discarded set of E in DEF .

Moreover, we can also show that the decisiveness in ADFs and defense in EAFs coin-
cide:

Lemma 8.31. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. A conflict–free set of arguments E defends an argument a ∈ A in
EF iff a is decisively in w.r.t. the partially acyclic range vpE of E in DEF .

Using these partial results, we can show that the admissible, complete and preferred
extensions of EAFs that meet our requirements coincide with their ca2–counterparts in
ADFs. We can also use Lemma 2.159 to show the correspondence between the stable
and model extensions of the two frameworks. Finally, following Definition 2.142 and the
approach from [64], we can show the relation between the grounded and acyclic grounded
extensions of EAFs and ADFs by starting with the empty set and iteratively expanding
it by the arguments defended by it (decisively in w.r.t. its range). This brings us to the
following theorem:

Theorem 8.32. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. A set of arguments E ⊆ A is a conflict–free extension of EF iff
it is conflict–free in DEF . E is a stable extension of EF iff it is a model of DEF . E is
a grounded extension of EF iff it is the acyclic grounded extension of DEF . E is a σ–
extension of EF , where σ ∈ {admissible, complete, preferred}, iff it is a ca2–σ–extension
of DEF .

We can now put the results into our system and analyze the properties of our trans-
lation. We will prefix it with con− in order to avoid confusion with the general EAF-
ADF transformation. Please note that although we will use EAFADF as the translation
codomain, it is not the most accurate description of the EAF–produced ADFs. Due to
difference in the naming of the semantics between EAFs and ADFs, we will need to pair
them based on similarity (see Definition 3.2).
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Redefinition of Translation 47: LetBHEAF∪(ConsEAF∩NSymEAF ) be the collection
of all EAFs that are bounded hierarchical, or (strongly) consistent and without symmet-
ric attacks, and let EAFADF the collection of all EAF–style ADFs, both on domain U .
The translation con-TrEAFADF : (BHEAF ∪ (ConsEAF ∩ NSymEAF )) → EAFADF is de-
fined as con-TrEAFADF ((A,R,D)) = (A,L,C) for a framework (A,R,D) ∈ (BHEAF ∪
(ConsEAF ∩ NSymEAF )), where L = {(a, b) | (a, b) ∈ R or ∃x s.t. (a, (x, b)) ∈ D}
and C = {Ca | a ∈ A} is the set of acceptance conditions, where every condition Ca is
created in the following way:

• functional form: for every subset of parents B ⊆ par(a), if there exists x ∈ B
s.t. (x, a) ∈ R and @b ∈ B s.t. (b, (x, a)) ∈ D, then Ca(B) = out; otherwise,
Ca(B) = in

• propositional form: if there is no b ∈ A s.t. (b, a) ∈ R, Ca = >; otherwise,
Ca =

∧
b∈A,(b,a)∈R att

b
a, where attba = ¬b ∨

∨
Db,a if Db,a 6= ∅ and attba = ¬b if

Db,a = ∅.

Redefinition of Theorem 8.32: Let σEAF ∈ {conflict–free, admissible, preferred, com-
plete, grounded, stable} be an EAF semantics and σADF ∈ {conflict–free, ca2–admissible,
ca2–preferred, c2–complete, acyclic grounded, model} be a similar ADF semantics. Let
SC Tr

σ the identity casting functions for σ. The translation con-TrEAFADF is strong and se-
mantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 47: Under the conflict–free, (ca2–) admissible, (ca2–) preferred,
(ca2–) complete, (acyclic) grounded and (model ) stable semantics and identity casting
functions, the translation con-TrEAFADF is:

• source–subclass, target–subclass and injective

• argument domain preserving, argument preserving and relation introducing

• generic, semantics domain preserving and exact

• structural

The translation is neither ⊕ nor ⊗–modular. Translation con-TrEAFADF is classified as basic
under the listed semantics and casting functions.

Explanation. We have limited ourselves to bounded hierarchical or (strongly) consistent
EAFs without symmetric attacks and therefore our translation is source–subclass. Not
every ADF can be produced – for example, a framework consisting of a single falsum ar-
gument is out of the question (see Theorem 8.28). Therefore, the approach is also target–
subclass. Let us now analyze whether our translation is injective. We will now assume
it is not. The set of arguments in the source and target framework is the same. Conse-
quently, it can only be the case that two (strongly) consistent EAFs EF1 = (A,R1, D1)
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and EF2 = (A,R2, D2) differ by an attack or a defense attack, but the constructed accep-
tance conditions are the same. If the conditions constructed for a ∈ A in both frameworks
is the same, then so are the sets of parents, and thus the sets of arguments connected via
direct or defense attack to a in EF1 and EF2. We can observe that due to the fact that
EF1 and EF2 are consistent, no argument can defense attack a direct attack it carries out.
Therefore, from the translation it follows that (b, a) ∈ R1 iff Ca({b}∩ par(a)) = out, and
(b, a) ∈ R2 iff Ca({b} ∩ par(a)) = out. This means that R1 = R2. Furthermore, since no
defense attacker can be a direct attacker, the arguments defense attacking the (b, a) conflict
can be found easily by verifying for which two–element subsets of par(a) containing b the
condition of a turns to in. In other words, the defense attacks can be retrieved easily as
well from the conditions and D1 = D2. Therefore, EF1 is in fact not different from EF2,
and thus con-TrEAFADF is injective.

The fact that the argument and semantics domain are preserved can be easily observed
from the translation. Due to the amount of handled semantics (in a strong manner), we
classify con-TrEAFADF as generic. The fact it is exact can be easily seen from the redefinition
of Theorem 8.32. We choose not to categorize our translation as structure preserving due to
the fact that previously indirect connections between defense attackers and direct attacked
arguments change from indirect to direct, even though no argument is added.

Unfortunately, we have a problem with modularity since the defense attack parts need
to be connected differently than the direct attack ones. Consider two frameworks EF1 =
({a, b, c}, {(a, c)}, {(b, (a, c))}) andEF2 = ({a, c, d}, {(a, c)}, {(d, (a, c))}). Their union
is EF3 = EF1 ∪ EF2 = ({a, b, c, d}, {(a, c)}, {(b, (a, c)), (d, (a, c))}). The condition for
c in the EFC1 framework is ¬a ∨ b, while in EFC2 it is ¬a ∨ d. Their conjunction is
equivalent to ¬a ∨ (b ∧ d), which is clearly different from the EF3 condition ¬a ∨ b ∨ d.
Thus, the translation is not ⊗–modular. However, it cannot be ⊕–modular either. We can
look at two AF–style EAFs – ({a, b}, {(a, b)}, ∅) and ({b, c}, {(c, b)}, ∅). The condition
of b is respectively ¬a and ¬c in the translated versions of these frameworks. In the
translation of their union we will obtain ¬a ∧ ¬c, while following the ⊕ approach would
give us ¬a ∨ ¬c. Consequently, no straightforward modularity is available, and we would
need an approach that could distinguish between the attacks and defense attack parts of
the acceptance condition. �

In Theorem 8.28 we could have observed that the bounded hierarchical EAFs produce
AADF+ frameworks. This means that our semantics classification collapses (see Theorem
2.172) and we do not need to restrict ourselves to ca2–family of semantics. This gives us
the following results:

Theorem 8.33. Let bh − EF be a bounded hierarchical EAF and DEF = (A,C) be its
corresponding ADF obtained through Translation 47. A set of arguments E ⊆ A is a
conflict–free extensions of bh − EF iff it is (pd–acyclic) conflict–free in DEF . E ⊆ A
is a stable extensions of bh − EF iff it is (stable) model of DEF . E ⊆ A is a grounded
extensions of bh − EF iff it is (acyclic) grounded in DEF . E ⊆ A is a σ extensions of
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bh − EF , where where σ ∈ {admissible, preferred, complete} iff it is an xy–σ–extension
of DEF for x, y ∈ {a, c}.

Redefinition of Theorem 8.33: Let σEAF ∈ {conflict–free, admissible, preferred, com-
plete, grounded, stable} be an EAF semantics and σADF ∈ {conflict–free, pd–acyclic
conflict–free, xy–admissible, xy–complete, xy–preferred, grounded, acyclic grounded,
model, stable} for x, y ∈ {a, c} be a similar ADF semantics. Let SC Tr

σ the identity cast-
ing functions for σ. The translation con-TrEAFADF is strong and semantics bijective under
(σ, SC Tr

σ ) for EAFs in BHEAF .

Example 104. [62] Let us consider the EAF EF = ({a, b, c, d, e, f, g}, {(a, b), (d, c),
(b, e), (e, f), (f, g)}, {(b, (d, c)), (c, (a, b))}) previously described in Example 90 and
now depicted in Figure 85a. Its associated ADF, visible in Figure 85b, is DEF =
({a, b, c, d, e, f, g}, {Ca = >, Cb = ¬a ∨ c, Cc = ¬d ∨ b, Cd = >, Ce = ¬b, Cf =
¬e, Cg = ¬f).

The minimal decisively in interpretation va and vd for a and d are simply empty. For
b, we can construct the interpretation v1b = {a : f} and v2b = {c : t}. Similarly, for
c we obtain v1c = {d : f} and v2c = {b : t}. For the remaining arguments e, f and
g, the interpretation are ve = {b : f}, vf = {e : f} and vg = {f : f}. Therefore,
the minimal partially acyclic evaluations of DEF are eva = ((a), ∅, ∅), evd = ((d), ∅, ∅),
eve = ((e), ∅, {b}), evf = ((f), ∅, {e}), evg = ((g), ∅, {f}) for arguments a, d, e, f ,
g. For arguments b and c, the situation is somewhat more complicated and we obtain
the evaluations ev1b = ((b), ∅, {a}), ev2b = ((c, b), ∅, {d}), ev1c = ((c), ∅, {d}), ev2c =
((b, c), ∅, {a}) and ev3b = ev3c = (∅, {b, c}, ∅). With the exception of ev3b (ev3c ), all of the
listed evaluations are in fact acyclic.

Our DEF has a number of conflict–free extensions and we will focus only on some
of them. In particular, we are concerned with E1 = ∅, E2 = {a}, E3 = {d}, E4 =
{a, d}, E5 = {b, c}, E6 = {a, b, c}, E7 = {b, c, d}, E8 = {a, d, e}, E9 = {b, c, f},
E10 = {a, b, c, f}, E11 = {b, c, d, f}, E12 = {a, d, e, g}, E13 = {a, b, c, d} and E14 =
{a, b, c, d, f}. Their partially acyclic discarded sets are E p+

1 = E p+
2 = E p+

3 = ∅, E p+
4 =

{b, c}, E p+
5 = E p+

6 = E p+
7 = E p+

13 = {e}, E p+
8 = E p+

12 = {b, c, f} and E p+
9 = E p+

10 =
E p+
11 = E p+

14 = {e, g}. We can verify that all of the listed extensions are indeed ca2–
admissible, i.e. every argument in a given set is decisively in w.r.t. the partially acyclic
range of this set. However, not all of these extensions are ca2–complete. Due to the
fact that both a and d possess empty decisively in interpretations (i.e. they are “initial”
arguments), none of the sets E1, E2, E3, E5, E6, E7, E9, E10 and E11 can be ca2–complete.
We can observe that e is decisively in w.r.t. the partially acyclic range of E4. Thus, this
set is not ca2–complete either. However, when we accept e, we can also accept g, and thus
E8 also does not meet our requirements. Finally, also E13 cannot be complete due to the
fact that f is decisively in w.r.t. its partially acyclic range. This leaves us with two ca2–
complete extensions, namely E12 = {a, d, e, g} and E14 = {a, b, c, d, f}. We can observe
they are in fact incomparable and do not follow the typical pattern of complete extensions,
as was already noted in Theorem 2.158. Both of these sets are also ca2–preferred and
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model extensions of DEF . By iterating from the empty set and following Definition 2.142
(i.e. we go through extensions E1, E4, E8 and finally E12), we obtain the acyclic grounded
extension of DEF E12 = {a, d, e, g}. We can observe that our answers exactly correspond
to the sets produced by EF .

a b c d

e f g

(a) A sample EAF

a b c d

e f g

> ¬a ∨ c ¬d ∨ b >

¬b ¬e ¬f

(b) Associated ADF

Figure 85: A sample EAF and its associated ADF

8.6.2.2 General EAF

The way we handle EAFs that do not necessarily have to be consistent is very similar to the
bypass translation for the consistency forms of AFNs and EASs (Translations 13 and 14).
For those arguments that cause the inconsistency (i.e. attack a given argument and at the
same time defense attack a conflict directed at it) we introduce bypass arguments that take
over the support relation generated from the defense attack, as proposed in Section 4.4.3.
The remaining part of this approach is now very similar to the one employed for consistent
EAFs. In order to make our approach somewhat more readable, we will introduce the
notions of inconsistency origins and replacement functions, similarly as we did for AFNs
and EASs in Section 4.4.

Definition 8.34. Let EF = (A,R,D) be an EAF and a ∈ A an argument. The inconsis-
tency origin of a is defined as Oa = {b ∈ A | ∃c ∈ A s.t. (b, (c, a)) ∈ D and (b, a) ∈ R}.

We can observe that if a is strongly consistent, then Oa = ∅. By the abuse of notation,
we will write OE to denote the collection of all inconsistency origins of the arguments in
E ⊆ A.

Definition 8.35. Let EF = (A,R,D) be an EAF and (b, a) ∈ A a conflict. Let Db,a =
{c | (c, (b, a)) ∈ D} be the collection of all arguments defense attacking (b, a). Given a
set of arguments S ⊆ A, the replacing arguments P b = {eb | e ∈ S}, the replacement
function for defense attacks is defined as:
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rep(S, P b, Db,a) =

Db,a if Db,a ∩ S = ∅
D′b,a if Db,a ∩ S 6= ∅, where D′b,a = (Db,a \ S) ∪ {eb | e ∈

Db,a ∩ S}

Let us now introduce a more general version of Translation 47 which can be applied to
frameworks that are not necessarily strongly consistent:

Translation 48. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF without
symmetric attacks. Let E ⊆ A be the set of arguments in EAF that are not strongly con-
sistent and Ab = {ab | a ∈ OE} the set of bypass arguments for the elements causing the
inconsistencies. For an attack (b, a) ∈ R, let Db,a = {c | (c, (b, a)) ∈ D} be the collection
of all arguments defense attacking (b, a) and D′b,a = rep(Oa, Ab, Db,a) the modification of
Db,a replacing occurrences of inconsistency origins by their bypasses.

The ADF corresponding to EF is defined as DEF = (A′, L, C), where A′ = A ∪ Ab,
L = {(a, b) | (a, b) ∈ R, or ∃(c, b) ∈ R, a ∈ D′c,b, or b = ab} and C = {Ca | a ∈ A′}
is the set of acceptance conditions, where every condition Ca is created in the following
way:

• gunctional form:

– if a ∈ A, then for every subset of parents F ⊆ par(a), if x ∈ F s.t. (x, a) ∈ R
and @f ⊆ F s.t. f ∈ D′x,a, then Ca(F ) = out; otherwise, Ca(F ) = in

– if ab ∈ Ab, then Cab(∅) = out and Cab({a}) = in – argument ab has only
one parent, which is its original argument, and its presence is required for the
acceptance of ab.

• propositional form:

– if a ∈ A:

∗ let b ∈ A be an argument s.t. (b, a) ∈ R and D′b,a the modified defense
attacker collection for this attack. The attack formula corresponding to b
is attba = ¬b ∨

∨
D′b,a. If D′b,a is empty, then it is simply ¬b.

∗ the acceptance condition is the conjunction of all such attba parts: Ca =∧
b∈A,(b,a)∈R att

b
a. In case a is not attacked at all, it is simply >.

– if ab ∈ Ab, then Cab = a, i.e. it contains only a positive occurrence of the
original argument represented by ab.

We can observe that despite the additional arguments, the produced ADFs exhibit all
the normal forms they did for consistent EAFs:

Theorem 8.36. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF with-
out symmetric attacks and DEF = (A′, L, C) its corresponding ADF obtained through
Translation 48. DEF is a BADF. It is also in redundancy–free, cleansed, and weakly valid
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form. However, it is not necessarily an AADF+ and does not have to be in relation or
strongly valid form. If EF is a bounded hierarchical EAF, then DEF is an AADF+ and is
in relation and strongly valid forms.

Although now we need to account for the auxiliary arguments in our extensions, the
proof is only a minor adaptation of the one for consistent frameworks:

Theorem 8.37. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF without
symmetric attacks and DEF = (A′, L, C) its corresponding ADF obtained through Trans-
lation 48. Let E b denote the (possibly empty) set of bypass arguments generated by E in
A′.

If a set of arguments E ⊆ A is a conflict–free extension of EF then E ′ = E ∪ E b is
conflict–free in DEF . If E ′ ⊆ A′ is conflict–free in DEF , then E = E ′ ∩A is conflict–free
in EF .

If a set of arguments E ⊆ A is a stable extension of EF then E ′ = E ∪ E b is a model
of DEF . If E ′ ⊆ A′ is a model of DEF , then E = E ′ ∩ A is stable in EF .

If a set of arguments E ⊆ A is the grounded extension of EF then E ′ = E ∪E b is the
acyclic grounded extension of DEF . If E ′ ⊆ A′ is the acyclic grounded extension of DEF ,
then E = E ′ ∩ A is grounded in EF .

If E ⊆ A is a σ–extension of EF , where σ ∈ {admissible, complete, preferred}, then
E ′ = E ∪ E b is a ca2–σ–extension of DEF . If E ′ ⊆ A′ ca2–σ–extension of DEF , then
E = E ′ ∩ A is a σ–extension of EF .

We can now put the translation into our system and analyze it. Please note we will reuse
the notation introduced in the original version. Furthermore, as already noted before, even
though EAFADF is not the most accurate description of EAF–produced ADFs, we will
still use it as our target domain.
Redefinition of Translation 48: Let BHEAF ∪ NSymEAF be the collection of all
EAFs that are bounded hierarchical or without symmetric attacks on the domain U and
EAFADF the collection of all EAF–style ADFs on domain U ∪ U b. The translation
TrEAFADF : (BHEAF ∪ NSymEAF ) → EAFADF is defined as TrEAFADF ((A,R,D)) =
(A′, L, C) for a framework (A,R,D) ∈ (BHEAF ∪ NSymEAF ), where A′ = A ∪ Ab
for Ab = {ab | a ∈ OE} and E being the set of arguments in EAF that are not strongly
consistent, L = {(a, b) | (a, b) ∈ R, or ∃(c, b) ∈ R, a ∈ D′c,b, or b = ab}, and
C = {Ca | a ∈ A′} is the set of acceptance conditions, where every condition Ca is
created in the following way:

• functional form:

– if a ∈ A, then for every subset of parents F ⊆ par(a), if x ∈ F s.t. (x, a) ∈ R
and @f ⊆ F s.t. f ∈ D′x,a, then Ca(F ) = out; otherwise, Ca(F ) = in

– if ab ∈ Ab, then Cab(∅) = out and Cab({a}) = in

• propositional form:
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– if a ∈ A, then Ca = > if there is no b ∈ A s.t. (b, a) ∈ R; otherwise,
Ca =

∧
b∈A,(b,a)∈R att

b
a, where attba = ¬b ∨

∨
D′b,a if D′b,a 6= ∅ and attba = ¬b

if D′b,a = ∅.

– if ab ∈ Ab, then Cab = a.

Redefinition of Theorem 8.37: Let σEAF ∈ {conflict–free, admissible, preferred, com-
plete, grounded, stable} be an EAF semantics and σADF ∈ {conflict–free, ca2–admissible,
ca2–preferred, c2–complete, acyclic grounded, model} be a similar ADF semantics. Let
SC Tr

σ be the removal casting functions for σ defined as SCX
σ (E ) = E ∩ A, where

X = (A,R,D) ∈ FrEAF is an EAF and E ∈ σ(TrEAFADF (X)). The translation TrEAFADF is
strong under (σ, SC Tr

σ ). It is semantics bijective under the complete, preferred, grounded
and stable semantics and the removal casting functions.
Analysis of Translation 48: Under the conflict–free, (ca2–) admissible, (ca2–) preferred,
(ca2–) complete, (acyclic) grounded and (model ) stable semantics and removal casting
functions, the translation TrEAFADF is:

• source–subclass, target–subclass and injective

• weakly argument domain altering, argument and relation introducing

• generic and weakly semantics domain altering

• semi–structural

The translation is neither ⊕ nor ⊗–modular. Under the complete, preferred, grounded and
stable semantics and removal casting functions, translation TrEAFADF is faithful. Translation
TrEAFADF is classified as basic under the listed semantics and casting functions.

Explanation. Although we can operate on more types of EAFs, the translation is still
source and target–subclass. It is also injective; similar explanations as in the analysis of
Translation 47 hold. The only difference is that “searching” for defense attackers can
produce bypass arguments, but they are assigned uniquely to their original arguments and
thus the structure of the source EAF can still be retrieved.

We can observe that in our translation we change both the argument and semantics
domain. We also introduce new arguments and the relations from/to them. Further-
more, while defense attackers and the direct attacked arguments were not directly related
in EAFs, they can be in the associated ADFs. Faithfulness of our translation under the
listed semantics is a result of Theorem 8.37. We choose to classify our approach as semi–
structural, as we had exploited the way inconsistencies in the source framework affect the
target framework in our translation. The rest of the explanations follows similarly as in the
Translation 47. �

Example 105. Let EF = ({a, b, c}, {(a, b), (b, a), (c, b)}, {(c, (a, b))}) be the EAF de-
picted in Figure 86a. The admissible extensions of this framework are ∅, {c} and {a, c}.
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Due to the fact that b is attacked by the initial argument c, it cannot appear in any exten-
sion. There is also no reinstatement set for the (a, b) defeat w.r.t. any set of arguments,
which means that {a} is not an admissible extension either. We only have one complete
extension {a, c}, which is at the same time preferred, stable, and grounded.

We can observe that EF is not consistent framework, i.e. c both attacks b and de-
fense attacks a conflict directed at b. We therefore introduce a bypass argument for
c that will take over the defense attack. The ADF associated with our EAF is thus
DEF = ({a, b, c, cb}, {Ca = ¬b, Cb = (¬a ∨ cb) ∧ ¬c, Cc = >, Ccb = c}). The min-
imal decisively in interpretations for our arguments are va = {b : f}, v1b = {a : f , c : f},
v2b = {cb : t, c : f}, vc = ∅ and vcb = {c : t}. Therefore, the minimal partially acyclic
evaluations associated with our arguments are eva = ((a), ∅, {b}), ev1b = ((b), ∅, {a, c}),
ev2b = ((c, cb, b), ∅, {c}), evc = ((c), ∅, ∅) and evcb = ((c, cb), ∅, ∅). Hence, the ca2–
admissible extensions of DEF are ∅, {c}, {c, cb}, {a, c} and {a, c, cb}. We can observe
that if we remove cb, we retrieve all and only extensions of EF . Please note that a single
set in EF can be obtained from more than one set in DEF . The only ca2–complete exten-
sion of DEF is {a, c, cb}. It is also the single ca2–preferred, acyclic grounded and model
extension, which is the desired result. Additionally, we can see that there is a one–to–one
correspondence between the answers of DEF and EF .

Let us for a moment assume that we did not detect the inconsistency of EF . The
produced ADF would have been ({a, b, c}, {Ca = ¬b, Cb = (¬a∨ c)∧¬c, Cc = >}). The
condition for Cb would have been equivalent to simply ¬a ∧ ¬c. We can observe that in
this case, b would be contained in any type of a discarded set of {a}, thus making the set
an admissible extension of any type of our ADF. Since {a} is not admissible in EF , such
an answer would be quite undesirable.

a c

b

(a) Sample EAF

a c

b cb

¬b

(¬a ∨ cb) ∧ ¬c c

>

(b) Corresponding ADF

Figure 86: Sample not consistent EAF and corresponding ADF
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8.6.3 EAFC as ADF

Due to the fact that EAFC semantics are now defined based purely on defeats and do not
treat symmetric attacks as a special case, we do not need to exclude frameworks including
such conflicts from the translation. Unfortunately, we still need to make a distinction
between (strongly) consistent and not consistent EAFCs.

8.6.3.1 Consistent EAFC

The translation from EAFCs to ADFs is very similar to the EAF–ADF one. In order to
account for the group defense attack, a single positive literal representing the source of the
attack is now a conjunction of positive literals:

Translation 49. Let EFC = (A,R,D) be a strongly consistent EAFC. For a conflict
(b, a), let Db,a = {E | (E , (b, a)) ∈ D} denote the sets of arguments defense attacking
(b, a). The ADF corresponding to EFC is DEFC = (A,L,C), where L = {(a, b) |
(a, b) ∈ R or ∃c ∈ A,E ⊆ A s.t. a ∈ E and (E , (c, b)) ∈ D} and C = {Ca | a ∈ A}
is the set of acceptance conditions, where every condition Ca is created in the following
way:

• functional form:

– for a subset of parents B ⊆ par(a), if there exists x ∈ B s.t. (x, a) ∈ R and
@B′ ⊆ B s.t. (B′, (x, a)) ∈ D, then Ca(B) = out; otherwise, Ca(B) = in

• propositional form:

– let b ∈ A be an argument s.t. (b, a) ∈ R and Db,a = {B1, ..., Bm} the collec-
tion of all sets defense attacking (b, a). The attack formula corresponding to b
is attba = ¬b ∨ (

∧
B1 ∨ ...

∧
Bm). If Db,a is empty, then it is simply ¬b.

– the acceptance condition is the conjunction of all such attba parts: Ca =∧
b∈A,(b,a)∈R att

b
a. In case a is not attacked at all, it is simply >.

In the previous sections we have discussed the EAF–style conditions, that were either
> or conjunctions of clauses s.t. there is at most one negated argument in the clause.
Moreover, each negation was unique among the clauses. EAFC conditions are similar,
with the exception on the uniqueness. Bringing e.g. an attack formula ¬a∨(b∧c)∨(d∧e)
to CNF will give us (¬a ∨ b ∨ d) ∧ (¬a ∨ b ∨ e) ∧ (¬a ∨ c ∨ d) ∧ (¬a ∨ c ∨ e). We will
refer to such conditions as EAFC–style. Please note that not all EAFC–style ADFs can be
EAFC–produced. Although we do not have restrictions on e.g. defense attacks the way
we did in EAFs, the fact that we either assume consistent frameworks or introduce bypass
arguments (more on this in Section 8.6.3.2) means that again, no argument appearing as a
negative literal in one clause can appear as a positive one in another.

Let us now move on to the main subclasses and normal forms of the EAFC–produced
ADFs.
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Theorem 8.38. Let EFC = (A,R,D) be a strongly consistent EAFC and DEFC =
(A,C) its corresponding ADF obtained through Translation 49. DEF is a BADF. It is also
in cleansed and weakly valid form. It is not necessarily an AADF+ and does not have to
be in redundancy–free, relation or strongly valid form. if EFC is minimal, then DEF is
redundancy–free. If EFC is bounded hierarchical, then DEFC is an AADF+, and if it is
additionally minimal, then DEFC is in relation and strongly valid forms.

The results we have presented for the consistent EAFs that met our constraints con-
cerning attack symmetry hold also for EAFCs. This means we can draw connections
between conflict–freeness, discarded sets and defense/decisiveness in EAFCs and ADFs.
Fortunately, in this case we do not need to limit ourselves to frameworks that are bounded
hierarchical or do not have symmetric attacks; the design of conflict–free semantics for
EAFCs is much closer to ADFs than it was in the case of EAFs.

Theorem 8.39. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its cor-
responding ADF obtained through Translation 49. A set of arguments E ⊆ A is a conflict–
free extension of EFC iff it is a conflict–free extension of DEFC .

Lemma 8.40. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its corre-
sponding ADF obtained through Translation 49. Let E ⊆ A be a conflict–free extension
of EFC (and thus of DEFC). The discarded set of E in EFC coincides with the partially
acyclic discarded set of E in DEFC .

Lemma 8.41. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its corre-
sponding ADF obtained through Translation 49. A conflict–free set of arguments E ⊆ A
defends an argument a ∈ A in EFC iff a is decisively in w.r.t. the partially acyclic range
vpE of E in DEFC .

Again, using these partial results, we can show that the admissible, complete and pre-
ferred extensions of EAFCs coincide with their ca2–counterparts in ADFs. The same holds
for stable and model extensions due to Lemma 2.159 and the iterative method of building
grounded and acyclic grounded extensions from Definition 2.142 and [64]. This brings us
to the following result:

Theorem 8.42. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its cor-
responding ADF obtained through Translation 49. A set of arguments E ⊆ A is a conflict–
free extension of EFC iff it is conflict–free in DEFC . E is a stable extension of EFC iff it
is a model of DEFC . E is a grounded extension of EFC iff it is the acyclic grounded ex-
tension of DEFC . Finally, E is a σ–extension of EFC, where σ ∈ {admissible, complete,
preferred}, iff it is a ca2–σ–extension of DEFC .

We can now put the obtain translation and theorem into our system and analyze them.
Due to the fact that we are operating on consistent EAFCs, we will prefix the translation
with con−.
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Redefinition of Translation 49: Let SConsEAFC be the collection of all strongly
consistent EAFCs and EAFCADF the collection of all EAFC–style ADFs, both on
domain U . The translation con-TrEAFCADF : SConsEAFC → FrADF is defined as
con-TrEAFCADF ((A,R,D)) = (A,L,C) for a framework (A,R,D) ∈ SConsEAFC , where
L = {(a, b) | (a, b) ∈ R or ∃c ∈ A,E ⊆ A s.t. a ∈ E and (E , (c, b)) ∈ D} and
C = {Ca | a ∈ A} is the set of acceptance conditions, where every condition Ca is
created in the following way:

• functional form: for every subset of parents B ⊆ par(a), if there exists x ∈ B s.t.
(x, a) ∈ R and @B′ ⊆ B s.t. (B, (x, a)) ∈ D, then Ca(B) = out; otherwise,
Ca(B) = in

• propositional form: if a is not attacked, then Ca = >; otherwise, Ca =∧
b∈A,(b,a)∈R att

b
a, where, given that Db,a = {B1, ..., Bm} is the collection of all sets

defense attacking the conflict (b, a), attba = ¬b ∨ (
∧
B1 ∨ ...

∧
Bm) when Db,a 6= ∅

and attba = ¬b if Db,a = ∅.

Redefinition of Theorem 8.42: Let σEAFC ∈ {conflict–free, admissible, preferred,
complete, grounded, stable} be an EAFC semantics and σADF ∈ {conflict–free, ca2–
admissible, ca2–preferred, c2–complete, acyclic grounded, model} be a similar ADF se-
mantics. Let SC Tr

σ the identity casting functions for σ. The translation con-TrEAFCADF is
strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 49: Under the conflict–free, (ca2–) admissible, (ca2–) preferred,
(ca2–) complete, (acyclic) grounded and (model ) stable semantics and identity casting
functions, the translation con-TrEAFCADF is:

• source–subclass, target–subclass and overlapping

• argument domain preserving, argument preserving and relation introducing

• generic, semantics domain preserving and exact

• structural

The translation is neither⊕ nor⊗–modular. Translation con-TrEAFCADF is classified as basic
under the listed semantics and casting functions.

Explanation. Most of our explanations are very similar as in the EAF–ADF consistent
translation (Translation 47). The only difference is that now we lose the injective property.
Unfortunately, similarly as in the SETAF–ADF approach (Translation 31), the EAFC–
ADF translation is overlapping, even though assuming minimality on the source frame-
work can address this behavior. We can consider two EAFCs with an attack from a to
b that is defense attacked by sets {c, d}, {d, e} in the first case and {c, d}, {d, e}, and
{c, d, e} in the other. The functional conditions created for b will be the same in both
cases. Even though the (propositional) acceptance conditions can be syntactically differ-
ent, they will be equivalent as well. �
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In Theorem 8.38 we could have observed that the bounded hierarchical EAFs produce
AADF+ frameworks. This means that our semantics classification collapses (see Theorem
2.172) and we can shift the Theorem 8.33 to the EAFC setting, which permits us to use
any subfamily of ADF semantics:

Theorem 8.43. Let bh− EFC be a bounded hierarchical EAFC and DEFC = (A,L,C)
be its corresponding ADF obtained through Translation 49. A set of arguments E ⊆ A is
a conflict–free extensions of bh−EFC iff it is (pd–acyclic) conflict–free inDEFC . E ⊆ A
is a stable extensions of bh−EFC iff it is (stable) model of DEFC . E ⊆ A is a grounded
extensions of bh− EFC iff it is (acyclic) grounded in DEFC . E ⊆ A is a σ extensions of
bh−EFC, where where σ ∈ {admissible, preferred, complete} iff it is an xy–σ–extension
of DEFC for x, y ∈ {a, c}.

Redefinition of Theorem 8.43: Let σEAFC ∈ {conflict–free, admissible, preferred, com-
plete, grounded, stable} be an EAFC semantics and σADF ∈ {conflict–free, pd–acyclic
conflict–free, xy–admissible, xy–complete, xy–preferred, grounded, acyclic grounded,
model, stable} for x, y ∈ {a, c} be a similar ADF semantics. Let SC Tr

σ the identity cast-
ing functions for σ. The translation con-TrEAFCADF is strong and semantics bijective under
(σ, SC Tr

σ ) for EAFCs in BHEAFC .

Example 106. Let us consider the EAFCEFC = ({a, b, c, d, e, f}, {(c, f), (d, e), (f, a)},
{({f}, (d, e)), ({a, b, c}, (d, e)), ({e}, (c, f))}) from Example 11 and depicted in Figure
87a. Its associated ADF is DEFC = ({a, b, c, d, e, f}, {Ca = ¬f, Cb = >, Cc = >, Cd =
>, Ce = ¬d ∨ (a ∧ b ∧ c) ∨ f, Cf = ¬c ∨ e}, visible in Figure 87b.

The minimal decisively in interpretations for our arguments are va = {f : f}, vb = ∅,
vc = ∅, vd = ∅, v1e = {d : f}, v2e = {a : t, b : t, c : t}, v3e = {f : t}, v1f = {c : f} and v2f =
{e : t}. From them we can produce a number of (minimal) partially acyclic evaluations.
The single minimal evaluation for a is ((a), ∅, {f}). For b, c and d we simply create
((b), ∅, ∅), ((c), ∅, ∅) and ((d), ∅, ∅). For e, we have in total four meaningful evaluations;
((e), ∅, {d}), ((a, b, c, e), ∅, {f}), ((f, e), ∅, {c}) and (∅, {e, f}, ∅). Finally, for f we obtain
((f), ∅, {c}), ((e, f), ∅, {d}), ((a, b, c, e, f), ∅, {f}) and again, (∅, {e, f}, ∅).

The frameworkDEFC has a number of ca2–admissible extensions. We can observe that
∅ and any combination of arguments b, c and d are admissible in DEFC . Argument a will
never appear in an admissible extension due to the fact that there is no conflict–free set of
DEFC that would have f in its partially acyclic discarded set. The evaluation for f respon-
sible for this is ((a, b, c, e, f), ∅, {f}). Neither {e} nor {f} are themselves ca2–admissible.
Their partially acyclic discarded sets do not include d and c respectively. However, the set
{e, f} already becomes ca2 admissible thanks to the evaluation (∅, {e, f}, ∅). This also
means we can extended this set with any combination of arguments b, c and d and still ob-
tain a ca2–admissible extension. We therefore retrieve all and only sets produced by EFC
(for details on the extensions ofEF please consult Example 11). The ca2–complete exten-
sions of DEFC are {b, c, d} and {b, c, d, e, f}. It is easy to verify that the first set is acyclic
grounded and the second is ca2–preferred. The set {b, c, d, e, f} is also the only model of
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DEFC , as w.r.t. {b, c, d}, the condition of a is satisfied. These answers correspond exactly
to the extensions of EFC.

a

b

c

d

e

f

(a) Sample EAFC

a

b

d

e

f

c

¬f

> >

>

¬d ∨ (a ∧ b ∧ c) ∨ f

¬c ∨ e

(b) Associated ADF

Figure 87: Sample EAFC and its associated ADF

8.6.3.2 General EAFC

The way we handle the inconsistencies in the source EAFC is similar to the EAF case.
Following the approach used e.g. in Translation 13 and sketched for EAFs in Section 4.4.3,
we introduce bypass arguments for the arguments appearing in defense attacks that cause
the inconsistencies. The bypasses then replace the occurrences of the original arguments
and are tied to them by support. Just like in the previous cases, we introduce some auxiliary
notions to improve the readability of the translation:

Definition 8.44. Let EFC = (A,R,D) be an EACF and a ∈ A an argument. The
inconsistency origin of a is defined as Oa = {b ∈ A | ∃c ∈ A,B ⊆ A s.t. b ∈
B, (B, (c, a)) ∈ D and (b, a) ∈ R}.

If a is strongly consistent, then Oa = ∅. By the abuse of notation, we will write OE to
denote the collection of all inconsistency origins of the arguments in E ⊆ A.

Definition 8.45. Let EFC = (A,R,D) be an EAFC and (b, a) ∈ A a conflict. Let
Db,a = {E | (E , (b, a)) ∈ D} be the collection of all sets of arguments defense attacking
(b, a). Given a set of arguments S ⊆ A, the replacing arguments P b = {eb | e ∈ S}, the
replacement function for defense attacks is defined as:

rep(S, P b, Db,a) =

Db,a if ∀B ∈ Db,a, B ∩ S = ∅
D′b,a if ∃B ∈ Db,a s.t. ∩S 6= ∅, where D′b,a = {(B \ S) ∪ {eb |

e ∈ B ∩ S} | B ∈ Db,a}
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Translation 50. LetEFC = (A,R,D) be an EAFC, E ⊆ A the set of arguments in EAFC
that are not strongly consistent and Ab = {ab | a ∈ OE} the set of bypass arguments for
the elements causing the inconsistencies. For an attack (b, a) ∈ R, let Db,a = {B |
(B, (b, a)) ∈ D} be the collection of all sets of arguments defense attacking (b, a) and
D′b,a = rep(Oa, Ab, Db,a) the modification of Db,a replacing occurrences of inconsistency
origins by their bypasses.

The ADF corresponding toEFC is defined asDEFC = (A′, L, C), whereA′ = A∪Ab,
L = {(a, b) | (a, b) ∈ R, or ∃(c, b) ∈ R,G ∈ D′c,b s.t. a ∈ G, or b = ab} and
C = {Ca | a ∈ A′} is the set of acceptance conditions, where every condition Ca is
created in the following way:

• functional form:

– if a ∈ A, then for every subset of parents F ⊆ par(a), if there exists x ∈ F
s.t. (x, a) ∈ R and @F ′ ⊆ F s.t. F ′ ∈ D′x,a, then Ca(F ) = out; otherwise,
Ca(F ) = in

– if ab ∈ Ab, then Cab(∅) = out and Cab({a}) = in – argument ab has only
one parent, which is its original argument, and its presence is required for the
acceptance of ab.

• propositional form:

– if a inA:

∗ let b ∈ A be an argument s.t. (b, a) ∈ R and D′b,a = {B′1, ..., B′m} the
modified defense attacker collection for this attack. The attack formula
corresponding to b is attba = ¬b∨(

∧
B′1∨ ...

∧
B′m). IfD′b,a is empty, then

it is simply ¬b.
∗ the acceptance condition is the conjunction of all such attba parts: Ca =∧

b∈A,(b,a)∈R att
b
a. In case a is not attacked at all, it is simply >.

– if ab ∈ Ab, then Cab = a, i.e. it contains only a positive occurrence of the
original argument represented by ab.

We can observe that the EAFCs that are not necessarily consistent will produce ADFs
belonging to the same classes and norms as the consistent ones due to the use of bypass
arguments. The proof is easily adapted from Theorems 8.36 and 8.38 and will thus be
omitted here.

Theorem 8.46. Let EFC = (A,R,D) be an EAFC and DEFC = (A′, L, C) its corre-
sponding ADF obtained through Translation 50. DEF is a BADF. It is also in cleansed and
weakly valid form. It is not necessarily an AADF+ and does not have to be in redundancy–
free, relation or strongly valid form. if EFC is minimal, then DEF is redundancy–free. If
EFC is bounded hierarchical, then DEFC is an AADF+, and if it is additionally minimal,
then DEFC is in relation and strongly valid forms.
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Although now we need to account for the auxiliary arguments in our extensions, the
proof is only a minor adaptation of the one for consistent frameworks:

Theorem 8.47. Let EFC = (A,R,D) be an EAFC and DEFC = (A′, L, C) its corre-
sponding ADF obtained through Translation 50. Let E b denote the (possibly empty) set of
bypass arguments generated by E in A′.

If a set of arguments E ⊆ A is a conflict–free extension of EFC then E ′ = E ∪ E b is
conflict–free inDEFC . If E ′ ⊆ A′ is conflict–free inDEF , then E = E ′∩A is conflict–free
in EFC.

If a set of arguments E ⊆ A is a stable extension of EFC then E ′ = E ∪ E b is a
model of DEFC . If E ′ ⊆ A′ is a model of DEF , then E = E ′ ∩ A is stable in EFC.

If a set of arguments E ⊆ A is the grounded extension of EFC then E ′ = E ∪ E b is
the acyclic grounded extension of DEFC . If E ′ ⊆ A′ is the acyclic grounded extension of
DEF , then E = E ′ ∩ A is grounded in EFC.

If E ⊆ A is a σ–extension of EFC, where σ ∈ {admissible, complete, preferred},
then E ′ = E ∪ E b is a ca2–σ–extension of DEFC . If E ′ ⊆ A′ ca2–σ–extension of DEFC ,
then E = E ′ ∩ A is a σ–extension of EFC.

We can now put these results into our system and analyze the properties of our trans-
lation:
Redefinition of Translation 50: Let FrEAFC be the collection of all EAFCs on domain U
andEAFCADF the collection of all EAFC–style ADFs on domain U∪U b. The translation
TrEAFCADF : FrEAFC → FrADF is defined as TrEAFCADF ((A,R,D)) = (A′, L, C) for a
framework (A,R,D) ∈ FrEAF , where A′ = A ∪ Ab for Ab = {ab | a ∈ OE} and E ⊆ A
being the set of arguments that are not strongly consistent, L = {(a, b) | (a, b) ∈ R, or
∃(c, b) ∈ R,G ∈ D′c,b s.t. a ∈ G, or b = ab} and C = {Ca | a ∈ A′} is the set of
acceptance conditions, where every condition Ca is created in the following way:

• functional form:

– if a ∈ A, then for every subset of parents F ⊆ par(a), if there exists x ∈ F
s.t. (x, a) ∈ R and @F ′ ⊆ F s.t. F ′ ∈ D′x,a, then Ca(F ) = out; otherwise,
Ca(F ) = in

– if ab ∈ Ab, then Cab(∅) = out and Cab({a}) = in.

• propositional form:

– if a inA, then Ca = > if there is no b ∈ A s.t. (b, a) ∈ R; otherwise, Ca =∧
b∈A,(b,a)∈R att

b
a, where, given that D′b,a = {B′1, ..., B′m} = rep(Oa, Ab, Db,a

the modified defense attacker collection for the attack (b, a), attba = ¬b ∨
(
∧
B′1 ∨ ...

∧
B′m) if D′b,a 6= ∅ and attba = ¬b if D′b,a = ∅.

– if ab ∈ Ab, then Cab = a.
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Redefinition of Theorem 8.47: Let σEAFC ∈ {conflict–free, admissible, preferred,
complete, grounded, stable} be an EAFC semantics and σADF ∈ {conflict–free, ca2–
admissible, ca2–preferred, c2–complete, acyclic grounded, model} be a similar ADF se-
mantics. Let SC Tr

σ be the removal casting functions for σ defined as SCX
σ (E ) = E ∩ A,

where X = (A,R,D) ∈ FrEAFC is an EAF and E ∈ σ(TrEAFCADF (X)). The translation
TrEAFCADF is strong under (σ, SC Tr

σ ). It is semantics bijective under the complete, preferred,
grounded and stable semantics and the removal casting functions.
Analysis of Translation 50: Under the conflict–free, (ca2–) admissible, (ca2–) preferred,
(ca2–) complete, (acyclic) grounded and (model ) stable semantics and removal casting
functions, the translation TrEAFCADF is:

• full, target–subclass and overlapping

• weakly argument domain altering, argument and relation introducing

• generic and weakly semantics domain altering

• semi–structural

The translation is neither ⊕ nor ⊗–modular. Under the complete, preferred, grounded and
stable semantics and removal casting functions, TrEAFCADF is faithful. Translation TrEAFCADF

is classified as basic under the listed semantics and casting functions.

Explanation. We can now operate on all EAFCs and thus our translation is full. It is
also easy to observe that we change both the argument and semantics domain. We also
introduce new arguments and the relations from/to them. Furthermore, while defense
attackers and the direct attacked arguments were not directly related in EAFCs, they can
be in the associated ADFs. We choose to classify our approach as semi–structural, as we
had exploited the way inconsistencies in the source framework affect the target framework
in our translation. The rest of the explanations follows similarly as in the translation for
consistent EAFCs. �

Example 107. Let us consider a modification of the framework from Ex-
ample 105. The analysis will be similar, but it will depict how by-
pass argument introduction occurs in group defense attack. Let EFC =
({a, b, c, d}, {(a, b), (b, a), (c, b), (b, d)}, {({c, d}, (a, b))}) be the EAFC depicted in
Figure 88a. The admissible extensions of this framework are ∅, {c}, {a, c}, {c, d} and
{a, c, d}. The set {a, c, d} is at the same time the only complete, preferred, stable, and
grounded extension.

EFC is not a consistent framework, i.e. c both attacks b and participates in a defense
attack on a conflict directed at b. The ADF associated with our EAFC is thus DEFC =
({a, b, c, d, cb}, {Ca = ¬b, Cb = (¬a ∨ (cb ∧ d)) ∧ ¬c, Cc = >, Ccb = c, Cd = ¬b}) (see
Figure 88b). The minimal decisively in interpretations for our arguments are va = {b : f},
v1b = {a : f , c : f}, v2b = {cb : t, d : t, c : f}, vc = ∅, vcb = {c : t} and vd = {b : f}.
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Therefore, the meaningful partially acyclic evaluations associated with our arguments are
eva = ((a), ∅, {b}), ev1b = ((b), ∅, {a, c}), ev2b = ((d, c, cb, b), ∅, {c, b}), evc = ((c), ∅, ∅),
evcb = ((c, cb), ∅, ∅) and evd = ((d), ∅, {b}). Hence, the ca2–admissible extensions of
DEF are ∅, {c}, {c, cb}, {a, c}, {a, c, cb}, {c, d}, {c, d, cb}, {a, c, d} and {a, c, d, cb}. We
can observe that if we remove cb, we retrieve all and only extensions of EFC. Please
note that a single set in EFC can be obtained from more than one set in DEFC . The only
ca2–complete extension ofDEFC is {a, c, d, cb}. It is also the single ca2–preferred, acyclic
grounded and model extension, which is the desired result. Additionally, we can see that
there is a one–to–one correspondence between the answers of DEFC and EFC.

Let us for a moment assume that we did not detect the inconsistency of EFC. The
produced ADF would have been ({a, b, c, d}, {Ca = ¬b, Cb = (¬a ∨ (c ∧ d)) ∧ ¬c, Cc =
>, Cd = ¬b}). The condition for Cb would have been equivalent to simply ¬a ∧ ¬c,
similarly as in Example 105. This means that {a} would have been a ca2–admissible
extension of DEFC , despite the fact that this set is not admissible in EFC.

a

b c

d

(a) Sample EAF

a

b cb c

d

¬b

(¬a ∨ (cb ∧ d)) ∧ ¬c c >

¬b

(b) Corresponding ADF

Figure 88: Sample not consistent EAFC and corresponding ADF

8.6.4 Improvements

In this section we have considered a number of translations from EAF(C)s to ADFs. We
could have observed that they allowed us to go beyond the bounded hierarchical subclass,
to which all of the remaining approaches were limited. Although the most general trans-
lations we have obtained were faithful, creating exact approaches is indeed possible if
we replicate the self–attacker consistency form (see Section 4.4.2) rather than the pure
bypass one, which was used so far. The reason why we did not apply it to the EAF–
ADF translation lies in the issues mentioned in Section 2.1.4.2; the differing intuitions on
the conflict–free semantics would still force us to limit ourselves to a subclass of the ex-
tended frameworks on which there is no difference between the EAF and EAFC semantics.
However, in the EAFC–ADF case, the translation would be both full and exact. We will
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therefore include it in our future analysis, but before we do so we would like to address
the difficulties this approach has with the stable semantics (see Section 4.4.2).

8.7 EAFs and EAFCs as Other Frameworks
In this section we have neglected only two frameworks; BAFs and EASs. Although BAFs
have been a most interesting target for an AFRA translation, an attack in EAFs needs to
be accompanied by its source. Consequently, if we were to repeat the AFRA–BAF con-
struction, the d–family of BAF would be somewhat weak for our purposes. Unfortunately,
the other families are not fully defined. Moreover, due to the lack of group relations in
BAFs, the approach presented in the EAF–AFN Translation 43 is not that easy to adapt
to this framework. Therefore, for now we propose to use e.g. the Dung’s framework as a
bypass for an EAF–BAF translation. Concerning the evidential systems, EASs can handle
EAFs in a manner similar to AFNs. The only issue lies in reorganizing the support sets and
adding the support from the evidence argument. We refer the reader to Section 10.5 focus-
ing on the AFN–EAS translation, which contains the details on how such modifications
can be performed.

8.8 Summary
The results of our translations are summarized in Tables 10 and 11. We can observe that we
have failed to find a translation from EAFs to other frameworks that would not be source–
subclass, though in the case of ADFs this issue was caused by differing intuition on the
conflict–free semantics, not the unusual structure of the complete semantics. Out of the
possible approaches, the conversions to EAFCs and ADFs appear to have the widest input
range. These are also the only two frameworks for which we have managed to construct an
exact approach. Nevertheless, for now we are not able to say whether the exact translations
from bounded hierarchical EAFs to structures other than EAFCs and ADFs are possible or
not. The situation looks somewhat better for EAFCs; although the only exact translation
is a source–subclass one, there exists a full faithful one. Moreover, we believe it can be
improved by mimicking self–attacker consistency normal form rather than normal bypass
one in the translation. Nevertheless, in both cases, the target structures are the ADFs. The
remaining results for EAFCs resemble the ones obtained for EAFs.
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Table 10: Translations from EAFs to other frameworks

Properties AF EAFC SETAF AFRA AFN ADF

Translation 38 36 40 42 43 44 47 48

Strength

cf ⊆–weak exact ⊆–weak ⊆–weak ⊆–weak ⊆–weak exact strong
adm strong exact strong ⊆–weak strong strong exact strong
comp faithful exact faithful faithful faithful faithful exact faithful
pref faithful exact faithful faithful faithful faithful exact faithful
grd faithful exact faithful faithful faithful faithful exact faithful
stb faithful exact faithful faithful faithful faithful exact faithful

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

Functional target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

injective injective injective injective injective injective injective injective

argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

Syntactical argument
introducing

structure
preserving

argument
introducing

structure
preserving

argument
introducing

argument
introducing

relation
introducing

argument
introducing

induced
attack

introducing

induced
attack

introducing

induced
attack

introducing

support
introducing

relation
introducing

support
introducing

generic generic generic generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

semantics
domain
altering

weakly
semantics
domain
altering

semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

Computational semi–
structural

structural structural structural
semi–

structural
semi–

structural
structural

semi–
structural

modular modular modular modular
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Table 11: Translations from EAFCs to other frameworks

Properties AF EAF SETAF AFN ADF

Translation 39 37 41 45 46 49 50

Strength

cf ⊆–weak ⊆–weak ⊆–weak ⊆–weak ⊆–weak exact strong
adm strong strong strong strong strong exact strong
comp faithful faithful faithful faithful faithful exact faithful
pref faithful faithful faithful faithful faithful exact faithful
grd faithful faithful faithful faithful faithful exact faithful
stb faithful faithful faithful faithful faithful exact faithful

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

source–
subclass

full

Functional target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

injective injective overlapping overlapping injective overlapping overlapping

argument
domain
altering

argument
domain
altering

weakly
argument
domain
altering

weakly
argument
domain
altering

argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

Syntactical argument
introducing

argument
introducing

argument
introducing

argument
introducing

argument
introducing

relation
introducing

argument
introducing

induced
attack

introducing

induced
attack

introducing

induced
attack

introducing

induced
attack

introducing

support
introducing

relation
introducing

support
introducing

generic generic generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain
altering

weakly
semantics
domain
altering

weakly
semantics
domain
altering

semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

Computational semi–
structural

semi–
structural

structural
semi–

structural
semi–

structural
structural

semi–
structural

modular modular modular
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9 Translating BAFs
In this section we will discuss how to translate BAFs to other frameworks. However, please
note that unlike the previous sections, this one will be more focused on discussion than
giving translations themselves. Moreover, we will also omit the usual “Improvements”
section. The main reason for that is the freedom that BAFs give us in the choice of indirect
attacks and their usage in conflict–freeness and defense, which makes their semantics
significantly different from the approaches in other structures. Consequently, most of the
analysis can be done only for certain BAF subclasses, where a fixed set of indirect attacks
is assumed. Moreover, although e.g. necessary support can be modeled within BAFs,
the resulting extensions can be different from the ones in AFNs. One of the reasons for
this situation is the presence of support cycles, which are ignored in one framework, and
treated specially in the other. Thus, BAFs focus on the analysis of a given relation, not
in creating a translation that would retrieve the extensions of the framework in which the
relation was first proposed.

9.1 BAF as AF
The translations from BAFs to AFs have two purposes. Initially, the authors were in-
terested in obtaining an AF that would retrieve the extensions of the source BAF [29].
Later [30,31], the translation–based family of semantics was proposed, i.e. the extensions
of the target structure would be taken as the desired ones, somewhat independently of their
relation to the d–/s–/c–/i– families of semantics. Moreover, all of the proposals were cre-
ated for a given set of indirect attacks, chosen for modeling the deductive and necessary
supports. In what follows we will recall the existing results and propose more general
versions when possible.

9.1.1 Attack Propagation Translation

Although the attack propagation translation is only the second approach for BAF–AF con-
version, we recall it as first due to the fact that apart from the “standard” semantics ex-
plained in Section 2.2.1, BAFs have translation–based semantics as well. In [30] it was
proposed that by adding indirect attacks appropriate for a given interpretation of support,
we can drop the support relation altogether and focus only on the resulting AF. The ex-
tensions of the produced structure were then taken as the extensions of the source one,
without further conditions:

Translation 51. LetBF = (A,R, S) be a BAF specialized for deductive support andR′ =
{Rsup, Rmed

Rsup} ⊆ Rind the collection of supported and super–mediated attacks inBF . The
associated attack propagation AF for deductive support is apd− FBF = (A,R ∪

⋃
R′).

Translation 52. Let BF = (A,R, S) be a BAF specialized for necessary support and
R′ = {Rsec, Rext} ⊆ Rind the collection of secondary and extended attacks in BF 21. The
associated attack propagation AF for necessary support is apn− FBF = (A,R ∪

⋃
R′).

21As already mentioned in Section 2.2.1, please observe that what we understand as extended attack here
corresponds to a particular case of the original version. This change was motivated by the fact that the other
cases are already covered by other existing conflicts.
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As already stated in [30], the deductive and necessary supports are tightly related.
Not only their meaning is dual, but we can observe that if we invert the support rela-
tion, the supported attack becomes extended attack, and secondary turns to mediated.
Unfortunately, the super mediated attack does not have its associated dual conflict. For
these reasons it was also proposed to model the necessary support through dual, to per-
mit the propagation of extended attacks. Nevertheless, the work in [31] comes back to
the secondary–extended approach again, and thus we refer the readers to [30] for further
details on the previous method.

We can observe that by adding indirect conflicts to the structure, we not only treat
them as attacks that would break conflict–freeness, but also as ones sufficient for defense.
In terms of our new BAF semantics classification, this means that we are using the same
parametrization for both notions. Consequently, we can present a more general attack
propagation BAF–AF translation, and observe that the resulting extensions are the same
as in the d–family of semantics.

Translation 53. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collection of indirect
attacks inBF . The attack propagation AF associated withBF w.r.t. R′ is FBF = (A,R∪⋃
R′).

Theorem 9.1. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect attacks
in BF and FBF = (A,R ∪

⋃
R′) its associated attack propagation AF obtained through

Translation 53. E ⊆ A is a +conflict–free extension of BF w.r.t. R′ iff it is conflict–free
in FBF . E is a d–σ extension of BF w.r.t. (R′, R′), where σ ∈ {admissible, complete,
preferred} iff it is a σ–extension of FBF . E is stable in BF w.r.t. R′ iff it is stable in FBF .
E is d–grounded w.r.t. R′ in BF iff it is grounded in FBF .

This behavior of the semantics can be trivially proved simply by observing that the
definition of a given semantics in FBF becomes identical to the ones in BF . However,
what is more interesting, is the fact that if we assume certain indirect conflicts, it is not
just +conflict–freeness, but also closure that can hold. For example, if our choice was to
use the secondary attacks, defending an argument meant that the arguments supporting it
would also be defended. Similarly, the use of supported and super mediated attacks leads
to the fact that the defense of an argument implied defense of the arguments it supported.
This means that the d–complete extensions could also be closed and inverse closed under
support and exhibit properties we would expect from the c– and i–complete semantics, if
they existed (see [30, 31] for more details). It is also possible that for particular combina-
tions of conflicts, further properties such as safety can be enforced. Nevertheless, for our
purposes closure is sufficient:

Theorem 9.2. Let BF = (A,R, S) be a deductive BAF and R′ = {Rsup, Rmed
Rsup} ⊆

Rind the collection of supported and super–mediated attacks in BF . Let apd − FBF =
(A,R ∪

⋃
R′) be the associated attack propagation AF obtained through Translation 53

and E ⊆ A a complete extension of apd− FBF . Then, E is closed under S in BF .
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Theorem 9.3. Let BF = (A,R, S) be a BAF and R′ = {Rsec} ⊆ Rind the collection
of secondary attacks in BF . Let apd − FBF = (A,R ∪

⋃
R′) be the associated attack

propagation AF obtained through Translation 53 and E ⊆ A a complete extension of
apd− FBF . Then, E is inverse closed under S in BF .

Please note we are not entirely sure whether the inverse closure property holds if we as-
sume both secondary and extended attacks. In the proof of Theorem 9.2 we have depended
on the fact that if an admissible extension defends a given argument, then it defends the
arguments it supports. This is not necessarily true if we take both secondary and extended
attacks. Let us look at the BAF presented in Figure 89 and assume that a1 is contained in
some admissible extension. We can observe that the extended attacker a3 of a2 is neither an
extended nor secondary attacker of a1. However, the supporter a4 of a3 secondary attacks
a1. Let us assume that the admissible extension thus contains a6 to defend a1. However,
a6 does not defend a2 against a3. We can continue the analysis each time choosing the
appropriate extended attacker. Although we are only working with finite frameworks here
and are bound to reach the “end” of a framework and resolve the situation in a way that
our admissible extension would defend a2, for the time being we choose to limit ourselves
to the provided result.

a1

a2 a4

a3

a5

a6

. . .

Figure 89: Sample BAF with extended attacks

We can also observe that if our indirect attacks do not lead to desired closure, it can also
be enforced by using defense against auxiliary arguments. In this case, we can modify the
translation in a manner similar to Translation 58. We turn a supporter of an argument into
its sole defender against an auxiliary attacker and thus enforce its presence in an admissible
extension. The new attacker is self–conflicting in order to prevent it from coming up in
an extension. Thus, we merge the attack propagation and defender approaches. However,
please note that as we are using defense, the desired closure is obtained only when we
consider extensions that are at least admissible:

Translation 54. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collection of indirect
attacks in BF . The associated inverse closure attack propagation–defender AF w.r.t. R′

is iclo − FBF = (A′, R′′), where A′ = A ∪ S and R′′ = R ∪
⋃
R′ ∪ {(x, x) | x ∈

S} ∪ {(b, (b, a)), ((b, a), a) | a, b ∈ A, (b, a) ∈ S}.

Theorem 9.4. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect attacks in
BF and iclo−FBF = (A′, R′′) its associated inverse closure attack propagation–defender
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AF w.r.t. R′ obtained through Translation 54. A set of arguments E ⊆ A is i–admissible
(i–preferred) in BF w.r.t. (R′, R′) iff it is admissible (preferred) in iclo− FBF .

a b c d e

sup

sec

extmed

(a) Sample BAF with possible indirect attacks

a b

(a,c)

c d (d,e) e

sup

sec

extmed

(b) Possible associated AF

Figure 90: Sample BAF with possible indirect attacks and possible associated AF

Example 108. Let us consider a simple BAF BF = ({a, b, c, d, e}, {(a, b), (b, c), (c, d),
(e, a)}, {(a, c), (d, e)}). The supported attack, secondary, extended, mediated and super–
mediated attacks in this framework are respectivelyRsup = {(a, d), (d, a)},Rsec = {(e, c),
(c, e)}, Rext = {(c, b)}, Rmed = {(b, a)} and Rmed

Rsup = {(b, a)}. The framework, along
with its indirect conflicts, is visible in Figure 90a.

The associated AF targeted at inverse closure is iclo − FBF =
({a, b, c, d, e, (a, c), (d, e)}, X ∪ {(a, b), (b, c), (c, d), (e, a), ((a, c), (a, c)), ((d, e), (d, e)),
(a, (a, c)), ((a, c), c), (d, (d, e)), ((d, e), e)}), where X is a set of indirect attacks that we
will be changing now. The framework, along with all possible types of indirect conflicts
that we might add, is visible in Figure 90b.

Let us first considerX = ∅. The +conflict–free sets ofBF w.r.t. only direct attacks are
∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d}, {b, d}, {b, e}, {c, e}, {d, e} and {b, d, e}. Out of
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this, the d–admissible extensions are ∅, {e}, {b, e} and {b, d, e}. The i–admissible sets are
∅ and {b, d, e}; the latter is also i–preferred. The conflict–free extensions in iclo − FBF

w.r.t. X are the same as the +conflict–free ones w.r.t. X of BF . Since (a, c) and (d, e) are
self–attackers, they will not appear in any sets. The admissible extensions of our AF are
now ∅ and {b, d, e}. Argument a is not defended by any conflict–free set and b requires
the presence of e, Since a is not defended, then neither is c due to the (a, c) attack. Finally,
d requires the presence of b (note that (a, c) is a self–attacker) and e cannot be accepted
without d due to the (d, e) attack. Therefore, our answers coincide with the i–admissible
and i–preferred extensions of BF .

LetX = Rsup∪Rmed
Rsup consist of supported and super–mediated attacks. The +conflict–

free extensions are the same as in the case of direct attacks, with the exception of {a, d}.
The d–admissible extensions are now ∅, {b}, {e}, {b, d}, {b, e}, {b, d, e}. From them, ∅,
{b}, {b, d} and {b, d, e} are i–admissible. {b, d, e} is the only i–preferred extension. Let
us now consider the admissible sets of iclo − FBF w.r.t. X . The arguments a and c are
still not defended by any conflict–free sets; b can defend itself, d requires the presence of
b and e of d. Hence, our extensions are ∅, {b}, {b, d} and {b, d, e}, which coincides with
the i–admissible sets of BF .

Finally, let X = Rsec ∪ Rext consist of secondary and extended attacks. From the
previously listed +conflict–free sets w.r.t. direct attacks, we need to exclude the set {c, e}.
The new d–admissible extension are ∅, {c}, {e}, {a, c}, {b, e}, {d, e} and {b, d, e}. From
this, ∅, {a, c}, {d, e} and {b, d, e} are i–admissible. This gives us two i–preferred exten-
sions {a, c} and {b, d, e}. We can now shift to our AF. We can observe that c protects
itself against b and defends a, which in turn defends c from (a, c). Consequently, {a, c} is
one of our admissible extensions. Similarly, e attacks c and d attacks (d, e), making {d, e}
admissible as well. Finally, b and e attack a and c, which we can use to show that {b, d, e}
is another admissible set. This, along with ∅, gives us all of the extensions of iclo− FBF .
We can see that these are the answers we expected.

We can observe that the stable semantics are not necessarily preserved for the same
reasons as in the self–attacker consistency form (see Section 4.4.2). The normal closure
can be proved in a similar manner:

Translation 55. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collection of indirect
attacks in BF . The associated closure attack propagation AF w.r.t. R′ is clo − FBF =
(A′, R′′), whereA′ = A∪S andR′′ = R∪

⋃
R′∪{(x, x) | x ∈ S}∪{(a, (b, a)), ((b, a), b) |

a, b ∈ A, (b, a) ∈ S}.

Theorem 9.5. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect attacks
in BF and clo − FBF = (A′, R′′) its associated closure attack propagation AF w.r.t. R′

obtained through Translation 55. A set of arguments E ⊆ A is c–admissible (c–preferred)
in BF w.r.t. (R′, R′) iff it is admissible (preferred) in clo− FBF .

Please note that our analysis here is by no means exhaustive. Moreover, we have not
yet established an abstract construction (i.e. independent of the chosen indirect conflicts)
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that would enforce safety of our extensions, even though some results for special cases
are available [30]. Additionally, due to lack of appropriate i–/c–/s–complete and grounded
semantics, our results are still limited. Nevertheless, this task needs to be left for future
work, and for now we refer the reader for a more in–depth discussion to the original
papers [30,31]. We close this section by putting the available results into our classification
system.
Redefinition of Translation 53: Let FrBAF be the collection of all BAFs and FrAF the
collection of all AFs, both on domain U . The translation att-TrBAFAF : FrBAF → FrAF is
defined as att-TrBAFAF ((A,R, S)) = (A,R ∪

⋃
R′) for a framework (A,R, S) ∈ FrBAF ,

where R′ ⊆ Rind is a chosen set of indirect conflicts in (A,R, S).
Redefinition of Theorem 9.1: Let σBAF ∈ {+conflict–free, d–admissible, d–preferred,
d–complete, d–grounded, stable} be a BAF semantics with identical parametrization 22

and let σAF ∈ {conflict–free, admissible, preferred, complete, grounded, stable} be a
similar AF semantics. Let SC Tr

σ be the identity casting functions for σ. The translation
att-TrBAFAF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 53: Under the (+) conflict–free, (d–) admissible, (d–) preferred,
(d–) complete, (d–) grounded and stable semantics with identical parametrization and
identity casting functions, the translation att-TrBAFAF is:

• full, surjective and overlapping

• argument domain preserving, attack relation introducing and support relation re-
moving

• generic, semantics domain preserving and exact

• semi–structural

Our approach is not modular. Translation att-TrBAFAF is classified as basic–attack propa-
gation hybrid under the listed semantics and casting functions.

Explanation. Any BAF can undergo the translation, and thus our approach is full. More-
over, given any target AF, we can simply add an empty set for the support relation and
receive a possible source BAF. Thus, the translation is also surjective. Unfortunately, it is
also overlapping. For example, two BAFs with the same set of arguments, empty set of
attacks and different set of supports, will be translated into a single AF.

The translation is both argument and semantics domain preserving. It is also attack
introducing, as previously indirect conflicts become direct and visible in the structure of
the framework. The translation is however support relation removing; arguments can be-
come completely detached and there is no way of telling whether there has been a positive
interaction between them or not.

22By identical parametrization we understand that we use the same set R′ ⊆ Rind or pair (R′, R′) when
applicable.
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Due to the amount of handled semantics, even though with identical parametrization,
we classify the approach is generic. As indirect attacks are a semantical concept, even
though not necessarily a computationally difficult one, the translation cannot be classified
as structural. Therefore, we choose to see it as a semi–structural one. Its exactness under
the described semantics follows from Theorem 9.1.

Unfortunately, our translation is in no way modular. For any (nonempty) type of
parametrization we can find a suitable counterexample. It suffices to separate a given
BAF in a way that the attack relations stay in one framework, and support in the other –
as a result we will obtain an AF corresponding to the attack–bases subgraph without any
conflicts propagated. For example, let us look at two BAFs BF1 = ({a, b}, {(a, b)}, ∅)
and BF1 = ({b, c}, ∅, {(b, c)}) and focus on secondary attack. Our structures are trans-
lated to frameworks ({a, b}, {(a, b)}) and ({b, c}, ∅) respectively. Their union is simply
({a, b, c}, {(a, b)}), while the AF associated with BF1∪BF2 is ({a, b, c}, {(a, b), (a, c)}).
Thus, the indirect attack is “lost” and our translation is not modular. �

Redefinition of Translations 54 and 55: Let FrBAF be the collection of all BAFs on
domain U and FrAF the collection of all AFs on domain U ∪ (U × U). The translation
iclo-TrBAFAF : FrBAF → FrAF is defined as iclo-TrBAFAF ((A,R, S)) = (A′, R′′) for a
framework (A,R, S) ∈ FrBAF , where A′ = A ∪ S, R′′ = R ∪

⋃
R′ ∪ {(x, x) | x ∈

S} ∪ {(b, (b, a)), ((b, a), a) | a, b ∈ A, (b, a) ∈ S} and R′ ⊆ Rind is a chosen set of
indirect conflicts in (A,R, S).

The translation clo-TrBAFAF : FrBAF → FrAF is defined as clo-TrBAFAF ((A,R, S)) =
(A′, R′′) for a framework (A,R, S) ∈ FrBAF , whereA′ = A∪S,R′′ = R∪

⋃
R′∪{(x, x) |

x ∈ S} ∪ {(a, (b, a)), ((b, a), b) | a, b ∈ A, (b, a) ∈ S} and R′ ⊆ Rind is a chosen set of
indirect conflicts in (A,R, S).
Redefinition of Theorems 9.4 and 9.5: Let σBAF ∈ {i–admissible, i–preferred} be a
BAF semantics with identical parametrization 23 and let σAF ∈ {admissible, preferred} be
a similar AF semantics. Let SC Tr

σ be the identity casting functions for σ. The translation
iclo-TrBAFAF is strong and semantics bijective under (σ, SC Tr

σ ).
Let δBAF ∈ {c–admissible, c–preferred} be a BAF semantics with identical

parametrization and let δAF = σAF be a similar AF semantics. Let SC Tr
δ be the iden-

tity casting functions for δ. The translation clo-TrBAFAF is strong and semantics bijective
under (δ, SC Tr

δ ).
Analysis of Translation Translations 54 and 55: Under the (i–/c–) admissible and (i–
/c–) preferred semantics with identical parametrization and identity casting functions, the
translations iclo-TrBAFAF and clo-TrBAFAF are:

• full, target–subclass and overlapping

• argument domain altering, argument introducing and attack relation introducing

23By identical parametrization we understand that we use the same set R′ ⊆ Rind or pair (R′, R′) when
applicable.
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• specialized, semantics domain preserving and exact

• semi–structural

Our approach is not modular. Translations iclo-TrBAFAF and clo-TrBAFAF are classified as
basic–attack propagation–defender hybrids under the listed semantics and casting func-
tions.

Explanation. Similarly as in the previous translation, our approaches are full. Un-
fortunately, they are no longer surjective due to the domain change. We can eas-
ily create a framework containing only U × U type of arguments and observe that
it could not have been produced by any BAF. Nevertheless, any types of attack pat-
terns can appear. Similarly as in the previous translation, our approaches is over-
lapping. For example, we can consider two BAFs ({a, b, c}, {(a, b)}, {(b, c)}) and
({a, b, c}, {(a, b), (a, c)}, {(b, c)}), where the latter represents the first framework com-
pleted with secondary attack. Both of them will be translated into the same inverse closure
AF ({a, b, c, (b, c)}, {(a, b), (a, c), (b, (b, c)), ((b, c), c)}). We can create a similar example
for the normal closure translation.

The translations are clearly argument domain altering, even though they are semantics
domain preserving. They are also attack introducing, as previously indirect conflicts be-
come direct and visible in the structure of the framework. Moreover, additional arguments
cause the creation of their respective attacks as well. The translations are no longer support
relation removing, as the supports are represented with auxiliary arguments and arguments
connected previously by support are now tied with defense. Exactness follows easily from
Theorems 9.4 and 9.5.

Our translations do not handle too many semantics; thus, we classify them as spe-
cialized. For reasons similar as in Translation 53, we lose modularity and classify our
approach as semi–structural. �

9.1.2 Coalition Translation

The coalition approach was the first attempt at translating BAFs into AFs. The original
version [29] joined arguments into groups meeting certain support and conflict–freeness
requirements, and then used these groups as new AF arguments:

Definition 9.6. Deprecated Let BF = (A,R, S) be a BAF and BF att = (A,R) the AF
representing the attack subgraph of BF . A set C ⊆ A is a coalition of BF iff:

• the support subgraph (C, S ∩ (C × C)) induced by C is connected,

• C is conflict–free in BF att, and

• C is maximal under ⊆ among the sets satisfying the previous two conditions.
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Translation 56. Faulty Translation Let BF = (A,R, S) be a BAF. The associated coali-
tion AF is defined as c-FBF = (A′, R′), where A′ = {C | C is a coalition of BF} and
R′ = {(C1, C2) | ∃a1 ∈ C1, a2 ∈ C2 s.t a1Ra2}.

Unfortunately, as observed in various works [19, 29, 30], this approach does not pre-
serve the behaviour of the semantics. There are two main reasons for this situation. One is
the conflict–freeness assumption within the coalitions, which led to the loss of certain ar-
guments in the translation. Another is the lack of a more precise interpretation of abstract
support, which in turn caused the creation of coalitions in a way that a direct attack on a
single member of it did not translate to an appropriate indirect attacks on the remaining
members. This means that the defense in the produced AF did not correspond to defense
in the source BAF. Let us look at an example:

Example 109. We can consider a simple AF–style BAFBF1 = ({a, b}, {(b, a), (b, b)}, ∅).
We can observe that {a} cannot be an admissible extension of any type in BF1. Neverthe-
less, {{a}} is an admissible set of the associated coalition AF FBF1 = ({{a}}, ∅). This
framework will also produce a preferred extension not representing any set that BF1 can
create. Additionally, while BF1 does not have stable extensions, the associated AF does.

These issues will appear even if we consider BAFs without self–attackers. Let
BF2 = ({a, b, c, d, e}, {(a, b), (d, e)}, {(c, b), (c, d)}) be a BAF from [29], now depicted
in Figure 91a. The attacks originally considered for this framework were the secondary
and supported ones; we can observe that the only indirect conflict in this case is the sup-
ported attack from c to e. Neither c nor d are in any way attacked in BF2. The coalitions
for this framework are C1 = {a}, C2 = {b, c, d} and C3 = {e}. So, the associated
coalition AF is FBF2 = ({C1, C2, C3}, {(C1, C2), (C2, C3)}) (see Figure 91b). The sets
∅, {C1} and {C1, C3} are admissible in FBF2 , with {C1, C3} being the stable, preferred
and grounded set. This translates to the set {a, e}, which, based on the previous remark
on c and d, cannot possibly be contained in an admissible, preferred, stable or grounded
extension of any type in BF2 w.r.t. the supported and secondary attacks.

a b c d e

sup

(a) Sample BAF with highlighted supported attacks

{a} {b, c,d} {e}

(b) Original coalition AF

Figure 91: Sample BAF with associated coalition AF based on Translation 56
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Therefore, we turn our heads to the newer versions of the coalition translation, intro-
duced in [30]. Its focus was on translating the deductive support and thus, indirectly, also
the necessary one. The new definition of a coalition and the translation are now as follows:

Definition 9.7. Let BF = (A,R, S) be a BAF with S being a set of deductive supports.
The deductive coalition associated with an argument a ∈ A is defined as C(a) = {a} ∪
{b | a supports b}.

We can observe that the conflict–freeness restriction from Definition 9.6 has been
dropped, and the ones concerning support has been transformed into requiring that ev-
ery node reachable from a through the support edges appears in C(a).

Translation 57. Let BF = (A,R, S) be a BAF. The associated coalition AF for deductive
support is defined as cd − FBF = (A′, R′), where A′ = {C(a) | a ∈ A} and R′ =
{(C1(a), C2(b)) | ∃a1 ∈ C1(a), a2 ∈ C2(b) s.t a1Ra2}.

The results concerning the semantics of the resulting AF are given by its connection to
the attack propagation AF for deductive support [30]:

Theorem 9.8. Deprecated Let BF = (A,R, S) be a deductive BAF and R′ =
{Rsup, Rmed

Rsup} ⊆ Rind the collection of supported and super–mediated attacks in BF . Let
apd − FBF = (A,R ∪

⋃
R′) be the associated attack propagation AF and cd − FBF =

(A′, R′′) the associated coalition AF. A set E = {a1, ..., an} ⊆ A is a σ–extension of
apd−FBF , where σ ∈ {conflict–free, admissible, stable} iff {C(a1), C(a2), ..., C(an)} is
a σ–extension of cd− FBF .

Unfortunately, the results are not entirely correct. Due to the fact that the arguments
in the coalition AF are simply sets of BAF arguments and carry no information as to who
created them (indeed, in the presence of cycles one coalition can be created by multiple
arguments), we have to resort to union casting function to relate the source and target
extensions. This means that not every conflict–free or admissible extension of the attack
propagation approach has a corresponding conflict–free or admissible one in the coalition
framework. Thus, this relation is not strong, let alone one–to–one. Although for a given ar-
gument a ∈ Awe produce a single coalition, there can be multiple coalitions containing it.
This means that to a single conflict–free or admissible extension in the attack propagation
approach, an arbitrary number (including zero) of conflict–free or admissible extensions
can be related:

Example 110. Let ({a, b}, ∅, {(a, b)}) be a BAF for deductive support. The associated
attack propagation AF is simply ({a, b}, ∅) and its conflict–free (admissible) extensions
are ∅, {a}, {b} and {a, b}. The coalition AF is ({{a, b}, {b}}, ∅) and its conflict–free
(admissible) extensions are ∅, {{b}}, {{a, b}} and {{a, b}, {b}}. We can observe that
the set {a, b} can be retrieved both from {{a, b}} and {{a, b}, {b}}. Thus, the relation
between the extensions is not one–to–one. Moreover, the set {a} in the attack propagation
AF is not represented by any coalition extension.
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By analyzing the coalition arguments it can be observed that {a, b} was created for a
and {b} for b. Thus, one can argue that the extension {a} corresponds to {{a, b}} and
that a certain relation is in fact preserved. However, this is not a long–term strategy. Let
us consider the framework ({a, b}, ∅, {(a, b), (b, a)}) containing a support cycle. We ob-
tain a single coalition argument {a, b}, originating both from a and b. In this case, all of
the sets {a}, {b} and {a, b} would be admissible in the associated attack propagation AF.
Therefore, the “choose any coalition source” approach retrieves the desired extensions.
However, only {a, b} is complete, and it is the “use all sources” approach that produces
it. Hence, obtaining the extensions of the attack–propagation framework from the coali-
tion one by trying to find out what argument created a given coalition needs different
approaches for different semantics.

The reason for this situation is quite simple; as we have observed before, the attack
propagation approach is related to the d–family of BAF semantics. However, the use of
coalition enforces the closure property and is thus related more to the c–family of seman-
tics, and clearly the extensions of the two types are not always the same. Nevertheless,
as stated before, some of the indirect attacks can be used to enforce closure. Therefore,
although the provided results are not correct for conflict–free and admissible semantics,
they are so when we consider approaches enforcing some notions of maximality. More-
over, unlike in the original results, the union of the coalition arguments in an extension
will correspond to the actual extension, i.e. {a1, ..., an} =

⋃n
i=1C(ai).

Theorem 9.9. Let BF = (A,R, S) be a deductive BAF and R′ = {Rsup, Rmed
Rsup} ⊆ Rind

the collection of supported and super–mediated attacks in BF . Let apd−FBF = (A,R∪⋃
R′) the associated attack propagation AF and cd − FBF = (A′, R′′) the associated

coalition AF obtained through Translations 53 and 57. If set E = {a1, ..., an} ⊆ A is
a σ–extension of apd − FBF , where σ ∈ {complete, preferred, grounded, stable}, then
E ′ = {C(a1), C(a2), ..., C(an)} is a σ–extension of cd − FBF . If set E ′ ⊆ A′ is a σ–
extension of cd− FBF , then E =

⋃
E ′ is a σ–extension of apd− FBF .

We can now finally tie the extensions of the coalition AF back to BAF, not to another
of its translations. Although due to lack of appropriate semantics some of the results will
be given for the d–family rather than c–family, it should be noted that complete extensions
are in fact closed under support due to Theorem 9.2. Again, please note that the union
of the coalition arguments in an extension will correspond to the actual extension, i.e.
{a1, ..., an} =

⋃n
i=1C(ai). This will hold even for the admissible semantics due to the

fact that we follow the c–family:

Theorem 9.10. Let BF = (A,R, S) be a deductive BAF, R′ = {Rsup, Rmed
Rsup} ⊆ Rind the

collection of supported and super–mediated attacks in BF and cd− FBF = (A′, R′′) the
associated coalition AF obtained through Translation 57. The following holds:

• if set E = {a1, ..., an} ⊆ A is +conflict–free w.r.t. R′ and closed under S in BF ,
then E ′ = {C(a1), C(a2), ..., C(an)} is a conflict–free extension of cd− FBF .
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• if set E = {a1, ..., an} ⊆ A is a c–admissible (c–preferred) extension of BF w.r.t.
(R′, R′), then E ′ = {C(a1), C(a2), ..., C(an)} is an admissible (preferred) exten-
sion of cd− FBF .

• if set E = {a1, ..., an} ⊆ A is a d–complete extension of BF w.r.t. (R′, R′), then
E ′ = {C(a1), C(a2), ..., C(an)} is a complete extension of cd− FBF .

• if set E = {a1, ..., an} ⊆ A is a d–grounded (stable) extension of BF w.r.t. R′, then
E ′ = {C(a1), C(a2), ..., C(an)} is a grounded (stable) extension of cd− FBF .

• if set E ′ ⊆ A′ is a conflict–free extension of cd−FBF , then E =
⋃
E ′ is +conflict–

free w.r.t. R′ and closed under S in BF .

• if set E ′ ⊆ A′ is an admissible (preferred) extension of cd − FBF , then E =
⋃
E ′

is a c–admissible (c–preferred) extension of BF w.r.t. (R′, R′).

• if set E ′ ⊆ A′ is a complete extension of cd− FBF , then E =
⋃
E ′ is a d–complete

extension of BF w.r.t. (R′, R′).

• if set E ′ ⊆ A′ is a grounded (stable) extension of cd − FBF , then E =
⋃
E ′ is a

d–grounded (stable) extension of BF w.r.t. R′.

Please note that the coalition translation for necessary support would be the same as
for deductive; it is only the used definition of a coalition that would change. Instead of
building it on closure, we would have to use the inverse version. However, we will omit
further analysis and proceed with analyzing the existing results. Please note that we are
not entirely sure on how to perceive the changes done to the original relations:
Redefinition of Translation 57: Let FrBAF be the collection of all BAFs on domain U
and FrAF the collection of all AFs on domain 2U . The translation cd-TrBAFAF : FrBAF →
FrAF is defined as cd-TrBAFAF ((A,R, S)) = (A′, R′) for a framework (A,R, S) ∈ FrBAF ,
A′ = {C(a) | a ∈ A} and R′ = {(C1(a), C2(b)) | ∃a1 ∈ C1(a), a2 ∈ C2(b) s.t a1Ra2}.
Redefinition of Theorem 9.10: Let σBAF ∈ {+conflict–free and closed under sup-
port, c–admissible, c–preferred, d–complete, d–grounded, stable} be a BAF semantics
with identical parametrization consisting of supported and super mediated attacks and let
σAF ∈ {conflict–free, admissible, preferred, complete, grounded, stable} be a similar AF
semantics. Let SC Tr

σ be the union casting functions for σ. The translation cd-TrBAFAF is
strong under (σ, SC Tr

σ ). It is semantics bijective under (d–) complete, (c–) preferred, (d–)
grounded and stable semantics.
Analysis of Translation 57: Under the (+) conflict–free (and closed under support),
(c–) admissible, (c–) preferred, (d–) complete, (d–) grounded and stable semantics with
identical parametrization consisting of supported and super mediated attacks, and union
casting functions, the translation cd-TrBAFAF is:

• full, target–subclass and overlapping
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• argument domain altering, argument introducing, attack relation introducing (or re-
moving) and support relating introducing (or removing)

• generic and semantics domain altering

• semi–structural

Our approach is not modular. Translation cd-TrBAFAF is classified as basic–coalition hybrid
under the listed semantics and casting functions.

Explanation. Any BAF can undergo the translation and thus we consider it full. It is
unfortunately target–subclass due to the domain change. Not every set of coalitions can
be produced. Let us consider the sets C1 = {a, b}, C2 = {b, c} and C3 = {a, c}. The
original set of argument is thus {a, b, c} and every coalition has to be produced by one
argument. We have thus two combinations; either C1 = C(a), C2 = C(b) and C3 = C(c),
or C1 = C(b), C2 = C(c) and C3 = C(a). The first option means that aSb, bSc and cSa,
and the conclusion is that {a, b, c} should have been the only produced coalition. We reach
a contradiction. The other option means that bSa, aSc and cSb. Again, we obtain a cycle,
just in a different direction, and {a, b, c} should have been the only coalition.

In order to show it is overlapping, let us consider the frameworks
({a, b, c}, ∅, {(a, b), (b, c)}) and ({a, b, c}, ∅, {(a, b), (b, c), (a, c)}). The latter basi-
cally changes the indirect support from the former structure into a direct one. They will
both be assigned a simple framework ({{a, b, c}, {b, c}, {c}}, ∅).

Clearly, both argument and semantics domain are altered. Due to the fact that one
argument can appear in multiple coalitions, it can be represented by more than a single ar-
gument, and we classify the translation as argument introducing. We are not sure whether
to classify the translation as relation removing or introducing due to the fact that although
we know a given relation occurs, we do not always know whether it is direct, indirect,
and who carried it out. Although a given attack or support is in a sense represented in
the target framework, the way arguments themselves are represented, makes the approach
imprecise. In other words, depending on the way we attempt to reconstruct the original
framework, it might have somewhat different relations than the original one. As observed
in the previous paragraph, the frameworks F1 = ({a, b, c}, ∅, {(a, b), (b, c), (c, a)}) and
F2 = ({a, b, c}, ∅, {(b, a), (c, b), (a, c)}) would be translated simply into ({{a, b, c}}, ∅).
Therefore, depending on how we reconstruct the original structure, we can end up with F1

instead of F2, vice versa, or any other framework completing the support graph by chang-
ing indirect supports to direct ones. A similar analysis can be carried out in case of attack;
if we have two coalitions {a, b} and {c} and attack ({a, b}, {c}), we do not know which
of the a and b is responsible for the direct conflict. Due to the fact that they would be in
a support cycle, direct conflict from one implies a supported attack from the other. There-
fore, again, depending on how we want to reconstruct the original BAF, we might change
indirect attacks into direct or the other way around, thus leading to relation introduction
and removal respectively. We thus leave it to the reader to decide which classification feels
more intuitive.

301



Due to the amount of handled semantics we classify the approach as generic. Based
on the construction of the coalitions, we also choose to mark it as semi–structural. In
order to show the lack of modularity, let us look at the frameworks ({a, b}, ∅, {(a, b)}) and
({b, c}, ∅, {(b, c)}). The union of their translations is ({{a, b}, {b}, {b, c}, {c}}, ∅), while
the translation of their union is ({{a, b, c}, {b, c}, {c}}, ∅). �

9.1.3 Defender Translation

The defender–like translation from BAFs specialized with necessary support to AFs has
been proposed in [31]. The supporting link becomes a new argument, which itself attacks
the target and is attacked by the source of the edge it represents:

Translation 58. LetBF = (A,R, S) be a BAF. The associated defender AF for necessary
support is defined as dn−FBF = (A′, R′), where A′ = A∪ S and R′ = R∪ {(b, (b, a)) |
a, b ∈ A, (b, a) ∈ S} ∪ {((b, a), a) | a, b ∈ A, (b, a) ∈ S}.24

The original results concerning the semantics are somewhat limited. This is due to the
fact that the purpose of the translation was to study certain constraints, not to show the
correspondence between given extensions:

Theorem 9.11. Let BF = (A,R, S) be a BAF specialized for necessary support and
dn − FBF = (A′, R′) its associated defender AF obtained through Translation 58. If
E ⊆ A′ is admissible in dn− FBF , then E ∩ A is inverse closed under support in BF .

Unfortunately, for the general BAFs, it appears that little more can proved. We can
observe that the presented construction is very similar to the ones we have seen before
already for SETAFs, AFRAs and EAFs. Thus, it is natural to ask why would this, rather
standard, defender translation suddenly misbehave for BAFs. The reason for it is support
in general and support cycles in particular:

Example 111. Let BF1 = ({a, b, c}, {(b, c)}, {(a, b), (b, a)}) be a BAF. Its associated
defender AF is FBF1 = ({a, b, c, (a, b), (b, a)}, {(b, c), ((a, b), b), ((b, a), a), (a, (a, b)),
(b, (b, a))}). We can observe that {c} is not a d–admissible extension of BF1 w.r.t. sec-
ondary and extended attacks. For example, it cannot defend itself against the direct attack
from b. However, {c, (a, b), (b, a)} is an admissible extension of our AF. It is also preferred
and stable in FBF1 , while {c} is neither of these things in BF1.

This issue has been caused by the fact that arguments representing supports, being the
attackers of a and b, could have been accepted despite the fact that neither b nor a are
attacked. In this case, it can be addressed by turning (a, b) and (b, a) into self–attackers,
as was e.g. done in Translations 54 and 55. However, this is not a long term strategy, as
the next frameworks will show.

24Please note that it would be somehow more natural to use “b does not support a” statements rather than
“b supports a” in this translation. Nevertheless, we keep the original sound of the transformation.
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Let BF2 = ({a, b, c}, {(b, c), (c, a)}, {(a, b), (b, a)}) be a modification of BF1. The
secondary attacks in this framework are (c, b) and repeated (c, a), while (a, c) and re-
peated (b, c) are extended. Therefore, {c} is a d–admissible in BF2 w.r.t. the secondary
and extended attacks. The associated defender AF is FBF2 = ({a, b, c, (a, b), (b, a)},
{(b, c), (b, a), ((a, b), b), ((b, a), a), (a, (a, b)), (b, (b, a))}). We can observe that e.g.
{c, (b, a), (a, b)} is correctly recognized as an admissible extension. If (a, b) was turned
into a self–attacker, c would not be defended against b and would not appear in any admis-
sible set of FBF2 .

Let BF3 = ({a, b, c}, {(a, b), (c, a)}, {(b, c)}) be a BAF. There are no extended at-
tacks in this framework, only the secondary one (a, c). We can observe that thanks to
this, {a} is an admissible extension of any type of BF1 w.r.t. the secondary and ex-
tended conflicts. If the associated defender AF was created using the aforementioned
self–attack technique, the resulting framework would be FBF3 = ({a, b, c, (b, c)}, {(a, b),
(c, a), (b, (b, c)), ((b, c), c), ((b, c), (b, c))}). This means that the only argument attacking c
cannot be accepted and no set containing a will be an admissible extension of FBF3 . Only
by removing the self–attack restriction we are able to obtain the extension {a, (b, c)} and
retrieve the desired answer.

The above example shows that in order to use the defender translation we either need
to limit ourselves to BAFs that do not have support cycles, or use the self–attacker method
and mix it with attack propagation (similarly as in Translation 54), or make a distinction
between the treatment of links participating in support cycles, those that do not, and how
indirect attacks fit into all of this. Already in BAFs, with their indiscriminating approach
towards support cycles, we can observe that a defender translation capable of working with
all types of frameworks would not be structural.

Nevertheless, our contribution to the existing results is minor and further analysis is
left for future work. We also choose not to include this approach in our system and refer
the reader to Section 10.2.2 to see how necessary support in AFNs can be translated into
AFs using the defender approach.

Theorem 9.12. Let BF = (A,R, S) be a BAF specialized for necessary support, R′ =
{Rsec, Rext} the collection of secondary and extended attacks in BF and dn − FBF =
(A′, R′′) the defender AF associated with BF obtained through Translation 58. If E ⊆ A
is an i–admissible extension ofBF w.r.t. (R′, R′), then there exists an admissible extension
E ′ ⊆ A′ s.t. E ′ ∩ A = E . If E ′ ⊆ A′ is an admissible extension of df − FBF , then
E = E ′ ∩ A might not be an i–admissible extension of BF w.r.t. (R′, R′).

9.2 BAF as AFN
Although in the previous sections we could have observed how BAFs handle e.g. deductive
and necessary support, it is interesting to ask how the extensions of a given specialized
BAF are in relation to the actual framework built for the relevant relation. In this section we
will discuss the similarities and differences between necessary support BAFs and AFNs.
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One important thing we need to state is the fact that the ways support cycles are handled
in both frameworks are completely different:

Example 112. Let BF = ({a, b, c}, {(b, c)}, {(a, b), (b, a)}) be a BAF. We specialize it
for necessary support, i.e. use secondary attacks. In this case, there are no such indirect
conflicts. The only two i–admissible extensions of this framework are ∅ and {a, b}. They
are also c– and s–admissible. The d–admissible sets are ∅, {a}, {b} and {a, b}. The pre-
ferred extension (of any type), stable and d–grounded extension is {a, b}. Please observe
that the answer would have been the same if we used both secondary and extended attacks;
in this case, (a, c) and repeated (b, c) would be the indirect conflicts.

Let FN = ({a, b, c}, {(b, c)}, {({a}, b), ({b}, a)}) be an AFN of the same structure.
We can observe that neither b nor a possess a powerful sequence in FN . Consequently,
∅ and {c} are the only admissible extensions of FN , with {c} being the sole complete,
preferred, grounded and stable extension. This is not in correspondence with any of the
extensions produced by BF .

Please note it does not mean we criticize any of the approaches. Arguments both for
and against any type of handling of support cycles can be found. However, as a conse-
quence, we need to assume a certain “common ground” to build a translation between
BAFs and AFNs. Thus, in what follows, we will focus on such support acyclic BAFs.

Translation 59. Let BF = (A,R, S) be a support acyclic BAF. The associated AFN is
FNBF = (A,R,N), where N = {({a}, b) | (a, b) ∈ S}.

The produced AFNs exhibit a number of desirable properties. Clearly, it will be both
binary and support acyclic itself. Therefore, it satisfies various normal forms (see Theorem
4.71):

Theorem 9.13. Let BF = (A,R, S) be a support acyclic BAF and FNBF = (A,R,N)
be its associated AFN obtained through Translation 59. Then FNBF is support binary
and acyclic. It is also in minimal, weakly, relation and strongly valid forms.

Please note that the produced AFN might not necessarily be consistent. Due to the
fact that the AFN semantics are built around the notion of coherence, which, among other
things, requires the presence of supporters of a given argument in an extension, it is the
i–family of semantics we will use in our analysis. However, our choice is to parametrize
the semantics only with secondary attacks, not both secondary and extended ones. The
extended conflicts did not explicitly appear in the newer versions of AFNs. Moreover, as
observed in the definition of AFN semantics, the defense of an argument relies on attacking
every coherent set of a given attacker. This corresponds much more to the interpretation
of the secondary attack rather than extended. Our results are thus the following:

Theorem 9.14. Let BF = (A,R, S) be a support acyclic BAF, R′ = {Rsec} the collec-
tion of secondary attacks in BF and FNBF = (A,R,N) the AFN associated with BF
obtained through Translation 59. Then, a set E ⊆ A is:
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• +conflict–free w.r.t. ∅ in BF iff it is conflict–free in FNBF .

• inverse closed under S in BF iff it is coherent in FNBF .

• +conflict–free w.r.t. R′ and inverse closed under S in BF iff it is strongly coherent
in FNBF .

• an i–admissible extension of BF w.r.t. (R′, R′) iff it is admissible in FNBF .

• an i–preferred extension of BF w.r.t. (R′, R′) iff it is preferred in FNBF .

• a d–complete extension of BF w.r.t. (R′, R′) iff it is complete in FNBF .

• a d–grounded extension of BF w.r.t. R′ iff it is grounded in FNBF .

• a stable extension of BF w.r.t. R′ iff it is stable in FNBF .

We can now put the translation into our classification system. Although our AFNs may
not necessarily be well–structured, they are elementary, though the depth of the support
depends on the depth of the support in the source BAFs. Therefore, we will leave the depth
unspecified.
Redefinition of Translation 59: Let SAcyBAF be the collection of all support acyclic
BAFs and SEleAFN the collection of elementary AFNs, both on domain U . The translation
TrBAFAFN : SAcyBAF → SEleAFN is defined as TrBAFAFN((A,R, S)) = (A,R,N) for a
framework (A,R, S) ∈ SAcyBAF , where N = {({a}, b) | (a, b) ∈ S}.
Redefinition of Theorem 9.14: Let σBAF ∈ {inverse closed, +conflict–free and inverse
closed, i–admissible, i–preferred, d–complete, d–grounded, stable} be a BAF semantics
with identical parametrization consisting of secondary attacks and let σAFN ∈ {coherent,
strongly coherent, admissible, preferred, complete, grounded, stable} be a similar AFN
semantics. Let SC Tr

σ be the identity casting functions for σ. The translation TrBAFAFN is
strong and semantics bijective under (σ, SC Tr

σ ).
The translation is quite straightforward and its properties can be easily shown. Thus,

we will omit further explanations.
Analysis of Translation 59: Under the (inverse closed) coherent, (+conflict–free and
inverse closed) strongly coherent, (i–) admissible, (i–) preferred, (d–) complete, (d–)
grounded and stable semantics with identical parametrization consisting of secondary at-
tacks and identity casting functions, the translation TrBAFAFN is:

• source–subclass, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• structural and modular

Translation TrBAFAFN is classified as basic under the listed semantics and casting functions.
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9.3 BAF as EAS
Although at first it was proposed that in order to handle evidential support, additional
notions need to be introduced in BAFs [30], the results in [78] showed that this form of
support is not far from necessary. Thus, the translation from BAFs to EASs will also be
for semantics parametrized with secondary attack. Although the BAF–AFN translation has
already dealt with these semantics in a very satisfactory manner, the BAF–EAS approach
can be useful in highlighting the structural differences between the support in AFNs and
EASs.

In BAFs, every argument is valid, i.e. its capability to carry out an attack does not de-
pend on the fact whether the support it receives is acyclic or not. In EASs, it is not the case.
Thus, just like in the previous section, we will need to assume that we are working with
frameworks that have acyclic support graphs. However, while AFNs handled BAFs rather
straightforwardly, EASs need to make some modifications. The validity of arguments re-
quires not just the ability to derive them in an acyclic manner, but also tracing back to
evidence argument (see [78] and Section 2.2.3). Therefore, suitable support relations need
to be added to the framework. Finally, we can observe that in BAFs, it suffices to attack
a single supporter of an argument in order to secondary attack the argument itself. This
pairs well with the inverse closure, where accepting an argument means accepting every
of its supporters. As a result, BAFs corresponded to binary AFNs. However, the support
relation in EASs is structurally a bit different. If we were to create binary EASs, then ac-
cepting any of the supporters would be sufficient to derive an argument. What we need is
in fact singular EASs, where the whole supporting set needs to be present in an extension.
This brings us to the following translation:

Translation 60. Let BF = (A,R, S) be a support acyclic BAF. The associated EAS is
ESBF = (A ∪ {η}, R′, E), where R′ = {({a}, b) | (a, b) ∈ R} and E = {({η}, a) | a ∈
A,@c ∈ A s.t. cSb} ∪ {(Sa, a) | Sa is the collection of all arguments b ∈ A s.t. bSa}.

Theorem 9.15. Let BF = (A,R, S) be a support acyclic BAF and let ESBF = (A ∪
{η}, R′, E) be its associated EAS obtained through Translation 60. ESBF is attack binary,
support singular and all–supported. It is in minimal, weakly, relation and strongly valid
forms.

Please note that the produced EASs need not be consistent. We will use the same
semantics in our analysis as in the BAF–AFN case. However, now, due to the addition of
η to the framework, the relation between BAF and EAS extensions becomes one–to–one
only when we reach complete semantics (see e.g. Section 6.4):

Theorem 9.16. Let BF = (A,R, S) be a support acyclic BAF, ESBF = (A∪{η}, R′, N)
the EAS associated with BF obtained through Translation 60 and R′′ = {Rsec} the col-
lection of secondary attacks in BF . Then, a set X ⊆ A is:

• +conflict–free w.r.t. ∅ in BF if it is conflict–free in ESBF .
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• inverse closed under S in BF if X ∪ {η} is self–supporting in ESBF .

• +conflict–free w.r.t. R′′ and inverse closed under S in BF if X ∪ {η} is strongly
self–supporting in ESBF .

• an i–admissible extension of BF w.r.t. (R′′, R′′) if X ∪ {η} is admissible in ESBF .

• an i–preferred extension of BF w.r.t. (R′′, R′′) iff X ∪ {η} is preferred in ESBF .

• a d–complete extension of BF w.r.t. (R′′, R′′) iff X ∪ {η} is complete in ESBF .

• a d–grounded extension of BF w.r.t. R′′ iff X ∪ {η} is grounded in ESBF .

• a stable extension of BF w.r.t. R′′ iff X ∪ {η} is stable in ESBF .

Additionally, a set X ′ ⊆ A ∪ {η} is:

• conflict–free in ESBF if X ′ ∩ A is +conflict–free w.r.t. ∅ in BF .

• self–supporting in ESBF if X ′ ∩ A is inverse closed under S in BF .

• strongly self–supporting in ESBF if X ′ ∩ A is +conflict–free w.r.t. R′′ and inverse
closed under S in BF .

• admissible in ESBF if X ′ ∩ A is an i–admissible extension of BF w.r.t. (R′′, R′′).

We can now put the translation into our classification system:
Redefinition of Translation 60: Let SAcyBAF be the collection of all support acyclic
BAFs on domain U and ABinEAS ∩ SSigEAS ∩ SV EAS the collection of all support sin-
gular, attack binary and strongly valid EASs on domain U ∪{η}. The translation TrBAFEAS :
SAcyBAF → (ABinEAS ∩ SSigEAS ∩ SV EAS) is defined as TrBAFEAS ((A,R, S)) = (A ∪
{η}, R′, E) for a framework (A,R, S) ∈ SAcyBAF , where R′ = {({a}, b) | (a, b) ∈ R}
and E = {({η}, a) | a ∈ A, @c ∈ A s.t. cSb} ∪ {(Sa, a) | Sa is the collection of all
arguments b ∈ A s.t. bSa}.
Redefinition of Theorem 9.16: Let σBAF ∈ {+conflict–free, inverse closed, +conflict–
free and inverse closed, i–admissible, i–preferred, d–complete, d–grounded, stable} be
a BAF semantics with identical parametrization consisting of secondary attacks and let
σEAS ∈ {conflict–free, self–supporting, strongly self–supporting, admissible, preferred,
complete, grounded, stable} be a similar EAS semantics. Let SC Tr

σ be the removal casting
functions for σ defined as SCX

σ (Y ) = Y ∩ A for X = (A,R, S) ∈ SAcyBAF and Y ∈
σEAS(TrBAFEAS (X)). The translation TrBAFEAS is strong under (σ, SC Tr

σ ). It is semantics
bijective under the (d–) complete, (i–) preferred, (d–) grounded and stable semantics and
the defined casting functions.

The properties of Translation 60 are significantly different from Translation 59. Most
notable is the difference in strengths and loss of modularity:
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Analysis of Translation 60: Under the (+) conflict–free, (inverse closed) self–supporting,
(+conflict–free and inverse closed) strongly self–supporting, (i–) admissible, (i–) pre-
ferred, (d–) complete, (d–) grounded and stable semantics with identical parametrization
consisting of secondary attacks and removal casting functions, the translation TrBAFEAS is:

• source–subclass, target–subclass and injective

• weakly argument domain altering, argument introducing, induced support introduc-
ing

• generic and weakly semantics domain altering

• semi–structural

Translation TrBAFEAS is not modular. It is faithful under the (d–) complete, (i–) preferred,
(d–) grounded and stable semantics and the defined casting functions. Translation TrBAFEAS

is classified as basic under the listed semantics and casting functions.

Explanation. Since we only consider support acyclic BAFs and all of the produced EASs
are attack binary and support singular, our translation is both source and target–subclass.
It is easy to show it is also injective. The domain is weakly altered due to the addition of
evidence which we assume not to be the part of the domain of BAF arguments. Due to this
auxiliary arguments and the support relations it brings it, our approach is argument and
induced support introducing. The translation handles sufficiently many semantics to be
classified as generic. The presence of η in the extensions also makes it weakly semantics
domain altering. We choose to classify this method as semi–structural based on the reasons
why evidence and the related supports need to be introduced.

Let us consider two simple BAFs BF1 = ({a}, ∅, ∅) and BF2 = ({a, b}, ∅, {(b, a)}).
Their corresponding EASs are ES1 = ({a, η}, ∅, {({η}, a)}) and ES2 =
({a, b, η}, ∅, {({η}, b), ({b}, a)}) respectively. We can observe that the EAS associated
with BF1 ∪ BF2 is simply ES2. However, ES2 differs from ES1 ∪ ES2 by the ({η}, a)
support link. Thus, our translation is not modular. �

Example 113. Let us consider a simple BAF BF = ({a, b, c, d, e}, {(a, b), (b, c), (c, d),
(e, a)}, {(a, c), (d, e)}), previously analyzed in Example 108 and now depicted in Figure
92a. The secondary attacks in this framework are Rsec = {(e, c), (c, e)}. The +conflict–
free sets of BF w.r.t. ∅ are ∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d}, {b, d}, {b, e}, {c, e},
{d, e} and {b, d, e}. With the exception of {c, e}, they are also +conflict–free w.r.t. sec-
ondary attacks. The sets ∅, {a}, {b}, {d}, {a, c}, {d, e} and their combinations are inverse
closed. The d–admissible extension of BF are ∅, {e}, {a, c}, {b, e}, {d, e}, {b, d, e}.
From this, ∅, {a, c}, {d, e} and {b, d, e} are i–admissible, with {a, c} and {b, d, e} being
i–preferred. We can observe that ∅, {a, c} and {b, d, e} do not defend any argument w.r.t.
the direct and secondary attacks and are therefore our d–complete extensions. Concerning
the remaining d–admissible sets, {e} defends b and d {b, e} defends d and {d, e} defends
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(a) Sample BAF with secondary attacks

η a b c d e

(b) Associated EAS

Figure 92: Sample BAF and its associated EAS

b. The d–grounded extension of BF is ∅; we can observe that every argument is, directly
or secondary, attacked in BF . Finally, both {a, c} and {b, d, e} are stable in BF .

The EAS associated with our BF is ESBF = ({η, a, b, c, d, e}, {({a}, b), ({b}, c),
({c}, d), ({e}, a)}, {({η}, a), ({η}, b), ({η}, d), ({a}, c), ({d}, e)}), as visible in Figure
92b. Every argument possesses an evidential sequence; arguments a, b and d have trivial
sequences (η, a), (η, b) and (η, d), while e and c possess (η, a, c) and (η, d, e). There-
fore, the sets ∅, {η}, {η, a}, {η, b}, {η, d}, {η, a, c}, {η, d, e} and their combinations are
self–supporting. Thus, if we remove η, we can observe that the inverse closed sets of BF
are retrieved. The conflict–free sets of ES are ∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d},
{b, d}, {b, e}, {c, e}, {d, e}, {b, d, e}, {η}, {η, a}, {η, b}, {η, c}, {η, d}, {η, e}, {η, a, c},
{η, a, d}, {η, b, d}, {η, b, e}, {η, c, e}, {η, d, e} and {η, b, d, e}. We can see they corre-
spond to the +conflict–free sets of BF w.r.t. ∅, not w.r.t. secondary attacks. From the
strongly self–supporting sets ∅, {η}, {η, a}, {η, b}, {η, d}, {η, a, c}, {η, a, d}, {η, b, d},
{η, d, e} and {η, b, d, e}, only ∅, {η}, {η, a, c}, {η, d, e} and {η, b, d, e} are admissible.
This is in correspondence with the i–admissible sets of BF ; we can observe that ∅ can be
produced both from ∅ and {η}. The complete extension of ESBF are {η}, {η, a, c} and
{η, b, d, e}. Thus, again we retrieve all and only d–complete extensions of BF . However,
this time the relation is one–to–one. The preferred and stable extensions {η, a, c} and
{η, b, d, e} are in agreement with the i–preferred and stable extensions of BF . Similarly,
∅ is correctly retrieved from {η} as the grounded extension.
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9.4 BAF as ADF
The nature of support in ADFs is not as cleanly defined as in other frameworks. Thus,
in this section we will try to highlight some similarities and differences between the BAF
and ADF approach towards positive relations.

Let us start with the abstract support. Although it is somewhat an atypical type of
relation and its criticism was in a great deal a reason for developing other types of support
and their corresponding frameworks, we believe it still has a lot of potential. In particular,
one can consider abstract support as a source of a certain weak preference, and permit the
preferences of arguments in an extension to define the ordering of the produced answers.
One can think of a situation with two mutually attacking arguments a and b, depicting a
situation such as “Let us go dine out this evening” and “Let us stay in for the evening”.
We obtain three admissible extensions {a}, {b} and ∅. Including an argument c that would
express that we are in favor of a (e.g. “My cousin started working at a restaurant, we can
get a discount if we go there.”) would make us rather choose {a} (or {c, a}) over {b}.
Nevertheless, a can still be accepted on its own, i.e. the fact that one does not have helpful
cousins working at restaurants does not mean one cannot dine out at all. Up to some
extent, defense attack behaves similarly as the preference through support. However, in
our case, the existence of c does not make {b} unacceptable, just {a, c} more preferred to
it. Thus, we should not introduce a supported attack from c to b, unless it is accompanied
by a mediated one from b to c. At the same time being in favor of some argument does
not imply that we will always accept it. Including a new attacker of a, say d (e.g. “My
nice clothes are in the laundry”), would make a disappear from any admissible extension.
On the other hand, the {c, b, d} set can still be accepted as a reasonable extension (e.g.
“Going out would be nice because we could get a discount, but I have nothing to wear, so
lets stay home.”). This interpretation is very similar to defense attacks in EAFs. In this
case the e.g. mediated attack from d to c is too powerful. Similar examples can be drawn
for secondary attack, where cutting off some support weakens an argument rather than
excludes it from extensions. This is a type of reasoning that is in many ways closer to value
and preference based argumentation or ranking based semantics [1], hence the frameworks
and approaches we are discussing now are not exactly adequate for it. However, the point
was to show that a positive relation between arguments does not necessarily imply a strong
dependency between them, i.e. that acceptance of one argument would lead to accepting
another, and that the abstract support can still be a base for further research.

Nevertheless, the acceptance conditions in ADFs speak in terms of what should be
present or not in order to be able to assume an argument, which is conceptually quite the
opposite from the idea of abstract support. Moreover, the semantics are parametrized w.r.t.
support cycles, not w.r.t. different types of conflicts. Consequently, without going some-
what against the design of ADFs and introducing a wide number of additional notions, the
abstract support cannot be grasped in the same way it is in BAFs. Therefore, in this section
we will not provide any translations. However, we will explain how the indirect attacks
look like in ADFs and why not all of them appear in this setting.
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In a certain sense, out of abstract, necessary and deductive supports, the positive rela-
tions in ADFs are perhaps the closest to the necessary ones. However, unlike in AFNs, one
can permit support cycles to appear in ADF semantics, which might lift some of the lim-
itations we had to consider in Section 9.2. The way ADFs grasp secondary attack can be
best observed when we look at evaluations, where the pd–set or sequence contains “sup-
porters”, and the blocking set stores their “attackers”. However, since ADFs can express
more than just binary relations, its behavior in a more complex setting changes. Let us as-
sume a simple ADF ({a, b, c}, {Ca = b, Cb = ¬c, Cc = >}), where a is (necessarily and
“binary”) supported by b and b is attacked by c. Accepting c outs b, and by a chain reaction
also a. Therefore a and c will never appear together in a conflict–free extension. However,
please note that this state of affairs is not exactly permanent. We can introduce another
argument d, not connected to c in any way, that can change this situation. For example,
we can look at the framework ({a, b, c, d}, {Ca = b ∨ d, Cb = ¬c, Cc = >, Cd = >}).
Although b is out of the question, a can still be derived through d and even though {a, c} is
not admissible, {a, c, d} is. Another option is to use the so–called “overpowering support”
in ADFs, which was more explained in Section 8.6. We can consider another modification
of our base framework ({a, b, c, d}, {Ca = b, Cb = ¬c ∨ d, Cc = >, Cd = >}). The
presence of d can override the conflict from c, and in this case {a, b, c, d} is admissible.
The point is, that one indirect conflict in BAFs is enough to “kill” an argument, and in
ADFs it is not, even if we permit every argument to have only a single supporter.

The supported attack is not used in ADFs due to its counterintuitive behavior in a
variety of examples. Although it is useful in modeling deductive support, in our case
supporting an attacker does not have the same power as attacking a supporter. It is a
threat, yes, and taking it into account can be motivated. However, just like assuming an
indirect defender (i.e. defender of a defender) is not enough for admissibility, for now
we have decided that unless the threat can be executed by accepting the actual attacker,
it is to be treated as empty and disregarded. It is particularly important due to the fact
that if the supported argument is e.g. a self–attacker, it can never appear in an extension,
even if its supporter does. Moreover, we believe that supported attack has certain hidden
assumptions and can lead to counterintuitive modeling in certain problems.

First of all, on many occasions, arguments leading to contradictory conclusions can
share certain requirements. This is thus what we believe to be the first assumption of sec-
ondary attack, that conflicting arguments do not have any supporters in common. A fever
can be a symptom of various things and hint at different diagnoses; creating a supported
attack from the symptom to any diagnosis just because the diagnoses themselves can be
in conflict would be highly undesirable. In addition, in order to discuss a nature of some-
thing, we first have to assume it exists. Take for example b: the chair in the room is blue
vs r: the chair in the room is red, assuming that c: there is a chair in the room. Adding
a conflict from c to any of b, r does not seem rational. Some examples can also be found
in nonmonotonic logic, where adding new information can lead to a conclusion contra-
dicting the old one, but it does not necessarily mean that what was used to derive it in the
first place is now in conflict with it. Overall, the “enemy of my friend is my enemy” is
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not always an adequate approach. We believe it is another question for further research on
relations between arguments, perhaps there might be some conditions that would ensure
this “negative transitivity”.

Let us look at a different scenario and assume we are thinking about a holiday break.
A travel agency gave us a few brochures on hotels A and B and we are reading through
them right now. We will of course choose only one, so choosing A is in conflict with
choosing B and vice versa. Now, among other requirements, we are sure we want our
hotel to be quiet. We are reading the brochure on A and we find out that it satisfies
our needs and thus we add a support from our condition to choosing A. This creates a
supported attack from the requirement to choosing B. Should we look and the framework
with the auxiliary attacks included, we would notice that our modeling implies that B is
not a quiet hotel. This is of course not something we know, as we are yet to go through
the brochure on the hotel. Consequently, we can see the supported attack as preemptive
and hinting that we have already read the brochure and verified that the hotel is indeed
not quiet. Although in defeasible reasoning we are supposed to be prepared to deal with
incomplete information, there is a difference between working with what we know and
being aware of incomplete knowledge, and filling in some missing information without
prior verification and proceeding as if the data was complete. This brings us to the other
assumption of secondary attack, namely that we have all the knowledge we need at hand;
otherwise, the modeling is simply inaccurate. However, please note that given the current
information, going with the A hotel would be a better option – we know it is quiet and this
is more than we know about B. Thus for now, it is more preferred. However, this type
of attitude can be modeled with a variety of different approaches, such as preferences or
evidential support, without the drawback of supported attack. Finally, we can argue that
more than one argument might be required to carry out a supported attack. However, we
believe this issue to be a structural one and dependent on how the actual support relation is
interpreted, i.e. whether all or any supporting arguments need be present for an argument
to be accepted. Thus, this is not an issue really relevant for the current analysis.

Although necessary support can be modeled within ADFs (see Section 10.6), the de-
ductive support is not directly handled. The mediated attack follows the idea that attack is
stronger than support, which in some situations is not the best assumption (see Example
114) and it is something we have tried to avoid in ADFs up to a certain extent. However,
the only way to really address this issue would be to introduce strengths in the framework
and define the success of an attack based on them, the way it is done e.g. in preference–
based frameworks or structured argumentation [2,66,67]. Consequently, this is a problem
on a different scale, and the purpose of this discussion is only to warn the reader that
even though support frameworks are getting closer and closer to structured argumentation
frameworks, modeling a problem directly still has certain traps.

Example 114. Let us consider the following case. There was a robbery and John is a
suspect. He claims he is innocent, as he was at a football match at that time and couldn’t
have done it (argument i). However, there is a witness claiming John is guilty of the crime
(argument w). Later, it turns out that the football match was filmed and the recordings
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show without a doubt that John was indeed there (argument r). We can create the following
framework BF = ({i, w, r}, {(w, i)}, {(r, w)}) describing this situation. In our case, if
we accept the recording, then we need to accept the fact that John was watching the match
and that he is indeed innocent. Thus, the support relation between r and i can be viewed as
deductive. Since w contradicts i, we need to create a mediated attack from w to r, which
is counterintuitive. Unless new facts come into play, the recording is more trustworthy
than a witness testimony in this case. An attack from r to w would be much more natural,
and even if it were added at this point, the symmetry of the conflict would still make w
acceptable, which should not be the case.

i wr

Figure 93: Sample BAF

9.5 BAF as Other Frameworks
In this section we have analyzed BAFs in context of AFs, AFNs, EASs and up to some
extent, ADFs. We have limited ourselves to studying particular subsets of indirect attacks,
related to deductive and necessary support, and enforced identical parametrization of the
semantics. Moreover, as we have observed, not every type of semantics is defined for
BAFs. For these reasons, we have not taken into account other frameworks in our analysis.
In particular, we have not considered any approaches from BAFs to SETAFs due to the
fact that the relations we have considered so far were binary. Consequently, the presented
results should be more treated as a follow–up on the analysis carried out in [30, 31] and
we hope further analysis can be carried out once the BAF semantics become more clear.

9.6 Summary
The summary of our results can be seen in Table 12. For the parametrization of a given
semantics we refer the reader to the relevant section. We can observe that out of all of
the proposed translations, the attack propagation approach to AFs and the transformation
for necessary support to AFNs seem to be the most interesting ones in the context of
the amount of handled semantics. Although the first one is definitely more general then
the other due to more freedom in parametrization, the BAF–AFN translation is the only
modular and structural approach we have found.
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Table 12: Translations from BAFs to other frameworks

Properties AF AFN EAS
Translation 53 54 55 57 59 60

Strength

+cf exact exact strong
+cf, cl strong

+cf, inv cl exact strong
d–adm exact
d–comp exact strong exact faithful
d–pref exact
d–grd exact strong exact faithful

stb exact strong exact faithful
i–adm exact exact strong
i–pref exact exact faithful
c–adm exact strong
c–pref exact strong

full full full full source–subclass source–subclass
Functional surjective target–subclass target–subclass target–subclass target–subclass target–subclass

overlapping overlapping overlapping overlapping injective injective

argument domain
preserving

argument domain
altering

argument domain
altering

argument domain
altering

argument domain
preserving

weakly argument
domain altering

Syntactical attack
introducing

argument
introducing

argument
introducing

argument
introducing

structure
preserving

argument
introducing

support
removing

attack
introducing

attack
introducing

attack introduc-
ing(attack
removing)

induced support
introducing

support introduc-
ing(support
removing)

generic specialized specialized generic generic generic

Semantical
semantics
domain

preserving

semantics
domain

preserving

semantics
domain

preserving

semantics
domain altering

semantics
domain

preserving

weakly
semantics

domain altering

Computational semi–structural semi–structural semi–structural semi–structural structural structural
modular
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10 Translating AFNs
In this section we will show various ways we can translate AFNs to AFs, SETAFs, BAFs,
EASs and ADFs. Moreover, even though we do not create an AFN–EAF translation, we
provide a comparison between the necessary supports and defense attacks. The translation
to the Dung’s framework will follow the standard coalition pattern. However, as we will
show, for some semantics it appears to be possible to create an exact approach, though
at this point we are not sure of the precise nature of such a translation. For the SETAF
transformations, we will present attack propagation and defender approaches. As we might
recall, an AFN argument can possess a number of powerful sequences and supporting sets.
Hence, for the defender approach, we use group attack to simulate group support. For the
other method, we can observe that in order to reject an argument, we need a way to attack
all of its powerful sequences. Since it is not necessarily the case that they share a single
attacker, we use group attack to gather the required attackers.

The translation from AFNs to BAFs that we will present is a limited, source–subclass
approach which is meant as a comment on the results from [30] and highlights the fact that
the necessary approach the way it is seen in BAFs is distinct from the way it is defined
in AFNs. The EAS transformation is, on the other hand, capable of handling any type of
an AFN. The method is quite straightforward and we can observe that the most significant
difference between the necessary and evidential supports concerns more their structure
rather than semantics. Finally, bearing in mind the consistency issues raised in Section
2.3.9, we present in total three approaches for shifting AFNs to ADFs, one in which the
framework is assumed to be strongly consistent and two in which it is made consistent by
using the bypass and self–attacker normal forms.

10.1 AFN as AF
The AFN–AF coalition–style translation has been introduced in [69]. The AF arguments
now represent sets of AFN arguments that meet support requirements, i.e. are coher-
ent. Consequently, we can observe that arguments not possessing powerful sequences will
not be represented in the target framework. Nevertheless, with the exception of conflict–
freeness, the semantics are preserved by the translation.

Translation 61. Let FN = (A,R,N) be an AFN. Its corresponding AF F FN = (A′, R′)
is built as follows:

• for every argument a ∈ A, add C ⊆ A to A′, where C is a minimal coherent set
containing a, and

• for any C1, C2 ∈ A′, C1R
′C2 iff ∃x ∈ C1, y ∈ C2 s.t. xRy.

The existing results (Theorem 10.1) are somewhat limited; only the more advanced
semantics are considered and it is not analyzed whether the relation between the source and
target extensions is bijective. Therefore, we choose to complement this analysis with the
study of conflict–free, strongly coherent and admissible extensions. Please note that due to
the nature of the AF arguments, we do not need to focus on the coherent semantics itself.
We can observe that the relation between the admissible extensions of both framework
is not one–to–one (see Example 115). However, it becomes such when we consider the
complete semantics.
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Theorem 10.1. Let FN = (A,R,N) be an AFN and F FN = (A′, R′) its correspond-
ing AF obtained through Translation 61. A set E ⊆ A is a σ–extension, where σ ∈
{grounded, complete, preferred, stable} of FN iff F admits a set Y = {C1, ..., Cn} ⊆
A′ s.t. E =

⋃n
i=1Ci is a σ–extension.

Theorem 10.2. Let FN = (A,R,N) be an AFN and F FN = (A′, R′) its corresponding
AF built from Translation 61. If E ′ ⊆ A′ is conflict–free in F FN , then

⋃
E ′ is conflict–free

in FN , but not vice versa. A set E ⊆ A is a strongly coherent extension of FN iff F FN

admits a set E ′ = {C1, ..., Cn} ⊆ A′ s.t. E =
⋃n
i=1Ci as a conflict–free extension. A set

E ⊆ A is an admissible extension of FN iff F FN admits a set E ′ = {C1, ..., Cn} ⊆ A′

s.t. E =
⋃n
i=1Ci as an admissible extension. For every complete extension of FN there

exists exactly one corresponding complete extension of F FN .

We can also notice that in order to retrieve the conflict–free extensions of a given AFN,
we only need to take into account the conflict subframework:

Translation 62. Let FN = (A,R,N) be an AFN. Its conflict–corresponding AF is
F FN
cf = (A,R).

Theorem 10.3. Let FN = (A,R,N) be an AFN and F FN = (A,R) its conflict–
corresponding AF obtained through Translation 62. A set E ⊆ A is a conflict–free ex-
tension of FN iff it is a conflict–free extension of the AF F FN .

The fact that E ⊆ A is a conflict–free extension of FN iff it is a conflict–free exten-
sion of (A,R) follows easily from the definition of this semantics in AFNs. We can now
summarize the results:
Redefinition of Translation 61: Let FrAFN be the collection of all AFNs on the domain
U and FrAF the collection of all AFs on argument domain 2U . The translation TrAFNAF :
FrAFN → FrAF TrAFNAF ((A,R,N)) = (A′, R′), where A′ = {C | C ⊆ A is a minimal
coherent set for an argument a ∈ A} and R′ = {(C1, C2) | C1, C2 ∈ A′, ∃x ∈ C1, y ∈ C2

s.t. xRy} for a framework (A,R,N) ∈ FrAFN .
Redefinition of Theorems 10.1 and 10.2: Let σAFN ∈ {strongly coherent, admissible,
complete, preferred, grounded, stable} be an AFN semantics and σAF ∈ {conflict–free,
admissible, complete, preferred, grounded, stable} a similar AF semantics. Let SC Tr

σ be
the union casting functions for σ. The translation TrAFNAF is strong under (σ, SC Tr

σ ). It
is semantics bijective under complete, preferred, grounded and stable semantics and the
defined casting functions.
Analysis of Translation 61: Under the (conflict–free) strongly coherent, admissible,
complete, preferred, grounded and stable semantics and union casting functions, the trans-
lation TrAFNAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, (possibly in-
duced) attack removing, support relation removing, possibly attack and support re-
lation introducing
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• generic and semantics domain altering

• semantical

The translation is not modular. The translation TrAFNAF is classified as coalition style under
the listed semantics and casting functions.

Explanation. Any AFN can undergo the translation; thus, our approach is full. It is
however target–subclass only due to the domain change. For example, a framework
({{a}, {a, b}, {c}}, {({c}, {a})}) cannot be produced by our translation; if {c} attacks
{a}, then by construction it also has to attack {a, b}. However, if we ignored the do-
main completely and focused on e.g. attack paths, any type of AF would be produced.
This follows simply from the fact that chaining the AF–AFN and AFN–AF translations,
the difference between the initial and resulting framework would only affect the argu-
ment domain, but not structure as such. For example, an AF ({a, b, c}, {(a, b), (b, c)})
would become ({{a}, {b}, {c}}, {({a}, {b}), ({b}, {c})}). Finally, our translation is also
overlapping due to the removal of arguments that do not possess coherent sets – a frame-
work such as ({{a}}, ∅) can be obtained from a number of AFNs, such as ({a}, ∅, ∅) and
({a, b}, ∅, {({b}, b)}).

Clearly, both argument and semantics domain are affected by our approach. Due to the
amount of semantics handled in a strong manner, we choose to classify it as generic. The
translation is also argument removing, as visible in the previous explanation. However,
it can also be seen as argument introducing, as a given source argument can be repre-
sented by a number of target ones – it merely depends on the number of minimal coherent
sets it possesses and on the elements it supports. Removing arguments leads to remov-
ing the relations between. However, this removal is definitely more than just induced in
the case of support, as even a valid supporter of an argument might not necessarily ap-
pear in a coherent set with it. Consider a framework ({a, b, c}, ∅, {({a, c}, b), ({a, b}, c)}).
The minimal coherent sets for a, b and c are {a}, {a, b} and {a, c} respectively. There-
fore, the information on whether b and c are supporting each other is lost, even though
both (a, b, c) and (a, c, b) are powerful sequences for them. Finally, for reasons simi-
lar as in coalition BAF–AF Translation 57, we may consider the translation attack re-
moving (not just induced removing) and possibly relation introducing. The coalition
arguments are not precise enough and the fact that now we can assume that there are
no support cycles in them does not change this fact. We can consider the frameworks
({a, b, c}, {(b, a), (c, a)}, {({b}, c)}) and ({a, b, c}, {(b, a)}, {({b}, c)}); they will both
be translated to the same AF ({{a}, {b}, {b, c}}, {({b, c}, {a}), ({b}, {a})}) despite the
fact, even though both of them are in minimal and strongly valid forms. Thus, even
though the (b, a) attack will be retrieved, the (c, a) one might be lost or added depend-
ing on how we proceed. Similar situation in case of support occurs e.g. in frameworks
({a, b, c}, ∅, {({a}, b), ({b}, c)}) and ({a, b, c}, ∅, {({a}, b), ({b}, c), ({a}, c)}).

The translation is clearly semantical as it depends on the computation of mini-
mal coherent sets. Unfortunately, it is not modular, and for reasons similar as in
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the case of weakly valid normal form translation (Translation 7). The frameworks
FN1 = ({a, b}, ∅, {({a}, b)}) and FN2 = ({a, b}, ∅, {({b}, b)}) will be transformed into
F1 = ({{a}, {a, b}}, ∅) and F2 = ({a}, ∅) respectively. However, the AF corresponding
to FN1 ∪ FN2 is the same as F2 and thus different from F1 ∪ F2. Consequently, our
approach is not modular. �

Redefinition of Translation 62: Let FrAFN be the collection of all AFNs and FrAF

the collection of all AFs, both on argument domain U . The translation cf -TrAFNAF :
FrAFN → FrAF is defined as cf -TrAFNAF ((A,R,N)) = (A,R) for a framework
(A,R,N) ∈ FrAFN .
Redefinition of Theorems 10.3: The translation cf -TrAFNAF is strong and semantics
bijective under the conflict–free semantics and identity casting function.
Analysis of Translation 62: Under the conflict–free and identity casting functions, the
translation cf -TrAFNAF is:

• full, surjective and overlapping

• argument domain preserving, support relation removing

• specialized, semantics domain preserving and exact

• structural and modular

The translation cf -TrAFNAF is classified as basic style under the listed semantics and casting
functions.

Explanation. Due to the fact that we can work with any AFN, our translation is full. It
is also surjective – for any type of an AF (A,R) we can find an AFN producing it, for
example (A,R, ∅) (see Translation 21). In this translation, we are completely discarding
the support relation and not altering the attack relation in any way in order to account for
it. Therefore, two frameworks with same conflicts and arguments, but different supports,
will be translated into the same AF and thus the approach is overlapping. Moreover, it
is relation removing, even though the set of arguments remains unaffected. The nature
of the arguments in the source and target framework remains unchanged; also the used
casting function is an identity. Hence, we preserve both argument and semantics domains.
Furthermore, the translation is specialized and exact for conflict–free semantics only (see
Theorem 10.3). Finally, due to its simplicity, it is both structural and modular. We thus
choose to classify the translation as basic. �

Due to the presence of group support and special handling of support cycles, AFs
are not the best target for the direct attack propagation and defender translations that we
analyzed in Section 9. We will use SETAFs for that in the next section and propose to
chain our results with the SETAF–AF Translation 25.
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Figure 94: Sample AFN and its associated coalition AF

Example 115. Let us come back to the AFN FN = ({a, b, c, d, e, f}, {(a, e), (d, b),
(e, c), (f, d)}, {({b, c}, a), ({f}, f)}) from Example 16, now depicted in Figure 94a.
The minimal coherent sets for a are {a, b} and {a, c}, while for the arguments b, c,
d and e it is simply the sets containing only them. We can observe that the argu-
ment f does not possess a coherent set at all. Our coalition AF is therefore F FN =
({{a, b}, {a, c}, {b}, {c}, {d}, {e}}, {({d}, {b}), ({e}, {c}), ({f}, {d}), ({d}, {a, b}),
({e}, {b, c}), {({a, b}, {e}), {({a, c}, {e})}), as seen in Figure 94b.

The conflict–free sets of our AF are ∅, {{b}}, {{c}}, {{d}}, {{e}}, {{a, b}},
{{a, c}}, {{b}, {c}}, {{b}, {e}}, {{b}, {a, b}}, {{b}, {a, c}}, {{c}, {d}}, {{c}, {a, b}},
{{c}, {a, c}}, {{d}, {e}}, {{d}, {a, c}}, {{a, b}, {a, c}}, {{b}, {c}, {a, b}},
{{b}, {c}, {a, c}}, {{b}, {a, b}, {a, c}}, {{c}, {d}, {a, c}}, {{c}, {a, b}, {a, c}} and
finally, {{b}, {c}, {a, b}, {a, c}}. They correspond to sets ∅, {b}, {c}, {d}, {e}, {a, b},
{a, c}, {b, c}, {b, e}, {c, d}, {d, e}, {a, b, c} and {a, c, d}, which are exactly the strongly
coherent sets of FN . We can observe that in some cases, a given AFN set can be produced
from multiple AF extensions. We can observe that the set {f} is conflict–free in FN ,
but it cannot be produced from any conflict–free extension of F FN . The admissible
extensions of F FN are ∅, {{d}}, {{d}, {e}}, {{a, c}}, {{c}, {a, c}}, {{d}, {a, c}} and
{{c}, {d}, {a, c}}. They correspond to the sets ∅, {d}, {d, e}, {a, c} and {a, c, d},
which again is in agreement with the admissible extensions of FN . Out of the possible
admissible sets of our AF, {{d}}, {{d}, {e}} and {{c}, {d}, {a, c}} are complete. We
thus can retrieve all and only complete extension of FN ; we can also observe that this
time, the relation between the source and target answers is one–to–one. The first set
is grounded and the other two are preferred, which the desired result. Finally, both
{{d}, {e}} and {{c}, {d}, {a, c}} are stable in F FN . Since {d, e} and {a, c, d} are stable
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in FN , we can observe that all and only extensions of FN are retrieved.

10.1.1 Improvements

To this point, we are not aware of any full and exact translations from AFNs to AFs. More-
over, in [69] the authors claim that AFNs can express more than AFs and that it is unlikely
that an exact translation exists. However, the sample frameworks they have provided pro-
duce sets of extensions consisting only of a single set containing a single argument (with
the exception of admissible semantics, where ∅ was included). Such collections are triv-
ially realizable in AFs under the complete, preferred and stable semantics. Consequently,
the initial claim is in fact not supported. Therefore, we have decided to establish whether
it is possible to create an approach stronger than the coalition translation on our own.
Although the precise signatures of the AFN semantics are not known to us, it turns out
we can show that they do meet the sufficient requirements of some of the AF semantics
signatures.

Let us first start with the admissible semantics; it can be shown that if there is no con-
flict between the member of two admissible extensions, then their union is an admissible
extension as well. Please note that we do not claim that this result also holds for e.g.
BAFs. Their semantics are distinctively different from AFNs and as such pose a different
challenge.

Theorem 10.4. Let FN = (A,R,N) be an AFN and E ,E ′ ⊆ A two admissible exten-
sions of FN . If for every a ∈ E , b ∈ E ′ it is not the case that (a, b) ∈ R and (b, a) ∈ R,
then E ∪ E ′ is also admissible.

Although a similar property is true in various frameworks, AFNs use binary attack just
like AFs do, and thus the redefinition of the adm–closed property (see Definitions 2.175
and 2.176) can be proved:

Theorem 10.5. Let FN = (A,R,N) be an AFN. For any two admissible extensions E1

and E2 of FN , if for every argument a ∈ E1, b ∈ E2 there exists an admissible extension
E3 of FN s.t. a, b ∈ E3, then E1 ∪ E2 is an admissible extension of FN .

We can finally observe that ∅ is also a trivial AFN admissible extension. Therefore,
although the precise conditions for the AFN admissible signature are not known, we know
that the requirements of the AF admissible signature are satisfied. Consequently, we can
conclude that a full and exact translation from AFNs to AFs under the admissible seman-
tics is possible. Moreover, this result can be extended to the preferred semantics:

Theorem 10.6. Let FrAFN be the collection of all AFNs on the domain UAFN and FrAF

the collection of all AFs on the domain UAF . There exists a full translation from FrAFN to
FrAF that is exact under the admissible (preferred) semantics and identity casting func-
tions.
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Oddly enough, the AFN stable semantics do not fit the AF signature – the produced
sets do not need to be tight, as seen in the following example. This means that even there
is no exact (and full) translation from AFNs to AFs for the stable semantics.

Example 116. Let FN = ({a, b, c, d, e}, {(a, c), (c, a), (b, d), (d, b), (c, b), (b, c)},
{({c, d}, e)}) be the AFN depicted in Figure 95. Our stable extensions are {a, b}, {b, c, e}
and {a, d, e}. However, the collection is not tight (see Definition 2.176) – for example, the
set {a, b, e} is not present. It is conflict–free, but it is not coherent.

a c b d e

Figure 95: Sample AFN

Theorem 10.7. Let FrAFN be the collection of all AFNs on the domain UAFN and FrAF

the collection of all AFs on the domain UAF . There does not exist a full translation from
FrAFN to FrAF that is exact under the stable semantics and identity casting functions.

Due to the fact that sufficient conditions for the AF complete signature are not known
yet, we cannot say whether an appropriate exact translation is possible. Thus, along with
finding an appropriate translation for the admissible and preferred semantics, this task is
left for future work.

Finally, we would like to notice that the AFN–AF coalition translation is the first truly
semantical approach we consider in this work. Thus, it is natural to ask under which
conditions we can take it at least back to the semi–structural level. The answer is: we
need to work with strongly valid frameworks. Thanks to Theorem 4.32, if this normal
form/subclass is assumed, the coherent extensions can be equivalently expressed as sets in
which all arguments require support. Thus, no further validity analysis is required, and we
may choose to reclassify the approach as semi–structural. For now, we are not aware of
any other options that would allow us to simplify the translation.

10.2 AFN as SETAF
In order to translate AFNs into SETAFs, we can use the AFN–AF coalition translation and
then the AF–SETAF approach. However, there are also two alternative methods which in
our opinion provide some insight into the stronger form of supports, such as necessary or
evidential. Moreover, they also show why the attack propagation translation (Translation
53) for BAFs is not directly applicable , and how the defender translation (Translation 58)
can be adapted to work in the AFN setting.
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10.2.1 Attack Propagation

In BAFs for necessary support, every argument was considered valid, and every attacker
of any supporter of an argument became an indirect attacker of this argument. In AFNs,
when the semantics treat support cycles in a different manner and we are faced with group
support, the situation looks differently. When we look at the definition of defense in AFNs,
we can see that we consider an attack to be defended from if we can attack every coherent
set containing the attacker. Thus, propagating the attacks carried out at coherent sets to the
actual arguments for which they exist would address the issue of cycles. Moreover, due to
the fact that a given argument can be derived in more than one way, the indirect attacks are
carried out by sets of arguments rather than single elements. Let us look at an example:

Example 117. Let us consider the AFN FN1 = ({a, b, c, d, e, f}, {(d, b), (e, c), (a, f)},
{({b, c}, a)}) depicted in Figure 96a. d attacks b, however, this is insufficient to really
cut off the support of a. For example, the set {a, c, d} is still strongly coherent. Similar
case is when we consider just e. It is only the presence of both d and e that makes it
impossible for a to appear in a strongly coherent set. If we consider the corresponding
SETAF SF1 = ({a, b, c, d, e, f}, {({a}, f), ({d}, b), ({e}, c), ({d, e}, a)}), we can see that
it returns the same admissible extensions.

However, we can observe that tracing the supporters of an argument only structurally,
without taking the semantics into account, might lead to undesirable results. Not every
argument in the framework may be valid and not every support path in it may be valid (see
Section 4.3). Propagating the attack based on them may lead to undesired results. Let us
consider the framework FN2, depicted in Figure 96c, which is a modification of FN1 that
changes b into a self–supporter. In this case, we would have that {e, f} is an admissible
extension – however, {e, f} is not admissible in SF1. Changing the group ({d, e}, a)
attack into ({e}, a) would address this issue.

Translation 63. Let FN = (A,R,N) be an AFN and FNwv = (A′, R′, N ′) its weak
validity form. The corresponding attack propagated SETAF is SF FN = (A′, R′′), where
R′′ is created as follows:

• for an argument a ∈ A′, let {Xa
1 , ..., X

a
n} be the collection of all coherent sets on A′

s.t. a ∈ Xa
i and let Za

i = {b ∈ A′ | ∃c ∈ Xa
i , (b, c) ∈ R′} be the set of all arguments

attacking Xa
i in R′, and

• R′′ = {(Z ′
, a) | a ∈ A′, Z ′ ⊆

⋃n
i=1 Z

a
i s.t. ∀ni=1Z

′ ∩ Za
i 6= ∅}.

Remark. Please note that for every attack (a, b) ∈ R′ there will exist an attack ({a}, b) ∈
R′′. Since a attacks b, then it naturally attacks every coherent set containing b. This means
that {a} forms a sufficient propagated attack on b.

We would like to observe that there exists an alternative to this translation that does
not remove invalid arguments. It leaves them in the framework, but allows every argument
in a framework to attack them. Although the admissible and preferred extensions are
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Figure 96: Sample AFNs

preserved in this manner, the complete and grounded ones are not. Thus, we consider the
current approach more desirable. Let us look at an example:

Example 118. Let us consider a simple AFN FN = ({a, b}, {(b, a)}, {({b}, b)}) de-
picted in Figure 97a . By not removing the invalid argument b and making it attacked
by every other argument in the framework (including b itself), we obtain the SETAF
SF = ({a, b}, {({a}, b), ({b}, a), ({b}, {b})}) visible in Figure 97b. The admissible ex-
tensions of SF are ∅ and {a} and they are the same as in FN . In both frameworks, {a}
is a preferred extension as well. However, both ∅ and {a} are also complete in SF , while
only {a} is complete in FN . This is due to the fact that b is in the discarded set of ∅ as well
as {a}. Consequently, also the grounded extensions differ between the two frameworks.

A possible approach to address this situation would also mean the removal of attacks
carried out by the invalid arguments. Nevertheless, the required modifications appear to be
more invasive than simply using the weak validity form. Thus, we will keep this approach
in mind, and proceed with Translation 63.

It is natural to ask whether the SETAFs produced with our method have any special
properties or restrictions. To the best of our knowledge, the only real issue with the target
framework is the excessive data, similarly as e.g. in Translation 8.5.1:
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Figure 97: Sample AFN and its associated SETAF without argument removal

Example 119. Let ({a, b, c, d, e}, {(a, b), (c, d)}, {({b}, e), ({d}, e)}) be the simple, min-
imal AFN depicted in Figure 98. There are three coherent sets for e – {b, d, e}, {a, b, d, e}
and {b, c, d, e}, though only the first one is minimal. All of them are attacked by sets {a},
{b} and {a, b}. Consequently, all of those sets will be carrying out group attacks against e
in the target framework, even though the {a, b} conflict is redundant.

a b c d e

Figure 98: Sample AFN

Just like in the previous case, this issue can be addressed by assuming minimality
both on the coherent sets and on the Z ′ set construction. Nevertheless, we will focus our
analysis on the current definition of the corresponding framework. Based on the presented
example, we can only conclude that the target SETAF is not necessarily in any interesting
normal form, even though the source AFN might be:

Theorem 10.8. Let FN = (A,R,N) be an AFN and SF FN = (A′, R′) its corresponding
AFN obtained through Translation 63. Then, SF FN might not be in minimal normal form,
even if FN is.

Let us move on to the semantics. We can observe that the attack propagation transla-
tion detaches the supporters of a given argument from this argument itself, which causes
certain issues with coherence, same way it did with (inverse) closure in BAFs. Moreover,
indirect conflicts become direct, and as the AFN definition of conflict–freeness takes into
account only the latter, this semantics is not preserved either. As a result, the translation
gains strength only when we reach the complete semantics. Please note that the strongly
coherent sets will be tied to conflict–free ones based on the similarity relation (see Defini-
tion 3.2).

Theorem 10.9. Let FN = (A,R,N) be an AFN and SF FN = (A′, R′′) its corresponding
attack propagated SETAF obtained by Translation 63. If E ⊆ A is strongly coherent
in FN , then it is conflict–free in SF FN . It does not necessarily hold for conflict–free
semantics. If E is a σ–extension of FN , where σ ∈ {admissible, preferred, complete,
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grounded, stable}, then it is a σ–extension of SF FN . If E ′ ⊆ A′ is a σ′–extensions of
SF FN , where σ′ ∈ {conflict–free, preferred, complete, grounded, stable}, then it is also
a σ′–extension of FN . It does not necessarily hold for admissible semantics. If E ′ is
conflict–free in SF FN , then it is not necessarily strongly coherent in FN .

Let us now put these results into our system. Please note we will redefine our approach
as a two–step one, similarly as in Translations 10 and 11. Consequently, we will first define
a sub–translation only for the weakly valid AFNs, and then shift it to a general approach.

Translation 64. LetWV AFN be the collection of all weakly valid AFNs and FrSETAF the
collection of SETAFs, both based on argument domain U . The attack propagation trans-
lation awv-TrAFNSETAF : WV AFN → FrSETAF is defined as awv-TrAFNSETAF ((A,R,N)) =
(A,R′) for a framework (A,R,N) ∈ WV AFN , where R′ = {(Z ′

, a) | a ∈ A,Z
′ ⊆⋃n

i=1 Z
a
i s.t. ∀ni=1Z

′ ∩ Za
i 6= ∅}, {Xa

1 , ..., X
a
n} is the collection of all coherent sets on A

s.t. a ∈ Xa
i and Za

i = {b ∈ A | ∃c ∈ Xa
i , (b, c) ∈ R} is the set of all arguments attacking

Xa
i in R.

The semantics theorem for this translation follows straightforwardly from Theorem
10.9 and its proof:

Theorem 10.10. Let σ ∈ {complete, preferred, grounded, stable} be a semantics and
SC Tr

σ the identity casting functions for σ. The translation awv-TrAFNSETAF is strong and se-
mantics bijective under (σ, SC Tr

σ ). It is⊆–weak under the strongly coherent – conflict–free
and admissible semantics and identity casting function. It is ⊇–weak under the conflict–
free semantics and identity casting functions.

Analysis of Translation 64: Under the conflict–free, (conflict–free) strongly coherent,
admissible, complete, preferred, grounded and stable semantics and their identity casting
functions, the translation awv-TrAFNSETAF is:

• source–subclass, target–subclass, overlapping

• argument domain preserving, argument preserving, attack relation introducing and
support relation removing

• generic and semantics domain preserving

• semantical

Translation awv-TrAFNSETAF is not modular. It is exact under the complete, preferred,
grounded and stable semantics and the identity casting functions. We classify this ap-
proach as an attack propagation translation.

Explanation. We are currently limiting ourselves only to weakly valid AFNs, thus our ap-
proach is source–subclass. For now, we can also classify it as target–subclass. The reason
behind it is the fact that due to the redundancies introduced by the translation, it holds that
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if two sets E and E ′ attack a given argument, then so does E ∪E ′. Thus, we can observe a
certain maximization of the conflicts, rather than minimization. If we decided to optimize
our translation in the way we have discussed previously by adding minimality constraints,
then the produced SETAFs would be in minimal forms, and this again produces a subclass
of our SETAFs. In none of those cases the translation is injective. Let us look again at the
framework ({a, b, c, d, e}, {(a, b), (c, d)}, {({b}, e), ({d}, e)}) described in Example 119
and consider its modification ({a, b, c, d, e}, {(a, b), (c, d), (a, e)}, {({b}, e), ({d}, e)}),
which includes an additional attack from a to e. The propagated attacks for e would still
come from sets {a}, {b} and {a, b}. The target SETAF would be identical in both cases,
whether we use the original translation or one with minimality restrictions.

We do not remove or add any arguments, however, previously “indirect” attacks be-
come direct and thus we can speak about conflict introduction. We also choose to classify
our approach as support relation removing, as the arguments, previously connected by sup-
port, can become completely detached from one another and no real positive interaction
between them can be observed. This is particularly visible when we consider the behavior
of the admissible semantics in our translation, i.e. the target admissible extensions might
not be even coherent sets of the source structure.

Our translation is easily generic, semantics domain preserving and semantical. Its
exactness under the listed semantics comes from Theorem 10.10. Unfortunately, the ap-
proach is not modular. We can consider two trivial AFNs FN1 = ({a, b}, {(a, b)}, ∅) and
FN1 = ({b, c}, ∅, {({b}, c)}). Due to the absence of c in the first one and a in the other,
there will be no conflict between these two arguments in the corresponding SETAFs. Thus,
there will be no conflict in the union of the produced frameworks either. However, it is
easy to see that there will be a propagated attack from {a} to c in the SETAF associated
with FN1 ∪ FN2. Therefore, awv-TrAFNSETAF is not modular. �

We can now redefine the original translation fully, reusing the weak validity translation
wv-TrAFN (see Translation 7):
Redefinition of Translation 63: Let FrAFN be the collection of all AFNs and FrSETAF

the collection of all SETAFs, both on domain U . The translation a-TrAFNSETAF : FrAFN →
FrSETAF is defined as a-TrAFNSETAF ((A,R,N)) = awv-TrAFNSETAF (wv-TrAFN((A,R,N)))
for a framework (A,R,N) ∈ FrAFN .
Redefinition of Theorem 10.9: Let σ ∈ {complete, preferred, grounded, stable} be a
semantics and SC Tr

σ be the identity casting functions for σ. The translation a-TrAFNSETAF is
strong and semantics bijective under (σ, SC Tr

σ ). It is ⊆–weak under the strongly coherent
– conflict–free and admissible semantics and identity casting function. It is⊇–weak under
the conflict–free semantics and identity casting functions.

The properties of our transformation are now simply the result of the properties of
Translations 7 and 64. Thus, we will omit further explanations.
Analysis of Translation 63: Under the conflict–free, (conflict–free) strongly coherent,
admissible, complete, preferred, grounded and stable semantics and their identity casting
functions, the translation a-TrAFNSETAF is:
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• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced attack relation removing,
attack relation introducing and support relation removing

• generic and semantics domain preserving

• semantical

Translation a-TrAFNSETAF is not modular. It is exact under the complete, preferred, grounded
and stable semantics and the identity casting functions. We classify this approach as an
attack propagation translation.

a

b cd e

f

(a) Sample AFN

a

b cd e

(b) Associated attack propagation SETAF

Figure 99: Sample AFN and its associated attack propagation SETAF

Example 120. Let us consider the AFN FN = ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({f}, f)}) depicted in Figure 99a and previously analyzed in Ex-
ample 16. The minimal form of its associated attack propagation SETAF is SF FN =
({a, b, c, d, e}, {({a}, e), ({d}, b), ({e}, c), ({d, e}, a)}) 25 The conflict–free extensions of
SF FN are ∅, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {b, c}, {b, e}, {c, d}, {d, e},
{a, b, c} and {a, c, d}. We can observe that not every conflict–free extension of FN is
conflict–free in SF FN . For example, the argument f is not present in the framework.
However, the set {a, d, e} is also conflict–free in FN , even though it is not strongly coher-
ent. Nevertheless, it is missing from the conflict–free extensions of SF FN . At the same
time, we can observe that all conflict–free sets of SF FN are conflict–free in FN . Addi-
tionally, all of the strongly coherent sets ∅, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {b, c}, {b, e},

25We use the minimal form in order to improve readability.
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{c, d}, {d, e}, {a, b, c} and {a, c, d} of FN are conflict–free in SF FN , though please note
that our SETAF produces more extensions (for example, {a}). The admissible extensions
of SF FN are ∅, {a}, {d}, {a, c}, {a, d}, {d, e}, and {a, c, d}. We can observe that all
of the admissible sets of FN are admissible in SF FN , but not the other way around – in
particular, {a} and {a, d} are not even strongly coherent in FN . Nevertheless, when we
reach the complete extensions – {d}, {d, e} and {a, c, d} – we obtain an exact correspon-
dence between the answers produced by the two frameworks. We can observe that {d}
is grounded both in FN and SF FN , while {d, e} and {a, c, d} are preferred and stable.
Thus, starting with the complete semantics, our translation becomes strong and exact.

10.2.2 Defender

Attack–based argumentation framework in fact have one type of positive, indirect relation
between arguments – defense. Thus, with the use of auxiliary arguments and attacks, we
can connect supporters of an argument to the argument itself. However, we can recall that
the defender BAF–AF Translation 58 did not behave that well due to support cycles. Since
AFN semantics handle such cycles differently from BAFs, this issue is resolved by letting
only “valid” arguments participate in defense. Unfortunately, this also leads to the fact
that it is not just direct supporters that have to defend us, unlike in Translation 58:

Example 121. Let us consider a simple AFN FN = ({a, b, c}, ∅, {({a, b}, c),
({a, c}, b)}). We transform it into a defender SETAF by introducing an auxiliary attacker
for every argument requiring support, which can be interpreted as “this argument is un-
supported”. In the case of argument c, the additional attacker will be attacked by a and
b – in our AFN, the presence of either of them is sufficient to support a (i.e. both {a}
and {b} have an element in common with every supporting set of c, which in this case
is just {a, b}). Similar analysis can be carried out for c. This gives us the framework
SF FN = ({a, b, c, b′, c′}, {({b′}, b), ({c′}, c), ({a}, c′), ({b}, c′), ({a}, b′), ({c}, b′)}).
However, we can observe that with this construction, the set {b, c} is admissible in our
SETAF, while it is not even coherent in FN .

While the construction above ensures that the accepted arguments are supported, it
does not mean that they are supported in a valid manner. In other words, the collection of
defenders, defenders of defenders etc. might not form a powerful sequence. Therefore,
in our construction the attacks on auxiliary arguments will not be carried out only by the
direct supporters of a given argument, but by the members of powerful sequences for this
arguments. This brings us to the following formulation:

Translation 65. Let FN = (A,R,N) be an AFN. Its corresponding defender SETAF
SF FN = (A′, R′) is constructed the following way:

• A′ = A∪ {a′ | a ∈ A∧ ∃C ⊆ A,CNa}. The meaning of a′ is “ a is not powerful”,

• add to R′ all attacks from R and attacks from a′: R′ = {({a}, b) | (a, b) ∈ R} ∪
{({a′}, a) | a ∈ A ∧ ∃C ⊆ A,CNa}, and
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• let a ∈ A s.t. ∃C ⊆ A,CNa. For any minimal powerful sequence (a0, ..., an) for a,
add ({a0, .., an−1}, a′) to R′.

We can now focus on the semantics. Please note that the construction of the target
arguments corresponding to a given source one is not going to be as straightforward as in
e.g. certain EAF–SETAF Translation 40. We cannot use the discarded set anymore to say
which primed arguments need to be added. This is because we use auxiliary arguments
to represent support, not attack, and an argument itself can be attacked despite all of its
supporters accepted and unchallenged.

Theorem 10.11. Let FN = (A,R,N) be an AFN and SF FN = (A′, R′) its correspond-
ing defender SETAF obtained by Translation 65. By Enp = {a′ | there is no coherent set
containing a} ∪ {a′ | for every coherent set C for a, ∃e ∈ E , c ∈ C \ {a}, (e, c) ∈ R} we
will denote primed arguments corresponding to a subset of E att, in which every argument
a either has no coherent set or every of its coherent sets is attacked by E on an argument
different from a.

If a set E ⊆ A is conflict–free in FN , then it is conflict–free in SF FN . The set E ∪Enp
is not necessarily conflict–free in SF FN . If a set E is strongly coherent in FN , then
E ∪ Enp is conflict–free in SF FN . If E is a σ–extension of FN , where σ ∈ {admissible,
preferred, complete, grounded, stable}, then E ′ = E ∪ Enp is a σ–extension of SF FN .

If a set E ′ ⊆ A′ is a σ–extension of SF FN , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then E = E ′ ∩A is a σ–extension of FN . If E ′ is
conflict–free, E = E ′ ∩ A does not have to be strongly coherent in FN .

Redefinition of Translation 65: Let FrAFN be the collection of all AFNs on the domain
U and FrSETAF the collection of all SETAFs on argument domain U ∪U ′. The translation
def -TrAFNSETAF : FrAFN → FrSETAF is defined as def -TrAFNSETAF ((A,R,N)) = (A′, R′)
for a framework (A,R,N) ∈ FrAFN , where A′ = A ∪ X ′ for X ′ = {a′ | a ∈ A ∧
∃C ⊆ A,CNa}, and R′ = {({a}, b) | (a, b) ∈ R} ∪ {({a′}, a) | a ∈ A, a′ ∈ X ′} ∪
{({a0, .., an−1}, a′) | a ∈ A, a′ ∈ X, (a0, ..., an) is a minimal powerful sequence for a}.
Redefinition of Theorem 10.11: Let σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable} be a semantics and SC Tr

σ the removal casting functions for σ defined
as SCX

σ (E ) = E ∩ A for X = (A,R,N) ∈ FrAFN and E ∈ σ(def -TrAFNSETAF (X)).
The translation def -TrAFNSETAF is strong under (σ, SC Tr

σ ). It is ⊆–weak under strongly
coherent–conflict–free semantics and the defined casting functions.It is semantics bijec-
tive under complete, preferred, grounded and stable semantics and the defined casting
functions.
Analysis of Translation 65: Under the conflict–free, (conflict–free) strongly coherent,
admissible, complete, preferred, grounded and stable semantics and their removal casting
functions, the translation def -TrAFNSETAF is:

• full, target–subclass, overlapping

• weakly argument domain altering, argument introducing, induced attack relation
introducing and support removing
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• generic and weakly semantics domain altering

• semantical

Translation def -TrAFNSETAF is not modular. It is faithful under the complete, preferred,
grounded and stable semantics and the defined removal casting functions. We classify this
approach as a defender translation.

Explanation. Any AFN can undergo the translation, and thus we classify it as full.
Due to the domain change, it is also target–subclass; for example, it is not possible
to create a SETAF containing only primed arguments. Unfortunately, our approach is
overlapping, and it would be so independently of whether we would use minimal or
all powerful sequences in the construction of attacks – knowledge on the sequences is
not always enough to reconstruct the framework. We can consider two frameworks
({a, b, c}, ∅, {({a, b}, b), ({b}, c)}) and ({a, b, c}, ∅, {({a}, b), ({b}, c)}). The produced
framework is in both cases ({a, b, c, b′, c′}, {({b′}, b), ({c′}, c), ({a}, b′), ({a, b}, c′)}).
Thus, even though due to defense from primed arguments certain positive relations can
be deduced, some of them – in particular, the invalid ones – are lost. For this reason we
consider the relation support removing. At the same time, we introduce auxiliary argu-
ments, and attacks from/to them – thus, the attack introduction is induced. Our argument
and semantics domain are altered only in a weak manner. The amount of handled seman-
tics classifies the translation as generic. Due to the fact that def -TrAFNSETAF is based on the
notion of coherence (i.e. powerful sequences), we classify it as semantical.

Unfortunately, the defender approach is not modular in AFNs. We can consider two
frameworks FN1 = ({a, b}, ∅, {({a}, b)}) FN2 = ({b, c}, ∅, {({c}, b)}). Their corre-
sponding SETAFs are SF1 = ({a, b, b′}, {({a}, b′), ({b′}, b)}) and SF2 = ({c, b, b′},
{({c}, b′), ({b′}, b)}). Thus, their union is simply ({a, b, c, b′}, {({a}, b′), ({c}, b′),
({b′}, b)}). However, the framework associated with FN1 ∪ FN2 is ({a, b, c, b′},
{({a, c}, b′), ({b′}, b)}), which is clearly not the same Thus, our approach is not mod-
ular. �

Example 122. Let us consider the AFN FN = ({a, b, c, d, e, f, g}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({f}, f), ({g}, b)}) depicted in Figure 100a. Its coherent sets in-
clude ∅, {c}, {d}, {e}, {g}, {a, c}, {b, g}, {a, b, g} and any of their combinations. We
can observe that f does not appear in any of them - it does not possess a powerful se-
quence in the framework. The strongly coherent sets are ∅, {c}, {d}, {e}, {g}, {a, c},
{b, g}, {c, d}, {c, g}, {d, e}, {d, g}, {e, g}, {a, b, g}, {a, c, d}, {a, c, g}, {b, c, g}, {b, e, g},
{c, d, g}, {d, e, g}, {a, b, c, g} and {a, c, d, g}. From this, the sets ∅, {d}, {g}, {a, c},
{d, e}, {d, g}, {a, c, d}, {a, c, g}, {d, e, g} and {a, c, d, g} are admissible. Fortunately,
only {d, g}, {d, e, g} and {a, c, d, g} are complete, with the first set being grounded and
the other two preferred and stable.

The SETAF associated with FN is SF FN = ({a, b, c, d, e, f, g, a′, b′, f ′}, {({a}, e),
({d}, b), ({e}, c), ({f}, d), ({a′}, a), ({b′}, b), ({f ′}, f), ({b, g}, a′), ({c}, a′)}), as seen in
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Figure 100: Sample AFN and its associated defender SETAF

Figure 100b. Due to the fact that SF FN has 65 conflict–free extensions, we will not listed
them here. We can however observe that sets such as {a}, {b} and so on are conflict–free
in SF FN , but are not strongly coherent in FN . The admissible extensions of our SETAF
are ∅, {f ′}, {f ′, d}, {g}, {f ′, g}, {a, c}, {a, c, f ′}, {a′, d, e, f ′}, {d, f ′, g}, {a, c, d, f ′},
{a, c, g}, {a, c, f ′, g}, {a′, d, e, f ′, g} and {a, c, d, f ′, g}. We can observe that if we remove
the auxiliary arguments, we obtain all and only admissible extensions of FN , even though
certain source sets can be obtained from a number of target ones. Out of all these admissi-
ble extensions, only {d, f ′, g}, {a, c, d, f ′, g} and {a′, d, e, f ′, g} are complete. They again
correspond to the complete extensions of FN ; this time, the relation is one–to–one. It
is now easy to show that the grounded, preferred and stable extensions of our framework
SF FN are also in agreement with the ones produced by FN .
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10.2.3 Improvements

Let us first focus on the possible ways of improving the attack propagation translation in
terms of semantical and complexity properties. Although this approach is not strong under
the conflict–free and admissible semantics, exact approaches can be created. In the first
case, we can reuse the specialized Translation 62 that we have created for AFs and use
the AF–SETAF approach. In the latter, the results presented in Section 10.1.1 point to the
existence of an appropriate method, even though we are not entirely sure how it looks like.
However, in the SETAF setting, we could try to repeat the approach from Translation 54
and introduce additional, self–attacking arguments. In this case the attacks at them would
be carried out by the (coherent) sets from which a given argument can follow, not single
arguments. Nevertheless, we would face the loss of stability, which as such is normally a
more prominent semantics.

Just like in the coalition AFN–AF translation, the attack propagation AFN–SETAF
approach is semantical. The new conflicts are not based on N as such, but on the coherent
sets derived from it. Similarly as in the previous case, in order to focus on supporters as
such rather than on their validity, we need to ensure that however we trace the support an
argument receives, we will always end up with a coherent set or a powerful sequence. This
means that the first restriction we need in order to obtain a semi–structural translation,
is to require that the source framework is strongly valid. With this assumption, we can
replace the coherent sets in Translation 63 with sets simply supporting their members
thanks to Theorem 4.32. This brings us down from a semantical to a semi–structural
approach according to our classification, even though some computation is still required.
The translation can be further simplified by assuming that the source AFN is not only
strongly valid, but also binary – in this case, we come back to the BAF–AF Translation
53 parametrized with secondary attacks (see Translation 59). A different option would
be to assume that every argument providing support cannot be supported itself, which is
a more general version of the AFN subclass with support depth 1. In a certain sense,
this might bring us even closer to the structural level, as the creation of sets providing
sufficient support becomes rather straightforward. Nevertheless, a much more interesting
improvement can be obtained in the next approach – the defender translation.

Let us now consider a modification of the defender AFN–SETAF translation, tailored
to strongly valid frameworks. This limitation allows us to consider only the direct support-
ers of a given argument in defense, not the whole powerful sequence, in the construction
of the target SETAF:

Translation 66. Let FN = (A,R,N) be a strongly valid AFN. Its corresponding defender
SETAF SF FN = (A′, R′) is constructed the following way:

• A′ = A ∪ {a′ | a ∈ A ∧ ∃C ⊆ A,CNa}. The meaning of a′ is “a is unsupported”,

• add to R′ all attacks from R and attacks from a′: R′ = {({a}, b) | (a, b) ∈ R} ∪
{({a′}, a) | a ∈ A ∧ ∃C ⊆ A,CNa}, and
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• let a ∈ A s.t. ∃C ⊆ A,CNa, and let {Z1, .., Zn} be the collection of all and only
sets on A s.t. ZiNa. For all minimal Z ′ ⊆

⋃n
i=1 s.t. ∀ni=1Z

′ ∩ Zi 6= ∅, add (Z ′, a′)
to R′.

Although now the framework looks a little bit different, a similar semantics theorem
holds. Please note that due to the fact that we are dealing with strongly valid frameworks,
the construction of the Enp set can be simplified. Most notably, the coherent sets can be
replaced by sets in which every argument is just supported through the N relation, i.e. we
do not need any validity checks (see Theorem 4.32). Nevertheless, for a lack of better
name, we will still use the notion of coherent sets in the theorem, and only remark that the
way to obtain them is easier.

Theorem 10.12. Let FN = (A,R,N) be a strongly valid AFN and SF FN = (A′, R′)
its corresponding defender SETAF obtained by Translation 66. By Enp = {a′ | for every
coherent set C for a, ∃e ∈ E , c ∈ C \ {a}, (e, c) ∈ R} we will denote primed arguments
corresponding to a subset of E att in which for every argument a and any coherent set for
it, there is a member of this set attacked by E different from a.

If a set E ⊆ A is conflict–free in FN , it is conflict–free in SF FN . The set E ∪ Enp is
not necessarily conflict–free in SF FN . If a set E is strongly coherent in FN , then E ∪Enp
is conflict–free in SF FN . If E is a σ–extension of FN , where σ ∈ {admissible, preferred,
complete, grounded, stable}, then E ′ = E ∪ Enp is a σ–extension of SF FN .

If a set E ′ ⊆ A′ is a σ–extension of SF FN , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then E = E ′ ∩A is a σ–extension of FN . If E ′ is
conflict–free, the set E = E ′ ∩ A does not have to be strongly coherent in FN .

The same properties as in the original version of this translation hold and thus we will
omit further analysis. The only difference is that now we can classify the approach as
semi–structural and source–subclass. The transformation is still support removing due to
the minimality assumption on the construction of Z ′ sets; nevertheless, this is for now a
rather minor issue and can be addressed in future work.

10.3 AFN as EAF
Although we believe that in order for EAFs to handle AFNs one should use the AF bypass,
in this section we would like to discuss a certain connection between defense attacks and
necessary support. In Section 8.6.1 we have already shown that defense attack can be
seen as a particular form of support, which we referred to as overpowering. We have
also proved that with the use of auxiliary arguments, AFNs can handle defense attack (see
Section 8.5). Moreover, what can already be seen from the name, this form of conflict
can also be seen as type of defense due to its ability to overrule attacks. Thus, after the
presented defender translation, it is natural to ask whether this form of conflict can handle
necessary support. In this section we will sketch two methods that will highlight certain
possibilities and obstacles in transforming support to this particular type of attack. The first
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approach basically adapts the defender translation by the use defense attacks, as shown in
the example below.

Example 123. Let us consider a simple AFN ({a, b, c, d}, ∅, {({b, c}, a), ({d}, a)}), as
depicted in Figure 101a. Argument a is supported by sets {b, c} and {d}. Just like in
the defender approach, we can introduce “you are unsupported” arguments, though this
time it will be one argument per support set. Instead of making the supporters attack
the auxiliary arguments, we make it override the conflicts they carry out. This gives us
the EAF ({a, b, c, d, u1, u2}, {(u1, a), (u2, a)}, {(b, (u1, a)), (c, (u1, a)), (d, (u2, a))}) visi-
ble in Figure 101b.

While in the first case a cannot be accepted without b and d or c and d being in the set
due to support, in the latter they have to be present in order to override the attacks from u1
and u2 – otherwise, u1 and u2 defeat a and admissibility is breached.

a

b c d

(a) Sample AFN

a

u1 u2

b

c d

(b) Sample EAF

Figure 101: Necessary support to defense attack, first approach

Please note that this approach of course has its drawbacks. Directing the attacks from
supporters not at the auxiliary arguments, but that at the relations, makes it possible for all
of these arguments to appear together in a single extension. Thus, arguments saying “you
are supported” and “no, you are not” can be jointly accepted and this can be somewhat
confusing. Moreover, the example above deals with a rather trivial AFN, and if we wanted
to create an actual translation that would handle support cycles etc., we would sooner
or later come back to the original defender transformation. Consequently, there is no
obvious gain to proceed further with this approach and we will limit ourselves just to this
discussion.

The other approach can be seen as a merge between defender and attack propagation.
In this case we have to limit ourselves to binary AFNs, i.e. ones where supporting sets
contain only single arguments. The support is again simulated by defense attack, but this
time aimed at the attack coming from the argument itself rather than from an auxiliary
element.
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Example 124. Let ({a, b, c ∅, {({b}, a), ({c}, a)}) be the AFN depicted in Figure 102a.
By replacing supports with attacks and allowing the supporters to defense attack them, we
obtain the EAF ({a, b, c}, {(b, a), (c, a)}, {(b, (b, a)), (c, (c, a))}) from Figure 102b. Just
like a requires both of its supporters to be presented in AFN, a needs b and c to appear in an
extension in order to override the attacks and be defended in EAF. However, the addition
of attack makes certain things complicated. Consider our AFN extended with the (d, b)
attack, as depicted in Figure 102c. If we extended our corresponding EAF with the same
attack only, d would in fact defend a from b and thus make the set {a, c, d} admissible,
which is not an intended result. The fact that d indirectly renders a unacceptable in AFN
needs to be propagated in the EAF. Consequently, we include also the (d, a) attack in
the framework, and obtain the structure visible in Figure 102d. Only then a is properly
rendered unacceptable.

a

b c

(a) Sample AFN

a

b c

(b) Sample EAF

a

b cd

(c) Sample AFN

a

b cd

(d) Sample EAF

Figure 102: Necessary support to defense attack, second approach

Although the method we have just presented has some potential, one has to bear in
mind that it applies only to binary support. Moreover, there is no clear answer on how
to handle the cycle issue and translating a framework that is not strongly valid would
probably be highly problematic. Nevertheless, we believe this discussion provided some
insight on the relation between support and defense attack.

10.4 AFN as BAF
In Section 9.2, we have discussed a translation from BAFs to AFNs, and noted that it
can be done only for frameworks that have an acyclic support graph. We have also seen
how secondary attack can be used to simulate attacking an argument through its coherent
sets. For the same reasons as before, translating an AFN to BAF can be done only for
strongly valid frameworks; the difference in handling support cycles is too prominent.
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Unfortunately, the next issue arises concerning group support. As we could have observed
in Example 117 concerning the AFN–SETAF attack propagation translation, the indirect
attacks need to be carried out by sets of arguments, not just single arguments. This clearly
does not fit the definition of secondary attacks in BAFs. Thus, for now, our best option is
to limit ourselves not just to strongly valid, but also support binary AFNs. The resulting
translation is almost identical to the BAF–AFN one:

Translation 67. Let FN = (A,R,N) be a strongly valid and support binary AFN. The
associated BAF is BF FN = (A,R, S), where S = {(a, b) | ({a}, b) ∈ N}.

As expected, the resulting BAF will be support acyclic:

Theorem 10.13. Let FN = (A,R,N) be a strongly valid and support binary AFN and
BF FN = (A,R, S) its associated BAF obtained through Translation 67. Then BF FN is
support acyclic.

The semantics theorem can be proved in the same manner as Theorem 9.14.

Theorem 10.14. Let FN = (A,R,N) be a strongly valid and support binary AFN,
BF FN = (A,R, S) its associated BAF obtained through Translation 67 and R′ = {Rsec}
the collection of secondary attacks in BF FN .Then, a set E ⊆ A is:

• +conflict–free w.r.t. ∅ in BF FN iff it is conflict–free in FN .

• inverse closed under S in BF FN iff it is coherent in FN .

• +conflict–free w.r.t. R′ and inverse closed under S in BF FN iff it is strongly coher-
ent in FN .

• an i–admissible extension of BF FN w.r.t. (R′, R′) iff it is admissible in FN .

• an i–preferred extension of BF FN w.r.t. (R′, R′) iff it is preferred in FN .

• a d–complete extension of BF FN w.r.t. (R′, R′) iff it is complete in FN .

• a d–grounded extension of BF FN w.r.t. R′ iff it is grounded in FN .

• a stable extension of BF FN w.r.t. R′ iff it is stable in FN .

The translation is classified in the same manner as Translation 59:
Redefinition of Translation 67: Let SBinAFN ∩ SV AFN the collection of all support
binary and strongly valid AFNs and SAcyBAF the collection of all support acyclic BAFs,
both on domain U . The translation TrAFNBAF : (SBinAFN ∩ SV AFN) → SAcyBAF is
defined as TrAFNBAF ((A,R,N)) = (A,R, S) for a framework (A,R,N) ∈ (SBinAFN ∩
SV AFN), where S = {(a, b) | ({a}, b) ∈ N}.
Redefinition of Theorem 10.14: Let σAFN ∈ {coherent, strongly coherent, admissible,
preferred, complete, grounded, stable} be an AFN semantics and σBAF ∈ {inverse closed,
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+conflict–free and inverse closed, i–admissible, i–preferred, d–complete, d–grounded,
stable} be a similar BAF semantics with identical parametrization consisting of secondary
attacks. Let SC Tr

σ be the identity casting functions for σ. The translation TrAFNBAF is strong
and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 67: Under the (inverse closed) coherent, (+conflict–free and
inverse closed) strongly coherent, (i–) admissible, (i–) preferred, (d–) complete, (d–)
grounded and stable semantics with identical parametrization consisting of secondary at-
tacks and identity casting functions, the translation TrAFNBAF is:

• source–subclass, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• structural and modular

Translation TrAFNBAF is classified as basic under the listed semantics and casting functions.

10.5 AFN as EAS
A translation from AFNs to EASs has already been presented in our previous works
[77, 78]. While shifting the binary to set–form attack is trivial, the support requires a
little bit more consideration. There are two things we need to deal with; one is the struc-
tural difference between the necessary support relation N and the evidential support E,
particularly visible in the construction of powerful and evidential sequences. The other
concerns how the connection between other elements of the framework and the evidence
argument should look like.

Let A1, ..., An be sets supporting an argument a in N . A set of arguments S “suf-
ficiently supports” a if S has an element in common with every such Ai, i.e. ∀ni=1,
S ∩ Ai 6= ∅. Therefore, verifying whether S supports a corresponds to checking whether
S satisfies a propositional formula

∨
A1 ∧ ... ∧

∨
An, where

∨
Ai should be understood

as a disjunction of elements of Ai. This is also the construction we will be using for
the acceptance conditions in the AFN–ADF translations (see Section 10.6). Let us now
assume that A1, ..., An support a through E. In this case, S “sufficiently supports” a if
at least one such Ai is a subset of S. Consequently, in this case we produce a formula∧
A1 ∨ ... ∨

∧
An, where

∧
Ai stands for the conjunction of elements of Ai. Therefore,

from the technical side, the translation between the necessary and evidential relations can
be seen as a conversion between CNF and DNF.

Let us now deal with the issue of the evidence argument. In EASs, this special argu-
ment is the only source of through, the sole confirmation of validity. Every other argument
need to be able to trace back to it, as the evidential sequence makes explicit. In AFNs, va-
lidity is obtained through acyclicity. In other words, in order for an argument to be valid,
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it has to be reachable from arguments that require no support, as seen in the powerful se-
quence. Therefore, if we want unsupported arguments to be able to provide validity in the
EAS setting, it is easy to see that they (and only they) should be backed up by η. This
leads us to the following translation:

Translation 68. Let FN = (A,R,N) be an AFN. The corresponding EAS ESFN =
(A′, R′, E) is created as follows:

• A′ = A ∪ {η},

• R′ = {({a}, b) | (a, b) ∈ R}, and

• let a be an argument in A and Z = {Z1, .., Zn} be a collection of all sets Zi s.t.
ZiNa. If Z is empty, add ({η}, a) to E. Otherwise, for every subset Z ′ of

⋃n
i=1 Zi

s.t. ∀ni=1 Z
′ ∩ Zi 6= ∅, add (Zi, a) to E.

Although the translation of support presented above is correct and the semantics return
the desired extensions in the obtained framework, it is not the most optimal one. It can
create redundant elements in E. For example, given argument a s.t. {a, b}Na and {c}Na,
our intent would be to receive {a, c}Ea and {b, c}Ea. However, the translation would also
give us {a, b, c}Ea. Although the framework behaves in the desired way (see Theorem
4.11), a cleaner transformation would be more desirable. Please note that it cannot be fixed
by assuming that we take into account only minimal sets Z ′, since the elements ofN might
not be incomparable in the first place. Even though again the extensions of a framework
produced by such a minimal transformation would be satisfactory (see Theorems 4.11 and
4.9 on minimal forms), we would “lose” some of the relations. Therefore, an additional
approach was proposed:

Translation 68 (Continued). Let a be an argument in A and Z = {Z1, .., Zn} be a col-
lection of all sets Zi s.t. ZiNa. If Z is empty, add ({η}, a) to E. Otherwise, for all Z ′ in
Z1 × ...× Zn, add (Z ′S, a) to E, where Z ′S is the set of all elements in Z ′.

This fix can be applied to any translation that suffered from similar issues when con-
verting between group relations. We will use it throughout our analysis. Let us start by
considering how an AFN–produced EAS looks like. Although minimality is lost inde-
pendently of the chosen version of our translation, the validity and consistency forms still
hold:

Theorem 10.15. Let FN = (A,R,N) be an AFN and ESFN = (A,R,E) its associated
EAS obtained through Translation 68. Then, ESFN is attack binary. If FN is weakly
(relation, strongly) valid, then so is ESFN . If FN is strongly consistent, then so is ESFN .
ESFN does not have to be in minimal form, even if FN is.

The necessary and evidential supports are closely connected. In particular, a powerful
sequence can be trivially transformed into an evidential one and the other way around:
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Theorem 10.16. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. Let a ∈ A be an argument. If (a0, ..., an)
is a powerful sequence for a on S ⊆ A in FN , then (η, a0, ..., an) is an evidential sequence
for a on S ∪ {η} in ESFN . If (η, a0, ..., an) is an evidential sequence for a on S ⊆ A′ in
ESFN , then (a0, ..., an) is a powerful sequence for a on S \ {η} in FN . If a set S ⊆ A is
coherent in FN , then S ∪ {η} is self–supporting in ESFN . If S ′ ⊆ A is self–supporting
in ESFN , then S ′ ∩ A is coherent in FN .

However, we would like to notice one important difference in the definitions of defense
between these two frameworks. In EASs, an argument a has to be e–supported by the set
S. Consequently, it does not have to be the case that S ∪ {a} is, as such, self–supporting.
In AFNs it is required that S ∪ {a} is coherent, which is a visibly stronger restriction.
However, in order to have a chance to be an extension, a set has to be coherent (self–
supporting) in the first place. Consequently, we can focus our analysis only on these sets:

Theorem 10.17. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. If a ∈ A is defended by a coherent set
S ⊆ A in FN , then it is acceptable w.r.t. S ∪ {η} in ESFN . If a ∈ A is acceptable w.r.t.
a self–supporting set S ′ ⊆ A′ in ESFN , then it is defended by S ∩ A in FN .

With these two theorems at hand we can now clearly state how the AFN and EAS
extensions are related. We can observe that the addition of η can generate more extensions
in EASs than in AFNs – for example, both ∅ and {η} in an EAS will be cast back to ∅ in
the source AFN. Nevertheless, the issue is resolved when we consider complete semantics:

Theorem 10.18. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. If a set S ⊆ A is (strongly) coherent in
FN , then S ∪ {η} is (strongly) self–supporting in ESFN . If S ⊆ A is (strongly) self–
supporting in ESFN , then S ∩A is (strongly) coherent in FN . If S ⊆ A is a σ–extension
in FN , where σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable} then
S ∪ {η} is a σ–extension in ESFN . If S ⊆ A is a σ–extension of ESFN , then S ∩ A is a
σ–extension of FN .

We can now put these results into our system. Given an n–tuple Z = (z1, ..., zn), with
set(Z) = {z1, ..., zn} we denote the set of arguments appearing in Z.
Redefinition of Translation 68: Let FrAFN be the collection of all AFNs on domain U
andABinEAS the collection of all attack binary EASs on domain U ∪{η}. The translation
TrAFNEAS : FrAFN → ABinEAS is defined as TrAFNEAS ((A,R,N)) = (A′, R′, E) for a
framework (A,R,N) ∈ FrAFN , where A′ = A ∪ {η}, R′ = {({a}, b) | (a, b) ∈ R} and
E = {({η}, a) | @C ⊆ A s.t. CNa} ∪ {(set(Z ′), a) | Z ′ ∈ Z ′ ∈ Za

1 × ... × Za
na} while

{Za
1 × ...× Za

na} is the collection of all sets of A s.t. Za
i Na.

Redefinition of Theorem 10.18: Let σAFN ∈ {conflict–free, coherent, strongly co-
herent, admissible, preferred, complete, grounded, stable} be an AFN semantics and
σEAS ∈ {conflict–free, self–supporting, strongly self–supporting, admissible, preferred,
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complete, grounded, stable} be a similar EAS semantics. Let SC Tr
σ be the removal cast-

ing functions for σ defined as SCX
σ (S) = S ∩ A for X = (A,R,N) ∈ FrAFN and

S ∈ σEAS(TrAFNEAS (X)). The translation TrAFNEAS is strong (σ, SC Tr
σ ). It is semantics bijec-

tive under the complete, preferred, grounded and stable semantics and the defined casting
functions.
Analysis of Translation 68: Under the conflict–free, (self–supporting) coherent,
(strongly self–supporting) strongly coherent, admissible, preferred, complete, grounded,
stable and removal casting functions, the translation TrAFNEAS is:

• full, target–subclass and overlapping

• weakly argument domain altering, argument introducing and induced support intro-
ducing

• generic and weakly semantics domain altering

• semi–structural

Our approach is not modular. Under the complete, preferred, grounded and stable se-
mantics and removal casting functions, the translation is faithful. Translation TrAFNEAS is
classified as basic under the listed semantics and casting functions.

Explanation. Any framework can undergo the translation, and thus our approach is full.
Due to the fact that we can obtain only attack binary EASs, it is also target–subclass.
The way new supporting sets are constructed is not exactly unique; for example, let us
consider an argument supported by sets {a} and {b} in one AFN and by {a}, {b}, {a, b}
in another. In both cases, the new EAS supporting set would be {a, b}. Thus, our approach
is overlapping.

Due to the addition of the special argument to the domain, our translation is weakly
argument and semantics domain altering. Clearly, it is also argument introducing (and
related support) introducing. We are not entirely sure whether to classify the translation
as support removing; a necessary supporter will remain an evidential supporter, it is only
the precise structure of the sets that is not preserved. However, this change is unavoidable
due to structural differences between the frameworks, similarly as in the SETAF–ADF
translation. Thus, we leave this question open.

Due to the amount of handled semantics, the translation is generic. We also classify it
as semi–structural due to the addition of evidence and relevant support from it. Unfortu-
nately, the AFN–EAS approach is not modular. Let us consider an argument d necessarily
supported by a set {a, b} in one framework and {b, c} in another. Upon translating, it will
be evidentially supported by {a}, {b} and {b}, {c} respectively. Thus, the union of the
translated structures will give us {a}, {b} and {c}. However, if we join the original AFNs,
d will be supported both by {a, b} and {b, c}, which are later transformed into {a, b},
{a, c}, {b} and {a, c} (minimal version is {a, c} and {b}). Thus, the new results are not
equivalent to the previous ones in any way, and our translation is not modular. �
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Figure 103: Sample EAS

Example 125. Let us consider the AFN FN = ({a, b, c, d, e, f, g}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({g}, b),({f},f)}), previously described in Example 122 depicted in
Figure 100a. The (minimal) powerful sequences for arguments c, d, e and g are quite
straightforward and are respectively (c), (d), (e) and (g). For argument b we have the
sequence (g, b) and for a we can create two approaches: (g, b, a) and (c, a). Finally, f has
no powerful sequence at all.

The EAS associated with FN is ESFN = ({η, a, b, c, d, e, f, g}, {({a}, e), ({d}, b),
({e}, c), ({f}, d)}, {({η}, c), ({η}, d), ({η}, e), ({η}, g), ({b}, a), ({c}, a), ({f}, f),
({g}, b)}) 26, as seen in Figure 103. We can observe that arguments η, c, d, e and g
have trivial evidential sequences (η), (η, c), (η, d), (η, e) and (η, g). The sequence for b is
(η, g, b), while for a we obtain (η, g, b, a) and (η, c, a). The argument f possesses no evi-
dential sequence. We can therefore observe that these results are in clear correspondence
with the powerful sequences of FN .

Based on the sequence analysis, we can observe that the self–supporting sets of
ESFN are ∅, {η}, {η, c}, {η, d}, {η, e}, {η, g}, {η, a, c}, {η, b, g}, {η, a, b, g} and any of
their combinations. The strongly self–supporting (i.e. self–supporting and conflict–free)
ones are are ∅, {η}, {η, c}, {η, d}, {η, e}, {η, g}, {η, a, c}, {η, b, g}, {η, c, d}, {η, c, g},
{η, d, e}, {η, d, g}, {η, e, g}, {η, a, b, g}, {η, a, c, d}, {η, a, c, g}, {η, b, c, g}, {η, b, e, g},
{η, c, d, g}, {η, d, e, g}, {η, a, b, c, g} and {η, a, c, d, g}. From this, the admissible sets are
∅, {η}, {η, d}, {η, g}, {η, a, c}, {η, d, e}, {η, d, g}, {η, a, c, d}, {η, a, c, g}, {η, d, e, g} and
{η, a, c, d, g}. We can observe that in all of these cases, by removing η from the sets we
can obtain the coherent, strongly coherent and admissible sets of FN . Moreover, only
one set – namely, ∅ – can be obtained from two extensions (∅ and {η}). All other sets
can be produced only from a single extension in ESFN . From the presented complete
extensions, {η, d, g}, {η, d, e, g} and {η, a, c, d, g} qualify as complete, with the first set

26Depending on whether the optimized construction was used or not, the pair ({b, c}, a) would also appear
in the support relation. Nevertheless, it does not affect the extensions of the framework since the two options
are connected through the minimal normal form.
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being grounded and the other two preferred and stable in ESFN . Again, by removing η,
we can exactly retrieve the extensions of FN . The only difference is that when we start
considering complete extensions, the relation finally becomes one–to–one.

10.6 AFN as ADF
We will now present possible methods for translating AFNs into ADFs. Bearing in mind
the issues we have described in Section 2.3.9, we will now classify AFNs w.r.t. the consis-
tency criterion. While normal consistency ensures that no argument will receive a falsum
acceptance condition after the translation, its strong version prevents loss of acyclic pd–
evaluations.

The condition of an argument in an AFN–obtained ADF can be seen as consisting
of two parts. The first one corresponds to the attackers of the argument and is basically
the same as in the AF–ADF case (see Section 5.7). In other words, given an argument
a ∈ A and X = {x1, .., xn} the set of arguments attacking a, the condition is simply
atta = ¬x1 ∧ ... ∧ ¬xn. We abbreviate this construction with

∧
¬X .

The other part of the condition concerns support. Independently of validity, an argu-
ment is considered sufficiently supported in an AFN by a given set, if this set has at least
one element in common with every supporting set of the argument in question. For ex-
ample, if a is supported by sets {b, c} and {d, e}, then if we want to accept a, either b
and d, b and e, c and d or c and e need to be present. This can be equivalently expressed
with a condition (b ∨ c) ∧ (d ∨ e). Therefore, given an argument a and a collection of sets
supporting it Z = {Z1, ..., Zn}, we create a formula supa =

∨
Z1 ∧ ... ∧

∨
Zn, where∨

Zi is a disjunction of all arguments in Zi.

10.6.1 Strongly Consistent AFNs

Similarly as in the EAF(C)–ADF case (see Section 8.6), we start with the translation which
assumes that our source frameworks are strongly consistent:

Translation 69. Let FN = (A,R,N) be a strongly consistent AFN. The corresponding
ADF DFN = (A,L,C) is created as follows:

1. for every two arguments a, b, if aRb or there exists a set Z ⊆ A containing a s.t.
ZNb, add (a, b) to L, and

2. for every argument a, the functional acceptance condition is:

• every P ′ ⊆ par(a) is mapped to out iff ∃p ∈ P ′ s.t. pRa or ∃Z ⊆ par(a) s.t.
ZNa and Z ∩ P ′ = ∅, and

• all other subsets of P are in.

3. for every argument a, the propositional acceptance condition is:
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• the attack part is atta = (¬t1 ∧ ... ∧ ¬tn), where t1, ..., tn are all elements of
A s.t. tiRa,

• the support part is supa = (
∨
Z1∧...∧

∨
Zm), where Z1, ..., Zm are all subsets

of A s.t. ZiNa, and

• the acceptance condition is Ca = atta ∧ supa.

In case an argument is initial, its condition is simply >.

The only thing we can say with certainty is that the produced ADF is a BADF in
cleansed form. All other possible properties depend on the source AFN.

Theorem 10.19. Let FN = (A,R,N) be a strongly consistent AFN and DFN =
(A,L,C) its corresponding ADF obtained through Translation 69. DFN is a BADF. It
is also in cleansed form. If FN is in minimal form, then DFN is redundancy–free. If FN
is weakly valid, then so is DFN . If it is minimal and relation valid, then DFN is relation
valid. If FN is strongly valid, then DFN is an AADF+. If it is in addition minimal, then
DFN is strongly valid.

Following the analysis we presented in Section 5.7 while studying the binary attack
in AFs, we can observe that any decisively in interpretation v for a (consistent) argument
a will map all attackers of a from FN (i.e. all arguments in atta) to f . Moreover, since
vt needs to satisfy the condition of a, it also has to be the case that for every Z ⊆ A
s.t. ZNa, vt ∩ Z 6= ∅. In other words, ∃z ∈ Z s.t. v(z) = t (as long as we do not
impose minimality on the interpretations). However, if a is consistent but not strongly
consistent, it means there exists a supporting set Z containing an argument z′ s.t. z′Ra.
Consequently, for such z′ it has to be the case that v(z′) = f . Thus, it will never be
assigned t by any decisively translation, and has no chance to be used in the pd–sequence
of an acyclic evaluation, despite its appearance in a powerful sequence in the source AFN.
We use strong consistency in order to prevent such situations. Thus, given a minimal
decisively in interpretation vmin for a, all attackers of a will be mapped to f by vmin, and
the ones mapped to t will correspond to minimal sets of arguments B ⊆ A s.t. for every
set Z supporting a, B ∩ Z 6= ∅. Consequently, since no member of a supporting set is
also an attacker of a, it cannot be the case that an argument contained in a supporting set
is mapped to f by vmin.

The AFN semantics are built around the notion of coherence, which expresses the
requirement that an argument can be (support–wise) derived in an acyclic manner, and
only such derivations need to be taken into account when we consider defense. Thus, not
surprisingly, it is the aa–family of ADF semantics that will be related to AFN semantics.
We start our analysis by drawing the connection between coherent and pd–acyclic, strongly
coherent and pd–acyclic conflict–free extensions of both frameworks:

Lemma 10.20. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69 and E ⊆ A a set of arguments.
For a given powerful sequence for an argument e ∈ E we can construct a corresponding
acyclic pd–evaluation and vice versa. E is coherent in FN iff it is pd–acyclic in DFN .
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Lemma 10.21. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69. A set of arguments E ⊆ A is
strongly coherent in FN iff it is a pd–acyclic conflict–free extension of DFN .

We can also draw the connection between the discarded sets of both frameworks, which
as a result gives us also a connection between defense in AFNs and being decisively in
w.r.t. a given interpretation in ADFs. However, please note that we will use the E att set,
not the deactivated set in case of AFNs (see Section 2.2.2.2 for analysis). The original
version is too weak for establishing an exact correspondence.

Lemma 10.22. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C) its
corresponding ADF obtained through Translation 69. Let E ⊆ A be strongly coherent
in FN and thus pd–acyclic conflict–free in DFN . Then E att coincides with the acyclic
discarded set of E .

Theorem 10.23. Let FN = (A,R,N) be a strongly consistent AFN and DFN =
(A,L,C) its corresponding ADF obtained through Translation 69. Let E ⊆ A be strongly
coherent in FN and thus pd–acyclic conflict–free in DFN . Then E defends an argument
a ∈ A in FN iff this argument is decisively in w.r.t. vaE in DFN .

With these theorems and lemmas at hand, we can finally show the correspondence
between the source and target extensions:

Theorem 10.24. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69. A set of arguments E ⊆ A
is coherent in FN iff it is pd–acyclic in DFN . E is strongly coherent in FN iff it is
pd–acyclic conflict–free in DFN . E is a σ–extension of FN , where σ ∈ {admissible,
complete, preferred} iff it is an aa–σ–extension of DFN . E is stable in FN iff it is stable
in DFN . E is grounded in FN iff it is acyclic grounded in DFN .

Let us now redefine our results in accordance with our system and study the properties
of our translation. Please note that we will use the BADF subclass as our codomain,
it is not the most accurate description. For example, not every EAF–style ADF can be
produced by an AFN. We leave describing a more fitting subclass for future work.
Redefinition of Translation 69: Let SConsAFN be the collection of all strongly consis-
tent AFNs and BADF the collection of all bipolar ADFs, both on domain U . The transla-
tion sc-TrAFNADF : SConsAFN → BADF is defined as sc-TrAFNADF ((A,R,N)) = (A,L,C),
where L = {(x, y) | (x, y) ∈ R or ∃X ⊆ A, x ∈ X s.t. (X, y) ∈ N}, and
C = {Ca | a ∈ A}, where every Ca is defined as a) Ca(P ′) = out for P ′ ⊆ par(a)
iff ∃x ∈ P ′ s.t. xRa or ∃Z ⊆ par(a) s.t. ZNa and Z ∩ P ′ = ∅, otherwise, Ca(P ′) = in;
or b) Ca = (¬t1 ∧ ... ∧ ¬tn) ∧ (

∨
Z1 ∧ ... ∧

∨
Zm) where t1, ..., tn are all elements of A

s.t. tiRa and Z1, ..., Zm are all subsets of A s.t. ZiNa; in case both collections are empty,
Ca = >.
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Redefinition of Theorem 10.24: Let σAFN ∈ {coherent, strongly coherent, admissible,
complete, preferred, grounded, stable} be an AFN semantics and σADF ∈ {pd–acyclic,
pd–acyclic conflict–free, aa–admissible, aa–complete, aa–preferred, acyclic grounded,
stable} a similar ADF semantics. Let SC Tr

σ be the identity casting functions for σ. The
translation sc-TrAFNADF is strong and semantics bijective under (σ, SC Tr

σ ).
Analysis of Translation 69: Under the (pd–acyclic) coherent, (pd–acyclic conflict–free)
strongly coherent, (aa–) admissible, (aa–) complete, (aa–) preferred, (acyclic) grounded
and stable semantics and the identity casting functions, the translation sc-TrAFNADF is:

• source–subclass, target–subclass and overlapping

• argument domain preserving and structure preserving

• generic, semantics domain preserving and exact

• structural and ⊗–modular

The translation is not ⊕–modular. The translation sc-TrAFNADF is classified as basic under
the listed semantics and casting functions.

Explanation. We only consider strongly valid AFNs in our translation and naturally,
BADFs do not account for all possible ADFs. Consequently, our approach is full and
target–subclass. Unfortunately, it is also overlapping, for similar reasons as in Translation
31.

Clearly, sc-TrAFNADF is argument and semantics domain preserving and generic. We
can observe that no arguments are added or removed during the translation. Moreover, as
seen from the definition of L, all connections are preserved between the arguments. The
links that are considered attacking remain attacking and those that were supporting are still
supporting (see Theorem 10.19), even though some are redundant. Therefore, despite the
fact that the translation is overlapping, it is structure preserving, and this state of affairs is
unavoidable due to the differences between ADFs and AFNs (see Section 2.3.9).

In order to show that the translation is not⊕–modular, we can consider AF–style AFNs
and repeat the analysis of Translation 23. Let us now focus on ⊗–modularity. Let FN1 =
(A1, R1, N1) and FN2 = (A2, R2, N2) be two AFNs and FN3 = FN1 ∪ FN2 = (A1 ∪
A2, R1∪R2, N1∪N2). WithD1 = (A1, L1, C1),D2 = (A2, L2, C2) andD3 = (A3, L3, C3)
we will denote the corresponding ADFs. It is easy to show that A3 = A1 ∪ A2 and L3 =
L1∪L2. What needs to be shown is that for every argument a ∈ A1∩A2, Ca

1 ⊗Ca
2 = Ca

3 –
if a given argument is not present in either of the frameworks, then its condition inCa

3 is the
same as in the structure it came from. Let Xa

1 , Xa
2 and Xa

3 be the collections of attackers
of a in FN1, FN2 and FN3 respectively. Clearly, Xa

1 ∪ Xa
2 = Xa

3 . We can observe that∧
¬Xa

1 ∧
∧
¬Xa

2 =
∧
¬(Xa

1 ∪ Xa
2 ) =

∧
¬Xa

3 ; thus, the atta part of the condition is
the same in D1 ⊗ D2 as in D3. Let now {Za

1 , ..., Z
a
m}, {V a

1 , ..., V
a
n } and {Y a

1 , ..., Y
a
l } be

the collections of sets supporting a in FN1, FN2 and FN3 respectively. Since FN3 =
FN1∪FN2, we can observe that {Za

1 , ..., Z
a
m}∪{V a

1 , ..., V
a
n } = {Y a

1 , ..., Y
a
l }. Therefore,
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(
∨
Za

1 ∧ ....∧
∨
Za
m)∧ (

∨
V a
1 ∧ ....∧

∨
V a
n ) is equivalent to

∨
Y a
1 ∧ ....∧

∨
Y a
l . Therefore,

the support parts are also equivalent in D1⊗D2 and D3. Consequently, our translation can
be shown to be ⊗–modular. �
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(a) Sample AFN

a

b cd e

f

b ∨ c

¬d ¬e¬f ¬a
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(b) Associated ADF

Figure 104: Sample AFN and its associated ADF

Example 126. Let us come back to the AFN FN = ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c),
(f, d)}, {({b, c}, a), ({f}, f)}) from Example 16, now depicted in Figure 104a. We can
observe argument f possesses no powerful sequence at all. For arguments b, c, d and e, we
can create simple (minimal) sequences consisting of the arguments themselves, i.e. (b),
(c), (d) and (e). Finally, argument a has two minimal powerful sequences, namely (b, a)
and (c, a).

The ADF associated with our AFN is DFN = ({a, b, c, d, e, f}, {Ca = b ∨ c, Cb =
¬d, Cc = ¬e, Cd = ¬f, Ce = ¬a, Cf = f}). In order to describe the extensions, we will
first list the relevant interpretations and evaluations of DFN . The minimal decisively in
interpretations for our arguments are as follows; v1a = {b : t}, v2a = {c : t}, vb = {d : f},
vc = {e : f}, vd = {f : f}, ve = {a : f} and vf = {f : t}. We can observe that with the
exception of a and f , every argument will possess a single minimal acyclic evaluation; we
can create ((b), {d}) for b, ((c), {e}) for c, ((d), {f}) for d and ((e), {a}) for e. Argument
f possesses no acyclic evaluation at all, while a has two: ((b, a), {d}) and ((c, a), {e}).

The pd–acyclic conflict–free extensions of our framework are E1 = ∅, E2 = {b},
E3 = {c}, E4 = {d}, E5 = {e}, E6 = {a, b}, E7 = {a, c}, E8 = {b, c}, E9 = {b, e},
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E10 = {c, d}, E11 = {d, e}, E12 = {a, b, c} and E13 = {a, c, d}. We can observe they
correspond exactly to the strongly coherent sets of FN . Their associated acyclic discarded
sets are now E a+

1 = E a+
2 = E a+

3 = E a+
8 = {f}, E a+

4 = E a+
10 = {b, f}, E a+

5 = E a+
9 =

{c, f}, E a+
6 = E a+

7 = E a+
12 = {e, f}, E a+

11 = {b, c, f} and E a+
13 = {b, e, f}.

With this at hand we can show that E1, E4, E7, E11 and E13 are the only aa–admissible
extensions of our framework. For every other set, we can find an argument that is not
sufficiently “defended”. For the extensions E2, E6, E8, E9 and E12, it is the argument b –
as visible from its evaluation, d would need to be included in the discarded sets of these
extensions, but is not. In the case of extensions E3 and E10, the issue lies with c and the
fact that argument e is not included neither in E a+

3 nor in E a+
10 . Finally, we have the set E5

and argument e. Unfortunately, E5 blocks only one of the evaluations of a, not all of them,
thus making it impossible for e to be protected from it. We can observe that the produced
aa–admissible sets are the same as the admissible extensions of FN .

From the aa–admissible extensions E1, E4, E7, E11 and E13, the aa–complete ones are
E4, E11 and E13. In case of extensions E1 and E7, we can observe that they do not contain
the argument d, despite the fact it is decisively in w.r.t. their acyclic range interpretations.
Again, these answers agree with the extensions produced by FN . From here, we can
easily identify E4 as the acyclic grounded extensions and E11 and E13 as the aa–preferred
ones, which are the desired extensions. DFN has three models; {d, e} (i.e. E11), {a, c, d}
(i.e. E13), and {a, b, c, f}. Only the first two are pd–acyclic conflict–free and are thus the
stable extensions of DFN . The same sets are stable in FN . Therefore, we retrieve all and
only the desired extensions of FN in a number of semantics.

10.6.2 General AFNs

In order to translate AFNs that do not necessarily meet the consistency restrictions, we
will make use of consistency normal form translations. We first bring a given AFN into the
consistency form, and then proceed with the previously described approach for strongly
consistent AFNs. However, we have two possible normal form translations for AFNs –
Translations 13 and 15. Consequently, the way the source AFN extensions are related to
the target ADF ones depends on which method we use.

Translation 70. Let FN = (A,R,N) be an AFN. The corresponding ADF DFN =
(A′, L, C) is created as follows:

1. we obtain the strongly consistent AFN FN sc = (A′, R,N ′) corresponding to FN
by Translation 13 or 15, and

2. DFN results from transforming FN sc into ADF by Translation 69.

Due to Theorems 4.51 and 4.57, the normal form theorem (Theorem 10.19) holds
in this case as well, independently of the used consistency form. Moreover, by joining
Theorems 4.50 and 10.24, we can connect the extensions of the source AFN and target
ADF:
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Theorem 10.25. Let FN = (A,R,N) be an AFN and DFN = (A′, L, C) its correspond-
ing ADF obtained by Translations 13 and 70. Let E ⊆ A, E ′ ⊆ A′ be sets of arguments
and E b the (possibly empty) set of bypass arguments generated by E in A′. The following
holds:

• if E is coherent in FN , then E ∪ E b is pd–acyclic in DFN .

• if E is strongly coherent in FN , then E ∪ E b is pd–acyclic conflict–free in DFN .

• if E is a σ–extension of FN , where σ ∈ {admissible, preferred, complete}, then
E ∪ E b is an aa–σ–extension of DFN .

• if E is grounded in FN , then E ∪ E b is acyclic grounded in DFN .

• if E is stable in FN , then E ∪ E b is stable in DFN .

• if E is pd–acyclic in DFN , then E ′ ∩ A is coherent in FN .

• if E is pd–acyclic conflict–free in DFN , then E ′ ∩ A is strongly coherent in FN .

• if E ′ is an aa–σ–extension of DFN , then E ′ ∩ A is a σ–extension of FN .

• if E is acyclic grounded in DFN , then E ′ ∩ A is grounded in FN .

• if E is stable in DFN , then E ′ ∩ A is stable in FN .

And from Theorems 4.56 and 10.24, we get the following:

Theorem 10.26. Let FN = (A,R,N) be an AFN and DFN = (A′, L, C) its correspond-
ing ADF obtained by Translations 15 and 70. Let E b the (possibly empty) set of bypass
arguments generated by a set E ⊆ A in A′. If a set of arguments E is coherent in FN ,
then E ∪ E b is pd–acyclic in DFN . If E ′ ⊆ A′ is pd–acyclic in DFN , then E ′ ∩ A is
coherent in FN . E ⊆ A is strongly coherent in FN iff it is pd–acyclic conflict–free in
DFN . E is a σ–extension of FN , where σ ∈ {admissible, complete, preferred} iff it is an
aa–σ–extension of DFN . E is grounded in FN iff it is acyclic grounded in DFN . Every
stable extension E of FN is stable in DFN but not vice versa.

We can now put the translation and the theorems into our system. The properties of the
resulting approaches will be basically a result of the attributes of the used translations. We
choose to classify the merged approaches as semi–structural due to consistency issues.
Redefinition of Translation 70: Let FrAFN be the collection of all AFNs on do-
main U and BADF the collection of all bipolar ADFs on domain U ∪ U b. The
translation b-TrAFNADF : FrAFN → BADF is defined as b-TrAFNADF ((A,R,N)) =
sc-TrAFNADF (bc-TrAFN((A,R,N))). The translation sa-TrAFNADF : FrAFN → BADF is
defined as sa-TrAFNADF ((A,R,N)) = sc-TrAFNADF (sa-TrAFN((A,R,N))).
Redefinition of Theorem 10.25: Let σAFN ∈ {coherent, strongly coherent, admissible,
complete, preferred, grounded, stable} be an AFN semantics and σADF ∈ {pd–acyclic,
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pd–acyclic conflict–free, aa–admissible, aa–complete, aa–preferred, acyclic grounded,
stable} a similar ADF semantics. Let SC Tr

σ be the removal casting functions for σ de-
fined as SCX

σ (E ) = E ∩ A for X = (A,R,N) ∈ FrAFN and E ∈ σADF (b-TrAFNADF (X)).
The translation b-TrAFNADF is strong under (σ, SC Tr

σ ). It is semantics bijective under the
(aa–) complete, (aa–) preferred, (acyclic) grounded and stable semantics and the defined
casting functions.
Redefinition of Theorem 10.26: Let σAFN ∈ {coherent, strongly coherent, admis-
sible, complete, preferred, grounded} be an AFN semantics and σADF ∈ {pd–acyclic,
pd–acyclic conflict–free, aa–admissible, aa–complete, aa–preferred, acyclic grounded} a
similar ADF semantics. Let SC Tr

σ be the identity casting functions for σ. The translation
sa-TrAFNADF is strong under (σ, SC Tr

σ ). With the exception of coherent–pd–acyclic seman-
tics, it is also semantics bijective. It is ⊆–weak under the stable semantics and defined
casting functions.
Analysis of Translation 70 with Translation 13 as intermediary: Under the (pd–
acyclic) coherent, (pd–acyclic conflict–free) strongly coherent, (aa–) admissible, (aa–)
complete, (aa–) preferred, (acyclic) grounded and stable semantics and the removal casting
functions, the translation b-TrAFNADF is:

• full, target–subclass and overlapping

• weakly argument domain altering, argument introducing, induced relation introduc-
ing, relation removing

• generic and weakly semantics domain altering

• semi–structural

The translation is neither ⊗ nor ⊕–modular. It is faithful under the (aa–) complete, (aa–)
preferred, (acyclic) grounded and stable semantics and the removal casting functions. The
translation b-TrAFNADF is classified as basic under the listed semantics and casting functions.
Analysis of Translation 70 with Translation 15 as intermediary: Under the (pd–
acyclic) coherent, (pd–acyclic conflict–free) strongly coherent, (aa–) admissible, (aa–)
complete, (aa–) preferred, (acyclic) grounded and stable semantics and the identity casting
functions, the translation sa-TrAFNADF is:

• full, target–subclass and overlapping

• weakly argument domain altering, argument introducing, induced relation introduc-
ing, relation removing

• generic and semantics domain preserving

• semi–structural

The translation is neither ⊗ nor ⊕–modular. It is exact under the (pd–acyclic conflict–
free) strongly coherent, (aa–) admissible, (aa–) complete, (aa–) preferred and (acyclic)
grounded semantics and their identity casting functions. The translation sa-TrAFNADF is
classified as basic under the listed semantics and casting functions.
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10.6.3 Improvements

In this section we have presented in total three approaches for translating AFNs into ADFs;
one for strongly consistent frameworks, and two for general ones. In doing so, we have
constructed an exact and full translation for every type of semantics with the exception of
stable. However, since there exists a full and exact translation for stable semantics from
AFNs to SETAFs and SETAFs to ADFs, we believe that a suitable direct approach can be
devised. Unfortunately, this task needs to be left for future work.

10.7 AFN as Other Frameworks
The only framework that we have not discussed in this section is AFRA. However, we
do not believe there is any gain in transforming necessary support into recursive attack,
particularly due to the fact that if we try to translate recursive attack into a positive relation,
then abstract support is a much more natural target. Thus, we propose to use a chained
translation in order to convert AFNs into AFRAs.

10.8 Summary
In this section we have presented a number of translations from AFNs to other frame-
works. We could have observed that the best results w.r.t. semantics we have obtained
in case of two, unfortunately source–subclass, AFN–BAF and AFN–ADF translations.
While the first one permitted only support binary and strongly valid frameworks, the other
assumed that the source AFNs are strongly consistent. These are also the only generic
and modular methods we have established. For full approaches, the next in line are the
AFN–ADF translation (with self–attacker consistency form) and the attack propagation
AFN–SETAF transformation, followed by the AFN–EAS and AFN–ADF (with bypass
consistency form). The results are visible in Table 13.

Although our results are quite interesting, the analysis in Section 10.1.1 shows that
there are still possibilities for improvement. In particular, we know that it is possible to
create an exact translation from AFNs to AFs under the admissible and preferred seman-
tics. We suspect it to be a combination of attack propagation and defender approaches;
nevertheless, we are yet to create a satisfactory method. Therefore, we hope that the our
results can be improved in the future.
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Table 13: Translations from AFNs to other frameworks

Properties AF SETAF BAF EAS ADF
Translation 61 62 63 65 66 67 68 69 70 with 13 70 with 15

Strength

cf exact ⊇-weak strong strong exact strong
coh exact strong exact strong strong

str coh strong ⊆-weak ⊆-weak ⊆-weak exact strong exact strong exact
adm strong ⊆-weak strong strong exact strong exact strong exact

comp strong exact faithful faithful exact faithful exact faithful exact
pref strong exact faithful faithful exact faithful exact faithful exact
grd strong exact faithful faithful exact faithful exact faithful exact
stb strong exact faithful faithful exact faithful exact faithful ⊆-weak

full full full full source–
subclass

source–
subclass full source–

subclass full full

Functional target–
subclass surjective target–

subclass
target–

subclass
target–

subclass
target–

subclass
target–

subclass
target–

subclass
target–

subclass
target–

subclass
overlapping injective overlapping overlapping overlapping injective overlapping overlapping overlapping overlapping

argument
domain
altering

argument
domain

preserving

argument
domain

preserving

weakly
argument
domain
altering

weakly
argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

weakly
argument
domain
altering

argument
removing

support
removing

argument
removing

argument
introducing

argument
introducing

structure
preserving

argument
introducing

structure
preserving

argument
introducing

argument
introducing

Syntactical argument
introducing

induced
attack

removing

induced
attack

introducing

induced
attack

introducing

induced
support

introducing

induced
relation

introducing

induced
relation

introducing
(induced)

attack
removing

attack
introducing

support
removing

support
removing

relation
removing

relation
removing

support
removing

support
removing

generic specialized generic generic generic generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain

preserving

semantics
domain

preserving

weakly
semantics
domain
altering

weakly
semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

semantics
domain

preserving

Computational semantical structural semantical semantical structural structural semi–
structural structural semi–

structural
semi–

structural
modular modular ⊗–modular
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11 Translating EASs
In this section we will show how evidential frameworks can be translated to AFs, SETAFs,
BAFs, AFNs and ADFs. Many of our results mimic those obtained for AFNs in Section 10,
which is unsurprising considering the connections between the evidential and necessary
supports. Nevertheless, due to the fact that one framework uses binary and the other group
attack, there are certain differences in our results. First of all, unlike AFNs, EASs cannot
be exactly translated to Dung’s framework. Whether the same holds for SETAFs, we are
not yet able to say. Moreover, in order to translate EASs to SETAFs, we also consider a
coalition approach in addition to the defender and attack propagation ones. This allows
us to decrease the amount of auxiliary arguments created during the transformation with
regard to the EAS–AF coalition approach. The difference in the used attacks also leads
to two EAS–AFN translations, one that is source–subclass and permits only attack binary
EASs and the other that works with any type of a framework. Finally, we again consider
three translations to ADFs, one with consistency restrictions and two that use bypass or
self–attacker normal forms as intermediary.

11.1 EAS as AF
The translation of EASs into AFs has been presented in [73] and it follows the coalition
approach. A single AF argument will correspond to a set of EAS arguments s.t. its el-
ements are related one to another by the support relation and are able to trace back to
the evidence. Consequently, they will form self–supporting sets. The algorithm we will
recall is the most general one. Its analysis and possible optimizations, particularly w.r.t.
the amount of created AF arguments, can be found in [73]. Although some of the EAS
definitions were later corrected in [78], the translation still holds. The only difference is
that in the new approach, the empty set is also a self–supporting set, and there is no need
for an empty coalition argument.

Translation 71. Let ES = (A,R,E) be an EAS. Its corresponding AF FES = (A′, R′) is
created as follows:

• for every nonempty self–supporting set S ⊆ A, add S as an argument in A′, and

• for every (X, y) ∈ R, add (X ′, Y ′) to R′, where X ′, Y ′ ∈ A′, X ⊆ X ′ and y ∈ Y ′.

It is easy to see that arguments that are not valid in ES (i.e. are not e–supported at all)
will not appear in FES . Although this does not affect the behavior of the semantics, we
can see that a certain portion of data is lost. Moreover, it is important to note that unlike
in AFNs, we cannot use minimal self–supporting sets in our translation. This is due to the
fact that now we are working with group, not binary support. Consequently, the coalition
arguments need to be formed in such a way that not only elements required for support,
but also for attacks, are present:

Example 127. Let ES = ({a, b, c, η}, {({a, b}, c)}, {({η}, a), ({η}, b), ({η}, c)}) be the
simple EAS depicted in Figure 105. It has in total nine self–supporting sets: ∅, {η},
{η, a}, {η, b}, {η, c}, {η, a, b}, {η, a, c}, {η, b, c} and {η, a, b, c}. If we were to consider
only those that are minimal for a given argument, we would be left with four – {η}, {η, a},
{η, b} and {η, c}. If we treat these sets as the basis for constructing the coalition AF, our
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framework would not contain any attacks, despite the fact that a and b jointly attack c.
Thus, {{η, c}} would emerge as an admissible extension of the target Dung’s framework,
even though its corresponding set {η, c} is not admissible in ES.

η

ba c

Figure 105: Sample EAS

Please observe that a possible optimization, alternative to the one from [78], is to
consider only minimal self–supporting sets for given arguments and minimal e–supported
attacks (not targeted at invalid arguments) as new elements of the target AF.

Let us now move on to the semantics analysis; we reformulate the original results
from [73] and include additional remarks concerning conflict–freeness. Unfortunately,
conflict–freeness is preserved only one–way, similarly as in the basic SETAF–AF approach
(see Theorem 6.1).

Theorem 11.1. Let ES = (A,R,E) be an EAS and FES = (A′, R′) its corresponding
AF obtained by Translation 71. If S ⊆ A is strongly self–supporting in ES, then there
exists a conflict–free extension S ′ ⊆ A′ of FES s.t. S =

⋃
S ′. If S is a σ–extension of

ES, where σ ∈ {admissible, complete, preferred, grounded stable} 27, then there exists a
σ–extension S ′ ⊆ A′ of FES s.t. S =

⋃
S ′.

If S ′ ⊆ A′ is conflict–free in FES , it is self–supporting in ES, but not necessarily
conflict–free. If S ′ ⊆ A′ is a σ–extension of FES , then

⋃
S ′ is a σ–extension of ES.

We can now put the results into our system and analyze the translation. The analysis is
the same as in case of Translation 61 and thus we will omit further explanations.
Redefinition of Translation 71: Let FrEAS be the collection of all EASs based on
domain U and FrAF the collection of all AFs based on the domain 2U . The translation
TrEASAF : FrEAS → FrAF is defined as TrEASAF ((A,R,E)) = (A′, R′) for a framework
(A,R,E) ∈ FrEAS , where A′ = {S | S ⊆ A is self–supporting in (A,R,R)} and
R′ = {(X, Y ) | ∃X ′ ⊆ X, y ∈ Y s.t.(X ′, y) ∈ R}.
Redefinition of Theorem 11.1: Let σ ∈ {admissible, preferred, complete, grounded,
stable} be a semantics and SC Tr

σ the union casting functions for σ. The translation TrEASAF

is strong under (σ, SC Tr
σ ) and ⊆–weak under the strongly self–supporting – conflict–free

semantics and union casting functions. It is semantics bijective under the complete, pre-
ferred, grounded and stable semantics and union casting functions.

27Although formally complete semantics for EASs is defined only later in [78], the results still hold.
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Analysis of Translation 71: Under the (conflict–free) strongly self–supporting, admissi-
ble, preferred, complete, grounded and stable semantics and union casting functions, the
translation TrEASAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, attack remov-
ing, support relation removing, possibly attack and support relation introducing

• generic and semantics domain altering

• semantical

The translation TrEASAF is not modular. We classify TrEASAF as a coalition translation under
the listed semantics and casting functions.

Example 128. Let ES = ({η, a, b, c, d, e}, {({a, b}, d), ({d}, c), ({e}, d), {({η}, a),
({η}, c), ({η}, d), ({c}, b)}) be the EAS depicted in Figure 106a. The self–supporting sets
of ES are s1 = ∅, s2 = {η}, s3 = {η, a}, s4 = {η, c}, s5 = {η, d}, s6 = {η, a, c},
s7 = {η, a, d}, s8 = {η, b, c}, s9 = {η, c, d}, s10 = {η, a, b, c}, s11 = {η, a, c, d},
s12 = {η, b, c, d} and s13 = {η, a, b, c, d}. We can observe that argument e does not
appear in any of these sets due to the fact it does not possess an evidential sequence at
all. From these extensions, the sets s1 to s8 and s10, are strongly self–supporting; all of
the remaining ones can be easily excluded due to the conflict from d to c. When we move
to admissibility, we need to further remove the sets s4, s6 and s8, i.e. all of those that
contain c without containing both a and b at the same time – without those arguments
present, c cannot be defended from the minimal e–supported attack {η, d}. This leaves
us with the sets s1, s2, s3, s5, s7 and s10. Next, we come to the complete extensions,
namely s3 = {η, a}, s7 = {η, a, d} and s10 = {η, a, b, c}. The set s3 is now our grounded
extension and s7 and s10 are preferred and stable.

Let us now focus on our associated coalition AF. The collection of the listed self–
supporting sets will form its set of arguments. We can now create the following conflicts
between them; first of all, s5 attacks every set containing c, which is s4, s6 and s8 to s13.
The same holds for s7, s9 and s11 to s13. Then, every set containing both a and b attacks
those that contain d. This means that sets s10 and s13 attack s5, s7, s9 and s11 to s13.
We can observe that certain conflicts are in fact duplicated. This gives us our, somewhat
complicated, coalition AF, depicted in Figure 106b. For a moment, let us ignore the set
arguments s1, s2 and s3. The admissible extensions of the remaining part of the framework
are ∅, {s5}, {s7}, {s10}, {s5, s7}, {s4, s10}, {s6, s10}, {s8, s10}, {s4, s6, s10}, {s4, s8, s10},
{s6, s8, s10} and {s4, s6, s8, s10}. We can freely combine them with the initial arguments
s1, s2 and s3 to obtain all 96 admissible extensions of our AF. We can now use the fact that
s1 ⊂ s2 ⊂ s3 ⊂ s7, s2 ⊂ s5 ⊂ s7, s3 ⊂ s6 ⊂ s10, s2 ⊂ s4 ⊂ s6 ⊂ s10 and s4 ⊂ s8 ⊂ s10
in order to show that our admissible extensions indeed correspond to the admissible sets
s1, s2, s3, s5, s7 and s10 ofES. Fortunately, only three admissible extensions of our AF are
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(a) Sample EAS
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(b) Associated AF

Figure 106: Sample EAS and its associated AF

complete, namely {s1, s2, s3}, {s1, s2, s3, s5, s7} and {s1, s2, s3, s4, s6, s8, s10}. The first
set is grounded, while the other two are stable and preferred. Once we perform the union
of all the set arguments in the complete extensions, we obtain the sets {η, a}, {η, a, d} and
{η, a, b, c}, which were the original complete extensions of our framework ES. We can
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observe that the grounded, preferred and stable extensions are also correctly retrieved.

11.1.1 Improvements

The coalition translation from EASs to AFs is strong and from some point on, even se-
mantics bijective. Based on our observations, we can say that these two properties usually
point to the fact that a faithful translation can be created. In this case, it is true; we can
chain some of the EAS–SETAF and SETAF–AF translations in order to obtain the desired
results. The question is, whether we can go further, i.e. create an exact translation. This
is not an unreasonable request, given the results for the AFN case (see Section 10.1.1).
Unfortunately, even though the support relations in both frameworks are quite closely con-
nected (see Translation 68 and Section 11.4), the attack relations are not. Independently
of the actual evidential support, EASs work with group, not binary, conflict. This, as seen
in Section 6.1.3, puts it already beyond the reach of AFs. We can thus easily adapt the
examples from Section 6.1.3 by the means of Translation 30 in order to show that no exact
EAS–AF translation can exist:

Theorem 11.2. Let FrEAS be the collection of all EASs on a domain UEAS and FrAF the
collection of all AFs on a domain UAF . There exists no full translation from FrEAS to
FrAF that is exact under conflict–free, admissible, complete, preferred and stable seman-
tics and identity casting functions for them.

11.2 EAS as SETAF

11.2.1 Coalition Translation

In the previous section on the coalition EAS–AF translation, we have noted that if we
used only the minimal self–supporting sets in the construction of the target frameworks,
we would not obtain a structure producing the desired extensions. This was a side effect
of the fact that EASs work with group, and AFs with binary attack. However, as we now
work with SETAFs, we can safely assume minimality; the price of that is the need to re–
adapt the attack relation. A given set of coalition arguments carries out a group attack if
the collection of the arguments it represents contains a subset that carries out the attack in
the source framework. Moreover, we restrict ourselves to those coalition arguments that
are in fact related to the conflict itself.

Translation 72. Let ES = (A,R,E) be an EAS. Its corresponding coalition SETAF
SFES = (A′, R′) is created as follows:

• for every minimal self–supporting set S ⊆ A for an argument a ∈ A, add S as an
argument in A′, and

• for every (X, y) ∈ R, add (X ′, Y ′) to R′, where X ′, Y ′ ∈ A′, X ⊆
⋃
X ′, ∀V ∈

X ′, X ∩ V 6= ∅ and y ∈ Y ′.
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The results for the EAS–SETAF translation are similar as in the EAS–AF case. The
only difference is the improvement in strength of the strongly self–supporting sets:

Theorem 11.3. Let ES = (A,R,E) be an EAS and SFES = (A′, R′) its corresponding
SETAF obtained by Translation 72. If S ⊆ A is conflict–free in ES, then there might not
exist a conflict–free extension S ′ ⊆ A′ of SFES s.t. S =

⋃
S ′. If S ⊆ A is strongly

self–supporting in ES, then there exists a conflict–free extension S ′ ⊆ A′ of SFES s.t.
S =

⋃
S ′. If S is a σ–extension of ES, where σ ∈ {admissible, complete, preferred,

grounded stable}, then there exists a σ–extension S ′ ⊆ A′ of SFES s.t. S =
⋃
S ′.

If S ′ ⊆ A′ is conflict–free in SFES , then
⋃
S ′ is strongly self–supporting (and thus

also conflict–free) in ES. If S ′ ⊆ A′ is a σ–extension of SFES , then
⋃
S ′ is a σ–extension

of ES.

Despite the improvements in the number of coalition arguments we need to create, this
translation has the same properties as Translation 71 (the only exception is the strength of
the strongly self–supporting semantics). Thus, we can omit any further analysis.

η

a

c

b

d e

(a) Sample EAS

s2 s3 s4 s5 s8

(b) Associated SETAF

Figure 107: Sample EAS and its associated coalition SETAF

Example 129. Let ES = ({η, a, b, c, d, e}, {({a, b}, d), ({d}, c), ({e}, d), {({η}, a),
({η}, c), ({η}, d), ({c}, b)}) be the EAS from Example 128, now depicted in Figure 107a.
Its self–supporting sets were s1 = ∅, s2 = {η}, s3 = {η, a}, s4 = {η, c}, s5 = {η, d},
s6 = {η, a, c}, s7 = {η, a, d}, s8 = {η, b, c}, s9 = {η, c, d}, s10 = {η, a, b, c},
s11 = {η, a, c, d}, s12 = {η, b, c, d} and s13 = {η, a, b, c, d}. To every argument we
can assign the minimal self–supporting sets containing it; for η it is simply s2, for a it
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is s3, s8 for b, s4 for c and s5 for d. These are now the sets that will appear as argu-
ments in the coalition SETAF associated with ES. Let us now construct the attacks; the
(d, c) attack leads to conflicts from s5 to s4 and s8. The ({a, b}, d) one is now represented
with ({s3, s8}, s5). We now obtain the SETAF depicted in Figure 107b, distinctively more
straightforward than the coalition AF from Example 128.

The admissible extensions of our SETAF are ∅, {s2}, {s3}, {s5}, {s2, s3}, {s2, s5},
{s3, s5}, {s3, s8}, {s2, s3, s5}, {s2, s3, s8}, {s3, s4, s8} and {s2, s3, s4, s8}. Once we cast
them back to extensions consisting of normal arguments, not sets of them, we obtain
s1 = ∅, s2 = {η}, s3 = {η, a}, s5 = {η, d}, s7 = {η, a, d} and s10 = {η, a, b, c}.
We can observe these are exactly the admissible extensions of ES. It is worth mention-
ing that many of them can be obtained from more than one admissible extension of our
SETAF. The complete extensions of the coalition framework are {s2, s3}, {s2, s3, s4, s8}
and {s2, s3, s5}. Their corresponding sets are s3 = {η, a}, s10 = {η, a, b, c} and
s7 = {η, a, d}, which again are the correct answers. We can now easily check that the
grounded, preferred and stable extensions between the two frameworks are also in agree-
ment. Moreover, it is worth nothing that the complete extensions are in one–to–one rela-
tion, even though the admissible ones were not.

11.2.2 Attack Propagation Translation

Just like we did in the case of AFNs, we can create an attack propagation translation
from EASs to SETAFs. Due to the similarity of the two frameworks w.r.t. the support
relation (see Translation 68 and possibly Translation 78, which we will analyze soon), the
construction is not much different from the one presented in Translation 63.

Translation 73. Let ES = (A,R,E) be an EAS and ESwv = (A′, R′, E ′) its weak valid-
ity form. The corresponding attack propagated SETAF is SFES = (A′, R′′), where R′′ is
created as follows:

• for an argument a ∈ A′, let {Xa
1 , ..., X

a
n} be the collection of all self–supporting

sets on A′ s.t. a ∈ Xa
i and let Za

i = {Za
i,1, ..., Z

a
i,ni
} be the collection of all sets of

arguments attacking Xi in R′, and

• R′′ = {(
⋃
Z ′, a) | a ∈ A′, Z ′ ⊆

⋃n
i=1 Z

a
i s.t. ∀ni=1Z

′ ∩ Za
i 6= ∅}.

Remark. We can safely exclude η from the second step of the translation – {η} is a self–
supporting set for η and by definition it cannot be attacked by anyone, no attack propa-
gation will occur. We can also note that if a set of arguments X attacks an argument a,
then it will be the case that XR′′a. This comes from the fact that if X attacks a, then
it also attacks every coherent set containing a, and thus can be picked during the propa-
gation step. Finally, a possible optimization could include focusing only on the minimal
self–supporting sets for a given argument, not necessarily all of them.
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Theorem 11.4. Let ES = (A,R,E) be an EAS and SFES = (A′, R′′) its corresponding
attack propagated SETAF obtained by Translation 73. If S ⊆ A is strongly self–supporting
in ES, then it is conflict–free in SFES . It does not necessarily hold for conflict–free
semantics. If S is a σ–extension of ES, where σ ∈ {admissible, complete, preferred,
grounded, stable}, then it is a σ–extension of SFES . If S ′ ⊆ A′ is a σ′–extensions of
SFES ,where σ′ ∈ {conflict–free, complete, preferred, grounded, stable}, then it is also a
σ′–extension of ES. Not every conflict–free extension of SFES is strongly self–supporting
in ES.

We can now put the translation into our classification system. Just like in the case of
Translation 63, we will first limit ourselves to weakly valid EASs, and then proceed with
the general approach.

Translation 74. Let WV EAS be the collection of all weakly valid EASs and FrSETAF the
collection of SETAFs, both based on argument domain U . The attack propagation trans-
lation awv-TrEASSETAF : WV EAS → FrSETAF is defined as awv-TrEASSETAF ((A,R,E)) =
(A,R′) for a framework (A,R,E) ∈ WV EAS , where R′′ = {(

⋃
Z ′, a) | a ∈ A′, Z ′ ⊆⋃n

i=1 Z
a
i s.t. ∀ni=1Z

′ ∩ Za
i 6= ∅}, {Xa

1 , ..., X
a
n} is the collection of all self–supporting sets

on A′ s.t. a ∈ Xi and Za
i = {Za

i,1, ..., Z
a
i,ni
} is the collection of all sets of arguments

attacking Xi in R.

The semantics theorem for this translation follows straightforwardly from the Theorem
11.4 and its proof. The analysis of our translation is the same as in the case of Translation
64. Thus, again we can omit further explanations.

Theorem 11.5. Let σ ∈ {complete, preferred, grounded, stable} be a semantics and SC Tr
σ

the identity casting functions for σ. The translation awv-TrEASSETAF is strong and semantics
bijective under (σ, SC Tr

σ ). It is ⊆–weak under the strongly self–supporting– conflict–free
and admissible semantics and identity casting function. It is ⊇–weak under the conflict–
free semantics and identity casting functions.

Analysis of Translation 74: Under the conflict–free, (conflict–free) strongly self–
supporting, admissible, complete, preferred, grounded and stable semantics and their iden-
tity casting functions, the translation awv-TrEASSETAF is:

• source–subclass, target–subclass, overlapping

• argument domain preserving, argument set preserving, attack relation introducing
and support relation removing

• generic and semantics domain preserving

• semantical
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Translation awv-TrEASSETAF is not modular. It is exact under the complete, preferred,
grounded and stable semantics and the identity casting functions. We classify this ap-
proach as an attack propagation translation.

The redefinition of the original translation is now as follows; please note we will use
the transformation wv-TrEAS (see Translation 8):
Redefinition of Translation 73: Let FrEAS be the collection of all EASs and FrSETAF

the collection of all SETAFs, both on domain U . The translation a-TrEASSETAF : FrEAS →
FrSETAF is defined as a-TrEASSETAF ((A,R,E)) = awv-TrEASSETAF (wv-TrEAS((A,R,E)))
for a framework (A,R,E) ∈ FrEAS .
Redefinition of Theorem 11.4: Let σ ∈ {complete, preferred, grounded, stable} be a
semantics and SC Tr

σ be the identity casting functions for σ. The translation a-TrEASSETAF

is strong and semantics bijective under (σ, SC Tr
σ ). It is ⊆–weak under the strongly self–

supporting – conflict–free and admissible semantics and identity casting function. It is
⊇–weak under the conflict–free semantics and identity casting functions.
Analysis of Translation 73: Under the conflict–free, (conflict–free) strongly self–
supporting, admissible, complete, preferred, grounded and stable semantics and their iden-
tity casting functions, the translation a-TrEASSETAF is:

• full, target–subclass, overlapping

• argument domain preserving, argument removing, induced attack relation removing,
attack relation introducing and support relation removing

• generic and semantics domain preserving

• semantical

Translation a-TrEASSETAF is not modular. It is exact under the complete, preferred, grounded
and stable semantics and the identity casting functions. We classify this approach as an
attack propagation translation.

Example 130. Let us consider the EAS ES = ({η, a, b, c, d, e, f}, {({a, b}, d), ({a}, f),
({d}, c), ({e}, d), ({f}, a)}, {({η}, a), ({η}, c), ({η}, d), ({η}, f), ({a}, b), ({c}, b)}),
depicted in Figure 108a. The admissible extensions of ES are ∅, {η}, {η, a}, {η, f},
{η, a, b}, {η, d, f} and {η, a, b, c}. We can observe that {η, d} is not an admissible exten-
sion; since b possesses two self–supporting sets ({η, a, b} and {η, b, c}), the attack carried
out by d is in fact insufficient in order to prevent the group attack. From this, the sets
{η}, {η, a, b, c} and {η, d, f} are complete. {η} is the grounded extension of ES, while
{η, a, b, c} and {η, d, f} are both preferred and stable.

Let us now focus on describing our attack propagation SETAF. In order to improve
readability, we will focus on its minimal form. We can observe that argument e will not
appear in the framework due to the fact that it does not possess a self–supporting set. The
argument a has only one minimal self–supporting set, namely {η, a}. It will be a subset of
every other self–supporting set for a. Consequently, every set of arguments carrying out
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Figure 108: Sample EAS and the minimal form of its associated attack propagation SETAF

a propagated attack at a in our SETAF will contain f (the full list of sets is {f}, {f, a},
{f, d}, {f, a, b}, {f, a, d}, {f, a, b, d}). This gives us the first attack ({f}, a). Let us now
consider b; its minimal self–supporting sets are {η, a, b} and {η, b, c}. From this, we can
construct a (minimal) propagated attack ({d, f}, b). Similarly, we can create the conflicts
({d}, c), ({a, b}, d) and ({a}, f). Hence, we obtain our minimal form attack propagation
SETAF SFES = ({a, b, c, d, f}, {({f}, a), ({d, f}, b), ({d}, c), ({a, b}, d), ({a}, f)}),
depicted in Figure 108b. The admissible extensions of SFES are ∅, {η}, {a}, {f}, {η, a},
{η, f}, {a, b}, {d, f}, {η, a, b}, {η, d, f}, {a, b, c} and {η, a, b, c}. We can observe that
not all of them are strongly self–supporting in the source EAS, let alone admissible. Out
of these sets, {η}, {η, d, f} and {η, a, b, c} are complete. We can observe we retrieve the
correspondence between the extensions of ES and SFES . It is now easy to verify that the
grounded, preferred and stable extensions of both frameworks are also in agreement.

11.2.3 Defender Translation

The defender translation for EASs to SETAFs follows the design of Translation 65. The
only difference lies in the creation of primed arguments. In AFNs, arguments that do not
need any support at all are valid by default. Thus, the introduction of primed arguments
was required only for those elements that were necessarily supported by some set of argu-
ments. In EASs, only η is valid from the start; every other argument needs to come back
to it. In particular, non–η elements that receive no support at all are invalid by default.
Consequently, unlike in AFNs, we need to add the I am not supported auxiliary argument
for every non–η argument in the framework.

Translation 75. Let ES = (A,R,E) be an EAS. Its corresponding defender SETAF
SFES = (A′, R′) is constructed the following way:

• A′ = A ∪ {a′ | a ∈ A \ {η}}. The meaning of a′ is “a is not e–supported”,
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• add toR′ all attacks fromR and attacks from a′: R′ = R∪{({a′}, a) | a ∈ A\{η}},
and

• let a ∈ A \ {η}. For any minimal evidential sequence (a0, ..., an) for a, add
({a0, ..., an−1}, a′) to R′.

The semantics are preserved by the defender EAS–SETAF translation in the same way
they were in the AFN–SETAF one (see Theorem 10.11):

Theorem 11.6. Let ES = (A,R,E) be an EAS and SFES its corresponding defender
SETAF obtained by Translation 75. By Snp = {a′ | there is no self–supporting set contain-
ing a}∪ {a′ | for every self–supporting set C for a, ∃S ′ ⊆ S, c ∈ C \ {a} s.t. (S ′, c) ∈ R}
we will denote the primed arguments corresponding to a subset of S+ in which every argu-
ment a either has no self–supporting set or every such set is attacked by S on an argument
different from a.

If a set S ⊆ A is conflict–free in ES, then it is conflict–free in SFES . The set S ∪ Snp
is not necessarily conflict–free in SFES . If a set S ⊆ A is strongly self–supporting in ES,
then S∪Snp is conflict–free in SFES . If S is a σ–extension ofES, where σ ∈ {admissible,
preferred, complete, grounded, stable}, then S ∪ Snp is a σ–extension of SFES .

If a set S ′ ⊆ A′ is a σ′–extension of SFES , where σ′ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then S = S ′ ∩ A is a σ′–extension of ES. If S ′ is
conflict–free in SFES , then S = S ′ ∩ A might not be strongly self–supporting in ES.

The analysis of our approach is also similar to the AFN case. Thus, we will omit
further explanations.
Redefinition of Translation 75: Let FrEAS be the collection of all EASs on the domain
U and FrSETAF the collection of all SETAFs on argument domain U ∪U ′. The translation
def -TrEASSETAF : FrEAS → FrSETAF is defined as def -TrEASSETAF ((A,R,E)) = (A′, R′)
for a framework (A,R,E) ∈ FrEAS , where A′ = A ∪ X ′ for X ′ = {a′ | a ∈ A \ {η}},
and R′ = R∪{({a′}, a) | a ∈ A\{η}, a′ ∈ X ′}∪{({a0, .., an−1}, a′) | a ∈ A\{η}, a′ ∈
X, (a0, ..., an) is a minimal evidential sequence for a}.
Redefinition of Theorem 11.6: Let σEAS ∈ {conflict–free, admissible, complete, pre-
ferred, grounded, stable} be a semantics and SC Tr

σ the removal casting functions for σ de-
fined as SCX

σ (S) = S ∩ A for X = (A,R,E) ∈ FrEAS and S ∈ σ(def -TrEASSETAF (X)).
The translation def -TrEASSETAF is strong under (σ, SC Tr

σ ). It is ⊆–weak under strongly
self–supporting–conflict–free semantics and the defined casting functions. It is semantics
bijective under complete, preferred, grounded and stable semantics and the defined casting
functions.
Analysis of Translation 75: Under the conflict–free, (conflict–free) strongly self–
supporting, admissible, complete, preferred, grounded and stable semantics and their re-
moval casting functions, the translation def -TrEASSETAF is:

• full, target–subclass, overlapping
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• weakly argument domain altering, argument introducing, induced attack relation
introducing and support removing

• generic and weakly semantics domain altering

• semantical

Translation def -TrEASSETAF is not modular. It is faithful under the complete, preferred,
grounded and stable semantics and the defined removal casting functions. We classify this
approach as a defender translation.
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Figure 109: Sample defender SETAF

Example 131. Let us consider the EAS ES = ({η, a, b, c, d, e, f}, {({a, b}, d), ({a}, f),
({d}, c), ({e}, d), ({f}, a)}, {({η}, a), ({η}, c), ({η}, d), ({η}, f), ({a}, b), ({c}, b)}),
previously depicted in Figure 108a and described in Example 130. We can now construct
the defender SETAF for our framework. First of all, as an addition to the arguments
{η, a, b, c, d, e, f}, we need to introduce a primed attacker for every non–η argument in
ES. We then allow them to be attacked by the members of (minimal) evidential sequences
of the arguments they were created for. In other words, to the conflicts already in ES and
the collection {({a′}, a), ({b′}, b), ({c′}, c), ({d′}, d), ({e′}, e), ({f ′}, f)} we also need to
add the attacks {({η}, a′), ({η}, c′), ({η}, d′), ({η}, f ′), ({η, a}, b′), ({η, c}, b′)}. We thus
obtain the SETAF depicted in Figure 109.

The admissible extensions of our SETAF are ∅, {η}, {e′}, {η, a}, {η, e′}, {η, f},
{η, a, b}, {η, a, e′}, {η, e′, f}, {η, a, b, c}, {η, a, b, e′}, {η, d, e′, f}, {η, a, b, c, e′} and
{η, b′, d, e′, f}. Once we remove the primed arguments, we obtain the sets ∅, {η}, {η, a},
{η, f}, {η, a, b}, {η, a, b, c} and {η, d, f}, which were the original admissible extensions
of ES. We can observe that more than one SETAF set can correspond to an EAS one.
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From all of these extensions, the sets {η, e′}, {η, b′, d, e′, f} and {η, a, b, c, e′} are com-
plete, with the first one being also grounded and the remaining two preferred and stable.
We can see that these answers are again the ones we would expect. Additionally, the
extensions of ES and our SETAF are now in a one–to–one relation.

11.2.4 Improvements

In this section we have proposed three translations from EASs to SETAFs; the coalition,
attack propagation, and defender approaches. Although we have not discussed it, a spe-
cialized translation for the conflict–free semantics can be introduced in the same way as
done for AFNs in Translation 62. Unfortunately, none of the other approaches we have
presented were modular, as it is often the case with semantical translations. This situation
is caused by the fact that the validity of an argument can change with the addition and
removal of framework elements. Although we are not yet sure how a modular translation
can be constructed, we can still propose certain improvements that bring us closer to a
structural approach.

All of the translations can be brought into a semi–structural level if we assume that the
source EASs are strongly valid. This lifts the validity checks from the extensions and we
can simply use sets of arguments s.t. each argument is supported by the set the way it is de-
fined by the evidence support relation. This is unfortunately the only improvement that can
be considered in the coalition approach unless we drop the support relation altogether. The
situation improves slightly in the attack propagation case; if we were to further limit our-
selves to the support singular EASs, then every argument would have a single (minimal)
evidential sequence. Thus, the propagation of attacks would be simplified. However, just
like in the AFN–SETAF case, the greatest improvements can be observed in the defender
translation. Due to strong validity, a given argument can now be defended from the auxil-
iary primed argument by its nearest supporters, not necessarily the whole self–supporting
sets. This brings us to the following translation:

Translation 76. Let ES = (A,R,E) be a strongly valid EAS. Its corresponding defender
SETAF SFES = (A′, R′) is constructed the following way:

• A′ = A ∪ {a′ | a ∈ A \ {η}}. The meaning of a′ is “a is not e–supported”,

• add toR′ all attacks fromR and attacks from a′: R′ = R∪{({a′}, a) | a ∈ A\{η}},
and

• for every set C ⊆ A s.t. CEa, add (C, a′) to R′.

Although now the framework looks a little bit different, a similar semantics theorem
holds. Due to the fact that we deal with the strongly valid frameworks, every argument will
possess an evidential sequence. Thus, the definition of Snp can be simplified. Although
we will still use the notion of self–supporting sets in constructing it, please note that their
computation is simplified due to Theorem 4.37.
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Theorem 11.7. Let ES = (A,R,E) be a strongly valid EAS and SFES its corresponding
defender SETAF obtained by Translation 76. By Snp = {a′ | for every self–supporting set
C for a, ∃S ′ ⊆ S, c ∈ C \ {a} s.t. (S ′, c) ∈ R} we will denote the primed arguments
corresponding to a subset of S+ in which every self–supporting set for an argument a is
attacked by S on an argument different from a.

If a set S ⊆ A is conflict–free in ES, then it is conflict–free in SFES . The set S ∪ Snp
is not necessarily conflict–free in SFES . If a set S ⊆ A is strongly self–supporting in ES,
then S∪Snp is conflict–free in SFES . If S is a σ–extension ofES, where σ ∈ {admissible,
preferred, complete, grounded, stable}, then S ∪ Snp is a σ–extension of SFES .

If a set S ′ ⊆ A′ is a σ′–extension of SFES , where σ′ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then S = S ′ ∩ A is a σ′–extension of ES. If S ′ is
conflict–free in SFES , then S = S ′ ∩ A might not be strongly self–supporting in ES.

In the AFN case, the strongly valid translation had almost the same properties as the
original one. In the EAS case, the differences are much more prominent. Thus, we provide
an additional analysis:
Redefinition of Translation 76: Let SV EAS be the collection of all strongly valid
EASs on the domain U and FrSETAF the collection of all SETAFs on argument do-
main U ∪ U ′. The translation sdef -TrEASSETAF : SV EAS → FrSETAF is defined as
sdef -TrEASSETAF ((A,R,E)) = (A′, R′) for a framework (A,R,E) ∈ SV EAS , where
A′ = A ∪X ′ for X ′ = {a′ | a ∈ A \ {η}}, and R′ = R ∪ {({a′}, a) | a ∈ A \ {η}, a′ ∈
X ′} ∪ {(C, a′) | (C, a) ∈ E, a ∈ A \ {η}, a′ ∈ X}.
Redefinition of Theorem 11.7: Let σEAS ∈ {conflict–free, admissible, complete, pre-
ferred, grounded, stable} be a semantics and SC Tr

σ the removal casting functions for σ de-
fined as SCX

σ (S) = S ∩ A for X = (A,R,E) ∈ FrEAS and S ∈ σ(sdef -TrEASSETAF (X)).
The translation sdef -TrEASSETAF is strong under (σ, SC Tr

σ ). It is ⊆–weak under strongly
self–supporting–conflict–free semantics and the defined casting functions. It is semantics
bijective under complete, preferred, grounded and stable semantics and the defined casting
functions.
Analysis of Translation 76: Under the conflict–free, (conflict–free) strongly self–
supporting, admissible, complete, preferred, grounded and stable semantics and their re-
moval casting functions, the translation sdef -TrEASSETAF is:

• source–subclass, target–subclass, injective

• weakly argument domain altering, argument introducing, induced attack relation
introducing

• generic and weakly semantics domain altering

• semi–structural and modular

Translation sdef -TrEASSETAF is faithful under the complete, preferred, grounded and stable
semantics and the defined removal casting functions. We classify this approach as a basic
defender translation.
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Explanation. We are now considering only the strongly valid EASs as our input; thus, the
translation is source–subclass. It is also target–subclass, similarly to the original version.
However, the translation now becomes injective. The original arguments and attacks can
be retrieved by removing primed arguments and the conflicts connected to them; this much
has been possible in the original translation as well. However, now the sets of arguments
attacking a given primed argument correspond precisely to the original evidential supports,
nothing is removed or added. From this we can observe that our approach is injective and
no longer support relation removing, even though further structural properties are the same
as in the previous version of the defender EAS–SETAF approach.

The most prominent changes w.r.t. Translation 75 can be observed in the computa-
tional properties. We are now dealing with a semi–structural translation (we choose not to
classify it as structural due to the fact that the translation exploits defense). However, up to
a certain point, we retrieve modularity. Let ES1 = (A1, R1, E1) and ES2 = (A2, R2, E2)
be two strongly valid frameworks s.t. ES3 = ES1 ∪ ES2 = (A3, R3, E3) is also strongly
valid. The union of the SETAFs associated withES1 andES2 is (A′, R′), whereA′ = A1∪
A2∪{a′ | a ∈ (A1∪A2)\{η}} andR′ = R1∪R2∪{({a′}, a) | a ∈ A1\{η}}∪{({a′}, a) |
a ∈ A2 \ {η}} ∪ {(C, a′) | (C, a) ∈ E1} ∪ {(C, a′) | (C, a) ∈ E2}. R′ can be equivalently
written down asR1∪R2∪{({a′}, a) | a ∈ (A1∪A2)\{η}}∪{(C, a′) | (C, a) ∈ E1∪E2}.
SinceA3 = A1∪A2, R3 = R1∪R2 andE3 = E1∪E2, thenA′ = A3∪{a′ | a ∈ A3\{η}}
and R′ = R3∪{({a′}, a) | a ∈ A3 \{η}}∪{(C, a′) | (C, a) ∈ E3}, which is exactly what
we would have obtained by translating ES3. Therefore, our translation is easily modular
under the given assumptions. �

Finally, we would like to comment on the strength of our approaches. The only exact
results we have obtained were for the complete, preferred, grounded and stable semantics.
One can repeat the construction from Translation 62 to obtain an exact, though specialized,
method for the conflict–free semantics. This leaves us with admissibility. Although we
cannot say with absolute certainty whether a full and exact translation exists under this
particular semantics (unlike in the AF case, SETAF signatures are not yet described),
we believe it is possible based on the results in the AFN case from (see Section 10.1.1).
Establishing an appropriate translation is left for future work.

11.3 EAS as BAF
The translation from EASs to BAFs is not much different than from AFNs to BAFs (see
Section 10.4). Initially, it was proposed that in order to handle the evidential support
one needs to introduce new notions to BAFs [30]. However, the results in [78] showed
that the evidential and necessary supports are more tightly connected than it was first
anticipated. Therefore, we can exploit this relation and create an approach that will not
require modifying BAFs in any particular way. Nevertheless, for similar reasons as in
Section 10.4, we need to limit ourselves to strongly valid and support singular EASs.
Additionally, we will consider only the attack binary frameworks, though please note that
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one can exploit e.g. the SETAF–AFN and AFN–BAF Translations 29 and 67 in order to
bypass this particular restriction (see also Section 6.2 for some discussion).

Translation 77. Let ES = (A,R,E) be a support singular, attack binary and strongly
valid EAS. The associated BAF isBFES = (A,R′, S), whereR′ = {(a, b) | ({a}, b) ∈ R}
and S = {(a, b) | ∃X ⊆ A s.t. a ∈ X and (X, b) ∈ E}.

We can notice that this translation produces BAFs with support acyclic subgraphs.
Based on Lemma 4.73, we can also observe there is only one argument, namely η, that
will not be on the receiving end of any support link:

Theorem 11.8. Let ES = (A,R,E) be a support singular, attack binary and strongly
valid EAS and BFES = (A,R′, S) its associated BAF created with Translation 77. Then
BFES is support acyclic and η ∈ A is the only argument s.t. @a ∈ A, aSη.

We can easily adapt the proof of Theorem 9.16 in order to show the behavior of the
semantics. The only thing worth noticing is the fact that in the EAS–BAF direction, we do
not need to to add any new arguments or relations to the framework, unlike in the BAF–
EAS case. Thus, the current version is somewhat stronger, at least when we consider the
particular subclass that we want to translate:

Theorem 11.9. Let ES = (A,R,E) be a support singular, attack binary and strongly
valid EAS, BFES = (A,R′, S) its associated BAF obtained through Translation 77 and
R′′ = {Rsec} the collection of secondary attacks in BFES . Then, a set Y ⊆ A is:

• +conflict–free w.r.t. ∅ in BFES iff it is conflict–free in ES.

• inverse closed under S in BFES iff it is self–supporting in ES.

• +conflict–free w.r.t. R′′ and inverse closed under S in BFES iff it is strongly self–
supporting in ES.

• an i–admissible extension of BFES w.r.t. (R′′, R′′) iff it is admissible in ES.

• an i–preferred extension of BFES w.r.t. (R′′, R′′) iff it is preferred in ES.

• a d–complete extension of BFES w.r.t. (R′′, R′′) iff it is complete in ES.

• a d–grounded extension of BFES w.r.t. R′′ iff it is grounded in ES.

• a stable extension of BFES w.r.t. R′′ iff it is stable in ES.

The properties of BAF–AFN and AFN–BAF translations were the same. In the EAS
case, even though some properties of Translation 60 are true for Translation 77 as well,
there are some significant differences as well.
Redefinition of Translation 77: Let SSigEAS ∩ABinEAS ∩SV EAS be the collection of
all support singular, attack binary and strongly valid EASs and SAcyBAF the collection
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of all support acyclic BAFs, both on domain U . The translation TrEASBAF : (SSigEAS ∩
ABinEAS ∩ SV EAS) → SAcyBAF is defined as TrEASBAF ((A,R,E)) = (A,R, S) for a
framework (A,R,N) ∈ (SBinAFN ∩ SV AFN), where S = {(a, b) | ({a}, b) ∈ N}.
Redefinition of Theorem 11.9: Let σEAS ∈ {self–supporting, strongly self–supporting,
admissible, preferred, complete, grounded, stable} be an EAS semantics and σBAF ∈
{inverse closed, +conflict–free and inverse closed, i–admissible, i–preferred, d–complete,
d–grounded, stable} be a similar BAF semantics with identical parametrization consisting
of secondary attacks. Let SC Tr

σ be the identity casting functions for σ. The translation
TrEASBAF is strong and semantics bijective under (σ, SC Tr

σ ). It is also strong and semantics
bijective under the +conflict–free – conflict–free semantics with empty parametrization
and identity casting functions.
Analysis of Translation 77: Under the (inverse closed) self–supporting, (+conflict–free
and inverse closed) strongly self–supporting, (i–) admissible, (i–) preferred, (d–) complete,
(d–) grounded and stable semantics with identical parametrization consisting of secondary
attacks, (+conflict–free) conflict–free semantics with empty parametrization and identity
casting functions, the translation TrEASBAF is:

• source–subclass, target–subclass and injective

• argument domain and structure preserving

• generic, semantics domain preserving and exact

• structural and modular

Translation TrEASBAF is classified as basic under the listed semantics and casting functions.

Explanation. The fact that the translation is both source and target–subclass can be easily
seen from its redefinition. We can observe that the set of arguments is the same both in
a given EAS and its associated BAF. In a certain sense, so is the set of conflicts – we are
dealing with attack binary EASs and the only modification the R relation undergoes is a
structural shift from single element sets to just single elements. Furthermore, as the source
frameworks are support singular, the original supporting set in the E relation can be easily
retrieved from the target BAF by collecting all of the supporters from the S relation. Thus,
our translation is injective.

It is easy to see from the redefinitions of Translation 77 and Theorem 11.9 that both
argument and semantics domain are preserved by our transformation. Based on the above
explanation we also qualify this approach as structure preserving. The simplicity of this
translation makes us classify it as basic. Moreover, unlike the BAF–EAS Translation 60,
this approach is modular, at least under the assumption we do not breach the domain
restrictions by joining two EASs. �
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11.4 EAS as AFN
In our previous work we have already studied the problem of translating EASs into AFNs
[77, 78]. Our focus was mostly on how to shift between the necessary and evidential
supports. Consequently, we have only considered a subclass of EASs which made use
of binary attacks. In this section we will present the existing translation and propose a
general approach.

11.4.1 Attack Binary EASs

Structurally speaking, transforming the evidential support relation E into the necessary
one N is like shifting between DNF and CNF forms, as already stated in Section 10.5.
However, there is a slight difference in what is considered a valid argument in AFNs and
EASs that needs to be dealt with. In AFNs, the ability to derive an argument (through sup-
port) in an acyclic manner was sufficient. In EASs, it is further strengthened by requiring
not just acyclicity, but grounding in evidence. In other words, an argument that receives
no support at all would be considered valid in AFNs and quite the opposite in EASs. An
argument not coming from evidence, which is treated as the only source of truth, claims
validity on its own, thus in a sense behaving as a self–supporter. We draw on this obser-
vation and modify N by introducing additional links for such arguments, which renders
them (and whatever is based on them) AFN–invalid as desired.

Translation 78. Let ES = (A,R,E) be an attack binary EAS. The corresponding AFN
is FNES = (A,R′, N), where R′ and N are created as follows:

• for every two arguments a, b s.t. ({a}, b) ∈ R, put (a, b) in R′, and

• let a 6= η be an argument in A and Z = {Z1, .., Zn} be a collection of all sets Zi s.t.
ZiEa. If Z is empty, add ({a}, a) to N . Otherwise, for every subset Z ′ of

⋃n
i=1 Zi

s.t. ∀ni=1 Z
′ ∩ Zi 6= ∅, add (Z ′, a) to N .

Again, we may note that the way the N relation is created can lead to certain redun-
dancies in the framework. Nevertheless, it can be addressed by assuming minimality of
the created Z ′ sets or using constructions such as in Section 10.5. Whichever way we
choose, we still produce frameworks that are assigned the same minimal normal form, and
thus from the semantical perspective this is not an important issue. Moreover, our target
framework still satisfies certain normal forms:

Theorem 11.10. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. If FNES is strongly consistent, then
so is ES. However, it is not the case that if ES is strongly consistent, then so is FNES .
If ES is all–supported and strongly consistent, then FNES is strongly consistent. FNES

might not be in minimal form, even if ES is. If ES is weakly (strongly) valid, then so is
FNES . If ES is weakly and relation valid, then FNES is relation valid.
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It is worth noting that due to the differences between necessary and evidential sup-
ports, the produced AFNs will all have one thing in common – there will be only one
argument, namely η, that will not receive any support and will not participate in any con-
flict. Although the property can seem trivial, the fact that this single argument will be at the
beginning of every powerful sequence can be exploited for the computational purposes.

Let us now look at the semantics. We can observe that even though the necessary
support contains certain links not present in the evidential one, the valid arguments are the
same in both structures and there is a strong relation between self–supporting and coherent
sets [77, 78]:

Theorem 11.11. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. (a0, ..., an) is an evidential sequence
for a on S ⊆ A in ES iff (a0, ..., an) is a powerful sequence for a on S in FNES . S is
self–supporting in ES iff it is coherent FNES .

Since the attack relation is not altered in any particular way, we can also connect de-
fense in AFNs with acceptability in EASs quite easily. However, please note that there
is a particular difference in the support requirements of these two notions; in AFNs, de-
fense leads to the coherence of the defending set, while EAS acceptability is more relaxed.
Therefore, we need to assume that we are working with self–supporting (coherent) sets,
just like in the case of Translation 68.

Theorem 11.12. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. Let S ⊆ A be a self–supporting
(coherent) set in ES (FNES). An argument a ∈ A is acceptable w.r.t. S in ES iff it is
defended by S in FNES .

The above results bring us to the correspondence between the extensions of the two
frameworks [77, 78]:

Theorem 11.13. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its corresponding AFN obtained through Translation 78. A set S ⊆ A is (strongly)
self–supporting in ES iff it is (strongly) coherent in FNES . S is a σ–extension in ES,
where σ ∈ {conflict–free, admissible, preferred, complete, grounded, stable}, iff it is a
σ–extension in FNES .

We complete our previous results by an additional analysis of the properties of this
translation:
Redefinition of Translation 78: Let ABinEAS be the collection of all attack binary
EASs and FrAFN the collection of all AFNs, both based on the domain U . The translation
bin-TrEASAFN : ABinEAS → FrAFN is defined as bin-TrEASAFN((A,R,E)) = (A,R′, N)
for a framework (A,R,E) ∈ FrEAS , where R′ = {(a, b) | ({a}, b) ∈ R} and N =
{({a}, a) | a ∈ A \ {η}, Za = ∅} ∪ {(Z ′, a) | a ∈ A,Z ′ ⊆

⋃na
i=1 Z

a
i ,∀nai=1 Z

′ ∩ Za
i 6= ∅}

given that Za = {Za
1 , .., Z

a
n} is the collection of all subsets of A s.t. Za

i Ea.
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Redefinition of Theorems 11.11 and 78: Let σEAS ∈ {conflict–free, self–supporting,
strongly self–supporting, admissible, preferred, complete, grounded, stable} be an EAS
semantics and σAFN ∈ {conflict–free, coherent, strongly coherent, admissible, preferred,
complete, grounded, stable} be a similar AFN semantics. Let SC Tr

σ be the identity cast-
ing functions for σ. The translation bin-TrEASAFN is strong and semantics bijective under
(σ, SC Tr

σ ).
Analysis of Translation 78: Under the conflict–free, (coherent) self–supporting,
(strongly coherent) strongly self–supporting, admissible, preferred, complete, grounded
and stable semantics and identity casting functions, the translation bin-TrEASAFN is:

• source–subclass, target–subclass and overlapping

• argument domain preserving and support relation introducing

• generic, semantics domain preserving and exact

• semi–structural

The translation bin-TrEASAFN is not modular. We classify it as basic under the listed seman-
tics and casting functions.

Explanation. Our translation works only for the attack binary EASs, and thus we clas-
sify it as source–subclass. Based on the previous explanations, we also decide to clas-
sify it as target–subclass. Our approach is also overlapping for two reasons. First of all,
we introduce additional support links into the framework for argument that are not sup-
ported at all. This modification means that e.g. two different EASs ({η, a}, ∅, ∅) and
({η, a}, ∅, {({a}, a)}) would be assigned the same AFN ({η, a}, ∅, {({a}, a)}). Another
reason why our translation is overlapping comes from the way new supporting sets are
created from the old ones. In this case if two frameworks have the same minimal form,
they might (though not in every situation) be assigned the same target structure. We can
imagine an argument c supported by sets {a}, {b} and {a, b} in one EAS and by {a}, {b}
in the other. In both of the target AFNs, c will be assigned the set {a, b}.

The translation clearly preserves both of the argument and semantics domains. It is
also support introducing due to the fact that new links are created for the unsupported
arguments. Aside from that, one can choose to perceive certain redundancies in the way
the N relation is created as adding support as well. Nevertheless, for reasons similar
as in Translation 68, we choose not to classify our approach as support removing, even
though e.g. in the example above two different collections of supporting sets in E can be
transformed into a single one in N .

The amount of handled semantics classifies our translation as generic. Its exactness
follows easily form the redefinition of Theorems 11.11 and 78. Although our approach is
rather simple, we choose to classify it as semi–structural due to the required adaptation
stemming from the way validity of arguments is interpreted in EASs and AFNs. Finally,
our translation is not modular, similarly as in the case of Translation 68. �
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Example 132. Let ES = ({η, a, b, c, d, e, f, g}, {({d}, e), ({e}, a), ({f}, c), ({g}, f)},
{({η}, a), ({η}, b), ({b}, c), ({η}, e), ({a, b}, d), ({c}, d), ({e}, f)}) be the EAS depicted
in Figure 110a. Its strongly self–supporting sets are ∅, {η}, {η, a}, {η, b}, {η, e}, {η, a, b},
{η, b, c}, {η, b, e}, {η, e, f}, {η, a, b, c}, {η, a, b, d}, {η, b, c, d}, {η, b, c, e}, {η, b, e, f}
and {η, a, b, c, d}. From this, the sets ∅, {η}, {η, b}, {η, e, f}, {η, a, b, d}, {η, b, c, d},
{η, b, e, f} and {η, a, b, c, d} are admissible. Finally, the complete extensions are {η, b},
{η, b, e, f} and {η, a, b, c, d}, with the first set being also grounded and the other two pre-
ferred and stable in ES.

Let us now talk about the construction of the AFN FNES associated with ES. The
set of arguments and the attack relation stay the same. Due to the fact that the argument
a is supported only by one, single–element set {η}, the same set is its only supporter
in FNES . Similar holds for arguments b, c, e and f . Argument g does not posses an
evidential sequence in ES. Consequently, it will become a self–supporter in FNES and
the support ({g}, g) needs to be added to the framework. Let us now consider argument d;
its new supporting sets are {a, c}, {b, c} and {a, b, c}. This finally gives us the framework
FNES = ({η, a, b, c, d, e, f, g}, {(d, e), (e, a), (f, c), (g, f)}, {({η}, a), ({η}, b), ({η}, e),
({g}, g), ({b}, c), ({e}, f), ({a, c}, d), ({b, c}, d), ({a, b, c}, d)}). We can observe that
the ({a, b, c}, d) support is redundant and can be removed in order to obtain the minimal
form of our AFN, depicted in Figure 110b. The (minimal) powerful sequences for d are
(η, c, d) and (η, a, b, d). We can easily check that they correspond to the minimal evidential
sequences for d in ES.

The easy admissible extensions of FNES are ∅, {η} and {η, b}; neither η nor b are at-
tacked in the framework. Another possible set is {η, a, b, d}; all arguments are e–supported
by the set and d attacks the only minimal sequence for f . Due to this, it attacks the se-
quence for f as well. Thus, {η, b, c, d} and {η, a, b, c, d} can be shown to be admissible
in FNES . The next admissible set is {η, e, f} – we can observe that f attacks c and thus
every self–supporting set for d. The final extension is {η, b, e, f}. We can observe that
these results are the same as in ES.

We can observe that ∅ defends η, {η} and {η, e, f} defend b, {η, a, b, d} defends c and
{η, b, c, d} defends a. Therefore, our complete extensions are {η, b}, {η, a, b, c, d} and
{η, b, e, f}, which are exactly the ones that ES produces. We can easily check that the
grounded, preferred and stable are also the same between ES and FNES .

11.4.2 General EASs

Translation 78 highlighted the differences between the evidential and necessary supports
and showed how one can transform one into the other. However, it left out one important
difference between EASs and AFNs, namely the fact that the former deal with group
attack, and the latter only with binary. In order to address that, we will merge Translations
29 and 78.

Translation 79. Let ES = (A,R,E) be an EAS. The corresponding AFN is FNES =
(A′, R′, N), where A′, R′ and N are created as follows:
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Figure 110: Sample attack binary EAS and its minimal form associated AFN

• let att(S) = {S ′ | S ′ ⊆ S ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, where S ⊆ A, be
a function returning subsets of S of size bigger than 1, which attack an argument in
A,

• A′ = A ∪ att(A),

• R′ = {(X, y) | (X, y) ∈ R or ({X}, y) ∈ R}, and

• N = {({X}, Y ) | X ∈ A, Y ∈ att(A), X ∈ Y } ∪ {({a}, a) | a ∈ A \ {η}, Za =
∅}∪{(Z ′, a) | a ∈ A,Z ′ ⊆

⋃na
i=1 Z

a
i ,∀nai=1 Z

′∩Za
i 6= ∅} given thatZa = {Za

1 , .., Z
a
n}

is the collection of all subsets of A s.t. Za
i Ea.

The AFN produced with Translation 79 preserves most of the normal forms that the
AFN created with Translation 78 did. However, one can note that previously, strong con-
sistency of the target AFN implied strong consistency of the source EAS. Unfortunately,
due to the modifications caused by group attacks, it is no longer the case.

Theorem 11.14. Let ES = (A,R,E) be an EAS and FNES = (A,R′, N) its associated
AFN obtained through Translation 79. It is not the case that if ES is strongly consistent,
then so is FNES . Moreover, it is not the case that if FNES is strongly consistent, then so
is ES. If ES is all–supported and strongly consistent, then FNES is strongly consistent.
FNES might not be in minimal form, even if ES is. If ES is weakly (strongly) valid, then
so is FNES . If ES is weakly and relation valid, then FNES is relation valid.

The following relation between the extensions of two frameworks can be shown by
adapting the proofs Theorems 6.6, 11.11 and 11.13. The properties of our approach will be
a result of properties of Translations 29 and 78 and thus we will omit further explanations.
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Theorem 11.15. Let ES = (A,R,E) be an EAS and FNES = (A,R′, N) its corre-
sponding AFN obtained through Translation 79. If S ⊆ A is conflict–free in ES, then
both S and S ′ = S ∪ att(S) are conflict–free in FNES . If S ⊆ A is (strongly) self–
supporting in ES, then S and S ′ = S ∪ att(S) are (strongly) coherent in FNES . If S
is a σ–extension of ES, where σ ∈ {admissible, preferred, complete, grounded, stable},
then S ′ = S ∪ att(S) is a σ–extension of FNES . If S ′ ⊆ A′ is a conflict–free extension
of FNES , then S = S ′ ∩ A might not be conflict–free in ES. If S ′ is coherent in FNES ,
then S = S ′ ∩ A is self–supporting in ES. If S ′ is strongly coherent in FNES , then
S = S ′ ∩ A might not be strongly self–supporting in ES. If S ′ is σ–extension of FNES ,
then S = S ′ ∩ A is a σ–extension of ES.

Redefinition of Translation 79: Let FrEAS be the collection of all EASs based on
domain U and FrAFN the collection of all AFNs based on the domain U ∪ (2U \ ∅). The
translation TrEASAFN : FrEAS → FrAFN is defined as TrEASAFN((A,R,E)) = (A′, R′, N)
for a framework (A,R,E) ∈ FrEAS , where A′ = A ∪ att(A) for att(A) = {S ′ | S ′ ⊆
A ∧ |S ′| > 1 ∧ ∃y ∈ As.t. (S ′, y) ∈ R}, R′ = {(X, y) | (X, y) ∈ R or ({X}, y) ∈ R}
and N = {({X}, Y ) | X ∈ A, Y ∈ att(A), X ∈ Y } ∪ {({a}, a) | a ∈ A \ {η}, Za =
∅} ∪ {(Z ′, a) | a ∈ A,Z ′ ⊆

⋃na
i=1 Z

a
i ,∀nai=1 Z

′ ∩ Za
i 6= ∅} given that Za = {Za

1 , .., Z
a
n} is

the collection of all subsets of A s.t. Za
i Ea.

Redefinition of Theorem 11.15: Let σEAS ∈ {self–supporting, admissible, preferred,
complete, grounded, stable} be an EAS semantics and σAFN ∈ {coherent, admissible,
preferred, complete, grounded, stable} be a similar AFN semantics. Let SC Tr

σ be the
removal casting functions for σ defined as SCX

σ (S) = S∩A for X = (A,R,E) ∈ FrEAS
and S ∈ σAFN(TrEASAFN(X)). The translation TrEASAFN is strong under (σ, SC Tr

σ ). It is ⊆–
weak under the conflict–free and strongly self–supporting – strongly coherent semantics
and the defined casting functions. It is semantics bijective under the complete, preferred,
grounded and stable semantics and the defined casting functions.
Analysis of Translation 79: Under the conflict–free, (coherent) self–supporting,
(strongly coherent) self–supporting conflict–free, admissible, preferred, complete,
grounded and stable semantics and removal casting functions, the translation TrEASAFN is:

• full, target–subclass and overlapping

• argument domain altering, argument introducing, support relation introducing, at-
tack relation preserving

• generic and semantics domain altering

• semi–structural

The translation TrEASAFN is not modular. It is faithful under the complete, preferred,
grounded and stable semantics and removal casting functions. We classify the translation
as a basic–coalition approach under the listed semantics and casting functions.
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Example 133. Let us consider the EAS ES = ({η, a, b, c, d, e, f}, {({a, b}, d),
({a}, f), ({d}, c), ({e}, d), ({f}, a)}, {({η}, a), ({η}, c), ({η}, d), ({η}, f), ({a}, b),
({c}, b)}) previously analyzed in Example 130. Its associated AFN is FNES =
({η, a, b, c, d, e, f, {a, b}}, {({a, b}, d), (a, f), (d, c), (e, d), (f, a)}, {({η}, a), ({η}, c),
({η}, d), ({η}, f), ({a, c}, b), ({e}, e), ({a}, {a, b}), ({b}, {a, b})}), as seen in Figure
111.

The admissible extensions of this framework are ∅, {η}, {η, a}, {η, f}, {η, a, b},
{η, a, b, {a, b}}, {η, d, f} and {η, a, b, c, {a, b}}. They correspond to the sets ∅, {η},
{η, a}, {η, f}, {η, a, b}, {η, d, f} and {η, a, b, c}, which were the original admissible
extensions of ES. We can observe that some of the EAS extensions can be produced
from more than one AFN set. The complete extensions of FNES are {η}, {η, d, f} and
{η, a, b, c, {a, b}}. We can again retrieve precisely the desired complete sets of ES; how-
ever, this time the relation between the answers of both frameworks is one to one. We can
now easily check that grounded, preferred and stable extensions ofES and FNES are also
related in the desired manner.

11.4.3 Improvements

Although we have obtained an exact translation from attack binary EASs to AFNs, the
general method is faithful at best. However, based on the results in Sections 6.1.3 and
10.1.1, it is unlikely we can improve the strength of the translation, at least where conflict–
free, admissible and preferred semantics are concerned. Unfortunately, it is difficult to say
anything conclusive concerning the complete and stable semantics. Future research on
semantics signatures will help us solve these issues.
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11.5 EAS as ADF
Finally, we can present the possible methods for translating EASs into ADFs. Just like
in the case of EAFs and AFNs, we need to classify our approaches w.r.t. the consistency
criterion (see Section 2.3.9). Not surprisingly, we will focus on the aa–family of semantics
on the ADF side in order to grasp the validity of arguments stemming from support cycles.
However, just like in AFNs, an argument that requires no support (i.e. has a minimal
decisively in interpretation with an empty t part) is “good” in ADFs and can start a pd–
acyclic sequence. Thus, we need to repeat the EAS–AFN construction and use the self–
supporter method in order to ensure that the arguments not backed by evidence are not
considered valid.

Similarly as in the AFN–ADF translations, an acceptance condition in EAS–produced
ADFs can be seen as consisting of two parts. The first one – the attack part – will be created
as in the SETAF–ADF Translation 31. In other words, given the collection of attacking
sets Z = {Z1, ..., Zn} for an argument a, the subformula associated with Zi = {zi1, ..., zini}
is ¬zi1∨ ....∨¬zini (abbreviated with

∨
¬Zi), and the formula associated with Z altogether

is
∨
¬Z1 ∧ ... ∧

∨
¬Zn.

In the AFN case, the support part of an acceptance condition was a conjunction of
(disjunctive) clauses. In the EAS case, it is a disjunction of conjunctive clauses, as in this
framework at least one (full) supporting set of a given argument needs to be present in
order to consider the argument sufficiently supported. Therefore, given the collection of
all sets Z = {Z1, ..., Zn} supporting a given argument through the evidential relation, the
subformula associated with Zi = {zi1, ..., zini} is zi1 ∧ ....∧ zini (abbreviated with

∧
Zi) and

the formula associated with Z altogether is
∧
Z1 ∨ ... ∨

∧
Zn.

Having explained the notation, we can move on to the translations themselves.

11.5.1 Strongly Consistent EASs

We will start with presenting the translation limited to strongly consistent EASs only, as
in this case we require no auxiliary arguments and it distinctively shows how evidential
support can be simulated within ADFs. The creation of acceptance conditions will in
principle follow the construction we have shown before; the only required adaptation is
the same as in the case of EAS–AFN Translation 78, i.e. the addition of a support link to
those arguments that receive no support at all.

Translation 80. Let ES = (A,R,E) be a strongly consistent EAS. The corresponding
ADF DES = (A,L,C) is created as follows:

1. for every two arguments a, b, if there exists a set Z ⊆ A containing a s.t. ZEb or
ZRb, add (a, b) to L. If there is no set Z ⊆ A s.t. ZEb and b 6= η, add (b, b) to L,
and

2. for an argument a, the functional acceptance condition is:
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• if a = η, then there is no argument attacking or supporting it and the accep-
tance condition simply maps ∅ to in,

• if a 6= η and there exists B ⊆ A s.t. BEa, then:

– every P ′ ⊆ par(a) is mapped to out iff ∃B ⊆ P ′ s.t. BRa or @Z ⊆ P ′

s.t. ZEa, and
– all other subsets of par(a) are in.

• if a 6= η and there is no subset B ⊆ A s.t. BEa, we include self–support:

– every P ′ ⊆ par(a) is mapped to out iff ∃B ⊆ P ′ s.t. BRa or a /∈ P ′, and
– all other subsets of par(a) are in.

3. for an argument a ∈ A, the propositional condition is:

• if a = η, then Ca = >, and

• if a 6= η, then Ca = atta ∧ supa, where atta and supa are defined as follows:

– let B = {B1, ..., Bn} be the collection of all subsets of A s.t. BiRa. The
attack subformula of the acceptance condition is atta = (

∨
¬B1 ∧ ... ∧∨

¬Bn) or atta = > if B = ∅, and
– let Z = {Z1, ..., Zm} be the collection of all subsets of A s.t. ZiEa. If
Z = ∅, then supa = a. If Z 6= ∅, it is supa = (

∧
Z1 ∨ ... ∨

∧
Zm).

Please note that due to the introduction of self–support to unsupported arguments, it
might be the case that an argument that was originally strongly consistent receives a falsum
acceptance condition. Thus, the target ADF might not be in the cleansed form. However,
please note that due to the acyclicity of the semantics, this does not make a difference. A
self–supporter is automatically falsified in the acyclic range interpretation due to lack of
any acyclic pd–evaluation to start with. A falsum argument is automatically falsified in
any type of range interpretation, thus still giving us the desired behavior in this case.

Unfortunately, even though the semantics are not affected, the “accidental” introduc-
tion of falsum arguments in this case does break some of the normal forms. If introducing
the self–link causes a falsum acceptance condition, then an argument has at least one re-
dundant parent, namely itself. Thus, we breach the redundancy–free form, even if the
source EAS was minimal, and this affects the conditions under which we can show that
the produced ADF is in certain validity forms.

Theorem 11.16. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Then DES is a BADF. If ES is
all–supported, then DES is cleansed. If ES is all–supported and minimal, then DES is
redundancy–free. If ES is weakly valid, then DES is weakly valid. If it is minimal, all–
supported and relation valid, then DES is relation valid. If ES is strongly valid, then DES

is an AADF+. If it is in addition minimal, then DES is strongly valid.
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Despite the issues with normal forms, the semantics behave in a satisfactory manner
under this translation. Similarly as in the EAS–AFN Translation 78, we can observe that
the relation between the self–supporting and pd–acyclic sets is strong:

Theorem 11.17. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be a set of argu-
ments. For a given evidential sequence on S for an argument s ∈ S we can construct a
corresponding acyclic pd–evaluation and vice versa. S is self–supporting in ES iff it is
pd–acyclic in DES .

We can recall that the conflict–free semantics in ADFs had a slightly broader meaning
than in e.g. EASs in AFNs. We focus on satisfying the acceptance conditions and not
on checking what is the nature of the relations between the arguments in a given set.
Thus, if we wanted to draw connections between EAS conflict–free and ADF conflict–
free semantics, we would have to resort to translating the attack subgraph into an ADF, i.e.
use Translation 31. In the current approach, we connect (pd–acyclic) conflict–freeness to
strongly self–supporting sets:

Theorem 11.18. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. A set of arguments S ⊆ A is
strongly self–supporting in ES iff it is pd–acyclic conflict–free in DES .

Having explained the relation between self–supporting and pd–acyclic sets, we can
now connect the discarded sets in both frameworks and relate acceptability to being deci-
sively in:

Lemma 11.19. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be self–supporting
conflict–free in ES and thus pd–acyclic conflict–free in DES . S attacks a ∈ A or every
set of arguments e–supporting a in ES iff the acyclic range vaS of S blocks every acyclic
pd–evaluation of a in DES .

Lemma 11.20. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be self–supporting
conflict–free in ES and thus pd–acyclic conflict–free in DES . An argument a ∈ A is
acceptable w.r.t. S in ES iff it is decisively in w.r.t. vaS in DES .

With these partial results we can finally state the relation between EAS and ADF se-
mantics:

Theorem 11.21. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. A set of arguments S ⊆ A is a σ–
extension of ES, where σ ∈ {admissible, preferred, complete} iff it is an aa–σ–extension
of DES . S is stable in ES iff it is stable in DES . S is grounded in ES iff it is acyclic
grounded in DES .
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We can now put our results into the classification system. Although a lot of properties
of our EAS–ADF translation will be similar as in the AFN–ADF Translation 69, there are
certain differences, most notably the loss of modularity.
Redefinition of Translation 80: Let SConsEAS be the collection of all strongly consis-
tent EASs and BADF the collection of all bipolar ADFs, both on domain U . The transla-
tion sc-TrEASADF : SConsEAS → BADF is defined as sc-TrEASADF ((A,R,E)) = (A,L,C),
where L = {(x, y) | ∃X ⊆ A, x ∈ X s.t. (X, y) ∈ E ∪R} ∪ {(x, x) | x 6= η,@X ⊆ A s.t.
XEx}, and C = {Ca | a ∈ A} is the set of acceptance conditions s.t. given the collection
B = {B1, ..., Bn} of all subsets of A s.t. BiRa and the collection Z = {Z1, ..., Zm} of all
subsets of A s.t. ZiEa, the condition Ca is defined as a) Ca(P ′) = out for P ′ ⊆ par(a) iff
∃X ⊆ P ′ s.t. XRa or (Z 6= ∅ and @Z ⊆ P ′ s.t. ZEa) or (Z = ∅ and a /∈ P ′), otherwise,
Ca(P

′) = in; or b) Ca = atta ∧ supa where

atta =

{∨
¬B1 ∧ ... ∧

∨
¬Bn if B 6= ∅

> if B = ∅

supa =


∧
Z1 ∨ ... ∨

∧
Zm if Z 6= ∅

a if Z = ∅ and a 6= η

> otherwise
Redefinition of Theorems 11.17, 11.18 and 11.21: Let σEAS ∈ {self–supporting,
strongly self–supporting, admissible, preferred, complete, grounded, stable} be an EAS se-
mantics and σADF ∈ {pd–acyclic, pd–acyclic conflict–free, aa–admissible, aa–preferred,
aa–complete, acyclic grounded, stable} a similar ADF semantics. Let SC Tr

σ the identity
casting functions for σ. The translation sc-TrEASADF is strong and semantics bijective under
(σ, SC Tr

σ ).
Analysis of Translation 80: Under the (pd–acyclic) self–supporting, (pd–acyclic
conflict–free) strongly self–supporting, (aa–) admissible, (aa–) preferred, (aa–) complete,
(acyclic) grounded and stable semantics and identity casting functions, the translation
sc-TrEASADF is:

• source–subclass, target–subclass and overlapping

• argument domain preserving and relation introducing

• generic, semantics domain preserving and exact

• semi–structural

The translation sc-TrEASADF is neither ⊕ nor ⊗–modular. We classify sc-TrEASADF as basic
under the listed semantics and casting functions.

Explanation. Most of the explanations are the same as in Translation 69. There are
only three differences between this and the mentioned approach. Translation sc-TrEASADF is
relation introducing – some modifications are done concerning the unsupported arguments.
Due to this, we can also see the approach as semi–structural. Moreover, unlike the strongly
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consistent AFN–ADF approach, the EAS–ADF translation is not modular. We can repeat
the analysis done in Translation 31 to show the loss of ⊕–modularity. Concerning ⊗–
modularity, let us consider an argument a supported by a set {b} in one framework and {c}
in the other. This produces two acceptance conditions, C1 = b and C1 = c respectively.
Joining them with the ⊗ approach produces a condition C3 = b ∧ c, while the formula
associated with receiving support from sets {b} and {c} in a given EAS would be b ∨ c.
Hence, our approach is neither⊕ nor⊗–modular. In the future, this issue can be addressed
by separating an acceptance condition and applying the ⊗–method to the attack part and
⊕–one to the support part. �

Example 134. Let ES = ({η, a, b, c, d, e, f, g}, {({d}, e), ({e}, a), ({f}, c), ({g}, f)},
{({η}, a), ({η}, b), ({b}, c), ({η}, e), ({a, b}, d), ({c}, d), ({e}, f)}) be the EAS de-
picted in Figure 112a, previously analyzed in Example 132. Its associated ADF is
DES = ({η, a, b, c, d, e, f, g}, {Cη = >, Ca = η ∧ ¬e, Cb = η, Cc = b ∧ ¬f ,
Cd = (a∧b)∨c, Ce = η∧¬d, Cf = e∧¬g, Cg = g}) 28, depicted in Figure 112b. We can
observe that a self–supporting link is added to argument g due to its lack of an evidential
sequence in ES.

The (minimal) acyclic evaluations for arguments in DES are evη = ((η), ∅), eva =
((η, a), {e}), evb = ((η, b), ∅), evc = ((η, b, c), {f}), ev1d = ((η, a, b, d), {e}), ev2d =
((η, b, c, d), {f}), eve = ((η, e), {d}) and evf = ((η, e, f), {d, g}). The argument g
possesses no acyclic evaluation. We can therefore construct the following pd–acyclic
conflict–free extensions: E1 = ∅, E2 = {η}, E3 = {η, a}, E4 = {η, b}, E5 = {η, e},
E6 = {η, a, b}, E7 = {η, b, c}, E8 = {η, b, e}, E9 = {η, e, f}, E10 = {η, a, b, c},
E11 = {η, a, b, d}, E12 = {η, b, c, d}, E13 = {η, b, c, e}, E14 = {η, b, e, f} and E15 =
{η, a, b, c, d}. Their acyclic discarded sets are respectively E a+

1 = E a+
2 = E a+

3 = E a+
4 =

E a+
6 = E a+

7 = E a+
10 = {g}, E a+

5 = E a+
8 = E a+

13 = {a, g}, E a+
9 = E a+

14 = {a, c, d, g} and
E a+
11 = E a+

12 = E a+
15 = {e, f, g}.

Using the above information, we can see that E3, E6 and E10 are not aa–admissible;
the argument a is not decisively in w.r.t. their acyclic range interpretations. Similarly, e
is not decisively in w.r.t. the ranges of E5, E8 and E13, while c is not decisively in w.r.t.
the ranges of E7 and E13. This leaves E1, E2, E4, E9, E11, E12, E14 and E15 as the aa–
admissible extensions of DES . We can observe that exactly the same sets are admissible
in ES. To the set E1 we can add η; thus, this extension is not aa–complete in DES . To E2

and E9 we can introduce b, which disqualifies these sets as well. Finally, c is decisively in
w.r.t. the acyclic range of E11 and a w.r.t. the range of E12. Hence, E4, E14 and E15 are
left as the aa–complete extensions of DES . This is again in agreement with the extensions
of ES. The acyclic grounded extension of DES is E4, while E14 and E15 are aa–preferred
in DES . This corresponds to the grounded and preferred sets of ES. Finally, by looking
at the discarded sets, we can see that E14 and E15 are stable in DES , which is the desired
answer.

28Please note we ignore explicitly stating the link set in this case; the connections can be seen in the
associated figure.
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Figure 112: Sample EAS and its associated ADF

Example 135. Let us consider the EAS ES = ({η, a, b, c, d, e, f}, {({a, b}, d), ({a}, f),
({d}, c), ({e}, d), ({f}, a)}, {({η}, a), ({η}, c), ({η}, d), ({η}, f), ({a}, b), ({c}, b)})
previously analyzed in Example 130 and now depicted in Figure 113a. Its associated ADF
is DES = ({η, a, b, c, d, e, f}, {Cη = >, Ca = η ∧ ¬f , Cb = a ∨ c, Cc = η ∧ ¬d,
Cd = η ∧ (¬a ∨ ¬b) ∧ ¬e, Ce = e, Cf = η ∧ ¬a}), which is visible in Figure 113b. The
aa–admissible extensions of this framework are ∅, {η}, {η, a}, {η, f}, {η, a, b}, {η, d, f}
and {η, a, b, c}, which are also the admissible extensions of ES. The aa–complete sets
are {η}, {η, d, f} and {η, a, b, c}, which is again the correct answer. The set {eta} is the
acyclic grounded extension of DES , while {η, d, f} and {η, a, b, c} are aa–preferred and
stable. Thus, we retrieve all and only desired extensions of ES.

11.5.2 General EASs

Just like in the AFN case (see Translation 70), in order to translate into ADFs those EASs
that do not necessarily meet the strong consistency requirements, we will make use of
the normal form transformations. In other words, we bring a given EAS into a strong
consistency form using either Translation 14 or 15, and then proceed with the previously
introduced Translation 80 to obtain the final result.
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Figure 113: Sample EAS and its associated ADF

Translation 81. Let ES = (A,R,N) be an EAS. The corresponding ADF DES =
(A′, L, C) is created as follows:

1. we obtain the strongly consistent EAS ESsc = (A′, R,N ′) corresponding to ES by
Translation 14 or 16, and

2. DES results from transforming ESsc into ADF by Translation 80.

Thanks to Theorems 4.55 and 4.57, the normal form theorem (Theorem 11.16) is true
also for EASs that are not necessarily strongly consistent, independently of whether we
use Translation 14 or 16 in order to construct our target ADF.

Let us now focus on the semantics. If we use Translation 14 in order to bring the source
EAS into consistency form, then the relationship between the source and target extensions
is defined by Theorems 4.54 and 11.21:

Theorem 11.22. Let ES = (A,R,E) be an EAS andDES = (A′, L, C) its corresponding
ADF obtained by Translations 14 and 81. Let S ⊆ A, S ′ ⊆ A′ be sets of arguments and Sb

the (possibly empty) set of bypass arguments generated by S in A′. The following holds:

• if S is self–supporting in ES, then S ∪ Sb is pd–acyclic in DES .

• if S is strongly self–supporting in ES, then S ∪ Sb is pd–acyclic conflict–free in
DES .

• if S is a σ–extension of ES, where σ ∈ {admissible, preferred, complete}, then
S ∪ Sb is an aa–σ–extension of DES .

• if S is grounded in ES, then S ∪ Sb is acyclic grounded in DES .
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• if S is stable in ES, then S ∪ Sb is stable in DES .

• if S is pd–acyclic in DES , then S ′ ∩ A is self–supporting in ES.

• if S is pd–acyclic conflict–free in DES , then S ′ ∩ A is strongly self–supporting in
ES.

• if S ′ is an aa–σ–extension of DES , then S ′ ∩ A is a σ–extension of ES.

• if S is acyclic grounded in DES , then S ′ ∩ A is grounded in ES.

• if S is stable in DES , then S ′ ∩ A is stable in ES.

If we use Translation 16, then the following holds due to Theorems 4.58 and 11.21:

Theorem 11.23. Let ES = (A,R,E) be an EAS andDES = (A′, L, C) its corresponding
ADF obtained by Translations 16 and 81. Let Sb the (possibly empty) set of bypass argu-
ments generated by a set S ⊆ A in A′. If a set of arguments S is self–supporting in ES,
then S ∪ Sb is pd–acyclic in DES . If S ′ ⊆ A′ is pd–acyclic in DES , then S ′ ∩ A is self–
supporting inES. S ⊆ A is strongly self–supporting inES iff it is pd–acyclic conflict–free
in DES . S is a σ–extension of ES, where σ ∈ {admissible, complete, preferred} iff it is
an aa–σ–extension of DES . S is grounded in ES iff it is acyclic grounded in DES . Every
stable extension S of ES is stable in DES but not vice versa.

We can now put the results into our system. The properties of the chained transla-
tions will come from the properties of their sub–translations and thus we will omit further
analysis.
Redefinition of Translation 81: Let FrEAS be the collection of all EASs on do-
main U and BADF the collection of all bipolar ADFs on domain U ∪ U b. The
translation b-TrEASADF : FrEAS → BADF is defined as b-TrEASADF ((A,R,E)) =
sc-TrEASADF (bc-TrEAS((A,R,E))). The translation sa-TrEASADF : FrEAS → BADF is
defined as sa-TrEASADF ((A,R,E)) = sc-TrEASADF (sa-TrEAS((A,R,E))).
Redefinition of Theorem 11.22: Let σEAS ∈ {self–supporting, strongly self–supporting,
admissible, preferred, complete, grounded, stable} be an EAS semantics and σADF ∈
{pd–acyclic, pd–acyclic conflict–free, aa–admissible, aa–preferred, aa–complete, acyclic
grounded, stable} a similar ADF semantics. Let SC Tr

σ the removal casting functions
for σ defined as SCX

σ (S) = S ∩ A, where X = (A,R,E) ∈ FrEAS and S ∈
σADF (b-TrEASADF (X)). The translation b-TrEASADF is strong under (σ, SC Tr

σ ). It is semantics
bijective under the (aa–) complete, (aa–) preferred (acyclic) grounded and stable seman-
tics and the defined casting functions.
Redefinition of Theorem 11.23: Let σEAS ∈ {self–supporting, strongly self–supporting,
admissible, preferred, complete, grounded} be an EAS semantics and σADF ∈ {pd–
acyclic, pd–acyclic conflict–free, aa–admissible, aa–preferred, aa–complete, acyclic
grounded} a similar ADF semantics. Let SC Tr

σ be the identity casting functions for σ. The
translation sa-TrEASADF is strong under (σ, SC Tr

σ ). With the exception of self–supporting –
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pd–acyclic semantics, it is also semantics bijective. It is ⊆–weak under the stable seman-
tics and defined casting functions.
Analysis of Translation 81 with Translation 14 as intermediary: Under the (pd–
acyclic) self–supporting, (pd–acyclic conflict–free) strongly self–supporting, (aa–) admis-
sible, (aa–) preferred, (aa–) complete, (acyclic) grounded and stable semantics and identity
casting functions, the translation b-TrEASADF is:

• full, target–subclass, overlapping

• weakly argument domain altering, argument introducing, relation introducing, rela-
tion removing

• generic and weakly semantics domain altering

• semi–structural

The translation is neither ⊗ nor ⊕–modular. It is faithful under the (aa–) complete, (aa–)
preferred, (acyclic) grounded and stable semantics and the removal casting functions. The
translation b-TrEASADF is classified as basic under the listed semantics and casting functions.
Analysis of Translation 81 with Translation 16 as intermediary: Under the (pd–
acyclic) self–supporting, (pd–acyclic conflict–free) strongly self–supporting, (aa–) admis-
sible, (aa–) preferred, (aa–) complete, (acyclic) grounded and stable semantics and identity
casting functions, the translation sa-TrEASADF is:

• full, target–subclass, overlapping

• weakly argument domain altering, argument introducing, relation introducing, rela-
tion removing

• generic and semantics domain preserving

• semi–structural

The translation is neither⊗ nor⊕–modular. It is exact under the (pd–acyclic conflict–free)
strongly self–supporting, (aa–) admissible, (aa–) complete, (aa–) preferred and (acyclic)
grounded semantics and their identity casting functions. The translation sa-TrEASADF is
classified as basic under the listed semantics and casting functions.

11.6 EAS as Other Frameworks
In this section we have presented the translations from EASs into AFs, SETAFs, BAFs,
AFNs and ADFs. Our analysis has not included AFRAs and EAF(C)s. However, we do
not believe that recursive attack is particularly suitable for modeling evidential support.
As for the value of defense attacks, we refer the reader to Section 10.3, and propose to use
chained translations for the time being.
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11.7 Summary
The three (semantically speaking) strongest translations we have obtained are from EASs
to BAFs, AFNs and ADFs. Unfortunately, in all these cases they were defined only for a
subclass of evidential systems. The first one – and the most limited as well – worked for
those frameworks that were strongly valid, attack binary and support singular. The next
one assumed that the source frameworks were attack binary, which is a big improvement.
Finally, the translation to ADFs permitted the use of the group attack, but had to assume
strong consistency. Nevertheless, ADFs still emerge as a good target for EAS translations
even if we work with the full framework domain, giving us, in total, five exact and one
strong relation between the source and target extensions. The second best exact approach
is the attack propagation SETAF method. Finally, concerning faithfulness, we again have
another ADF translation and the full version of the AFN method. Our results can be seen
in Table 14. What is worth observing is the fact that, similarly as for AFNs, the only
two modular translations are also source–subclass, even though the results were created
for different frameworks. These continuing difficulties show that modularity for support
frameworks can be more challenging than for attack–based structures.
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Table 14: Translations from EASs to other frameworks

Properties AF SETAF BAF AFN ADF

Translation 71 72 73 75 76 77 78 79 80 81 with
4.54

81 with
4.58

Strength

cf ⊆-weak ⊇-weak strong strong exact exact ⊆-weak
ssup exact exact strong exact strong strong

str ssup ⊆-weak strong ⊆-weak ⊆-weak ⊆-weak exact exact ⊆-weak exact strong exact
adm strong strong ⊆-weak strong strong exact exact strong exact strong exact

comp strong strong exact faithful faithful exact exact faithful exact faithful exact
pref strong strong exact faithful faithful exact exact faithful exact faithful exact
grd strong strong exact faithful faithful exact exact faithful exact faithful exact
stb strong strong exact faithful faithful exact exact faithful exact faithful ⊆-weak

full full full full source–
subclass

source–
subclass

source–
subclass full source–

subclass full full

Functional target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

target–
subclass

overlapping overlapping overlapping overlapping injective injective overlapping overlapping overlapping overlapping overlapping

argument
domain
altering

argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

weakly
argument
domain
altering

argument
domain

preserving

argument
domain

preserving

argument
domain
altering

argument
domain

preserving

weakly
argument
domain
altering

weakly
argument
domain
altering

argument
removing

argument
removing

argument
removing

argument
introducing

argument
introducing

structure
preserving

support
introducing

argument
introducing

relation
introducing

argument
introducing

argument
introducing

Syntactical argument
introducing

argument
introducing

induced
attack

removing

induced
attack

introducing

induced
attack

introducing

support
introducing

relation
introducing

relation
introducing

attack
removing

attack
removing

attack
introducing

support
removing

relation
removing

relation
removing

support
removing

support
removing

support
removing

generic generic generic generic generic generic generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

weakly
semantics
domain
altering

semantics
domain

preserving

semantics
domain

preserving

semantics
domain
altering

semantics
domain

preserving

weakly
semantics
domain
altering

semantics
domain

preserving

Computational semantical semantical semantical semantical semi–
structural structural semi–

structural
semi–

structural
semi–

structural
semi–

structural
semi–

structural
modular modular
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12 Translating ADFs
We will now consider the last framework in our report - the abstract dialectical framework.
Although we will consider only three target structures in this analysis, one has to bear in
mind that ADFs have many families of semantics. The performed study needs to take into
account the aa, ac, cc, ca1/ca2 and labeling–based approaches and due to the differences
between them, each one of them needs a separate translation. We will primarily focus
on creating approaches targeted at AFs, since due to the simplicity of these frameworks,
the obtained results can be seen as the baseline that we can try to improve upon in the
future. We will also present two SETAF transformations, which, chronologically speaking,
precede the AF methods. In one of them, specialized for the aa–semantics, we obtain our
first and only exact results for ADFs. Although the provided approach works only with
weakly valid ADFs, it can be easily generalized by the use of Translation 9. Finally, we
also introduce one ADF–AFN translation, also aimed at aa–semantics. The created method
is not stronger than the ADF–AF one, however, it is also the only approach we have not
managed to fit into our classification system.

12.1 ADF as AF
We will now present the approaches towards translating ADFs in AFs. They will follow
the coalition approach, but with a slightly more advanced argument structure than before.
The target arguments will now be constructed from evaluations, not e.g. pd–acyclic sets.
Although the blocking set part of an evaluation does not impact a given extension, i.e. the
extensions are built from pd–set and pd–sequences, it is important for the construction of
the target framework. A given pd–set (sequence) is not unique to a given evaluation and
aside for serving as a basis for conflict–derivation, preserving both pd–sets and blocking
sets makes sure that the arguments representing different evaluations remain distinguish-
able. Two different evaluations that contribute the same arguments to a given extension
can be attacked by different arguments and accidentally removing or merging them can
affect both conflict–freeness and defense (decisiveness w.r.t. range). We can consider a
rather trivial example of a SETAF–style ADF, i.e. one in which the acceptance conditions
represent group attacks as in SETAFs (see Section 4.5.7):

Example 136. Let ({a, b, c}, {Ca = ¬c, Cb = >, Cc = ¬a ∨ ¬b}) be a simple SETAF–
style ADF. We construct the following evaluations (minimal for every argument): Eva =
({a}, {c}), Evb = ({b}, ∅), Evc1 = ({c}, {a}) and Evc2 = ({c}, {b}). The conflicts
between them correspond to evaluation blocking, i.e. Eva attacks Evc1, Evb attacks Evc2,
and both Evc1 and Evc2 attack Eva. We can observe that the two evaluations for c differ
only by the blocking set. Let us now consider the AF constructed from the evaluations
and the attacks between them. We can observe that {Evb, Evc1} (corresponding to {b, c})
is both a conflict–free and an admissible extension of our framework, which is the desired
result.

We can now try to modify our approach and bring it down to the standard coalition
method. By focusing only on the pd–sets of our evaluations, we obtain three arguments -
{a}, {b} and {c}, where {a} and {b} attack {c} and {c} attacks {a}. It is easy to see that
{b, c} is not even a conflict–free extension, let alone admissible. Thus, the data loss caused
by taking only part of an evaluation into account “breaks” the behavior of the translation.
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For this reason, even though the translations we are about to introduce will follow the
coalition method, the used casting functions will have to be extractions, not just unions.
Due to the number of semantics in ADFs, we will present more than just one transforma-
tion. We will start with the easiest ones, targeted at the aa and ac–semantics, and then con-
tinue with the cc–family, which requires the use of additional auxiliary arguments. Then
we will remark on the issues concerning the ca1 and ca2 families, echoing the difficulties
seen in the EAF translations (see Section 8.2), and close our analysis with a transformation
for the labeling–based semantics.

12.1.1 AA Semantics

The translation for aa–semantics is the simplest one in ADFs. The same types of arguments
are valid both on the inside and on the outside. Moreover, the acyclicity assumption grants
us another very important property. The acceptance condition of the starting a0 argument
in every evaluation is in w.r.t. any type of a range of ∅. This means that defending an
evaluation causes a chain reaction leading to decisiveness of the arguments inside the
evaluation. As we will see in Section 12.1.3, this is not always the case for partially
acyclic (and thus standard) evaluations and requires the use of auxiliary arguments.

Let us now present the translation which follows the idea we have presented before.
We create new arguments from (acyclic) evaluations in the original framework and the
attack relation is derived from the blocking set. In order to prevent the excessive creation
of arguments, we will use minimal evaluations (see Definition 2.122).

Translation 82. Let D = (A,C) be an ADF. Its corresponding AF FD
AA = (A′, R) is built

the following way:

• A′ = {(F,B) | (F,B) is a minimal acyclic positive dependency evaluations for an
argument a ∈ A on A}, and

• an evaluation (F,B) attacks (F ′, B′) iff B′ ∩ F 6= ∅.

Fortunately, there is a strong relation between the source and target extensions. It
is worth noting it is such even when we consider SETAF–style ADFs, even though the
coalition–style SETAF–AF Translation 25 was weak under the conflict–free semantics.
This shows another advantage of using evaluations instead of sets of arguments:

Theorem 12.1. Let D = (A,C) be an ADF and FD
AA its corresponding AF ob-

tained from Translation 82. If S ⊆ A is a pd–acyclic conflict–free (aa–admissible,
aa–complete, aa–preferred, stable, acyclic grounded) extension of D, then there ex-
ists a conflict–free (admissible, complete, preferred, stable, grounded) extension S ′ =
{(F1, B1), ..., (Fn, Bn)} ⊆ A′ of FD

AA s.t. S =
⋃n
i=1 Fi. If S ′ = {(F1, B1), ..., (Fn, Bn)} ⊆

A′ is a conflict–free (admissible, complete, preferred, stable, grounded) extension of FD
AA,

then S =
⋃n
i=1 Fi is pd–acyclic conflict–free (aa–admissible, aa–complete, aa–preferred,

stable, acyclic grounded) extension of D.
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We can now redefine our results and put them into our system. We can observe that the
presented casting function will be in fact a two–step one; first, we perform extraction on
the evaluation arguments to get the pd–sequences. We then use the union casting approach
to merge the obtain collections into a standard, argument–based extension of the original
ADF.
Redefinition of Translation 82: Let FrADF be the collection of all ADFs on domain
U and FrAF the collection of all AFs on domain AEV U = {(F,B) | F is a nonempty
sequence on E ⊆ U , B ⊆ U}. The translation aa-TrADFAF : FrADF → FrAF is defined as
aa-TrADFAF ((A,C)) = (A′, R) for a framework (A,C) ∈ FrADF , where A′ = {(F,B) |
(F,B) is a minimal acyclic positive dependency evaluation for an argument a ∈ A on A}
and R = {((F,B), (F ′, B′) | F ∩B′ 6= ∅}.
Redefinition of Theorem 12.1: Let σADF ∈ {pd–acyclic conflict–free, aa–admissible,
aa–complete, aa–preferred, stable, acyclic grounded} be an ADF semantics and σAF ∈
{conflict–free, admissible, complete, preferred, stable, grounded} a similar AF seman-
tics. Let SC Tr

σ be the extraction–union hybrid semantics casting function for σ defined
as SCX

σ (S) =
⋃n
i=1 Fi, where X = (A,C) ∈ FrADF and S = (F1, B1), ..., (Fn, Bn) ∈

σ(aa-TrADFAF (X)). The translation aa-TrADFAF is strong under (σ, SC Tr
σ ). It is also se-

mantics bijective under the (aa–) complete, (aa–) preferred, stable and (acyclic) grounded
semantics and the defined casting functions.
Analysis of Translation 82: Under the (pd–acyclic) conflict–free, (aa–) admissible, (aa–)
complete, (aa–) preferred, (acyclic) grounded and stable semantics and the defined casting
functions, the translation aa-TrADFAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, relation re-
moving, (possibly) relation introducing

• generic and semantics domain altering

• semantical

The translation is neither ⊕ nor ⊗–modular. The translation aa-TrADFAF is classified as
coalition–style under the listed semantics and casting functions.

Explanation. Any ADF can undergo our translation, and thus we classify it as full.
Structure–wise, any AF can be produced. Let F = (A,R) be a Dung’s framework and
DF = (A,L,C) its corresponding ADF (see Translation 23). By translating DF back to
an AF using our translation, every original argument a ∈ A in F is now (in this case,
uniquely) associated with ((a), {a}−), where {a}− represents the arguments attacking a.
Thus, if we were to disregard the contents of the arguments and their naming, the origi-
nal AF F and the one associated with DF would be the same. However, our translation
changes the domain, and not every possible target framework can be produced by our ap-
proach. First of all, given an evaluation argument and its pd–sequence, there have to be
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other evaluation arguments dedicated for the element in the sequence preceding the final
one. For example, if ((a, b), ∅) is an evaluation argument, then so is ((a), ∅). Certain re-
strictions also arise from the minimality assumption in the construction. Finally, since the
attack relation in the target AF is defined by the blocking sets, constructing a framework
such as ({((a), {b}), ((b), ∅)}, ∅) is not possible – the relevant conflicts are missing. For
all these reasons we decide to classify our approach as target–subclass.

Due to the fact that only arguments possessing acyclic pd–evaluations are represented
in the produced Dung’s framework, it can happen that two different arguments are trans-
lated into a single framework. However, we need to note that while e.g. two AFNs or EASs
connected by the weakly valid form would translate to the same structure, it is not neces-
sarily the case in ADFs. This is due to the presence of the blocking set, which can contain
arguments not appearing in the pd–sequences of any evaluation arguments. For example,
the ADFs D1 = ({a, b}, {Ca = ¬b, Cb = b}) and D2 = ({a, b}, {Ca = >, Cb = b})
would get translated to different AFs (({((a), {b})}, ∅) and ({((a), ∅)}, ∅) respectively),
even though they have the same weak validity form D3 = ({a}, {Ca = >}). Neverthe-
less, the AF associated with D3 would be the same as with D2, and thus the translation is
overlapping.

We can observe that the argument domain clearly undergoes a drastic change. For the
reason mentioned above, the translation is argument removing – not in all cases the ar-
guments not meeting validity requirements will appear in the target framework. It is also
argument introducing due to the fact that a single argument can be represented by mul-
tiple evaluations, we classify this approach as argument introducing. Although argument
removal leads to relation removal on its own, separate removal and (possibly) addition can
occur due to the imprecision of evaluation arguments (see e.g. the analysis of Translations
57 and 61).

The changes done to the argument domain affect (in this case) the semantics domain as
well. The amount of handled semantics classifies our approach as generic. The fact that we
are using acyclic evaluations qualifies our approach as semantical, similarly as it was in the
case of Translations 61 and 71. Unfortunately, just like these approaches, the aa-TrADFAF

translation is not modular. To show this, we can take examples where performing an ⊕
or ⊗ joining of two ADFs changes the validity status of given arguments. Let D1 =
({a, b}, {Ca = b, Cb = >}) and D2 = ({a, b}, {Ca = >, Cb = a}) be two ADFs. In
both of them, arguments a and b possess acyclic evaluations that will appear in the target
AFs (and thus in their union as well). However, D1 ⊗ D2 = ({a, b}, {Ca = b, Cb = a})
and neither a nor b have acyclic evaluations. Thus, the AF associated with this structure
is basically empty. Therefore, our translation is not ⊗–modular. Let us now consider the
ADFs D3 = ({a}, {Ca = a}) and D4 = ({a}, {Ca = ¬a}). The AF corresponding to
D3 is empty, while the one associated with D4 is ({Eva}, {(Eva, Eva)}), where Eva =
((a), {a}). However, D3 ⊕ D4 is basically ({a}, {Ca = >}). The corresponding AF is
({Ev′a}, ∅), where Ev′a = ((a), ∅), which is quite different from ({Eva}, {(Eva, Eva)}).
Therefore, our translation is neither ⊕ nor ⊗–modular. �
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Example 137. Let us consider the framework D = ({a, b, c, d, e}, {Ca = >, Cb = a ∨
¬c, Cc = b, Cd = ¬c∧¬e, Ce = ¬d}) depicted in Figure 114a. The minimal decisively in
interpretations for its arguments are va = ∅, v1b = {a : t}, v2b = {c : f}, vc = {b : t}, vd =
{c : f , e : f}, ve = {d : f}. Using them, we can produce the following minimal acyclic
evaluations for our arguments: eva = ((a), ∅) for a, ev1b = ((a, b), ∅) and ev2b = ((b), {c})
for b, ev1c = ((a, b, c), ∅) and ev2c = ((b, c), {c}) for c, evd = ((d), {c, e}) for d and finally
eve = ((e), {d}) for e.

With this information, we can create the following pd–acyclic conflict–free extensions:
E1 = ∅, E2 = {a}, E3 = {b}, E4 = {d}, E5 = {e}, E6 = {a, b}, E7 = {a, d},
E8 = {a, e}, E9 = {b, d}, E10 = {b, e}, E11 = {a, b, c}, E12 = {a, b, d}, E13 = {a, b, e}
and E14 = {a, b, c, e}. Their associated acyclic discarded sets are E a+

1 = E a+
2 = E a+

3 =
E a+
6 = ∅, E a+

4 = E a+
7 = E a+

9 = E a+
12 = {e}, and E a+

5 = E a+
8 = E a+

10 = E a+
11 =

E a+
13 = E a+

14 = {d}. Therefore, we can show that E1, E2, E5, E6, E8, E11, E13 and E14

are aa–admissible in D. We can observe that only E14 = {a, b, c, e} is aa–complete. The
argument a is decisively in w.r.t. the acyclic ranges of E1 and E5, but is not accepted in
these sets. In case of E2 and E8, the issue is with argument b, while for E6 and E13 it is
the absence of c that causes the loss of completeness. Finally, since d is in the acyclic
discarded set of E11, argument e should have been accepted and we need to discard this
extension as well. It is easy to see that E14 = {a, b, c, e} is the unique acyclic grounded,
aa–preferred and stable extension of D.

By looking at the evaluations and their blocking sets, we can now create the AF
FD = ({eva, ev1b , ev2b , ev1c , ev2c , evd, eve}, {(ev1c , ev2b ), (ev1c , ev

2
c ), (ev1c , evd), (ev2c , ev

2
b ),

(ev2c , ev
2
c ), (ev2c , evd), (evd, eve), (eve, evd)}) that is associated with our ADF and is spe-

cialized for the aa–semantics. We can see it depicted in Figure 114b. There are in
total 32 conflict–free extensions of this framework; therefore, we will start our analy-
sis with the admissible semantics. The sets ∅, {eva}, {ev1b}, {ev1c}, {eve}, {eva, ev1b},
{eva, ev1c}, {eva, eve}, {ev1b , ev1c}, {ev1b , eve}, {ev1c , eve}, {eva, ev1b , ev1c}, {eva, ev1b , eve},
{eva, ev1c , eve}, {ev1b , ev1c , eve} and {eva, ev1b , ev1c , eve} are the admissible extensions of
FD. They correspond to the sets ∅, {a}, {a, b}, {a, b, c}, {e}, {a, e}, {a, b, e} and
{a, b, c, e}. We can therefore observe that all and only aa–admissible extensions of D
are retrieved, though a given ADF extension may be produced by more than a single AF
one. We can observe that evaluation arguments eva, ev1b and ev1c are unattacked in FD

and will therefore be contained in any complete extension. ev1c additionally defends eve.
All of the remaining arguments are attacked by our collection; we thus obtain the single
grounded, complete, preferred and stable extension {eva, ev1b , ev1c , eve} of FD. It corre-
sponds to the set {a, b, c, e}, which is the acyclic grounded, aa–complete, aa–preferred and
stable extension of D. We thus retrieve all and only desired extensions of our ADF.

12.1.2 AC Semantics

The next translation we will consider is dedicated to the ac–family of semantics. Previ-
ously, only acyclic evaluations were taken into account both on the “inside” and “outside”.
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(a) Sample ADF

eva ev1
b ev2

b ev1
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c
evd eve

(b) Associated AF for aa–semantics

Figure 114: Sample ADF and its associated AF for aa–semantics

Due to the fact that now the “outside” conditions are less specialized, all types of evalua-
tions need to appear in the framework. However, due to the “inside” requirements, we do
not accept an argument representing an evaluation that cannot be made acyclic. The “can
attack, but cannot be accepted” restriction in the Dung’s framework is easily addressed by
the use of self–attackers. Thus, the non–acyclic evaluations are turned into such in our
translation:

Translation 83. Let D = (A,C) be an ADF. The corresponding AF FD
AC = (A′, R) is

built the following way:

• let Aa be the set of all minimal acyclic positive dependency evaluations for all ar-
guments a ∈ A on A,

• let Ac be the set of all minimal standard evaluations for all a ∈ A on A s.t. they
cannot be made acyclic for a w.r.t. the pd–function they were created with,

• A′ = Aa ∪ Ac,

• an evaluation (E,B) in A′ attacks (E ′, B′) in A′ if B′ ∩ E 6= ∅, and

• for every evaluation (E,B) in Ac, (E,B) attacks itself.

We can now focus on the semantics. It can be observed that apart from the prefix
change on the admissible, complete and preferred semantics, we now consider the (stan-
dard) grounded extensions rather than acyclic ones. Moreover, we do not consider the
stable semantics anymore. As seen in Section 2.3.6, it is not part of the ac–family, and
neither is the model semantics.
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Theorem 12.2. Let D = (A,C) be an ADF and FD
AC its corresponding AF obtained from

Translation 83. If S ⊆ A is a pd–acyclic conflict–free (ac–admissible, ac–complete, ac–
preferred, grounded) extension of D, then there exists a conflict–free (admissible, com-
plete, preferred, grounded) extension S ′ = {(E1, B1), ..., (En, Bn)} ⊆ A′ of FD

AC s.t.
S =

⋃n
i=1Ei. If S ′ = {(E1, B1), ..., (En, Bn)} ⊆ A′ is a conflict–free (admissible, com-

plete, preferred, grounded) extension of FD
AC , then S =

⋃n
i=1Ei is pd–acyclic conflict–free

(ac–admissible, ac–complete, ac–preferred, grounded) extension of D.

We can now put the ac–translation into our system. We can observe that the prop-
erties of this approach will be almost the same as in the aa–version. Thus, most of the
explanations will be omitted.
Redefinition of Translation 83: Let FrADF be the collection of all ADFs on domain
U and FrAF the collection of all AFs on domain AEV U ∪ SEV U , where AEV U =
{(F,B) | F is a nonempty sequence on E ⊆ U , B ⊆ U} and SEV U = {(F,B) |
F ⊆ U , F 6= ∅, B ⊆ U}. The translation ac-TrADFAF : FrADF → FrAF is defined as
ac-TrADFAF ((A,C)) = (A′, R) for a framework (A,C) ∈ FrADF , where A′ = Aa ∪ Ac
s.t. Aa = {(F,B) | (F,B) is a minimal acyclic positive dependency evaluation for an
argument a ∈ A} and Ac = {(F,B) | (F,B) is a minimal standard evaluation for an
argument a ∈ A and cannot be made acyclic for any b ∈ F}, andR = {((F,B), (F ′, B′) |
F ∩B′ 6= ∅} ∪ {((F,B), (F,B) | (F,B) ∈ Ac}.
Redefinition of Theorem 12.2: Let σADF ∈ {pd–acyclic conflict–free, ac–admissible,
ac–complete, ac–preferred, grounded} be an ADF semantics and σAF ∈ {conflict–free,
admissible, complete, preferred, grounded} a similar AF semantics. Let SC Tr

σ be the
extraction–union hybrid semantics casting function for σ defined as SCX

σ (S) =
⋃n
i=1 Fi,

where X = (A,C) ∈ FrADF and S = (F1, B1), ..., (Fn, Bn) ∈ σ(ac-TrADFAF (X)). The
translation ac-TrADFAF is strong under (σ, SC Tr

σ ). It is also semantics bijective under the
(ac–) complete, (ac–) preferred and grounded semantics and the defined casting functions.
Analysis of Translation 83: Under the (pd–acyclic) conflict–free, (ac–) admissible, (ac–)
complete, (ac–) preferred and grounded semantics and the defined casting functions, the
translation ac-TrADFAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, relation re-
moving, relation introducing

• generic and semantics domain altering

• semantical

The translation is neither ⊕ nor ⊗–modular. The translation ac-TrADFAF is classified as
coalition–style under the listed semantics and casting functions.

Explanation. Similarly as in Translation 82, our approach is full and target–subclass. It
is also overlapping, though in this case we would repeat the analysis for cleansed form
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rather than for weakly valid form (see the analysis of Translation 82). Due to the fact that
arguments not possessing any standard evaluations might not appear in the target frame-
work, we classify our approach as argument removing. It is also argument introducing, as
every ADF argument can be represented by multiple AF arguments. The removal of argu-
ments leads to the removal of relations. Further relation removal (and possibly addition)
can occur due to the imprecision of evaluation arguments (see e.g. the analysis of Transla-
tions 57 and 61). However, as the AF arguments in Ac are self–attacking even though the
evaluations they represent might not necessarily be self–blocking, our translation is also
relation introducing without any doubts as was in the case of Translation 82.

Let us now focus on modularity. Let D1 = ({a, b}, {Ca = b, Cb = >}) and
D2 = ({a, b}, {Ca = >, Cb = a}) be two ADFs just like in the analysis of Translation
82. The union of their associated AFs is ({((a), ∅), ((a, b)), ∅), ((b), ∅), ((b, a)), ∅)}, ∅).
However, the AF corresponding to D1 ⊗ D2 = ({a, b}, {Ca = b, Cb = a}) is
({({a, b}, ∅)}, {(({a, b}, ∅), ({a, b}, ∅))}). Therefore, our translation is not ⊗–modular.
Let us now consider the ADFs D3 = ({a}, {Ca = a}) and D4 = ({a}, {Ca = ¬a}). The
AF corresponding to D3 is ({({a}, ∅)}, {(({a}, ∅), ({a}, ∅))}), while the one associated
with D4 is ({((a), {a})}, {(((a), {a}), ((a), {a}))}). If we were to join these frameworks
and perform a translation on D3 ⊕ D4 = ({a}, {Ca = >}), we would obtain the frame-
work ({((a), ∅)}, ∅), which e.g. does not contain any elements from the AF created for
D4.

Further properties of the current method can be explained similarly as for Translation
82. �

e

a

b

c

d

e

d ∨ (c ∧ e)

¬e

>a ∧ b

(a) Sample ADF

ev1 ev2 ev3 ev4 ev5

(b) Associated AF for ac–semantics

Figure 115: Sample ADF and its associated AF for ac–semantics

Example 138. Let us look at the ADFD = ({a, b, c, d, e}, {Ca = e, Cb = d∨(c∧e), Cc =
¬e, Cd = >, Ce = a ∧ b}) depicted in Figure 115a and previously analyzed in Example
28. As already explained before, the sets ∅, {c}, {d}, {b, d}, {c, d} and {b, c, d} are the
pd–acyclic conflict–free extensions of D. From this, ∅, {d} and {b, d} are ac–admissible,
with the last set being also the single ac–complete, ac–preferred and grounded extension.
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The minimal decisively in interpretations in this framework are va = {e : t}, v1b =
{d : t}, v2b = {c : t, e : t}, vc = {e : f}, vd = ∅ and ve = {a : t b : t}. With these
interpretations, we can create the minimal acyclic evaluations ev1 = ((d, b), ∅), ev2 =
((c), {e}) and ev3 = ((d), ∅) for arguments b, c and d respectively. However, we can also
create standard evaluations that cannot be made acyclic; we have ev4 = ({a, b, d, e}, ∅) for
a and e, and ev5 = ({a, b, c, e}, {e}) for a, b and e.

Using the created evaluations and their types, we can now create the AF FD =
({ev1, ev2, ev3, ev4, ev5}, {(ev4, ev2), (ev4, ev4), (ev4, ev5), (ev5, ev2), (ev5, ev5)}) asso-
ciated with our ADF and specialized for the ac–semantics. We can see it depicted in
Figure 115b. Its admissible extensions are ∅, {ev1}, {ev3} and {ev1, ev3}. They corre-
spond to the sets ∅, {b, d} and {d}, which are the desired extensions. We can observe that
{b, d} can be obtained both from {ev3} and {ev1, ev3}. From this, the set {ev1, ev3} is
complete, preferred and grounded. Its associated ADF set is {b, d}, which was the original
ac–complete, ac–preferred and grounded extension of D.

12.1.3 CC Semantics

We now come to the cc–family of semantics, where an argument possessing any type of
an evaluation is “good enough” for acceptance and needs to be defended from (i.e. is
not falsified in the range by “default”). Although this family is “homogeneous” the same
way the aa–semantics are, the translations are quite different. In order to show where the
problem is, we will first consider a cc–transformation in the spirit of the aa–method, i.e.
instead of admitting only acyclic pd–evaluations, we would work on standard ones. We
will then explain why this approach will not work as intended.

Translation 84. Faulty CC translation Let D = (A,C) be an ADF. Its corresponding AF
FD
CC = (A′, R) is built the following way:

• A′ is the set of all minimal standard evaluations for an argument a ∈ A, and

• an evaluation (E,B) attacks (E ′, B′) if B′ ∩ E 6= ∅.

Although such an approach would preserve conflict–free, cc–admissible and cc–
preferred semantics, it would not work for cc–complete and grounded approaches. Let
us look at an example:

Example 139. Let ({a, b, c}, {Ca = b ∧ c, Cb = a, Cc = t} be a simple ADF. We can
observe there is a cycle between a and b, i.e. one cannot be accepted without the other.
Their (minimal) decisively in interpretations do not contain any f mappings. The two
cc–complete extensions of our framework are {c} and {a, b, c}. The corresponding AF
is ({({c}, ∅), ({a, b, c}, ∅)}, ∅). We can observe there are no conflicts in this structure
and thus both evaluation arguments are considered “initial”. Thus, we only have a single
complete extension, namely {({c}, ∅), ({a, b, c}, ∅)}, which corresponds to {a, b, c} in the
original ADF. The existing conflicts are not enough to capture the positive dependency
cycles in our ADF that cause the creation of two, not one cc–complete extension.
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This difference in the produced extensions is a result of the fact that in the acyclic eval-
uations, at the start of an acyclic pd–evaluation is always an argument that has an empty
positive part of a decisively in interpretation. Consequently, we only concern ourselves
with the negative one – “attackers” – and proceed with building the evaluation. Thus, de-
cisiveness of this starting argument was in correspondence with defense in the resulting
AF. In a standard evaluation this might not be the case and thus decisiveness has to take
into account both positive and negative parts, which makes defense derived from blocking
insufficient.

Our approach to address this issue is as follows: consider an argument a with a con-
dition Ca = a. Its acceptance is self–dependent; for example, a is acceptable (decisively
in) only w.r.t. sets that already contain it. A similar situation can be observed in case
of the self–defending arguments in AFs: if we had arguments b and c mutually attacking
each other, neither b nor c would be acceptable w.r.t. ∅. However, due to self–defense,
both {b} and {c} were admissible sets. Consequently, our translation will make use of
auxiliary “breaker” arguments attacking forcing self–defense of (parts of) evaluations that
cannot be made acyclic. In a certain sense the breaker argument can be read as “you are
unsupported”, in a similar way as in the defender translations. However, there are certain
differences in their purpose. Due to the fact that in the cc–semantics we cannot discard
an argument just because it is not acyclic, the breaker arguments need to be self attackers
– otherwise, they could appear in the extensions and serve as defenders against the eval-
uation arguments, which is against the design of the standard range. Moreover, unlike in
the defender approaches, the breaker arguments might be related between each other or
might be shared among arguments. Without this, the target AF can produce undesirable
extensions:

Example 140. Let us consider an ADF D1 = ({a, b, c}, {Ca = a, Cb = b, Cc = a ∧
b}) depicted in Figure 116a. We will represent our possible AF arguments with partially
acyclic evaluations which show where the “cycles” are. We have one such evaluation per
argument: ({a}, ∅, ∅) for a, ({b}, ∅, ∅) for b and ({a, b}, (c), ∅) for c. The cc–complete
extensions of D1 are {a}, {b} and {a, b, c}.

We will now consider different attempts at connecting breaker arguments to the evalu-
ation arguments. Let us first look at the AF F1 in Figure 116b. Every evaluation argument
is attacked by the breaker argument associated with the pd–set of the evaluation. We can
observe that the complete sets of F1 correspond to {a}, {b}, {a, b} and {a, b, c}. However,
{a, b} is not considered cc–complete in D1 - this comes from the fact that the moment
both a and b are present, we can accept c. This issue can now be addressed in several
ways. First of all, we can consider adding a joint attack from ({a}, ∅, ∅) and ({b}, ∅, ∅) to
the breaker of c, as done in SETAF SF1 in Figure 116c. Although now the extensions are
correct, we leave the domain of AFs and this is not the most desirable solution. Therefore,
instead of allowing other arguments attack the breakers, we can let the breakers attack
further elements. In F2 presented in Figure 116d we remove the {a, b}b breaker attacking
({a, b}, (c), ∅) and add the conflicts from {a}b and {b}b in its place. This only gives us the
desired extensions, but brings us back to the domain of AFs.
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Figure 116: Sample AFDF and handling of the breakers arguments

We are now ready to propose a translation from ADFs to AFs aimed at the cc–
semantics. In what follows we will use the argument breakers approach from Figure 116d.
In order to reduce the amount of required arguments, we will use minimal evaluations.
However, please note that we are interested not in the minimality of an evaluation w.r.t. all
of the possible evaluations, but only w.r.t. those that were created for the same argument,
similarly as it was the case in Translation 61. Without this we would probably accidentally
remove most of the arguments from the source framework.

Translation 85. Let D = (A,C) be an ADF. Its corresponding AF FD
CC = (A′, R) is built
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the following way:

• let Aev = {(F,G,B) | (F,G,B) is a minimal partially acyclic pd–evaluation for
a ∈ A},

• let Ab = {ab | ∃(F,G,B) ∈ Aev s.t. a ∈ F},

• A′ = Aev ∪ Ab,

• for every (F,G,B), (F ′, G′, B′) ∈ Aev, (F,G,B) attacks (F,′G′, B′) if (F ∪ G) ∩
B′ 6= ∅,

• for every ab ∈ Ab, ab attacks ab,

• for every (F,G,B) ∈ Aev, ab ∈ Ab s.t. a ∈ F ∪G, (F,G,B) attacks ab, and

• for every (F,G,B) ∈ Aev, ab ∈ Ab s.t. a ∈ F , ab attacks (F,G,B).

Now we can show how the cc–family of the semantics behaves after our transla-
tion. Unlike in the previous translations in this section, we take into account the stan-
dard conflict–free, not pd–acyclic conflict–free semantics. However, just like in the ac–
approach, we use the (standard) grounded semantics. Since neither stable nor model
semantics belong to the cc–family (see Section 2.3.6), they will be excluded from this
analysis. Please note that due to the fact that all arguments in Ab are self–attackers, the
extensions of our produced AF will always be subsets of Aev.

Theorem 12.3. Let D = (A,C) be an ADF and FD
CC its corresponding AF obtained from

Translation 85. If S ⊆ A is a conflict–free (cc–admissible, cc–complete, cc–preferred,
grounded) extension of D, then there exists a conflict–free (admissible, complete, pre-
ferred, grounded) extension S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev of FD

CC s.t.
S =

⋃n
i=1 Fi ∪ Gi. If S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev is a conflict–free

(admissible, complete, preferred, grounded) extension of FD
CC , then S =

⋃n
i=1 Fi ∪ Gi is

conflict–free (cc–admissible, cc–complete, cc–preferred, grounded) extension of D.

We can now redefine our translation and analyze it. Although its properties will be
technically the same as in the ac–translation, some of the reasons will be different.
Redefinition of Translation 85: Let FrADF be the collection of all ADFs on domain U
and FrAF the collection of all AFs on domain PEV U∪U b where PEV U = {(F,G,B) | F
is a sequence on E ⊆ U , G ⊆ U , F ∪ G 6= ∅, B ⊆ U}. The translation cc-TrADFAF :
FrADF → FrAF is defined as cc-TrADFAF ((A,C)) = (A′, R) for a framework (A,C) ∈
FrADF , where A′ = Aev ∪ Ab s.t. Aev = {(F,G,B) | (F,G,B) is a minimal partially
acyclic pd–evaluation for a ∈ A} and Ab = {ab | a ∈ As.t.∃(F,G,B) ∈ Aev, a ∈ F},
and R = {((F,G,B), (F ′, G′, B′)) | (F ∪ G) ∩ B′ 6= ∅} ∪ {(ab, ab) | ab ∈ Ab} ∪
{((F,G,B), ab) | a ∈ F ∪G} ∪ {(ab, (F,G,B)) | a ∈ F}.
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Redefinition of Theorem 12.3: Let σADF ∈ {conflict–free, cc–admissible, cc–complete,
cc–preferred, grounded} be an ADF semantics and σAF ∈ {conflict–free, admissible,
complete, preferred, grounded} a similar AF semantics. Let SC Tr

σ be the extraction–union
hybrid semantics casting function for σ defined as SCX

σ (S) =
⋃n
i=1 Fi ∪ Gi, where X =

(A,C) ∈ FrADF and S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ∈ σ(cc-TrADFAF (X)). The
translation cc-TrADFAF is strong under (σ, SC Tr

σ ). It is also semantics bijective under the
(cc–) complete, (cc–) preferred and grounded semantics and the defined casting functions.
Analysis of Translation 85: Under the conflict–free, (cc–) admissible, (cc–) complete,
(cc–) preferred and grounded semantics and the defined casting functions, the translation
cc-TrADFAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, relation re-
moving, (possibly induced) relation introducing

• generic and semantics domain altering

• semantical

The translation is neither ⊕ nor ⊗–modular. The translation cc-TrADFAF is classified as a
hybrid coalition–defender style under the listed semantics and casting functions.

Explanation. The functional and semantical properties of our approach can be explained
in the same manner as in the analysis of Translation 83. The fact that the argument do-
main undergoes a rather significant change can be easily seen from (the redefinition of)
Theorem 12.3. Not every argument in a given ADF might possess a standard evaluation
and thus is not necessarily represented in the target framework. Therefore, the translation
is argument removing. However, for two reasons it is also argument introducing - first of
all, an argument can appear in more than one evaluation, second of all, we use the breaker
arguments for handling support cycles. The removal of arguments and imprecision of the
evaluations in representing the original framework make our approach relation removing.
New conflicts associated with the breaker arguments are added to the target AF, and thus
the method is relation introducing as well. Due to the aforementioned imprecision, we can
choose to see this addition as induced or not (see explanations in e.g. Translation 82).

Just like in the previous cases, our translation is neither ⊕ nor ⊗–modular.
Let D1 = ({a, b}, {Ca = b, Cb = >}) and D2 = ({a, b}, {Ca =
>, Cb = a}) be two ADFs just like in the analysis of Translation 82. The
union of their associated AFs is ({(∅, (a), ∅), (∅, (a, b)), ∅), (∅, (b), ∅), (∅, (b, a)), ∅)}, ∅).
However, the AF corresponding to D1 ⊗ D2 = ({a, b}, {Ca = b, Cb =
a}) is ({({a, b}, ∅, ∅), ab, bb}, {(({a, b}, ∅, ∅), ab), (({a, b}, ∅, ∅), bb), (ab, ({a, b}, ∅, ∅)),
(bb, ({a, b}, ∅, ∅)), (ab, ab), (bb, bb)}). Therefore, our translation is not ⊗–modular. Let
us now come back to the ADFs D3 = ({a}, {Ca = a}) and D4 = ({a}, {Ca = ¬a}). The
AF corresponding toD3 is ({({a}, ∅, ∅), ab}, {(({a}, ∅, ∅), ab), (ab, ({a}, ∅, ∅)), (ab, ab)}),

399



while the one associated with D4 is ({(∅, (a), {a})}, {(∅, ((a), {a}), (∅, (a), {a}))}).
However, if we were to join these frameworks and perform a translation on D3 ⊕ D4 =
({a}, {Ca = >}), we would obtain the framework ({(∅, (a), ∅)}, ∅). Hence, our approach
is not ⊕–modular. �

e

a

b

c

d

e

d ∨ (c ∧ e)

¬e

>a ∧ b

(a) Sample ADF

ev2

bb cb db eb ab

ev4 ev5

ev1 ev3

(b) Associated AF for cc–semantics

Figure 117: Sample ADF and its associated AF for cc–semantics

Example 141. Let us look at the ADFD = ({a, b, c, d, e}, {Ca = e, Cb = d∨(c∧e), Cc =
¬e, Cd = >, Ce = a ∧ b}) depicted in Figure 117a and previously analyzed in Examples
28 and 138. From Example 28, we know that the conflict–free extensions of D are ∅, {c},
{d}, {b, d}, {c, d}, {b, c, d} and {a, b, d, e}. The cc–admissible sets are ∅, {d}, {b, d} and
{a, b, d, e}. Our cc–complete extensions are {b, d} and {a, b, d, e}, with {b, d} being also
the grounded extensions and {a, b, d, e} the single cc–preferred one.
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Based on Example 138, the minimal decisively in interpretations in this framework are
va = {e : t}, v1b = {d : t}, v2b = {c : t, e : t}, vc = {e : f}, vd = ∅ and ve = {a :
t b : t}. Thus, we can create the following minimal partially acyclic evaluations: ev1 =
(∅, (d, b), ∅) for b, ev2 = (∅, (c), {e}) for c, ev3 = (∅, (d), ∅) for d, ev4 = ({a, b, d, e}, ∅, ∅)
for a and e, and ev5 = ({a, b, c, e}, ∅, {e}) for a, b and e. We can observe that they are
little more than partially acyclic representations of the acyclic and standard evaluations
from Example 13829.

We can now create the AF FD = ({ev1, ev2, ev3, ev4, ev5, ab, bb, cb, db, eb}, {(ev4, ev2),
(ev4, ev5), (ev5, ev2), (ev5, ev5), (ab, ab), (bb, bb), (cb, cb), (db, db), (eb, eb), (ev1, b

b),
(ev1, d

b), (ev2, c
b), (ev3, d

b), (ev4, a
b), (ev4, b

b), (ev4, d
b), (ev4, e

b), (ev5, a
b), (ev5, b

b),
(ev5, c

b), (ev5, e
b), (ab, ev4), (bb, ev4), (db, ev4), (eb, ev4), (ab, ev5), (bb, ev5), (cb, ev5),

(eb, ev5)}) associated with our ADF and specialized for the cc–semantics. We can see it
depicted in Figure 117b. Its admissible extensions are ∅, {ev1}, {ev3}, {ev4}, {ev1, ev3},
{ev1, ev4}, {ev3, ev4} and {ev1, ev3, ev4}. The associated ADF sets are ∅, {b, d}, {d} and
{a, b, d, e}, which are exactly the cc–admissible extensions ofD. The complete sets of FD

are {ev1, ev3} and {ev1, ev3, ev4}. They correspond to {b, d} and {a, b, d, e}, which are
the cc–complete extensions of D. We can now easily verify that the grounded and (cc–)
preferred extensions of both frameworks are also in agreement.

12.1.4 CA Semantics

Out of all of our approaches, the translations dedicated to the ca–families of semantics
are the most problematic ones. Although their unusual structure (see e.g. Theorem 2.158)
made the ca2–family a perfect match for the EAF semantics (see Section 8.6.2), it means
we face issues similar to the ones from Section 8.2. In the previous case, the solution to
this problem was to limit ourselves to the frameworks in which the behavior of the se-
mantics is somewhat more “traditional”. In our approach it would mean assuming we are
working with AADF+s. However, as seen in Theorem 2.172, our semantics classification
“collapses” on such frameworks and thus we could use any of the already presented trans-
lations to obtain our extensions. Therefore, we will try to approach this issue differently.
Even though we are not able to create a generic ca–translation, we may still point out
where the issues are.

The semantics classification system that we have introduced is based on two param-
eters: the arguments we can accept or arguments that are valid (the “inside” restriction),
and which arguments we need to defend from or which arguments are valid attackers (the
“outside” restriction). The validity was specified by the types of positive dependency eval-
uations we wanted a given argument to possess. In a homogeneous approach, such as
the aa–family, whatever was “valid” for acceptance was “valid” for attack and vice versa.

29Please note that despite the fact that argument c meets the requirements of an a0 element of a sequence
argument in an acyclic evaluation, it is contained in the pd–set. This is due to the fact that b cannot leave
the pd–set and depends on c. Consequently, a partially acyclic evaluation should consist both of a front
pd–sequence and an end pd–sequence and we will consider this improvement in the future. It would e.g.
also address the unnecessary introduction of the breaker argument for c.
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Thus, the translation only required the removal of arguments that did not possess any
acyclic evaluations. In the ac–approach, an argument we could accept was also consid-
ered capable of attack, but not the other way around. Hence, we used the self–attacking
approach to simulate this behavior for those arguments (evaluations) that did not meet the
acyclicity restriction. We now reach to the ca–family, in which not everything we can
accept is valid for attack, even though the other way around holds. We can try to simu-
late this behavior in AFs in various ways; the first one requires the removal of particular
relations, the second focuses on the relation addition, and the last one on the introduction
of auxiliary arguments that can serve as additional defenders. We will now describe the
problems of all of these approaches.

Let us first focus on the relation removal. The idea is rather simple; if a relation is not
valid, we should remove it – this has already been done successfully in other frameworks
for various validity forms (see Section 4.3). However, the problem with both ca1 and ca2
semantics is the fact that validity of attacks is in a certain sense conditional, which was not
the case in any of the other families. Let us look at the framework D1 = ({a, b, c}, {Ca =
¬b, Cb = b ∧ ¬c, Cc = ¬b}) depicted in Figure 118a. The framework F1 (made of gray
and black edges only) visible in Figure 118c is the AF we would obtain if we followed
the translation for cc–semantics (Translation 85). We can observe that the argument b has
one (minimal) partially acyclic evaluation ({b}, ∅, {c}) and no acyclic ones. Unless b is
accepted in a ca1 extension, it is automatically assigned f by the acyclic range. In other
words, we do not need to concern ourselves with the possible conflicts it carries out, and
thus the set {a} is ca1–admissible. However, the word “unless” is important here – if b
is accepted in an extension, then the conflicts it carries out are valid (i.e. b is used in
determining whether an evaluation is blocked or not). For this reason, b can block the
evaluation for c and the set {b} is ca1–admissible. This inconsistency was visible e.g. in
Proposition 2.150, Theorem 2.155 and Theorem 2.158. What it means for us is that we
cannot use the relation removal method in our AF translation, as validity of a given relation
changes depending on how a given extension looks like. The same situation appears in the
ca2 semantics, though this time it is from the definition of the partially acyclic range, which
explicitly states that whether an argument is put into the discarded set “by default” depends
on what has been accepted in a given extension. In the presented example, both {a} and
{b} would be ca2–admissible as well. If we were to “remove” the conflicts carried out by b
(i.e. the grayed out conflicts in F1 in Figure 118c), the resulting structure would be similar
to the AF for the frameworkD2 = ({a, b, c}, {Ca = >, Cb = b∧¬c, Cc = >}) from Figure
118b. However, in this case the set {a, b} is conflict–free and {b} is not admissible, unlike
in D1. Therefore, the removal of relations affects both conflict–freeness and decisiveness
(defense) in a way that is not desirable from our perspective and should not be pursued
further.

In the next method, instead of removing invalid attacks, we add symmetric conflicts
so that the attacked argument is able to defend itself. Thus, we work again with the AF
F1 depicted in Figure 118c, but this time take into account gray, black and red edges.
This structure is similar to the one we would create for D3 = ({a, b, c}, {Ca = ¬b, Cb =
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b ∧ ¬c ∧ ¬a, Cc = ¬b}) visible in Figure 118d. Both D1 and D3 produce the same
extensions; we have five ca1 and ca2 admissible sets – ∅, {a}, {b}, {c} and {a, c}, two that
are at the same time complete, preferred and model extensions – {b} and {a, c} – with the
latter being the acyclic grounded extension. This basically means that the relation addition
method is so far quite acceptable on the ADF level. However, this does not necessarily
mean that it is adequate on the AF level. In fact, not all of the extensions we can get from
our modified F1 are “correct”. The admissible and preferred extensions correspond to the
sets that we have expected. However, the complete and grounded do not; F1 produces one
additional complete extension ∅ which is also grounded. Moreover, only one of our model
extensions – {b} – is retrieved as the single stable extension of F1 {({b}, ∅, {c})}.

The reason for the loss of one of the model extensions is the presence of the breaker
argument that is attacked only by its associated evaluation. For this particular semantics,
this can be addressed by not enforcing self–attacks on the breaker arguments, which will
be described further in the next method. Unfortunately, the cause of the misbehaving of the
complete and grounded semantics is much more difficult to resolve. The problem can be
explained in two ways. First of all, it can be seen as the difference between an initial and
a self–defending argument. Although both of them will appear in admissible extensions,
the initial argument will be defended by any set (in particular, ∅), while the self–defending
one might not – we can only be sure it is defended by a set that contains it in the first place.
Therefore, while in our case a is decisively in w.r.t. the acyclic range of ∅ in D1 and D3

(thus acting as “initial” w.r.t. the assumed notion of validity), (∅, (a), {b}) is not defended
by ∅ in F1. A different way to explain this issue is by looking at the discarded sets.
The discarded set (of any kind) of the empty set is not necessarily empty itself in ADFs.
However, it will always be such in AFs. Making sure that the two would eventually “come
together” would require making appropriate evaluation arguments attacked by an auxiliary
initial argument. Unfortunately, this of course prevents these evaluations from appearing
in an admissible extension of any sort, thus damaging the behavior of semantics to even a
larger extent. Therefore, we are not aware of any way we can repair the relation addition
method in a way that would allow us handle the complete and grounded approaches.

The auxiliary argument method is in fact quite similar to what has been done in
Translation 85 dedicated to the cc–semantics. The difference is that in this case, we
remove the self–attack restriction from the breaker arguments. Accepting such argu-
ments in an extension corresponds to rejecting the original argument due to its lack
of acyclicity. Let us again focus on F1 depicted in Figure 118c and take into account
all gray and black edges with the exception of the ({b}b, {b}b) one. The resulting
structure will produce admissible extensions corresponding to sets ∅, {a} (the original
extension contains the auxiliary argument), {b}, {c} and {a, c}, which is the desired
result. In this case, also the preferred and stable (model) sets are the ones we hoped
for. Nevertheless, we still have one complete extension too many (namely, ∅), and
the produced grounded one corresponds to the standard approach and not the acyclic
one. Furthermore, when we consider more complex examples, the behavior of the
preferred semantics “breaks”. Let us consider the framework ({a, b}, {Ca = a, Cb = b}),
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previously studied in Example 29. It has a single (ca1 and ca2) preferred extension,
namely {a, b}. The AF constructed for this framework with the current method would be
({({a}, ∅, ∅), ({b}, ∅, ∅), {a}b, {b}b}, {(({a}, ∅, ∅), {a}b), ({a}b, ({a}, ∅, ∅)), (({b}, ∅, ∅),
{b}b), ({b}b, ({b}, ∅, ∅))}). It produces in total four preferred extensions – the first one
containing the evaluations for a and b, next with evaluation for a and the breaker for b,
then the breaker for a and evaluation for b, and finally only the breakers. This corresponds
to extensions {a, b}, {a}, {b} and ∅, and therefore produces multiple extensions we had
not expected.. This mismatch is due to the fact that the breaker arguments are accepted
independently of each other and thus the way they appear in an AF extension is not in the
desired correspondence with how the (partially) acyclic range is built. Thus, this method,
similarly to the approaches we had discussed before, does not handle the ca1 and ca2
semantics as successfully as we have managed in the other families.

a b c

¬b b ∧ ¬c ¬b

(a) D1

a b c

> b ∧ ¬c >

(b) D2

(∅, (a), {b}) ({b}, ∅, {c})

{b}b

(∅, (c), {b})

(c) F1

a b c

¬b b ∧ ¬c ∧ ¬a ¬b

(d) D3

Figure 118: Sample methods for handling the ca1 and ca2 semantics

The analysis above has presented the difficulties in designing the translations aimed
at the ca–families of ADF semantics. Consequently, what we will introduce now should
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only be treated as a partial solution for the ca2–case and we hope that in the future we will
be able to create a more satisfactory solution and manage to extend it to the ca1–family.
We will focus on the last of the described methods that works with the breaker arguments
and removes the self–attack restrictions from them that was present in Translation 85.
Although its usefulness in this case is limited, the independence of the breaker arguments
that causes problems for the ca–semantics is precisely what we want for the labeling–based
approaches. Consequently, this method will be the main topic of the next section.

Translation 86. Let D = (A,C) be an ADF. Its corresponding AF FD
CA2

= (A′, R) is
built the following way:

• let Aev = {(F,G,B) | (F,G,B) is a minimal partially acyclic pd–evaluation for
a ∈ A},

• let Ab = {ab | ∃(F,G,B) ∈ Aev s.t. a ∈ F},

• A′ = Aev ∪ Ab,

• for every (F,G,B), (F ′, G′, B′) ∈ Aev, (F,G,B) attacks (F,′G′, B′) if (F ∪ G) ∩
B′ 6= ∅,

• for every (F,G,B) ∈ Aev, ab ∈ Ab s.t. a ∈ F ∪G, (F,G,B) attacks ab, and

• for every (F,G,B) ∈ Aev, ab ∈ Ab s.t. a ∈ F , ab attacks (F,G,B).

Theorem 12.4. Let D = (A,C) be an ADF and FD
CA2

= (A′, R) its corre-
sponding AF obtained from Translation 86. If E ⊆ A is a conflict–free (ca2–
admissible, ca2–complete, ca2–preferred, model, grounded) extension of D, then there
exists a conflict–free (admissible, complete, preferred, stable, grounded) extension E ′ =
{(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a

b
m} ⊆ A′ of FD

CA2
s.t. E =

⋃n
i=1 Fi ∪ Gi. If

E ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a
b
m} ⊆ A′ is a conflict–free (admissible, sta-

ble, grounded) extension of FD
CA2

, then E =
⋃n
i=1 Fi∪Gi is conflict–free (ca2–admissible,

model, grounded) extension of D.

We can now put the translation into our system. It can be observed that the analysis
will be the same as in the case of the cc–semantics, which should not be surprising if we
take into account that, structurally speaking, this approach is only a minor modification of
Translation 85. Thus, further explanations will be omitted.
Redefinition of Translation 86: Let FrADF be the collection of all ADFs on domain U
and FrAF the collection of all AFs on domain PEV U∪U b where PEV U = {(F,G,B) | F
is a sequence on E ⊆ U , G ⊆ U , F ∪ G 6= ∅, B ⊆ U}. The translation ca2-TrADFAF :
FrADF → FrAF is defined as ca2-TrADFAF ((A,C)) = (A′, R) for a framework (A,C) ∈
FrADF , where A′ = Aev ∪ Ab s.t. Aev = {(F,G,B) | (F,G,B) is a minimal partially
acyclic pd–evaluation for a ∈ A} and Ab = {ab | a ∈ As.t.∃(F,G,B) ∈ Aev, a ∈ F},
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and R = {((F,G,B), (F ′, G′, B′)) | (F ∪ G) ∩ B′ 6= ∅} ∪ ∪{((F,G,B), ab) | a ∈
F ∪G} ∪ {(ab, (F,G,B)) | a ∈ F}.
Redefinition of Theorem 12.4: Let σADF ∈ {conflict–free, ca2–admissible, grounded,
model}, δADF ∈ {ca2–complete, ca2–preferred} be ADF semantics and σAF ∈ {conflict–
free, admissible, grounded, stable}, δAF ∈ {complete, preferred} similar AF se-
mantics. Let SC Tr

σ be the extraction–union hybrid semantics casting function for σ
(and δ) defined as SCX

σ (S) =
⋃n
i=1 Fi ∪ Gi, where X = (A,C) ∈ FrADF and

S = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a
b
m} ∈ σ(ca2-Tr

ADF
AF (X)). The translation

ca2-Tr
ADF
AF is strong under (σ, SC Tr

σ ) and ⊆–weak under (δ, SC Tr
δ ) It is also semantics

bijective under the (stable) model and grounded semantics and the defined casting func-
tions.
Analysis of Translation 86: Under the conflict–free, (ca2–) admissible, (ca2–) complete,
(ca2–) preferred, (model) stable and grounded semantics and the defined casting functions,
the translation ca2-TrADFAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, relation re-
moving, (possibly induced) relation introducing

• generic and semantics domain altering

• semantical

The translation is neither ⊕ nor ⊗–modular. The translation ca2-TrADFAF is classified as a
hybrid coalition–defender style under the listed semantics and casting functions.

Example 142. Let us again look at the ADF D = ({a, b, c, d, e}, {Ca = e, Cb = d ∨ (c ∧
e), Cc = ¬e, Cd = >, Ce = a ∧ b}) depicted in Figure 119a and previously analyzed in
Examples 28, 138 and 141.

The ca2–admissible extensions of D are ∅, {c}, {d}, {b, d}, {c, d}, {b, c, d} and
{a, b, d, e}. The last two are also ca2–complete, ca2–preferred and models. {b, d} is the
grounded extension. Based on Example 141, we can create the following minimal partially
acyclic evaluations: ev1 = (∅, (d, b), ∅) for b, ev2 = (∅, (c), {e}) for c, ev3 = (∅, (d), ∅)
for d, ev4 = ({a, b, d, e}, ∅, ∅) for a and e, and ev5 = ({a, b, c, e}, ∅, {e}) for a, b and e.

We can now create the AF FD = ({ev1, ev2, ev3, ev4, ev5, ab, bb, cb, db, eb}, {(ev4, ev2),
(ev4, ev5), (ev5, ev2), (ev5, ev5), (ev1, b

b), (ev1, d
b), (ev2, c

b), (ev3, d
b), (ev4, a

b), (ev4, b
b),

(ev4, d
b), (ev4, e

b), (ev5, a
b), (ev5, b

b), (ev5, c
b), (ev5, e

b), (ab, ev4), (bb, ev4), (db, ev4),
(eb, ev4), (ab, ev5), (bb, ev5), (cb, ev5), (eb, ev5)}) associated with our ADF and special-
ized for the ca2–semantics. We can see it depicted in Figure 119b. The difference between
this framework and the one from Example 141 is in the removal of self–attacks from the
breaker arguments. The admissible extensions of FD are ∅, {ev1}, {ev3}, {ab}, {eb}
and all of their combinations, then {ev2, ab} and {ev2, eb} and all of their combinations
with the previous sets, and finally {ev4}, {ev1, ev4}, {ev3, ev4}, {ev4, cb}, {ev1, ev3, ev4},
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(a) Sample ADF

ev2
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ev4 ev5

ev1 ev3

(b) Associated AF for the ca2–semantics

Figure 119: Sample ADF and its associated AF for the ca2–semantics

{ev1, ev4, cb}, {ev3, ev4, cb}, and {ev1, ev3, ev4, cb}. Therefore, the sets we can retrieve
from them are ∅, {b, d}, {d}, {c}, {b, c, d}, {c, d} and {a, b, d, e}. We can observe these
are all and only ca2–admissible extensions of D. The complete extensions of our AF
are {ev1, ev3}, {ev1, ev3, ev4, cb} and {ev1, ev2, ev3, ab, eb}. They correspond to {b, d},
{a, b, d, e} and {b, c, d}; unfortunately, {b, d} is not a ca2–complete extension of D. On
this occasion, the preferred extensions of both frameworks agree, though please note it is
not necessarily always the case. However, the grounded set {ev1, ev3} is correctly retrieved
as the grounded extension {b, d} of DF . Both {ev1, ev3, ev4, cb} and {ev1, ev2, ev3, ab, eb}
(i.e. {a, b, d, e} and {b, c, d}) are the stable extensions of FD. They coincide with the
models of D.
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12.1.5 Labeling–Based semantics

In the previous section we have described various attempts at translating ADFs to AFs
w.r.t. the ca–families of extension–based semantics. The last method we have described
(i.e. Translation 86) was a modification of Translation 85 that was aimed at the cc–
semantics. The removal of self–attack from the breaker arguments allowed us to accept
them and simulate the effect of discarding an argument due to its participation in a positive
dependency cycle. Although this approach was not entirely sufficient for the ca–semantics,
it is precisely what we need to model the labeling–based semantics of ADFs.

Before we proceed, we will introduce some notation first that will help us to write
down the relations between source and target labelings more easily. Retrieving the orig-
inal extensions from the translated ones was usually a matter of using or combining the
casting functions listed in Definition 3.6. However, when we come to labelings, it is not
necessarily that easy, particularly when a source argument can be represented by a number
of target ones. Although assigning t to an argument is a matter of verifying if any eval-
uation containing it is accepted, retrieving the f mapping requires checking if all of the
evaluations including the desired argument are rejected as well. Thus, we will introduce
some functions meant for retrieving evaluations.

Let E = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a
b
m} be a set of arguments FD

lab; the set
of D arguments that can be retrieved from E will be defined as

⋃
E
V E =

⋃n
i=1 Fi ∪ Gi.

Given an argument a ∈ A in D, the collection of arguments in A′ in FD
lab containing a

will be denoted as EV p(a) = {(F,G,B) ∈ Aev | a ∈ F ∪ G}. We can extend the EV p

function to sets of arguments as well. Finally, by ALL(E ) = {a ∈ A | EV p(a) ⊆ E} we
will understand the set of those arguments inD s.t. all of their partially acyclic evaluations
are contained in the set of FD

lab arguments E .

Theorem 12.5. Let D = (A,C) be an ADF and FD
lab = (A′, R) its corresponding AF

obtained through Translation 86. If v is an admissible labeling of D, then there exists an
admissible labeling v′ of FD

lab s.t. vt =
⋃
E
V in(v′) and EV p(vf ) ⊆ out(v′). If v is a complete

(preferred, grounded) labeling of D, then there exists a complete (preferred, grounded)
labeling v′ of FD

lab s.t. vt =
⋃
E
V in(v′) and vf = ALL(out(v′)).

If v′ is an complete (preferred, grounded) labeling of FD
lab, then a labeling v of D s.t.

vt =
⋃
E
V in(v′) and vf = ALL(out(v′)) is complete (preferred, grounded) in D. This does

not necessarily hold for admissible semantics.

What is perhaps somewhat surprising, taking into account the behaviour of the transla-
tions concerning the extension–based semantics for ADFs, is the weakness of the current
approach w.r.t. the admissible labelings. Although the translation was strong w.r.t. the
ca2–admissible extensions and there is a particular correspondence between these two se-
mantics (see Theorem 2.166), the issue lies with the arguments rejected in a labeling. Not
every argument that can be assigned out has to be assigned out in the labeling–based se-
mantics for AFs. This means that when translating back into an ADF, a given argument
can be assigned f , but another argument it depended on might not, which in turn can lead
to the loss of decisiveness. Let us look at the following example:
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Example 143. Let us consider a simple ADF D = ({a, b, c}, {Ca = >, Cb = ¬a, Cc =
b}). Every argument possesses precisely one minimal partially acyclic evaluation. The
evaluation for a is eva = (∅, (a), ∅), for b we have evb = (∅, (b), {a}) and evc =
(∅, (b, c), {a}) for c. We can observe that no breaker arguments will be created. The asso-
ciated AF is now ({eva, evb, evc}, {(eva, evb), (eca, evc)}). We can observe that assigning
in to eva, undec to evb and out to evc gives us an admissible labeling. The corresponding
labeling in our ADF is v = {a : t, b : u, c : f}. Unfortunately, v is not admissible in
D. We can observe that the characteristic operator produces associates with v the labeling
ΓD(v) = {a : t, b : f , c : u}, which is incomparable with v w.r.t. ≤i. Only assigning out
to both evb and evc would give us an admissible ADF labeling.

Taking into account the analysis done in the previous section, it is only the semantics
theorem that needs to be redefined and put into our system. Although in this case we
manage to preserve many more semantics than previously, both methods still qualify as
generic, and thus the properties remain unchanged.
Redefinition of Theorem 12.5: Let σADF ∈ {complete, preferred, grounded} be a
labeling–based ADF semantics and σAF ∈ {complete, preferred, grounded} a similar AF
semantics. Let SC Tr

σ be the semantics casting function for σ defined as SCX
σ (v′) = v

s.t. vt =
⋃
E
V v′t, vf = ALL(v′f ) and vu = A \ (vt ∪ vf ), where X = (A,C) ∈ FrADF

and v′ ∈ σ(ca2-Tr
ADF
AF (X)). The translation ca2-TrADFAF is strong and semantics bijective

under (σ, SC Tr
σ ). It is ⊆–weak under the admissible semantics and the defined casting

function.

Example 144. Let us again look at the ADF D = ({a, b, c, d, e}, {Ca = e, Cb =
d∨(c∧e), Cc = ¬e, Cd = >, Ce = a∧b}) depicted in Figure 119a and analyzed in Exam-
ple 142. Its associated AF is FD = ({ev1, ev2, ev3, ev4, ev5, ab, bb, cb, db, eb}, {(ev4, ev2),
(ev4, ev5), (ev5, ev2), (ev5, ev5), (ev1, b

b), (ev1, d
b), (ev2, c

b), (ev3, d
b), (ev4, a

b), (ev4, b
b),

(ev4, d
b), (ev4, e

b), (ev5, a
b), (ev5, b

b), (ev5, c
b), (ev5, e

b), (ab, ev4), (bb, ev4), (db, ev4),
(eb, ev4), (ab, ev5), (bb, ev5), (cb, ev5), (eb, ev5)}), where ev1 = (∅, (d, b), ∅), ev2 =
(∅, (c), {e}), ev3 = (∅, (d), ∅), ev4 = ({a, b, d, e}, ∅, ∅) and ev5 = ({a, b, c, e}, ∅, {e}).

The complete labelings of D are {a : u, b : t, c : u, d : t, e : u}, {a : t, b : t, c : f , d :
t, e : t} and {a : f , b : t, c : t, d : t, e : f}. The first one is grounded and the other two
preferred.

The complete labelings of our AF are v1, where in(v1) = {ev1, ev3},
out(v1) = {bb, db} and undec(v1) = {ev2, ev4, ev5, ev6, ab, cb, eb}, v2, where in(v2) =
{ev1, ev3, ev4, cb}, out(v2) = {ev2, ev5, ab, bb, db, eb} and undec(v2) = ∅, and v3, where
in(v3) = {ev1, ev2, ev3, ab, eb}, out(v3) = {ev4, ev5, bb, cb, db} and undec(v3) = ∅.
v1 is the grounded labeling of FD, while v2 and v3 are preferred. The ADF label-
ings associated with the AF ones are v′1 = {a : u, b : t, c : u, d : t, e : u},
v′2 = {a : t, b : t, c : f , d : t, e : t}, and v′3 = {a : f , b : t, c : t, d : t, e : f}. We
can observe they coincide with the previously listed complete labelings. It is now easy to
check that the grounded and preferred labelings are also retrieved.
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12.1.6 Improvements

In this section we have introduced a variety of translations from ADFs to AFs, each of them
meant to handle a different family of ADF semantics. We believe they will be improved in
the future, particularly due to the fact that all of them follow the coalition pattern, which is
in a certain sense weaker than the defender and attack propagation methods. However, one
thing needs to be stated openly: with the exception of the grounded and acyclic grounded
cases, there exist no exact translations from ADFs to AFs for the analyzed semantics, even
when we limit ourselves to BADFs or AADF+s:

Theorem 12.6. Let FrADF be the collection of all ADFs, BADF the collection of all
BADFs and AADF+ of all AADF+s, all on a domain UADF . Let FrAF the collec-
tion of all AFs on a domain UAF . There exists no full (resp. source–subclass) transla-
tion from FrADF (resp. BADF , AADF+) to FrAF that is exact under conflict–free,
pd–acyclic conflict–free, xy–admissible, xy–complete, xy–preferred, stable, model, three–
valued model, labeling admissible, labeling complete and labeling preferred semantics
and identity casting functions for them.

Although it may sound impressive at first, this theorem is basically a result of the fact
that ADFs handle SETAFs easily and AFs do not. We can repeat the analysis from Section
6.1.3 and represent the discussed SETAFs as ADFs using Translation 31. Since SETAFs
also fall into the two mentioned subclasses of ADFs, it is not just the full exact translations
that cannot be created, but also certain source–subclass ones.

Due to this gap between AFs and ADFs, the improvements we would like to consider
in the future concern the labeling–based translation. In particular, we believe that the de-
fender approach can be exploited in order to connect evaluations and their sub–evaluations
in order to address the issues raised in Example 143. This would allow us to improve the
strength of our approach w.r.t. the admissible semantics.

12.2 ADF as SETAF

12.2.1 CC Semantics

The aa and ac–families of ADF semantics can be translated into AFs relatively easily. The
problems started appearing when we moved to the cc–family, where we needed additional
breaker arguments to deal with cycles. Although the translation from ADFs to SETAFs
w.r.t. this family of semantics we are about to present is not that different from the one
we have presented for AFs, it is the approach we have created first and only later simpli-
fied after gaining some insight. The line of reasoning which has lead us to this solution
was already presented in Example 140. To each evaluation that was not acyclic we have
assigned a breaker argument representing the pd–set. The fact that some breakers might
have arguments in common and thus be related was, in the first instance, grasped by the
introduction of group attacks, and only later by changing the nature of the breakers. Con-
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sequently, even though we believe the AF solution to be more adequate, we would still
like to present the original translation.

Translation 87. Let D = (A,C) be an ADF. Its corresponding SETAF SFD
CC = (A′, R)

is built the following way:

• let Aev = {(F,G,B) | (F,G,B) is a minimal partially acyclic pd–evaluation for
a ∈ A},

• let Ab = {F b | (F,G,B) ∈ Aev, F 6= ∅},

• A′ = Aev ∪ Ab,

• for every (F,G,B), (F ′, G′, B′) ∈ Aev, {(F,G,B)} attacks (F,′G′, B′) if (F ∪G)∩
B′ 6= ∅,

• for every F b ∈ Ab, {F b} attacks F b,

• for every (F,G,B) ∈ Aev s.t. F 6= ∅, {(F,G,B)} attacks F b and {F b} attacks
(F,G,B), and

• given an argument F b ∈ Ab, which represents the set F ⊆ A, and a minimal
set of arguments {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev s.t. F ⊆

⋃n
i=1 Fi ∪ Gi,

{(F1, G1, B1), ..., (Fn, Gn, Bn)} attacks F b.

Due to the way the attack relation is constructed, we can observe that the resulting
SETAF will be in minimal form:

Theorem 12.7. Let D = (A,C) be an ADF and SFD
CC = (A′, R) its corresponding

SETAF obtained through Translation 87. SFD
CC is in minimal normal form.

We can now proceed with analyzing the extensions produced by our source and target
frameworks. Please note that every breaker argument in the produced SETAF will be a
self attacker and as such, they will not appear in the created sets.

Theorem 12.8. Let D = (A,C) be an ADF and SFD
CC = (A′, R) its corresponding

SETAF obtained from Translation 87. If S ⊆ A is a conflict–free (cc–admissible, cc–
complete, cc–preferred, grounded) extension ofD, then there exists a conflict–free (admis-
sible, complete, preferred, grounded) extension S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆
Aev of SFD

CC s.t. S =
⋃n
i=1 Fi ∪ Gi. If S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev

is a conflict–free (admissible, complete, preferred, grounded) extension of SFD
CC , then

S =
⋃n
i=1 Fi ∪ Gi is conflict–free (cc–admissible, cc–complete, cc–preferred, grounded)

extension of D.
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The translation can be put into the system in the same way Translation 85 was. Thus,
we will omit further explanations.
Redefinition of Translation 87: Let FrADF be the collection of all ADFs on do-
main U and FrAF the collection of all AFs on domain PEV U ∪ (2U)b where PEV U =
{(F,G,B) | F is a sequence on E ⊆ U , G ⊆ U , F ∪ G 6= ∅, B ⊆ U}. The translation
cc-TrADFSETAF : FrADF → FrSETAF is defined as cc-TrADFSETAF ((A,C)) = (A′, R) for a
framework (A,C) ∈ FrADF , where A′ = Aev ∪ Ab s.t. Aev = {(F,G,B) | (F,G,B)
is a minimal partially acyclic pd–evaluation for a ∈ A} and Ab = {F | (F,G,B) ∈
Aev, F 6= ∅}, and R = {({(F,G,B)}, (F ′, G′, B′)) | (F ∪G) ∩B′ 6= ∅} ∪ {({F b}, F b) |
F b ∈ Ab} ∪ {({(F,G,B)}, F b), ({F b}, (F,G,B)) | (F,G,B) ∈ Aev, F 6= ∅} ∪
{({(F1, G1, B1), ..., (Fn, Gn, Bn)}, F b) | {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev is a min-
imal set of arguments s.t. F b ⊆

⋃n
i=1 Fi ∪Gi}.

Redefinition of Theorem 12.8: Let σADF ∈ {conflict–free, cc–admissible, cc–complete,
cc–preferred, grounded} be an ADF semantics and σSETAF ∈ {conflict–free, admissible,
complete, preferred, grounded} a similar SETAF semantics. Let SC Tr

σ be the extraction–
union hybrid semantics casting function for σ defined as SCX

σ (S) =
⋃n
i=1 Fi ∪Gi, where

X = (A,C) ∈ FrADF and S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ∈ σ(cc-TrADFSETAF (X)).
The translation cc-TrADFSETAF is strong under (σ, SC Tr

σ ). It is also semantics bijective un-
der the (cc–) complete, (cc–) preferred and grounded semantics and the defined casting
functions.
Analysis of Translation 87: Under the conflict–free, (cc–) admissible, (cc–) complete,
(cc–) preferred and grounded semantics and the defined casting functions, the translation
cc-TrADFSETAF is:

• full, target–subclass and overlapping

• argument domain altering, argument removing, argument introducing, relation re-
moving, (possibly induced) relation introducing

• generic and semantics domain altering

• semantical

The translation is neither ⊕ nor ⊗–modular. The translation cc-TrADFSETAF is classified as
hybrid coalition–defender style under the listed semantics and casting functions.

Example 145. Let us look at the ADFD = ({a, b, c, d, e}, {Ca = e, Cb = d∨(c∧e), Cc =
¬e, Cd = >, Ce = a ∧ b}) depicted in Figure 120a and previously analyzed in Examples
28, 138, 141, 142 and 144. The conflict–free extensions of D are ∅, {c}, {d}, {b, d},
{c, d}, {b, c, d} and {a, b, d, e}. The cc–admissible sets are ∅, {d}, {b, d} and {a, b, d, e}.
Our cc–complete extensions are {b, d} and {a, b, d, e}, with {b, d} being also the grounded
extensions and {a, b, d, e} the single cc–preferred one.

The minimal partially acyclic evaluations for our arguments are ev1 = (∅, (d, b), ∅)
for b, ev2 = (∅, (c), {e}) for c, ev3 = (∅, (d), ∅) for d, ev4 = ({a, b, d, e}, ∅, ∅) for a
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Figure 120: Sample ADF and its associated SETAF for the cc–semantics

and e, and ev5 = ({a, b, c, e}, ∅, {e}) for a, b and e. We can observe that in two cases,
the pd–sets are not empty and thus will lead to the creation of appropriate breaker ar-
guments F b

1 = {a, b, d, e}b and F b
2 = {a, b, c, e}b. We can now create the SETAF

SFD = ({ev1, ev2, ev3, ev4, ev5, F b
1 , F

b
2}, {({ev4}, ev2), ({ev4}, ev5), ({ev5}, ev2),

({ev5}, ev5), ({F b
1}, F b

1 ), ({F b
2}, F b

2 ), ({F b
1}, ev4), ({F b

2}, ev5), ({ev4}, F b
1 ), ({ev5}, F b

2 ),
({ev1, ev5}, F b

1 ),({ev3, ev5}, F b
1 ), ({ev2, ev4}, F b

2 )}) associated with our ADF and special-
ized for the cc–semantics. We can see it depicted in Figure 120b.

The admissible extensions of SFD are ∅, {ev1}, {ev3}, {ev4}, {ev1, ev3}, {ev1, ev4},
{ev3, ev4} and {ev1, ev3, ev4}. By looking at the pd–sets and pd–sequences of our evalua-
tions, we can see that these extensions correspond to the sets ∅, {d}, {b, d}, and {a, b, d, e},
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which are the cc–admissible extensions of D. The complete extensions of SFD are
{ev1, ev3} (associated with {b, d}) and {ev1, ev3, ev4} (associated with {a, b, d, e}), with
the first one being grounded and the other preferred. These are indeed the desired answers
and we retrieve all and only extensions of D.

12.2.2 AA Semantics

When we presented translations from ADFs to AFs, we have noted that out of all of the
approaches, the aa–family is perhaps the simplest. This is also the family for which we can
construct an attack propagation translation, resembling the ones we have created in case
of AFNs and EASs (Translations 64 and 74). Just like in the previous cases we need to
assume we are working with a weakly valid ADF. However, it can be easily chained with
the weakly valid normal form translation (Translation 9) in order to lift this condition, and
in this case we will omit further chain analysis.

Translation 88. Let D = (A,C) be a weakly valid ADF. Its corresponding SETAF is
SFD

AA = (A,R), where R = {(E , a) | E ⊆ A is a minimal set of arguments s.t. for every
acyclic pd–evaluation (F,B) for a on A, E ∩B 6= ∅}.

Due to the minimality assumption in the construction of the attack relation any target
SETAF will be in minimal normal form:

Theorem 12.9. LetD = (A,C) be an ADF and SFD
AA = (A,R) its corresponding SETAF

obtained through Translation 88. SFD
AA is in minimal normal form.

Just like in the case of AFNs and EASs, we can observe that the pd–acyclic conflict–
free and admissible semantics are preserved only one way. Even though defending an
argument implies defending at least one of its evaluations, it is only the complete semantics
that forces the acceptance of the defended elements:

Theorem 12.10. Let D = (A,C) be a weakly valid ADF and SFD
AA = (A,R′) its as-

sociated SETAF created through Translation 88. If E ⊆ A is pd–acyclic conflict–free
(aa–admissible) inD, then it is conflict–free (admissible) in SFD

AA. Not every conflict–free
(admissible) extension of SFD

AA is pd–acyclic conflict–free (aa–admissible) in D. E ⊆ A
is an aa–complete (aa–preferred, acyclic grounded, stable) extension of D iff it is a com-
plete (preferred, grounded, stable) extension of SFD

AA.

Redefinition of Translation 88: Let WV ADF be the collection of all weakly valid ADFs
and MinSETAF the collection of all SETAFs in minimal form, both on domain U . The
translation aa-TrADFSETAF : WV AFN → MinSETAF is defined as aa-TrADFSETAF ((A,C) =
(A,R) for a framework (A,C) ∈ WV AFN , where R = {(E , a) | E ⊆ A is a minimal set
of arguments s.t. for every acyclic pd–evaluation (F,B) for a on A, E ∩B 6= ∅}.
Redefinition of Theorem 12.10: Let σADF ∈ {aa–complete, aa–preferred, acyclic
grounded, stable} be an ADF semantics, σAF ∈ {complete, preferred, grounded, stable}
a similar AF semantics and SC Tr

σ the identity casting functions for σ. The translation
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aa-TrADFSETAF is strong and semantics bijective under (σ, SC Tr
σ ). It is ⊆–weak under the

(pd–acyclic) conflict–free and (aa–) admissible semantics and identity casting functions.
Analysis of Translation 88: Under the (pd–acyclic) conflict–free, (aa–) admissible, (aa–
) complete, (aa–) preferred, (acyclic) grounded and stable semantics and their identity
casting functions, the translation aa-TrADFSETAF is:

• source–subclass, target–subclass, overlapping

• argument domain preserving, argument set preserving, relation introducing and re-
lation removing

• generic and semantics domain preserving

• semantical

Translation aa-TrADFSETAF is neither⊕ nor⊗–modular. It is exact under the (aa–) complete,
(aa–) preferred, (acyclic) grounded and stable semantics and the identity casting functions.
We classify this approach as an attack propagation translation.

Explanation. Due to the fact that we work with weakly valid ADFs and produce only
minimal SETAFs, our translation is both source and target–subclass. Moreover, it is
overlapping. We can consider two simple frameworks ({a, b}, {Ca = >, Cb = >})
and ({a, b}, {Ca = >, Cb = a}); in both cases, the associated SETAF will be simply
({a, b}, ∅). This also exemplifies the relation removal occurring in the translation. How-
ever, it can also be seen as relation introducing. The sets of attacking arguments are based
on the blocking sets of the evaluations. This means that an attacking argument is related
to the attacked one in some way, but not necessarily in a direct manner. From the redefi-
nitions of our translation and the semantics theorem we can easily observe that both types
of domain are preserved. Moreover, as four semantics are handled in a strong manner, we
can classify our method as generic. The use of acyclic pd–evaluations makes it semantical.

Let us now focus on ⊕–modularity and consider two ADFs D1 = ({a, b, c}, {Ca =
>, Cb = ¬a, Cc = b}) and D2 = ({d, e, c}, {Cd = >, Ce = ¬d, Cc = e}). The associ-
ated SETAFs are SF1 = ({a, b, c}, {(a, b), (a, c)}) and SF2 = ({d, e, c}, {(d, e), (d, c)}).
However, the SETAF associated with the framework D1 ⊕ D2 = ({a, b, c, d, e}, {Ca =
>, Cb = ¬a, Cc = b∨ e, Cd = >, Ce = ¬d}) is ({a, b, c, d, e}, {(a, b), (d, e), ({a, d}, c)}).
We can observe that this structure is different from SF1 ∪ SF2, thus making our approach
not ⊕–modular.

Finally, let us analyze ⊗–modularity. Assume we have two frameworks D3 =
({a, b, c}, {Ca = >, Cb = ¬a, Cc = >}) and D4 = ({a, b, c}, {Ca = >, Cb =
>, Cc = b}). The SETAFs created for them would be SF3 = ({a, b, c}, {(a, b)})
and SF4 = ({a, b, c}, ∅). Unfortunately, the SETAF for the structure D3 ⊗ D4 =
({a, b, c}, {Ca = >, Cb = ¬a, Cc = b}) is ({a, b, c}, {(a, b), (a, c)}). We can easily
observe it contains an attack which is present neither in SF3 nor in SF4. Consequently,
our translation cannot be classified as ⊗–modular. �
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Figure 121: Sample ADF and its associated SETAF for aa-semantics

Example 146. Let us consider the framework D = ({a, b, c, d, e}, {Ca = b ∨ c, Cb =
¬d, Cc = ¬e, Cd = >, Ce = ¬a}) depicted in Figure 121a. We can observe it is the
weakly valid form of the ADF analyzed in Example 126. We can observe that every
argument posseses a single minimal acyclic evaluation; we can create ((b, a), {d}) and
((c, a), {e}) for a, ((b), {d}) for b, ((c), {e}) for c, ((d), ∅) for d and ((e), {a}) for e. The
aa–admissible extensions of D are ∅, {d}, {a, c}, {d, e} and {a, c, d}. Only ∅ and {a, c}
are not aa–complete. The acyclic grounded extension of our framework is {d}, while
{d, e} and {a, c, d} are aa–preferred and stable.

Let us now construct the SETAF associated with our ADF. The set of arguments stays
the same and it is the attack relation we need to focus on. By looking at the blocking
sets, we can observe that argument d will not be attacked at all. In order to attack all of
the evaluations of a, we need both d and e to be present. The other conflicts are quite
straightforward as the arguments in question possess only one evaluation; d attacks b, e
attacks c and a attacks e. We thus obtain the framework SFD = ({a, b, c, d, e}, {({a}, e),
({d}, b), ({e}, c), ({d, e}, a)}) from Figure 121b.

The admissible extensions of SFD are ∅, {a}, {d}, {a, c}, {a, d}, {d, e}, and {a, c, d}.
Although every aa–admissible extension of D is admissible in SFD, our target framework
produces more sets than desired, as usual in the pure attack propagation approach. Never-
theless, when we reach the complete extensions – {d}, {d, e} and {a, c, d} – we obtain an
exact correspondence between the answers produced by D and SFD. We can observe that
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{d} is grounded SFD, while {d, e} and {a, c, d} are preferred and stable. These answers
are in agreement with the acyclic grounded, aa–preferred and stable sets of D.

12.2.3 Improvements

The results we have presented in this section were somewhat modest, particularly taking
into account the amount of the ADF semantics and the previously created attack propaga-
tion and defender methods for frameworks with support which used SETAFs as the target
frameworks. Although we would like to look further at these approaches for ADFs in the
future, in this section we would like to ask ourselves one question. Namely, it was not pos-
sible to create an exact translation from ADFs to AFs under any of the known semantics -
is it perhaps possible for SETAFs then?

Although we cannot give a definite answer due to the lack of study of semantics sig-
natures in SETAFs, we can already make several observations. Let us first consider the
conflict–free semantics; let SF = (A,R) be a SETAF and E ⊆ A a set of arguments. We
can observe that if E is conflict–free in SF , then so is any subset of E . Consequently,
even though we do not know the sufficient conditions for the SETAF conflict–free signa-
ture, being downward–closed is necessary:

Proposition 12.11. Let SF = (A,R) be a SETAF. The set of conflict–free extensions
cf(SF ) of SF is downward–closed.

Unfortunately, this is not the case in ADFs. Let us consider a simple framework D1 =
({a, b, c, d}, {Ca = ¬b ∨ ¬c ∨ d, Cb = ¬a ∨ ¬c ∨ d, Cc = ¬a ∨ ¬b ∨ d, Cd = >}). D1

is an AADF+ and a BADF and has the same conflict–free and pd–acyclic conflict–free
extensions. Among them are {a, b}, {b, c}, {a, c} and {a, b, c, d}, but not {a, b, c}. Thus,
the downward closure is clearly violated.

Theorem 12.12. Let FrADF be the collection of all ADFs, BADF the collection of all
BADFs and AADF+ of all AADF+s, all on a domain UADF . Let FrSETAF the collection
of all SETAFs on a domain UAF . There exists no full (resp. source–subclass) translation
from FrADF (resp. BADF , AADF+) to FrSETAF that is exact under conflict–free and
pd–acyclic conflict–free semantics and identity casting functions for them.

Let us now focus on admissibility. Although SETAF admissible extensions are not
adm–closed in the sense of Definition 2.176, a somewhat similar property holds, though
of course adapted to group conflict:

Proposition 12.13. Let SF = (A,R) be a SETAF and E ,E ′ ⊆ A two admissible exten-
sions of SF . If there are no b ∈ E , B′ ⊆ E ′ s.t. B′Rb and no b′ ∈ E ′, B ⊆ E s.t. BRb′,
then E ∪ E ′ is admissible in SF .

With this property at hand, the most conclusive results can be given concerning the
ca–admissible semantics of ADFs. Let us consider a simple modification of our previous
framework which changes d into a self–supporter: D2 = ({a, b, c, d}, {Ca = ¬b ∨ ¬c ∨
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d, Cb = ¬a ∨ ¬c ∨ d, Cc = ¬a ∨ ¬b ∨ d, Cd = d}). Its ca1 and ca2–admissible extensions
are ∅, {d}, {a, d}, {b, d}, {c, d}, {a, b}, {a, c}, {b, c}, {a, b, d}, {b, c, d}, {a, c, d} and
{a, b, c, d}. Let us now think about the SETAF capable of producing such admissible sets.
We can observe that {a, b, c} is not in the collection, despite the fact that {a, c}, {a, b} and
{b, c} are. However, due to the admissibility of {a, b, c, d}, it cannot be the case that there
is any conflict between these sets. Consequently, {a, b, c} would have to be admissible by
the above proposition. This brings us to the following result (please note that D2 is not an
AADF+):

Theorem 12.14. Let FrADF be the collection of all ADFs andBADF the collection of all
BADFs, both on a domain UADF . Let FrSETAF the collection of all SETAFs on a domain
UAF . There exists no full (resp. source–subclass) translation from FrADF (resp. BADF )
to FrSETAF that is exact under (ca1, ca2) admissible semantics and associated identity
casting functions.

Please note that due to the correspondence between ca2–admissible extensions and
admissible labelings (see Theorem 2.166), this result can be extended to the labelings as
well.

The lack of exactness also holds for the ca1 and ca2–complete semantics. We can re-
call that SETAF complete extensions form a complete semilattice (Theorem 2.24), while
the ADF ones might not (Theorem 2.158). A similar issue arose when we were consider-
ing translations from EAF(C)s to other argumentation frameworks. Due to the way how
EAF(C)s are handled by ADFs, we can repeat the analysis done e.g. in Section 8.3.2 and
show the following:

Theorem 12.15. Let FrADF be the collection of all ADFs and BADF the collection of
all BADFs, both on a domain UADF . Let FrSETAF the collection of all SETAFs on a
domain UAF . There exists no full (resp. source–subclass) translation from FrADF (resp.
BADF ) to FrSETAF that is exact under (ca1, ca2) complete semantics and associated
identity casting functions.

Finally, the model extensions of ADFs cannot be handled by the stable ones in
SETAFs, and the extensions associated with the preferred labelings can create collections
that will not be produced by any SETAFs. The reason in both cases is the fact that stable
and preferred semantics in SETAFs always produce incomparable sets, which is not the
case in ADFs. As already seen in Examples 28 and 29, both model and labeling–induced
preferred extensions might be comparable w.r.t. ⊆.

Theorem 12.16. Let FrADF be the collection of all ADFs andBADF the collection of all
BADFs, both on a domain UADF . Let FrSETAF the collection of all SETAFs on a domain
UAF . There exists no full (resp. source–subclass) translation from FrADF (resp. BADF )
to FrSETAF that is exact under (model) stable and (labeling) preferred semantics and
associated identity casting functions.
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Despite all these negative results, we did manage to obtain an exact translation for the
aa–complete, aa–preferred and stable semantics with the attack propagation translation.
This gives us a certain hope when considering the ac and cc approaches. However, the
strategies used in the AF translation cannot be directly reused due to the fact that a given
argument can, at the same time, posses an evaluation that cannot be made acyclic and one
that can. In other words, while we can propagate the conflicts using standard evaluations,
we need to know how an argument is derived in order to introduce an appropriate self–
attack or a breaker argument. Therefore, we are forced to alter the domain and store such
information, which pushes us away from exactness and brings us closer to the existing
translations. Consequently, it may appear more worthwhile to first analyze the precise
signatures of the semantics in question, so that we know whether it is even possible to
improve our approaches.

The reason why we have not considered the defender transformations in the style of
Translations 65 and 75 is the fact that in contrast with the powerful and evidential se-
quences, ADF evaluations carry additional information in the form of the blocking sets.
Consequently, a given pd–sequence can appear in more than one evaluation, and the con-
struction of appropriate attacks can turn out to be complicated. A possible way to address
it by using the target argument domain as in the Translation 89 that we will present in the
next section, though unfortunately this method again does not give us exact conversions.
Therefore, we would like to analyze this issue further in the future.

12.3 ADF as AFN
Our previous translations followed the coalition approach, i.e. the aspects of ADFs that
were not directly expressible within (SET)AFs were hidden away in the structure of argu-
ment. Additionally, this structure also held certain information relevant for the construc-
tion of the target framework, but not for extracting the source extensions. In this section
we would like to see how AFNs handle ADFs, particularly that both of the frameworks
handle, this way or the other, a certain notion of support between arguments.

Due to the design similarities w.r.t. the AFN semantics, our analysis will be focused on
the aa–family as the source semantics (see e.g. Section 10.6). Among the things that ADFs
can express are group attacks and a form of support we referred to as “overpowering”,
which corresponded to defense attacks from EAF(C)s (see Section 8.6.1). Unfortunately,
due to the best of our knowledge, this is something AFNs cannot handle directly (see Sec-
tion 8.5). Moreover, the interplay of various relations can create a (functional) condition
from which it is somewhat more difficult to extract what is the exact nature of the incom-
ing links. Consequently, what we propose to do is to create multiple representations of a
single ADF argument, each associated with a minimal decisively in interpretation, from
which the extraction of support and attack is straightforward. The additional advantage of
this approach is the fact that building a powerful sequence on the AFN side produces a
clear pd–function and associated evaluation on the ADF side. However, this assumes that
the arguments we work with actually possess decisively in interpretations, which is not
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necessarily the case in ADFs. Thus, the ADFs we will work with need to be in cleansed
form. However, please note that changing arguments with conditions equivalent to falsum
into self–supporters would have also worked. The drawback of this solution is that, should
we be able to retrieve the original ADF from such an approach, the framework would be-
have differently under e.g. ca, ac and cc families of semantics, which is not the case when
we use the cleansed form (see Section 4.2). This brings us to the following approach:

Translation 89. Let D = (A,C) be an ADF in cleansed normal form. The corresponding
AFN FND

AA = (A′, R′, N ′) is created as follows:

• let a be an argument in A and min dec(in, a) the set of its minimal decisively in
interpretation. For any interpretation va ∈ min dec(in, a) add the pair (a, va) to
A′,

• let (a, va) be an argument in A′ and b an argument in A s.t. va(b) = t. Let B =
{(b, v1), ..., (b, vm)} be the collection of all arguments in A′ corresponding to b. Add
(B, (a, va)) to N ′, and

• let (a, va) be an argument in A′ and b an argument in A s.t. va(b) = f . Let B =
{(b, v1), ..., (b, vm)} be the collection of all arguments in A′ corresponding to b. For
every (b, vi), add ((b, vi), (a, va)) to R′.

We can observe that the group nature of support in AFNs is used to handle the fact that
a single source argument present in the t part of a given interpretation can be represented
by multiple arguments in the target AFN and that the presence of any of them is sufficient.
Thus, as such, it is not used to handle the actual group support that can be expressed in
ADFs (more on it in Section 12.3.1).

Let us now see how the produced AFNs will look like. Due to the way the support
and attack relations are constructed, it will always be in minimal and consistency norms,
independently of the forms of the source ADF. Moreover, the translation will preserve the
validity forms:

Theorem 12.17. Let D = (A,C) be a cleansed form ADF and FND
AA = (A′, R′, N ′)

its corresponding AFN obtained through Translation 89. Then, FND
AA is in minimal and

(strongly) consistent normal forms. FND
AA might not be weakly valid if D is weakly valid.

If D is relation valid, then FND
AA is weakly and relation valid. If D is strongly valid, then

so is FND
AA.

We can now observe that the aa–family of ADF semantics and the semantics of AFNs
are closely related. We manage to retrieve all and only extensions of ADFs starting from
pd–acyclic (coherent) extensions. However, due to the fact that every ADF argument
can be represented by a number of AFN ones, the relations between the answers of both
frameworks become one–to–one only starting with the complete semantics.
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Theorem 12.18. Let D = (A,C) be a cleansed form ADF and FND
AA = (A′, R′, N ′) its

corresponding AFN obtained through Translation 89. If S = {(a1, va1), ..., (an, van)} ⊆
A′ is a coherent (strongly coherent, admissible, preferred, complete, grounded, stable)
extension of FND

AA, then S ′ =
⋃n
i=1{ai} is a pd–acyclic (pd–acyclic conflict–free, aa–

admissible, aa–preferred, aa–complete, acyclic grounded, stable) extension of D.
If S ′ ⊆ A is a pd–acyclic (pd–acyclic conflict–free, aa–admissible, aa–preferred,

aa–complete, acyclic grounded, stable) extension of D, then there exists a coherent
(strongly coherent, admissible, preferred, complete, grounded, stable) extension S =
{(a1, va1), ..., (an, van)} ⊆ A′ of FND

AA s.t. S ′ =
⋃n
i=1{ai}.

Let us now put this translation into our system. Although we can easily analyze our
approach using the properties we have defined in Section 3.2, the methodology behind this
translation escapes our classification system. The approach is not particularly difficult and
therefore exhibits some of the basic behaviors. However, the severe domain changes and
the amount of possible arguments that need to be introduced means that our approach is
more likely a hybrid. Nevertheless, the idea behind this translation is neither coalition, nor
attack propagation nor defender. Consequently, at this point we choose not to classify this
translation and treat it as a reminder that our system can still be improved in the future.
Redefinition of Translation 89: Let ClnADF be the collection of all cleansed ADFs
on domain U and MinAFN ∩ SConsAFN the collection of all minimal and strongly
consistent AFNs on domain AIU = {(a, va) | a ∈ U , va is an interpretation over
E ⊆ U}. The translation aa-TrADFAFN : ClnADF → MinAFN ∩ SConsAFN is defined
as aa-TrADFAFN((A,L,C)) = (A′, R′, N ′) for a framework (A,L,C) ∈ ClnADF , where
A′ = {(a, va) | a ∈ A, va ∈ min dec(in, a)}, R′ = {((a, va), (b, vb)) | a, b ∈ A, vb(a) =
f} and N ′ = {(B, (a, va)) | a, b ∈ A, va(b) = t and B = {(b, v1), ..., (b, vm)} is the
collection of all arguments in A′ for b}.
Redefinition of Theorem 12.18: Let σADF ∈ {pd–acyclic, pd–acyclic conflict–free,
aa–admissible, aa–complete, aa–preferred, acyclic grounded, stable} be an ADF se-
mantics and σAFN ∈ {coherent, strongly coherent, admissible, complete, preferred,
grounded, stable} a similar AFN semantics. Let SC Tr

σ be the extraction semantics cast-
ing function for σ defined as SCX

σ (S) =
⋃n
i=1{ai}, where X = (A,C) ∈ FrADF and

S = {(a1, v1), ..., (an, vn)} ∈ σ(aa-TrADFAFN(X)). The translation aa-TrADFAFN is strong un-
der (σ, SC Tr

σ ). It is also semantics bijective under the (aa–) complete, (aa–) preferred,
(acyclic) grounded and stable semantics and the defined casting functions.
Analysis of Translation 89: Under the (pd–acyclic) coherent, (pd–acyclic conflict–free)
strongly coherent, (aa–) admissible, (aa–) complete, (aa–) preferred, (acyclic) grounded
and stable semantics and the defined casting functions, the translation aa-TrADFAFN is:

• source–subclass, target–subclass and overlapping

• argument domain altering, argument introducing, relation introducing, relation re-
moving

• generic and semantics domain altering
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• semi–structural

The translation is neither ⊕ nor ⊗–modular.

Explanation. Due to the fact that we work with the cleansed ADFs only, our translation
is classified as source–subclass. We also choose to view it as target subclass due to the
domain changes, i.e. not every combination of arguments from our domain represents a
framework that can be obtained from an ADF. Our choice to use minimal decisively in
interpretations in the construction also causes the conversion to be overlapping, i.e. two
ADFs can produce the same interpretations without necessarily being identical, which is
one of the aspects of the redundancy–free form (see Section 4.1.5). For this reason, the
translation is also classified as relation removing. We also choose to see it as argument and
relation introducing due to the multiple representations of a single ADF argument or link
in the target AFN. We can easily observe that both semantics and argument domains are al-
tered in our approach. Although it can be classified as structural or semi–structural, we are
leaning towards the latter due to the minimality assumption on the chosen interpretations.

Despite the fact that the translation is not particularly complicated, it is not in
any way modular, even if we consider only conflict–based ADFs. Let us consider
two frameworks D1 = ({a}, {Ca = >, Cb = >}) and D2 = ({a, b}, {Ca =
¬a, Cb = >}). Their associated AFNs are FN1 = ({(a, v1), (b, v1)}, ∅, ∅) and FN2 =
({(a, v2), (b, v1)}, {((a, v2), (a, v2))}, ∅), where v1 is empty, and v2 = {a : f}. If we con-
sider ⊗ modularity, the structure D1 ⊗ D2 would be equivalent to D2 and producing the
AFN FN2, not FN1 ∪FN2. If we consider ⊕–modularity, then we would obtain a frame-
work D3 = ({a}, {Ca = > ∨ ¬a, Cb = >}) in which the (a, a) link is redundant. Thus,
the associated AFN is FN1, not FN1 ∪ FN2. �

Example 147. Let us look at the ADFD = ({a, b, c, d, e}, {Ca = e, Cb = d∨(c∧e), Cc =
¬e, Cd = >, Ce = a∧b}) depicted in Figure 122a and thoroughly analyzed in this section.
The sets ∅, {c}, {d}, {b, d}, {c, d} and {b, c, d} are aa–admissible inD, with {b, c, d} being
the single aa–complete, aa–preferred, acyclic grounded and stable set. The analysis of this
framework is interesting due to the cycles appearing in it.

The minimal decisively in interpretations in this framework are va = {e : t}, v1b =
{d : t}, v2b = {c : t, e : t}, vc = {e : f}, vd = ∅ and ve = {a : t, b : t}. Therefore,
we create the pairs (a, va), (b, v1b ), (b, v2b ), (c, vc), (d, vd) and (e, ve) as the new arguments
for our AFN. By looking at the t assignments, we can see that {(e, ve)} supports (a, va)
and the other way around; the extra supporting set for (e, ve) is {(b, v1b ), (b, v2b )}. The
pair (b, v1b ) is supported only by {(d, vd)}, while for (b, v2b ) we have sets {(c, vc)} and
{(e, ve)}. Finally, neither (c, vc) nor (d, vd) requires any support. By looking at the f
assignments in the interpretations, we can observe that (e, ve) attacks (c, vc). It is also
the only attack in our framework. We therefore obtain the AFN FND = ({(a, va), (b, v1b ),
(b, v2b ), (c, vc), (d, vd), (e, ve)}, {((e, ve), (c, vc))}, {({(e, ve)}, (a, va)), ({(a, va)}, (e, ve)),
({(b, v1b ), (b, v2b )}, (e, ve)), ({(d, vd)}, (b, v1b )), ({(c, vc)}, (b, v2b )), ({(e, ve)}, (b, v2b ))}), as
visible in Figure 122b.
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Figure 122: Sample ADF and its associated AFN

We only have three minimal powerful sequences in our AFN: ((c, vc)), ((d, vd)),
((d, vd), (b, v

1
b )). We can observe that the pairs representing a and e are correctly rec-

ognized as not possessing a powerful sequence at all. Due to this, no sequence for
(b, v2b ) can be produced either. Consequently, we can show that ∅, {(c, vc)}, {(d, vd)},
{(b, v1b ), (d, vd)}, {(c, vc), (d, vd)} and {(b, v1b ), (c, vc), (d, vd)} are the admissible exten-
sions of FND. We can observe that they indeed correspond to the aa–admissible sets
of D. It is also easy to see that {(b, v1b ), (c, vc), (d, vd)} is the only complete, preferred,
grounded and stable set of FND (please note that (e, ve) possesses no powerful sequence).
We can therefore retrieve all and only the extensions of D.

Example 148. In this example we would like to show that despite the relation between the
two frameworks and their semantics, it can happen that an argument–interpretation pair
accepted in the target AFN would, in fact, not be used by any of the acyclic pd–evaluations
in the source ADF extension. Let us consider a simple ADF D = ({a, b}, {Ca = ¬b, Cb =
¬a ∨ b}) visible in Figure 123a. We can observe that b has the power to override the
attack from a through the use of a support cycle. The minimal decisively in interpretation
for our arguments are va = {b : f}, v1b = {a : f} and v2b = {b : t}. The (minimal)
acyclic evaluations for this framework are ((a), {b}) and ((b), {a}); we can observe that
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the interpretation v2b will be not be used. Our aa–admissible extensions are ∅, {a} and {b};
all of them are also aa–complete. ∅ is our acyclic grounded extension, while {a} and {b}
are both aa–preferred and stable.

The AFN associated with our ADF is now FND = ({(a, va), (b, v1b ), (b, v2b )},
{((a, va), (b, v1b )), ((b, v1b ), (a, va)), ((b, v2b ), (a, va))}, {({(b, v1b ), (b, v2b )}, (b, v2b ))}), as de-
picted in Figure 123b. The minimal powerful sequences for our arguments are ((a, va)),
((b, v1b )) and ((b, v1b ), (b, v

2
b )). We can therefore observe that the argument paired with the

undesirable interpretation can in fact be accepted. However, it is only because another
representation of this argument is “correct”, and the pair that can be considered incorrect
has to come back to it. Therefore, despite this, behaviour, we can observe that the admis-
sible extensions ∅, ({(a, va)}, {(b, v1b )} and {(b, v1b ), (b, v2b )} of FND do correspond to the
aa–admissible extensions of D. The complete extensions of our AFN are ∅, ({(a, va)} and
{(b, v1b ), (b, v2b )}, with the first being grounded and the other two preferred and stable. We
thus retrieve all and only desired extensions of D.

a b

¬b ¬a ∨ b

(a) Sample ADF

(a,va) (b,v1
b) (b,v2

b)

(b) Associated AFN

Figure 123: Sample ADF and its associated AFN

12.3.1 Improvements

In this section we would like to discuss two possible directions in enhancing our transla-
tion; one concerning its strength, and the other regarding the size of the produced AFN.

In the presented translation we have focused on the aa–family of ADF semantics. We
would like to know whether the results can be improved and possibly extended to the
other families. To the best of our knowledge, it is rather unlikely that an exact translation
from ADFs to AFNs can be created for admissible and preferred semantics, for the same
reasons as in the SETAF–AFN case (see Sections 6.3.1 and 10.1.1). Due to the fact that
SETAF–style ADFs are both BADFs and AADF+s (see Section 6.5), this particular result
is quite strong and holds for any of the ADF families. However, we cannot say anything
definite yet concerning the stable semantics, as their AFN signature goes beyond the AF
one (see Theorem 10.7). For reasons similar as in Section 12.2.3, we can also state that an
exact translation from ADFs to AFNs under the (ca1, ca2) complete semantics and (model)
stable semantics is not possible.

Despite the amount of negative results, there are still some ways in which the transla-
tion can be improved in the terms of the size of the produced AFNs. For now, we have
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exploited the presence of group support in AFNs in order to handle the multiple repre-
sentations of a given argument. However, we can also try to take it a step further; ADFs
can in a certain sense represent group support, as was visible e.g. in Translations 69 and
80. Nevertheless, the current ADF–AFN approach does not reflect that. The idea is to
associate an argument not with a single decisively in interpretations, but with a number of
them. We only require that the f parts, corresponding to attacks in AFNs, are the same
among all of the interpretations. Let us look at the following example:

Example 149. We can consider the ADF ({a, b, c, d, e, f, g}, {Ca = ¬c, Cb = f∨¬c, Cc =
¬a, Cd = >, Ce = g∩ (a∨ b)∧ (¬c∨¬d), Cf = f, Cg = >}) depicted in Figure 124. The
minimal decisively in interpretations for our arguments are va = {c : f}, v1b = {f : t},
v2b = {c : f}, vc = {a : f}, vd = vg = ∅, v1e = {a : t, c : f}, v2e = {b : t, c : f},
v3e = {a : t, d : f}, v4e = {b : t, d : f} and finally vf = {f : t}. By following
Translation 89, we would create as many representations of a given argument as many
interpretations it possesses. The supporting sets for e.g. the pair (e, v1e) would be {(g, vg)}
and {(a, va)}, while with (e, v2e) we would associate {(g, vg)} and {(b, v1b ), (b, b2b)}. In both
of these cases, the attacker would be (c, vc). Consequently, we can choose to combine
these two representations and obtain an argument (e, {v1e , v2e}), attacked by (c, vc) and
supported by the sets {(g, {vg})} and {(a, {va}), (b, {v1b}), (b, {v2b})}. We can observe
that a representation of an ADF argument in the original AFN is accepted if and only if a
representation of this argument is also accepted in the grouped AFN.

a c b d g

e

f

¬c f ∨ ¬c¬a >

g ∩ (a ∨ b) ∧ (¬c ∨ ¬d)

f

>

Figure 124: Sample ADF

The way the positive parts of a collection of decisively in interpretations are combined
into supporting sets resembles the EAS–AFN Translation 78; the occurrences of the argu-
ments are then replaced by their representations in the target AFN. Since we are interested
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in this method in particular due to the fact that it may produce smaller target frameworks
than Translation 82, we will use the minimality assumption in the construction of our sets,
particularly that we also assumed it in the choice of our decisively in interpretations. The
correctness and the properties of this approach can be proved similarly as in the case of
Translation 89. Thus, we close this section with the following proposal:

Translation 90. Sketch Let D = (A,C) be a cleansed form ADF. The corresponding
grouped AFN g − FND

AA = (A′, R′, N ′) is created as follows:

• let a be an argument in A and min dec(in, a) the set of its minimal decisively in
interpretation. Let v′ ⊆ min dec(in, a) be the collection of all and only minimal
decisively in interpretation s.t. for every v1, v2 ∈ v′, vf1 = vf2. For every such v′, add
(a, v′) to A′,

• let (a, v′) be an argument in A′ and E ⊆
⋃
v∈v′ v

t a minimal set of ADF arguments
s.t. ∀v ∈ v′,E ∩ vt 6= ∅. Let B ⊆ A′ be the collection of all arguments (b, vb) ∈ A′
s.t. b ∈ E . Add (B, (a, v′)) to N ′, and

• let (a, v′) be an argument in A′ and b an argument in A s.t. ∃v ∈ v′, v(b) = f . Let
B = {(b, v1), ..., (b, vm)} be the collection of all arguments in A′ corresponding to
b. For every (b, vi), add ((b, vi), (a, v

′)) to R′.

12.4 ADF as Other Frameworks
So far we have focused only on three frameworks, namely AFs, SETAFs and AFNs, thus
omitting AFRAs, EAFs, BAFs and EASs. Although we are not convinced that the recur-
sive attack can supersede the binary attack when it comes to handling ADFs, we believe
that the defense attack holds certain potential. This is in particular due to the lack of
monotonicity of the EAF semantics, which makes it more suitable for handling the ca1
and ca2–families than any of the other structures we have considered in this work. The
nature of defense attacks might also help us to avoid the need for blocking sets or other
false mappings to be stored within the target arguments, though we would still need to
repeat a lot of the constructions from AFs and SETAFs in order to “sneak in” the support.

The translation from ADFs to BAFs would be, in a sense, more problematic than to
AFNs. Although this is the only framework with support apart from ADFs that has seman-
tics permitting the presence of support cycles, their handling is somewhat different. This
is mostly due to the lack of the support ingredient in the definition of defense, which was
more or less explicitly present in any other framework with support. Consequently, in a
framework consisting only of two arguments a and b supporting each other, both a and b
would be considered defended by the empty set in BAFs, but not decisively in w.r.t. the
standard range that is used in the cc–semantics. Thus, we would have to limit ourselves to
working with the strongly valid ADFs despite the fact that we would not be focusing on
acyclic semantics.
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Finally, we can consider the evidential systems, which due to the presence of group
support and attack are, in a certain sense, closer to ADFs than AFNs. However, the current
approach would be very similar to merging the ADF–AFN and AFN–EAS methods, i.e.
we would still require the presence of decisively in interpretations in the arguments and
connect the support from the evidence to those elements that have interpretations with
empty t part. The possible improvements would employ the approach from Translation
90, though this time the grouping could be extended to f assignments as well as the t ones,
thus providing little insight. The most important issue here is the fact that the signature of
EAS semantics are not established. Since we believe them to be more admitting than in
the case of AFNs, the knowledge about them would allow us to state what can or cannot
be done, thus possibly pointing us to a more efficient approach. Therefore, we hope to
investigate this translation more in the future.

12.5 Summary
With the exception of the ADF–SETAF Translation 88, in all of the approaches we have
demonstrated the argument domain had to undergo quite significant modifications. Con-
sequently, these methods did not go beyond the usual strength. However, the fact that they
are often semantics bijective gives us hope for creating faithful approaches in the future.
Unfortunately, in some of the cases we have already shown that an exact translation will
not be possible.

Although the ADF–AF translations are the most developed ones and can handle the
majority of the ADF semantics, the simplicity of the aa–family allowed us to create two
interesting approaches. The attack propagation ADF–SETAF method turned out to be
exact for most of the aa–semantics, though at the price of being semantical. Although
it assumed that the source frameworks are weakly valid and is thus classified as source
subclass, it is easy to see that an appropriate normal form translation could be used to
address that. Although the ADF–AFN translation was only strong, it did fall into the
semi–structural category. The results of our work can be seen in Table 15. Please observe
that, with the exception of the ca2–semantics that shares the same translation with the
labeling–based approaches, the results we have reported concerned the family of semantics
for which a given transformation was designed. This means that, if one wishes, the table
could be further filled with weaker results by using the relations between the given families
stated in Sections 2.3.6 and 2.3.7.
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Table 15: Translations from ADFs to other frameworks

Properties AF SETAF AFN

Translation
AA AC CC CA2 LAB CC AA AA
82 83 85 86 87 88 89

Strength

cf strong strong strong
acy-cf strong strong ⊆-weak strong
adm strong strong strong strong ⊆-weak strong ⊆-weak strong

comp strong strong strong ⊆-weak strong strong exact strong
pref strong strong strong ⊆-weak strong strong exact strong
grd strong strong strong strong strong

acy-grd strong exact strong
stb strong exact strong

mod strong

full full full full full source–
subclass

source–
subclass

Functional target–
subclass

target–
subclass

target–
subclass

target–subclass target–
subclass

target–
subclass

target–
subclass

overlapping overlapping overlapping overlapping overlapping overlapping overlapping

argument
domain
altering

argument
domain
altering

argument
domain
altering

argument domain altering
argument
domain
altering

argument
domain

preserving

argument
domain
altering

argument
removing

argument
removing

argument
removing

argument removing argument
removing

relation
removing

argument
introducing

Syntactical argument
introducing

argument
introducing

argument
introducing

argument introducing argument
introducing

relation
introducing

relation
removing

relation
removing

relation
removing

relation
removing

relation removing relation
removing

relation
introducing

(possibly)
relation

introducing

relation
introducing

(possibly
induced)
relation

introducing

(possibly induced) relation
introducing

(possibly
induced)
relation

introducing

generic generic generic generic generic generic generic

Semantical
semantics
domain
altering

semantics
domain
altering

semantics
domain
altering

semantics domain altering
semantics
domain
altering

semantics
domain

preserving

semantics
domain
altering

Computational semantical semantical semantical semantical semantical semantical semi–
structural
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13 Related Work
The research we have presented in this report consists both of new and the existing trans-
lations and their analysis. Consequently, the majority of the related works are not only
referred to in the text, they are also studied and when necessary, completed or modified in
order to address certain drawbacks. Our classification system provides an in–depth analy-
sis and allows us to compare various approaches. Moreover, on many occasions we have
discussed the possible improvements to the presented methods. Therefore, in order to see
how a particular related work fits into our research, it suffices to go to the relevant part
of this report. For these reasons, our related work section will be modest and will mostly
provide pointers as to where a given paper is analyzed.

First, we would like to draw our attention to works that concern the properties of trans-
lations. Although our system is novel, we also wanted to include the attributes such as
faithfulness, polynomiality or modularity in our analysis, which are commonly used to de-
scribe the transformations in nonmonotonic reasoning [52,55,57,58]. We have introduced
them in Sections 3.2.3 and 3.2.4 as examples of semantical and computational properties.
In particular, we have focused on the notion of faithfulness due to its varying interpreta-
tions available in the literature. As a result, we have adopted the distinction between the
faithful and exact translations as presented in [42]. Please note that this work also contains
the properties we have not considered in our system. In particular, some of them were
defined precisely for situations when the source and target frameworks are of the same
type and shifting them to a more general setting produced counterintuitive definitions. We
have therefore focused more on introducing other properties in a similar spirit, particu-
larly the syntactical ones in Section 3.2.2. Nevertheless, these results can be still relevant
for the normal form translations, and we will consider extending our analysis in the fu-
ture. Finally, we have also incorporated the notion of modularity for ADFs from [49] and
proposed an equivalent definition aimed at ADFs in functional form.

The next lines of research we have drawn upon concern the types of translations. In
Section 3.3 we have identified our four primary types; the basic, coalition, attack propa-
gation and defender translations. To the best of our knowledge, no formal classifications
of abstract argumentation translations have been introduced before. We are also not aware
of any explicit comparisons between the motivation and patterns of the presented meth-
ods. However, they were already discussed separately; we have distinguished the coalition
translations after the research in [28–30, 69, 73] and attack propagation after [30]. Al-
though the defender translation was originally inspired by the discussion regarding the
difference between support and defense done in [28], it has recently also appeared in [31].
Furthermore, we have come to realize that certain translations designed purely for attack–
based frameworks, referred to as flattening or classified as meta–level argumentation, also
fall into this category [18, 64]. For further discussion we refer the reader to Section 3.3.

Apart from the translations between different argumentation frameworks, we have dis-
tinguished the normal form transformations (see Section 4). The first form we have con-
sidered – the minimal normal form – comes from our previous work [77, 78]. We have
also used the redundancy–free form for ADFs analyzed in [48]. The remaining results are,
to the best of our knowledge, novel. The only other work we are aware of that also tried to
tackle the normal forms is [35]. Nevertheless, it focuses solely on the Dung’s framework
and the presented results are relevant for computational and not translation purposes. We
have therefore not recalled it in our report.
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We finally come to the core of our report; the translations between different argumen-
tation frameworks. We have drawn upon many existing works and tried to be thorough in
their analysis. The first translation we have recalled concerns the AF–SETAF approach
from [68] and its analysis can be found in Section 5.1. The next work we have focused on
is [9]; it included the AF–AFRA and AFRA–AF methods (Sections 5.2 and 7.1) as well
as the comparison between AFRAs and EAFs (Sections 7.2 and 8.4). Further works con-
cerning these three frameworks are [18,47,64] and their analysis can be found in Sections
7.1.2 and 8.2. The work in [64] has also been discussed in Section 6.1.2 concerning one
of the SETAF–AF translations.

The aforementioned works concerned the transformations between attack–based
frameworks. However, in our research we wanted to go beyond these structures. Many of
our approaches have been inspired by the works on BAFs [28–31], which themselves were
analyzed in Sections 5.4, 9.1.1, 9.1.2 and 9.1.3. The results concerning the AF–AFN and
AFN–AF translations, presented in [69], can be seen in Sections 5.5 and 10.1. In order
to compare AFNs and EASs we have extended our previous research from [77, 78] (see
Sections 10.5 and 11.4). Additionally, an interesting study on the relations between EASs,
SETAFs and AFs can be found in [73]. Sections 5.6, 6.4 and 11.1 focus on presenting the
results of this work.

Finally, we come to the translations concerning ADFs. Every transformation for this
framework presented in this report, with the exception of the AF–ADF method from [21]
(see Section 5.7), has been our own. There are, however, two works on translations for
ADFs we have not analyzed here. The first one [20] presented various specialized transla-
tions, in particular for the stable, grounded and model semantics. Unfortunately, the stable
semantics for ADFs have been later redefined and the approach for the model semantics
has been shown to misbehave in certain cases [44]. An alternative method for translating
ADF models into AF stable extensions has been proposed in [44], along with a possible
way to transform ADFs into BADFs that was meant to preserve the conflict–free, model
and grounded semantics. Both of these approaches were created for ADFs with proposi-
tional acceptance conditions only. Moreover, the construction relies purely on whether the
condition is satisfied or not and not on how it was achieved. Consequentially, this approach
does not deal with the issue of support cycles and cannot be straightforwardly extended to
handle the families of the extension–based semantics we have introduced. Nevertheless,
we hope that in the future we will improve this method in order to handle the functional
ADFs as well as our new semantics.

14 Future Work & Conclusions
Abstract argumentation is a rich research area and a wide range of argumentation frame-
works has been developed, from those that tackle different types of relations between
arguments to structures that study components such as probabilities, preferences and
strengths [22]. In our work, we have asked ourselves how different attack and support–
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based argumentation frameworks are connected. We have thus established a number of
translations between them in order to answer this question. However, the results we have
obtained made us even more curious; we have observed certain patterns emerging and
wanted to be able to compare them. We wanted to know what does it mean that a transla-
tion is “good”, to be able to say which ones are and which are not, and to know if we can
make them better.

All of these questions have lead to the creation of our in–depth compendium on the
intertranslatability of argumentation frameworks consisting of almost ninety translations.
We have proposed a number of new approaches as well as recalled and if necessary, ex-
tended, the existing ones. Furthermore, we have introduced a classification system for
describing a given translation in terms of its functional, syntactical, semantical and com-
putational properties. In this analysis we have also distinguished our four main types of
transformations based on their underlying methodology – the basic, coalition, attack prop-
agation and defender methods. The summary of our results for a given translation is visible
in an appropriate table at the end of each section (Tables 7, 8, 9, 10, 11, 12, 13, 14 and
15). Finally, we have also studied the topic of normal form translations, which so far has
received little attention. This has led to the introduction of various minimal, valid and
consistent forms for both attack and support–based frameworks.

Whenever possible, we tried to show whether there is a chance for creating a, seman-
tically speaking, stronger translations in the future. In particular, we have focused on the
existence of exact and, if possible, full translations. We have obtained such a method in
almost every case when we took AFs as the source frameworks. The only exceptions were
the AF–AFRA and AF–EAS translations. Due to the nature of the AFRA semantics and
the addition of evidence in EASs, it appears that we cannot create a generic exact method
(see Sections 5.2.1 and 5.6.1).

In the case of translations from SETAFs to other structures, we have obtained only a
single exact approach – the SETAF–ADF one (Translation 31). We have used the research
on semantics signatures [37] to show that a full and exact SETAF–AF transformation is
impossible (see Section 6.1.3). The same appears to be true in the SETAF–AFN case
(Sections 6.3.1 and 10.1.1), though in this case we have limited ourselves to the admissible
and preferred semantics only. Our inability to create an exact translation to EASs is again
due to the addition of evidence (Section 5.6.1).

Fortunately, our results for the AFRA translations are somewhat more encouraging; we
have a full, generic and exact translation to every other framework we have considered,
i.e. AFs, BAFs and AFNs. We did not focus on ADFs in this analysis, however, by
simply chaining the AFRA–AF and AF–ADF methods we can easily create a suitable
exact translation.

We now come to EAFs and their generalization EAFCs. Due to their unique semantics
(see Section 2.1.4 and in particular, 2.1.4.2), we were able to show that a full and exact
translation is not possible from these frameworks to any other structure with the exception
of ADFs (see Sections 8.2.2, 8.3.2, 8.4.1 and 8.5.2). Although the most general EAFC–
ADF translation we have presented was faithful, it can be easily improved by considering
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the self–attacker consistency method from Section 4.4.2, not the pure bypass approach,
as a basis for our transformation. However, as explained in Section 8.6.4, the approach
for EAFs still requires further analysis due to the mismatch between the conflict–free
semantics between our frameworks (see also Section 2.1.4.2).

The existence of exact translations from BAFs to other frameworks is, in a certain
sense, a much more complicated question than in any other framework. This is due to the
fact that in order to establish a given result we not only need to consider a given type of
semantics, but also its parametrization. We have indeed obtained a full, generic and exact
translation for the d–family of BAF semantics with the identical parametrization to AFs.
Due to the fact that AFs can be exactly transformed into almost every other structure, this
result propagates further. Nevertheless, in this particular case further research is required,
and various semantics for BAFs still need to be properly defined (see Section 2.2.1).

We now come to AFNs. Owing to the research on semantics signatures, we have
indeed managed to establish that improving the current AFN–AF method is possible (see
Section 10.1.1) and that an exact translation for admissible and preferred semantics can
still be created. We hope to find this method in the future. This result can propagate to
other frameworks, though please note that the exact and full results for SETAFs and ADFs
are already available. We are not yet sure whether an exact and full translation is possible
for BAFs, but hopefully the future research will answer this question. Finally, an exact
approach for EASs is not possible due to the evidence argument, similarly as it was with
other methods that used them as target frameworks.

The methods we have used in the translations from EASs to other structures were
similar as for the AFNs. Nevertheless, the presence of group attack in the framework
made it impossible to create an exact translation to AFs (see Section 11.1.1). Moreover,
as a result of the analysis performed in Sections 6.1.3 and 10.1.1, this is also true in the
case of AFNs as far as conflict–free, admissible and preferred semantics are concerned.
Fortunately, we have managed to establish generic, full and exact methods for translating
EASs into SETAFs and ADFs.

Finally, we arrive at ADFs, which based on our results emerged as one of the most
general tools for abstract argumentation, capable of handling even the extended argumen-
tation framework. However, when we tried to translate from ADFs to other structures,
we have obtained primarily strong translations. The single exact result we have managed
to obtain concerned translating ADFs to SETAFs under the aa–semantics. Although it is
technically speaking a source–subclass one, it can be easily extend to general ADFs by
the use of weakly valid normal form translation. The analysis in Section 12.1.6 showed
that in the case of AFs, an exact translation is not possible, even if we limit ourselves to
the simpler types of ADFs such as BADFs or AADF+s. A number of these results also
propagated to other frameworks, particularly concerning the ca–families of ADF seman-
tics. The only possible exception here is the extended argumentation framework and we
would like to pursue this line of research in the future. Given the results for aa–semantics,
we also hope that exact translations to SETAFs might be possible for other approaches.
However, the severe modifications the argument domains need to undergo in the majority
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of the presented methods make it difficult to say with certainty how far we can go.
Along with a number of new results, we have also identified various tasks we would

like to tackle in the future. First of all, we would like to refine and extend our transla-
tion classification system. In particular, we would like to consider the analysis performed
in [42] and be able to categorize the ADF–AFN translation, which failed to conform to
any of the patterns we have identified so far. Moreover, out of all of the groups of prop-
erties we have introduced, the computational attributes have received the least attention.
No complexity analysis has been performed for our approaches, though it is in a great
deal due to the fact that the complexity results for the semantics of various frameworks
we have considered are not fully researched. We would also like to develop more ad-
vanced types of modularity for ADFs which would allow us to improve the quality of our
translations. We believe that these results could help in developing efficient algorithms for
the transformations we have presented in this work and in building software for abstract
argumentation.

Another important task concerns the signatures and realizability of argumentation se-
mantics. Whenever we could, we have tried to use the results for the Dung’s framework
in order to establish whether a given exact translation is possible or not, as we have ex-
plained in the previous paragraphs. Nevertheless, there are still more questions than an-
swers concerning this particular topic. We believe it would also be beneficial to consider
the introduction of slightly more relaxed, faithful signatures, which so far have been only
considered in [43].

We would also like to continue our work on the ADF related translations. The ADF–
AF approaches are primarily coalition–based and it would be interesting to consider other
patterns, in particular the attack propagation and pure defender methods. We have also
not found a satisfactory translation for the ca–family of ADF semantics; we believe that
an ADF–EAF translation could address this particular issue. Moreover, we would like to
extend our analysis with the results presented in [44] and strengthen the labeling–based
ADF–AF transformation (see Section 12.1.5).

The two final tasks we would be interested in concern the research on normal forms
and BAF semantics. We have already remarked upon possible other minimal normal forms
(Section 4.1) and on the fact that we do not yet have any translations for strongly valid
forms (Section 4.3.3). Concerning BAFs, we are interested in the development of their
“missing” grounded and complete semantics (see Section 2.2.1). It would be also valu-
able to identify the subclasses of BAFs on which the semantics classification collapses,
similarly as we have managed for ADFs with the introduction of AADF+s. Although this
particular task might seem inconspicuous at first, we believe that it might shed more light
on the research on the bipolar argumentation altogether.
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Woltran, editors, Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation, volume 9060 of Lecture Notes in Artificial Intelligence,
pages 249–264. Springer International Publishing, 2015.
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15 Proof Appendix

15.1 Background: Proof Appendix
Theorem 2.46. Let EF = (A,R,D) be a finite EAF and E ⊆ A a conflict–free extension
of EF . If an argument a ∈ E defeatsE an argument b ∈ A, then there is no reinstatement
set for this defeatE on E , iff there exists a sequence ((z1, (x1, y1)), ..., (zn, (xn, yn))) of
distinct defense attacks from D s.t.

• there is an argument g ∈ A s.t. xn = a, yn = b and zn = g,

• no two pairs (xi, yi) and (xj, yj) are the same for i 6= j,

• for every (zi, (xi, yi)) where 1 < i ≤ n, either no argument h in E defeatsE
zi or for every such defeat, there exists an argument l ∈ A s.t. (l, (h, zi)) ∈
{(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))}, and

• no argument in E defeatsE z1.

Proof. Let (x, y) ∈ R. By datt(x, y) we denote the set of arguments that carry out defense
attacks on (x, y), i.e. datt(x, y) = {c | (c, (x, y)) ∈ D}.

Let us first show that if there is no reinstatement set for the (a, b) defeatE on E , then a
suitable sequence ((z1, (x1, y1)), ..., (zn, (xn, yn))) exists. Due to the fact that no reinstate-
ment set exists, then {(a, b)} is not a reinstatement set for the the defeatE of a on b. Hence,
datt(a, b) is not empty and there exists at least one element in it different from b – other-
wise, {(a, b)} would have been a reinstatement set. Moreover, there is at least one element
in datt(a, b) that is not defeatedE by E or none of the defeatsE have a reinstatement set –
otherwise, we could have joined these sets and added (a, b) to obtain a reinstatement set
for the a–b defeatE . Again, it has to be different from b, as we know that a defeatsE b and
that {(a, b)} is not a reinstatement set. Let us denote elements meeting these requirements
with d11, ..., d

1
k. If it is the case that any of d1j is not defeatedE by E , then (d1j , (a, b)) is a

valid sequence and we are done.
Let us therefore assume that for every d1j we can find an argument e ∈ E s.t. e defeatsE

d1j . Again, none of such defeats can have a reinstatement set on E – otherwise, we would
have been able to construct a reinstatement set for (a, b). For the same reasons as above,
this means that datt(e, d1j) is not empty. Moreover, datt(e, d1j) has to contain an argument
that is different from d1j and either is not defeatedE by E or no such defeat has a rein-
statement set. However, we can also observe that if e = a, then we can choose such a
d1j and d2mj ∈ datt(e, d1j) for 1 < m < |datt(e, d1j)| s.t. that d2mj meets our requirements
and is different from b. If it were not possible, then {(a, b), (a, d11), ..., (a, d1k)} would have
been a reinstatement set for {(a, b)}. Thus, we can filter our first and second level d’s and
continue our analysis. If it is the case that any of d2mj is not defeatedE by E , then again
(d2mj, (e, d

1
j)) is a satisfactory sequence for the e–d1j defeat. By appending such sequences
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for the remaining defeats on d1j and including the (d1j , (a, b)) defeat, we can receive the
desired sequence for (d1j , (a, b)).

We can therefore focus again on the case that for no defeatE by any argument f ∈ E
on any dmj2 there is a reinstatement set on E . We can continue the analysis in the similar
manner, each time showing that a sequence with unique conflicts can be built and that for
each defense attacks in the sequence is “protected” by the attacks lower in the sequence.
Since the amount of conflicts in our framework is finite, we are bound to reach defense
attacks by arguments that are not defeatedE by E . This concludes this part of the proof.

Let now ((z1, (x1, y1)), ..., (zn, (xn, yn))) be a defense attack sequence satisfying our
requirements. There is no argument d ∈ E s.t. d defeatsE z1. Therefore, there cannot
be a reinstatement set for (x1, y1). If there exists an argument in E defeatingE z2, then
by the construction of the sequence it holds that this conflict is defense attacked by z1.
Consequently, there cannot be a reinstatement set for this conflict on E . We can repeat
this procedure till we reach zn. As there is no defeatE on zn that can be reinstated, there is
no reinstatement set for (xn, yn). This concludes the proof. 2

Theorem 2.54. Let EF = (A,R,D) be a finitary EAF. The following holds:

• every preferred extension is complete, but not vice versa.

• every stable extension is complete, but not vice versa.

• the grounded extension is a minimal complete extension, but not necessarily the least
one.

Proof. Let E ⊆ A be a preferred extension of EF . Assume it is not complete; as E
is admissible, this means that there is an argument a ∈ A \ E that is defended by E .
Let us consider the extension E ′ = E ∪ {a}. Due to defense, it cannot be the case that
a defeatsE any argument in E and vice versa. Furthermore, a cannot be defeating itself
w.r.t. E either. This means that either there are no relevant conflicts in R to start with,
or they are already defense attacked by elements in E . In both cases this leads to the
conclusion that E ′ is conflict–free. We now need to show it is admissible. Let us consider
an arbitrary defeatE by b ∈ E on c ∈ A that has a reinstatement set {(x1, y1), ..., (xn, yn)}
on E . As E does not defeatE a, it cannot be the case that there is a pair (xi, yi) in the
reinstatement set s.t. (a, (xi, yi)) ∈ D. Therefore, if E defeats an argument c ∈ A with
reinstatement on E , then so does E ′. We can also observe that if an argument c ∈ A did
not defeatE any argument in E , then it does not defeatE ′ any argument in E ′ either. This
brings us to the result that E ′ has to be admissible. This however means that E could not
have been a maximal admissible extension – we can observe that E ⊂ E ′ – and thus we
contradict the assumption it is preferred. Hence, we can conclude that if E is preferred,
then it is complete. The fact that not every complete extension is preferred can be observed
in Example 6.

Let E ⊆ A be a stable extension of EF . We can observe it is also admissible in
EF . Every argument outside of E is defeatedE by E and the collection of all defeatsE
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carried out by elements of E is a simple reinstatement set for any of them. Therefore,
every argument a ∈ E is defended by E , and due to conflict–freeness of E it cannot be
the case that at the same time, E defeatsE and defends an argument b /∈ E . Therefore, E
is complete in EF . The fact that not every complete extension is stable can be observed
in Example 6.

In order to show that the grounded extension is a minimal complete one, we will use
the operator iteration approach. Assume E is the grounded extension and there exists
a smaller complete extension E ′ ⊂ E . Let G = ∅. We can observe that only those
arguments that are not attacked in R at all can be acceptable w.r.t. ∅ – there is no argument
in G that would prevent an attack turning into a defeat. Therefore, if an argument b ∈ A
is acceptable w.r.t. ∅, then it is acceptable w.r.t. any other set of arguments. Thus, we can
add the arguments produced by FEF (∅) to G and observe that G ⊆ E ′ ⊂ E due to the
completeness of E ′.

Let us now apply the operator again and let a ∈ A be an argument acceptable w.r.t.
G. Assume it is not acceptable w.r.t. E ′. This means there is an argument b ∈ A that
defeatsE ′ a and is not in turn defeatedE ′ by any argument c ∈ E ′ with a reinstatement set.
We can observe that if b defeatsE ′ a, then due to the fact that G ⊆ E ′, b defeatsG a as
well. Therefore, G has to defeatG b with a reinstatement set on G, even though it is not the
case for E ′. Let c ∈ G be an argument carrying out the reinstated defeat on b in G and let
{(x1, y1), ..., (xn, yn)} be the relevant reinstatement set. We will show that G′ = FEF (G)
also defeatsG′ b with the same reinstatement. We can observe that every argument defense
attacking any of the defeats listed in the reinstatement set is defeatedG by G. Therefore,
it cannot be acceptable w.r.t. G and will not appear in G′. This means that any pair in
the reinstatement set that was a defeatG is also a defeatG′ . We can therefore show that
if G defeatsG b with a reinstatement, then so does the grounded extension of EF (which
in this case, is E ). Now, if c does not defeatE ′ b, then there is an argument d ∈ E ′ s.t.
(d, (c, b)) ∈ D. Consequently, d has to be defeatedG by G with a reinstatement, which
based on the previous explanations means that d cannot be in the grounded extension.
Therefore, E ′ cannot be a subset of E and we reach a contradiction. This brings us to the
conclusion that a has to be acceptable w.r.t. E ′ and by completeness of E ′, it holds that
G ⊆ E ′ ⊂ E where G is extended by the arguments in FEF (G).

We can continue this line of reasoning till our grounded extension is computed and
conclude that G ⊆ E ′ ⊂ E = G. We thus reach a contradiction with the assumption that
E ′ ⊂ E and can therefore conclude that E has to be a minimal complete extension of EF .
The fact it is not necessarily the least can be observed in Example 8. 2

Theorem 2.59. Let bh − EF = (A,R,D) be bounded hierarchical EAF. Every stable
extension of bh− EF of is preferred, but not vice versa.

Proof. Assume E ⊆ A is a stable extension of EF , but is not preferred. As it is complete
by Theorem 2.54, this means there exists an admissible extension E ′ ⊆ A s.t. E ⊂
E ′. We can observe that the arguments in the set F = E ′ \ E are defeatedE by E .
Consequently, for every defeatE by an argument c ∈ E on an argument d ∈ F there must
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exist a corresponding defense attack by an argument in e ∈ F . Therefore, (c, d) ∈ R and
(e, (c, d)) ∈ D, which means that c and d belong to the same partition of bh− EF , while
e is a level higher. As e is also defeatedE by E (say, by f ∈ E ), then again there must
be a relevant defense attacking argument g ∈ F . Since we are dealing with a bounded
hierarchical framework, g is again a level higher. We can continue in this manner until
we reach a defeatE in E without a relevant defense attacking argument in F , and as we
are dealing with a bounded hierarchical framework, we will reach this point sooner or
later. Therefore, the conflict behind the defeatE cannot be defense attacked by E ′ and will
become a defeat w.r.t. E ′. We breach the conflict–freeness of E ′. Thus, if E is a stable
extension of EF , then it is also preferred.

To show the other way around, it suffices to consider an AF–style EAF
({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}, ∅) with a symmetric attack between a and b and a
self–attacker c. Both {a} and {b} are preferred extensions, however, only the latter also
attacks c. Consequently, only {b} is stable. 2

Lemma 2.60. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF s.t. there
are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R. A set E ⊆ A is a conflict–free
extension of EF iff there are no defeatsE in E .

Proof. Let us first consider the bounded hierarchical case. Assume that even though there
are no defeatsE in E , the set is not conflict–free. Therefore, this means that there are
a, b ∈ E s.t. (a, b), (b, a) ∈ R. However, since these conflicts do not become defeats,
then it means that there are d1, d2 ∈ E s.t. (d1, (a, b)), (d2, (b, a)) ∈ D. First of all, we
can observe that d1 and d2 have to be a level higher than a and b in the partition of EF .
Moreover, due to the restrictions in the definition of EAFs, (d1, d2), (d2, d1) ∈ R. As
these conflicts do not become defeats in E , then again there are some arguments d3 and
d4 a level higher in the partition that defense attack these attacks. Furthermore, just like
in the d1 and d2 case, there are symmetric attacks between d3 and d4. They also need to
be defense attacked and we can continue this analysis until we reach symmetric attacks
in which at least one conflict cannot be defense attacked further, which is warrantied by
the bounded hierarchical nature of EF . Therefore, this conflict becomes a defeat, and we
reach a contradiction with the assumptions on E . Hence, if there are no defeatsE in E ,
then E is a conflict–free extension of EF . The fact that if a set is conflict–free, then it
contains no defeats, comes from Proposition 2.43.

Let us now consider the frameworks without symmetric attacks. This means that for
every (a, b) ∈ R, (b, a) /∈ R. Thus, the definition of conflict–freeness is reduced to
requiring that for every a, b ∈ E , if (a, b) ∈ R, ∃c ∈ E s.t. (c, (a, b)) ∈ D. Therefore, E
is conflict–free if there are no a, b ∈ E s.t. a defeatsE b. Along with Proposition 2.43, this
gives us the final result. 2

Lemma 2.72. BAF Fundamental Lemma Let BF = (A,R, S) be a BAF, R′ ⊆
Rind, R′′ ⊆ Rind two collections of indirect attacks in BF , E ⊆ A a d–admissible exten-
sion w.r.t. (R′, R′′) and a, b ∈ A arguments defended by E w.r.t. R′′ in BF . If R′ = R′′,
then E ′ = E ∪{a} is d–admissible w.r.t. (R′, R′′) and b is defended by E w.r.t. R′′ in BF .
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Proof. Assume E ′ = E ∪ {a} is not +conflict–free w.r.t. R′. As E itself is, then it has to
be the case that there is an argument c ∈ E s.t. cR′a or aR′c, or aR′a. If cR′a, then due
to the fact that R′ ⊆ R′′, a has to be defended from c by E . Thus, there is an argument
d ∈ E s.t. dR′′c. Since R′′ ⊆ R′, we breach the +conflict–freeness of E . If aR′c, then
due to the fact that R′ ⊆ R′′ and E is d–admissible, there is an argument d ∈ E s.t. dR′′a.
Thus, as E defends a, there is an argument e ∈ E s.t. eR′′d. Since R′′ ⊆ R′, we breach
the +conflict–freeness of E . Similar analysis can be performed for the aR′a case. We can
therefore conclude that E ′ is +conflict–free.

Let us now assume that E ′ is not d–admissible. As it is +conflict–free, it has to be the
case there is an argument c ∈ E ′ that is not defended by E ′ w.r.t. R′′. Therefore, there
exists an argument d ∈ A s.t. dR′′c and no argument e ∈ E ′ s.t. eR′′d. If there is no such
defending argument in E ′, then there is none in E either. Thus, if c ∈ E , we breach the
d–admissibility of E . If c = a, then a could not have been defended by E in the first place.
We can therefore conclude that E ′ is d–admissible.

Finally, let us show that if an argument b ∈ A is defended by E , then it is also defended
by E ′ (w.r.t. R′′). Assume it is not the case, i.e. b is no longer defended by E ′. This means
there is an argument c ∈ A s.t. cR′′b and no argument d ∈ E ′ s.t. dR′′c. If there is no
such argument in E ′, then there could not have been one in E . Therefore, E could not
have defended b and we reach a contradiction. Hence, if b is defended by E , then it is also
defended by E ′. 2

Lemma 2.76. Let BF = (A,R, S) be a BAF and R′ ⊆ Rind a collection of indirect
attacks in BF . If a set E ⊆ A is +conflict–free w.r.t. R′, then so is d−FR′

BF (E ).

Proof. Let E ′ = d − FR′
BF (E ). Assume it is not +conflict–free w.r.t. E ′ and there are

arguments a, b ∈ E ′ s.t. (a, b) ∈ R ∪
⋃
R′. Due to defense of b, it has to be the case

there is c ∈ E s.t. (c, a) ∈ R ∪
⋃
R′. However, due to defense of a, it also has to be the

case that there is d ∈ E s.t. (d, c) ∈ R ∪
⋃
R′. We thus reach the contradiction with the

+conflict–freeness of E . Hence, E ′ is conflict–free. 2

Theorem 2.80. Let BF = (A,R, S) be BAF and R′ ⊆ Rind the collections of indirect
attacks in BF . The following holds:

• every d–preferred extension of BF w.r.t. (R′, R′) is a d–complete extension of BF
w.r.t. (R′, R′), but not vice versa.

• the d–grounded extension of BF w.r.t. R′ is the least w.r.t. set inclusion d–complete
extension of BF w.r.t. (R′, R′).

• every stable extension of BF w.r.t. R′ is a d–preferred extension w.r.t. (R′, R′), but
not vice versa.

Proof. Please note that for the sake of simplicity, we will not explicitly state parametriza-
tion in the proof.
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• If a given d–preferred extension E is not d–complete, then there is an argument
a ∈ A \ E defended by E . By Lemma 2.72, E ∪ {a} is d–admissible and clearly
E ⊂ (E ∪ {a}). Thus, E could not have been d–preferred in the first place and we
reach a contradiction. Thus, every d–preferred extension is d–complete. In order to
show the reverse does not hold, we can adapt Example 1.

• Follows from Lemma 2.77 and Proposition 2.79.

• It can be easily shown that every stable extension is d–admissible. If it is not d–
preferred, then there exists another d–admissible extension containing it. However,
we can observe that from the properties of the stable semantics, such an extension
cannot be +conflict–free. We reach a contradiction. Thus, every stable extension is
d–preferred. In order to show the reverse does not hold, we can adapt Example 1.

2

Lemma 2.92. Let FN = (A,R,N) be an AFN and E ⊆ A be a strongly coherent set.
Then E att ⊆ E+.

Proof. Let us assume this is not the case, i.e. an argument a ∈ A is in E att, but @e ∈
E , eRa and ∀C ⊆ A s.t. CNa, C ∩ E 6= ∅. It is easy to see that since sufficient support
is provided and E is coherent, then E ∪ {a} would have to be coherent as well. Since
a ∈ E att, every coherent set containing a is attacked by E . As E is also conflict–free, it
can thus only be the case that ∃e ∈ E s.t. eRa. We reach a contradiction. Hence, whatever
is in E att, is also in E+. 2

Lemma 2.94. Let FN = (A,R,N) be an AFN. A set E ⊆ A is a stable in FN iff it is
strongly coherent and E att = A \ E .

Proof. Let us show that if E is strongly coherent and E att = A \ E , then E is stable.
By Lemma 2.92 we know that E att ⊆ E+. Thus, it suffices to show that E is complete.
Since E is strongly coherent, E ∩E att = ∅. Moreover, from Lemma 2.93 and the fact that
E att = A \ E it follows that E is at least admissible. Now assume there is an argument
a /∈ E that is defended by E . Since a ∈ E att, E could not have been conflict–free in the
first place. Thus, there cannot be a defended argument not in E . Hence, the set is complete
and as a result, also stable.

Let us now show the other way. Since E is complete, it is at least strongly coherent.
What remains to be shown is that in this case, whatever is in E+ is in E att. Let us assume
it is not the case, i.e. there is an argument in a ∈ E+ s.t. E does not attack all coherent
sets containing a. Let (a0, ..., an) be a powerful sequence for a that is not attacked by
E . Assume that none of the elements of the sequence belong to E . This means that a0
is in E+, and as it requires no support due to the powerful sequence conditions, it has to
be the case that E attacks it. Consequently, the powerful sequence for a would also be
attacked by E and we would reach a contradiction. Thus, let us assume that at least a0
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is in E . If a1 is not there, then by the fact it is supported by a0 and thus by E we again
would reach a conclusion that it can only be the case that E attacks a1. Consequently, the
sequence would again be attacked and we reach a contradiction. We will come to the same
conclusion when we assume that a1 is in E , but a2 is not. We can continue until we reach
an = a and it is easy to see that it could not have been the case that a was in E+, but not
in E att. Hence, E is strongly coherent and E att = A \ E . 2

Lemma 2.162. Let D = (A,C) be an ADF. Every xy–preferred extension of D is a maxi-
mal w.r.t. ⊆ xy–complete extension of D for x, y ∈ {a, c}.

Proof. By Theorem 2.158 we know that every xy–preferred extension is xy–complete. If
it is not the maximal one, then it means there exists an xy–complete extension containing
it. As any xy–complete extension is also xy–admissible, we reach a contradiction with the
definition of xy–preferred semantics. 2

15.2 Framework Normal Forms & Subclasses: Proof Appendix

Theorem 4.5. Let SF = (A,R) be a SETAF and SFmin = (A,R′) its minimal form. A
set of arguments E ⊆ A is a σ–extension of SF , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, iff it is a σ–extension of SFmin.

Proof. First of all, we prove that a set of arguments S attacks an argument a in SF
iff it attacks it in SFmin. Based on the way R′ is obtained, it holds that ∀(X, a) ∈ R,
∃(X ′, a) ∈ R′ s.t. X ′ ⊆ X . This means that if there exists S ′ ⊆ S s.t. S ′Ra, then there
exists S ′′ ⊆ S ′ s.t. S ′′R′a. Thus, an argument attacked by S in SF also has to be attacked
by S in SFmin. SinceR′ ⊆ R, it trivially follows that an argument attacked by S in SFmin

is also attacked by S in SF .
From this analysis it clearly follows that a set S is conflict–free in SF iff it is conflict–

free in SFmin. It is also easy to prove that a set S is stable in SF iff it is such in SFmin

and that an argument a is acceptable w.r.t. S in SF iff it is acceptable in SFmin. Con-
sequently, admissible, complete and preferred semantics produce the same extensions in
both frameworks. Based on completeness and Theorem 2.24 , the same can be shown for
the grounded semantics. 2

Theorem 4.13. Let D = (A,L,C) be an ADF and Dr = (A,Lr, Cr) its redundancy–
free form. A set E ⊆ A is a σ–extension of D, where σ ∈ {conflict–free, pd–acyclic
conflict–free, model, stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–
preferred} and x, y ∈ {a, c} iff it is a σ–extension of Dr. A three–valued interpretation on
A is a δ–labeling of D, where δ ∈ {three–valued model, admissible, preferred, complete,
grounded} iff it is a δ–labeling of Dr.

Proof Sketch. Let (b, a) ∈ L be a redundant link, Ca the condition of a andX ⊆ par(a) an
arbitrary subset of parents of a. Since (b, a) ∈ L is supporting, then it cannot be the case
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that Ca(X) = in and Ca(X∪{b}) = out. Since (b, a) ∈ L is also attacking, then it cannot
be the case that Ca(X) = out and Ca(X ∪ {b}) = in. Thus, Ca(X) = Ca(X ∪ {b}).
Similarly, Ca(X) = Ca(X \ {b}). Therefore, the presence (or lack of it) of b in no
way affects the outcome of the acceptance condition and for any set E ⊆ A, Ca(E ∩
par(a)) = Cr

a(E ∩ parr(a)), where parr(a) are the parents of a w.r.t. Lr. Consequently,
an addition of a redundant link does not alter the behavior of the conditions. Hence, we can
observe that the conflict–free extensions, decisive interpretations and evaluations remain
the same in both frameworks. Consequently, the extensions under any semantics remain
the same. Based on the relation between labelings and decisiveness, as noted for example
in Theorems 2.148 and 2.149, it is also easy to see that the labelings remain unaffected.

Theorem 4.15. Let D = (A,L,C) be an ADF and Dc = (A′, L′, C ′) its cleansed form.
A set E ⊆ A is a σ–extension of D, where σ ∈ {conflict–free, pd–acyclic conflict–free,
model, stable, grounded, acyclic grounded, xy–admissible, xy–complete, xy–preferred}
and x, y ∈ {a, c}, iff it is a σ–extension of Dc.

Proof. Please note that an argument that does not possess a standard evaluation will not
appear in any extension. Consequently, every extension E of D is a subset of A′.

We will start with the analysis of decisiveness and different types of evaluations. Let
a ∈ A be an argument that possesses a standard evaluation (F,B) on A in D. Clearly,
F ⊆ A′. Let va be the minimal decisively in interpretation for a used in the construction
of (F,B). We will show that va and its limitation to A′ are decisively in interpretations
for a in Dc, though not necessarily minimal ones. We can observe that vta ⊆ A′ and
vta ⊆ par(a) in D. Consequently, vta ⊆ par(a) in Dc as well. From this, the Definition
4.3 of the reduct and the fact that Ca(vta) = in in D, it holds that C ′a(v

t
a) = in in Dc.

Assume va is not decisively in for a in Dc; this means there is a set of arguments E where
vta ⊆ E ⊆ A′ \ vfa s.t. C ′a(E ∩ par(a)) = out. Since E ⊆ A′, then E ∩ par(a) in D
is the same as E ∩ par(a) in Dc. Consequently, from the definition of the reduct it holds
that C ′a(E ∩ par(a)) = Ca(E ∩ par(a)). From the properties of E and the definition
of decisiveness it now follows that va could not have been decisively in for a in D and
we reach a contradiction. Consequently, if va is decisively in for a in D and is used in
the construction of a standard evaluation for a in A in D, then va (or more specifically,
its subinterpretation limited to A′) is decisively in for a in Dc. Depending on the initial
framework, the condition of a can be reduced to an equivalent of a tautology, even if some
parents show up as redundant ones. For example, a framework ({a, b}, {Ca = a∨¬b, Cb =
⊥}) is cleansed into ({a}, {Ca = a ∨ >}). As a result, neither va nor its limitation to A′

have to be minimally decisively in for a in Dc. Nevertheless, a minimal interpretation can
be “extracted”, and we can thus conclude that a will have a standard evaluation (F,B′)
on A′ in Dc, where B′ ⊆ B ∩ A′ depends on the “extraction”. Since our proof did not
in fact depend on F being a set or a sequence, the same analysis can be done in the case
of acyclic pd–evaluations. However, the situation is slightly different for the partially
acyclic evaluations due to the requirement that the arguments that are in the pd–set are
there only if they “really have to” and that the new minimal decisively in interpretations
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can be subinterpretations of the original ones. Consequently, it is both the t and f parts
that can be “smaller” and cause a shift between the pd–set and pd–sequence. Thus, given
an original partially acyclic evaluation (F,G,B) for an argument a ∈ A, we will obtain a
new evaluation (F ′, G′, B′) s.t. F ∪ G = F ′ ∪ G′, F ′ ⊆ F and B′ ⊆ B ∩ A′. It does not
have to be the case that F = F ′ and G = G′. Basically speaking, although the standard
evaluations can be adapted from one framework to the other, the pd–functions will look
differently and thus the partially acyclic evaluations representing the standard ones can
separate pd–set and pd–sequence differently.

Let now a ∈ A′ be an argument that possesses a standard evaluation (F,B) on A in
Dc and let va be the minimal decisively in interpretation for a used in the construction of
(F,B). Assume va is defined for a set E ⊆ A′; let now za be the f–completion of va to
E ∪ (A \ A′). We will show that za is decisively in for a in D. From the definition of the
reduct and the fact that va and za have the same t mappings it follows that if C ′a(v

t
a) = in

in Dc, then Ca(zta) = in in Dc. Now assume that there is some set of arguments E where
zta ⊆ E ⊆ A \ zfa s.t. Ca(E ∩ par(a)) = out. From the construction of za it means that
vta ⊆ E ⊆ A\ vfa. Again, from the definition of reduct, if such a set outs the condition of a
inD, then it does so inDc as well and thus we contradict the decisiveness of va. Therefore,
za is decisively in for a inD, even if not minimally. Nevertheless, a minimal interpretation
can be “extracted”, and we can conclude that a will have a standard evaluation (F,B′) on
A in D, where B ⊆ B′ ⊆ (B∪A\A′) depends on the “extraction”. Again, as the analysis
does not really depend on whether F is a set or a sequence, the same analysis can be
done in the case of acyclic pd–evaluations. Finally, when it comes to the partially acyclic
evaluations, we can transform (F,G,B) into (F ′, G′, B′) s.t. B ⊆ B′ ⊆ (B ∪A \A′) and
F ∪G = F ′ ∪G′. Moreover, from the presented analysis it follows that in this case, also
F = F ′ and G = G′ holds.

Let E ⊆ A be a conflict–free extension of D. E can be seen as a standard evaluation
(E , B) in D s.t. B ⊆ A and E ∩ B = ∅. Consequently, E ⊆ A′. From the previous parts
of this proof it also follows that there is a standard evaluation (E , B′) s.t. B′ ⊆ B in Dc.
Since E ∩ B = ∅, then E ∩ B′ = ∅ and the evaluation is not self–blocking. Thus, it can
again be seen as a conflict–free set and E is conflict–free in Dc. The same analysis holds
for pd–acyclic conflict–free extensions, but with acyclic pd–evaluations (see discussion in
Section 2.3.5).

Let E ⊆ A′ be a conflict–free extension of Dc. Again, E can be seen as a standard
evaluation (E , B) in D s.t. B ⊆ A′ and E ∩ B = ∅. From the previous parts of this
proof it also follows that there is a standard evaluation (E , B′) in D s.t. B ⊆ B′ and
(B′ \B) ⊆ (A \A′). Consequently, as E ∩B = ∅ and E ∩ (A \A′) = ∅, then E ∩B′ = ∅
and the evaluation is not self–blocking. Thus, it can again be seen as a conflict–free set, and
we can conclude that E is conflict–free in D. The same analysis holds for the pd–acyclic
conflict–free extensions, but with acyclic pd–evaluations (see discussion in Section 2.3.5).

Let E ⊆ A′ be a conflict–free extension of Dc and D. We will show how the discarded
sets between the frameworks are related. First of all, let E+

c and E+ and be the standard
discarded sets of E in Dc and D respectively. We will show that E+ = E+

c ∪ (A \ A′).
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An argument a ∈ (A\A′) by construction does not possess a standard evaluation and thus
is trivially in E+. Let now a ∈ E a+

c ; from the proofs above we could have observed that
every standard evaluation (F,B) in Dc can be “extended” through the blocking set to a
standard evaluation for a in D and that every standard evaluation (F,B′) for a in D could
have been “trimmed” through the blocking set to an evaluation for a inDc. Since a is in the
discarded set, then by Lemma 2.125 all of its standard evaluations are blocked through the
blocking set by E inDc, and by the explanation above it has to be the case that all standard
evaluations for a in D are blocked through the blocking set by E . Consequently, a ∈ E+.
Let now a ∈ E+ ∩A′. Assume that a is not in E+

c . By Lemma 2.125 it means it possesses
a standard evaluation (F,B) on A′ s.t. B ∩ E = ∅. By the proofs above, this evaluation
can be extended to a standard evaluation (F,B′) on A in D s.t. B ⊆ B′ ⊆ (B ∪ A \ A′).
As E ⊆ A′ and E ∩ B = ∅, then B′ ∩ E = ∅ and (F,B′) cannot be blocked by E in D.
Consequently, a could not have been in E+ in the first place and we reach a contradiction.
This brings us to the conclusion that E+ = E+

c ∪ (A \ A′). Exactly the same analysis can
be done for acyclic pd–evaluations and thus the acyclic discarded sets between D and Dc

are also related: E a+ = E a+
c ∪ (A \ A′).

Let us now focus on the partially acyclic discarded sets and show that E p+ =
E p+
c ∪ (A \ A′) as well. An argument a ∈ (A \ A′) by construction does not possess

a standard evaluation. Therefore, it does not possess a partially acyclic one as well and
thus is trivially in E p+. Let now a ∈ E p+

c ; this means that there is no unblocked partially
acyclic evaluation for a s.t. its pd–set is in E . From the previous parts of the proof we could
have observe that all partially acyclic evaluations for a in Dc can be extended through the
blocking set to evaluations for a in D and every partially acyclic evaluation for a in D can
be trimmed to one in Dc in a way that the resulting pd–set is a subset of the original one.
Consequently, if no unblocked partially acyclic evaluation for a in Dc has a pd–set in E ,
then neither has one in D. Therefore, if a ∈ E p+

c , then a ∈ E p+. Let now a ∈ E p+.
Assume that a has a partially acyclic evaluation (F,G,B) on A′ in Dc s.t. B ∩ E = ∅
and F ⊆ E . This means it also has a partially acyclic evaluation (F,G,B′) on A in D s.t.
B ⊆ B′ ⊆ (B ∪ A \ A′). Since (A \ A′) ∩ E = ∅, then B′ ∩ E = ∅. Thus, (F,G,B′) is
not blocked by E in D and has a pd–set in E . This means a could not have been in E p+

in the first place and we reach a contradiction. Therefore, E p+ = E p+
c ∪ (A \ A′).

Let us move on to admissibility. Let us start with the cc case; assume that E ⊆ A′

is admissible in D, but not in Dc. Since E is conflict–free, this means that there is an
argument a ∈ E that is not decisively in w.r.t. the standard range interpretation. Thus,
there exists a set E ′ in Dc s.t. E ⊆ E ′ ⊆ (A′ \ E+

c ) for which C ′a(E
′ ∩ par(a)) =

out in Dc. However, from the previous parts of this proof it can be observed that this
means that Ca(E ′ ∩ par(a)) = out in D. Due to the relation between the discarded
sets and the fact that E ⊆ E ′ ⊆ (A′ \ E+

c ), it has to be the case that E ′ ∩ E+ = ∅.
Consequently, a could not have been decisively in w.r.t. the range interpretation of E
in D and thus E cannot be cc–admissible in D in the first place. Hence, we reach a
contradiction. In a similar manner we can prove ca1 and ca2 admissibility. Let us now
assume that E is an aa–admissible extension of D. Assume it is not aa–admissible in Dc;
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since it is already pd–acyclic conflict–free, it means that there is an argument a ∈ E s.t.
none of its acyclic pd–evaluations (F,B) on E in Dc has a blocking set contained in the
acyclic discarded set. However, based on the presented relations between the evaluations
and the acyclic discarded sets in D and Dc, we can observe that if no evaluation for a
meets admissibility requirements in Dc, then no evaluation can meet the admissibility
requirements in D either. Thus, E could not have been aa–admissible in D in the first
place and we reach a contradiction. Therefore, if a set of arguments is aa–admissible in
D, then it is admissible in Dc. The same analysis can be repeated for ac–admissibility.

Let now E be cc–admissible in Dc; assume it is not cc–admissible in D. This means
that there is an argument a ∈ E that is not decisively in w.r.t. the standard range in-
terpretation. Consequently, there exists a set E ′ s.t. E ⊆ E ′ ⊆ (A \ E+) for which
Ca(E ∩ par(a)) = out in D. From the relation between discarded sets of D and Dc and
the fact that any argument in A \ A′ is trivially in E+, it holds that A \ E+ = A′ \ E+

c .
Moreover, as C ′a(E ∩ par(a)) = out in Dc, then a could not have been decisively in w.r.t.
standard range interpretation of E in Dc and the set could not have been cc–admissible.
We reach a contradiction. The same analysis can be performed for ca1 and ca2 semantics.
Let now E be aa–admissible inDc. From the previous parts of this proof we could observe
that any acyclic pd–evaluation for a ∈ E in Dc can be extended into one in D by adding
some of the A \ A′ elements to the blocking set. Since these elements are disjoint from E
and trivially in E a+, we can observe that if an acyclic pd–evaluation for a satisfies admissi-
bility requirements in Dc, then so does its “extension”. Consequently, E is aa–admissible
in Dc. Similar analysis can be done for the ac–admissible semantics.

We have shown that the cc–, ac–, aa–, ca1 and ca2–admissible extensions between
our two frameworks coincide. We now need to show that it also holds for the respective
complete semantics. Let E ⊆ A′ be a cc–complete extension ofD. If it is not cc–complete
in Dc, it means there is an argument a ∈ A′ \ E that is decisively in w.r.t. the standard
range interpretation vE of E in Dc. We can observe that since a is decisively in w.r.t.
vE and E can be seen as a standard evaluation, then a possesses a standard evaluation
in D. Thus, we can use the previously done analysis to show that vE extended with f
mappings on A \ A′ is decisively in for a in D. Since this extended interpretation is also
the standard range interpretation of E in D then E could not have been cc–complete in D
in the first place. Similar analysis can be done for ac–, aa and ca2–complete semantics.
Since A \ (E ∪ E a+) = A′ \ (E ∪ E a+

c ), the proof can also be repeated for ca1–complete
semantics.

Let now E be cc–complete in Dc. Assume it is not complete in D; this means there
is an argument a ∈ A \ E that is decisively in w.r.t. standard range interpretation vE of
E in D. Since an argument not possessing a standard evaluation will be decisively out
w.r.t. vE (see Lemma 2.125 and Proposition 2.150), then only a ∈ A′ \ E are the possible
candidates. Now, as a is decisively in w.r.t. the range interpretation, then we can remove
the A \ A′ assignments from this interpretation and obtain one that is decisively in for
a. Moreover, it will also be the standard range of E in Dc. Consequently, a would have
been decisively in w.r.t. the standard range of E of Dc and we reach a contradiction with
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the completeness of E . Therefore, if E is cc–complete in Dc, then it is complete in D.
The proof for the remaining complete semantics is similar; we only need to notice that an
argument not possessing a standard evaluation will be decisively out w.r.t. remaining types
of range interpretations as well (see Lemma 2.132).

We now move to the model and stable semantics. Let E ⊆ A be a model extension
of D. It is conflict–free in Dc and by Lemma 2.139 and the relation between the partially
acyclic discarded sets, it holds that E p+

c = A′ \ E . Thus, by Proposition 2.150, it holds
that for every argument a ∈ A′ \E , C ′a(E ∩par(a)) = out. Consequently, E is a model of
Dc. The proof that every model of Dc is a model of D follows similarly. Since the model
and pd–acyclic conflict–free extensions between D and Dc coincide, so do the stable ones
by Theorem 2.138.

The fact that E ⊆ A′ is a preferred extension of D iff it is one in Dc follows straight-
forwardly from the relation between the admissible extensions. The coincidence of the
acyclic grounded and grounded extensions between the two frameworks is a result of the
relation between complete extensions and Theorem 2.158. 2

Theorem 4.7. Let EFC = (A,R,D) be an EAFC and EFCmin = (A,R,D) its minimal
form. A set of arguments E ⊆ A is a σ–extension of EFC, where σ ∈ {conflict–free,
admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of EFCmin.

Proof. First of all, we prove that a set of arguments E defeatsE an argument a in EFC
iff it defeatsE it in EFCmin. We can observe that the attack relation is the same in both
frameworks. Therefore, if an argument b ∈ E attacks a in R and there is no defense attack
for it in D, then there is no defense attack for it in D′ and a is defeatedE by b both in
EFC and EFCmin. If there is a defense attack for the (b, a) conflict in D, then it cannot
be contained in E . Thus, none of the minimal defense attacks is included either, and
therefore no set of arguments defense attacking (b, a) in D′ is in E . Hence, if E defeatsE
a in EFC, then it defeatsE in EFCmin as well. Let us now focus on the other direction.
If there is no defense attack at all in D′ for the (b, a) conflict, then by the construction
of D′, there could not have been one in D either. Therefore, the defeat occurs in both
frameworks. If there is a defense attack by a set C ⊆ A on (b, a) in D′, but C 6⊆ E ,
then clearly no set C ′ s.t. C ⊆ C ′ can be contained in E either. Consequently, from the
construction of D′ we can observe that if no defense attack for (b, a) was present in E in
EFCmin, then no defense attack is present in E in EFC either. Hence, if an argument is
defeatedE in EFCmin, it is defeatedE in EFC as well.

Due to the relation between the defeats in both frameworks, we can observe that the
reinstatement sets of the defeats will also be the same. Let {(x1, y1), ..., (xn, yn)} be a
reinstatement set on E for the xn-yn defeat in EFC This means that for every set C ⊆ A
of arguments defense attacking any of the (xi, yi) defeats in the set in D, there is an
(xj, yj) in the set s.t. yj ∈ C. As this holds for every such C, then also for the mini-
mal ones. Thus, from the fact that the defeats are the same both in EFC and EFCmin,
{(x1, y1), ..., (xn, yn)} will be a reinstatement set on E for xn-yn defeat in EFCmin as
well.
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Let now {(x1, y1), ..., (xn, yn)} be a reinstatement set on E for the xn-yn defeat in
EFCmin. This means that for every set C ⊆ A of arguments defense attacking any of the
(xi, yi) defeats in the set in D′, there is an (xj, yj) in the set s.t. yj ∈ C. We can observe
that by construction, every defense attack in D has a “smaller” defense attack in D′ and
every defense attack in D′ has a “bigger” one in D. Therefore, if every relevant defense
attack is defeated by the reinstatement set in EFCmin, then every defense attack will be
defeated by the same set in EFC as well.

Using the correspondence between the defeats and reinstatement sets it can be easily
shown that the extensions under conflict–free, admissible, preferred, complete, grounded
and stable semantics coincide between EFC and EFCmin. 2

Theorem 4.16. Let D = (A,L,C) be an ADF and Dc = (A′, L′, C ′) its cleansed form.
If v is σ–labeling of D, where σ ∈ {three–valued model, admissible, preferred, complete,
grounded}, then v|A′ is a σ–labeling of Dc 30. If v is a σ–labeling of Dc, then the f–
completion of v to A is a σ–labeling of D.

Proof. Let v be a three–valued model of D and v′ = v|A′ its restriction to A′. From the
Definition 4.3 and the analysis done in the proof of Theorem 4.15 we can observe that vt ⊆
A′ and that ifCa(vt∩par(a)) = in thenC ′a(v

t∩par(a)) = in and ifCa(vt∩par(a)) = out
then Ca(vt ∩ par(a)) = out for a ∈ A′. Consequently, v′ will be a three valued model of
Dc.

Let now v be a three–valued model of Dc. Again, from the previous analysis and the
nature of vt we can observe that if C ′a(v

t ∩ par(a)) = in then Ca(vt ∩ par(a)) = in
and if C ′a(v

t ∩ par(a)) = out then C ′a(v
t ∩ par(a)) = out. If the f–completion of v

to A is not a three–valued model, this means that there is an argument a ∈ A \ A′ s.t.
Ca(v

t ∩ par(a)) = in. Thus, a possesses a minimal decisively in interpretation s.t. its
t part is a subset of vt. Since vt is a conflict–free extension of D by Theorem 2.165, it
can be represented with a standard evaluation (see Section 2.3.5). This evaluation can be
extended with the minimal decisively interpretation for a we have described and will form
a new standard evaluation for a. Consequently, a could not have been in A \A′ in the first
place and we reach a contradiction. Thus, the f–completion of v to A is a three–valued
model of D.

Let v be an admissible labeling of D and v′ = v|A′ its restriction to A′. Assume v′

is not admissible in Dc; by Theorem 2.148 this means there is an argument a ∈ v′t that
is not decisively in w.r.t. the two–valued subinterpretation of v′ or an argument b ∈ v′f

that is not decisively out w.r.t. the two–valued subinterpretation of v′. If it is the first case,
then there exists a two–valued interpretation z ∈ [v′]2 s.t. C ′a(z

t ∩ par(a)) = out. Since
zt ⊆ A′, then from the definition of the reduct it means that Ca(zt ∩ par(a)) = out and
as the f–completion of z to A is in [v]2, then a could not have been decisively in w.r.t. the
two–valued subinterpretation of v and by Theorem 2.148 v could not have been admissible
in D. Similar analysis can be done for b. We can thus conclude that v′ is admissible in Dc.

30Recall that v|A stands for the subinterpretation of v defined over A.
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Let now v be an admissible labeling of Dc and let v′ be its f–completion to A. Assume
that v′ is not admissible in D. By Theorem 2.148 this means there is an argument a ∈
v′t that is not decisively in w.r.t. the two–valued subinterpretation of v′ or an argument
b ∈ v′f that is not decisively out w.r.t. the two–valued subinterpretation of v′. If it is
the first case, then a ∈ A′ and there exists a two–valued interpretation z ∈ [v′]2 s.t.
Ca(z

t ∩ par(a)) = out in D. Since all arguments in A \A′ are assigned f , this means that
zt ⊆ A′. Consequently, the restriction of z to A′ is in [v]2 and C ′a(z

t ∩ par(a)) = out in
Dc. Therefore, v could not have been admissible in Dc. Let us now focus on b. If b ∈ A′,
then the proof follows similarly as in the case of a. Let us thus assume that b ∈ A \A′ and
let z be the two–valued interpretation in [v′]2 s.t. Cb(zt ∩ par(b)) = in. We can observe
that zt ⊆ A′. Consequently, from z we can extract a minimal decisively in interpretation
for b that has a t part in A′. Since all elements in A′ possess standard evaluations and A′

itself can be represented as one, we can obtain a standard evaluation for b by extending
this evaluation with the interpretation extracted from z. Thus, b has a standard evaluation
and thus cannot be in A \ A′ and we reach a contradiction. Therefore, v′ is an admissible
labeling of D.

Let v be a complete labeling of D. Before we continue, we will first show that for
every a ∈ A \A′, v(a) = f . Since v is a complete labeling, it is also a three–valued model
and thus E = vt is conflict–free in D. We will show that the standard range interpretation
of E is a subinterpretation of v. Let us start with an interpretation z consisting only of t
mappings on E and go through the original definition of range (Definition 2.124). Clearly,
z is a subinterpretation of v. Let B1 ⊆ A \ E be the set of arguments decisively out
w.r.t. z. From the definition of decisiveness it follows that they need to be decisively out
w.r.t. the two–valued subinterpretation of v as well. Thus, by the completeness of v and
Theorem 2.149, ∀b ∈ B1, v(b) = f . Extend z with f mappings for the elements in B1.
Again, z is a subinterpretation of v. Let B2 ⊆ A \ (E ∪ B1) be the set of arguments
decisively out w.r.t. the new z. By decisiveness, they are also decisively out w.r.t. the
two–valued subinterpretation of v and again all elements of B2 have to be mapped to f
by v. We can now extend z with f mappings for B2; again, z will be a subinterpretation
of v. We can continue reasoning in this manner till the set of decisively out arguments is
empty. In this way we have computed the standard range interpretation of E and shown
that it is a subinterpretation of v. From Lemma 2.125 we can see that every argument
not possessing a standard evaluation is in the standard range. Consequently, for every
a ∈ A \ A′, v(a) = f .

Let now v be a complete labeling of D and v′ = v|A′ its restriction to A′. We will
show that v′ is complete in Dc. By Theorem 2.149, an argument in vu can neither be
decisively in nor decisively out. Thus, for every a ∈ vu, there is a set of arguments E
s.t. vt ⊆ E ⊆ A \ vf for which it holds that Ca(vt ∩ par(a)) 6= Ca(E ∩ par(a)). Since
(A \ A′) ⊆ vf by the proof above, then E ⊆ A′. Therefore, from the previous parts
of the proof it follows that C ′a(v

t ∩ par(a)) 6= C ′a(E ∩ par(a)) in Dc. Consequently,
there is no argument in v′u that is decisively in or decisively out w.r.t. the two–valued
subinterpretation of v′. Thus, by Theorem 2.149, v′ is complete in Dc. Showing that the
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f–completion of a complete labeling of Dc is a complete labeling of D follows similarly.
From the bijective nature of the relation between the complete extensions of D and

Dc and the fact they only differ by f mappings on arguments in A \ A′, it should be clear
that the maximal and least complete labelings are related in the same manner. Thus, by
Theorem 2.147, a labeling v is preferred or grounded inD if its restriction toA′ is preferred
or grounded in Dc and that the f–completion to A of a labeling v′ that is preferred or
grounded in Dc, is preferred or grounded in D. 2

Theorem 4.50. Let FN = (A,R,N) be an AFN and FN sc = (A′, R,N ′) its correspond-
ing strongly consistent framework obtained through Translation 13. Let E ⊆ A, E ′ ⊆ A′

be sets of arguments and E b the (possibly empty) set of bypass arguments generated by
E in A′. If E is a σ–extension of FN , where σ ∈ {conflict–free, coherent, admissible,
preferred, complete, grounded, stable}, then E ∪ E b is a σ–extension of FN sc. If E ′ is a
σ–extension of FN sc, then E ′ \ E b is a σ–extension of FN .

Proof. It is easy to see that conflict–freeness is preserved in both ways due to the fact that
the attack relation R remains unchanged; the bypass arguments can appear randomly in
any conflict–free extensions as they do not take part in any attacks.

Let us now focus on analyzing the coherent semantics. Let a ∈ A be an argument and
let us assume that there exists a powerful sequence (a0, ..., an) for a on a set B ⊆ A. We
create a new sequence on B ∪ Bb by inserting bypass arguments just after the arguments
for which they were created for, with the exception of the bypass for an. For example,
given an argument ai for which a bypass abi was created, (a0, ..., ai, ai+1, .., an) becomes
(a0, ..., ai, a

b
i , ai+1, .., an). We will show that the resulting bypass sequence is still a pow-

erful sequence for a. Since a0 required no support in N in the first place, it was a strongly
consistent argument by default and thus is not affected by the translation. Consequently,
it needs no support in N ′ and meets the first powerful criterion. The sequence ends with
an = a, thus meeting the endpoint requirement as well. Let ai be a non–zero argument in
the sequence. If ai is a bypass argument, then naturally the powerful condition is satisfied -
ai is supported only by its creator, which by our method appears before it in the sequence.
If it is not a bypass argument, then in the original sequence it was the case that ∀C ⊆ A
s.t. CNai it holds that C ∩ {a0, ..., ai−1} 6= ∅. Should such C sets be transformed by re-
placing the arguments with their bypasses in the translation, then it is easy to see that since
bypasses appear just after their “owners” and before ai, the requirement is again satisfied.
Thus, if a was coherent in B, then it is also coherent in B ∪Bb. By a similar reasoning we
can show that if a ∈ A is coherent on B′ ⊆ A′ in FN sc, then it is coherent on B′ ∩ A in
FN . Moreover, it also holds that if a is coherent, then so is its bypass argument if it exists
– we can just extend the bypass sequence of a by putting ab on the an+1 position.

We will now show that if an argument a ∈ A is defended by E in FN , then it is
also defended by E ∪ E b in FN sc. The coherence requirement of the defense follows
straightforwardly from the previous parts of this proof. Moreover, it is also easy to see
that we cannot create a powerful sequence in FN sc that would not be present in FN after
the removal of bypass arguments – every bypass needs to be supported by its original
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argument. Since the attack relation R remains unchanged and bypass arguments do not
participate in conflicts, we can observe that a coherent set C attacked in FN is attacked
both in C and C ∪ Cb forms in FN sc and vice versa. Consequently, if we can defend an
argument in FN , then we can also defend it in FN sc after including the required bypass
arguments. We can also observe that if an argument a is defended by E in FN , then so
is ab by E ∪ E b ∪ {a} in FN sc. The coherence requirement follows from the explanation
above, and since ab is not attacked in FN sc, it is defended by E ∪ E b ∪ {a}.

Let us now focus on the other way around; i.e. showing that if an argument a ∈ A
is defended by E ⊆ A′ in FN sc, then it is also defended by E ∩ A in FN . By the
coherence analysis above, we can see that if E ∪ {a} is coherent in FN sc, then so will be
(E ∩ A) ∪ {a} in FN – we simply remove the bypass arguments. Again, due to the fact
that the attack relation is the same in the two frameworks, then E in FN sc carries out and
suffers from the same attacks as E ∩A in FN . Thus, we can observe that the defense from
attacks in FN sc implies defense from attacks in FN . We can therefore conclude that if a
(non–bypass) argument is defended by a set in one framework, then it is also defended by
this set without bypass arguments in the other structure.

Due to the coherence, conflict–freeness and defense proofs presented above, we can
observe that if a set of arguments E ⊆ A is admissible (complete) in FN , then E ∪ E b

is admissible (complete) in FN sc and that if a set of arguments E ′ ⊆ A′ is admissible
(complete) in FN sc, then so is E ′∩A in FN . Moreover, since the defense of an argument
implies the defense of its bypass and a bypass will not appear in an admissible extension
without its original argument, it follows that any complete extension in FN sc satisfies
the following property: E = (E ∩ A) ∪ (E ∩ A)b. In other words, it is precisely of the
form E ∪ E b for some E ⊆ A and we obtain a one–to–one correspondence between the
target and source extensions. What remains to be shown is the correspondence between
preferred, grounded and stable semantics.

Let us assume that E is preferred in FN , but E ∪E b is not preferred in FN sc. Since it
is already complete, it means there is another admissible extension E ′ ⊆ A′ that contains
at least one argument more than E ∪ E b. We can observe that it cannot be the case that
E = E ′ ∩A. This would mean that E ′ contains a bypass argument not present in E ∪ E b,
and thus one without its origin in E ′. This clearly breaches the coherence of this extension.
From this and the fact that E∪E b ⊆ E ′, it holds that E ⊂ E ′∩A. Since E ′∩A is admissible
in FN , then E could not have been preferred in the first place. We reach a contradiction
with the assumptions. Thus, if E is preferred in FN , then E ∪ E b is preferred in FN sc.

Let us now look at the other way around, i.e. showing that if E ⊆ A′ is preferred
in FN sc, then E ∩ A is preferred in FN . It is already admissible; if it is not maximal,
then we have another E ′ ⊆ A admissible extension of FN s.t. (E ∩ A) ⊂ E ′. From
previous parts of this proof it should be clear that (E ′ ∪ E ′b) is admissible in FN sc and
that E ⊂ (E ′ ∪E ′b). Thus, E could not have been preferred in FN sc in the first place and
we reach a contradiction.

The argument for the grounded extensions follows the same line of reasoning as for
the preferred semantics. The grounded extension E ⊆ A of FN is by Theorem 2.95 the
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least w.r.t. ⊆ complete extension of FN . Moreover, E ∪ E b is complete in FN sc. If it
is not grounded, then it means there exists a complete extension E ′ ⊆ A′ of FN sc s.t.
E ′ ⊂ (E ∪E b). From the defense proofs we can observe that E ′ has to contain any bypass
arguments with its origin in E ′ and no bypass can appear without its origin. Consequently,
it has to be the case that a “normal” argument is not present in E ′ and thus (E ′ ∩A) ⊂ E .
As E ′ ∩ A is complete in FN , then E cannot be a grounded extension of FN . We thus
reach a contradiction and it holds that if E is grounded in FN , then E ∪ E b is grounded
in FN sc. Showing that if E ⊆ A′ is grounded in FN sc then E ∩ A is grounded in FN
follows the same line of reasoning as in the previous proofs.

Let us now focus on the stable semantics. From the earlier parts of this proof it follows
that if E ⊆ A is strongly coherent in FN , then E ∪ E b is strongly coherent in FN sc and
if E ′ ∪ A′ is strongly coherent in FN sc, then so is E ′ ∩ A in FN . Moreover, if all the
coherent sets for an argument b ∈ A are attacked by E in FN , then all the coherent sets
for b and bb are also attacked by E (and E ∪ E b) in FN sc. Similarly, if all coherent sets
for an argument b ∈ A′ are attacked by E ′ in FN sc, then all the coherent sets for b (or its
origin, if it is a bypass) are attacked by E ′ ∩ A in FN . Consequently, if E attacks all the
coherent sets of all arguments in A \ E in FN , then also E ∪ E b attacks all coherent sets
of all arguments in A′ \ (E ∪ E b) in FN sc and vice versa Thus, by Lemma 2.94, if E is
stable in FN then so is E ∪ E b in FN sc and if E ′ is stable in FN sc, then so is E ′ ∩ A in
FN . 2

Theorem 4.51. Let FN = (A,R,N) be an AFN and FN sc = (A′, R,N ′) its bypass
consistency form obtained through Translation 13. FN is weakly, relation and strongly
valid iff FN sc is. FN is in minimal form iff FN sc is.

Proof. Validity forms can be shown to hold using the proof of Theorem 4.50. If sets of
arguments supporting a given argument were incomparable before the translation, then
they remain incomparable afterwards. Moreover, the bypass arguments are supported by
a single set only. Thus, minimality of FN sc follows easily. Similar holds for the other
way around due to the fact it is all occurrences in support sets of a given argument that are
replaced, not just one. 2

Theorem 4.54. LetES = (A,R,E) be an EAS andESsc = (A′, R,E ′) its corresponding
strongly consistent framework obtained through Translation 14. Let S ⊆ A, S ′ ⊆ A′ be
sets of arguments and Sb the (possibly empty) set of bypass arguments generated by S in
A′. If S is a σ–extension of ES, where σ ∈ {conflict–free, self–supporting, admissible,
preferred, complete, grounded, stable}, then S ∪ Sb is a σ–extension of ESsc. If S ′ is a
σ–extension of ESsc then S ′ \ Sb is a σ–extension of ES.

Proof. It is easy to see that conflict–freeness is preserved in both ways due to the fact that
the attack relation R remains unchanged; the bypass arguments can appear randomly in
any conflict–free extensions as they do not take part in any attacks.
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We will now describe how e–support is preserved by the transformation. Let a ∈ A be
an argument and let us assume that there exists an evidential sequence (η, ..., an) for a on
some setB ⊆ A. We create a new sequence onB∪Bb by inserting bypass arguments, with
the exception of the bypass of an. For example, given an argument ai for which a bypass
abi was created, (a0, ..., ai, ai+1, .., an) becomes (a0, ..., ai, a

b
i , ai+1, .., an). We will show

that the resulting sequence with bypasses is then still an evidential sequence for a. Since η
required no support inE in the first place, it was a strongly consistent argument and thus is
not affected by the translation. Consequently, it needs no support in E ′ and meets the first
criterion. The sequence ends with an = a, thus meeting the endpoint requirement. Let
ai be a non–zero argument in the sequence. If ai is a bypass argument, then naturally the
evidential condition is satisfied - ai is supported only by its creator, which by our method
appears before it in the sequence. If it is not a bypass argument, then in the original
sequence it was the case that ∃C ⊆ A s.t. CEai and C ⊆ {a0, ..., ai−1}. If the bypasses
for arguments in C were introduced and C replaced by C ′ in E ′ support, then since the
bypasses appear just after their “owners” and before ai, it holds that ∃C ′ ⊆ A′ s.t. C ′E ′ai.
If no bypasses were required, then CE ′ai and in both of the cases the support requirement
is satisfied. Thus, if a has an evidential sequence on B, then it also has one on B ∪ Bb.
Consequently, due to the relation between evidential sequences and e–support (Theorem
2.99), if B is self–supporting in ES, then B ∪Bb is self–supporting in ESsc. By a similar
reasoning we can show that if a ∈ A has an evidential sequence on B′ ⊆ A′ in ESsc, then
it has one on B′ ∩ A in ES. Therefore, if B′ is self–supporting in ESsc, then B′ \ Ab is
self–supporting in ES. Moreover, it also holds that if a has an evidential sequence on B′

in ESsc, then so does its bypass argument on B′ ∪ ab if it exists – we can just easily add it
to the end of the sequence.

We will now show that if an argument a ∈ A is acceptable w.r.t. a set S ⊆ A in ES,
then it is also acceptable w.r.t. S ∪Sb in ESsc and the other way around. The fact that if a
is e–supported by S ∪ {a} in ES then it is e–supported by S ∪ Sb ∪ {a} in ESsc and vice
versa follows straightforwardly form the previous proof on self–supporting sets. Since the
attack relation R remains unchanged, if a set T attacks a in ES, then T attacks a in ESsc

as well and vice versa. By adding the self–support analysis we can conclude that if a set
T carries out an e–supported attack on a in ES, then so does T ∪ T b in ES and the other
way around. From this it follows easily that an argument a ∈ A that acceptable w.r.t. S
in ES will also be acceptable w.r.t. S ∪ Sb in ESsc and if it is acceptable w.r.t. S ′ ⊆ A′

in ESsc, it will also be acceptable w.r.t. S ′ ∩ A in ES. Finally, we can also observe that
if argument a is acceptable w.r.t. S in ES, then so is ab w.r.t. S ∪ Sb ∪ {a} in ESsc. The
e–support requirement follows from the explanation above, and since ab is not attacked in
ESsc, defense follows.

By the three properties above, we can see that any admissible or complete extension in
ES is also admissible or complete in ESsc upon extending by its bypass arguments and
any admissible or complete extension of ESsc will be admissible or complete in ES upon
removing the bypass arguments. From the relation between the defense of an argument,
the defense of its bypass and the fact that a bypass argument cannot appear in an extension
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without its origin being present, we can observe that any complete extension in ESsc will
be of the form S ∪ Sb, where S ⊆ A is a complete extension of ES.

Let us now assume that S is preferred in ES, but S ∪ Sb is not preferred in ESsc.
This means there is an admissible extension S ′ ⊆ A′ in ESsc s.t. S ∪ Sb ⊂ S ′. We can
observe this means that S ⊆ (S ′ ∩ A). If S = S ′ ∩ A, then S ′ has to contain an auxiliary
bypass argument without its origin and thus cannot be self–supporting to start with. Thus,
S ⊂ (S ′ ∩ A) and as S ′ ∩ A is admissible in ES, S could not have been a preferred
extension in the first place and we reach a contradiction. Let us now assume that S ⊆ A′

is preferred in ESsc, but S ∩ A is not preferred in ES. This means there exists another
admissible extension S ′ ⊆ A ofES s.t. (S∩A) ⊂ S ′. The correspondingESsc set S ′∪S ′b
is admissible and S ⊂ (S ′∪S ′b), which makes it impossible for S to be preferred in ESsc.
Thus, we can conclude that a preferred extension in ES produces a preferred extension in
ESsc and vice versa. The proof for the grounded semantics exploits the relations of the
grounded extension to the complete extensions as stated in Theorem 2.112. It follows the
same line of reasoning as the proof for preferred semantics and the grounded semantics
proof of Theorem 4.50.

What remains to be shown is the correspondence between the stable extensions of
both frameworks. Let S ⊆ A be a stable extension in ES. We know that S ∪ Sb is at least
self–supporting conflict–free in ESsc. Based on the previous analysis, we can see that any
argument a ∈ A e–support attacked by S will also be e–support attacked by S∪Sb; similar
follows for its e–supporting sets. Moreover, any argument not e–supported by A will not
be e–supported by A′ = A ∪ Ab either. Should a be not e–supported, then neither is its
bypass ab. And since any sets e–supporting ab are constructed from the ones of a, then
if every self–supporting set containing a is attacked, then so is every self–supporting set
containing ab. Thus, we can conclude that S ∪ Sb is a stable extension of ESsc. Showing
that if S ′ ⊆ A′ is stable inESsc then so is S ′∩A inES can be proved in a similar manner –
from the previous proofs we know that S ′ ∩A is at least self–supporting and conflict–free.
Moreover, if a self–supporting set B ⊆ A′ is attacked in ESsc by S ′, then so is B ∩ A by
S ′∩A in ES – this is due to the correspondence between self–supporting sets and the fact
that the bypass arguments do not participate in the attack relation. Consequently, if every
self–supporting set for an argument a ∈ A or the argument itself is attacked by S ′ in ESsc,
then the attacks are also carried out by S ′∩A in ES. Thus, S ′ is a stable extension of ES.
2

Theorem 4.56. Let FN = (A,R,N) be an AFN and FN sc = (A′, R′, N ′) its correspond-
ing strongly consistent framework obtained through Translation 15. Let E b the (possibly
empty) set of bypass arguments generated by a set E ⊆ A in A′. If a set of arguments E
is coherent in FN , then E ∪E b is pd–acyclic in FN sc. If E ′ ⊆ A′ is pd–acyclic in FN sc,
then E ′ ∩ A is coherent in E . E ⊆ A is a σ–extension of FN , where σ ∈ {conflict–free,
strongly coherent, admissible, preferred, complete, grounded}, iff it is a σ–extension of
FN sc. Every stable extension E of FN sc is stable in FN but not vice versa.

Proof. We can observe that every extension of FN sc that is at least conflict–free will
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always be a subset of A, not only A′ – every argument outside A is after all a self–attacker.
Since no attacks are introduced between the arguments in A, every conflict–free exten-

sion in FN will be trivially conflict–free in FN sc. As no auxiliary arguments will show
up in the conflict–free extensions and the attacks among the remaining ones are the same
between FN sc and FN , it is also easy to see that every conflict–free extension of FN sc

will be conflict–free in FN .
The proof of coherence with bypass sets is exactly the same as in the Theorem 4.50,

since in these semantics only the support relation is considered and the modifications to N
between the two methods for strongly consistent normal form are the same. Consequently,
we refer the reader to the previous proof. What needs to be shown is that the strongly
coherent sets between the two frameworks are the same. Let E ⊆ A be a strongly coherent
set in FN . We can observe that due to conflict–freeness, E ∩ OE = ∅, i.e. E cannot
contain any inconsistency origin argument of any member of E . This means that for
every argument in E there is a powerful sequence consisting of arguments that will not
be replaced by their bypasses in the support they carry out towards any other arguments
in E . Consequently, the same powerful sequences can still be constructed in E in FN sc

and thus E remains coherent. Thus, if E is strongly coherent in FN , then it is strongly
coherent in FN sc 31 We will now show that if E ⊆ A′ is a strongly coherent extension of
FN sc, then it is also strongly coherent in FN . Again, we can observe that E is in fact a
subset of A, since all arguments in A′ \A are self–attackers. As E is easily conflict–free in
FN , what remains to be shown is coherence. Due to the fact that bypass arguments cannot
show up in the extensions, a powerful sequence built for any argument a ∈ E has to satisfy
the requirements through the members of the supporting sets that were not substituted by
their bypasses in these sets. Thus, it is the “original” support relations that are being used
to build the sequence and thus they can be easily used in FN as well. Therefore, we can
conclude that if E is strongly coherent in FN sc, it is also strongly coherent in FN .

Let us now show that if an argument a ∈ A is defended by a strongly coherent set E
in FN , then it is also defended by E in FN sc. Since E is strongly coherent and defends
a in FN , then E ∪ {a} is strongly coherent in FN as well. Consequently, E and E ∪ {a}
are strongly coherent in FN sc, which accounts for the support part of defense. From
the coherence proof of Theorem 4.50 we can observe that we cannot create a powerful
sequence in FN sc that would not be present in FN after the removal of bypass arguments
– every bypass needs to be supported by its original argument. As R ⊆ R′ and any
coherent set of an argument a ∈ A in FN sc contains some coherent set of this argument
in FN , we can observe that if E attacks all coherent sets of a given argument in FN , then
it also attacks all coherent sets of this argument in FN sc. Thus, if an argument a ∈ A is
defended by a strongly coherent set E in FN , then it is also defended by E in FN sc.

Let us now focus on the other way around; i.e. showing that if an argument a ∈ A

31Please note that this direction holds in the “pure” bypass strong consistency form as well. The other
direction works only for those sets that are subsets of A and the proof would have to be modified to show
that relevant bypasses cannot occur due to the fact that they need their origins, which acceptance breaks
conflict–freeness.
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is defended by a strongly coherent set E ⊆ A in FN sc, then it is also defended by E in
FN . Please observe that it cannot be the case that E defends a bypass argument; the set
is after all conflict–free and a bypass is a self–attacker. Based on previous proofs we can
conclude that E ∪ {a} is strongly coherent in FN sc and thus in FN , which accounts for
the support part of defense. Since bypass arguments do not attack anyone but themselves
and are not attacked by any other argument, from the point of view of defense of a they
are not relevant. Thus, if a coherent set of an argument b ∈ A is attacked by E in FN sc,
it is only attacked on the non–bypass arguments. As the attacks not related to bypasses
in FN sc originate in FN , this means the coherent set for b, after removing the bypass
arguments, is attacked by E in FN . Hence, an argument b ∈ A that has all of its coherent
sets attacked by a strongly coherent set E in FN sc also has all of its coherent sets attacked
by E in FN . We can conclude that if E defends a in FN sc, then it defends it in FN as
well.

Based on the proofs of strong coherence, defense and the fact that bypass arguments
cannot be defended by strongly coherent sets, it should be clear that admissible and com-
plete extensions in FN and FN sc are the same. From this and Theorem 2.95 it also
follows that grounded and preferred extensions coincide. What remains to be explained is
the relation between the stable extensions.

In the previous proofs we have observed that if a strongly coherent set of arguments
E ⊆ A attacked all coherent sets of a given argument a ∈ A in FN , then it did the same in
FN sc and vice versa. Consequently, a strongly coherent set E ⊆ A attacking all coherent
sets of arguments in A′ \ E in FN sc is strongly coherent in FN and attacks all coherent
sets of arguments A \ E in FN . Thus, by Lemma 2.94, a stable extension of FN sc is
also stable in FN . The other way around does not hold due to the fact that while a stable
extension E ⊆ A of FN would still attack all coherent sets of arguments in A \ E in
FN sc, it would not necessarily do so for arguments in A′ \ A. If E contains an argument
for which a bypass was constructed, then it obviously cannot attack the bypass and thus
breaches the stability requirements. 2

Theorem 4.58. LetES = (A,R,E) be an EAS andESsc = (A′, R,E ′) its corresponding
strongly consistent framework obtained through Translation 16. Let S ⊆ A, S ′ ⊆ A′ be
sets of arguments and Sb the (possibly empty) set of bypass arguments generated by S in
A′. S is a σ–extension of ES, where σ ∈ {conflict–free, self–supporting conflict–free,
admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of ES.

Proof. We can observe that due to the fact that every auxiliary argument is a self–attacker,
every conflict–free extension of ESsc will be a subset of A, not only A′. Since no new
attacks are introduced between the arguments in A and those in Ab cannot appear in ex-
tensions, clearly the conflict–free extensions between ES and ESsc coincide.

The proof for self–supporting sets with bypasses is the same as in Theorem 4.54 due
to the fact that the E relation is the same between in the translated frameworks in both
approaches. What needs to be shown is that the self–supporting conflict–free sets between
ES and ESsc are the same. Let S ⊆ A be a self–supporting conflict–free set in ES.
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We can observe that due to conflict–freeness, S ∩ OS = ∅, i.e. S cannot contain any
inconsistency origin argument of any member of S. This means that for every argument in
S there is an evidential sequence consisting of arguments that will not be replaced by their
bypasses in the support they carry out towards any other arguments in S. Consequently,
the same evidential sequences can still be constructed in S in ESsc and thus S remains
self–supporting and conflict–free. Therefore, if S is self–supporting conflict–free in ES,
then it is self–supporting conflict–free in ESsc. We will now show that if S ⊆ A′ is a
self–supporting conflict–free extension of ESsc, then it is also self–supporting conflict–
free in ES. Again, we can observe that S is in fact a subset of A, since all arguments in
A′ \ A are self–attackers. As S is easily conflict–free in ES, what remains to be shown is
self–support. Due to the fact that bypass arguments cannot show up in the extensions, an
evidential sequence built for any argument a ∈ S in ESsc has to satisfy the requirements
through the members of the supporting sets that were not substituted by their bypasses
in these sets. Thus, it is the “original” support relations that are being used to build the
sequence and thus they can be easily used in ES as well. Therefore, we can conclude that
if S is self–supporting conflict–free in ESsc, it is also self–supporting conflict–free in ES.

Let us now prove that if an argument a ∈ A is acceptable w.r.t. a self–supporting
conflict–free set S in ES, then it is also acceptable w.r.t. S in ESsc. Since S is self–
supporting conflict–free and a is acceptable w.r.t. S in ES, then it means that there exists
a set B ⊆ S s.t. BEa and that this B does not contain arguments causing inconsistency in
a. Therefore, B will not be affected by the translation, and S is self–supporting conflict–
free in ESsc and contains B ⊆ S s.t. BE ′a. Hence, we can observe that S e–supports a.
Now, from the proof on self–supporting sets (see above and proof of Theorem 4.54) we
could observe that every self–supporting set for an argument a ∈ A in ESsc contains a
self–supporting set for an argument a ∈ A inES. Therefore, since the change to the attack
relation concerns only Ab arguments and they attack nothing but themselves, it holds that
if S attacks all minimal e–supported attacks by a set T ⊆ A against an argument a ∈ A in
ES, then it does that as well in ESsc. Therefore, if an argument a ∈ A is acceptable w.r.t.
S in ES, then it is acceptable w.r.t. S in ESsc.

Let us now focus on the other direction, i.e. showing that if an argument a ∈ A′ is
acceptable w.r.t. a self–supporting conflict–free set S in ESsc, then it is also acceptable
w.r.t. S in ES. Since S is conflict–free, we can observe that a cannot be a bypass ar-
gument. In the proof on self–supporting and conflict–free sets we can observe that if S
e–supports a, then due to its properties it has be the case that the e–support occurs through
the supporting sets in E ′ that do not contain self–attackers. Consequently, they could not
have been affected by the translation and represent original supporting sets in E. Thus,
S e–supports a in ES. We can observe that every self–supporting set in ESsc can be
transformed into one in ES by removing the bypass arguments and that bypass arguments
attack and are attacked only by themselves. Therefore, if S attacks any e–supported attack
on a in ESsc, then it does so by attacking non–bypass arguments, and it holds that S at-
tacks any e–supported attack on a in ES. Therefore, if a is acceptable w.r.t. S in ESsc,
then it is also acceptable w.r.t. S in ES.
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Based on the proofs for self–supporting conflict–free extensions, acceptability and the
fact that the bypass arguments cannot be defended by self–supporting conflict–free sets,
it should be clear that admissible and complete extensions in ES and ESsc are the same.
From this and Theorem 2.112 it also follows that grounded and preferred extensions coin-
cide. What remains to be explained is the relation between the stable extensions.

In the previous proofs we have observed that if a self–supporting conflict–free set of
arguments S ⊆ A attacked all self–supporting sets of a given argument a ∈ A in ES, then
it did the same in ESsc and vice versa. Consequently, a self–supporting conflict–free set
S ⊆ A attacking all self–supporting sets of arguments in A′ \S in ESsc is self–supporting
conflict–free in ES and attacks all self–supporting sets of arguments A\S in ES. Thus, a
stable extension of ESsc is also stable in ES. The other way around does not hold due to
the fact that while a stable extension S ⊆ A of ES would still attack all self–supporting
sets of arguments in A \S in ESsc, it would not necessarily do so for arguments in A′ \A.
If S contains an argument for which a bypass was constructed, then it obviously cannot
attack the bypass and thus breaches the stability requirements. 2

Theorem 4.18. Let FN = (A,R,N) be an AFN and FNwv = (A′, R′, N ′) be its weak
validity form. A set E ⊆ A is a σ–extension of FN , where σ ∈ {coherent, strongly coher-
ent,admissible, preferred, complete, grounded, stable}, iff it is a σ–extension of FNwv. If
E ⊆ A is a conflict–free extension of FN , then E ∩A′ is conflict–free in FNwv. If E ⊆ A′

is conflict–free in FNwv, then it is conflict–free in FN .

Proof. We can observe that any at least coherent extension E will not be just a subset of
A, but also of A′. Moreover, please note that if an argument a ∈ A is coherent, then it
will not be the case that any set C supporting it through N will have all of its elements
removed during trimming. Should it be the case that all arguments of C are “lost”, then it
means those arguments were not powerful in A and thus a could not have been powerful
in A either. Thus, there will be no situation s.t. a support set becomes empty.

Let E ⊆ A be a conflict–free extension of FN . Clearly, any subset of E is also
conflict–free in FN , including E ∩ A′. Since R′ = R ∩ (A′ × A′), then if there were no
arguments attacking each other in E ∩ A′ in FN , then there are none in FNwv as well.
Thus, E ∩ A′ is conflict–free in FNwv. Let now E ⊆ A′ be a conflict–free extension of
FNwv. Again, from the fact that R′ = R ∩ (A′ × A′) we can observe that if there are no
attacks in E in FNwv, then there are none in E in FN . Thus, the set is conflict–free in
FN .

Let a ∈ A be an argument that possesses a powerful sequence (a0, ..., an) on A. We
can observe that a still appears in A′. Moreover, it also holds that for every argument ai
in the sequence, (a0, ..., ai) is a powerful sequence for ai on A. Thus, all of the arguments
a0, ..., an appear in A′. From the definition of the trimmed subframework it holds that
N ′ = {(C ′, a) | a ∈ A′, C ′ 6= ∅,∃(C, a) ∈ N ∧ C ′ = C ∩ A′}. Moreover, from the
previous explanation it holds that for an argument a ∈ A′, there is no set C ⊆ A s.t.
(C, a) ∈ N for which C ∩ A′ = ∅. We can now observe that 1. if there was no C ⊆ A
supporting a0 through N in FN , then there is no C ′ ⊆ A′ supporting a0 through N ′ in
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FNwv; and 2. ifC∩{a0, ..., ai−1} 6= ∅ then (C∩A′)∩{a0, ..., ai−1} 6= ∅ for any supporting
set C of an argument ai in the sequence. Consequently, we can observe that (a0, ..., an) is
a powerful sequence on A′ for a in FNwv.

Let now a ∈ A′ be an argument possessing a powerful sequence (a0, ..., an) on A′.
From the way N ′ is constructed we can observe that for any C ′ ⊆ A′ supporting an
argument ai through N ′ in FNwv there is a set C ⊆ A s.t. C ′ ⊆ C which supports a
through N in FN and vice versa. Moreover, it also holds that if an argument ai was not
supported at all through N ′ in FN , then it is not supported through N in FN . Thus,
(a0, ..., an) is a powerful sequence for a ∈ A′ in FN .

From the sequence analysis it easily follows that a set of arguments E ⊆ A is coherent
in FN iff it is coherent in FNwv. Similar holds for strong coherence. We now need to
show that E defends an argument a ∈ A in FN iff it defends it in FNwv. We can observe
that it cannot be the case that a is not in A′ due to the fact that if E defends a in FN , then
E ∪{a} is coherent in FN . From the relation between the coherent extensions of FN and
FNwv it follows that E ∪{a} is coherent in FN iff it is coherent in FNwv. Consequently,
now we only need to focus on the attack part of defense.

Let us assume that a is defended by E in FN , but not in FNwv. This means there
exists a coherent set C ⊆ A′ attacking a in FNwv that is not attacked by E in FNwv. This
means that C is also coherent in FN and as R′ ⊆ R, C attacks a in FN . Since both C
and E are coherent, the elements they contain are powerful and thus the attack between
them in R are also in R′. Consequently, if E did not attack C in FNwv, then it could not
have attacked it in FN either. We reach a contradiction. Therefore, if a ∈ A is defended
by E in FN , then it is defended in FNwv.

Let us now assume that a is defended by E in FNwv, but not in FN . Since the coherent
sets match and R′ ⊆ R, it can only be the case that there is an attack in R \ R′ carried
out by a member of coherent set C ⊆ A on a. However, since C is coherent and a is
powerful in A, then C ⊆ A′ and a ∈ A′. Therefore, due to the way R′ is created, it cannot
be the case that this attack from a member of C on a is not in FNwv. Thus, we reach a
contradiction, and can conclude that if a is defended by E in FNwv, then it is defended by
E in FN .

Using the previous parts of the proof we can show that admissible, complete and pre-
ferred extensions coincide between the two frameworks. Since the grounded extension is
the least complete one by Theorem 2.95, we can conclude that grounded extension is the
same in FN and FNwv. What remains to be analyzed is stability.

Let E ⊆ A be a stable extension in FN . We know it is complete in FNwv; let us
however assume it is not stable. This means there exists an argument a ∈ A′ \ E s.t. a is
not attacked by E through R′ and for all B ⊆ A′ s.t. BN ′a, E ∩ B 6= ∅ in FNwv. Since
E is coherent in FNwv, then it is coherent in FN . Since a ∈ A′, then we can observe that
if there is no member of E attacking a in FNwv, then there is no member of E attacking
a in FN . If E has an element in common with every supporting set of a in FNwv, then
by construction it means that for all B′ ⊆ A s.t. B′Na, E ∩ B′ 6= ∅. Consequently, a is
not attacked by E in FN and is sufficiently supported by E in FN as well. We reach a
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contradiction with the stability of E . Therefore, we can conclude that E is stable in FNwv.
Let now E ⊆ A′ be stable in FNwv, but not in FN . Again, we know E is complete in

FN . Thus, it has to be the case that the deactivated set E+ is not equal to A \ E in FN .
If a ∈ A does not have a powerful sequence in A, then it naturally cannot be the case that
E sufficiently supports a and a has to be in E+. Moreover, it will not appear in A′. Thus,
it can only be the case that there exists a coherent argument a′ ∈ A \ E that is not in E+

in FN , but is in E+ in FNwv. However, it is easy to see that if E does not sufficiently
support a′ in FNwv, then neither it does in FN . Moreover, since R′ ⊆ R, it cannot be the
case that it is attacked by E in FNwv but not in FN . We reach a contradiction. Hence, we
can conclude that a set is stable in FN iff it is stable in FNwv. 2

Theorem 4.20. Let ES = (A,R,E) be an EAS and ESwv = (A′, R′, E ′) be its weak
validity form. A set S ⊆ A is a σ–extension of ES, where σ ∈ {self-supporting, strongly
self–supporting, admissible, preferred, complete, grounded, stable}, iff it is a σ–extension
of ESwv. If S ⊆ A is a conflict–free extension of ES, then S∩A′ is conflict–free in ESwv.
If S ⊆ A′ is conflict–free in ESwv, then it is conflict–free in ES.

Proof. We can observe that every extension S that is self–supporting in ES will be a
subset of A′, not just A. Any argument contained in a self–supporting set possesses and
evidential sequence and thus will not be removed from the framework. Moreover, please
note that if an argument a ∈ A is e–supported by A, then it will retain at least one C
supporting it through E in E ′. Should it be the case that all C’s are “lost”, then it meant
those arguments were not e–supported by A and thus a could not have been e–supported
byA either. Finally, since η has a trivial evidential sequence (η), it will clearly be included
in A′.

Let S ⊆ A be a conflict–free extension of ES. Clearly, if S is conflict–free, then so
is any S ′ ⊆ S. Therefore, S ∩ A′ is conflict–free in ES. Since R′ ⊆ R and there is no
conflict in S ∩ A′ in ES, then there will be none in ESwv and S ∩ A′ is conflict–free in
ESwv.

Let S ⊆ A′ be a conflict–free extension of ESwv. From the fact that R′ = R ∩ ((2A
′ \

∅) × A′) we can observe that no attack from a subset of A′ against an argument of A′ is
deleted fromR. Thus, if there is no conflict in S inESwv, then it means there is no conflict
in S in ES. Thus, S is conflict–free in ES.

Let S ⊆ A be a self–supporting set of ES. This means that every argument has at
least one evidential sequence on A (see Theorem 2.99). Consequently, every argument in
S will be present in A′. Since E ′ = E ∩ ((2A

′ \ ∅) × A′), we can see that no support
relations between S and any of its members will be removed. Consequently, S is also
self–supporting in ESwv. From the fact that E ′ ⊆ E it follows easily that any self–
supporting set in ESwv will also be self–supporting in ES. From the relation between
self–supporting and conflict–free sets in ES and ESwv we can also conclude that S is
self–supporting conflict–free in ES iff it is such in ESwv.

Let S be a self–supporting set. Assume that a ∈ A is acceptable w.r.t. S in ES, but not
in ESwv. Since S e–supports a, a has an evidential sequence on A and thus will appear in
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A′. Moreover, it will also be e–supported by S in ESwv. Thus, it can only be the case that
there is some minimal e–supported attack by a set T ⊆ A′ against a and no member of
T is attacked by S in ESwv (since S is self–supporting, every attack carried out by it will
be e–supported). However, since T is trivially self–supporting, then any attacks from S to
members of T will appear in R′. Thus, it cannot be the case that a is not acceptable w.r.t.
S in ESwv if it is in ES.

Now assume that a ∈ A is acceptable w.r.t. S in ESwv, but not in ES. By the analysis
above it follows that a is e–supported by S in ES. Thus, it has to be the case that there is
some minimal e–supported attack T ⊆ A against a which is not attacked by S. However,
it is easy to see that T is also a minimal e–supported attack against a in ESwv, and since
R′ ⊆ R. it has to be the case that S attacks T in ES as well. Thus, we can conclude that
an argument a ∈ A is acceptable w.r.t. a self–supporting set S in ES iff it is acceptable
w.r.t. S in ESwv.

The fact that admissible, preferred and complete extensions coincide follows simply
from the above. As the grounded extension is the least complete one by Theorem 2.112,
we can conclude that grounded extensions of both frameworks coincide as well. Let us
now focus on stable extensions and let S ⊆ A be a self–supporting conflict–free set in
ES. Clearly, it is also self–supporting conflict–free in ESwv. From stability it follows that
S attacks at least one element in every self–supporting set containing an argument a /∈ S
in ES. Thus, based on the previously done analysis it holds that S attacks at least one
element in every self–supporting set containing an argument a /∈ S in ESwv. Thus, S is
stable in ESwv. Let us focus on the other way around now and let S ⊆ A′ be stable in
ESwv. Every self–supporting set in ESwv is also self–supporting in ES. Moreover, if it is
attacked by S in ESwv then it is attacked by S in ES. Thus, S is self–supporting conflict–
free in ES and attacks every self–supporting set containing an argument a ∈ A′\S in ES.
Since arguments in A \ A′ do not appear in self–supporting sets, this property extends to
a ∈ A \ S and thus S meets the stability requirements in ES. 2

Theorem 4.22. LetD = (A,L,C) be an ADF andDwv = (A′, L′, C ′) be its weak validity
form. A set E ⊆ A is a σ–extension of D, where σ ∈ {pd–acyclic conflict–free, aa–
admissible, aa–preferred, aa–complete, acyclic grounded, stable}, iff it is a σ–extension
of Dwv.

Proof. Please note that an argument that does not possess an acyclic pd–evaluation will
not appear in any acyclic extension. Consequently, every extension E of D is a subset of
A′. The proofs that the weak validity form preserves the listed semantics will be similar to
the ones in the case of cleansed form (see Theorem 4.15).

We will start with the analysis of decisiveness and acyclic pd–evaluations. Let a ∈
A be an argument that possesses an acyclic pd–evaluation (F,B) on A in D. Clearly,
F ⊆ A′. Let va be the minimal decisively in interpretation for a used in the construction
of (F,B). We will show that va and its limitation to A′ are decisively in interpretations
for a in Dwv, though not necessarily minimal ones. We can observe that vta ⊆ A′ and
vta ⊆ par(a) in D. Consequently, vta ⊆ par(a) in Dwv as well. From this, the Definition
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4.3 of the reduct and the fact that Ca(vta) = in in D, it holds that C ′a(v
t
a) = in in Dwv.

Assume va is not decisively in for a in Dwv; this means there is a set of arguments E
where vta ⊆ E ⊆ A′ \ vfa s.t. C ′a(E ∩ par(a)) = out. Since E ⊆ A′, then E ∩ par(a) in
D is the same as E ∩ par(a) in Dwv. Consequently, from the definition of reduct it holds
that C ′a(E ∩ par(a)) = Ca(E ∩ par(a)). From the properties of E and the definition of
decisiveness it now follows that va could not have been decisively in for a in D and we
reach a contradiction. Consequently, if va is decisively in for a in D and is used in the
construction of an acyclic pd–evaluation for a in A in D, then va (or more specifically,
its subinterpretation limited to A′) is decisively in for a in Dwv. Depending on the source
framework, it can happen that the condition of a is reduced to an equivalent of a tautology
(even if some parents show up as redundant ones). Thus, neither va nor its limitation to
A′ have to be minimally decisively in for a in Dwv. Nevertheless, a minimal interpretation
can be “extracted”, and we can thus conclude that a will have an acyclic pd–evaluation
(F,B′) on A′ in Dwv, where B′ ⊆ B ∩ A′ depends on the “extraction”.

Let now a ∈ A′ be an argument that possesses an acyclic pd–evaluation (F,B) on A
in Dwv and let va be the minimal decisively in interpretation for a used in the construction
of (F,B). Assume va is defined for a set E ⊆ A′; let now za be the f–completion of va to
E ∪ (A \ A′). We will show that za is decisively in for a in D. From the definition of the
reduct and the fact that va and za have the same t mappings it follows that if C ′a(v

t
a) = in

in Dwv, then Ca(zta) = in in Dwv. Now assume that there is some set of arguments E
where zta ⊆ E ⊆ A \ zfa s.t. Ca(E ∩ par(a)) = out. From the construction of za it
means that vta ⊆ E ⊆ A \ vfa. Again, from the definition of reduct, if such a set outs the
condition of a in D, then it does so in Dwv as well and thus we contradict the decisiveness
of va. Therefore, za is decisively in for a in D, even if not minimally. Nevertheless,
a minimal interpretation can be “extracted”, and we can conclude that a will have an
acyclic pd–evaluation (F,B′) on A in D, where B ⊆ B′ ⊆ (B ∪ A \ A′) depends on
the “extraction”. Please note that there can be more than one D evaluation “containing”
(F,B). In particular, we did not consider extending va with t mappings to account for
previously required parents becoming redundant. Consider a framework ({a, b}, {Ca =
a, Cb = b∨¬a}). In this case b has two minimal decisively in interpretations, v1 = {b : t}
and v2 = {a : f}. The weak validity form of the frameworks is ({b}, {Cb = b ∨ >}). In
this case b has a condition equivalent to> and its only minimal decisively in interpretation
is just empty. It is contained both in v1 and v2 but we have described a method allowing to
come back to v2 only.

Let E ⊆ A be a pd–acyclic conflict–free extension of D. Clearly, E ⊆ A′ as well.
Since every argument a ∈ E has an unblocked acyclic pd–evaluation (F,B) on E in D,
then by the proof above it also has an acyclic pd–evaluation (F,B′) s.t. B′ ⊆ B on E
in Dwv. Since B ∩ E = ∅, then B′ ∩ E = ∅ as well and the evaluation is unblocked.
Consequently, E is pd–acyclic conflict–free in Dwv.

Let now E ⊆ A′ be a pd–acyclic conflict–free extension ofDwv. Since every argument
a ∈ E has an unblocked acyclic pd–evaluation (F,B) on E in Dwv, then by the proof
above it also has an acyclic pd–evaluation (F,B′) where B ⊆ B′ ⊆ (B ∪A \A′) on E in
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D. It is easy to see that (B ∪ A \ A′) ∩ E = ∅. Therefore, (F,B′) will be not be blocked
by E and E is pd–acyclic conflict–free in D as well.

Let E be a pd–acyclic conflict–free extension of Dwv and D. Let E a+
wv and E a+ and be

its acyclic discarded sets in both frameworks. We will show that E a+ = E a+
wv ∪ (A \ A′).

An argument a ∈ (A \ A′) by construction does not posses an acyclic pd–evaluation
and thus is trivially in E a+. Let now a ∈ E a+

wv be an argument in the discarded set in
the weakly valid ADF; from the proofs above we could have observed that every acyclic
pd–evaluation (F,B) in Dwv can be “extended” through the blocking set to an acyclic
pd–evaluation for a in D and that every acyclic pd–evaluation (F,B′) for a in D could
have been “trimmed” through the blocking set to an evaluation for a in Dwv. Since a
is in the acyclic discarded set, then by Lemma 2.128 all of its acyclic pd–evaluations are
blocked through the blocking set by E inDwv, and by the explanation above it has to be the
case that all acyclic pd–evaluations for a in D are blocked through the blocking set by E .
Consequently, a ∈ E a+. Let now a ∈ E a+ ∩A′. Assume that a is not in E a+

wv . By Lemma
2.128 it means it possesses an acyclic pd–evaluation (F,B) on A′ s.t. B ∩ E = ∅. By the
proofs above, this evaluation can be extended to an acyclic pd–evaluation (F,B′) on A in
D s.t. B ⊆ B′ ⊆ (B ∪A \A′). As E ⊆ A′ and E ∩B = ∅, then B′ ∩ E = ∅ and (F,B′)
cannot be blocked by E inD. Consequently, a could not have been in E a+ in the first place
and we reach a contradiction. This brings us to the conclusion that E a+ = E a+

wv ∪ (A\A′).
Let us move on to admissibility. Let E be an aa–admissible extension of D. Assume

it is not aa–admissible in Dwv; since it is already pd–acyclic conflict–free, it means that
there is an argument a ∈ E s.t. none of its acyclic pd–evaluations (F,B) on E in Dwv

has a blocking set contained in the acyclic discarded set. However, based on the presented
relations between evaluations and the acyclic discarded sets inD andDwv, we can observe
that if no evaluation for a meets admissibility requirements in Dwv, then no evaluation
can meet the admissibility requirements in D either. Thus, E could not have been aa–
admissible in D in the first place and we reach a contradiction. Therefore, if E is aa–
admissible in D, then it is aa–admissible in Dwv.

Let now E be aa–admissible in Dwv. From the previous parts of this proof we could
observe that any acyclic pd–evaluation for a ∈ E in Dwv can be extended into one in
D by adding some of the A \ A′ elements to the blocking set. Since these elements are
disjoint from E and trivially in E a+, we can observe that if an acyclic pd–evaluation for a
satisfies admissibility requirements in Dwv, then so does its “extension”. Consequently, E
is aa–admissible in Dwv.

We have shown that the aa–admissible extensions between our two frameworks co-
incide. We now need to show that it also holds for aa–complete sematics. Let E be an
aa–complete extension of D. If it is not aa–complete in Dwv, it means that there is some
argument a ∈ A′ \ E that is decisively in w.r.t. the acyclic range interpretation vaE of E in
Dwv. Consequently, a minimal version of this interpretation can be used in constructing an
acyclic pd–evaluation for a. However, from the proof on evaluations we can observe that
extending the interpretation with f mappings for the set A\A′ will create an interpretation
that is decisively in for a in D. Since this interpretation will be contained in the acyclic
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range of E in D, then E could not have been aa–complete in D in the first place and we
reach a contradiction. Consequently, E has to be aa–complete in Dwv.

Let now E be aa–complete in Dwv. Assume it is not complete in D; this means there
is an argument a ∈ A \E that is decisively in w.r.t. acyclic range interpretation vaE of E in
D. An argument not possessing an acyclic pd–evaluation will be decisively out w.r.t. vaE
(see Lemma 2.128 and Proposition 2.150). Therefore, only a ∈ A′ \ E are the possible
candidates. Since a is decisively in w.r.t. the range interpretation, then as observed in the
evaluation part of the proof, we can remove theA\A′ assignments from this interpretation
and obtain one that is decisively in for a and equal to the acyclic range of E in Dwv.
Consequently, a would have been decisively in w.r.t. the acyclic range of E of Dwv and
we reach a contradiction with the completeness of E . Therefore, if E is aa–complete in
Dwv, then it is complete in D.

We now move to stable semantics. Let E ⊆ A be a stable extension of D; by Lemma
2.139 it is pd–acyclic conflict–free in D and E a+ = A \ E . By the previous parts of the
proof, E is pd–acyclic conflict–free in Dwv and E a+

wv = E a+ ∩ A′. Thus, as E ⊆ A′,
E a+
wv = A′ \E and by Lemma 2.139 it holds that E is a stable extension of Dwv. The proof

that every stable extension of Dwv is stable in D follows similarly.
The fact that E ⊆ A′ is a preferred extension of D iff it is one in Dwv follows straight-

forwardly from the relation between admissible extensions. The coincidence of the acyclic
grounded extensions between the two frameworks is a result of the relation between the
complete extensions of D and Dwv and Theorem 2.158. 2

Theorem 4.23. LetD = (A,L,C) be an ADF. IfD is weakly valid, then it is also cleansed,
but not vice versa.

Proof. If D is weakly valid, then every argument possesses an acyclic pd–evaluation.
Therefore, every argument also possesses a standard one, and D is cleansed. Now, if D
is cleansed, then every argument has a standard evaluation. However, not every standard
evaluation can be made into an acyclic one. For example, the framework ({a}, {Ca = a})
is in cleansed, but not in weakly valid form. 2

Theorem 4.25. Let FNwv = (A′, R′, N ′) be a weakly valid AFN and FN rv =
(A′, R′, N ′′) its relation valid form. A set E ⊆ A′ is a σ–extension of FNwv, where σ ∈
{conflict–free, coherent, strongly coherent, admissible, preferred, complete, grounded,
stable} iff it is a σ–extension of FN rv.

Proof. We can observe that the sets of arguments and attacks in FNwv and FN rv are the
same. Consequently, the conflict–free extensions between the two frameworks coincide.

Let us move on to coherence. Since we are dealing with a weakly valid AFN, then
every argument a ∈ A′ possesses a powerful sequence on A′. We can remove a from this
sequence to obtain either another powerful sequence for an argument directly before a, or
an empty sequence if a is in fact the starting argument. The first leads to a coherent set on
A′ \{a}, while the other produces an empty set, which as such is also coherent. Therefore,
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for every a ∈ A′ we can find a coherent set C ⊆ A′ \ {a}, s.t. ∀B ⊆ A, if BNa then
C ∩ B 6= ∅. This means that for every set B ⊆ A′ s.t. BNa, B ∩

⋃
coh(A′ \ {a}) 6= ∅.

Consequently, it cannot be the case that an argument a ∈ A′ is supported by a set of
arguments C in N ′, but there is no (nonempty) C ′ ⊆ C supporting it in N ′′.

Let E ⊆ A′ be a coherent set of FNwv. We will show that it is also coherent in FN rv.
Since E is coherent in FNwv, then every argument s ∈ E has a powerful sequence on E .
Assume (a0, ..., an) is such a sequence for s. By the powerful conditions, a0 requires no
support throughN ′ and thus will require no support throughN ′′ either. Consequently, (a0)
is a powerful sequence both in FNwv and FN rv. Let us now focus on a1. If it requires
no support through N ′, then the analysis for a0 can be repeated. Otherwise, we know that
∀C ⊆ A′ s.t. CN ′a, a0 ∈ C and that a0 ∈ coh(A′ \ {a1}). Thus, by the construction of
FN rv it is easy to see that ∀C ′ ⊆ A′ s.t. C ′N ′′a, a0 ∈ C ′. From this follows that (a0, a1) is
a valid powerful sequence for a1 on E both in FNwv and FN rv. Let us now focus on a2.
Again, if no support is required, we repeat the analysis for a0. Otherwise, we can observe
that every set supporting a2 in N ′ has an element in common with {a0, a1}. Since both a0
and a1 have powerful sequence on A′ \ {a2}, then every set supporting a2 in N ′′ will have
an element in common with {a0, a1}. We can continue like this until we reach an = s
and the conclusion that s has a powerful sequence on E . Therefore, every argument that
is powerful in E in FNwv will also be powerful in E in FN rv and by the use of the same
sequences. Thus, E is coherent in FN rv.

Let E ⊆ A′ be now a coherent set of FN rv. From the construction ofN ′′ it follows that
for every set C ⊆ A′ s.t. CN ′s in FNwv for an argument s ∈ A′, there exists a nonempty
C ′ ⊆ C s.t. CN ′′s in FN rv. Moreover, for every B ⊆ A′ s.t. BN ′′s in FN rv there is a
set B′ ⊆ A′ s.t. B ⊆ B′ and B′N ′s in FNwv. Consequently, if there exists a powerful
sequence for s on E satisfying the support requirement through N ′′, then naturally the
same sequence will satisfy it through N ′. Therefore, E is a coherent set of FN rv.

Since the coherent sets between the frameworks coincide and the attack relation re-
mains unchanged, it holds that strongly coherent sets coincide as well. Moreover, we can
also observe that an argument is defended by a coherent set E in FNwv iff it is defended
in FN rv. Based on this we can show that the admissible, preferred, complete and stable
extensions coincide. Moreover, by Theorem 2.95, also the grounded extensions are the
same in both frameworks. 2

Theorem 4.28. Let ES = (A,R,E) be an EAS and ESrv = (A,R,E ′) its relation valid
form. A set S ⊆ A is a σ–extension of ES, where σ ∈ {conflict–free, self-supporting,
strongly self-supporting, admissible, preferred, complete, grounded, stable} iff it is a σ–
extension of ESrv.

Proof.
The fact that the conflict–free sets coincide betweenES andESrv follows simply from

the fact that the set of arguments and the attack relation remain unchanged.
Let S ⊆ A be a self–supporting set of ES. We will show that it is also self–supporting

in ESrv. Let s be an argument in S and (a0, ..., an) the evidential sequence for s on S.
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It is easy to see that as a0 = η, then a0 is trivially e–supported by any set in ESrv and
{η} is self–supporting. Let us now focus on a1. By the evidential condition we know
that {a0}Ea1. Thus, by the construction of E ′ it follows that {a0}E ′a1. We can now
move to a2. From the requirements of the sequence it follows that there is a nonempty
set B ⊆ {a0, a1} s.t. BEa2. Again, it will hold that BE ′a2. We can now continue
in this manner with further elements in the sequence and repeat it for arguments in S,
showing that every evidential sequence in ES carries over to ESrv. Thus, S has to be
self–supporting in ESrv. The fact that every self–supporting set in ESrv will also be
self–supporting in ES is easy to prove since E ′ ⊆ E.

Since all of the evidential sequences and attacks are preserved in both of the frame-
works, it is easy to see that also the e–supported attacks will be the same in ES and
ESrv. Consequently, any argument a ∈ A acceptable w.r.t. a self–supporting set S in ES
will also be acceptable in ESrv and vice versa. Thus, it is easy to see that strongly self–
supporting, admissible, preferred, complete grounded and stable extensions will coincide
between the two frameworks. 2

Theorem 4.31. Let FN = (A,R,N) be an AFN. If FN is strongly valid, then it is weakly
and relation valid.

Proof. Let FN be strongly valid. We can create a powerful sequence (a0, ..., an) contain-
ing all arguments in A. Clearly, (a0, .., ai−1) is a powerful sequence for ai−1. Thus, every
argument a ∈ A will have such a sequence and FN is weakly valid. From the definition
of suf(a) and the fact that every set in it can be used in the construction of a powerful
sequence for a it follows that FN is relation valid. 2

Theorem 4.32. Let FN = (A,R,N) be a strongly valid AFN. A set of arguments E ⊆ A
is coherent iff for every argument a ∈ E and set C ⊆ A s.t. CNa, C ∩ E 6= ∅.

Proof. If a set E ⊆ A is coherent, then every argument in it has a powerful sequence, and
from the properties of the sequence we can easily observe that for every argument a ∈ E
and set C ⊆ A s.t. CNa, C ∩E 6= ∅. Therefore, it suffices to focus on the other direction.

Let E ⊆ A be a set of arguments s.t. every argument in this set is sufficiently supported
by it. However, assume it is not coherent; this means there is an argument a ∈ E that
does not have a powerful sequence on E . Clearly, E cannot be ordered into a powerful
sequence. For every argument b ∈ E , there is a subset Eb ⊆ E s.t. Eb ∈ suf(b), where
suf(b) is defined as in Definition 4.30. The function we obtain by assigning every b ∈ E
the set Eb cannot be ordered into a powerful sequence. Therefore, the function obtained by
adding the assignments for arguments inA\E cannot be ordered into a powerful sequence
either. Thus, FN cannot be strongly valid, and we reach a contradiction. 2

Theorem 4.33. Let FN = (A,R,N) be an AFN. Let sup(a) =
⋃
C⊆A,CNaC denote all

arguments supporting a and suf(a) = {S | S ⊆ sup(a) and ∀C ⊆ s.t. CNa, C∩S 6= ∅}
stand for all subsets of sup(a) that have an element in common with every support set of

475



a. FN is strongly valid iff there exists a sequence (a0, ..., an) of all arguments in A s.t.
given any function f : A→ {S | a ∈ A, S ∈ suf(a)}, (a0, ..., an) is a powerful sequence
s.t. f(a0) = ∅ and f(ai) ⊆ {a0, ..., ai−1} for i > 0.

Proof. Let us start with showing that if FN is strongly valid, then a suitable sequence
exists.

First of all, we can observe that if FN is strongly valid, then it is weakly valid too.
Therefore, there exists an argument a ∈ A that does not require support through N at all.
We can collect such arguments into a set A0 ⊆ A. Every support function f will assign
∅ to the elements in A0. Any ordering of them will be a powerful sequence in FN on its
own. If A0 = A, then our proof is done. Let us thus assume it is not the case.

We can now find an argument b ∈ A \ A0 s.t. for every set S ∈ suf(b), S ⊆ A0. If
it were not the case, then for every argument c ∈ A \ A0 we could find a set Sc ∈ suf(c)
s.t. Sc is not a subset of A0. Again, we can use these sets to construct a support function
that cannot produce a powerful sequence on A. We can collect all such arguments into a
set A1 ⊆ A. We add the arguments in A1 in arbitrary order to the sequence created for A0.

We can continue this line of reasoning until we go through all the arguments and ob-
tain our sequence. Based on the construction, we can observe that this sequence will be
powerful w.r.t. any support function f on A.

If there is a sequence s.t. independently of the support function, it is powerful, then
clearly the strong validity restrictions are satisfied. 2

Theorem 4.34. Let FN = (A,R,N) be an AFN and SGFN = (A,N ′), where N ′ =
{(a, b) | ∃E ⊆ A, a ∈ E s.t. ENb}, the support graph induced by FN . FN is strongly
valid iff SGFN is a directed acyclic graph.

Proof. If FN is strongly valid, then by Theorem 4.33 there exists a sequence seq of
arguments s.t. independently of the created support function, it is a powerful sequence.
From this and the definition of the powerful sequence, this means every two arguments
a and b s.t. ∃S ⊆ A, a ∈ S and SNb, a precedes b in seq. Therefore, it is easy to see
that seq is a topological ordering of the support graph SGFN . Hence, SGFN is a directed
acyclic graph.

If SGFN is a directed acyclic graph, then there exists a topological ordering seq of its
nodes. Based on the construction of SGFN , this means that for every two arguments a
and b s.t. ∃S ⊆ A, a ∈ S and SNb, a precedes b in seq. Consequently, independently of
the chosen support function f as in Definition 4.30, this sequence seq will be a powerful
sequence of FN covering all of its arguments. Hence, by Theorem 4.33, FN is strongly
valid. 2

Theorem 4.36. Let ES = (A,R,E) be an EAS. If ES is strongly valid, then it is weakly
and relation valid.

Proof. Follows similarly as in the proof of Theorem 4.31. 2
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Theorem 4.37. Let ES = (A,R,E) be a strongly valid EAS. A set of arguments S ⊆ A
is self–supporting iff for every argument a ∈ S there is a set S ′ ⊆ S s.t. S ′Ea.

Proof. If a set S ⊆ A is self–supporting, then every argument in S has an evidential
sequence on S. Thus, from the properties of the sequence we can easily observe that for
every argument a ∈ S, there exists C ⊆ A s.t. CEa, C ⊆ ∅. Therefore, it suffices to focus
on the other direction.

Let S ⊆ A be a set of arguments s.t. every argument in this set is sufficiently supported
by it. However, assume it is not self–supporting; this means there is an argument a ∈ E
that does not have an evidential sequence on E . This means that E cannot be ordered into
an evidential sequence either. Nevertheless, for every b ∈ E , there is a subset Eb ⊆ E
s.t. EbEb. The function we obtain by assigning every b ∈ E the set Eb cannot be ordered
into an evidential sequence. Therefore, a function obtained by adding the assignments
for arguments in A \ E cannot be ordered into an evidential sequence either. Thus, ES
does not meet the requirements of Definition 4.35and cannot be strongly valid. We reach
a contradiction with our assumptions. Hence, it every argument in a set is sufficiently
supported by the set, then the set is self–supporting. 2

Theorem 4.38. Let ES = (A,R,N) be an EAS. ES is strongly valid iff there exists a
sequence (a0, ..., an) of all arguments in A s.t. given any function f : A → {S | a ∈
A, S ⊆ A, SEa}, (a0, ..., an) is an evidential sequence s.t. f(a0) = ∅ and for i > 0 and
f(ai) ⊆ {a0, ..., ai−1}.

Proof. Let us show that if ES is strongly valid, then a suitable sequence exists.
We start our sequence with η. IfA = {η}, then we are done. Let us therefore assume it

is not the case. We can observe that if ES is strongly valid, then it is weakly valid as well,
and for every non–η argument there exists a set supporting it through E. We can now find
an argument b ∈ A \ {η} s.t. b is supported only by {η}. If it were not the case, then for
every argument c ∈ A \ {η} we could find a set Sc s.t. ScEc and Sc is not a subset of {η}.
We can observe that the support function constructed with this assignment cannot possibly
produce an evidential sequence on all arguments in A. We can collect all such arguments
into a set A1 ⊆ A. We add the arguments in A1 in arbitrary order to the (η) sequence.

If A = {η} ∪ A1, then we are done. Let us therefore assume it is not the case. We can
now find an argument c ∈ A \ ({η} ∪ A1) s.t. for every set Sc ⊆ A supporting c through
E, Sc ⊆ {η} ∪ A1 Again, we can observe that if it were not the case, we could collect the
sets not meeting these requirements and extract a support function from them that could
not produce an evidential sequence. We can collect all such arguments into a set A2 ⊆ A
and add them in arbitrary order to sequence consisting of η and arguments in A1.

We can continue this line of reasoning until we go through all the arguments and ob-
tain our sequence. Based on the construction, we can observe that this sequence will be
evidential w.r.t. any support function f on A.

If there is a sequence s.t. independently of the support function, it is evidential, then
clearly the strong validity restrictions are satisfied. 2
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Theorem 4.39. Let ES = (A,R,E) be an EAS s.t. A 6= ∅ and SGES = (A,E ′), where
E ′ = {(a, b) | ∃X ⊆ A, a ∈ X s.t. XEb}, the support graph induced by ES. ES is
strongly valid iff SGES is a rooted directed acyclic graph s.t. η is the root.

Proof. If ES is strongly valid, then by Theorem 4.38 there exists a sequence seq of
arguments s.t. independently of the created support function, it is an evidential sequence.
From this and the definition of an evidential sequence, this means every two arguments
a and b s.t. ∃S ⊆ A, a ∈ S and SEb, a precedes b in seq. Therefore, it is easy to see
that seq is a topological ordering of the support graph SGES . Hence, SGES is a directed
acyclic graph. However, also by the definition of an evidential sequence, we can observe
that for every non–η argument, at least one supporting set S has to exist. Moreover, since
seq is always an evidential sequence, then there must exist a directed (support) path from
η to any other argument in ES and therefore in SFES as well. Consequently, SGES is in
fact a rooted directed acyclic graph with η as the root.

If SGFN is a directed acyclic graph rooted at η, then there exists a topological ordering
seq of its nodes and there is a path from the node representing evidence to every other
node. This also means that η is the only node in SGES without any incoming edges and
it will always be at the start of seq. Based on the construction of SGES , this means that
for every two arguments a and b s.t. ∃S ⊆ A, a ∈ S and SEb, a precedes b in seq and
for non–η argument, at least one supporting set exists. Consequently, we can show that
independently of the chosen support function f as in Definition 4.35, sequence seq will
be an evidential sequence of FN covering all of its arguments. Hence, by Theorem 4.38,
FN is strongly valid. 2

Theorem 4.41. Let D = (A,L,C) be an ADF. If D is strongly valid, then it is weakly and
relation valid.

Proof. Let us start with D. We can observe that every pd–function in D is sound. For any
argument a ∈ A and its arbitrary minimal decisively in interpretation, we can find a pd–
function assigning this interpretation to a. Due to soundness, this function will produce a
standard evaluation for a. Based on the strong validity, this evaluation can be made acyclic
w.r.t. the used pd–function. Clearly, we can “trim” it down to an acyclic pd–evaluation
for a. Thus, every argument a ∈ A will have an acyclic pd–evaluation and D is in the
weakly valid form. Since such an evaluation can be obtained with an arbitrary decisively
in interpretation for a and D is redundancy–free, then D is also relation valid. 2

Theorem 4.42. Let D = (A,L,C) be a strongly valid ADF. A set of arguments E ⊆ A is
pd–acyclic iff for every argument a ∈ E there exists a minimal decisively in interpretation
va s.t. vta ⊆ E .

Proof. By the definition of pd–acyclic sets, if E is pd–acyclic then every argument a ∈ E
has an acyclic pd–evaluation on E . Therefore, every a ∈ E will have a decisively in
interpretation s.t. its positive part is contained in E .
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If every argument a ∈ E has a decisively in interpretation s.t. its positive part is con-
tained in E , then clearly we can create a suitable pd–function on E and create a standard
evaluation on E containing all arguments in E in its pd–sequence. We can assign arbi-
trary interpretations to arguments in A \E to create a pd–function for A and an associated
acyclic pd–evaluation. Since arguments in E depend only on other arguments in E , we
can obtain an appropriate sub–evaluation of our evaluation and it will also be an acyclic
one. Hence, E is pd–acyclic. 2

Theorem 4.43. Let D = (A,L,C) be an ADF. If D is strongly valid, then it is an AADF+.
If D is a redundancy–free cleansed AADF+, then it is strongly valid.

Proof. Let us assume that D is strongly valid, but not an AADF+. This means there exists
a sound pd–function pdDE on a set E ⊆ A s.t. the standard evaluation (E , B) produced
by pdDE cannot be made acyclic. We can thus represent it as a partially acyclic evaluation
(F,G,B) s.t. F ∪ G = E . We can observe that including additional mappings for A \ E
into the pd–function will not change the fact that F cannot be ordered into a pd–sequence.
Consequently, A cannot be made into an acyclic pd–evaluation w.r.t. a pd–function sub-
suming pdDE and thus D could not have been strongly valid in the first place.

Let now D be a redundancy–free cleansed AADF+. Since it is cleansed, then every
argument will possess a standard evaluation and thus every acceptance condition will have
a set of arguments it maps to in. Therefore, every pd–function in D will be sound. Now,
as we can create a standard evaluation s.t. its pd–set is A and it can be made acyclic w.r.t.
any pd–function we made it with, then clearly the strong validity requirements hold. 2

Theorem 4.44. LetD = (A,L,C) be a redundancy–free ADF.D is strongly valid iff there
exists a sequence (a0, ..., an) of all arguments in A s.t. given any pd–function pd on A,
((a0, ..., an),

⋃n
i=0 pd(ai)) is an acyclic pd–evaluation.

Proof. Let us start with showing that ifD is strongly valid, then a suitable sequence exists.
We can find an argument a ∈ A s.t. for every minimal decisively in interpretation va of
this argument, vta = ∅. If it were not the case, then to every argument we could assign an
interpretation with a non–empty t part and we would not be able to construct an acyclic
evaluation using such a pd–function. This clearly contradicts strong validity of D. We
can put the arguments possessing minimal decisively in interpretations with empty t parts
at the start of our sequence in an arbitrary order. We will denote the collection of these
arguments with A0 ⊆ A. If A0 = A, then our proof is done. Let us thus assume it is not
the case.

We can now find an argument b ∈ A \ A0 s.t. for every minimal decisively in inter-
pretation vb of this argument, vtb ⊆ A0. If it were not the case, then for every argument
in A \ A0 we could find an interpretation s.t. its t part is not a subset of A0. This also
means that this t part would be non–empty. Again, we can use these interpretations to
make a pd–function that cannot produce an acyclic pd–evaluation on A. We can collect all
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such arguments into a set A1 ⊆ A. We add the arguments in A1 in arbitrary order to the
sequence created for A0.

We can continue this line of reasoning until we go through all the arguments and obtain
our sequence. Based on the construction, we can observe that this sequence will be a pd–
sequence of an acyclic evaluation w.r.t. any pd–function on A.

If there is a sequence s.t. independently of the pd–function, it induces an acyclic
evaluation, then clearly the strong validity restrictions are satisfied. 2

Theorem 4.45. Let D = (A,L,C) be a redundancy–free and cleansed ADF and
PDGD = (A,L′), where L′ = {(a, b) | ∃v ∈ min dec(in, b) s.t. a ∈ vt}, its asso-
ciated positive dependency graph. D is strongly valid iff PDGD is a directed acyclic
graph.

Proof. If D is strongly valid, then by Theorem 4.44 there exists a sequence seq of ar-
guments s.t. independently of the created pd–function, it is a sequence of an acyclic pd–
evaluation. This means that for every two arguments a and b s.t. ∃v ∈ min dec(in, b) and
a ∈ vt, a precedes b in seq. Therefore, it is easy to see that seq is a topological ordering
of the positive dependency graph PDGD. Hence, PDGD is a directed acyclic graph.

If PDGD is a directed acyclic graph, then there exists a topological ordering seq of its
nodes. Based on the construction of PDGD, this means that for every two arguments a and
b s.t. ∃v ∈ min dec(in, b) and a ∈ vt, a precedes b in seq. Consequently, independently
of the chosen pd–function, this sequence seq will be always meet the requirements of a
pd–sequence of D covering all of its arguments. Hence, by Theorem 4.44, D is strongly
valid. 2

Lemma 4.67. The following holds between the subclasses and normal forms of EAF(C)s:

• NDefEAF (C) ( BHEAF (C)

• NDefEAF (C) ( SConsEAF (C)

• BHEAF (C) ( SConsEAF (C)

• NDefEAFC ( BinEAFC (MinEAFC

Proof.

• Let EF = (A,R,D) be an EAF in NDefEAF . We can see see the framework
as a single partition ((A,R), D), and since D = ∅, all of the bounded hierarchical
requirements are easily satisfied. Similar holds for EAFCs. At the same time, we can
easily imagine a bounded hierarchical EAF(C) that does have some defense attacks,
thus the subset relation is strict.

• Trivial.
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• Let EF = (A,R,D) be an EAF in BHEAF and (((A1, R1), D1), ..., ((An, Rn), Dn)
its partition that satisfies the requirements from Definition 2.55. By this definition,
every argument in Ai is attacked only by arguments in Ai and these conflicts are
defense attacked only by arguments from Ai+1 (or not defense attacked at all if
i = n). Since Ai ∩ Ai+1 = ∅, strong consistency follows easily. Same holds for
EAFCs. We can observe that the framework from Example 5 is strongly consistent.
However, it is not bounded hierarchical. Thus, the subset relation is strict.

• If there are no defense attacks to start with, then the binary conditions for EAFCs are
trivially satisfied. If every defense attacking set contains a single argument only, then
the defense attacks targeted at a give conflict are clearly incomparable. Thus, the
framework is in minimal form. We can easily produce framework that are minimal,
but not binary, and those that are binary, but do have some defense attacks. Hence,
the relation between the subclasses is strict.

2

Lemma 4.71. The following holds between the subclasses and normal forms of AFNs:

• NSupAFN ( SConsAFN

• NSupAFN ( SBinAFN

• NSupAFN ( SSigAFN

• NSupAFN = SupAFN0 ∩ SV AFN

• SBinAFN (MinAFN

• SSigAFN (MinAFN

• SV AFN ( (WV AFN ∩RV AFN)

Proof.

• Trivial.

• Trivial.

• Trivial.

• Clearly, NSupAFN ⊆ SupAFNi for any 0 ≤ i. If the framework does not
contain any simple paths, then there is no supporting edge between two differ-
ent arguments. However, there may be a support edge with the same target and
source. Consequently, if it is also acyclic, then there is no supporting edge be-
tween any arguments, and thus NSupAFN ⊆ (SupAFN0 ∩ SV AFN). Showing that
(SupAFN0 ∩ SV AFN) ⊆ NSupAFN follows similarly.
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• If every supporting set contains a single argument only, then the sets supporting a
given argument are clearly incomparable. Thus, the framework is in minimal form.
At the same time we can easily imagine a framework consisting of three arguments
a, b and c, where {a, b} supports c. Such a framework is minimal, but not support
binary. Thus, the relation between the subclasses is strict.

• Every argument can be supported by at most one set. Thus, it cannot be supported
by its (strict) subset and minimality follows easily. Since every binary framework
is minimal and clearly not every singular framework has to be binary, the relation
between the subclasses is strict.

• See Theorem 4.31. We can adapt Example 59 in order to show that not every weakly
and relation valid AFN has to be strongly valid as well.

2

Lemma 4.73. The following holds between the subclasses and normal forms of EAFs:

• (ABinEAS ∪ ASigEAS) ∩ (SBinEAS ∪ SSigEAS)) (MinEAS .

• EvSupEAS ( (SBinEAS ∩ SSigEAS)

• EvSupEAS ( SConsEAS .

• (EvSupEAS ∩ AllSupEAS) ( (SConsEAS ∩ SV EAS)

• SV EAS ( (WV EAS ∩RV EAS)

• WV EAS ( AllSupEAS

Proof.

• Please recall that minimal form of EAS deals with both attack and support rela-
tions. It is easy to see that attack binary and attack singular frameworks easily
satisfy the minimality restrictions for conflict. Similarly, support binary and sin-
gular structures meet the requirements concerning support minimality. Therefore,
the combination of these properties produces a minimal EAS. At the same time, the
framework ({η, a, b, c, d}, {({a, b}, c), ({a, d}, c)}, {({a, b}, c), ({a, d}, c)}) is nei-
ther attack (support) singular nor binary. However, it is minimal. Thus, the subclass
relation is strict.

• Follows straightforwardly from the definition of the pure evidence supported sub-
class. The framework ({η, a}, ∅, {({a}, a)}) is both support binary and singular, but
is not pure evidence supported. Therefore, the subclass relation is strict.

• By definition, η cannot participate in attacks on any argument. Since every set of
arguments supporting a given argument through the evidence relation is precisely
{η}, clearly the strong consistency restrictions are met.
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• If a framework is in EvSupEAS ∩ AllSupEAS , then every non–η argument is sup-
ported by {η} only. Thus, there is only one function f assigning a given argu-
ment its support as defined in Definition 4.35. We can observe that any sequence
of arguments putting η in the beginning will be an evidential sequence. Thus, the
framework is in SV EAS . Moreover, based on the previous point of this proof, it is
also in SConsEAS . Please note the relation is strict; for example, the framework
({η, a}, ∅, {({η}, a)}) is strongly consistent and strongly valid, but is not pure evi-
dence supported.

• See Theorem 4.36. Moreover, we can use Example 59 to show that the relation is
strict.

• Assume it is not the case and there exists a weakly valid EAS that is not all–
supported. This means there exists a non–η argument that receives no support at
all. However, this means it cannot possess an evidential sequence, and thus our EAS
cannot be weakly valid. We reach a contradiction. However, not every all–supported
EAS has to be weakly valid; again, the framework ({η, a}, ∅, {({a}, a)}) is a simple
counterexample.

2

Lemma 4.77. The following holds between the subclasses and normal forms of ADFs:

• ADFAF ( (ADF SETAF ∩RFreeADF )

• ADF SETAF ( (BADF ∩ AADF+)

• ADF SETAF ( WV ADF

• ADF SETAF 6⊆ RFreeADF

• BADF 6⊆ AADF+ and AADF+ 6⊆ BADF

• WV ADF ( ClnADF

• SV ADF ( AADF+

• (AADF+ ∩RFreeADF ∩ ClnADF ) ⊆ SV ADF

• SV ADF ( (WV ADF ∩RV ADF )

• (RV ADF ∩ ClnADF ) ( WV ADF

Proof.
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• The fact that ADFAF ( ADF SETAF follows easily from the definitions of the sub-
classes. Let D = (A,L,C) ∈ ADFAF . Based on the definition of the Dung–style
conditions, we can observe that for every parent b of an argument a ∈ A, it holds that
Ca(∅) = in and Ca({b}) = out. Thus, the (b, a) link is not supporting, and there-
fore cannot be redundant. Hence D is redundancy–free. At the same time, the ADF
({a, b, c}, {Ca = >, Cb = >, Cc =6= a∨¬b}) is SETAF–style and redundancy–free,
but is not AF–style. Thus, the relation is strict.

• Let D = (A,L,C) ∈ ADF SETAF . Let (a, b) ∈ L and E ⊆ par(b) a subset
of parents of b in D. From the construction of the condition we can observe that
if Cb(E ) = out, then Cb(E ∪ {a}) = out as well. Therefore, the (a, b) link is
attacking, and D is a BADF. Let a ∈ A be an argument. a may have more than
one minimal decisively in interpretation, however, in all of them the t part is empty
and f corresponds to some subset of parents of a. Consequently, every argument
has a standard evaluation and every standard evaluation can be made acyclic as any
argument in the framework satisfies the a0 requirements of acyclic pd–evaluations.
Hence, D is an AADF+. Finally, we can consider a framework ({a, b}, {Ca =
>, Cb = a}). It is both an AADF+ and a BADF, but is not SETAF–style. Therefore,
the relation is strict.

• See previous point.

• Let us consider the ADF consisting of arguments {a, b, c}. The functional conditions
for a and b simply assign in to ∅. The condition for c assigns in to ∅ and {a}, while
{b} and {a, b} are mapped to out. We can observe that the (a, c) link is in fact
redundant; to whatever subset of parents we add a, the value of the condition stays
the same. Therefore, the SETAF–style ADFs are not necessarily redundancy–free.

• See Example 32.

• See Theorem 4.23.

• See Theorem 4.43.

• See Theorem 4.43.

• See Theorem 4.41. We can adapt Example 59 to show that the relation is strict.

• Let D = (A,L,C) ∈ RV ADF ∩ ClnADF be a relation valid and cleansed ADF.
Since D is cleansed, it holds that for every argument a ∈ A there exists a set E ⊆
par(a) s.t. Ca(E ) = in. Consequently, every argument possesses a decisively
in interpretation (and thus a minimal one too). Due to the fact that D is relation
valid as well, this minimal interpretation will be used in constructing an acyclic pd–
evaluation for a. Thus, a will possess an acyclic pd–evaluation, and it holds that D
is weakly valid.

2
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15.3 Translating AFs: Proof Appendix

Theorem 5.6. Let F = (A,R) be a Dung’s framework and FRF = (A,R) its correspond-
ing AFRA obtained by Translation 18. If E ⊆ A is an admissible (conflict–free) extension
of F , then E→AFRA is an admissible (conflict–free) extension of FRF . If E ′ ⊆ A ∪ R
is an admissible (conflict–free) extension of FRF , then E ′ ∩ A might not be admissible
(conflict–free) in F .

Proof. Let E ⊆ A be a conflict–free extension of F and let E ′ = E→AFRA. Since E
is conflict–free, this means there is no attack between any two members of the set in F .
Hence, by Translation 18, there is no such attack in FRF as well and there will be no
attack in E ′ with a target in E ′. Thus, E ′ is conflict–free in FRF . Let E ⊆ A be a set of
arguments in F that is not conflict–free. The set E contains only arguments and thus there
will be no elements x, y ∈ E s.t. x defeats y. Thus, E is conflict–free in FRF .

Let E ⊆ A be an admissible extension of F and let E ′ = E→AFRA. Based on the
discussion above, E ′ is conflict–free in FRF . Since for every a ∈ A that attacks an
argument in E there is some b ∈ E attacking it, then by construction of E ′ and the fact
that only arguments get attacked in FRF , it means that for every attack x ∈ R with a
target in E ′ there is some attack in E ′ directed at the source of x and thus defeating x.
Thus, every argument in E ′ is acceptable w.r.t. E ′. Since there are no attacks directed at
attacks in FRF , it holds that if the source of an attack is acceptable then so is the attack
itself. Thus, E ′ is admissible in FRF .

To see that not every AFRA admissible extension corresponds to an AF admissible
one, please consult Example 69. 2

Theorem 5.7. Let F = (A,R) be a Dung’s framework, FRF = (A,R) its corresponding
AFRA obtained by Translation 18 and σ ∈ {admissible, complete, preferred, grounded,
stable} a semantics. If E ⊆ A is a conflict–free extension of F , then E→AFRA is a
conflict–free extension of FRF . If E ′ ⊆ A ∪ R is a conflict–free extension of FRF , then
E = (E ′ ∩ A) ∪ {src(x) | x ∈ E ′ ∩ R} might not be conflict–free in F . If E is a σ–
extension of F , then E→AFRA is a σ–extension of FRF . If E ′ ⊆ A ∪ R is a σ–extension
of FRF , then E = (E ′ ∩ A) ∪ {src(x) | x ∈ E ′ ∩R} is a σ–extension of F .

Proof. The first direction follows already from Theorems 5.5 and 5.6. The same conflict–
freeness analysis holds as well. Let us now focus on the other direction for other semantics.

Let E ′ ⊆ A ∪ R is an admissible extension of FRF . Let us first assume that E =
(E ′ ∩ A) ∪ {src(x) | x ∈ E ′ ∩ R} is not conflict–free in F , i.e. there are two arguments
a, b ∈ E s.t. aRb. This means that b or any attack with b as its source is defeated by the
(a, b) attack in E ′. As E ′ is admissible, it has to contain an attack defeating (a, b), and
since in FRF we only deal with argument attack targets, E ′ has to contain an attack (x, a),
where x ∈ A. Since a ∈ E , then either a ∈ E ′ or (a, y) ∈ E ′ for some y ∈ A; as both of
them are defeated by (x, a), E ′ cannot be conflict–free in FRF . We reach a contradiction
and thus it has to be the case that E is conflict–free in F . Let us now assume it is not
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admissible, i.e. there is some argument a ∈ E attacked by an argument b ∈ A which is in
turn not attacked by any argument in E . By construction of E this means that there cannot
be any attack directed at (b, a) in E ′ and thus neither a nor any attack carried out by a can
be acceptable w.r.t. E ′. Thus, E ′ is not admissible in FRF and we reach a contradiction.

In the previous section we have already explained that due to the nature of FRF , if
argument a ∈ A is defended by a given set, so is any attack that has a as the source.
Moreover, it also holds that if an attack is defended then so is its source by Lemma 2.32.
This brought us to the conclusion that every complete extension E ′ of FRF is of the form
E ′ = (E ′ ∩ A)→AFRA. What this means for us is that the source of any attack is already
in the set and thus (E ′ ∩A)∪ {src(x) | x ∈ E ′ ∩R} = E ′ ∩A. Consequently, we simply
come back to Theorem 5.5. 2

Theorem 5.9. Let EF = (A,R,D) ∈ NDefEAF be an EAF without defense attacks.
The following holds:

• an argument a defeats an argument b w.r.t. any set of arguments E iff (a, b) ∈ R

• a set of arguments E ⊆ A is conflict–free extension of EF iff there are no a, b ∈ E
s.t. aRb

• given a set of arguments E ⊆ A, a set containing a pair {(x, y)} s.t. x defeatsE y is
a reinstatement set on E for the defeatE by x on y iff x ∈ E .

• an argument a ∈ A is acceptable w.r.t. a set of arguments E ⊆ A iff for every
argument b s.t. bRa, there is c ∈ E s.t. cRb

• a set of arguments E is a stable extension of EF iff for every argument b /∈ E ,
∃a ∈ E s.t. aRb

Proof. Since there will never be any argument defense attacking (a, b), every attack will
always result in a defeat.

If there are no attacks in the set to start with, then it is trivially conflict–free in EF .
By definition, a set is conflict–free if for every attack aRb s.t. a, b ∈ E , there is a defense
attack and (b, a) /∈ R. Since D = ∅, aRb will never be “overriden” and thus if any
conflicting arguments are present in the set, the condition will not be satisfied and the set
will not be conflict–free. Thus, a conflict–free set will not contain any a, b s.t. aRb.

Concerning the reinstatement, the first condition that the pair is in the set is already
satisfied. The second is simplified to just x being present in E . Due to lack of defense
attacks altogether, the third condition of the original reinstatement definition is automati-
cally satisfied and can be dropped.

Since in the simplified framework defeats can be replaced with attacks and {(c, b)} is
a trivial reinstatement set on E for the (c, b) attack (note that c ∈ E ), the acceptability
definition comes back to the original Dungean version easily.

The simplification of the stable semantics also follows from the defeat–attack equiva-
lence. 2

486



Theorem 5.10. Let F = (A,R) be a Dung’s framework and EF F = (A,R, ∅) its cor-
responding EAF obtained through Translation 19. A set of arguments E ⊆ A is a σ–
extension of F , where σ ∈ {conflict–free, admissible, complete, preferred, grounded,
stable} iff it is a σ–extension of EF F .

Proof. The fact that conflict–free, admissible, complete, preferred and stable extensions
coincide between the two frameworks follows easily from Theorem 5.9. F and EF F

have the same arguments and attacks and with the simplifications, the definitions of the
semantics become identical.

The EF F framework is not an arbitrary EAF; it is in fact a bounded hierarchical one
(Theorem 5.8). By Definition 2.57, its grounded extension is the least fixed point of the
EAF characteristic operator. By Theorem 2.10, the grounded extension of F is also the
least fixed point of the AF characteristic operator. The only difference is that the domain
of the first is restricted only to conflict–free sets; however, since the grounded extension is
obviously also conflict–free, we can conclude that the grounded extensions of F and EF F

coincide. 2

Theorem 5.18. Let F = (A,R) be a Dung’s framework, DF = (A,R,C) its correspond-
ing ADF obtained through Translation 23 and E ⊆ A a set of arguments. The following
holds:

• E− in F equals the union of parents of all arguments in E in DF .

• E is conflict–free in F iff it is conflict–free in DF .

• if E is conflict–free, then E+ in F coincides with the discarded set of E in DF .

Proof.

• Obvious by Translation 23.

• If E is conflict–free in F , then for all arguments a ∈ E , E ∩ {a}− = ∅. Con-
sequently, E ∩ par(a) = ∅. Since by Translation 23 for all a ∈ A, Ca(∅) = in,
every argument in E has a satisfied acceptance condition in DF and the set is (ADF)
conflict–free. The other way around follows accordingly: since the arguments have
a satisfied acceptance condition, none of its parents (and thus attackers) is in the set
and (Dung) conflict–freeness is preserved.

• Let v be an interpretation mapping only and all elements of E to t. If an argument a
is in E+, then E ∩{a}− 6= ∅. Consequently, E ∩par(a) 6= ∅, and thus the condition
of a is out. It is easy to see that the argument is decisively out w.r.t. v, and since
vE is its completion, then w.r.t. vE as well. Thus, vE (a) = f , and a is in the (ADF)
discarded set.

Since a is in the (ADF) discarded set of E , then it is decisively out w.r.t. vE by
Theorem 2.150. Consequently, vE (Ca) = out, i.e. Ca(E ∩ par(a)) = out. Hence,
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by Translation 23, it has to be the case that E ∩par(a) 6= ∅, and thus E ∩{a}− 6= ∅.
Therefore, a qualifies for (Dung’s) E+ set.

2

Theorem 5.19. Let F = (A,R) be a Dung’s framework, DF = (A,R,C) its correspond-
ing ADF obtained through Translation 23. Let E ⊆ A be a conflict–free set of F and DF

and a ∈ A an argument. E defends a in F iff a is decisively in w.r.t. vE in DF .

Proof. If E defends a, it means that {a}− ⊆ E+ in F . Consequently, par(a) ⊆ E+ in
DF . Since every parent of a is falsified by vE , a is decisively in w.r.t. vE . The other way is
straightforward. As a is decisively in w.r.t. vE , then all of its parents are in the discarded
set of DF , and thus in E+ of F . Since parents of a are precisely {a}−, a is defended by E
in F . 2

Theorem 5.20. Let F = (A,R) be a Dung’s framework and DF = (A,R,C) its corre-
sponding ADF obtained through Translation 23. A set of arguments E ⊆ A is a conflict–
free extension of F iff it is (pd–acyclic) conflict–free in DF . E ⊆ A is a stable extensions
of F iff it is (stable) model of DF . E ⊆ A is a grounded extensions of F iff it is (acyclic)
grounded in DF . E ⊆ A is a σ extensions of F , where where σ ∈ {admissible, preferred,
complete} iff it is an xy–σ–extension of DF for x, y ∈ {a, c}.

Proof. Due to the fact that the semantics classification collapses for DF (see Theorems
2.172 and 5.17), it suffices to focus on only conflict–free, grounded, model, and the cc–
types of the ADF semantics.

The behavior of the conflict–free semantics was already shown in Theorem 5.18. By
Theorem 5.19 all arguments in E are defended iff they are decisively in w.r.t. vE , thus ad-
missibility and completeness follow straightforwardly. Since both in F and DF preferred
extensions are subset maximal admissible, they obviously coincide. The grounded exten-
sion of F is by Theorem 2.10 the least w.r.t. set inclusion complete one. Same follows for
DF by Theorem 2.158, and since complete extensions coincide, so do grounded.

Let E be stable in DF . By definition it is also a model and from Lemma 2.159 we
know that E a+ = A \ E . By Theorems 2.172 and 5.17 it holds hat E a+ = E+. From
Theorem 5.18 we now have that E is conflict–free in F and E+ = A \E in F . Thus, E is
stable in F .

Now, since E is stable in F , then E+ = A\E in F . Consequently, E+ = A\E in DF

by Theorem 5.18. Thus, by Theorem 2.150, all elements in A \ E are out. It is clear that
model conditions are satisfied and thus by Theorems 2.172 and 5.17, E is stable in DF . 2

15.4 Translating SETAFs: Proof Appendix

Theorem 6.1. Let SF = (A,R) be a SETAF and F SF its corresponding AF obtained by
Translation 25. If E ⊆ A is a σ–extension of SF , where σ ∈ {conflict–free, admissible,
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preferred, complete, grounded, stable}, then arg(E ) ∪ att(E ) is a σ–extension of F SF . If
a set of arguments E ′ ⊆ A′ is a σ′–extension of F SF , where σ′ ∈ {admissible, preferred,
complete, grounded, stable}, then

⋃
E ′ is a σ–extension of SF .

Proof. First of all, let us note that if an argument a ∈ A is attacked by a set E ⊆ A, then
by the translation, the arguments {a} ∈ A′ and B ∈ att(A) s.t. a ∈ B are attacked by an
AF argument corresponding to E contained in arg(E ) ∪ att(E ). If a is not attacked by E
in SF , then {a} is not attacked by arg(E ) ∪ att(E ) either.

Let E be a conflict–free extension of SF . By the above this means that no argument
in arg(E ) is attacked by E ′ = arg(E ) ∪ att(E ) in F SF . Moreover, since there is no
argument in arg(E ) attacked by E ′, then by the construction of R′ there is no argument in
att(E ) attacked by E ′ either. Consequently, E ′ is conflict–free in F SF . Please note it does
not hold that a conflict–free extension of F SF is conflict–free in SF , as already explained
in Example 77.

Let us now show that if an argument a ∈ A is defended by a set E ⊆ A in SF , then
the argument {a} ∈ A′ is defended by E ′ = arg(E ) ∪ att(E ) in F SF . Let set B ⊆ A be
an arbitrary set attacking a in SF . We know that at least one argument b ∈ B is attacked
by E due to defense. This means that upon translating, the AF argument corresponding
to B attacks {a} and that any argument containing B is attacked by E ′. Therefore, {a}
is defended by E ′ in F SF . We can also observe that if a set of arguments C ⊆ arg(A)
is defended by a given set, then so are the arguments in att(

⋃
C) – this comes from the

fact that the conflicts directed at att arguments are propagated from their arg arguments.
Moreover, if a given argument C ∈ att(A) is defended by a given set, then so are all
other arguments C ′ ∈ A′ s.t. C ′ ⊆ C. The fact that if E is admissible in SF , then so is
E ′ = arg(E ) ∪ att(E ) in SF F follows straightforwardly from the analysis above.

Let us assume that E ⊆ A′ is an admissible extension of F SF , but E ′ =
⋃
E is not

admissible in SF . This means that either E ′ is not conflict–free in SF or there exists an
argument e ∈ E ′ that is not defended by E ′ in SF . If E ′ is not conflict–free, this means
that there exists X ⊆ E ′, b ∈ E ′ s.t. XRb in SF . Consequently, in F SF there exist
arguments B ∈ E and X ∈ A′ s.t. b ∈ B and XR′B. Since E defends B in F SF , it
has to be the case that ∃C ∈ E s.t. CR′X . If X ∈ arg(A), then by construction of R′

every argument X ′ ∈ att(A) s.t. X ⊆ X ′ is also attacked by C. If X ∈ att(A), then by
construction it means that there exists some argument X ′ ∈ arg(A) s.t. X ′ ⊆ X which is
again attacked by C. This means that whatever were the arguments in E that made the set
X appear in E ′, there is a conflict in E and thus the set could not have been conflict–free
in F SF in the first place. We reach a contradiction. Let us now assume that there is an
argument e ∈ E ′ that is not defended by E ′. This means that there exists a set of arguments
X ⊆ A s.t. XRe and no x ∈ X,C ⊆ E ′ s.t. CRx. From this follows that in F SF the
argument X ∈ A′ attacks all arguments F ∈ A′ s.t. e ∈ F . Since E contains, and thus
defends, at least one such F , it means that there exists an argument X ′ ∈ E s.t. X ′R′X .
Hence, X ′ ⊆ E ′ and ∃x ∈ X s.t. X ′Rx in SF and we reach a contradiction. Therefore,
E ′ has to be admissible in SF .
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Let us now assume that E ⊆ A is complete in SF , but E ′ = arg(E ) ∪ att(E ) is not
complete in F SF . Since we know that this set is at least admissible, it has to be the case
that there is an argument a ∈ A′ which is defended by E ′ but is not in E ′. If a ∈ att(A),
then it means that arguments in a′ ∈ arg(A) s.t. a′ ⊆ a are also defended. If they are
all in the set, then by definition of E ′ so is a′. Thus, what we need to focus on is the
case in which there is an argument a ∈ arg(A) that is defended by E ′ in F SF but is not
included in E ′. Let B ∈ A′ be an arbitrary attacker of a through R′ in F SF . Since E ′

defends a, then B is attacked by E ′, which by the translation means that there are some
X ′ ⊆ E , y ∈ B s.t. (X ′, y) ∈ R in SF . This means that the attacking set B is attacked by
E in SF and that the argument represented by a had to be defended by E in SF as well.
Thus, we reach a contradiction and it follows that if E is complete in SF , then so is E ′ in
F SF .

Let E ⊆ A′ be a complete extension of F SF . We can observe that ∃B ⊆ A in SF s.t.
E = arg(B)∪ att(B). This comes from the fact that if a set of arguments C ⊆ arg(A) is
defended by a given set in F SF , then so is att(

⋃
C) due to the fact that attacks on an att

argument is created from the attacks directed at its elements which form arg arguments.
Moreover, if a given argument C ∈ att(A) is defended by a given set in F SF , then so are
all other arguments C ′ ∈ A′ s.t. C ′ ⊆ C. Therefore, a complete extension contains all
att arguments induced by ones in arg and if an att argument is contained, then so are its
respective arg ones.

Let us now assume that even though E ⊆ A′ is complete in F SF , E ′ =
⋃
E is not

complete in SF . We know that E ′ is at least admissible in SF . Thus, it has to be the
case that there exists an argument a /∈ E ′ defended by E ′ in SF , i.e. ∀C ⊆ A s.t.
CRa, ∃X ⊆ E ′, c ∈ C s.t. XRc. This means that there exists an argument {a} /∈ E
in F SF attacked by an argument C ∈ A′ and that there is an argument X ∈ A′ s.t.
XR′C. Since X ⊆ E ′ and a complete extension of F SF is of the form ∃B ⊆ A s.t.
E = arg(B) ∪ att(B), it has to be the case that X ∈ E . Consequently, {a} is defended
by E in F SF and the set could not have been complete in the first place – we reach a
contradiction. Hence, E ′ has to be complete in SF .

Let us now assume that E ⊆ A is preferred in SF , but E ′ = arg(E ) ∪ att(E ) is not
preferred in F SF . This means there exists a complete extension X in F SF s.t. E ′ ⊂ X .
However, by the analysis above we can show that

⋃
X is then a complete extension of

SF and from the way F SF complete extensions are structured, that E ⊂
⋃
X in SF .

Therefore, E could not have been preferred in the first place and we reach a contradiction.
Let us now assume that E ⊆ A′ is preferred in F SF , but E ′ =

⋃
E is not preferred in

SF . This means there exists a complete extension X ⊆ A s.t. E ′ ⊂ X . By the analysis
above, we can show thatX ′ = arg(X)∪att(X) is admissible in F SF . It is easy to see that
E ⊂ X ′, and thus E could not have been preferred in F SF in the first place. Consequently,
E ′ is preferred in SF .

By using the fact that the grounded extension is the least complete one both in AFs and
SETAFs by Theorems 2.10 and 2.24, we can prove in a way similar to preferred semantics
that if E is grounded in SF , then so is arg(E )∪ att(E ) in F SF and that if E ′ is grounded
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in F SF , then so is
⋃

E ′ in SF .
Finally, we are left with the stable semantics. Let E be stable in SF . We know that

E ′ = arg(E )∪att(E ) is at least complete in F SF . Let us now assume that it is not stable,
i.e. ∃a /∈ E ′ for which there is no x ∈ E ′ s.t. xR′a. If a ∈ att(A) and is not attacked
by E ′, then by construction of R′ it follows that any argument in a′ ∈ arg(A) s.t. a′ ⊆ a
is not attacked by E ′ either. Consequently, we can focus on the case when the unattacked
argument is just in arg(A). However, by construction of R′ and E ′ this means that the
argument represented by a could not have been attacked by E in the first place. We reach
a contradiction.

Let us assume that E is stable in F SF , but E ′ =
⋃
E is not stable in SF . We know

it is at least complete. Thus, it has to be the case that there exists an argument a /∈ E ′ for
which there is no X ⊆ E ′ s.t. XRa. However, by completeness of E , this also means
there exists an argument {a} /∈ E for which there is no X ∈ E s.t. XR′{a} in F SF . Thus,
E could not have been stable in the first place and we reach a contradiction. 2

Theorem 6.2. Let SF = (A,R) be a SETAF, F SF
def = (A′, R′) its corresponding defender

AF obtained through Translation 26 and σ ∈ {admissible, preferred, complete, grounded,
stable} a semantics. If E ⊆ A is conflict–free in SF , then E ∪ {(X, y) | X ⊆ E} ∪ {x′ |
x′ ∈ X ′, x ∈ (A \ E )} is conflict–free in F SF

def . If E ⊆ A is a σ–extension of SF , then
E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} is a σ–extension of F SF
def . If E ′ ⊆ A′ is

a σ–extension of F SF
def , then E ′ ∩ A is a σ–extension of SF .

Proof. Let E be conflict–free in SF and let E ′ = E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈
X ′, x ∈ (A \ E )} be a set of arguments in F SF

def . Translation 26 removes any attacks
between arguments in A and at least partially “transfers” them to auxiliary arguments.
Consequently, if E is conflict–free in SF , then E is trivially conflict–free in F SF

def . From
conflict–freeness of E in SF it follows that for any conflict (X, y) s.t. X ⊆ E , y /∈ E .
Therefore, E ∪ {(X, y) | X ⊆ E} is also conflict–free in F SF

def . Let now y′ ∈ {x′ |
x′ ∈ X ′, x ∈ (A \ E )}. We can observe that y′ is added only if y is not present in the set.
Consequently, there is no conflict between E and y′. Since y is not in E , no conflict carried
out by a set containing y is in E ′. Therefore, y′ does not attack any conflict argument in
E ′, and we can finally conclude that E ′ is conflict–free in F SF

def .
Not every conflict–free set of F SF

def is conflict–free in SF – this comes simply from the
conflict transfer. This behavior could have been already observed in Example 79.

Let us now focus on E ⊆ A being an admissible extension of SF and let E ′ =
E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} be a set of arguments in F SF
def . We can

observe that due to conflict–freeness of E in SF , E∩E+
SF = ∅, and thus {x′ | x′ ∈ X ′, x ∈

E+
SF} ⊆ {x′ | x′ ∈ X ′, x ∈ (A \ E )}. Therefore, we can reuse the explanation above to

show that E ′ is conflict–free in F SF
def . Let us assume it is not admissible; it means there is an

argument e ∈ E ′ not defended by E ′. This means that there exists an argument b ∈ A′ s.t.
(b, e) ∈ R′ and no c ∈ E ′ s.t. (c, b) ∈ R′. Let e ∈ {(X, y) | X ⊆ E}. By the construction
of F SF

def , it is only attacked by x′ arguments corresponding to x ∈ X . However, by the
construction of E ′, x ∈ E ′. Since (x, x′) ∈ R′, E ′ has the power to defend e. We reach a
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contradiction. Let us now focus on y′ ∈ {x′ | x′ ∈ X ′, x ∈ E+
SF}. If y ∈ E+

SF , then there
is a set Y ⊆ E s.t. (Y, y) ∈ R. Consequently, (Y, y) ∈ E ′ and ((Y, y), y) ∈ R′. Thus, E ′

defends y′ against y. Again, we reach a contradiction. Finally, we come to e ∈ E . If it is
not defended by E ′ in F SF

def , then it means that there is an argument (X, e) ∈ A′ s.t. for
no x ∈ X , x′ ∈ E ′. By construction of E ′ it means that x /∈ E+

SF . Therefore, (X, e) ∈ R
and no element of X is attacked by E in SF , and this means that E could not have been
admissible in SF in the first place. We reach a contradiction and can finally conclude that
E ′ is admissible in F SF

def .
Let now E ′ ⊆ A′ be an admissible extension of F SF

def . We will show that E = E ′ ∩ A
is admissible. First, we need to show that E is conflict–free. Assume it is not the case and
that there exists X ⊆ E , y ∈ E s.t. (X, y) ∈ R. This means that y ∈ E ′, (X, y) ∈ A′

and ((X, y), y) ∈ R′. Since E ′ defends y, it has to be the case that there is x ∈ X s.t.
x′ ∈ E ′. From conflict–freeness of E ′ in F SF

def it thus follows that x /∈ E ′ and thus x /∈ E .
Therefore, X could not have been a subset of E and we reach a contradiction. We can thus
conclude that E is conflict–free in SF . Let us now assume that it is not admissible, i.e.
there is an argument a ∈ E and a set X ⊆ A s.t. (X, a) ∈ R, but no x ∈ X is attacked by
any subset of E . This means that a ∈ E ′, (X, a) ∈ A′ and ((X, a), a) ∈ R′. If there is no
(Y, x) ∈ R s.t. Y ⊆ E for any x ∈ X , then it cannot be the case that a given (Y, x) is in
E ′ – based on the translation, we can observe that without the presence of all arguments
in Y in E ′, the (Y, x) attack argument cannot be defended by E ′. We know they are not
present, because if all arguments of Y were in E ′, they would have been in E as well. If
no such (Y, x) is in E ′, then again due to admissibility of E ′, the argument x′ cannot be in
E ′. Therefore, for no x ∈ X , x′ ∈ E ′. This means that the (X, a) attack argument is not
attacked by any member of E ′ and thus E ′ could not have been admissible in F SF

def in the
first place. We reach a contradiction and can thus conclude that E has to be admissible in
SF .

Let E ⊆ A be a complete extension of SF and E ′ = E ∪ {(X, y) | X ⊆ E} ∪ {x′ |
x′ ∈ X ′, x ∈ (A \ E )} the admissible extension of F SF

def associated with it. Assume E ′

is not complete; this means there exists an argument a ∈ A′ \ E ′ defended by E ′ in F SF
def .

Let us first assume that a ∈ A, i.e. a represents an argument from SF . If E ′ defends a,
then it means that for every attack argument (X, a) ∈ A′ with an arbitrary X , there is an
argument x′ ∈ E ′ s.t. x ∈ X . Since x′ has to be defended by E ′ due to admissibility, it has
to be the case that there is an attack argument (Y, x) ∈ E ′. Which, again by admissibility,
means that every y ∈ Y is in E ′. Therefore, every such y is in E , and thus E has the power
to attack a member of X and defend a from the (X, a) conflict in SF . Consequently, a is
defended by E but is not in E , and the set could not have been complete in the first place.
We reach a contradiction. Let us now assume that a = (X, y) ∈ R, i.e. a represents an
attack from SF . If E ′ defends a, then it means that every argument x′ ∈ A′ s.t. x ∈ X is
attacked by E ′. Since a given x′ is only attacked by its x, then naturally x ∈ E ′ and thus
X ⊆ E ′ and X ⊆ E . However, since X is contained in E , then by the construction of E ′

it has to be the case that (X, y) ∈ E ′ and we reach a contradiction with the assumptions.
Finally, let us focus on the case where a = x′ ∈ X ′, i.e. a is a primed version of an
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argument x ∈ A. Since the only attacker of x′ is x itself, then E ′ defending x′ means
that there is an attack argument (Y, x) ∈ E ′. From admissibility of E ′ it thus follows that
Y ⊆ E ′ and Y ⊆ E . Consequently, x ∈ E+

SF , and by construction of E ′, x′ ∈ E ′. We
again reach a contradiction and can finally conclude that if E is complete in SF , then so
is E ′ in F SF

def .
Let now E ′ ⊆ A′ be a complete extension of F SF

AF . We will first show that E ′ is
precisely of the form E ′ = E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} for a
set E ⊆ A. Let (X, y) ∈ E ′ be an attack argument in E ′. By the admissibility of E ′ it
thus follows that X ⊆ E ′. Let us first consider E . By construction, it defends any attack
arguments (Y, z) s.t. Y ⊆ E . Thus, by completeness of E ′, (Y, z) ∈ E ′. We can therefore
conclude that the source of any attack is in E ′ and any attack whose source is in E ′, is
in E ′. What remains to be shown is that E ′ ∩ X ′ is precisely {x′ | x′ ∈ X ′, x ∈ E+

SF}.
If x ∈ E+

SF , then there is Y ⊆ E s.t. (Y, x) ∈ R. Consequently, Y ⊆ E ′ and by the
explanation above, (Y, x) ∈ E ′. This means that E ′ defends x′, and due to completeness
x′ ∈ E ′. Now assume that x′ ∈ E ′, but x /∈ E+

SF . Since x′ ∈ E ′, then by admissibility E ′

has to contain an attack argument (Y, x). Again, by admissibility, Y ⊆ E ′ and thus Y ⊆ E .
Consequently, x ∈ E+

SF and we reach a contradiction. Therefore, we can finally conclude
that a complete extension E ′ of F SF

AF has to be precisely of the form E ′ = E ∪ {(X, y) |
X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} for a set E ⊆ A.
We will now show that if E ′ ⊆ A′ is a complete extension of F SF

def , then so is E =
E ′ ∩ A in SF . We know that E is admissible in SF . If it is not complete, then it means
there is an argument a ∈ A \ E defended by E in SF . Thus, for any set of arguments
X ⊆ A s.t. (X, a) ∈ R, there is x ∈ X, Y ⊆ E s.t (Y, x) ∈ R. Since Y ⊆ E , then
Y ⊆ E ′, and thus by admissibility of E ′ (Y, x) ∈ E ′. Consequently, E ′ defends x′ and by
completeness of E , x′ ∈ E ′. Now, (x′, (X, a)) ∈ R′, and therefore E ′ can defend a from
(X, a). Since the analysis was done for an arbitrary attack, it holds that E ′ defends a and
as E ′ cannot contain a, we reach a contradiction. Hence, E has to be complete in SF .

We can now observe that there is a one to one relation between the complete extensions
of both frameworks and that there is a subset relation between two complete extension
of SF iff there is one between their corresponding extensions in F SF

def . Therefore, we
can show that the preferred extensions of SF and F SF

def are related just like the complete
ones. Since the grounded extension both in AFs and SETAFs is also the least complete
(Theorems 2.10 and 2.24), this analysis extends to the grounded semantics as well. What
is left to be analyzed is the stable semantics. Let E ⊆ A be a stable extension of SF and
E ′ = E ∪ {(X, y) | X ⊆ E} ∪ {x′ | x′ ∈ X ′, x ∈ E+

SF} its corresponding set in F SF
def . By

the analysis above and Theorem 2.23, we know that E ′ is preferred. Let us assume it is not
stable, i.e. there exists an argument a ∈ A′ \E ′ that is not attacked by E ′. If a ∈ A, then it
means there is no (Y, a) ∈ E ′ attacking a and by admissibility of E ′, that Y is not a subset
of E ′. Therefore, Y is not a subset of E either and E could not have attacked a. We reach
a contradiction with the stability of E in SF . If a = x′ ∈ X ′, then it means that x /∈ E ′

and thus x /∈ E . By stability of E this means that x ∈ E+
SF , which by construction means

that x′ ∈ E ′. We reach a contradiction with the assumptions. Let now a = (X, y) ∈ R be
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an attack argument. If it is not attacked by E ′, then it means that no x′ s.t. x ∈ X is in
E ′. However, from previous explanations it follows that if x′ is not in E ′, then x is not in
E+
SF , which by stability of E means that x ∈ E . Therefore, X ⊆ E and X ⊆ E ′, and by

completeness of E ′, (X, y) ∈ E ′. We again reach a contradiction and can conclude that
E ′ is stable in F SF

def .
Let E ′ ⊆ A′ be a stable (and thus preferred by Theorem 2.9) extension of F SF

def and
E = E ′ ∩ A its corresponding set in SF . E is preferred in SF . Assume it is not stable;
this means there is an argument a ∈ A \ E s.t. no subset X of E attacks a. However, by
previous analysis this means that (X, a) /∈ E ′ and that a is not attacked by E ′. We reach a
contradiction with stability of E ′ and thus E has to be stable in SF . 2

Theorem 6.6. Let SF = (A,R) be a SETAF and FNSF = (A′, R′, N) its corresponding
AFN obtained by Translation 29. If E is conflict–free in SF , then E is conflict–free in
FNSF . If E is a σ–extension of SF , where σ ∈ {conflict–free, admissible, preferred,
complete, grounded, stable}, then E ′ = E ∪att(E ) is a σ–extension of FNSF . If E ′ ⊆ A′

is conflict–free in FNSF , then E = E ′ ∩ A might not be conflict–free in SF . If E ′ is a
σ′–extension of FNSF , where σ′ ∈ {admissible, preferred, complete, grounded, stable},
then E = E ′ ∩ A is a σ′–extension of SF .

Proof. First of all, let us note that for every argument in FNSF there exists a set E ⊆ A′

in which it is coherent. Every argument a ∈ A has a trivial powerful sequence (a) due
to the fact that it requires no support. An argument b = {a1, ..an} ∈ att(A) receives
support only from arguments a1, .., an ∈ A, and from the previous remark we can observe
that (a1, ..., an, b) is a simple powerful sequence for b. Please note that the presented
sequences are also minimal and the elements contained in them will need to be present in
any minimal coherent sets for a and b respectively.

The fact that if E is conflict–free in SF , then both E and E ∪ att(E ) are conflict–
free in FNSF follows straightforwardly from Translation 29. The reason why not every
conflict–free set in FNSF gives us a conflict–free set of SF is similar as in Theorem 6.1.

We will now show that if an argument a ∈ A is defended by E ⊆ A in SF , then it is
defended by E ′ = E ∪ att(E ). Since E defends a in SF , then for any set of arguments
X ⊆ A s.t. XRa, there exist B ⊆ E , x ∈ X s.t. BRx. Consequently, in FNSF , given
any argument X ∈ A′ s.t. XR′a, there exists B ∈ A′ s.t. either X ∈ A and BR′X , or
X ∈ att(A) and BR′x for an x ∈ X . From the analysis about powerful sets we can thus
observe that B has the power to attack any coherent set of X . Since E ′ is of the form
E ∪ att(E ), then B ∈ E ′ and thus E ′ has the power to defend a against attacks. Finally,
it is easy to see that both E ′ and {a} are coherent. Consequently, so is their union, and E ′

defends a completely. We can also note that if a given set of arguments C ⊆ A is defended
by E ′ in FNSF , then so are the arguments in att(C) by E ′ ∪ C – due to the fact that att
arguments are not attacked, only coherence analysis is required.

Let E ⊆ A be an admissible extension of SF . From the previous analysis it follows
that E ′ = E ∪ att(E ) is conflict–free and defends is members in FNSF . Moreover, as it
is also coherent, then we can conclude that E ′ is an admissible extension of FNSF .
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Let E ′ ⊆ A′ be an admissible extension in FNSF . This means that E ′ is strongly
coherent (i.e. conflict–free and coherent) and defends its members. We will first show that
E = E ′ ∩ A is conflict–free in SF . Assume it is not the case; this means there exists
B ⊆ E and x ∈ E s.t. BRx. If |B| = 1, then it has to be the case that B ∈ E ′ – if only
an attack containing B was present in E ′, the set could not have been coherent and thus
not admissible. For the same reason, x ∈ E ′. Since BR′x, then E ′ could not have been
conflict–free in FNSF and we reach a contradiction. Let us now focus on the |B| > 1
case. Again, x ∈ E ′, but it does not have to be the case that B ∈ E ′. Nevertheless,
it does hold that B ⊆ E ′ – the arguments had to appear in E after all and even if an
attack argument B′ ⊂ B was in E ′, then B′ ⊆ E ′ due to coherence. Since E ′ defends x,
then E ′ attacks every coherent set of B, which from the previous explanations means that
there is a, b ∈ E ′ s.t. b ∈ B and aR′b. Consequently, we reach a contradiction with the
conflict–freeness of E ′ again and can conclude that E has to be admissible in SF .

We can now focus on defense. If E is not admissible in SF , then it means that there
exists a set of arguments X ⊆ A and an argument s ∈ E , s.t. XRs and no B ⊆ E s.t.
BRx for some x ∈ X . Consequently, there is an argument X ∈ A′ and s ∈ E ′ s.t. XR′s
and no argument B ∈ E ′ s.t. BR′X (if X ∈ A) or BR′x for an x ∈ X (if X ∈ att(A)).
Thus, from the previous analysis we can see that the coherent set {X} (or {x1, ...xn, X}
for X = {x1, ..xn}) for X is not attacked by E ′. Therefore, E ′ could not have been
admissible in FNSF and we reach a contradiction. Thus, E is admissible in SF .

We can now move on to the complete semantics. Let E ⊆ A be a complete extension of
SF . We will show that E ′ = E ∪ att(E ) is complete in FNSF . We know it is admissible;
if it is not complete, then it means there exists an argument a ∈ A′ \ E ′ that is defended
by E ′. If a ∈ A, then we can repeat the previously done analysis to show that a /∈ E and
that E defends a in SF . This breaches the completeness of E . If a ∈ att(A), then due to
coherence part of defense in AFNs it has to be the case that a ⊆ E . However, from the
construction of E ′ it means that a ∈ E ′ and we reach a contradiction. Thus, E ∪ att(E ) is
complete in FNSF .

Let E ′ ⊆ A′ be a complete extension of FNSF . We can observe that in FNSF , no
attack argument is present without its normal arguments, and defending normal arguments
leads to defense of the attack arguments derived from them. Consequently, it can be shown
that every complete extension in FNSF is of the form S ∪ att(S), where S ⊆ A. Let us
now assume that E = E ′∩A is not complete in SF . We know it is admissible, thus, it has
to be the case that it defends an argument a /∈ E . From the previous analysis it follows
that if an argument is defended by E in SF , then it is defended by E ∪ att(E ). Since
E ′ is precisely E ∪ att(E ), it has to be the case that E ′ defends a in FNSF . As we have
assumed that a /∈ E , it holds that a /∈ E ′ and we contradict the completeness of E ′ in
FNSF . Consequently, E ′ ∩ A is complete in SF .

Let us now look at preferred semantics. Assume E is preferred in SF , but E ′ =
E ∪ att(A) is not preferred in FNSF . We know that E ′ is at least complete. By Theorem
2.95, it suffices to show that there is no AFN complete extension S s.t. E ′ ⊂ S. We know
that S ∩A is complete in SF by the previous parts of this proof and that E ⊆ (S ∩A). As

495



E is preferred, it can only be the case that E ′ ⊂ S, but E = S ∩ A. This means that there
is an attack argument b ∈ att(A) that is present in S, but not in E ′. However, it should
be clear from the previous parts of this proof that it cannot be the case and that it would
contradict completeness, admissibility or construction of E ′. Therefore E ′ is preferred in
FNSF .

Assume that E ′ ⊆ A′ is preferred in FNSF , but E = E ′ ∩ A is not preferred in
SF . By Theorems 2.24 and 2.95, this means there exists an complete extension S in SF
s.t. E ⊆ S. However, since S ∪ att(S) is a complete extension of FNSF and clearly
E ′ ⊂ (S ∪ att(S)), then E ′ could not have been preferred in the first place. We reach a
contradiction. Consequently, E is preferred in SF .

Assume E is grounded in SF , but E ′ = E ∪ att(E ) is not grounded in FNSF . By
Theorem 2.95, there must exist a complete extension S s.t. S ⊂ E . Since S ∩ A is also
a complete extension of SF , then it has to be that S ⊂ E ′, but (S ∩ A) = (E ′ ∩ A). We
can repeat the preferred analysis to show it cannot be the case and reach a contradiction.
Consequently E ′ is the grounded extension of FNSF .

The other direction of for grounded semantics is similar as in the preferred case. By
Theorems 2.24 and 2.95, we know that the grounded extension is the least AFN/SETAF
complete one. If E ′ is grounded in FNSF , then E ∩ A is complete in SF . If it is not
grounded in SF , then there exists a smaller complete extension, and following the proof
for the preferred semantics we can show that in such a case we are able to construct a
corresponding complete extension in FNSF that would contain E ′. This would contradict
E ′ being grounded and thus we can conclude that E ′∩A is the grounded extension of SF .

Finally, we come to the stable semantics. Assume E is stable in SF , but E ′ = E ∪
att(E ) is not stable in FNSF . By Theorem 2.24 we know that E is complete in SF ,
and therefore so is E ′ in FNSF . Thus, it has to be the case that there exists an argument
X ∈ A′ \ E ′ that is not in the deactivated set of E ′. This means that X is not attacked and
either is not supported by any set in N or receives sufficient support from E ′. If X ∈ A,
then it means it is not attacked by E ′ in FNSF . However, then X could not have been
attacked by E in SF as well and we reach a contradiction. If X ∈ att(A), then it can only
be the case it receives sufficient support from E ′. However, this breaches the construction
and completeness of E ′. Thus, E ′ is stable in FNSF .

By definition, every AFN stable extension is AFN complete. The same follows for
SETAF by Theorem 2.24. Let us assume that E ′ is stable in FNSF , but E = E ′∩A is not
stable in SF . This means there exists an argument a ∈ A \E s.t. there is no S ⊆ E , SRa.
However, this implies that there is no S ∈ E ′ s.t. SR′a, and since a requires no support
in FNSF , it could not have been in the deactivated set of E ′. Consequently, E ′ could not
have been stable in FNSF in the first place and we reach a contradiction. 2

Theorem 6.11. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. Then DSF is an AADF+ and a BADF. It is also
cleansed and weakly valid. If SF is minimal, then DSF is redundancy–free, relation and
strongly valid.
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Proof. Almost every property follows from Lemma 4.77. We only need to show that if SF
is minimal, then DSF is redundancy–free, relation and strongly valid. Based on the proof
of this Lemma, all links in DSF are attacking. However, some might be supporting as
well, which leads to redundancy. Let X ⊆ A carry out a (minimal) attack on an argument
a ∈ A and let x ∈ X . Since X is minimal, then X ⊆ {x} does not carry out an attack
on a. Consequently, upon translating, Ca(X ⊆ {x}) = in and Ca(X) = out. Hence, the
(x, a) link is not supporting and thus is not redundant. We can repeat this analysis for any
x and any attack in the framework and conclude that DSF is redundancy–free when SF is
minimal. Therefore, again by Lemma 4.77, it is relation and strongly valid. 2

Theorem 6.12. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. A set of arguments E is a conflict–free extension of
SF iff it is a conflict–free extension of DSF .

Proof. Assume E is conflict–free extension of SF , but not of DSF . This means that there
exists an argument e ∈ E s.t. @E ′ ⊆ E , E ′Re, but Ce(E ∩ par(e)) = out. However,
by Translation 31, if E ∩ par(e) is mapped to out, then ∃E ′ ⊆ E s.t. E ′Re. We reach a
contradiction.

Now assume E is conflict–free in DSF , but not in SF . Hence, there is an argument
e ∈ E s.t. Ce(E ∩ par(e)) = in, but ∃E ′ ⊆ E s.t. E ′Re. Again, by Translation 31 it is
easy to see that it cannot be the case. 2

Lemma 6.13. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. Let E be a conflict–free extension of SF (and thus
of DSF ). The discarded set of E in SF coincides with the discarded set of E in DSF .

Proof. We will refer to the discarded set of E in SF with E att in order to avoid confusion.
Let a ∈ A be an argument in DSF . We can observe that any minimal decisively

in interpretation for a will have an empty t part and the f one will correspond to those
(minimal) subsets T ⊆ A s.t. ∀S ⊆ A, if SRa then T ∩ S 6= ∅. We can thus construct
trivial evaluations for a that will always be acyclic.

Let a ∈ E att be in the discarded set of SF . Therefore, ∃E ′ ⊆ E s.t. E ′Ra. Based on
the previous explanations, we can observe that for any minimal decisively in interpretation
v for a, vf ∩E ′ 6= ∅. Hence, any evaluation constructed for a will be blocked by E in DSF

and E att ⊆ E+.
By Proposition 2.150, the acceptance condition of any argument in E+ in DSF evalu-

ates to out under E . And by construction, the acceptance condition of an argument is out
w.r.t. E if ∃E ′ ⊆ E attacking this argument in SF . Hence, whatever is in E+ ⊆ E att. We
can therefore conclude that the discarded sets coincide. 2

Lemma 6.14. Let SF = (A,R) be a SETAF andDSF = (A,L,C) its corresponding ADF
obtained through Translation 31. A conflict–free set of arguments E defends an argument
a ∈ A in SF iff a is decisively in w.r.t. vE in DSF .
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Proof. We will refer to the discarded set of E in SF with E att in order to avoid confusion.
Let E ⊆ A be a conflict–free extension of SF . By Theorem 6.12, E is a conflict–

free extension DSF as well. Moreover, by Lemma 6.13, E att = E+. Assume that a is
defended by E in SF , but is not decisively in w.r.t. the standard range vE of E in DSF . If
a is not decisively in w.r.t. vE , it means there exists a completion v′ of vE to E ∪ par(a)
s.t. Ca(v′t ∩ par(a)) = out. This means that v′t ∩ par(a) contains a set of arguments E ′

s.t. E ′Ra. Since the set can be mapped to t in the completion, none of its members is
mapped to f in vE and thus none of them appears in E+. Consequently, none of them is in
E att either. Therefore, E could not have defended a in SF . We reach a contradiction.

Let E ⊆ A be conflict–free in DSF and thus in SF . Assume that a ∈ A is decisively
in w.r.t. vE , but is not defended by E . This means there exists a set of arguments B s.t.
BRa and B ∩E att = ∅. Consequently, there exists a set of arguments B s.t. Ca(B) = out
and B ∩ E+ = ∅. If this is the case, then obviously a cannot be decisively in w.r.t. vE and
we reach a contradiction. 2

Theorem 6.15. Let SF = (A,R) be a SETAF and DSF = (A,L,C) its corresponding
ADF obtained through Translation 31. A set of arguments E ⊆ A is a conflict–free ex-
tensions of SF iff it is (pd–acyclic) conflict–free in DF . E ⊆ A is a stable extensions of
SF iff it is (stable) model of DF . E ⊆ A is a grounded extensions of SF iff it is (acyclic)
grounded inDF . E ⊆ A is a σ extensions of SF , where where σ ∈ {admissible, preferred,
complete} iff it is an xy–σ–extension of DF for x, y ∈ {a, c}.

Proof. Due to the fact that the semantics classification collapses for DSF (see Theorems
2.172 and 6.11), it suffices to focus only on the conflict–free, grounded, model, and the
cc–types of the ADF semantics.

Conflict–freeness was already proved in Theorem 6.12. The fact that admissible ex-
tensions coincide follows straightforwardly from Theorem 6.12 and Lemma 6.14. Taking
the ones maximal w.r.t. set inclusion obviously preserves it, thus preferred extensions cor-
respond as well. Due to the correspondence between decisiveness and defense as seen
in Lemma 6.14, complete extensions naturally coincide. By Theorem 2.24, the grounded
extension of SF is the least w.r.t. set inclusion complete one. By Theorem 2.158, the
grounded extension of DSF is the least w.r.t. set inclusion cc–complete one. Therefore,
the grounded extension is the same for both frameworks.

Let us finish with the analysis of stability. Assume E is stable in SF , but not in DSF .
This means that E is conflict–free in SF and E att = A \ E. By Theorems 6.12, 2.172,
6.11 and Lemma 6.13, E is pd–acyclic conflict–free in DSF and E att = E+. Hence,
E+ = A \ E . All arguments in E+ are decisively out w.r.t. vE , and thus there may be no
argument e ∈ E+ s.t. Ce(E ∩ par(e)) = in. Therefore, the stability criterion in DSF is
satisfied.

Every ADF stable extension is a model, which is conflict–free in DSF and thus also in
SF . By Lemma 2.159 and Theorems 2.172, we have that E+ = A \ E in DSF . Thus, by
Theorem 6.13, every argument inA\E is attacked by E .Thus, SETAF stability conditions
are satisfied. 2
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15.5 Translating AFRAs: Proof Appendix

Theorem 7.2. Let FR = (A,R) be an AFRA and F FR
m = (A′, R′) its corresponding

AF obtained through Translation 33. If E ⊆ A ∪ R is a σ–extension of FR, where σ ∈
{conflict–free, complete, preferred, grounded, stable}, then E ′ = E ∪{x′ | x ∈ (A∩E+)}
is a σ–extension of F FR

m , where E+ = {x | ∃y ∈ E s.t. y defeats x} is the discarded set
of E in FR. This does not necessarily hold for admissible semantics. If E ′ ⊆ A′ is a σ′–
extension of F FR

m , where σ′ ∈ {admissible, complete, preferred, grounded, stable}, then
E = E ′∩(A∪R) is a σ′–extension of FR. This does not necessarily hold for conflict–free
semantics.

Proof. Let E ⊆ A ∪ R be a conflict–free extension of FR. However, let us assume that
E ′ = E ∪ {x′ | x ∈ (A ∩ E+} is not, i.e. there are arguments a, b ∈ E ′ s.t. aR′b in F FR

m .
Let us assume that a ∈ A ∩ E ′. This means that b is a primed version of a. Since primed
arguments are introduced into E ′ only for those arguments that are defeated by E and E
cannot defeat any argument it contains due to conflict–freeness, we reach a contradiction.
Let us assume that a ∈ X ′ ∩ E ′. This means that b is a conflict argument s.t. a is the
source of b in FR. However, by the construction of E ′ it means that E defeats a. Thus,
it defeats b as well and again we reach a contradiction with the conflict–freeness of E in
FR. Let now a ∈ R ∩ E ′. It can be easily observed from the translation that if a attacks
any argument b in E ′, then a corresponding conflict is present in E , and the set could not
have been conflict–free in FR. Thus, we can finally conclude that if E is conflict–free in
FR, then so is E ′ in F FR

m .
Let E ′ ⊆ A′ be a conflict–free extension of F FR

m . The set E = E ′∩ (A∪R) is not nec-
essarily a conflict–free extension of FR. This is due to the fact that indirect defeats in FR
become indirect attacks in F FR

m (i.e. the path between arguments is of odd length and big-
ger than 1). However, AF conflict–freeness only takes direct ones into account. Consider
a simple Dung–style AFRA ({a, b, c}, {(a, b), (b, c)}) and its corresponding meta–level
AF ({a, b, c, (a, b), (b, c), a′, b′, c′}, {(a, a′), (b, b′), (c, c′), (a′, (a, b)), (b′, (b, c)), ((a, b), b),
((b, c), c)}). We can observe that (a, b) does not attack (b, c) and thus those two arguments
form a conflict–free set in the presented AF, even though (a, b) (indirectly) defeats (b, c)
in the original AFRA.

Let us continue with the admissible semantics. Let E ⊆ A ∪ R be an admissible
extension of FR. The set E ′ = E ∪ {x′ | x ∈ (A ∩ E+} is not necessarily admissible in
F FR
m . We will use the same framework as in the conflict–freeness analysis. We can observe

that the attack (a, b) forms an admissible extension of its own, as it is not defeated by
any other conflict. However, {(a, b)} is not an admissible extension of the corresponding
meta–level AF; it is attacked by a′. Only {a, (a, b)} is admissible, but it is not the set we
have assumed in the original AFRA.

Let E ′ ⊆ A′ be an admissible extension of F FR
m . Let us first assume that E =

E ′ ∩ (A ∪ R) is not conflict–free in FR. From the construction of F FR
m we can observe

that if an attack in E was directly defeating an argument or another attack in E , then the
corresponding arguments would also be in conflict. We are only left with the option that an
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attack X in E is indirectly defeating another attack Y in E , i.e. trg(X) = src(Y ). How-
ever, in F FR

m , the Y attack argument cannot appear in an admissible extension without its
source argument, since src(Y ) defends Y against src(Y )′. Consequently, the arguments
corresponding to X , Y and src(Y ) in F FR

m are in E ′ and there is a conflict in R′ between
X and src(Y ). Thus, E ′ could not have been conflict–free in F FR

m in the first place and we
reach a contradiction. We have now established that E is conflict–free in FR; let us now
assume that E is not admissible. This means that there is an attack Z ∈ R and an element
W ∈ E s.t. Z defeatsW and no attack Y ∈ E s.t. Y defeats Z. First of all, this means that
the attack argument Z is in conflict in R′ either with the argument representing the source
of W (if applicable) or the argument for W in F FR

m . From the previous explanations we
can observe that both W and its possible source need to be in E ′. Thus, there is some con-
flict carried out against E ′ in F FR

m . If there is no attack Y ∈ E defeating Z, then neither
the argument for Z nor the argument for its source are attacked by any conflict argument
in E ′. Moreover, if the argument for the source is not attacked, then its primed argument
cannot be in E ′ due to the admissibility of E ′. Consequently, the meta–argument for W
is not defended by E ′ in F FR

m and as it is contained in E ′, we reach a contradiction with
admissibility of E ′. Thus, we can conclude that if E ′ is admissible in F FR

m , then so is E in
FR.

Let E ⊆ A ∪ R be a complete extension of FR. Let us assume that E ′ = E ∪ {x′ |
x ∈ (A ∩ E+} is not complete in F FR

m . By previous analysis, E ′ is admissible in F FR
m .

Therefore, it has to be the case that there is an argument x ∈ A′ \ E ′ that is defended by
E ′ in F FR

m . Let us assume that x is a standard argument a ∈ A. This means that every
(y, a) argument in A′ is attacked by E ′, i.e. either (z, (y, a)) ∈ E ′ or y′ ∈ E ′. If it is
the first case, then by the construction of E ′, (z, (y, a)) ∈ E and a is defended by E . If
it is the latter, then again by the construction of E ′, y is defeated by E and thus so is the
(y, a) attack. Therefore, E defends a and as a /∈ E , we reach a contradiction with the
completeness of E in FR. Let us now assume that x = a′ for an argument a ∈ A. This
means that a is attacked by E ′ and thus there is an argument (y, a) in E ′. However, from
this follows that (y, a) ∈ E and that E defeats a. Thus, we reach a contradiction with the
construction of E ′. Finally, let x = (a, j) for a ∈ A and j ∈ A ∪ R. As it is defended by
E ′, then it is defended from a′ and therefore it has to be the case that a ∈ E ′. Moreover,
for any attack argument (z, (a, j)), either z′ ∈ E ′ or (v, (z, (a, j))) ∈ E ′. This means that
first of all, a ∈ E and (a, j) is defended by E from indirect defeats. If z′ ∈ E ′, then by the
construction of E ′, E defeats z and thus indirectly defeats (z, (a, j)). If (v, (z, (a, j))) ∈
E ′, then (v, (z, (a, j))) ∈ E and E directly defeats (z, (a, j)). Therefore, x is defended by
E even though x /∈ E . We thus reach a contradiction with the completeness of E and can
conclude that if E is complete in FR, then so is E ′ in F FR

m . We can also observe that E ′

is the only complete extension of F FR
m associated with E . Only the primed arguments are

not directly defined by E . However, since we include a′ for every (x, a) ∈ E , then every
(x, a) ∈ E ′ has the power to defend a′ in F FR

m . From this and the described proof we can
observe that {x′ | x ∈ (A∩E+} is precisely the set of auxiliary arguments that a complete
extensions associated with E can have.
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Let now E ′ ⊆ A′ be a complete extension of F FR
m . Let us assume that E = E ′∩(A∪R)

is not complete in FR. By previous parts of this proof, E is admissible in FR. Therefore,
it has to be the case that there is an element x ∈ (A ∪ R) \ E that is acceptable w.r.t. E .
Firstly, we will consider the case in which x is an argument in A. As it is defended by
E , then every attack (x, a) is directly or indirectly defeated by E , i.e. there exist either
(z, (x, a)) ∈ E or (y, x) ∈ E . Therefore, either (z, (x, a)) ∈ E ′ or (y, x) ∈ E ′. If it is
the first case, then clearly (x, a) is attacked by E ′ and thus a is defended. If it is the latter,
then by completeness, E ′ contains x′. As x′ attacks (x, a) in R′, then a is again defended
by E ′. We can also observe that these are the only possible attacks on a in F FR

m and thus
we reach a contradiction with the completeness of E ′. Let us now consider the case in
which x is an attack in R. If it is acceptable w.r.t. E , then every attack at x or at the
source of x is defeated by E . By Lemma 2.32 we can observe that if x is acceptable w.r.t.
E , then so is its source. Thus, from the previous explanations it holds that src(x) ∈ E ′.
Moreover, src(x) is defended by E ′ due to admissibility and thus the attack argument
for x is defended from src(x)′. Therefore, we need to focus only on direct attacks on x.
From acceptability w.r.t. E it follows that for every attack (y, x), there is either an attack
(z, (y, x)) ∈ E or (z, y) ∈ E . If it is the first case, then the AF argument for (z, (y, x))
attacks the AF version of (y, x) and thus x is defended from attacks. If it is the latter, then
(z, y) ∈ E ′ and thus y′ ∈ E ′. Consequently, (y, x) is attacked by E ′ and again the attack
argument for x is defended. Therefore, we reach a contradiction with the completeness of
E ′ and can conclude that if E ′ is a complete extension of F FR

m , then so is E of FR.
From previous parts of this proof it should be clear that there is one to one relation

between the complete extensions of FR and F FR
m . Furthermore, it holds that if E1 ⊂ E2

in FR, then E ′1 ⊂ E ′2 in F FR
m . Consequently, we can use Theorems 2.10 and 2.38 to show

that the described relation for the preferred and grounded semantics is true. What remains
to be shown is the relation between the stable extensions.

Let E ⊆ A be a stable extension of FR and assume that E ′ = E ∪{x′ | x ∈ (A∩E+)}
is not stable in F FR

m . We know that E ′ is conflict–free in F FR
m This means there is an

argument x ∈ A′ \ E ′ that is not attacked by E ′. If x is an argument a ∈ A, then it cannot
be the case that there is an attack argument (b, a) ∈ E ′. Thus, there is no (b, a) ∈ E and a
is not attacked by E . We reach a contradiction with the stability of E in FR. Let x = a′

for a ∈ A. If it is not attacked by E ′, then a /∈ E ′ and thus a /∈ E . If a /∈ E , then by
stability of E , there is an attack (b, a) ∈ E . Consequently, E defeats a and we reach a
contradiction with the construction of E ′. Finally, let x = (e, a) for e ∈ A, a ∈ A ∪ R be
an attack argument. If it is not attacked by E ′, then e′ /∈ E ′ and there is no attack argument
(f, (e, a)) in E ′. By the construction of E ′, if e′ /∈ E ′, then e ∈ E . If there is no attack
argument (f, (e, a)) ∈ E ′, then there is no (f, (e, a)) ∈ E . Therefore, (e, a) is not defeated
by E even though it is outside of the extension. We reach a contradiction with the stability
of E in FR. Thus, if E is stable in FR, then so is E ′ in F FR

m .
Let now E ′ ⊆ A′ be a stable extension of F FR

m . Let us assume that E = E ′ ∩ (A ∪R)
is not stable in FR. We know it is conflict–free in FR. This means there is an element
x ∈ (A ∪ R) \ E that is not defeated by E , i.e. there is neither an attack (a, x) in E
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nor (a, src(x)) in E in case x ∈ R. This means that (a, x) /∈ E ′ and src(x)′ /∈ E ′.
Consequently, E ′ cannot attack any argument representing x. We reach a contradiction
with the stability of E ′ and can finally conclude that if E ′ is stable in F FR

m , then so is E in
FR. 2

Theorem 7.3. Let FR = (A,R) be an AFRA and BF FR = (A′, R′, S) its corresponding
BAF obtained through Translation 34. Let Rsec be the collection of first–tier secondary
attacks in BF FR. E ⊆ A ∪ R is a conflict–free (stable, d–grounded) extension of FR
iff it is +conflict–free (stable, d–grounded) in BF FR w.r.t. Rsec. E is a σ–extension of
FR, where σ ∈ {admissible, complete, preferred}, iff it is a d–σ–extension of FR w.r.t.
(Rsec, Rsec).

Proof. Let a, b ∈ A∪R be two elements in FR. We can observe that a directly defeats b in
FR iff (a, b) ∈ R′ inBF FR. If a indirectly defeats b in FR, then it directly defeats src(b).
Consequently, (a, src(b)) ∈ R′ and (src(b), b) ∈ S, and a secondary attacks b in BF FR.
Let now a, b ∈ A′ be arguments s.t. a secondary attacks b in BF FR. We can observe that
in our framework, an argument supporting any other argument cannot be supported itself.
Thus, it suffices to focus on direct supports in our analysis. If a secondary attacks b, then
there is an argument c ∈ A s.t. (c, b) ∈ S and (a, c) ∈ R′. By the construction of BF FR

this means that a directly defeats c and c is the source of b. Therefore, a indirectly defeats
b in FR.

From this conflict analysis it follows easily that an element a ∈ A ∪ R is acceptable
w.r.t. E ⊆ A ∪ R in FR iff E defends a w.r.t. Rsec in BF FR. Consequently, the char-
acteristic operator of FR and the d–characteristic operator of BF FR w.r.t. Rsec coincide.
Therefore, E is the grounded extension of FR iff it is the d–grounded extension of BF FR

w.r.t. Rsec.
The fact that the conflict–free and +conflict–free w.r.t. Rsec extensions coincide be-

tween the frameworks is a result of the correspondence between defeats and direct and
indirect attacks in FR and BF FR. Based on the defense analysis, it can be shown that the
(d–) admissible, (d–) preferred and (d–) complete extensions w.r.t. Rsec also coincide in
FR and BF FR. From the conflict–freeness and attack analysis we can conclude that the
stable extensions in both frameworks are the same as well. 2

Theorem 7.6. Let FR = (A,R) be an AFRA and FNFR = (A′, R′, N ′) its corresponding
AFN obtained through Translation 35. If a set E ⊆ A ∪ R is a σ–extension of FR,
where σ ∈ {conflict–free, complete, preferred, grounded, stable}, then it is a σ–extension
of FNFR. If E = E src is admissible in FR, then it is admissible in FNFR and if it is
conflict–free in FR, it is strongly coherent inFNFR. It might not be the case for E 6= E src.

Not every conflict–free extension of FNFR is conflict–free in FR. If a set E ′ ⊆ A′

is strongly coherent in FNFR, then it is conflict–free in FR. If a set E ′ ⊆ A′ is a σ′–
extension of FNFR, where σ′ ∈ {admissible, complete, preferred, grounded, stable}, then
E ′ is a σ′–extension of FR.
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Proof. Let E ⊆ A ∪ R be a conflict–free extension of FR. This means there are no
V,W ∈ E s.t. V defeats W . If there are no two elements directly defeating each other,
then by Translation 35 there are no two AFN arguments V,W s.t. V R′W . Thus, E is
conflict–free in FNFR. We can observe that E does not have to be coherent (and thus
strongly coherent) in FNFR. A set consisting of a single attack where the source and
target are different will form a conflict–free set of its own. However, since the source of
the attack is not present in the set, the coherence restrictions are not satisfied.

Let us now assume that E src ⊆ A∪R is conflict–free in FR. We know that it is at least
conflict–free in FNFR. By Theorem 7.4, FNFR is stronly valid. We can observe that if
a ∈ E ∩ A in FR, then a is trivially coherent in E src in FNFR. If a ∈ E ∩ R, then we
know that src(a) ∈ E src and thus a is sufficiently supported through N ′. Consequently, a
is coherent in E src in FNFR and we can finally conclude that E src is strongly coherent in
FNFR.

Let E ′ ⊆ A′ be conflict–free in FNFR. We will show it does not have to
be conflict–free in FR. Let us assume that FR = ({a, b, c}, {(a, b), (b, c)})
is a simple, AF–style AFRA. The corresponding AFN is FNFR =
({a, b, c, (a, b), (b, c)}, {((a, b), b), ((b, c), c)}, {({a}, (a, b)), ({b}, (b, c))}). The set
{(a, b), (b, c)} is conflict–free in FNFR; the indirect attacks are not taken into account by
the AFN conflict–freeness. However, indirect defeats do count in AFRA conflict–freeness,
and (a, b) indirectly defeats (b, c) and the set is not conflict–free in FR.

Let E ′ ⊆ A′ be strongly coherent in FNFR. Since it is conflict–free, there are no
two arguments V,W ∈ A′ s.t. V R′W . By Translation 35 this means that there is no
direct defeat in E ′ in FR. Now, due to coherence, for every V ∈ E ′ ∩ R it holds that
src(V ) ∈ E ′. Therefore, by AFN conflict–freeness it cannot be the case that there exists
Y ∈ E ′ s.t. Y R′src(V ) in FNFR. Consequently, there can be no indirect defeats in E ′ in
AFRA either, and E ′ is conflict–free in FR.

Having analyzed conflict–freeness and coherence, we can now move on
to admissibility. Let E ⊆ A ∪ R be an admissible extension of FR.
It does not have to be coherent in FNFR. We can again assume that
FR = ({a, b, c}, {(a, b), (b, c)}) and that its corresponding AFN is FNFR =
({a, b, c, (a, b), (b, c)}, {((a, b), b), ((b, c), c)}, {({a}, (a, b)), ({b}, (b, c))}). The extension
{(a, b), c} is admissible in FR. However, due to lack of a, it is not even coherent in FNFR,
let alone admissible.

Let E src ⊆ A ∪ R be an admissible extension of FR. We know it is at least strongly
coherent in FNFR. Consequently, in order to show the defense, we need to prove that
any coherent set C ⊆ A′ s.t. ∃c ∈ C, a ∈ E src, cR′a, is in turn attacked by E src. Let us
assume it is not the case. Any AFN argument has a single minimal coherent set, namely
{x} for x ∈ A and {src(x), x} for x ∈ R. It is easy to see that if there exists an unattacked
coherent set, then the minimal one cannot be attacked either. Assume that argument a ∈
E src is not defended by FNFR. This means that it is attacked by some argument x ∈ A′
and neither x nor src(x) (if applicable) are attacked. From the construction of FNFR it
follows that x directly defeats a and there is no argument (directly or indirectly) defeating
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x in E src in FR. Thus, a could not have been acceptable w.r.t. E src in FR. We reach a
contradiction with the assumptions. Hence, it has to be the case that E src is admissible in
FNFR.

Let E ′ ⊆ A′ be admissible in FNFR. Since it is coherent, it is easy to see that E ′ =
E ′src. We know that E ′ is at least conflict–free in FR. What remains to be shown is that
all arguments in E ′ are acceptable w.r.t. E ′ in FR. Let us assume this is not the case,
i.e. ∃a ∈ E ′, V ∈ R s.t. V defeats a and there is no X ∈ E ′ s.t. X defeats V . If V
directly defeats a, then by the construction of FNFR, V R′a. If V defeats a indirectly,
then V R′src(a), which by the fact that E ′ = E ′src means that E ′ is still attacked by V
in FNFR. Since there is no X ∈ E ′ s.t. X defeats V , this means that (X, V ) /∈ R′ and
(X, src(V )) /∈ R′. Consequently, E ′ could not have attacked any coherent sets containing
V in and thus could not have been admissible in FNFR in the first place. We reach a
contradiction. Therefore, E ′ has to be admissible in FR.

Let us now assume that E ⊆ A ∪ R is complete in FR. By Lemma 2.32 it is easy to
see that E = E src. This means that E is at least admissible in FNFR. Let us now assume
that it is not AFN complete; this means there exists an argument a /∈ E which is defended
by E . Since a is defended, then either a ∈ A or jointly a ∈ R and src(a) ∈ E . Moreover,
for any argument V ∈ A′ attacking a, E attacks {V } or {V, src(V )} if V ∈ R. Therefore,
E defeats any direct defeater of a in FR. If a ∈ A, then it has only direct defeaters, and
therefore E defends a in FR; we reach a contradiction with the completeness of E in FR.
Let us thus assume that a ∈ R. Since src(a) ∈ E and src(a) is defended by E , then from
the previous parts of the proof we can observe that this means that any element indirectly
defeating a is also defeated. Consequently, a must have been acceptable w.r.t. E in FR
and thus E could not have been complete in the first place. We reach a contradiction again.
Therefore, we can conclude that E is complete in FNFR.

Let us now assume that E ′ ⊆ A ∪ R is complete in FNFR, but not in FR. We know
it is at least admissible in FR. Moreover, since it is strongly coherent in FNFR, it is easy
to see that E ′ = E ′src. If E ′ is not AFRA complete, this means there exists an element
a ∈ (A ∪ R) \ E ′ which is acceptable w.r.t. E ′. Consequently, all elements defeating a
are in turn defeated by E ′. If a ∈ A, then for every V ∈ (A ∪ R) s.t. a = trg(V ), there
exists W ∈ E ′ s.t. V = trg(W ) or src(V ) = trg(W ). Consequently, by the construction
of FNFR, it follows that V R′a and either WR′V or WR′src(V ) in FNFR. Therefore,
E ′ has the power to attack any coherent set for V , and as {a} ∪ E ′ is trivially coherent,
then a must have been defended by E ′. We reach a contradiction. Thus, let us focus on the
case where a ∈ R. If a is acceptable w.r.t. E ′ in FR, then by Lemma 2.32, so is src(a).
If src(a) /∈ E ′, then we can repeat the previous analysis and reach a contradiction with
our assumptions. If src(a) ∈ E ′, then {a} ∪ E ′ is coherent. Moreover, since E ′ directly
or indirectly defeats any direct attacks on a, then by all the analysis done above we can
conclude that any coherent set attacking a is also in turn attacked. Consequently, a had to
be defended by E ′ in FNFR and E ′ could not have been complete in the first place. We
reach a contradiction. Therefore, E ′ is complete in FR.

We have shown that complete extensions between FR and FNFR coincide. By using
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Theorems 2.38 and 2.95 we can conclude that also preferred and grounded extensions
coincide. What remains to be shown is stability.

Let us assume that E ⊆ A ∪ R is stable in FR. We know it is at least complete in
FNFR by Theorem 2.38 and the previous parts of the proof. Moreover, E directly or
indirectly defeats any element V /∈ E in FR. By the construction of FNFR, this means
that for every V /∈ E , there exists W ∈ E s.t. either WR′V or WR′src(V ). If it is the
first case, then naturally V ∈ E+. If it is the latter, then due to conflict–freeness it has to
be the case that src(V ) /∈ E . Consequently, ∃Y ∈ A′ s.t. Y /∈ E and {Y }N ′V , which
again means that V ∈ E+. Therefore, E is stable in FNFR.

Let us now assume that E is stable in FN . We know it is at least conflict–free in FR.
Consider an argument a ∈ E+. If there exists an argument Y ∈ E s.t. Y R′a, then Y
directly defeats a in FR. If a is in the deactivated set due to lack of support, then it means
that there exists V ∈ A′ s.t. V /∈ E and {V }N ′a. Since V = src(a), then V ∈ A.
Moreover, as V /∈ E and there exists no set supporting V through N ′, then it has to be
the case that E attacks V in R′. Thus, a is indirectly defeated by E in FR and we can
conclude that E is AFRA stable. 2

15.6 Translating EAFs and EAFCs: Proof Appendix
Theorem 8.2. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF s.t. there
are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R and EFCEF its corresponding
EAFC obtained trough Translation 36. A set E ⊆ A is a σ–extension of EF , where σ ∈
{conflict–free, admissible, complete, preferred, grounded, stable}, iff it is a σ–extension
of EFC.

Proof. This theorem is easily proved by Lemma 2.60. On the listed types of EAFs, the
conflict–freeness definition can be replaced with a defeat based one. Consequently, the
EAF and EAFC semantics are defined in the same manner and share their extensions. 2

Theorem 8.4. Let EFC = (A,R,D) be a bounded hierarchical EAFC or an EAFC
s.t. there are no arguments a, b ∈ A for which (a, b), (b, a) ∈ R and EFEFC its
corresponding EAFC obtained trough Translation 37. If E ⊆ A is a σ–extension of
EFC, where σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable} then
E ′ = E ∪ {(a, (b, c)) | (a, (b, c)) ∈ GrD, a ⊆ E} ∪ {x′ | E defeatsE x and there is a
reinstatement set for this defeat on E} is a σ–extension of EFEFC . If E ′ ⊆ A′ is a σ′–
extension ofEFEFC , where σ′ ∈ {admissible, complete, preferred, grounded, stable} then
E = E ′ ∩ A is a σ′–extension of EFC. This does not necessarily hold for conflict–free
semantics.

Proof. Let E ⊆ A be a conflict–free extension of EFC. We will show that if E does not
defeatE an argument a ∈ A in EFC, then E ′ = E ∪ {(a, (b, c)) | (a, (b, c)) ∈ GrD, a ⊆
E} ∪ {x′ | E defeatsE x and there is a reinstatement set for this defeat on E} does not
defeatE ′ an argument a ∈ A in EFEFC . Assume it is not the case, i.e. a is not defeatedE
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by E , but is defeatedE ′ by E ′. By construction, R′ ∩ (A×A) = R. Therefore, it can only
be the case that there is an argument b in E (thus, one in E ′) attacking a, but while there is
a defense attack for it carried out by c ⊆ E , there is none in E ′. However, if |c| = 1, then
(c, (b, a)) ∈ D′, and if |c| > 1, then ((c, (b, a)), (b, a)) ∈ D′ and by the construction of E ′,
(c, (b, a)) ∈ E ′. In other words, a defense attack is present, and we reach a contradiction.
Furthermore, we can observe that if a primed argument is included in E ′, then due to the
conflict–freeness of E , the argument it represents cannot be in E ′ and neither any defense
attack argument it takes part in carrying out. Thus, we can finally conclude that E ′ is
conflict–free in EFC.

Let E ′ ⊆ A′ be a conflict–free extension of EFEFC . To show that E = E ′ ∩ A is
not necessarily conflict–free in EFC, let us look at the frameworks depicted in Figure
67. While {({a, b, c}, (d, e)), d, e} is a conflict–free extension of the corresponding EAF,
{d, e} is not conflict–free in the source EAFC.

Let E ⊆ A be an admissible extension of EFC. The corresponding set E ′ ⊆ A′

is conflict–free in EFEFC . We will show that if a ∈ E defeatsE an argument b ∈ A
and there is a reinstatement set for this defeatE in E , then a defeatsE ′ b and there is a
reinstatement set for this defeatE ′ in E ′. First of all, if a defeatsE b, then (a, b) ∈ R
and there is no c ⊆ E s.t. (c, (a, b)) ∈ D. By the translation and the construction of
E ′, this means that (a, b) ∈ R′ and there is either no c ∈ E ′ s.t. (c, (a, b)) ∈ D′ or no
(c, (a, b)) ∈ E ′ s.t. ((c, (a, b)), (a, b)) ∈ D′. Thus a defeatsE ′ b. Let the set of pairs
RE = {(x1, y1), ..., (xn, yn)} be the reinstatement set for the defeatE by a on b. We will
transform it into a reinstatement set for this defeat in EFEFC . We can observe that RE is
a reinstatement set for any of the defeats in the set. This means that for every yi, its primed
version (if it exists) is in E ′. Let (y′, (d, (e, f))) ∈ R′ be an arbitrary attack carried out by
a primed argument. We can observe that by the construction ofEFEFC , it is never defense
attacked. Thus, {(y′, (d, (e, f)))} is a trivial reinstatement set for this defeat. Let P ⊆ R′

be the collection of all attacks carried out by the primed arguments present in E ′. We will
now show that RE ∪ P is a reinstatement set for the a–b defeat in E ′ in EFEFC . First of
all, based on the previous discussions, we can observe that every pair in the set is a defeat
w.r.t. E ′. Let now (zi, (xi, yi)) ∈ D′ be a defense attack on any of the pairs in RE ∪ P .
From the explanations on reinstatement sets for defeats by primed arguments we can see
that it suffices to focus on RE . If (zi, (xi, yi)) ∈ D \GrD, then due to the fact that RE is a
reinstatement set inEFC,RE contains a suitable defeat on zi. If (zi, (xi, yi)) ∈ GrD, then
by the construction of E ′ there is an argument z ∈ zi s.t. z′ ∈ E ′ and by the construction of
EFEFC , (z′, (zi, (xi, yi))) ∈ R′. Moreover, (z′, (zi, (xi, yi))) ∈ P . Therefore, a suitable
defeat for the defense attack is present in RE ∪ P again. Thus, RE ∪ P is a reinstatement
set for the defeatE ′ by a on b.

Based on this explanation it now holds that every argument a ∈ E ′ ∩ A is accept-
able w.r.t. E ′. Furthermore, based on the construction of E ′ and previous explanations,
every argument a ∈ E ′ ∩ X ′ is also acceptable w.r.t. E ′. For a given defense argument
(c, (b, a)) ∈ E ′ ∩ GrD it is the case that c ⊆ E ′. Since (c, (b, a)) is attacked only by
arguments x′ s.t. x ∈ c and no (x, x′) ∈ R′ attack can be defense attacked in EFEFC , then
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{(x, x′)} is a trivial reinstatement set for the x–x′ defeat and (c, (b, a)) is acceptable w.r.t.
E ′. We can thus finally conclude that if E is admissible in EFC, then so is E ′ in EFEFC .

Let E ′ ⊆ A′ be an admissible extension of EFEFC . Let us assume that E = E ′ ∩ A
is not conflict–free in EFC. Since R ⊆ R′, this can only be the case that there is an
attack (a, b) ∈ R for a, b ∈ E that is defense attacked in D′ by an element c ∈ E ′, but
not in D by any argument in E . If c ∈ A, then c ∈ E and (c, (a, b)) ∈ D. Consequently,
the (a, b) conflict is defense attacked in D by E . If c = (d, (a, b)) ∈ GrD, then by the
admissibility of E ′ in EFEFC , d ⊆ E ′ and thus d ⊆ E . Therefore, we can conclude that
if (a, b) is defense attacked in D′ in E ′, then it is defense attacked in D in E . Thus, we
reach a contradiction and E is conflict–free in EFC. Let a ∈ E be an argument for which
there exists an argument b ∈ A s.t. b defeatsE a. We can observe that b defeatsE ′ a as
well; first of all, (b, a) ∈ R ⊆ R′ and if E ′ contained a defense attacking argument, then
the set carrying out the attack would have to (due to defense) be contained in E ′ and thus
in E . By the admissibility of E ′, it means that there exists c ∈ E ′ defeatingE ′ b in a way
that this defeat has a reinstatement set. Let RE ′ be a suitable reinstatement set. Based on
the previous discussions, we can notice that any attack carried out by a primed argument
x′ ∈ E ′ is a defeat and that this defeat forms a reinstatement set of its own. Thus, we can
add it to RE ′ , and RE ′ is still a reinstatement set. Moreover, x′ is acceptable w.r.t. E ′, and
thus x is in turn defeated by E ′ with reinstatement. Let us add this reinstatement set to
RE ′ as well; again, RE ′ remains a reinstatement set. We will now continue analysis with
the completed version of RE ′ .

We can observe that if c defeatsE ′ b and b ∈ A, then c ∈ A. Moreover, if c defeatsE ′

b, then c defeatsE b as well – what remains to be shown that this defeat is reinstated. We
will now prove that RE = {(x1, y1), ..., (xn, yn)} = RE ′ ∩ R is a suitable reinstatement
set for this defeat in EFC. Let us assume it is not the case; this means there exists a
set F ⊆ A s.t. (F, (xi, yi)) ∈ D and no (e, f) ∈ RE for an argument f ∈ F . By the
construction of EFEFC , it means that either |F | = 1 and (F, (xi, yi)) ∈ D′, or |F | > 1
and ((F, (xi, yi)), (xi, yi)) ∈ D′. If it is the first case, then there is a suitable (e, F ) ∈ RE ′

and thus inRE ; we reach a contradiction. If it is the latter, then there is an argument f ∈ F
s.t. f ′ ∈ E ′ and (f ′, (F, (xi, yi))) ∈ RE ′ . Based on the modifications done do RE ′ and
the way R′ is constructed, we can observe that there is a defeatE (g, f) ∈ RE ′ and that
g, f ∈ A. Therefore, (g, f) ∈ RE and as f ∈ F , the (F, (xi, yi)) defense attacked is dealt
with by RE and we reach a contradiction. Thus, RE is a reinstatement for the defeatE by
c on b, and hence a is acceptable w.r.t. E . We can now conclude that if E ′ is admissible in
EFEFC , then so is E in EFC.

Based on the relation between the admissible extensions of EFC and EFEFC and the
defeats and reinstatement sets, we can observe that if E ′ ⊆ A′ is complete in EFEFC ,
then E = E ′ ∩ A is complete in EFC. Furthermore, if E ⊆ A is complete in EFC,
then E ′ = E ∪ {(a, (b, c)) | (a, (b, c)) ∈ GrD, a ⊆ E} ∪ {x′ | E defeatsE x and there is
a reinstatement set for this defeat on E} is complete in EFEFC – it is easy to show that
no further GrD or X ′ are acceptable w.r.t. E ′ and none of them can be removed from E ′.
Finally, E ′ is the only extension that can be associated with E .
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The proof for the preferred semantics follows easily from completeness. Since we
are working with finite frameworks, the grounded extensions of both frameworks can be
obtained by starting with the empty set and iteratively applying the characteristic operators.
Let E = E ′ = ∅. We can observe that the same arguments are acceptable w.r.t. E in EFC
as w.r.t. E ′ in EFEFC . We can add them to the sets. Let us now repeat the operator for E ′,
but consider only arguments in A′ \ A. Clearly, we can add to E ′ any GrD argument s.t.
the source of the defense attack is in E ′. Furthermore, we need to add primed arguments
acceptable w.r.t. E ′. This means that the original argument it represents is defeated by
E ′ with reinstatement, and thus it is also defeated by E with reinstatement. Therefore,
right now we have two admissible extensions E and E ′ related in the way as stated in the
theorem. Let us now apply the operator again. Just like previously the same arguments
are acceptable w.r.t. E in EFC as w.r.t. E ′ in EFEFC . We can add them to the sets
and repeat the A′ \ A step for E ′. We can repeat this line of reasoning till we obtain or
grounded extensions and conclude that they are related the same way complete extensions
are.

Let us now focus on stable semantics. Let E ⊆ A be a stable extension of EFC and
assume that E ′ = E ∪ {(a, (b, c)) | (a, (b, c)) ∈ GrD, a ⊆ E} ∪ {x′ | E defeatsE x
and there is a reinstatement set for this defeat on E} is not stable in EFEFC . Taking into
account previous analysis, it means there is an argument a ∈ (A′\E ′) for which there is no
argument b ∈ E ′ s.t. b defeatsE a. Since R ⊆ R′, it has to be the case that a is in fact the
primed argument for b or that a is a GrD argument and for no argument carrying out the a
defense attack, its primed version is in E ′. Let us focus on the first case; since the (b, b′)
attack cannot be defense attacked, then it has to be the case that b /∈ E ′ and thus b /∈ E .
However, by stability of E , E would defeatE b and there would be a reinstatement set for
this defeat. Therefore, by the construction of E ′, b′ ∈ E ′ and we reach a contradiction.
Let us now focus on the GrD case. As the primed arguments are not in E ′, therefore
their originals are not defeated by E , and thus have to be in E . Consequently, by the
construction of E ′, a has to be in E ′ and we reach a contradiction. Thus, if E is stable in
EFC, then E ′ is stable in EFEFC .

Let now E ′ ⊆ A be a stable extension of EFEFC . The set E = E ′ ∩ A is complete
in EFC and from the previous parts of this proof it holds that if E ′ defeatsE ′ an argument
a ∈ A, then so does E . Thus, E is stable in EFC. 2

Theorem 8.11. Let bh − EF = (A,R,D) be a bounded hierarchical EAF and SFEF =
(A′, R′) its corresponding SETAF obtained through Translation 40. If E ⊆ A is a
σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable}, then E ′ = E ∪ {x′ | x′ ∈ X ′, x ∈ E+} is a σ–extension of SFEF .
If E ′ ⊆ A′ is a σ′–extension of SFEF , where σ′ ∈ {admissible, complete, preferred,
grounded, stable}, then E ′ ∩ A is a σ′–extension of bh − EF . This does not necessarily
hold for conflict–free semantics.

Proof. Let E ⊆ A be a conflict–free extension of bh−EF and E ′ = E∪{x′ | x′ ∈ X ′, x ∈
E+} a set of arguments in SFEF . Assume E ′ is not conflict–free in SFEF . This means
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there exists F ⊆ E ′, a ∈ E ′ s.t. (F, a) ∈ R′. If a = x′ ∈ X ′ (i.e. a is a primed argument),
then based on the construction of SFEF it has to be the case that F = {x} ⊆ E ′ and hence
x ∈ E . However, this means that E ∩ E+ 6= ∅, which breaches the conflict–freeness of
E in bh − EF . If a ∈ A, then it means that F = datt′(x, a) ∪ {x} for some argument
x ∈ A s.t. (x, a) ∈ R. Since F ⊆ E ′ and x ∈ A, it holds that x ∈ E and, based on
the construction of E ′ and conflict–freeness of E , there is no c ∈ A s.t. (c, (x, a)) ∈ D
in E . However, this means that x defeatsE a and we reach a contradiction with our initial
assumption that E is conflict–free in bh− EF .

Not every conflict–free set of SFEF corresponds to a conflict–free set of bh−EF . We
can look at Example 95. Although the set {a, b} is not conflict–free in the source EAF, it
is conflict–free in the target SETAF; only {a, b, c′} is not conflict–free anymore.

Let E ⊆ A be an admissible extension of bh−EF and E ′ the corresponding conflict–
free extension of SFEF . Assume E ′ is not admissible. This means there is an argument
a ∈ E ′ that is not defended by E ′, i.e. there is a subset F ⊆ A′ s.t. (F, x) ∈ R′, but
no B ⊆ E ′ and f ∈ F s.t. (B, f) ∈ R′. If a = x′ ∈ X ′, then F has to be of the
form F = {x} for an argument x ∈ A. Moreover, based on the construction of E ′, x is
defeatedE by E with reinstatement. Consequently, there has to be an argument y ∈ E s.t.
(y, x) ∈ R and for any c ∈ A s.t. (c, (y, x)) ∈ D, c is defeatedE with reinstatement. This,
by the construction of E ′, means that y ∈ E ′ and for any c, c′ ∈ E ′. Hence, there is a set
B = datt′(y, x) ∪ {y} ⊆ E ′ s.t. (B, x) ∈ R′. Therefore, E ′ can attack F and defend a.
We reach a contradiction with our assumptions.

Let us now assume that a ∈ A is a standard argument in E ′ that is not defended by
E ′. From the fact that (F, a) ∈ R′ and a ∈ A it follows that F represents a set conflict
induced by an attacker of a in R. Let thus F = {fatt, f ′1, ..., f ′k} be the form of F , where
(fatt, a) ∈ R. We can distinguish two cases; one in which fatt defeatsE a and one in
which it does not. If fatt defeatsE a, then based on the admissibility of E in bh − EF ,
there has to be an argument b ∈ E s.t. b defeatsE fatt with reinstatement. Hence, E can
defeatE with reinstatement also any argument defense attacking the (b, fatt) conflict. We
can therefore use the analysis performed in the previous step to show that there is a set
B = datt′(b, fatt) ∪ {b} ⊆ E ′ s.t. (B, fatt) ∈ R′. Hence, E ′ can defend a in this case.
If fatt does not defeatE a in E , then there is an argument c ∈ E s.t. (c, (fatt, a)) ∈ D).
Consequently, there is an argument f ′i ∈ F s.t. ({c}, f ′i) ∈ R′. Again, E ′ can defend a
against F . We reach a contradiction with our assumptions. We can therefore conclude that
if E is admissible in bh− EF , then E ′ is admissible in SFEF .

Let E ′ ⊆ A′ be an admissible extension of SFEF and E = E ′ ∩ A a set of arguments
in bh− EF . Assume that E is not conflict–free; this means there are arguments a, b ∈ E
s.t. a defeatsE b. Consequently, there is also no c ∈ E s.t. (c, (a, b)) ∈ D. Based on
the construction of SFEF there has to exist a set of arguments F ⊆ A′ s.t. a ∈ F and
(F, b) ∈ R′. If |F | = 1 (i.e. there was no defense attack for (a, b) in bh − EF at all),
then we breach the conflict–freeness of E ′ in SFEF . If |F | > 1, then we can observe that
a ∈ E and due to the fact that there is no c ∈ E s.t. (c, (a, b)) ∈ D, then no such c is in
E ′ and the respective c′ is not in E ′+. This means that no argument in F is attacked by E ′
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and b cannot be defended by E ′. We breach the admissibility of E ′. Therefore, it has to be
the case that E is conflict–free in bh− EF .

Let us now assume that E it is not admissible in bh − EF , i.e. there are arguments
a ∈ E , b ∈ A s.t. b defeatsE a, but no argument c ∈ E defeatsE b with reinstatement. We
can observe that there will be an attacking set in SFEF corresponding to the (b, a) attack
and the datt′(b, a) arguments. Thus, there is an attacker of a in R′ that needs to be dealt
with by E ′.

Let us focus on the case where b defeatsE a, but no c ∈ E defeatsE b. This means
that either no c attacks b in R, or for every such attack there is a defense attacker present
in E . If it is the first case, then there is no suitable attack in E ′ either. If the latter, then
no primed argument for the defense attackers can be in E ′, and thus the set of arguments
corresponding to c that attacks b in R′ is not contained in E ′. Therefore, b is not attacked
by E ′. Furthermore, as b defeatsE a, then no defense attacker of the (b, a) conflict is in E .
Thus, it is also not in E ′, and no primed argument in datt′(b, a) can be attacked by E ′. We
can therefore conclude that E ′ does not defend a and we breach the admissibility of E ′.

We can now focus on the case where there is an argument c defeatingE b,
but the defeat is not reinstated. According to Theorem 2.46, there is a sequence
((z1, (x1, y1)), ..., (zn, (xn, yn))) of distinct defense attacks from D s.t. (xn, yn) = (c, b)
s.t. for every (zi, (xi, yi)) where 1 < i ≤ n, either no argument h in E defeatsE
zi or for every such defeat, there exists an argument l ∈ A s.t. (l, (h, zi)) ∈
{(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))}, and no argument in E defeatsE z1. If no argument
d ∈ E defeatsE zi, then either d does not attack zi or for every such attack, a defense
attacker e is present in E . This means that d /∈ E ′ or e′ /∈ E ′, and thus we can show that
no set of elements in SFEF is fully contained in E ′. Therefore, E ′ does not attack z1, and
thus the primed version of this argument (if it exists) is not in E ′. Let us move on to z2;
if E does not defeatE , then we can repeat the previous analysis and conclude that E ′ does
not attack z2 and cannot contain z′2. If E defeatsE z2 with an argument x ∈ E , then by the
construction of the sequence, this attack is defense attacked by z1. Consequently, although
x ∈ E ′, z′1 /∈ E ′, and E ′ cannot attack z2 with the set corresponding to x. Thus, we can
show that E ′ does not attack z2 and thus z′2 /∈ E ′. We can continue in this manner until
we reach zn and the conclusion that zn is not attacked by E ′ and z′n /∈ E ′. Therefore, we
can see that yn = b is not attacked by E ′. Moreover, from the previous analysis we can
observe that no argument in datt′(b, a) is attacked by E ′ either. Consequently, it cannot be
the case that E ′ defends a and we reach a contradiction with the admissibility of E ′. We
can finally conclude that if E ′ is admissible in SFEF , then E is admissible in bh− EF .

Let E ⊆ A be a complete extension of bh−EF and E ′ = E ∪{x′ | x′ ∈ X ′, x ∈ E+}
the corresponding admissible extension of SFEF . Let us assume E ′ is not complete; this
means there is an argument a ∈ A′ \ E ′ that is defended by E ′. Let us first consider the
case where a is a standard argument, i.e. a ∈ A. Therefore, every set of argumentsB ⊆ A′

attacking a has an element b ∈ B attacked by some set F ⊆ E ′. Let b = x′ ∈ X ′ be a
primed argument. This means that F = {x} and x ∈ E . Consequently, the attack on a
for which B was created is defense attacked by a member of E and does not become a
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defeat and does not have to be defended against in bh − EF . Let b ∈ A be a standard
argument. In this case, F contains an argument attacking b in R and a primed argument
for every defense attacker of this conflict. By the construction of E ′ this means that E
contains an attacker of b and that every defense attacker for this conflict is defeatedE by E
with a reinstatement. Consequently, E defeatsE b with reinstatement. Therefore, it can be
shown that if E ′ defends a standard argument a /∈ E ′, then E defends an argument a /∈ E .
We breach the completeness of E in bh− EF .

Let a = x′ ∈ X ′ be now a primed argument defended by E ′ but not contained in E ′.
If it is defended by E ′, then it has to be the case that argument x is attacked by a subset
F ⊆ E ′. However, we can repeat the previous analysis to show that E defeatsE x with
reinstatement. This means that x′ has to be in E ′ and we breach the construction of E ′.
We can finally conclude that if E is complete in bh− EF , then E ′ is complete in SFEF .

We can also observe that this is the only complete extension of SFEF associated with
E . The only freedom we have in forming E ′ concerns the primed arguments. Let us
assume that E ′1 and E ′2 are two different complete extensions of SFEF s.t. E ′1∩A = E ′2∩A,
i.e. they only differ by X ′ arguments. Let us assume a′ ∈ E ′1, but not in E ′2. This means
that E ′1 attacks a and E ′2 does not. Due to the fact that E ′1 ∩ A = E ′2 ∩ A, this can only
mean that every attacking set of a contains a primed argument that is not present in E ′2,
but at least one such full set is in E ′1. Let b′ be such a primed argument. It can only be
attacked b; again, it means that E ′1 can attack b, while E ′2 cannot. We can observe that due
to the fact that the source EAF is bounded hierarchical, a 6= b. We can again find a primed
argument present in E ′1, but not in E ′2, that is contained in a set attacking b, and note that
its origin has to be different from a and b. We can continue in this manner until we find
a standard argument that is only attacked by standard arguments. We are bound to reach
this spot due to the fact that the source EAF is bounded hierarchical. However, we can
then see that as both E ′1 and E ′2 share the same set of standard arguments, they are both
capable of attacking this argument. We thus a reach a contradiction and it can be shown
that E ′1 = E ′2.

Let E ′ ⊆ A be a complete extension of SFEF . From the previous analysis we can
conclude that it is precisely of the form E ∪ {x′ | x′ ∈ X ′, x ∈ E+}, where E is an
admissible extension of bh − EF . From the completeness of E ′ in SFEF it follows that
for every argument a ∈ A′ \ E ′ there is a set F ⊆ A′ attacking it that does not contain
any argument attacked by E ′ (i.e. no argument outside of E ′ is defended by E ′). We will
now show that it also means that there is no argument outside of E that is defended by E
in bh − EF . Let a ∈ A be an argument and let F be of the form {fatt, f ′1, ..., f ′n} (it is
possible that n = 0). If no primed argument f ′i is attacked by E ′, then it has to be the case
that fi /∈ E ′. This means that no argument in E defense attacks the (fatt, a) conflict and
fatt defeatsE a. Consequently, there is no unattacked argument inA that is not in E . Based
on the completeness of E ′, there is no set B ⊆ E ′ attacking fatt. If no such set exists in
A′ at all, then clearly fatt is not attacked in R at all either and thus cannot be defeatedE

by E . If such a set exists, then it has to be of the form {batt, b′1, ..., b′j} (it is possible that
j = 0) and at least one of its elements is not in E ′. If batt /∈ E ′, then clearly E cannot
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defeatE fatt (through batt at least). If batt ∈ E ′ but b′i /∈ E , then based on the construction
of E ′, E does not defeat bi with reinstatement. Therefore, E cannot be defeatingE fatt
with reinstatement and a cannot be acceptable w.r.t. E . We can conclude that for every
argument outside of E there is an argument defeatingE it and that this argument is not
defeatedE with reinstatement by E . Hence, no argument outside of E is defended by E
and the set is complete in bh− EF .

We can observe that there is one–to–one relation between the complete extensions of
SFEF and bh − EF . Moreover, it is easy to show that if E1 ⊆ E2 are two complete
extension of bh−EF , then the corresponding E ′1 and E ′2 extensions SFEF are also of the
form E ′1 ⊆ E ′2. Therefore, the preferred extensions of bh − EF and SFEF are related in
the same the complete ones. By Theorems 2.24 and 2.58, the same holds for grounded
extensions as well.

Let E ⊆ A be a stable extension of bh−EF and E ′ = E ∪{x′ | x′ ∈ X ′, x ∈ E+} the
corresponding conflict–free set in SFEF . We can observe that E defeatsE every argument
a ∈ A \ E . It can be easily shown that due to the fact that every argument outside E is
defeated, the collection of all defeats carried out by E forms a reinstatement set for them.
Therefore, for every defeatE by an argument b ∈ E on an argument a ∈ A \ E , if there is
an argument c ∈ A s.t. (c, (b, a)) ∈ D, then c ∈ E+. Therefore, c′ ∈ E ′, and by collecting
such primed arguments and b we obtain a subset of E ′ attacking a in R′. Consequently,
every standard argument outside of E ′ is attacked by E ′ in SFEF . Moreover, we can
notice that if x′ ∈ A′ \ E ′ is a primed argument outside of E ′, then by the construction of
E ′ and stability of E , x ∈ E ′. Thus, x′ is attacked by E ′. We can conclude that E ′ is a
stable extension of SFEF .

Let E ′ ⊆ A′ be a stable extension of SFEF . By Theorem 2.24 it is a preferred ex-
tension of SFEF , and thus E = E ′ ∩ A is a conflict–free set of bh − EF . It holds that
for every argument a ∈ A′ \ E ′, there is a subset F ⊆ E ′ s.t. (F, a) ∈ R′. Let us limit
ourselves to a being a standard argument and let F be of the form {fatt, f ′1, ..., f ′n}. From
the construction of SFEF and E it holds that (fatt, a) ∈ R and fatt ∈ E . Moreover, by
conflict–freeness of E ′, for no f ′i , fi /∈ E ′ and thus fi /∈ E . Therefore, no defense attacker
of the (fatt, a) conflict is present in E , and fatt defeatsE a. We can thus show easily that
E is a stable extension of bh− EF . 2

Theorem 8.15. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FREF =
(A,R ∪ D) its corresponding AFRA obtained through Translation 42. If E ⊆ A is a
σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, grounded, pre-
ferred, stable}, then there is a σ–extension E ′ ⊆ (A∪R∪D) of FREF s.t. E = E ′∩A. If
E ′ ⊆ A ∪R ∪D is a σ′–extension of FREF , where σ′ ∈ {complete, grounded, preferred,
stable}, then E = E ′ ∩ A is a σ′–extension of bh − EF . This does not necessarily hold
for conflict–free and admissible semantics.

Proof. Let E ⊆ A be a conflict–free extension of bh − EF . Clearly, E is conflict–free
in FREF – after all, E ∩ (R ∪ D) = ∅. Consequently, every conflict–free extension of
bh−EF will be conflict–free in FREF . However, for the same reasons, it will not hold the
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other way around – due to the way AFRAs work, every set of arguments is conflict–free
in FREF , while it is clearly does not have to be the case in bh− EF .

By Translation 38, F = (A′, R′) is an AF corresponding to bh − EF , where A′ =
A ∪ R ∪ D ∪ X ′ for X ′ = {x′ | x ∈ A} and R′ = {(x, x′) | x ∈ A} ∪ {(x′, a) | a ∈
R ∪D, src(a) = x} ∪ {(a, b) | trg(a) = b, and either (a ∈ R and b ∈ A), or (a ∈ D and
b ∈ R)}. We can observe that FREF translated to an AF with the use of Translation 33
will be the same. We can thus use this to prove the correspondence between bh−EF and
FREF in our proof.

Let σ ∈ {admissible, complete, grounded, stable, preferred} be a semantics. By
Theorem 8.6, if E ⊆ A is a σ–extension of bh − EF , then there is a set E ′ ⊆ A′ s.t.
E = E ′ ∩ A is a σ–extension of F . By Theorem 7.2 if E ′ ⊆ A′ is a σ–extension of F ,
then E ′ ∩ (A ∪ R ∪D) is a σ–extension of FREF . Thus, we can conclude that if E ⊆ A
is a σ–extension of bh−EF , then there is an σ–extension E ′ ⊆ A ∪R ∪D of FREF s.t.
E ′ ∩ A = E .

Not every admissible extension of FREF represents an admissible extension of bh −
EF . We can consider a simple, AF–style framework ({a, b, c}, {(a, b), (b, c)}). If we take
AFRA semantics, {(a, b), c} is admissible. However, {c} is not admissible in the EAF
case.

Let now σ ∈ {complete, grounded, stable, preferred} be a semantics. By Theorem 7.2
if E ⊆ A ∪ R ∪D is a σ–extension of FREF , then E ′ = E ∪ {x′ | x ∈ (A ∩ E+)} is a
σ–extension of F . By Theorem 8.6, if E ′ ⊆ A′ is a σ–extension of F , then E ′′ = E ′ ∩ A
is a σ–extension of bh − EF . Thus, we can conclude that if E ⊆ (A ∪ R ∪ D) is a
σ–extension of FREF , then E ∩ A is an σ–extension of bh− EF .

As a final note we can observe that for complete, grounded, stable and preferred se-
mantics, the relation between bh− EF and FREF extensions is one–to–one. 2

Theorem 8.18. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 43. FNEF is (strongly)
consistent, minimal, weakly, relation and strongly valid.

Proof. We can observe that only arguments a ∈ A can receive support in FNEF . More-
over, by construction, every supporting set contains a unique primed argument related to
an attacker of a. Consequently, the support sets of a are incomparable and FNEF is in
minimal form.

Since bh− EF is bounded hierarchical, according to Definition 2.55 it has a partition
(((A1, R1), D1), ..., ((Ak, Rk), Dk) s.t. A =

⋃k
i=1Ai, R =

⋃k
i=1Ri, D =

⋃k
i=1Di, for

every i = 1...k (Ai, Ri) is a Dung’s framework, and (c, (a, b)) ∈ Di implies (a, b) ∈ Ri,
c ∈ Ai+1, and Dk = ∅.

Let us now show that FNEF is strongly valid. According to Definition 4.30, FNEF is
strongly valid iff for every function f : A′ → {S | a ∈ A′, S ∈ suf(a)} where suf(a) =
{S | S ⊆ sup(a) and ∀C ⊆ s.t. CN ′a, C ∩ S 6= ∅} and sup(a) =

⋃
C⊆A,CN ′aC, we

can create a powerful sequence (a0, ..., an) consisting of all elements of A′ s.t. f(ai) ⊆
{a0, ..., ai−1} for 1 ≤ i ≤ n and f(a0) = ∅. Let f be such a function.
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Before we start, let us notice that by construction no primed argument in X ′ requires
support in N ′. Thus, f(x) = ∅ for an argument in x ∈ X ′. Thus, any ordering on X ′ is a
powerful sequence. Let us pick any and denote it seq(X ′).

Let us now focus on ((Ak, Rk), Dk). Since Dk = ∅, then no attack in Rk is defense
attacked and argument in Ak requires support. Consequently, f(a) = ∅ for a ∈ Ak. Thus,
any ordering on Ak is a powerful sequence. Let us pick any and denote it seq(Ak). We
can observe that the sequence created by appending seq(Ak) to seq(X ′) is also powerful.

Let us now focus on ((Ak−1, Rk−1), Dk−1). By the construction of the partition, any
attack in Rk−1 can be defense attacked only by Dk−1 arguments and Dk−1 ⊆ Ak. By
the construction of FNEF , every supporting set of an argument a ∈ Ak−1 is a subset of
Dk−1∪X ′ and thus ofAk∪X ′. In other words, it has to be the case that f(a) ⊆ Ak∪X ′. Let
seq(Ak−1) be an arbitrary ordering of elements of Ak−1. We can observe that appending
seq(Ak−1) to the joined seq(X ′) and seq(Ak) sequence is again a powerful sequence.

We can repeat this procedure until we reach ((A1, R1), D1) and that sequence built
from joining (in this order) seq(X ′), seq(Ak), seq(Ak−1),...,seq(A1) is again a powerful
sequence. We have thus created a powerful sequence from elements of A′ using an ar-
bitrary f function. We can conclude that FNEF has to be strongly valid, and thus by
Theorem 4.31 weakly and relation valid as well.

Since bh − EF is (strongly) consistent (see Lemma 4.73), there are no arguments
b, c ∈ A s.t. (b, a) ∈ R and (b, (c, a)) ∈ D for an argument a ∈ A. As primed arguments
cannot attack anything, we can conclude that the sets of attackers and supporters of a in
FNEF are disjoint and thus the framework is strongly consistent. 2

Theorem 8.19. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 43. If E ⊆ A is a
conflict–free extension of bh − EF , then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ A \ E} is strongly
coherent in FNEF . If E ⊆ A is a σ–extension of bh−EF , where σ ∈ {conflict–free, ad-
missible, complete, preferred, grounded, stable}, then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ E+} is
a σ–extension of FNEF . If E ′ ⊆ A′ is a σ′–extension of FNEF , where σ′ ∈ {admissible,
complete, preferred, grounded, stable}, then E ′ ∩ A is a σ′–extension of bh − EF . This
does not necessarily hold for conflict–free semantics.

Proof. Let E ⊆ A be a conflict–free extension of bh − EF . This means that for every
direct attack in E , there is a defense attack. Consequently, ((E × E ) ∩ R) ⊂ RD. Since
RD ∩ R′ = ∅, then it cannot be the case that there is a conflict in E in FNEF . Thus, E is
conflict–free in FNEF .

Let E ⊆ A be a conflict–free extension of bh − EF and let us define a set E ′ =
E ∪ {x′ | x′ ∈ X, x ∈ A \ E}. Assume that E ′ is not strongly coherent in FNEF .
Since E is conflict–free, no argument in X ′ carries out an attack in R′. Moreover, primed
arguments are included only if their origins (and the only attackers) are not. Therefore,
E ′ is conflict–free in FNEF . By Theorem 8.18, FNEAF is strongly valid. Consequently,
in order to prove coherence, it suffices to show that for every argument a ∈ E ′ and set
B ⊆ A′ s.t.BN ′a, B ∩ E ′ 6= ∅. If a is a primed argument, then it requires support, and
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thus the condition is satisfied. Let now a ∈ E . If it is not attacked in R in bh − EF or
none of its attacks is defense attacked, then a requires no support in N ′ in FNEF and thus
the condition is again satisfied. Let us assume it is not the case, i.e. there is an attack
(b, a) ∈ RD. Therefore, there exists a support set B ⊆ A′ for a consisting of b′ and every
argument c ∈ A s.t. (c, (b, a)) ∈ D. If b /∈ E , then b′ ∈ E ′ and thus B ∩E ′ 6= ∅. If b ∈ E ,
then due to conflict–freeness of E , there has to be an argument c ∈ E s.t. (c, (b, a)) ∈ D.
Thus, c ∈ E ′, and again B ∩ E ′ 6= ∅. Therefore, E ′ is a strongly coherent set of FNEF .

Let E ′ ⊆ A′ be a conflict–free extension of FNEF . The set E = E ′ ∩ A is not nec-
essarily conflict–free in bh−EF . We can consider the frameworks described in Example
99 – although {a, b} is not a conflict–free extension of the source EAF, it is conflict–free
in the target AFN.

Let E ′ ⊆ A′ be a strongly coherent extension of FNEF . Assume E = E ′ ∩ A is not
conflict–free in bh − EF . This means there are arguments a, b ∈ E s.t. (a, b) ∈ R and
@c ∈ E , (c, (a, b)) ∈ D. Since (a, b) /∈ R′, then by the construction of FNEF it means
that (a, b) ∈ RD. Thus, a′ ∈ A′ and there is a set Y ⊆ A′ s.t a′ ∈ Y and Y N ′b. Due
to conflict–freeness, a′ /∈ E ′, and as E ′ is strongly coherent, then there is an argument
c ∈ E ′ ∩ A s.t. c ∈ Y . By construction, (c, (a, b)) ∈ D. Therefore, there is in fact an
argument defense attacking (a, b) in E and E has to be conflict–free in bh− EF .

Let E ⊆ A be an admissible extension of bh − EF . We define E ′ = E ∪ {x′ |
x′ ∈ X, x ∈ E+}. Due to conflict–freeness of E , E ∩ E+ = ∅ and {x′ | x′ ∈ X, x ∈
E+} ⊆ {x′ | x′ ∈ X, x ∈ A \ E}. Thus, from previous explanations it is clear that E ′ is
conflict–free in FNEF . We now need to show it is coherent. Again, by Theorem 8.18, it
suffices to show that for every argument a ∈ E ′ and set B ⊆ A′ s.t. BN ′a, B ∩ E ′ 6= ∅.
Based on previous explanations, we only need to focus on arguments a s.t. there is an
attack (b, a) ∈ RD. Associated with every such attack there is a support set B ⊆ A′ for
a consisting of b′ and every argument c ∈ A s.t. (c, (b, a)) ∈ D. If b does not defeatE a,
then there has to be an argument c ∈ E s.t. (c, (b, a)) ∈ D. Thus, c ∈ E ′ and B ∩ E ′ 6= ∅.
Consequently, the condition is satisfied. If b defeatsE a, then due to admissibility of E ,
there is an argument d ∈ E that defeatsE b and there is a reinstatement set on E for this
defeat. Consequently, by the construction of E ′, b′ ∈ E ′ and again B∩E ′ 6= ∅. Therefore,
E ′ is strongly coherent in FNEF .

Now, we need to show that every argument a ∈ E ′ is defended by E ′ in FNEF . Since
E ′ is coherent, it suffices to focus on the attack part of defense. Let us assume that not
every argument is defended and thus there exists an argument b ∈ A′ s.t. (b, a) ∈ R′

and not every coherent set B for b is attacked by E . This gives us two options as to the
form of (b, a); either a = b′ or (b, a) ∈ R \ RD. If a = b′, then by the construction of
E ′, E defeatsE b in bh − EF and there is a reinstatement set for such a defeat. If the
latter, then b defeatsE a (note there is no defense attack on it) and thus again needs to be
defeated by E in a way there exists an appropriate reinstatement set. Let d be an argument
in E s.t. d defeatsE b and let {(x1, y1), ..., (xn, yn)} be a reinstatement set on E for this
defeat. If (d, b) ∈ R \ RD, then (d, b) ∈ R′ and as d ∈ E , then d ∈ E ′. Direct attack
on b means that every coherent set for b is attacked and thus E is capable of defense; we
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reach a contradiction. If (d, b) ∈ RD, then we undergo a support transformation. Let C ⊆
{y1, ..., yn} be the set of all and only arguments that defense attack (d, b). Consequently,
C ∪ {d′} is a support set for b. Since d ∈ E ′ and (d, d′) ∈ R′, the coherent sets for b built
with d′ are attacked. We now need to iterate through C. Since d possesses a reinstatement
set on E , then it means that for every argument in yi ∈ C there is an argument xi ∈ E
attacking it. If this conflict is in R \ RD, then it also appears in R′ and another coherent
set of b is dealt with. If the conflict is in RD, then it undergoes a support transformation
yet again. We can repeat this procedure till we reach the endings of the “support tree” for
b, in which all leaves are now attacked by E ′ in R′, as warranted by the reinstatement set
and strong validity of FNEF (see Theorem 8.18). Thus, all coherent sets for b are in fact
attacked by E ′, and we reach a contradiction with assumption. We can finally conclude
that E ′ is admissible in FNEF .

Let E ′ ⊆ A′ be an admissible extension of FNEF . We know that E = E ′ ∩ A is
conflict–free in bh−EF . It now remains to show that every argument a ∈ E is acceptable
w.r.t. E , i.e. that for every argument b defeatingE a w.r.t. E , there is an argument c ∈ E
s.t. c defeatsE b and this defeat has a reinstatement set on E . Let us assume it is not the
case. If b defeatsE a, then either (b, a) ∈ R \ RD (and thus there is no defense attack on
it), or (b, a) ∈ RD and there is an argument d ∈ A s.t. (d, (b, a)) ∈ D. However, we can
observe that since the (b, a) conflict becomes a defeat w.r.t. E , then none of such d’s can
be in E and thus not in E ′. If (b, a) ∈ R \ RD, then (b, a) ∈ R′. If (b, a) ∈ RD, then
(b, b′) ∈ R′, and as E ′ is coherent and no supporter generated by a defense attacker is in
E ′, then b′ ∈ E ′. Therefore, b is attacking an argument in E ′ and needs to be defended
from in FNEF . Let us assume that there is no c ∈ E s.t. c defeatsE b in bh − EF .
This means that either there is no (c, b) /∈ R, or for every (c, b) ∈ R we can find an
argument d ∈ E s.t. (d, (c, b)) ∈ D. If it is the first case, then (c, b) /∈ R′ and b has no
supporting set in N ′ associated with c′. We can observe that every supporting set of b in
N ′ contains a primed argument corresponding to an attacker of b in R and due to absence
of these attackers in E ′, the primed arguments themselves are not attacked by E . Since
they require no support in N ′, we can construct a coherent set for b containing b and the
relevant primed arguments and no member of this set is attacked by E ′ in R′. Therefore,
E ′ cannot defend a from b. If (c, b) ∈ R and ∃d ∈ E , (d, (c, b)) ∈ D, then (c, c′) ∈ R′ and
there is a set B ⊆ A′ s.t. {c′, d} ⊆ B and BN ′b. This means that for every supporting set
for b, we can either find an standard argument in it that is contained in E , or like explained
before, a primed argument that is not attacked by E . Every primed argument f ′ ∈ A′

has a trivial unattacked coherent set {f ′}, and every argument d has to have an unattacked
coherent set on E ′. Since FNEF is strongly valid, we can easily recombine these coherent
sets for an unattacked coherent set for b. Therefore, yet again E ′ cannot defend a from
b. Let us move on to the case in which an argument m ∈ E can defeatE b, but we lack
a reinstatement set for it. By Theorem 2.46, for any such defeat there exists a sequence
((z1, (x1, y1)), ..., (zn, (xn, yn))) of distinct defense attacks from D that contains a defense
attack on (m, b) and meets the following requirements: 1. every (xi, yi) conflict is unique,
2. for every (zi, (xi, yi)) where 1 < i ≤ n, either no argument h in E defeatsE zi or
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for every such defeat, there exists an (h, (b, zi)) ∈ {(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))},
3. and no argument in E defeatsE z1. Based on the previous part of the proof we can
observe that z1 possesses a coherent sequence on A′ that is not attacked by E ′. Moreover,
by the construction of FNEF and properties of the sequence, for every set of arguments
supporting z2, either z1 or a primed argument not attacked by E ′ is included. Thus, we
can again obtain a coherent sequence for z2 that is not attacked by E ′. We can continue
with this line of reasoning until we reach a conclusion that there is an unattacked coherent
sequence for zn and thus for b. Therefore, E ′ could not have defended itself against b and
we reach a contradiction with the admissibility of E ′ in FNEF . We can conclude that if
E ′ is admissible in FNEF , then so is E in bh− EF .

Let E ⊆ A be a complete extension of bh− EF . The set E ′ = E ∪ {x′ | x′ ∈ X, x ∈
E+} is an admissible extension of FNEF . We wil now show it is complete.

Let a ∈ A\E be an argument. Since E ⊆ A is complete, then it means that there exists
an argument b ∈ A s.t. b defeatsE a, and either there is no argument c ∈ E s.t. c defeatsE b
or there is no reinstatement set for such a defeat. If b defeatsE a, then either (b, a) ∈ R′, or
(b, b′) ∈ R′ and {datt(b, a) ∪ {b′}}N ′a in a way that datt(b, a) ∩ E = ∅ (this also means
that datt(b, a)∩E ′ = ∅) 32. Let us focus on the first case. If no argument c ∈ E defeatsE b,
then either there is no (c, b) ∈ R or ∃d ∈ E s.t. (d, (c, b)) ∈ D. If it is the first case, then as
explained in the previous parts of the proof, we can create a coherent set for b consisting of
primed versions of its attackers (in R), which by construction are not attacked by E ′ in R′.
Thus, E ′ cannot defend a against b. If it is the case that the attacks are defense attacked,
then we can create a coherent set for b by joining the primed versions of its attackers in
R′ that are not in E ′ and the coherent sets for the relevant d’s in E ′ (existence of such sets
is ensured by strong coherence of E ′). Since this set is not attacked, E ′ cannot defend a
again. If c defeatsE b, but the defeat does not have a reinstatement set, then by repeating
the previous part of the proof we can show that there exists a coherent set for b onA′ that is
not attacked by E ′. Thus, it cannot be the case that E ′ defends a. Let us now focus on the
case in which (b, b′) ∈ R. For the same reasons as in the previous case, E ′ cannot defend
b′ and thus b′ /∈ E ′. Consequently, {datt(b, a) ∪ {b′}} ∩ E ′ = ∅ and therefore E ′ ∪ {a} is
not a coherent set. Therefore, E ′ cannot defend a.

Let a ∈ X ′ be a primed argument. By construction, x′ is added to E ′ only if E defeatsE
x and there is a reinstatement set for this defeat on E . Since x′ /∈ E ′, we either lack the
defeat or the reinstatement for x. Therefore, we can repeat the similar part of the proof for
a being a standard argument and show that E ′ cannot defend x′.

We can thus conclude that there is no argument a ∈ A \ E ′ that is defended by E ′ in
FNEF and therefore, E ′ is complete. We can also show this is the only complete extension
that can be associated with E . No further X ′ arguments can be defended by our extension.
Moreover, none of the X ′ can be removed from it either, since the fact that the original
arguments are defeated in EF leads to their defense in FNEF .

Let E ′ ⊆ A′ be a complete extension of FNEF . The set E = E ′ ∩ A is admissible in
bh − EF . Let us assume it is not complete; it means there exists an argument a ∈ A \ E

32Recall that datt(b, a) = {c | (c, (b, a)) ∈ D}
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that is defended by E , i.e. for every argument b that defeatsE a, there is an argument c ∈ E
s.t. c defeatsE b and there is a reinstatement set for this defeat. Due to conflict–freeness
of E and E ′, we can observe that b cannot be present in the extensions. We can repeat the
part of the EAF–AFN admissibility proof in order to show that if c ∈ E defeatsE b and
there is a reinstatement set for this defeat, then E ′ attacks all coherent sets for b in FNEF .
Let us now check whether E ′ ∪ {a} is coherent. Let att(a) = {d | (d, a) ∈ R} be the
set of attackers of a in R. If for no attackers d ∈ att(a) (d, a) ∈ RD, then a requires no
support and E ′ ∪ {a} is coherent. If (d, a) ∈ RD, then we have two options: d defeatsE
a or not. If not, then a defense attacker for (d, a) is present in E . Thus, it is in E ′, and
the supporting set generated for this conflict has a shared element with E ′. Let us assume
d defeatsE a – we basically come back to our b. Since (d, a) ∈ RD, then b possesses a
primed argument and a corresponding set that is supporting a. From the fact that E ′ attacks
all coherent sets of d and d′ has a trivial coherent set {d′}, it follows that E ′ defends d′

and therefore d′ ∈ E ′ by the completeness of E ′. Hence, the support set related to d′ has
a shared element with E ′. We have now covered all cases and every support there is for a
has an element in common with E ′. Therefore, E ′∪{a} has to be coherent and E ′ defends
a. This contradicts the completeness of E ′ in FNEF . We can now conclude that if E ′ is
complete in FNEF , then E is complete in bh− EF .

By Theorem 2.95 and 2.54, the preferred extensions of bh − EF and FNEF can be
defined as maximal preferred ones. We can observe that the source and target complete
extensions are in a one–to–one relation and that for two complete extensions of bh− EF
E1 and E2 s.t. E1 ⊂ E2, it holds that their corresponding sets E ′1 and E ′2 in FNEF are
related in the same manner, i.e. E ′1 ⊂ E ′2. Thus, we can conclude that if E is preferred in
bh− EF , then E ′ = E ∪ {x′ | x′ ∈ X, x ∈ E+} is preferred in FNEF , and if E ′ ⊆ A is
preferred in FNEF , then E = E ′ ∩A is preferred in bh−EF . Since we are dealing with
a bounded hierarchical EAF, then by Definition 2.57 the grounded extension of is the least
complete extension of bh − EF . Similarly, the grounded extension is the least complete
extension in FNEF by Theorem 2.95. Therefore, the same relation holds for the grounded
semantics as for the preferred.

What remains to be shown is that the stable semantics are also preserved. Let E ⊆ A
be a stable extension of bh−EF . By Theorem 2.54, it is complete. Thus, E ′ = E ∪ {x′ |
x′ ∈ X,E defeatsE x and there is a reinstatement set for this defeat on E} is complete in
FNEF . Since E is stable, then for every argument a ∈ A \ E , there is an argument b ∈ E
s.t. b defeatsE a. Furthermore, we can observe that for this defeat, there is a reinstatement
set on E – this comes simply from the fact that every argument outside the set is defeatedE

and thus the collection of all such defeats coming from E forms a reinstatement set. From
the previous analysis it holds that either (b, a) ∈ R′, or there is a support set of a containing
b′ that is disjoint from E ′. Consequently, a is in the deactivated set of E ′. Let us assume
there is a primed argument x′ /∈ E ′ that is not in the deactivated set. Since it receives no
support through N ′, then it has to be the case that its original argument x is not in E ′.
However, this means that E defeatsE x, and as it is with reinstatement, then we reach a
contradiction with the construction of E ′. Therefore, E ′ is a stable extension of FNEF .
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Let E ′ ⊆ A′ be a stable extension of FNEF . By Definition 2.86, it is complete in
FNEF . Consequently, E = E ′ ∩A is complete (and therefore, conflict–free) in bh−EF .
By Lemma 2.94, E ′ attacks every coherent set of an argument a ∈ A′ \ E ′. Using the
previous explanations we can thus show that, under the assumption that a ∈ A, E defeatsE
a with reinstatement. Therefore, E is complete and defeatsE every argument in A\E . We
can conclude that E is stable in bh− EF . 2

Theorem 8.21. Let bh− EF = (A,R,D) be a bounded hierarchical EAF and FNEF =
(A′, R′, N ′) its corresponding AFN obtained through Translation 44. If a set E ⊆ A is
a σ–extension of bh − EF , where σ ∈ {conflict–free, admissible, complete, preferred,
grounded, stable}, then there is a σ–extension E ′ ⊆ A′ of FNEF s.t. E ′ ∩ A = E . If
a set E ′ ⊆ A′ is a σ′–extension of FNEF , where σ′ ∈ {admissible, complete, preferred,
grounded, stable}, then E = E ′ ∩ A is a σ′–extension of bh− EF .

Proof. Let FR = (A,R ∪ D) be the AFRA corresponding to bh − EF and obtained
through Translation 42. We can observe that the AFN associated with FR (Translation
35) is the same as FNEF .

By Theorem 8.15, for every δ–extension E ⊆ A of bh−EF , where δ ∈ {conflict–free,
admissible, complete, grounded, preferred, stable} is a semantics, there is a δ–extension
E ′ ⊆ A s.t. E ′ ∩ A = E . By Theorem 7.6, if E ′ ⊆ A ∪ R ∪ D is a δ′–extension of
FR, where δ ∈ {conflict–free, complete, grounded, preferred, stable}, then it is a δ′–
extension of FNEF . However, by the same theorem, if E ′ is source–complete in FR, i.e.
E ′ = E ′∪{src(V ) | V ∈ E∩(R∪D)} (see Definition 7.5), then it is admissible in FNEF .
It can be shown that for every admissible extension of bh − EF there is a corresponding
admissible one in FR that is source complete. Consequently, there will exist a suitable
extension on FNEF . With this we can conclude that if a set E ⊆ A is a σ–extension of
bh − EF , where σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable},
then there is a σ–extension E ′ ⊆ A′ of FNEF s.t. E ′ ∩ A = E .

For the same reasons as in the AFRA–AFN case, not every conflict–free extension of
FNEF will produce a conflict–free extension of bh−EF . By Theorem 7.6, if E ′ ⊆ A′ is
a δ–extension of FNEF , where δ ∈ {admissible, complete, grounded, preferred, stable}
is a semantics, then E ′ is a δ–extension of FR. By Theorem 8.15, if E ′ is a δ′–extension
of FR, where δ′ ∈ {complete, grounded, preferred, stable}, then E = E ′ ∩ A is a δ′–
extension of bh − EF . We can observe that due to the fact that all δ semantics are also
coherent in FNEF , then attacks have to be accompanied by its sources and thus E ′ will
always be source–complete in FR. Again, it can be shown that if E ′ is admissible and
source complete in FR, then E = E ′ ∩ A is admissible in bh − EF . Therefore, we
can conclude that if a set E ′ ⊆ A′ is a σ′–extension of FNEF , where σ′ ∈ {admissible,
complete, preferred, grounded, stable}, then E = E ′∩A is a σ′–extension of bh−EF . 2

Theorem 8.28. Let EF = (A,R,D) be an EAF s.t. it is bounded hierarchical, or
(strongly) consistent and without symmetric attacks. Let DEF = (A,L,C) be its corre-
sponding ADF obtained through Translation 47. DEF is a BADF. It is also in redundancy–
free, cleansed, and weakly valid form. It is not necessarily an AADF+ and does not have
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to be in relation or strongly valid form. If EF is bounded hierarchical, then DEF is an
AADF+ and is in relation and strongly valid forms.

Proof. Let a, b ∈ A be arguments s.t. (a, b) ∈ R. By consistency it means there is no
other attack on b that would be defense attacked by a. If a given set E defeatsE b, then
so does E ∪ {a}. Therefore, there is no subset F of parents of b in DEF s.t. Cb(F ) =
out and Cb(F ∪ {a}) = in. The (a, b) link in DEF is thus an attacking one based on
Definition 2.114. Furthermore, it cannot be supporting – due to consistency, Cb(∅) = in
and Cb({a}) = out.

Let now a, b ∈ A be arguments s.t. there is c ∈ A, (a, (c, b)) ∈ D. Due to consistency,
it cannot be the case that (a, b) ∈ R. This means that if E does not defeatE b, then neither
does E ∪ {a}. Therefore, there is no subset F of parents of b in DEF s.t. Cb(F ) = in and
Cb(F ∪ {a}) = out. The (a, b) link in DEF is thus a supporting one based on Definition
2.114. Furthermore, it cannot be attacking – due to consistency, Cb({c}) = out and
Cb({a, c}) = in.

Since every link in DEF is either supporting or attacking, our framework is a BADF.
As none of the links is supporting and attacking at the same time, then the framework is
also redundancy–free.

For every argument a ∈ A, Ca(∅) is trivially in due to the fact that no attacker of a inR
is present in the set. Since every argument has a set for which the condition is in, then every
argument has a trivial associated decisively in interpretation without t mappings and where
every argument in A is mapped to f . Thus, a minimal interpretation extracted from it can
only have less f mappings (if it is different at all). The collection of such interpretations
can be used as a basis for an acyclic pd–evaluation consisting of all the elements of A.
Thus, every argument has an acyclic pd–evaluation (even if a self–blocking one) and DEF

is both in cleansed and weakly valid form.
We can observe that the framework presented in Example 103 is not an AADF+. It is

neither in relation nor in strongly valid form.
Let us now assume that EF is bounded hierarchical and let

(((A1, R1), D1), ..., ((An, Rn), Dn)) be its partition satisfying the requirements in
Definition 2.55. Let us start with ((An, Rn), Dn). We can observe that as Dn = ∅, then
all of the parents of a ∈ An are in An. Furthermore, they are only connected by the
Rn relation, which means that all arguments in An in DEF have Dung–style acceptance
conditions. Therefore, as observed in the proof of Theorem 5.17, every argument in
An has precisely one minimal decisively in interpretation that does not contain any t
mappings and every standard evaluation on An can be made acyclic. Let us now focus on
((An−1, Rn−1), Dn−1). Notice that Dn−1 ⊆ An. Every argument a ∈ An−1 depends only
on arguments in An−1 ∪ An. Furthermore, if a minimal decisively in interpretation for
a contains t mappings, then those mappings can be in An only. Therefore, any ordering
on An extended with any ordering on An−1 will give us a pd–sequence of an acyclic
pd–evaluation, independently of the chosen minimal decisively in interpretations for the
arguments. Therefore, every standard evaluation on An−1 ∪ An can be made acyclic.
We can continue this line of reasoning until we reach ((A1, R1), D1) and the conclusion
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that every standard evaluation on A =
⋃n
i=1An can be made acyclic. Thus, DEF is an

AADF+. From the previous parts of the proof it follows that it is also redundancy–free
and cleansed. Consequently, by Theorem 4.43, it is also strongly valid, and by Theorem
4.41, relation valid. 2

Theorem 8.29. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,L,C) be its corresponding ADF obtained
through Translation 47. A set of arguments E ⊆ A is a conflict–free extension of EF iff it
is conflict–free in DEF .

Proof. The proof follows easily from Theorem 8.2 and Theorem 8.39 that will be dis-
cussed in the next section. 2

Lemma 8.30. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. Let E be a conflict–free extension of EF (and thus of DEF ). The
discarded set of E in EF coincides with the partially acyclic discarded set of E in DEF .

Proof. The proof follows easily from Theorem 8.2 and Lemma 8.40 that will be discussed
in the next section. 2

Lemma 8.31. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. A conflict–free set of arguments E defends an argument a ∈ A in
EF iff a is decisively in w.r.t. the partially acyclic range vpE of E in DEF .

Proof. The proof follows easily from Theorem 8.2 and Lemma 8.41 that will be discussed
in the next section. 2

Theorem 8.32. Let EF be an EAF s.t. it is bounded hierarchical, or (strongly) consistent
and without symmetric attacks. Let DEF = (A,C) be its corresponding ADF obtained
through Translation 47. A set of arguments E ⊆ A is a conflict–free extension of EF iff
it is conflict–free in DEF . E is a stable extension of EF iff it is a model of DEF . E is
a grounded extension of EF iff it is the acyclic grounded extension of DEF . E is a σ–
extension of EF , where σ ∈ {admissible, complete, preferred}, iff it is a ca2–σ–extension
of DEF .

Proof. The proof follows easily from Theorem 8.2 and Theorem 8.42 that will be dis-
cussed in the next section. 2

Theorem 8.36. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF with-
out symmetric attacks and DEF = (A′, L, C) its corresponding ADF obtained through
Translation 48. DEF is a BADF. It is also in redundancy–free, cleansed, and weakly valid
form. However, it is not necessarily an AADF+ and does not have to be in relation or
strongly valid form. If EF is a bounded hierarchical EAF, then DEF is an AADF+ and is
in relation and strongly valid forms.
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Proof. Let a, b ∈ A be arguments s.t. (a, b) ∈ R. Based on the transformation we can
observe that a occurs only once in the condition of b as a negative literal – if there is another
attack on b that is defense attacked by a, then a bypass argument for a is introduced. This
means that even if a given set E defeatsE b but E ∪ {a} does not, there is no subset F of
parents of b in DEF s.t. Cb(F ) = out and Cb(F ∪ {a}) = in. The (a, b) link in DEF is
thus an attacking one based on Definition 2.114. Furthermore, it cannot be supporting –
Cb(∅) = in and based on the translation, Cb({a}) = out.

Let now a, b ∈ A be arguments s.t. there is c ∈ A, (a, (c, b)) ∈ D. If it is the case that
(a, b) ∈ R, then we come back to the previous analysis and it is the ab–b link that we need
to focus on. We can observe that Cb({c}) = out and Cb({ab, c}) = in by the construction
of the conditions. Therefore, the (ab, b) link is not attacking. Furthermore, the condition
of Cb is out only if an attacker from R is present and every possible (modified) defense
attacker is absent. ab never attacks b in R – it is simply not present in the framework.
Therefore, there is no subset F of parents of b in DEF s.t. Cb(F ) = in and Cb(F ∪
{ab}) = out and the link is supporting. If (a, b) /∈ R, then this means that if E does
not defeatE b, then neither does E ∪ {a}. Therefore, there is no subset F of parents of
b in DEF s.t. Cb(F ) = in and Cb(F ∪ {a}) = out. The (a, b) link in DEF is thus a
supporting one based on Definition 2.114. Furthermore, it cannot be attacking – c attacks
b and thus Cb({c}) = out and as a does not attack b and overrides the conflict from c,
Cb({a, c}) = in.

Finally, every bypass argument ab ∈ Ab has a straightforward condition Cab = a
and the (a, ab) link is easily supporting and not attacking. We can conclude that every
link in DEF is either supporting or attacking. Therefore, our framework is a BADF. As
none of the links is supporting and attacking at the same time, then the framework is also
redundancy–free.

The proof that DEF is in cleansed and weakly valid form is the same as in Theorem
8.28.

We can observe that the framework presented in Example 103 is not an AADF+. It is
neither in relation nor in strongly valid form. By Lemma 4.67, ifEF is bounded hierarchi-
cal, then it is (strongly) consistent. Thus, by Theorem 8.28, if EF is bounded hierarchical,
then DEF is an AADF+ and is in relation and strongly valid forms. 2

Theorem 8.37. Let EF = (A,R,D) be a bounded hierarchical EAF or an EAF without
symmetric attacks and DEF = (A′, L, C) its corresponding ADF obtained through Trans-
lation 48. Let E b denote the (possibly empty) set of bypass arguments generated by E in
A′.

If a set of arguments E ⊆ A is a conflict–free extension of EF then E ′ = E ∪ E b is
conflict–free in DEF . If E ′ ⊆ A′ is conflict–free in DEF , then E = E ′ ∩A is conflict–free
in EF .

If a set of arguments E ⊆ A is a stable extension of EF then E ′ = E ∪ E b is a model
of DEF . If E ′ ⊆ A′ is a model of DEF , then E = E ′ ∩ A is stable in EF .

If a set of arguments E ⊆ A is the grounded extension of EF then E ′ = E ∪E b is the
acyclic grounded extension of DEF . If E ′ ⊆ A′ is the acyclic grounded extension of DEF ,
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then E = E ′ ∩ A is grounded in EF .
If E ⊆ A is a σ–extension of EF , where σ ∈ {admissible, complete, preferred}, then

E ′ = E ∪ E b is a ca2–σ–extension of DEF . If E ′ ⊆ A′ ca2–σ–extension of DEF , then
E = E ′ ∩ A is a σ–extension of EF .

Proof. The proof follows easily from Theorems 8.2 and 8.47. 2

Theorem 8.38. Let EFC = (A,R,D) be a strongly consistent EAFC and DEFC =
(A,C) its corresponding ADF obtained through Translation 49. DEF is a BADF. It is also
in cleansed and weakly valid form. It is not necessarily an AADF+ and does not have to
be in redundancy–free, relation or strongly valid form. if EFC is minimal, then DEF is
redundancy–free. If EFC is bounded hierarchical, then DEFC is an AADF+, and if it is
additionally minimal, then DEFC is in relation and strongly valid forms.

Proof. Let a, b ∈ A be arguments s.t. (a, b) ∈ R. By strong consistency it means there is
no other attack on b that would be defense attacked by a set containing a. If a given set E
has a subset defeatingE b, then so does E ∪{a}. Therefore, there is no subset F of parents
of b in DEFC s.t. Cb(F ) = out and Cb(F ∪ {a}) = in. The (a, b) link in DEFC is thus
an attacking one based on Definition 2.114. Furthermore, it cannot be supporting – due to
consistency, Cb(∅) = in and Cb({a}) = out.

Let now a, b ∈ A be arguments s.t. there is c ∈ A, G ⊆ A, a ∈ G and (G, (c, b)) ∈ D.
Due to consistency, it cannot be the case that (a, b) ∈ R. This means that if E does not
defeatE b, then neither does E ∪ {a}. Therefore, there is no subset F of parents of b
in DEFC s.t. Cb(F ) = in and Cb(F ∪ {a}) = out. The (a, b) link in DEFC is thus a
supporting one based on Definition 2.114. However, there might not exist a subset F ′ of
parents of b s.t. Cb(F ′) = out and Cb(F ′ ∪ {a}) = in. Let us consider a situation in
which the (c, b) attack is defense attacked by {d} and {a, d}. The condition of b is in for
∅, {d} and {c, d} as well as for {a}, {a, d} and {c, d, a}. Therefore, it is not necessarily
the case that the (a, b) link is not attacking. Let us now assume that EFC is minimal;
this means there is no G′ ⊂ G s.t. (G′, (c, b)) ∈ D. Due to consistency restrictions, c
cannot be defense attacking the conflict it carries out and thus Cb({c}) = out. Moreover,
Cb((G \ {a}) ∪ {c} = out as well – no defense attacking set for the (c, b) conflict is
present. However, Cb(G ∪ {c} = in – now the defense attacking set is present, and due
to consistency constraints none of the arguments in G can be attacking b. Thus, the (a, b)
link cannot be attacking anymore.

Since every link in DEFC is either supporting or attacking, our framework is a BADF.
As some of the links can be supporting and attacking at the same time, it might not be
redundancy–free. However, assuming that EFC is minimal addresses this issue.

The proof for the cleansed form, weakly valid form, and the fact that DEFC is an
AADF+ if EFC is bounded hierarchical, can be easily adapted from Theorem 8.28. If
EFC is minimal and bounded hierarchical, then the DEFC is a redundancy–free AADF+.
As it is also in cleansed form, then by Theorem 4.43 and 4.41, DEFC is also strongly and
relation valid. 2
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Theorem 8.39. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its cor-
responding ADF obtained through Translation 49. A set of arguments E ⊆ A is a conflict–
free extension of EFC iff it is a conflict–free extension of DEFC .

Proof. Let E ⊆ A be a conflict–free extension of EFC. This means that given an
argument a ∈ E , it is either not attacked at all in E or every attack carried out by a
member of E is defense attacked by a subset of E . Thus, from the functional version of
the acceptance conditions in Translation 49 we can observe that Ca(E ∩ par(a)) = in.
Consequently, if E is conflict–free in EFC, then every argument in E has a satisfied
acceptance condition w.r.t. E in DEFC . This means that E is conflict–free in DEFC .

Let now E ⊆ A be a conflict–free extension of DEFC . This means that for any argu-
ment a ∈ E , Ca(E ∩ par(a)) = in. By the construction of the condition it means that
either there is no argument b ∈ E s.t. (b, a) ∈ R, or for any such attack there is a subset
of E defense attacking it. Consequently, there are no defeatsE in E in EFC and thus E is
conflict–free in EFC as well. 2

Lemma 8.40. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its corre-
sponding ADF obtained through Translation 49. Let E ⊆ A be a conflict–free extension
of EFC (and thus of DEFC). The discarded set of E in EFC coincides with the partially
acyclic discarded set of E in DEFC .

Proof. Let us first note on how (minimal) decisively in interpretations for arguments in A
look like. Due to the fact that we are dealing with a strongly consistent framework, then
from the propositional acceptance conditions we can observe that for any attack subfor-
mula of the condition, the interpretation has to either map the attacker to f or at least one
defense attacking sets to t. Thus, even though technically speaking EAFCs are attack–
based frameworks, the minimal interpretations can contain t assignments, which was not
the case in e.g. AFs or SETAFs. If the framework was not consistent, then we could obtain
new minimal decisively in interpretations that would be contained in the described ones.
For example, the condition of b in the framework ({a, b}, {(a, b)}, {(a, (a, b))}) would be
equivalent to > and thus an empty translation would have been also possible, despite the
fact that the argument is attacked by a and {b} is not an admissible extension of EFC.

Let E ⊆ A be a conflict–free extension ofEFC. By Lemma 8.39, E is conflict–free in
DEFC . We define the set E+ as the collection of those arguments b ∈ A s.t. an argument
a ∈ E defeatsE b and there is a reinstatement set for this defeat on E . Clearly, by conflict–
freeness of E , E ∩ E+ = ∅. We will show that this set is equal to the partially discarded
set E p+ in DEFC .

Let b ∈ E+ in EFC. Assume it does not qualify for E p+ in DEFC ; this means that
b has a partially acyclic evaluation (F,G,B) on A s.t. B ∩ E = ∅ and F ⊆ E . Let
G = (a0, ..., an) be the pd–sequence of the evaluation. Due to the construction of the
sequence, the t part of the decisively in interpretation va0 used for a0 in the construction
of (F,G,B) is contained in F and thus in E . Since B ∩ E = ∅, vfa0 ∩ E = ∅. Therefore,
by the construction of the decisively in interpretations in consistent frameworks and the
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nature of the acceptance conditions in DEFC , this means that if there is an attacker of a0
present in the set, then the conflict is defense attacked by a subset of E and thus there is
no defeat. Consequently, a0 does not qualify for E+.

Let us continue onto a1. Assume that va1 is its associated minimal decisively in inter-
pretation. We know that vta1 ⊆ E ∪ {a0} and that vfa1 ∩ E = ∅. From the construction
of interpretations and conditions, this means that if there is an attack carried out at a1 by
some element of E , then it is defense attacked by a subset of E ∪ {a0}. Since a0 is not
defeated by any argument in E , then either no argument in E defeats a1 (i.e. no attacker
of a1 is present or a0 ∈ E ) or for no defeat by E on a1 there is a reinstatement set on
E . Consequently, a1 does not qualify for E+ in EFC. We can continue reasoning in this
manner till we reach an = b and the conclusion that if b has a partially acyclic evaluation
(F,G,B) s.t. F ′ ⊆ E and B ∩ E = ∅ in DEFC , then it cannot be in E+ in EFC.

We have just shown that E+ ⊆ E p+. We now need to prove that there is no argument
b ∈ E p+ in DEFC that is not in E+ in EFC. Assume it is not the case; therefore,
either no argument in E defeatsE b or no such defeat has a reinstatement set on E in
EFC, even though b ∈ E p+ in DEFC . Let us focus on the first case. If there is no
defeat, then there is either no attack on b from E in the first place, or for every attack
there is a subset of E carrying out an appropriate defense attack. Consequently, we can
observe that the acceptance condition of b w.r.t. E ∩ par(b) should be mapped to in.
Thus, by Proposition 2.150, b could not have been in E p+ and we reach a contradiction
with the assumptions. Let us now focus on the case where there is a defeat on b by an
argument d ∈ E , but it lacks a reinstatement set on E . By Theorem 2.64, there exists
a sequence of distinct defense attacks ((Z1, (x1, y1)), ..., (Zn, (xn, yn))) s.t. (xn, yn) =
(d, b), each (xi, yi) attack is unique, no argument in E defeatsE any element z ∈ Z1,
and for every other (Zi, (xi, yi)) in the sequence, either no argument h ∈ E defeatsE
any element z′ ∈ Zi or for every such defeat there is a set of arguments L ⊆ A s.t.
(L, (h, z′) ∈ {(Z1, (x1, y1)), ..., (Zi−1, (xi−1, yi−1))}. Let us start with the set Z1. We
can observe that if E does not defeatE any argument in Z1, then the conditions of the
arguments in Z1 are in fact satisfied by E . Thus, no element of Z1 is in the partially
acyclic discarded set by Proposition 2.150. Let us now consider Z2 and let z ∈ Z2 be
an argument. If it is not defeatedE by E , then we come back to the previous case and
can show that z cannot be in the partially acyclic discarded set. If it is defeatedE , then
the condition of z is out w.r.t. E . However, we can observe that by the construction,
the condition of z w.r.t. E ∪ Z1 is in, and as no element in Z1 is in the partially acyclic
discarded set, then the argument cannot be decisively out w.r.t. the partially acyclic range.
Thus, it is not in the partially acyclic discarded set by Proposition 2.150. We can therefore
show that Z2 ∩E p+ = ∅. We can continue this line of reasoning until we reach Zn and the
result that Zn ∩ E p+ = ∅. Consequently, yn cannot be decisively out w.r.t. the partially
acyclic range either and yn = b /∈ E p+. We reach a contradiction with the assumptions.
Therefore, E p+ ⊆ E+. We can thus finally conclude that E+ = E p+. 2

Lemma 8.41. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its corre-
sponding ADF obtained through Translation 49. A conflict–free set of arguments E ⊆ A
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defends an argument a ∈ A in EFC iff a is decisively in w.r.t. the partially acyclic range
vpE of E in DEFC .

Proof. In Theorem 8.39 we have shown that the conflict–free extensions of EFC and
DEFC coincide. In Lemma 8.40, we have proved that the set of arguments defeated by E
with a reinstatement set on E in EFC equals the partially acyclic discarded set of E in
DEFC . Now, we need to prove that an argument a ∈ A is defended by E in EFC iff it is
decisively in w.r.t. the partially acyclic range interpretation vpE of E in DEFC .

Let us start with left to right direction. If an argument a is defended by E , then every
argument b ∈ E s.t. b defeatsE a, is in turn defeated with reinstatement by E . Therefore,
a is defended iff every argument b ∈ A defeating it is in E+. Let us now consider an
argument c s.t. (c, a) ∈ R, but c does not defeatE a. This means that there is a suitable
defense attack carried out by a set F ⊆ E . We can now shift to DEFC . Every attacker of
a, be it b style (i.e. it becomes a defeater) or c style (i.e. does not become a defeater), has
a corresponding att formula in the condition of a and this formula is not equivalent to >
due to the strong consistency of EFC. If it is a formula attba, then we can observe that
as b is mapped to f by the partially acyclic discarded range, the formula evaluates to true
under this range and will remain such independently of what is assigned to the remaining
arguments in the formula. If it is a formula attca, then the disjunction of conjunctions
corresponding to the defense attackers evaluates to true and thus the whole attca is true.
Moreover, it will stay such, no matter what new arguments come into play. Consequently,
the condition of a is in under the partially acyclic range and will remain in for any of its
completions to A. Thus, a is decisively in w.r.t. the partially acyclic range of E .

Let us continue with the right to left direction. If an argument a is decisively in w.r.t.
the partially acyclic range, then its condition is in w.r.t. every completion of the range to
A. This means that every attba = ¬b ∨ (

∧
B1 ∨ ...

∧
Bm) subformula of the acceptance

condition evaluates to true under the acyclic range and remains such under every comple-
tion. Therefore, it is either b that has to be assigned f by the range or at least one setBi has
all arguments assigned t by the range. If it is the first case, then by Lemma 8.40, b ∈ E+

and if the attack from b is a defeat, then a is defended from b by E in EFC. If it is the
latter, then we can observe that the attack from b on a does not become a defeat. Since the
att subformulas account for all attackers of a, we can conclude that E defends a. 2

Theorem 8.42. Let EFC be a strongly consistent EAFC and DEFC = (A,L,C) its cor-
responding ADF obtained through Translation 49. A set of arguments E ⊆ A is a conflict–
free extension of EFC iff it is conflict–free in DEFC . E is a stable extension of EFC iff it
is a model of DEFC . E is a grounded extension of EFC iff it is the acyclic grounded ex-
tension of DEFC . Finally, E is a σ–extension of EFC, where σ ∈ {admissible, complete,
preferred}, iff it is a ca2–σ–extension of DEFC .

Proof. With the help of Theorem 8.39, Lemmas 8.40 and 8.41, it can be shown that E ⊆ A
is a σ–extension of EFC, where σ ∈ {admissible, complete preferred} iff it is a ca2− σ–
extension of DEFC . What remains to be proved is the relation between stable extensions
and models, and the grounded and acyclic grounded extensions.
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Let E ⊆ A be a stable extension of EFC. This means it is conflict–free and defeatsE
every argument a ∈ A \ E . We can observe that every defeatE originating from E will
be a trivial reinstatement set for any of these defeatsE . Therefore, from Theorem 8.39 and
Lemma 8.40, it follows that E is conflict–free inDEFC and that every argument a ∈ A\E
is in the partially acyclic discarded set. By Proposition 2.150 it holds that for every such
a, Ca(E ∩ par(a)) = out. Therefore, E is a model of DEFC . As observed in Example
103, E does not need to be stable in DEFC .

Let E ⊆ A be a model of DEFC . By Theorem 8.39, it is conflict–free in EFC. By
Lemma 2.159, from the fact that E is a model it follows that every argument in A \ E is
in the partially acyclic discarded set. Consequently, it is also in E+ in EFC, and by the
definition of this set is defeatedE by E . Therefore, E is stable in EFC.

In order to show that the grounded extension in EFC and the acyclic grounded in
DEFC correspond, we can use the iterating from the empty set approach (see Definition
2.142 and [66]). Let us start with E = E ′ = ∅. The set E is conflict–free in EFC and
E ′ is pd–acyclic conflict–free in DEFC . They are also (aa–) admissible in their respective
frameworks. Since E ′ is pd–acyclic conflict–free, then the partially acyclic range of E ′ is
in fact acyclic by Lemma 2.132. Therefore, if we perform an iteration and add to E the
arguments it defends in EFC and to E ′ those that are decisively in w.r.t. the acyclic range
of E ′ in DEFC , then it is still the case that E = E ′. Moreover, by Lemma 2.154, E ′ is still
aa–admissible and thus pd–acyclic conflict–free. From the admissibility of E ′ follows the
admissibility of E . We can now repeat the iteration and again observe that E = E ′. We
can continue in this manner until there are no arguments left (and as we are working with
finite frameworks, this is warrantied) and observe that E = E ′ and E is grounded in EFC
while E ′ acyclic grounded in DEFC . 2

Theorem 8.47. Let EFC = (A,R,D) be an EAFC and DEFC = (A′, L, C) its corre-
sponding ADF obtained through Translation 50. Let E b denote the (possibly empty) set of
bypass arguments generated by E in A′.

If a set of arguments E ⊆ A is a conflict–free extension of EFC then E ′ = E ∪ E b is
conflict–free inDEFC . If E ′ ⊆ A′ is conflict–free inDEF , then E = E ′∩A is conflict–free
in EFC.

If a set of arguments E ⊆ A is a stable extension of EFC then E ′ = E ∪ E b is a
model of DEFC . If E ′ ⊆ A′ is a model of DEF , then E = E ′ ∩ A is stable in EFC.

If a set of arguments E ⊆ A is the grounded extension of EFC then E ′ = E ∪ E b is
the acyclic grounded extension of DEFC . If E ′ ⊆ A′ is the acyclic grounded extension of
DEF , then E = E ′ ∩ A is grounded in EFC.

If E ⊆ A is a σ–extension of EFC, where σ ∈ {admissible, complete, preferred},
then E ′ = E ∪ E b is a ca2–σ–extension of DEFC . If E ′ ⊆ A′ ca2–σ–extension of DEFC ,
then E = E ′ ∩ A is a σ–extension of EFC.

Proof. Let E ⊆ A be a conflict–free extension of EFC and E ′ = E ∪ E b a set in DEFC .
Conflict–freeness of E means that given an argument a ∈ E , it is either not attacked at all
by any argument in E or every attack carried out by a member of E is defense attacked
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by a subset of E . If it is the first case, then from the functional version of the acceptance
conditions we can observe that Ca(E ′ ∩ par(a)) = in. If it is the latter, then there is
a defense attacking subset B ⊆ E for a given attack. Therefore, there is a suitable set
B′ ⊆ (E ∪E b), and by construction the condition of a is again in. Finally, as every bypass
argument is accompanied by its source, its condition is also satisfied. Therefore, E ′ is
conflict–free in DEFC .

Let now E ′ ⊆ A be a conflict–free extension of DEFC . This means that for any
argument a ∈ E ′, Ca(E ′ ∩ par(a)) = in. If a ∈ Ab, then it means that the original
argument for which a was created is in E . If a ∈ A, then by analyzing the acceptance
condition we can observe that either there is no argument b ∈ E s.t. (b, a) ∈ R, or for any
such attack there is a transformed defense attack in E ′. However, since bypasses cannot
appear without sources, we can revert the defense attacking set to its original form and
conclude that there is a subset of E carrying out a defense attack on (b, a). Thus, no
defeatsE are present in E and the set is conflict–free in EFC.

Let E ⊆ A be a conflict–free extension ofEFC. We define the set E+ as the collection
of those arguments b ∈ A s.t. an argument a ∈ E defeatsE b and there is a reinstatement
set for this defeat on E . Clearly, by conflict–freeness of E , E ∩E+ = ∅. We will show that
this set is equal to the partially acyclic discarded set of E ′ = E ∪E b without the bypasses
in DEFC , i.e. E+ = E

′p+ ∩ A.
Let b ∈ E+ in EFC. Assume it does not qualify for E ′p+ in DEFC ; this means that

b has a partially acyclic evaluation (F ′, G′, B′) on A′ s.t. B′ ∩ E ′ = ∅ and F ′ ⊆ E ′. Let
G′ = {a0, ..., an} be the sequence of this evaluation. Let us now analyze the case in which
b has a partially acyclic evaluation (F ′, G′, B′) on A s.t. B′ ∩ E = ∅ and F ′ ⊆ E ′. Again,
we can focus on those F ′ that are completed with bypasses (possibly with the exception
of the last argument). Let G′ = {a0, ab0, ..., an} be the pd–sequence of the evaluation.
By construction, the minimal decisively in interpretation va0 for a0 used in the creation
of the evaluation has a t part contained in F ′ and thus in E ′. If vta0 = ∅, then it is not a
bypass argument. Moreover, due to the fact that vfa0 ∩ E ′ = ∅, it cannot be the case that
E attacks a0 in EFC. Therefore, there is no defeat either, and a0 cannot be in E+. If
vta0 6= ∅, then we can distinguish two cases; one where a0 is a bypass argument and one
in which it is a standard argument. If it is the first case, then due to the fact that F ′ ⊆ E ′,
the original argument behind a0 is in E and therefore cannot be in E+ in EFC. Let us
therefore focus on the other. The minimal decisively in interpretation va0 that has been
used in the construction of (F ′, G′, B′) has a t part that is a subset of F ′ ⊆ E ′. From the
construction of the interpretations and conditions, this means that a given attacker of a0 is
either not present in E , or that the transformed defense attacking set K ′ for it is a subset
of E ′. Based on the construction of E ′ and the general fact that a bypass argument cannot
appear in a conflict–free extension without its origin, the real defense attacker set K has to
be a subset of E . Therefore, a0 is not defeated by any argument in E and does not qualify
for E+ in EFC.

Let us continue onto a1 and assume that va1 is its associated minimal decisively in
interpretation. We know that vta1 ⊆ E ′∪{a0} and that vfa1∩E

′ = ∅. If a1 is in fact a bypass
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argument, then its original is either a0 or is contained in E ′, and thus in E . Consequently,
it will not be in E+ in EFC. Let us assume that it is not a bypass argument. From the
construction of the interpretations and conditions, this means that a given attacker of a1 is
either not present in E , or that the transformed defense attacking set for it is contained in
E ′ ∪ {a0}. Therefore, if a0 is a bypass argument, then the original defense attacking set
is in E , and if it is not, it is a subset of E ∪ {a0}. We can recall that if a0 is a standard
argument, then it is not defeated by any argument in E . Consequently, either no argument
in E defeats a1 (i.e. argument is not attacked at all or a defense attack is present) or for
no defeat by E on a1 there is a reinstatement set on E . Consequently, a1 does not qualify
for E+ in EFC. We can continue reasoning in this manner till we reach an = b and the
conclusion that if b has an unblocked partially acyclic evaluation (F ′, G′, B′) s.t. F ′ ⊆ E ′

in DEFC , then it cannot be in E+ in EFC. Hence, E+ ⊆ E
′p+ ∩ A.

Let us focus on the other way around. We now need to prove that there is no argument
b ∈ E

′p+ ∩ A in DEFC that is not in E+ in EFC. Assume it is not the case, i.e. no argu-
ment in E defeatsE b or no such defeat has a reinstatement set on E , even though b ∈ E

′p+.
Let us focus on the first case. If there is no defeat, then there is either no attack on b from E
in the first place, or for every attack there is a subset of E carrying out an appropriate de-
fense attack. Consequently, from the analysis of conflict–freeness we can observe that the
acceptance condition of b w.r.t. E ′ ∩ par(b) should be mapped to in. Thus, by Proposition
2.150, b could not have been in E

′p+ and we reach a contradiction with the assumptions.
Let us now focus on the case where there is a defeat on b by an argument d ∈ E , but
it lacks a reinstatement set on E . By Theorem 2.64, there exists a sequence of distinct
defense attacks ((z1, (x1, y1)), ..., (zn, (xn, yn))) s.t. (xn, yn) = (d, b), each (xi, yi) attack
is unique, no argument in E defeatsE any element z ∈ z1, and for every other (zi, (xi, yi))
in the sequence, either no argument h ∈ E defeatsE any element z ∈ zi or for every such
defeat there is an argument l ∈ A s.t. (l, (h, z) ∈ {(z1, (x1, y1)), ..., (zi−1, (xi−1, yi−1))}.

Let us start with the set z1. By previous reasoning, we can observe that if E does not
defeatE any argument in z1, then the conditions of the arguments in z1 are in fact satisfied
by E ′ and thus no element of z1 is in the partially acyclic discarded set. Furthermore, we
can easily construct an unblocked partially acyclic evaluation any z ∈ z1 with the pd–set
in E ′ and extend it to zb (if it exists). Therefore, zb /∈ E

′p+. Let us now consider z2 and
let z ∈ z2 be an argument. If it is not defeatedE by E , then we come back to the previous
case and can show that z cannot be in the partially acyclic discarded set. If it is defeatedE ,
then the condition of z is out w.r.t. E ′. However, we can observe that by the construction,
the condition of z w.r.t. E ′ ∪ z1 ∪ zb1 is in, and as no element in z1 ∪ zb1 is in the discarded
set, then the argument cannot be decisively out w.r.t. the partially acyclic range. Thus, it
is not in the partially acyclic discarded set by Proposition 2.150. We can therefore show
that z2 ∩E

′p+ = ∅ and that zb2 ∩E
′p+ = ∅. We can continue this line of reasoning until we

reach zn and the result that zn ∩ E
′p+ = ∅ and zbn ∩ E

′p+ = ∅. Consequently, yn cannot
be decisively out w.r.t. the partially acyclic range either and yn = b /∈ E

′p+. We reach a
contradiction with the assumptions and can conclude that (E p+ ∩ A) ⊆ E+.

We have now shown that the set of arguments defeated by E with a reinstatement
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set on E in EFC equals the partially acyclic discarded set (without bypasses) of E ′ =
E ∪ E b in DEFC . The bypass arguments cannot appear in f parts of minimal decisively
in interpretations; they also do not possess a minimal decisively in interpretation with a
non empty f part. Therefore, as long as two conflict–free sets of DEFC differ only by
the bypass arguments they contain, then their partially acyclic discarded sets are the same.
Furthermore, if an argument is in the discarded set, then so is its source, and E

′p+ can
be also described with E+ ∪ (E+)b. We now need to prove that an argument a ∈ A is
defended by E in EFC iff it is decisively in w.r.t. the partially acyclic range interpretation
of E ′ = E ∪ E b in DEFC .

Let us start with left to right direction. If an argument a is defended by E , then every
argument b ∈ E s.t. b defeatsE a, is in turn defeated with reinstatement by E . Therefore,
a is defended if every argument b ∈ A defeating it is in E+. Let us now consider an
argument c s.t. (c, a) ∈ R, but c does not defeatE a. This means that there is a suitable
defense attack carried out by a set F ⊆ E . We can now shift to DEFC . Every attacker
of a, be it b or c style, has a corresponding att formula in the condition and thanks to our
transformation, it is not equivalent to > due to inconsistencies. If it is a formula attba, then
we can observe that as b is mapped to f by the partially acyclic discarded range, the formula
evaluates to true under this range and will remain such independently of what is assigned
to the remaining arguments in the formula. If it is a formula attca, then the disjunction of
conjunctions corresponding to the transformed defense attackers evaluates to true due to
the presence of bypass arguments and thus the whole attca is true. Moreover, it will stay
such, no matter what new arguments come into play. Consequently, the condition of a is
in under the partially acyclic range and will remain in for any of its completions to A.
Thus, a is decisively in w.r.t. the range. We can also observe that if a is decisively in w.r.t.
the partially acyclic range of E ′, then ab is decisively in w.r.t. the partially acyclic range
of E ′ ∪ {a}.

Let us continue with the right to left direction. If an argument a is decisively in w.r.t.
the partially acyclic range, then its condition is in w.r.t. every completion of the range to
A. This means that every attba = ¬b ∨ (

∧
B′1 ∨ ...

∧
B′m) subformula of the acceptance

condition evaluates to true under the acyclic range and remains such under every comple-
tion. Therefore, due to the fact that b does not appear in any of the B′ sets, it is either b
that has to be assigned f by the range or at least one set B′i has all arguments assigned t by
the range. If it is the first case, then b ∈ E+ and if the attack from b is a defeat, then a is
defended from b by E in EFC. If it is the latter, then we can observe that the attack from
b on a does not become a defeat – since the set carrying out defense attack represented by
B′ is in E ′, then so is its original version. As the att subformulas account for all attackers
of a, we can conclude that E defends a.

Using the proved properties it can be shown that if E ⊆ A is a σ–extension of EFC,
where σ ∈ {admissible, complete preferred}, then E ∪ E b ca2 − σ–extension of DEFC

and that if E ′ ⊆ A′ is a ca2 − σ–extension of DEFC , then E ′ ∩ A is a σ–extension of
EFC. Furthermore, we can observe that due to the fact that decisiveness of an argument
propagates to its bypass and a bypass cannot appear without its source, there is a one to
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one relation between the complete (and thus, preferred) extensions of EFC and DEFC .
This is not necessarily the case for the admissible extensions – not always a bypass has
to and needs to be included. What remains to be proved is the relation between stable
extensions and models, and the grounded and acyclic grounded extensions.

Let E ⊆ A be a stable extension of EFC. This means it is conflict–free and defeatsE
every argument a ∈ A \ E . We can observe that every defeatE originating from E will be
a trivial reinstatement set for any of these defeatsE . Therefore, from the previous parts of
this proof it follows that E ′ = E ∪ B is conflict–free in DEFC and that every argument
a ∈ A \ E is in the partially acyclic discarded set. Furthermore, so is every argument ab,
and thus E ′ = A′ \ E ′p+. By Proposition 2.150 it holds that for every such a, Ca(E ∩
par(a)) = out. Therefore, E ′ is a model of DEFC . As observed in Example 103, E ′ does
not need to be stable in DEFC .

Let E ′ ⊆ A′ be a stable extension ofDEFC . By previous parts of the proof, E = E ′∩A
is conflict–free in EFC. By Lemma 2.159, from the fact that E ′ is a model it follows that
every argument in A′ \ E ′ is in the partially acyclic discarded set. Consequently, every
argument in A \ E is in E+ in EFC, and by the definition of this set is defeatedE by E .
Therefore, E is stable in EFC.

In order to show that the grounded extension in EFC and the acyclic grounded in
DEFC correspond, we can use the iterating from the empty set approach. Let us start with
E = E ′ = ∅. The set E is conflict–free in EF and E ′ is pd–acyclic conflict–free in
DEFC . They are also (aa–) admissible in their respective frameworks. Since E ′ is pd–
acyclic conflict–free, then the partially acyclic range of E ′ is in fact acyclic by Lemma
2.132. Therefore, if we perform an iteration and add to E the arguments it defends in
EFC and to E ′ those that are decisively in w.r.t. the acyclic range of E ′ in DEFC , then
it is still the case that E = E ′. Moreover, by Lemma 2.154, E ′ is still aa–admissible and
thus pd–acyclic conflict–free. From the admissibility of E ′ follows the admissibility of E .
Let us now repeat the iteration on E ′ by limiting ourselves to bypass arguments. From
the previous parts of the proof it should be clear that it is the (E ′)b = E b arguments that
will be added. Again, E ′ is still aa–admissible and pd–acyclic conflict–free. We can now
repeat the iterations (including the extra step for E ′) and observe that E ′ = E ∪ {b}. We
can continue in this manner until there are no arguments left (and as we are working with
finite frameworks, this is warrantied) and observe that E ′ = E ∪{b} and E is grounded in
EFC while E ′ is acyclic grounded in DEFC . 2

15.7 Translating BAFs: Proof Appendix

Theorem 9.2. Let BF = (A,R, S) be a deductive BAF and R′ = {Rsup, Rmed
Rsup} ⊆

Rind the collection of supported and super–mediated attacks in BF . Let apd − FBF =
(A,R ∪

⋃
R′) be the associated attack propagation AF obtained through Translation 53

and E ⊆ A a complete extension of apd− FBF . Then, E is closed under S in BF .

Proof.Let E ⊆ A be a complete extension of apd − FBF . Let us assume it is not closed
under S, i.e. there exist arguments a ∈ E , b ∈ A \ E s.t. aSb in BF . As b is not in
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E , this means E does not defend b in apd − FBF , i.e. there exists an argument c ∈ A
s.t. (c, b) ∈ R ∪

⋃
R′, but no d ∈ E s.t. (d, c) ∈ R ∪

⋃
R′. Let us analyze the case

where (c, b) ∈ R. As (a, b) ∈ S, there exists a (super) mediated attack from c to a and
thus (c, a) ∈ R

⋃
R′. Consequently, if there is no argument d attacking c, we breach the

admissibility of E . If (c, b) ∈ Rsup, then there exists a super mediated attack from c to
a again and it contradicts the admissibility of E . Finally, let (c, b) ∈ Rmed

Rsup . This means
there exists an argument e ∈ A s.t. b supports e and c (supported) attacks e. Therefore,
there is a chain of support from a to e as well, and again it has to be the case that c super
mediated attacks a. We breach the admissibility of E . Hence, we can conclude that if E
is complete in apd− FBF , then it is closed in BF . 2

Theorem 9.3. Let BF = (A,R, S) be a BAF and R′ = {Rsec} ⊆ Rind the collection
of secondary attacks in BF . Let apd − FBF = (A,R ∪

⋃
R′) be the associated attack

propagation AF obtained through Translation 53 and E ⊆ A a complete extension of
apd− FBF . Then, E is inverse closed under S in BF .

Proof. Let E ⊆ A be a complete extension of apd− FBF . Let us assume it is not inverse
closed under S, i.e. there exist arguments a ∈ A \ E , b ∈ E s.t. aSb in BF . As a is not in
E , this means that E does not defend a in apd− FBF , i.e. there exists an argument c ∈ A
s.t. (c, a) ∈ R ∪

⋃
R′, but no d ∈ E s.t. (d, c) ∈ R ∪

⋃
R′. If (c, a) ∈ R ∪ Rsec, then

there exists a secondary attack from c to b as well and thus (c, b) ∈
⋃
R′. Consequently,

if there is no argument d attacking c, we breach the admissibility of E . Additionally, we
can observe that if c = a, then d would be secondary attacking b and thus breaching the
conflict–freeness of E . Therefore, we can conclude that if E is complete in apd − FBF ,
then it is inverse closed under S in BF . 2

Theorem 9.4. Let BF = (A,R, S) be a BAF, R′ ⊆ Rind a collection of indirect attacks in
BF and iclo−FBF = (A′, R′′) its associated inverse closure attack propagation–defender
AF w.r.t. R′ obtained through Translation 54. A set of arguments E ⊆ A is i–admissible
(i–preferred) in BF w.r.t. (R′, R′) iff it is admissible (preferred) in iclo− FBF .

Proof. Let E ⊆ A be an i–admissible extension of BF w.r.t. (R′, R′). This means
it is +conflict–free w.r.t. R′ in BF , defends all of its members w.r.t. R′ and for every
b ∈ E , a ∈ A s.t. aSb, a ∈ E . E can be easily shown to be conflict–free in iclo− FBF –
all the attacks not covered by R ∪

⋃
R′ are not within A×A. Let us now show that every

argument a ∈ A is defended by E in iclo − FBF . Let b ∈ A′ be an attacker of a in R′′.
Due to i–admissibility of E , if b ∈ A, then the (b, a) conflict has to be in the R∪

⋃
R′ part

of R′′, and thus b is a (possibly) indirect attacker of a in BF . Therefore, there exists c ∈ E
s.t. (c, b) ∈ R ∪

⋃
R′ by the i–admissibility of E in BF , and E can defend a against any

attacker b ∈ A in iclo− FBF . Let us now focus on the case where b ∈ S. This means it is
of the form (d, a) for an argument d ∈ A. Since E is inverse closed in BF , it has to be the
case that d ∈ E . Consequently, d attacks b in R′′, and again E can defend a against it. We
can therefore conclude that E is an admissible extension of iclo− FBF .
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Let E ⊆ A′ be an admissible extension of iclo − FBF . We can observe that all
arguments in S are self–attackers. Consequently, E ⊆ A. Since R∪

⋃
R′ ⊆ R′′, then if E

is conflict–free in iclo−FBF , it has to be conflict–free w.r.t. R′ in BF . Let a ∈ E , b ∈ A′
be arguments s.t. (b, a) ∈ R′′. Therefore, by admissibility of E in iclo − FBF , there has
to be c ∈ E s.t. (c, b) ∈ R′′. If b ∈ S, then by the construction of R′′, cSa. Hence,
it can be shown that E satisfies the inverse closure requirements in BF . If b ∈ A, then
(b, a) ∈ R ∪

⋃
R′ and (c, b) ∈ R ∪

⋃
R′ (note that c ∈ A). Consequently, E defends a in

BF . We can therefore conclude that E is i–admissible in BF .
In both cases, the i–preferred and preferred semantics are defined as the maximal i–

admissible and admissible extensions. Hence, by the previous parts of this proof, E is
i–preferred in BF iff it is preferred in iclo− FBF . 2

Theorem 9.9. Let BF = (A,R, S) be a deductive BAF and R′ = {Rsup, Rmed
Rsup} ⊆ Rind

the collection of supported and super–mediated attacks in BF . Let apd−FBF = (A,R∪⋃
R′) the associated attack propagation AF and cd − FBF = (A′, R′′) the associated

coalition AF obtained through Translations 53 and 57. If set E = {a1, ..., an} ⊆ A is
a σ–extension of apd − FBF , where σ ∈ {complete, preferred, grounded, stable}, then
E ′ = {C(a1), C(a2), ..., C(an)} is a σ–extension of cd − FBF . If set E ′ ⊆ A′ is a σ–
extension of cd− FBF , then E =

⋃
E ′ is a σ–extension of apd− FBF .

Proof. In order to prove this theorem, we will be relying on Theorem 9.2, which shows
that if E is complete in apd−FBF and a ∈ E supports an argument b in BF , then b ∈ E .

Let E = {a1, ..., an} ⊆ A be a complete extension of apd− FBF . Assume that E ′ =
{C(a1), C(a2), ..., C(an)} is not conflict–free in cd−FBF . By using Theorem 9.2 we can
show that

⋃
E ′ = E . Therefore, if there exist C(ai), C(aj) ∈ E ′ s.t. C(ai)R

′′C(aj), then
there have to be arguments a, b ∈ E s.t. aRb. We breach the conflict–freeness of E in
apd− FBF .

Let us now assume that E ′ is not admissible in cd − FBF . Thus, there exist C ′ ∈
A′, C(aj) ∈ E ′ s.t. C ′R′′C(aj) and no C(ak) ∈ E ′ for which C(ak)R

′′C ′. Consequently,
there are arguments a ∈ C ′ ⊆ A, b ∈ E s.t. (a, b) ∈ R. However, by the admissibility of
E , there must be an argument c ∈ E s.t. (c, a) ∈ R ∪

⋃
R′. If (c, a) ∈ R, then C(c)R′′C ′

and as C(c) ∈ E ′, we reach a contradiction. If (c, a) ∈ Rsup, then there exists d ∈ A s.t.
(d, a) ∈ R and c supports d. By completeness of E in apd − FBF , d ∈ E . Therefore,
C(d) ∈ E ′ and C(d)R′′C ′. We reach a contradiction. If (c, a) ∈ Rmed

Rsup , then there exists
e ∈ A s.t. a supports e and c (supported) attacks e. Thus, by previous analysis, there is an
argument in d ∈ E directly attacking e and as e has to be present in C ′, we can conclude
that C(d)R′′C ′. Therefore, E ′ is admissible in cd− FBF .

Finally, let us assume that E ′ is not complete in cd−FBF . Thus, there exists a coalition
argument C ′ ∈ A′ \ E ′ that is defended by E ′ in apd − FBF , i.e. for every argument
C ′′ ∈ A′ s.t. C ′′R′′C ′, there exists C(ai) ∈ E ′ for which C(ai)R

′′C ′′. We can observe
it has to be the case that there is at least one argument a ∈ C ′ s.t. a /∈ E – otherwise,
C ′ would have been included in E ′ by construction. By completeness of E , it cannot be
the case that E defends a in apd − FBF . This means there is an argument b ∈ A s.t.
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(b, a) ∈ R ∪
⋃
R′ and no argument c ∈ E s.t. (c, b) ∈ R ∪

⋃
R′. By the previous

analysis it thus holds that C(b)R′′C ′. Moreover, if no argument c ∈ E attacks C(b), then
by the fact that

⋃
E ′ = E , there cannot be any C(ai) ∈ E ′ s.t. C(ai)R

′′C(b). We reach a
contradiction and can therefore conclude that E ′ is a complete extension of cd− FBF .

Let E ′ ⊆ A′ be a complete extension of cd−FBF . Let us assume that E =
⋃

E ′ is not
conflict–free in apd − FBF . Thus, there exist arguments a, b, c, d ∈ E s.t. 1. (a, b) ∈ R,
or 2. a supports c and (c, d) ∈ R, or 3. a supports c, b supports d and (c, d) ∈ R, or finally
4. b supports d and (a, d) ∈ R. Let C ∈ E ′ be a coalition that contains a and C ′ ∈ E ′

the coalition that contains b. If we are dealing with first case, there is a conflict between
the coalitions containing a and b in R′′ and we breach the conflict–freeness of E ′. If it is
the second case, then c ∈ C and we come back to the first case. If it is the third case,
then c ∈ C and d ∈ C ′ and we again have an attack in E ′. If it is the final (fourth) case,
then d ∈ C ′ and we again reach a contradiction with the assumptions. Thus, E has to be
conflict–free in apd− FBF .

Let us now assume that E is not admissible, i.e. there exist arguments a ∈ A, b ∈ E s.t.
(a, b) ∈ R∪

⋃
R′ and no c ∈ E s.t. (c, a) ∈ R∪

⋃
R′. From the previous analysis it follows

that a coalition C(a) ∈ A′ for a has to attack a coalition C ′ ∈ E ′ containing b. Therefore,
by the admissibility of E ′, there must exist a coalition C ′′ ∈ E ′ s.t. C ′′R′′C(a). By the
construction of coalitions, this means there is an argument d ∈ E that either (directly)
attacks a or an argument supported by a. Hence, either (d, a) ∈ R or there is a mediated
attack from d to a. We reach a contradiction and can conclude that E is admissible in
apd− FBF .

Finally, let us assume that E is not complete in apd− FBF . Consequently, it has to be
the case there is an argument b ∈ A \E that is defended by E in apd− FBF . At the same
time, by the completeness of E ′, it cannot be the case that E ′ defends C(b). Therefore,
there exists a coalition C ∈ A′ s.t. CR′′C(b) and no coalition C ′ ∈ E ′ s.t. C ′R′′C. By the
previous analysis, we can observe that there must be an argument c ∈ C that is attacking b
in R ∪

⋃
R′. If there was an argument d ∈ E directly or indirectly attacking c, then again

from the previous parts of this proof we can conclude that the coalition in E ′ containing d
would attack C in R′′. We reach a contradiction. Thus, E is complete in apd− FBF .

We can observe that if two coalitions C,C ′ ⊆ A are defended by a given set, then so
is any coalition C ′′ ∈ A′ s.t. C ′′ ⊆ C ∪ C ′. This simply follows from the construction
of cd − FBF . Therefore, it cannot be the case that there exist two different extensions
E ,E ′ ⊆ A′ of cd − FBF s.t.

⋃
E =

⋃
E ′. Thus, it can be shown that there is a one–to–

one relation between the complete extensions of cd− FBF and apd− FBF .
Due to the one–to–one correspondence between the complete extensions of cd− FBF

and apd−FBF and the fact that a subset relation between two complete extensions of one
structure implies the same subset relation between the corresponding extensions of the
other, we can use Theorem 2.10 to prove the same correspondence between the preferred
and grounded extensions as in the complete case. Using Theorem 2.9 and the previous
analysis on attacks, the same relation between the stable extensions of both framework
can be shown. 2
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Theorem 9.10. Let BF = (A,R, S) be a deductive BAF, R′ = {Rsup, Rmed
Rsup} ⊆ Rind the

collection of supported and super–mediated attacks in BF and cd− FBF = (A′, R′′) the
associated coalition AF obtained through Translation 57. The following holds:

• if set E = {a1, ..., an} ⊆ A is +conflict–free w.r.t. R′ and closed under S in BF ,
then E ′ = {C(a1), C(a2), ..., C(an)} is a conflict–free extension of cd− FBF .

• if set E = {a1, ..., an} ⊆ A is a c–admissible (c–preferred) extension of BF w.r.t.
(R′, R′), then E ′ = {C(a1), C(a2), ..., C(an)} is an admissible (preferred) exten-
sion of cd− FBF .

• if set E = {a1, ..., an} ⊆ A is a d–complete extension of BF w.r.t. (R′, R′), then
E ′ = {C(a1), C(a2), ..., C(an)} is a complete extension of cd− FBF .

• if set E = {a1, ..., an} ⊆ A is a d–grounded (stable) extension of BF w.r.t. R′, then
E ′ = {C(a1), C(a2), ..., C(an)} is a grounded (stable) extension of cd− FBF .

• if set E ′ ⊆ A′ is a conflict–free extension of cd−FBF , then E =
⋃
E ′ is +conflict–

free w.r.t. R′ and closed under S in BF .

• if set E ′ ⊆ A′ is an admissible (preferred) extension of cd − FBF , then E =
⋃
E ′

is a c–admissible (c–preferred) extension of BF w.r.t. (R′, R′).

• if set E ′ ⊆ A′ is a complete extension of cd− FBF , then E =
⋃
E ′ is a d–complete

extension of BF w.r.t. (R′, R′).

• if set E ′ ⊆ A′ is a grounded (stable) extension of cd − FBF , then E =
⋃
E ′ is a

d–grounded (stable) extension of BF w.r.t. R′.

Proof. Let E = {a1, ..., an} be +conflict–free w.r.t. R′ and closed under S in BF and
let E ′ = {C(a1), C(a2), ..., C(an)} be the corresponding set in cd − FBF . Due to the
fact that E is closed under S, we can observe that E =

⋃
E ′. If E ′ is not conflict–

free, then by the construction of cd − FBF , it can be shown that E has to contain two
arguments directly attacking each other (see proof of Theorem 9.9). Thus, we contradict
the +conflict–freeness of E , and can conclude that E ′ is conflict–free in cd− FBF .

Let E ′ = {C(a1), C(a2), ..., C(an)} be a conflict–free extension of cd − FBF and let
E =

⋃
E ′ be the corresponding set inBF . By the construction of cd−FBF and coalitions,

it can be shown that E has to be closed under S. Let us assume it is not +conflict–free in
BF w.r.t. R′. It means there are two arguments a, b ∈ E s.t. a directly, supported or super
mediated attacks b. However, as seen in the proof of Theorem 9.9, the fact that E is closed
under S leads to the conclusion that there must be some direct attack (c, d) for c, d ∈ E .
Consequently, there is a conflict between the coalitions in E ′ that brought c and d to E ,
and we reach a contradiction. We can conclude that E is +conflict–free and closed under
S in BF .
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In order to show admissibility, we can use the presented conflict–freeness analysis and
the proof of Theorem 9.9. The results for complete, grounded and stable semantics follow
from Theorems 9.1 and 9.9. The results for preferred semantics follow from Theorems
9.1, 9.2 and 9.9. 2

Theorem 9.12. Let BF = (A,R, S) be a BAF specialized for necessary support, R′ =
{Rsec, Rext} the collection of secondary and extended attacks in BF and dn − FBF =
(A′, R′′) the defender AF associated with BF obtained through Translation 58. If E ⊆ A
is an i–admissible extension ofBF w.r.t. (R′, R′), then there exists an admissible extension
E ′ ⊆ A′ s.t. E ′ ∩ A = E . If E ′ ⊆ A′ is an admissible extension of df − FBF , then
E = E ′ ∩ A might not be an i–admissible extension of BF w.r.t. (R′, R′).

Proof. Let E ⊆ A be an i–admissible extension of BF w.r.t. (R′, R′). With E+ =
{a | a ∈ A,∃b ∈ E s.t. (b, a) ∈ R ∪

⋃
R′} be the set of arguments (directly or indirectly)

attacked by E w.r.t. R′. It is easy to see that if E is conflict–free w.r.t. R′, then E∩E+ = ∅.
By S(a) ⊆ S we will denote the set of all (direct) supports carried out by a. Let now
E ′ = E ∪

⋃
{S(a) | a ∈ E+} be a set of arguments in dn− FBF .

Let us assume E ′ is not conflict–free in dn− FBF and let a, b ∈ E ′ be two arguments
s.t. (a, b) ∈ R′′. Due to the fact that R ⊆ R′′, it cannot be the case that a, b ∈ E ′ ∩ A –
otherwise, we would breach the +conflict–freeness of E . By the construction of E ′, it is
also easy to see that it cannot be the case that a ∈ E ′ ∩ A and b ∈ E ′ ∩ A′. This leaves
us with the case that a ∈ E ′ ∩ A′ and b ∈ E ′ ∩ A. In other words, a represents a support
link targeted at b. However, this means that the source of this support is in E+; therefore,
by the properties of secondary attack, b is also in E+ and therefore cannot be in E due
to conflict–freeness. We reach a contradiction and can conclude that E ′ is conflict–free in
dn− FBF .

Let us now assume that E ′ is not admissible in dn − FBF . This means there are
arguments b ∈ A′, a ∈ E ′ s.t. (b, a) ∈ R′′ and no argument c ∈ E ′ s.t. (c, b) ∈ R′′. Let us
first focus on the case where both a and b are normal arguments in A. Thus, (b, a) ∈ R,
and it has to be the case that E defends a inBF . Consequently, there is an argument d ∈ E
s.t. (d, b) ∈ R ∪

⋃
R′′. If (d, b) ∈ R, then (d, b) ∈ R′′, and we reach a contradiction. If

(d, b) ∈ Rsec, then there is an argument e ∈ A s.t. eSb and e ∈ E+. Therefore, the (e, b)
support is in E ′, and attacks b. We reach a contradiction. If (d, b) ∈ Rext, then there is an
argument f ∈ A s.t. f supports (directly or indirectly) b and (f, b) ∈ R. As E is inverse
closed under support, f ∈ E . Thus f ∈ E ′ and (f, b) ∈ R′′. We reach a contradiction yet
again. Let us now focus on the case where a is a normal argument and b represents the
support relation (x, a) targeted at a by an argument x ∈ A. If b is not attacked by E ′, then
it means that x /∈ E ′ and x /∈ E . Since xSa, it cannot be the case that E is inverse closed
under support. We reach a contradiction. Finally, let us assume that b is a normal argument
and a represents the support relation (b, x) carried out at b on an argument x ∈ A. This
means that E ′ does not attack b in dn − FBF . Therefore, no support argument targeted
at b is in E ′ and no argument y s.t. yRb can be in E ′ either. If it is the first case, then no
supporter of b is attacked, and thus E cannot carry out a secondary attack at b. From the
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latter, it cannot carry out a direct one either, and due to the fact that E is inverse closed,
it cannot carry out an extended attack as well. Thus, E cannot defend a in BF and we
reach a contradiction with the i–admissibility of E . We can finally conclude that E ′ is
admissible in dn− FBF .

Please see Example 111 for a proof that not every admissible extension of dn − FBF

produces an i–admissible extension of BAF w.r.t. (R′, R′). 2

Theorem 9.14. Let BF = (A,R, S) be a support acyclic BAF, R′ = {Rsec} the collec-
tion of secondary attacks in BF and FNBF = (A,R,N) the AFN associated with BF
obtained through Translation 59. Then, a set E ⊆ A is:

• +conflict–free w.r.t. ∅ in BF iff it is conflict–free in FNBF .

• inverse closed under S in BF iff it is coherent in FNBF .

• +conflict–free w.r.t. R′ and inverse closed under S in BF iff it is strongly coherent
in FNBF .

• an i–admissible extension of BF w.r.t. (R′, R′) iff it is admissible in FNBF .

• an i–preferred extension of BF w.r.t. (R′, R′) iff it is preferred in FNBF .

• a d–complete extension of BF w.r.t. (R′, R′) iff it is complete in FNBF .

• a d–grounded extension of BF w.r.t. R′ iff it is grounded in FNBF .

• a stable extension of BF w.r.t. R′ iff it is stable in FNBF .

Proof. For the sake of simplicity, we will not be making the parametrization of BAF
semantics explicit in the proof.

• Conflict–freeness in AFNs is defined on the direct attacks only, and so is +conflict–
freeness w.r.t. ∅ in BAFs. Thus, it is easy to show that these extensions coincide.

• If E is inverse closed, then for every argument a ∈ E , if bSa, then b ∈ E . Therefore,
for every argument a ∈ E and every set B ⊆ A s.t. BNa, B ∩ E 6= ∅. From
Theorems 9.13 and 4.32 it thus follows that E is coherent in FNBF . The other way
around is straightforward.

• If E +conflict–free w.r.t. R′ and inverse closed under S, then by the previous point it
is coherent in FNBF . As there are no arguments a, b ∈ E s.t. (a, b) ∈ R∪

⋃
R′, then

it is also trivially conflict–free and thus strongly coherent. Let now E be strongly
coherent in FNBF . By the previous point, it is inverse closed under S. Assume it
is not +conflict–free w.r.t. R′. We can observe it can only be the case that there are
a, b ∈ E s.t. (a, b) ∈ Rsec. This means that there is an argument c s.t. c supports
b and (a, c) ∈ R. However, as the set is inverse closed, then c ∈ E . Therefore, we
breach the conflict–freeness of E in FNBF . We can conclude that E is +conflict–
free and inverse closed under S in BF .
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• Let E be i–admissible in BF . Let us assume it is not admissible in FNBF . By
the previous points, it suffices to show that there are arguments a ∈ E , b ∈ A s.t.
(b, a) ∈ R and a coherent set B containing b s.t. no element in it is attacked by
E in R in FNBF . We can observe that the same (b, a) attack is in BF and due to
i–admissibility, it has to be the case that there is c ∈ E s.t. (c, b) ∈ R ∪ Rsec. If
(c, b) ∈ R, then E can easily defend a in FNBF and we reach a contradiction. If
(c, b) ∈ Rsec, then there exists an argument d ∈ A s.t. (c, d) ∈ R and d supports b in
S. Due to the fact that FNBF is binary and strongly valid, it is easy to observe that b
will possess only one minimal powerful sequence and that this sequence will contain
d. Therefore, E can attack this sequence in FNBF and we can finally conclude that
the set is admissible in FNBF .

Let E be admissible in FNBF . Let us assume it is not i–admissible in BF . Again,
by the previous points, it suffices to show that there are arguments a ∈ E , b ∈ A
s.t. (b, a) ∈ R ∪ Rsec and no argument c ∈ E s.t. (c, b) ∈ R ∪ Rsec. Let us first
assume that (b, a) ∈ R. This means that the attack occurs also on the AFN side
and by the admissibility of E in FNBF , E has to attack every coherent set for b.
Without the loss of generality, we can focus on the minimal coherent sets, and by
the construction of FNBF we know that the single minimal powerful sequence for b
consists all of those arguments directly or indirectly supporting b in S (plus b itself).
Thus, if E contains an argument d attacking any of these arguments in FNBF , then
d carries out a directed or secondary attack at b in BF . Thus, E defends a in BF
and we reach a contradiction. Let us now assume that (b, a) ∈ Rsec. Due to the
fact that E is inverse closed for S, there exists an argument e in E s.t. e supports b
and (b, a) ∈ R. We can thus repeat the previous analysis to show that E directed or
secondary attacks b. We reach a contradiction yet again and can thus conclude that
E is i–admissible in BF .

• Since admissible and i–admissible extensions coincide, so do the preferred and i–
preferred ones.

• Let E be a d–complete extension of BF . By definition, it is also d–admissible, and
by Theorem 9.3, also i–admissible. Thus, by previous analysis, E is an admissible
extension of FNBF . If it is not complete, then there is an argument a ∈ A \ E that
is defended by E . This means that for every set of arguments C ⊆ A s.t. CNa,
C ∩E 6= ∅, and that for every argument b ∈ A s.t. (b, a) ∈ R, E attacks all coherent
sets for b. By the construction of FNBF , it holds that for every c ∈ A s.t. cSa,
c ∈ E . By the previous analysis, we can also observe that E contains arguments
directly or secondary attacking all direct attackers of a in BF . Moreover, due to the
fact that the support arguments are in E and E is i–admissible, we cover also the
indirect attackers of a in BF as well. Thus, we contradict the d–completeness of E
in BF , and it has to be the case that E is complete in FNBF .

Let E be a complete extension of FNBF . By the previous analysis, E is i–
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admissible in BF , and thus d–admissible as well. If it is not d–complete, then
there exists an argument b ∈ A \ E defended by E in BF . Thus, from the previous
analysis we can observe that if there is an argument c ∈ A s.t. (c, b) ∈ R, then every
coherent set for c is attacked by E in FNBF . What is important is the fact that by
the proof of Theorem 9.3, if b is defended by E in BF , then so is every argument
supporting it. Due to the fact that the support subgraph is directed acyclic, we can
form a topological ordering of supporters (b0, ..., bn) of b in BF that behaves like
the minimal powerful sequence for b in FNBF . As b0 requires no support and by
the explanation above has to be defended against attacks in FNBF , E defends b0 in
FNBF . Therefore, b0 ∈ E , and b1 is both sufficiently supported and defended from
attacks by E . Consequently, E defends b1 in FNBF . We can continue this line of
reasoning until we reach bn = b and conclude that E defends b. As b /∈ E , we reach
a contradiction with the completeness of E in FNBF . Thus, E is d–complete in
BF .

• Follows from the relation between the complete and d–complete extensions and
Theorems 2.80 and 2.95.

• Follows straightforwardly from the previous parts of this proof and Theorem 2.94.

2

Theorem 9.15. Let BF = (A,R, S) be a support acyclic BAF and let ESBF = (A ∪
{η}, R′, E) be its associated EAS obtained through Translation 60. ESBF is attack binary,
support singular and all–supported. It is in minimal, weakly, relation and strongly valid
forms.

Proof. The fact that the target framework is attack binary, support singular and all–
supported follows straightforwardly from the translation. It is also in minimal normal
form based on Lemma 4.73. Since ESBF is singular, we can observe that there exists only
one support assigning function f in accordance with Definition 4.35. Due to the fact that
(A, S) is directed acyclic, there exists a topological ordering of the arguments. This or-
dering (with η added at the beginning) will be a topological ordering for the arguments in
ESBF . Therefore, by Theorem 4.38, our framework is strongly valid. By Theorem 4.36,
it is also weakly and relation valid. 2

Theorem 9.16. Let BF = (A,R, S) be a support acyclic BAF, ESBF = (A∪{η}, R′, N)
the EAS associated with BF obtained through Translation 60 and R′′ = {Rsec} the col-
lection of secondary attacks in BF . Then, a set X ⊆ A is:

• +conflict–free w.r.t. ∅ in BF if it is conflict–free in ESBF .

• inverse closed under S in BF if X ∪ {η} is self–supporting in ESBF .

• +conflict–free w.r.t. R′′ and inverse closed under S in BF if X ∪ {η} is strongly
self–supporting in ESBF .
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• an i–admissible extension of BF w.r.t. (R′′, R′′) if X ∪ {η} is admissible in ESBF .

• an i–preferred extension of BF w.r.t. (R′′, R′′) iff X ∪ {η} is preferred in ESBF .

• a d–complete extension of BF w.r.t. (R′′, R′′) iff X ∪ {η} is complete in ESBF .

• a d–grounded extension of BF w.r.t. R′′ iff X ∪ {η} is grounded in ESBF .

• a stable extension of BF w.r.t. R′′ iff X ∪ {η} is stable in ESBF .

Additionally, a set X ′ ⊆ A ∪ {η} is:

• conflict–free in ESBF if X ′ ∩ A is +conflict–free w.r.t. ∅ in BF .

• self–supporting in ESBF if X ′ ∩ A is inverse closed under S in BF .

• strongly self–supporting in ESBF if X ′ ∩ A is +conflict–free w.r.t. R′′ and inverse
closed under S in BF .

• admissible in ESBF if X ′ ∩ A is an i–admissible extension of BF w.r.t. (R′′, R′′).

Proof. For the sake of simplicity, we will not be making the parametrization of BAF
semantics explicit in the proof.

Let X ⊆ A be a +conflict–free w.r.t. ∅ extension of BF . This means there are no
arguments a, b ∈ X s.t. (a, b) ∈ R. Therefore, there are no a, b ∈ X s.t. ({a}, b) ∈ R′,
and as ESBF is attack binary, X is conflict–free in ESBF . Due to the fact that η does not
participate in any conflicts, we can observe that X ∪{η} is conflict–free in ESBF as well.

Let X ′ ⊆ A∪{η} be conflict–free in ESBF . This means there are no Y ⊆ X ′, a ∈ X ′
s.t. (Y, a) ∈ R′. Therefore, by the construction of R′, it cannot be the case that there are
a, b ∈ X ′ ∩ A s.t. (a, b) ∈ R. Thus, X ′ ∩ A is +conflict–free in BF w.r.t. ∅.

If X ⊆ A is inverse closed in BF , then for every argument a ∈ X , if bSa, then b ∈ X .
Therefore, for every argument a ∈ X s.t. ∃b ∈ A, (b, a) ∈ S, there is a set Y ⊆ X
s.t. (Y, a) ∈ E. For every other a ∈ X , ({η}, a) ∈ E. As η itself requires no support
through E, we can observe that every argument X ∪ {η} is sufficiently supported by the
set. Thus, X ∪ {η} is self–supporting by Theorem 4.32. Please note that if X = ∅, then
X is self–supporting in ESBF as well.

If X ′ ⊆ A ∪ {η} is self–supporting in ESBF , then for every non–η argument a ∈ X ′,
there is a subset Y ⊆ X ′ s.t. (Y, a) ∈ E. Due to the fact that ESBF is singular and all–
supported, it is precisely one set. This means that for every set Y ⊆ A s.t. Y Ea, Y ⊆ X ′.
Therefore, for every argument b ∈ A s.t. bSa, b ∈ X ′∩A. Hence, X ′∩A is inverse closed
in BF .

Let X ⊆ A be +conflict–free w.r.t. R′′ and inverse closed in BF . By the previous
parts of this proof, X ′ = X ∪ {η} is self–supporting. As there are no arguments a, b ∈ X
s.t. (a, b) ∈ R

⋃
R′′, then X ′ is trivially conflict–free and thus strongly self–supporting in

ESBF .
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Let now X ′ ⊆ A ∪ {η} be strongly self–supporting in ESBF . By the previous parts
of this proof, X = X ′ ∩ A is inverse closed under S in BF . However, assume it is not
+conflict–free w.r.t. R′′. We can observe it can only be the case that there are a, b ∈ E
s.t. (a, b) ∈ Rsec. This means that there is an argument c s.t. c supports b and (a, c) ∈ R.
However, as the set is inverse closed, then c ∈ X ′. Therefore, we breach the conflict–
freeness of X ′ in ESBF . We can conclude that X is +conflict–free w.r.t. R′′ and inverse
closed under S in BF .

LetX ⊆ A be i–admissible inBF . Let us assume thatX ′ = X∪{η} is not admissible
in ESBF . Consequently, there exists an argument a ∈ X ′ and a minimal e–supported
attack Y ⊆ A ∪ {η} on it s.t. no argument in Y is attacked by X ′. We can observe it
cannot be the case that a = η. By the construction of ESBF , every subset of B ⊆ Y that
is actually carrying out the conflict in R′ consists of a single argument only, i.e. B = {b}
for some b ∈ A. Due to the fact that η cannot participate in conflicts, the same attack will
appear inR inBF . Additionally, since Y contains all supporters of b and none of them are
attacked, it cannot be the case that X carries out a direct or secondary attack on b. Due to
the fact that a ∈ X , we breach the i–admissibility of X in BF and reach a contradiction.
Hence, X ′ is admissible in ESBF .

Let X ′ ⊆ A ∪ {η} be admissible in ESBF . Let us assume that X = X ′ ∩ A is
not i–admissible in BF . Again, by the previous points, it suffices to show that there are
arguments a ∈ X, b ∈ A s.t. (b, a) ∈ R∪Rsec and no argument c ∈ X s.t. (c, b) ∈ R∪Rsec.
Let us first assume that (b, a) ∈ R. This means that the attack occurs also on the EAS side
and by the admissibility of X ′ in ESBF , X ′ has to attack every self–supporting set for
b. Without the loss of generality, we can focus on the minimal self–supporting sets, and
by the construction of ESBF we know that the single minimal evidential sequence for b
consists all of those arguments directly or indirectly supporting b in S (plus b itself). Thus,
if X ′ contains an argument d attacking any of these arguments in ESBF , then d carries
out a directed or secondary attack at b in BF . Since d cannot be η, then d ∈ X . This
means that X defends a in BF and we reach a contradiction. Let us now assume that
(b, a) ∈ Rsec. Due to the fact that X is inverse closed for S, there exists an argument e
in X s.t. e supports b and (b, a) ∈ R. We can thus repeat the previous analysis to show
that X directed or secondary attacks b. We reach a contradiction yet again and can thus
conclude that X is i–admissible in BF .

Based on the previous parts of this proof it is easy to see that if X ⊆ A is i–preferred
in BF , then X ′ = X ∪{η} is preferred in ESBF . Moreover, if X ′ ⊆ A∪{η} is preferred
in ESBF , then X = X ′ ∩ A is i–preferred in BF .

Let X ⊆ A be a d–complete extension of BF . By definition, it is also d–admissible,
and by Theorem 9.3, also i–admissible. Thus, we can use the previous analysis to show
that X ′ = X ∪ {η} is an admissible extension of ESBF . If it is not complete, then there
is an argument a ∈ (A ∪ {η}) \ X ′ that is defended by X ′. This means that there exists
a set of arguments C ⊆ A ∪ {η} s.t. CEa and C ⊆ X ′, and that for every minimal
e–supported attack B ⊆ A ∪ {η} on a, X ′ a member of B. This, by the construction of
ESBF and previous analysis, means that for every c ∈ A s.t. cSa, c ∈ X , and that for
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every argument b directly or secondary attacking a, there is an argument in X directly or
secondary attacking b. Thus, we contradict the d–completeness of X in BF , and it has to
be the case that X ′ is complete in ESBF .

Let X ′ ⊆ A ∪ {η} be a complete extension of ESBF . By the previous analysis,
X = X ′∩A is i–admissible in BF , and thus d–admissible as well. If it is not d–complete,
then there exists an argument b ∈ A \ X defended by X in BF . In other words, every
direct or secondary attacker of b is direct or secondary attacked by X . We can reuse the
previous parts of this proof to show that every minimal e–supported attack on b is attacked
by X ′. What is left is the question of support. By the proof Theorem 9.3, if b is defended
by X in BF , then so is every argument supporting it. Due to the fact that the support
subgraph is directed acyclic, we can form a topological ordering of supporters (b0, ..., bn)
of b in BF s.t. (η, b0, ..., bn) behaves like the minimal evidential sequence for b in ESBF .
Clearly, η ∈ X ′. Consequently, X ′ sufficiently supports b0 and by the previous parts of
this analysis, attacks all minimal e–supported attacks carried out on it. Hence, by the
completeness of X ′, b0 ∈ X ′. We can continue this line of reasoning until we reach bn = b
and conclude that X ′ defends b in ESBF . As b /∈ X ′, we reach a contradiction with the
completeness of X ′ in ESBF . Thus, X ′ is d–complete in BF .

It is easy to see that the relation between the complete extensions of BF and ESBF

is one–to–one. The argument η is easily defended by any set and thus will be present in
every complete extension of ESBF . Consequently, the issue of both ∅ and {η} being ad-
missible inESBF and corresponding to ∅ inBF is resolved. The correspondence between
the complete and d–complete extensions of the two frameworks now follows easily from
Theorems 2.80 and 2.112. The relation between the stable extensions can be proved easily
as well. 2

15.8 Translating AFNs: Proof Appendix

Theorem 10.2. Let FN = (A,R,N) be an AFN and F FN = (A′, R′) its corresponding
AF built from Translation 61. If E ′ ⊆ A′ is conflict–free in F FN , then

⋃
E ′ is conflict–free

in FN , but not vice versa. A set E ⊆ A is a strongly coherent extension of FN iff F FN

admits a set E ′ = {C1, ..., Cn} ⊆ A′ s.t. E =
⋃n
i=1Ci as a conflict–free extension. A set

E ⊆ A is an admissible extension of FN iff F FN admits a set E ′ = {C1, ..., Cn} ⊆ A′

s.t. E =
⋃n
i=1Ci as an admissible extension. For every complete extension of FN there

exists exactly one corresponding complete extension of F FN .

Proof. Let E ⊆ A be a conflict–free extension of FN . It does not have to be the case
that every argument in E possesses a powerful sequence on A. Consequently, E might not
be a subset of

⋃
A′, and thus it might not have a corresponding conflict–free extension in

F FN .
Let E ⊆ A be a strongly coherent extension of FN . By definition, E is a coherent

set for any of the arguments it contains. Thus, for every argument a ∈ A, there exists at
least one Ea ⊆ E that is a minimal coherent set for a. Let E ′ = {Ea}a∈E be a collection
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of such sets. We can observe that the union of all sets in E ′ is E . Assume that E ′ is not
conflict–free. By the construction of F FN , it means there are some sets Ea,Eb ∈ E ′ s.t.
∃x1 ∈ Ea, x2 ∈ Eb s.t. x1Rx2. However, as both x1, x2 ∈ E , this breaches the conflict–
freeness of E . We reach a contradiction and can conclude that if E is strongly coherent,
then E ′ is conflict–free.

Let E ′ = {E1, ...,En} be a conflict–free extension of F FN . By construction, it means
that every Ei is coherent, and that for no a ∈ Ei, b ∈ Ej , aRb. Therefore, E =

⋃n
i=1 Ei is

also coherent and conflict–free. Consequently, E is strongly coherent in FN .
Let E ⊆ A be an admissible extension of FN and E ′ = {Ea}a∈E the corresponding

conflict–free set described in the previous part of this proof. Assume it is not admissible,
i.e. there exists Ex ∈ E ′ and Ey ∈ A′ s.t. EyR

′Ex and no Ez ∈ E ′ s.t. EzR
′Ey. By the

construction of F FN , this means that there is an argument a ∈ E (occurring in Ex) that is
attacked by b ∈ A (occurring in Ey) and no c ∈ E (as there is no Ez ∈ E ′) that is attacking
the coherent set for b represented by Ey. Therefore, E could not have defended a, and we
reach a contradiction with the admissibility of E . Thus, if E is admissible in FN , then so
is E ′ in F FN .

Let E ′ = {E1, ...,En} be an admissible extension of F FN . By the previous analysis,
E =

⋃n
i=1 Ei is strongly coherent in F FN . If it is not admissible, then there is an argument

a ∈ E s.t. ∃b ∈ A, bRa and there is a coherent setB ⊆ A for b s.t. there is no c ∈ E , d ∈ B
for which cRd. Without the loss of generality, we can assume thatB is a minimal coherent
set for b. By the construction of F FN , every Ei ∈ E ′ s.t. a ∈ Ei is attacked by B in
R′. Moreover, it also holds there is no Ej ∈ E ′ s.t. EjR

′B. Consequently, E ′ could
not have defended the AF arguments in E ′ representing coherent sets for a. We reach a
contradiction with the admissibility of E ′. Therefore, if E ′ is admissible in F FN , then so
is E in FN .

Let E ′ = {E1, ...,En} and F = {F1, ..., Fk} be two complete extension of F FN s.t.
E =

⋃n
i=1 Ei =

⋃k
i=1 Fi and E ′ 6= F . Let us assume there is an AF argument G s.t.

G ∈ E ′ but G /∈ F . This means that E ′ does not defend G, even though F does. However,
as
⋃n
i=1 Ei =

⋃k
i=1 Fi, then for every AFN argument a ∈ G, there is another AF argument

in F containing it. Therefore, from the way attacks are created in F FN , it can be shown
that as F defends all of its arguments, it has to defend G as well. Thus, by completeness
it has to be the case that G ∈ F , and we reach a contradiction with the assumptions. We
can repeat the same analysis for G ∈ F and G /∈ E ′ and come to the same conclusion.
Therefore, it has to be the case that E ′ = F . Hence, there can only be one complete
extension associated with a given AFN extension. 2

Theorem 10.4. Let FN = (A,R,N) be an AFN and E ,E ′ ⊆ A two admissible exten-
sions of FN . If for every a ∈ E , b ∈ E ′ it is not the case that (a, b) ∈ R and (b, a) ∈ R,
then E ∪ E ′ is also admissible.

Proof. First of all, it can be easily show that since both E and E ′ are coherent, then so is
E ∪ E ′. Moreover, as the sets are conflict–free and there is no conflict between E and E ′

either, then E ∪ E ′ is also conflict–free. Thus, the union of our sets is strongly coherent.
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We now need to focus on defense. Assume it is not the case, and there is an argument
a ∈ E ∪E ′ that is attacked by b ∈ A and not all coherent sets of b are attacked by E ∪E ′.
The argument a has to appear in at least one of those sets. Clearly, if E ∪ E ′ does not
attack all coherent sets of b, then neither does E nor E ′. Therefore, at least one of them
cannot be admissible, and we reach a contradiction with the conclusions. Hence, we can
conclude that E ∪ E ′ is an admissible extension of FN . 2

Theorem 10.5. Let FN = (A,R,N) be an AFN. For any two admissible extensions E1

and E2 of FN , if for every argument a ∈ E1, b ∈ E2 there exists an admissible extension
E3 of FN s.t. a, b ∈ E3, then E1 ∪ E2 is an admissible extension of FN .

Proof. Assume it is not the case, i.e. even though the conditions are met, E1 ∪ E2 is not
an admissible extension of FN . If E1 ∪ E2 is not admissible, even though both E1 and
E2 are, then by Theorem 10.4 there exist arguments a ∈ E1, b ∈ E2 s.t. either (a, b) ∈ R
or (b, a) ∈ R. However, this means that E3 cannot be conflict–free, let alone admissible.
Thus, we reach a contradiction. 2

Theorem 10.9. Let FN = (A,R,N) be an AFN and SF FN = (A′, R′′) its corresponding
attack propagated SETAF obtained by Translation 63. If E ⊆ A is strongly coherent
in FN , then it is conflict–free in SF FN . It does not necessarily hold for conflict–free
semantics. If E is a σ–extension of FN , where σ ∈ {admissible, preferred, complete,
grounded, stable}, then it is a σ–extension of SF FN . If E ′ ⊆ A′ is a σ′–extensions of
SF FN , where σ′ ∈ {conflict–free, preferred, complete, grounded, stable}, then it is also
a σ′–extension of FN . It does not necessarily hold for admissible semantics. If E ′ is
conflict–free in SF FN , then it is not necessarily strongly coherent in FN .

Proof. With the exception of conflict–free semantics, the extensions of FN and its weak
validity form FNwv = (A′, R′, N ′) coincide by Theorem 4.18. Therefore, what we need
to show is that the extensions of FNwv = (A′, R′, N ′) and SF FN = (A′, R′′) coincide as
well.

We can observe that not every conflict–free extension of FN is conflict–free in FNwv,
even though all conflict–free extensions of FNwv are conflict–free in FN (see Theorem
4.18). Let E ⊆ A′ be a conflict–free set of FNwv. E is not necessarily conflict–free in
SF FN . Let us consider a trivial framework ({a, b, c}, {(a, b)}, {({b}, c)}) where a attacks
b and b supports c. The corresponding SETAF is ({a, b, c}, {({a}, b), ({a}, c)}). We can
observe that while {a, c} is AFN conflict–free, it is not SETAF conflict–free.

Let E ⊆ A′ be a conflict–free extension of SF FN . Since R′′ contains the attacks
from R′, it is easy to see that E is also conflict–free in FNwv. Please note it is not
necessarily strongly coherent in FNwv – the same explanations that will be provided in the
case of admissible semantics apply. Therefore, we can conclude that not every conflict–
free extension of FN is conflict–free in SF FN , even though every conflict–free set of
SF FN will be conflict–free in FN .
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Let E ⊆ A′ be a strongly coherent set of FNwv. For every a ∈ E , E will be in a′s
collection of coherent sets. Since E is conflict–free, none of the arguments in E will be
in the set Z containing all and only attackers of E . Consequently, no nonempty subset of
E will be a propagated attack on any of the elements of E , as it will not have a shared
element with Z. We can thus conclude that E is conflict–free in SF FN .

Let E ⊆ A′ be an admissible extension of FNwv. We know it is conflict–free in SF FN .
Assume it is not admissible in SF FN ; this means there exists an argument a ∈ E and a
set of arguments B ⊆ E ′ s.t. (B, a) ∈ R′′, but no subset E ′ ⊆ E and no argument b ∈ B
s.t. (E ′, b) ∈ R′′. Therefore, by the construction of SF FN , B can attack any coherent set
of a, which includes E . Consequently, there is an argument c ∈ B, d ∈ E s.t. (c, d) ∈ R.
Unfortunately, E is not capable of attacking all coherent sets for c in R′. Therefore, we
breach the admissibility of E in FNwv. Thus, E is admissible in SF FN .

Let E ⊆ A′ be an admissible extension of SF FN . It is not necessarily admissible in
FNwv. Let ({a, b}, ∅, {({a}, b)}) be a simple AFN containing only a supporting edge from
a to b. The corresponding SETAF is ({a, b}, ∅). We can observe that {b} is admissible in
our SETAF, even though it is not even coherent in AFN.

Let E ⊆ A′ be a complete extension in FNwv. By the previous parts of this proof
it follows that E is an admissible extension of SF FN . Assume it is not complete; this
means there exists an argument b ∈ A′ that is defended by E in SF FN , but not in FNwv.
Let (a0, ..., an) be an arbitrary sequence for b. Since b is coherent in A′, at least one such
sequence will exist. Assume that a0 is not in E ; it must be thus the case that it is not
defended by E . Since E ∪ {a0} is trivially coherent, we can conclude that E does not
defend a0 from attacks. Therefore, there exists an argument y ∈ A′ s.t. yR′a0 and it is not
the case that E attacks all coherent sets containing y. Consequently, a0 will be attacked by
y0 in R′′, but there will be no propagated attack from any subset of E to y0. Therefore, E
cannot defend a0 in SF FN . If it is the case that a0 is in E , then let us focus on a1. Again,
assume that a1 is not in E . Due to the presence of a0, E∪{a1} is trivially coherent. Thus, it
must be the case that a1 is not defended from attacks by E and again by the analysis above
we can find at least one attacker y1 ∈ A′ not covered by E . We can continue this analysis
until we reach an = b and conclude that there must have been at least one argument yi
attacking an element in the sequence that has a coherent set not attacked by E . We can
repeat this reasoning for any powerful sequence for b, each time coming to a conclusion
that there must have been an attacker not covered by E . From these attackers we can build
a propagated attack on b, and since none of its elements is attacked in R′′ by any subset of
E , it could not have been the case that E defended b in SF FN . We reach a contradiction.
Consequently, E is complete in SF FN .

Let E ⊆ A be a complete extension of SF FN . We know it is conflict–free in FNwv;
we now need to show it is coherent, admissible and complete. Let {Xa

1 , ..., X
a
n} be the

collection of all coherent sets onA′ s.t. a ∈ Xa
i and Za

i = {b ∈ A′ | ∃c ∈ XA
i , (b, c) ∈ R′}

be the set of all arguments attacking a given Xa
i in R′. Let Z ′1, ..., Z

′
m be the sets of

arguments attacking a through R′′ constructed as in Translation 63.
First of all, we will show that if an argument a ∈ A′ is defended by E in SF FN , then
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so are the members of at least one coherent set containing a. Assume that it is not the
case and that for every coherent set Xa

i for a, there exists a set Z ′j attacking a member of
Xa
i in R′′ s.t. there is no E ′ ⊆ E , z ∈ Z ′j for which (E ′, z) ∈ R′′. We can observe that⋃n
i=1X

a is a coherent set for a. Therefore, based on our translation, the union of such Z ′j
sets forms an attacker set for a in R′′. Since none of the Z ′j sets was attacked by E on
any of its elements, it follows that E does attack any member of their union. This means
that E cannot possibly defend a and we reach a contradiction our assumptions. Thus, if E
defends a, then it also defends all members of at least one coherent set for a. Moreover, by
completeness, E has to contain all of them. Hence, we can conclude that if E is complete
in SF FN , then it is coherent in FNwv.

Let us now focus on admissibility. Assume that even though every argument in E is
defended by E in SF FN , there is an argument a ∈ E not defended in FNwv. Since the
set is coherent, it can thus only be the case that there exists a coherent set C ⊆ A′ not
attacked by E and containing an argument b s.t. bR′a. Since bR′a, then by Translation 63
{b}R′′a in SF FN . If there is a coherent set for b not attacked by E , then it cannot be the
case there exists a propagated attack from any subset of E to b in R′′ and thus a could not
have been defended in SF FN . We reach a contradiction and can thus conclude that E is
an admissible extension of FNwv.

Finally, we can show that E is complete in FNwv. If it is not complete, then it means
there is an argument a /∈ E which is defended by E in FNwv, but not in SF FN . If it is
defended by E in FNwv, then every coherent set C for an argument b s.t. bR′a contains
an argument attacked by E . Moreover, it also holds that E ∪ {a} is a coherent set for a.
Let Z ′ ⊆ A′ be a set of arguments attacking a in R′′. By the construction of SF FN , we
can observe that at least one of those sets is {b} and that E contains a subset attacking b in
R′′. Therefore, E defends a against any attacks carried out by sets containing b in SF FN .
Let us now consider other options; by construction, every Z ′ contains those arguments s.t.
for every coherent C set for a, there is c ∈ C, z ∈ Z ′ s.t. (z, c) ∈ R′. Since E ∪ {a} is
a coherent set for a and we have excluded all the direct attackers of a in R′, then there is
an argument e ∈ E , z ∈ Z ′ s.t. (z, e) ∈ R′ and thus ({z}, e) ∈ R′′. As E is admissible,
then there has to be a subset E ′ ⊆ E s.t. (E ′, z) ∈ R′′. Consequently, it can be shown
that E defends a in SF FN , and we reach a contradiction with the assumptions. Thus, E is
complete in FNwv.

Since we know that complete extensions coincide between FNwv and SF FN , by The-
orems 2.24 and 2.95 we can conclude that the preferred and grounded coincide as well
between the two frameworks. What remains to show is the relation between the stable
extensions. Let E ⊆ A′ be a stable extension in FNwv. By Lemma 2.94 we know it is
strongly coherent and attacks every coherent set of any argument a /∈ E . By the analysis
above it is easy to see that the set will be conflict–free in SF FN and for every such a there
will exist an according propagated attack. Consequently, E will be stable in SF FN .

Let E be a stable extension of SF FN . Using Theorems 2.24 and 2.23 we know it is
complete and thus strongly coherent in FNwv. Since every argument a /∈ E is attacked in
R′′, then by construction of R′′ we know that every coherent set containing a is attacked
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by E in FNwv. Consequently, it will be in E att and using Lemma 2.94 we can conclude
E is stable in FNwv. 2

Theorem 10.11. Let FN = (A,R,N) be an AFN and SF FN = (A′, R′) its correspond-
ing defender SETAF obtained by Translation 65. By Enp = {a′ | there is no coherent set
containing a} ∪ {a′ | for every coherent set C for a, ∃e ∈ E , c ∈ C \ {a}, (e, c) ∈ R} we
will denote primed arguments corresponding to a subset of E att, in which every argument
a either has no coherent set or every of its coherent sets is attacked by E on an argument
different from a.

If a set E ⊆ A is conflict–free in FN , then it is conflict–free in SF FN . The set E ∪Enp
is not necessarily conflict–free in SF FN . If a set E is strongly coherent in FN , then
E ∪ Enp is conflict–free in SF FN . If E is a σ–extension of FN , where σ ∈ {admissible,
preferred, complete, grounded, stable}, then E ′ = E ∪ Enp is a σ–extension of SF FN .

If a set E ′ ⊆ A′ is a σ–extension of SF FN , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then E = E ′ ∩A is a σ–extension of FN . If E ′ is
conflict–free, E = E ′ ∩ A does not have to be strongly coherent in FN .

Proof. Let E ⊆ A be a conflict–free extension of FN . Since all attacks in R′ that occur
between the arguments in A only correspond precisely to R, then E is easily conflict–free
in SF FN . However, E ′ = E ∪ Enp is not necessarily conflict–free in SF FN . Take for
example the framework FN = ({a, b, c}, {(a, b)}, {({b}, c)}). The set {a, c} is conflict–
free in FN , despite the fact that a attacks the only supporter b of c. Thus, {a, c}np = {c′},
and we obtain the set {a, c, c′} on the SETAF side. Clearly, a primed argument cannot
appear in a conflict–free extension along with its original version.

Let E ⊆ A be a strongly coherent set of FN . Let us assume that E ′ = E ∪ Enp is not
conflict–free in SF FN , i.e. there exist a set of arguments S ⊆ E ′ and an argument b ∈ E ′

s.t. SR′b. By the construction of SF FN , we can observe it cannot be the case that b ∈ A
and S ⊆ A. Therefore, either S or b is in fact (a set consisting of) a primed argument.
Let us assume that b ∈ A; consequently, S = {b′}. By the construction of E ′, this means
that every powerful sequence for b is attacked by E on a non–b element. However, as E
contains the elements of at least one such sequence for b, we breach the conflict–freeness
of E in FN . Let us thus assume that S ⊆ E and b = c′ ∈ Enp is a primed version of
an argument c ∈ A. By the construction of SF FN this means that {c} ∪ S is a coherent
set for c. However, due to the conflict–freeness of E , it cannot be the case that E attacks
any member of S. This means that c′ (and thus b) should not have appeared in Enp in
the first place and we reach a contradiction with the construction of E ′. Therefore, E ′ is
conflict–free in SF FN .

Let E ′ ⊆ A′ be a conflict–free extension of SF FN . Since every attack from R is con-
tained in R′, it follows easily that E = E ′ ∩ A is a conflict–free set of FN . Nevertheless,
it does not have to be coherent, and therefore strongly coherent. In the example given in
the first paragraph on the proof, a set {c} would be considered conflict–free in the target
SETAF. However, due to the absence of b, it is not coherent in the source AFN.
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Let E ⊆ A be an admissible extension of FN . By definition, it is strongly coherent.
Thus, by the previous part of this proof, we know that E ′ = E ∪ Enp is conflict–free
in SF FN . What remains to be shown is that it defends all of its members. Let a be an
argument in E . If it requires no support to stand in FN , then there is no auxiliary argument
attacking it in R′. If it does, then from the coherence of E in FN , it follows easily that
∃X ⊆ E s.t. XR′a′ in SF FN . Thus, we can conclude that E ′ defends its elements from
E from attacks by primed arguments. From the way Enp is constructed and the fact that
every attack from R is represented in R′, it is also easy to see that the elements of Enp are
also defended by E ′ in SF FN . Therefore, what is left is to prove that a is defended by E ′

from attacks carried out by arguments in E . Since a is defended by E in FN , then for
every b s.t. bRa, every coherent set C containing b is attacked by E . If b is not coherent in
A, then it is attacked by an initial argument b′ in R′, which by construction of Enp is in E ′.
Thus, let us focus on the case that b is coherent in A. If all of its coherent sets are attacked
through b itself, i.e. ∃e ∈ E s.t. eRb, then obviously e ∈ E ′ and {e}R′b and a is defended.
If all of coherent sets of b are attacked through a non–b element, then by construction Enp
contains b′ and {b′}R′b. Again, a is defended by E ′. We can thus conclude that E ′ is
admissible in SF FN .

Let E ′ ⊆ A′ be an admissible extension of SF FN . We know that E = E ′∩A is at least
conflict–free in FN . Let us assume that E is not coherent in FN , i.e. there exists a ∈ E
that does not have a powerful sequence on E . If a does not have a powerful sequence on
A to start with, then by Translation 65 it would be attacked by {a′} in R′ and the same
time there would be no set of arguments attacking a′. Consequently, E ′ could have been
admissible in SF FN . Therefore, there exists at least one minimal powerful sequence for
a. If a did not require support through N , then it is trivially coherent in E . Otherwise, we
know it is attacked by {a′} in A′ and that every set of arguments attacking a′ corresponds
to the members of a powerful sequence for a that precede a. Thus, if there is no powerful
sequence on E for a, then a could not have been defended by E ′ against {a′} in SF FN .
This leads us to a conclusion that E is coherent in FN .

Let us now assume that E is not admissible in FN . As it is coherent, it means that
there exist arguments a ∈ E , b ∈ A s.t. bRa and there is a powerful sequence (b0, .., bn)
for b which is not attacked by E . Since b0 requires no support through N , there is no
argument b′0 attacking b0 in SF FN . Thus, if no argument in E attacks b0, then no subset of
E ′ attacks b0 either. Let us focus on b1; if it requires no support through N , we can repeat
the b0 analysis. If it does, then we know there exists an argument b′1 in A′ attacking b1. As
{b0}R′b′1 and there is no argument in E (and no set in E ′) attacking b0, we can conclude
that b′1 could not have been in E ′ due to admissibility of E ′ in SF FN . Therefore, E ′ does
not attack b1. We can repeat this analysis till we reach bn = b and conclude that there is no
subset of E ′ attacking b. Consequently, a could not have been defended by E ′ in the first
place and we reach a contradiction with the admissibility of the set in SF FN . Thus, E is
admissible in FN .

Let E ⊆ A be complete in FN . By the previous parts of this proof, we know that
E ′ = E ∪ Enp is admissible in SF FN . If it is not complete, it means there exists an
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argument a ∈ A′ \E ′ defended by E ′ in SF FN . Assume that a = b′ is a primed argument
for b ∈ A. Since b′ is not in E ′, then b′ /∈ Enp. Thus, E does not attack a non–b member
in every powerful sequence of b. If b′ is not attacked at all in R′, then by the construction
of E ′ it has to be in E ′ already. Hence, there is at least one powerful sequence (b0, ..., bn)
for b s.t. {b0, ..., bn−1} attacks b′ and no argument in E attacks any of the elements in
{b0, ..., bn−1} in FN . However, since we claim E ′ defends b′ in SF FN , there must be a
subset of E ′ that attacks some bi for 0 ≤ i ≤ n− 1.

Let us start with b0. By the requirements of the powerful sequences, b0 possesses no
auxiliary argument. Thus, if it is not attacked by a member of E in R, then it cannot be
the case that there is a subset of E ′ attacking b0 either. Let us thus focus on b1. If it has
no primed attacker, we can repeat the previous analysis. Thus, assume it is attacked by
an argument b′1. Again, by the construction of the sequence, b′1 is attacked by {b0} in R′.
Since we have established that E ′ does not attack b0, it cannot be the case that it defends
(and thus contains) b′1. Thus, if b1 is not attacked by E , it is not attacked by E ′ either.

We can continue this line of reasoning until we reach the conclusion that E ′ could
not have defended b′ without E attacking a member of every powerful sequence for b.
Therefore, if E ′ defends a primed argument, then this argument is already in E ′.

Let us thus assume that a is an argument in A. Therefore, a is defended by E ′ in
SF FN , but not by E in FN . If E does not defend a, then either E ∪{a} is not coherent or
there exists b ∈ A and a coherent set C ⊆ A containing b s.t. bRa and E does not attack
any element in C. Let us focus on the first case. If a requires no support, then E ∪ {a}
is trivially coherent. Thus, it has to be the case there is a set of arguments supporting it
through N , and hence there exists a primed argument a′ ∈ A′. If E ∪ {a} is not coherent,
then E cannot contain the members of any powerful sequence for a preceding a, and thus
E ′ cannot defend a against a′. We reach a contradiction. Let us focus on the other case. If
bRa, then {b}R′a and thus E ′ has to be able to attack b in SF FN . However, we can reuse
the previous analysis to show that if no member of C is attacked by E , then b cannot be
attacked by E ′, which contradicts our assumptions. Thus, we can finally conclude that E ′

is complete in SF FN .
Let E ′ ⊆ A′ be a complete extension of SF FN . We know that E = E ′ ∩ A is at least

admissible in FN . What remains to be shown is that there is no argument a ∈ A \ E
defended by E in FN . Assume it is not the case and that E defends a, even though E ′

does not. First of all, if E defends a in FN , then E ∪ {a} is coherent. If a requires no
support through N in the first place, then it does not posses a primed argument attacking it
in SF FN . If it does require support, then there is a powerful sequence for a s.t. elements
of the sequence preceding it are contained in E , and thus in E ′. Consequently, E ′ attacks
the auxiliary argument a′ for a. Thus, if E ′ does not defend a against some attack, this
attack can only come from an argument in A and thus from R. Let us thus assume that
there is an argument b ∈ A s.t. {b}R′a, but E ′ does not attack b. We know that E attacks
every powerful sequence of b in FN . If at least one of these attacks are carried out towards
b itself, then ∃c ∈ E s.t. cRb and thus {c}R′b. Hence, E must be defending b. Let us thus
assume that none of the attacks is on b. However, since every attack in R is in R′, then
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obviously E ′ defends the auxiliary argument b′ of b. Consequently, b′ ∈ E ′ and E ′ attacks
b, thus again defending a. We reach a contradiction. We can finally conclude that E is
complete in FN .

Let us now show that there is a one–to–one relation between the complete extensions
of FN and SF FN . Assume it is not the case. Thus, there exist two different complete
extensions E ′ and E ′′ of SF FN s.t. E ′ ∩A = E ′′ ∩A. This means they can only differ by
primed arguments. Assume there is an argument a′ ∈ E ′, but not in E ′′. By construction,
a′ can only be attacked by subsets of A representing powerful sequences for a. Thus, there
exists a set B ⊆ A s.t. BR′a′ and E ′ attacks an argument in B, but E ′′ does not. Let
B = {a0, ..., an−1} be a part of a powerful sequence for a without a. Due to the properties
of a0, there is no primed argument for a0. Thus, if E ′ attacks a0, then so does E ′′, and
we reach a contradiction. Therefore, E ′ does not attack a0, and cannot defend a′1. Hence,
a′1 /∈ E ′. Consequently, if E ′ attacks a1, it can only be through arguments from A, and in
this case E ′′ would attack a1 as well. Again, we reach a contradiction. We can continue
in this manner until we reach an1 and the conclusion that a′ could not have been in E ′.
Therefore, E ′ ⊆ E ′′. In a similar manner we can show that E ′′ ⊆ E ′. Hence, there is a
one–to–one relation between the complete extensions of FN and SF FN .

By using the results above and Theorems 2.24 and 2.95, we can easily prove the rela-
tion between preferred and grounded extensions of FN and SF FN stated in the theorem.

Let us focus on the stable semantics. Assume that E is stable in FN . Then E ′ =
E ∪ Enp is at least complete, and thus conflict–free in SF FN . From the fact that every
argument e ∈ A \ E is in E att, we can easily prove that e is attacked by E ′ as well. What
remains to be shown is that every auxiliary argument not in E ′ is also attacked by E ′ in
SF FN . Let a′ be an arbitrary auxiliary argument outside of the extension. If a is in E ′,
then by the fact that E ′ is complete it has to be the case that E ′ attacks a′. If a is not in
E ′, then by the correspondence with E it means that all of its coherent sets were attacked.
Should all members of its powerful sequences be attacked on a non–a member, then a′

must be in E ′. Thus, we are left with a case were all the sequences are attacked on a
only. However, by the completeness of E in FN this means that E must have included
the members of these sequences (excluding a). Thus, E ′ had sufficient means to attack a′

again. Consequently, E ′ is stable in SF FN .
Let us now focus on the other way around and show that if E ′ ⊆ A′ is stable in SF FN ,

then so is E = E ′ ∩ A in FN . By Theorems 2.23 and 2.24 we know that E ′ is complete
in SF FN . Consequently, E is complete in FN . Due to the one–to–one relation between
the complete extensions, we can observe that E ′ must be of the form E ∪Enp. Let us now
assume that there is an argument a ∈ A\E which is not in E att. This means that not every
coherent set of this argument is attacked by E . Thus, it cannot be the case that E ′ contains
a′ – it just wouldn’t be able to defend it. Hence, E ′ is not be able to attack a in SF FN (all
the other attacks are after all the same as in FN ) and it could not have been stable in the
first place. We reach a contradiction. Therefore, E is stable in FN . 2

Theorem 10.12. Let FN = (A,R,N) be a strongly valid AFN and SF FN = (A′, R′)
its corresponding defender SETAF obtained by Translation 66. By Enp = {a′ | for every
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coherent set C for a, ∃e ∈ E , c ∈ C \ {a}, (e, c) ∈ R} we will denote primed arguments
corresponding to a subset of E att in which for every argument a and any coherent set for
it, there is a member of this set attacked by E different from a.

If a set E ⊆ A is conflict–free in FN , it is conflict–free in SF FN . The set E ∪ Enp is
not necessarily conflict–free in SF FN . If a set E is strongly coherent in FN , then E ∪Enp
is conflict–free in SF FN . If E is a σ–extension of FN , where σ ∈ {admissible, preferred,
complete, grounded, stable}, then E ′ = E ∪ Enp is a σ–extension of SF FN .

If a set E ′ ⊆ A′ is a σ–extension of SF FN , where σ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then E = E ′ ∩A is a σ–extension of FN . If E ′ is
conflict–free, the set E = E ′ ∩ A does not have to be strongly coherent in FN .

Proof. The analysis of conflict–freeness is the same as in Theorem 10.11.
Let E ⊆ A be a strongly coherent set of FN . Let us assume that E ′ = E ∪ Enp is

not conflict–free in SF FN , i.e. there exist a set S ⊆ E ′ and argument b ∈ E ′ s.t. SR′b.
By the construction of SF FN , we can observe it can only be the case that either S or b is
in fact (a set consisting of) a primed argument. Let us assume that b is an argument in A
and S ⊆ A′. Since SR′b, it has to be the case that S = {b′}. However, we can observe
that E is a coherent set for b, and by conflict–freeness of E it cannot be the case that E
attacks any of its members. Therefore, we reach a contradiction with the construction of
Enp and it cannot be the case that b′ ∈ E ′. Let us therefore assume that S ⊆ A and b = c′

for an argument c ∈ A. It can be easily shown that E ∪ {c} is a coherent set for c. Hence
again due to conflict–freeness of E , we can observe that c′ should not have appeared in
E ′. Again, we reach a contradiction, and can conclude that E ′ is conflict–free in SF FN .

Let E ′ ⊆ A′ be a conflict–free extension of SF FN . Since every attack from
R is contained in R′, it follows easily that E = E ′ ∩ A is a conflict–free set of
FN . Nevertheless, it does not have to be coherent, and therefore strongly coherent.
We can consider a simple AFN ({a, b}, ∅, {({a}, b)}). The corresponding SETAF is
({a, b, b′}, {({b′}, b), ({a}, b′)}). Although the set {b} is SETAF conflict–free, it is not
AFN coherent.

Let E ⊆ A be an admissible extension of FN and E ′ = E ∪Enp its corresponding set
in SF FN . By the previous parts of this proof, E ′ is conflict–free in SF FN . What remains
to be shown is that E ′ defends every a ∈ E ′. Let us first assume that a ∈ E , i.e. a is a
standard argument. Since E is admissible in FN , then it attacks every coherent set of an
argument b ∈ A s.t. bRa. We can also observe that due to strong validity, every attacker in
R will possess at least one coherent set. Therefore, either there exists c ∈ E s.t. cRb (and
therefore {c}R′b), or the attacks on coherent sets are not carried out directly against b and
thus b′ ∈ Enp. Hence, in any case there is X ⊆ E ′ s.t. XR′b when a, b ∈ A are normal
arguments and {b}R′a. We can also observe that as E is a coherent set for a, then there
exists a subset of E supporting a through N . This means we can construct a subset of
E attacking a′ in SF FN (assuming a′ is constructed at all). Therefore, if E is admissible
in FN , then E ′ defends all of its arguments that are from E itself. What remains to be
analyzed is the acceptability of arguments from Enp. Let a = b′ be a primed argument
for b ∈ A; assume it is not defended by E ′. Consequently, there exists a set of arguments
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X ⊆ A s.t. XR′b′ and the same time there is no x ∈ X ′ and no set of arguments X ′ ⊆ E ′

s.t. X ′R′x. By the construction of SF FN , such an X ′ would either correspond to an
attacker from R or be the primed version of x (assuming it exists). Hence, we can show
that it cannot be the case that E attacks every coherent set for x in FN . As it holds for
every x ∈ X , we can collect these unattacked coherent sets into one single set C ⊆ A.
By using Theorem 4.32, it can be observed that C ∪ {b} would be a coherent set for b
and no argument in C is attacked by E in FN . Hence, we reach a contradiction with the
construction of E ′ and b′ should not have been in the set in the first place. We can therefore
conclude that E ′ is an admissible extension of SF FN .

Let E ′ ⊆ A′ be an admissible extension of SF FN and E = E ′ ∩ A its corresponding
set in FN . By the previous parts of this proof we know that E is conflict–free in FN . Let
us now show it is also coherent. Let a ∈ E ′ ∩ A be a standard argument. If there is no
a′ ∈ A′, then (a) is a trivial powerful sequence for a and thus the argument is coherent in
E in FN . If there exists a′ ∈ A′, then due to the admissibility of E ′ in SF FN , there will
exist a set X ⊆ E ′ ∩ A of standard arguments s.t. XR′a′. Therefore, by the construction
of SF FN , for every set C ⊆ A s.t. CNa, C ∩E 6= ∅. The same analysis can be performed
for every argument in E . Hence, by Theorem 4.32, E is coherent in FN and as it is also
conflict–free, we obtain strong coherence.

Let us now assume that E is not admissible in FN , i.e. there exist arguments a ∈
E , b ∈ A s.t. bRa and there is a powerful sequence (b0, .., bn) for b which is not attacked
by E . Since b0 requires no support through N , there is no argument b′0 attacking b0 in
SF FN . Thus, if E does not attack b0, then no subset of E ′ attacks b0 either. Let us focus
on b1; if it requires no support through N , we can repeat the b0 analysis. If it does, then we
know there exists an argument b′1 in A′ attacking b1. As {b0}R′b′1 and there is no argument
in E (and no subset of E ′) attacking b0, we can conclude that b′1 could not have been in
E ′ due to admissibility of E ′ in SF FN . Therefore, E ′ does not attack b1. We can repeat
this analysis till we reach bn = b and conclude that there is no subset of E ′ attacking
b. Consequently, a could not have been defended by E ′ in the first place and we reach a
contradiction with the admissibility of the set in SF FN . Thus, E is admissible in FN .

Let E ⊆ A be a complete extension of FN and E ′ = E ∪Enp its associated admissible
extension of SF FN . We will show it is also complete. Assume it is not the case; this means
there exists an argument a ∈ A′ \ E ′ defended by E ′ in SF FN .

We can first consider the case that a = b′ is a primed argument for b ∈ A. Since
b′ /∈ E ′, from the construction of E ′ it follows that we can find a powerful sequence
(b0, ..., bn) for b that is not attacked on a non–b member by E . Let us start with b0. By
the requirements of the powerful sequences, b0 possesses no auxiliary argument. Thus, if
it is not attacked by a member of E in R, then it cannot be the case that there is a subset
of E ′ attacking b0 either. Let us thus focus on b1. If it has no primed attacker, we can
repeat the previous analysis. Thus, assume it is attacked by an argument b′1. Again, by the
construction of the sequence, b′1 is attacked by {b0} in R′. Since we have established that
E ′ does not attack b0, it cannot be the case that it defends (and thus contains) b′1. Thus, if b1
is not attacked by E , it is not attacked by E ′ either. We can continue this line of reasoning
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until we reach bn−1 and the conclusion that E ′ could not have defended b′ if there exists a
sequence for b that is not attacked by E on a non–b member. Therefore, if E ′ defends a
primed argument, then this argument is already in E ′.

We can now consider the case where a ∈ A is a normal argument. Therefore, a is
defended by E ′ in SF FN , but not by E in FN . If E does not defend a, then either
E ∪ {a} is not coherent, or there exists b ∈ A and a coherent set C ⊆ A containing b s.t.
bRa and E does not attack any element in C.

Let us focus on the missing support case. If a requires no support, then E ∪ {a} is
trivially coherent, and we reach a contradiction. If there is a set of arguments supporting
a through N , then there exists a primed argument a′ ∈ A′. If E ∪ {a} is not coherent,
then E cannot contain the members of any powerful sequence for a preceding a. Thus, we
can use Theorem 4.32 to show that there exists a set of arguments F supporting a in N
s.t. F ∩ E = ∅. Consequently, by the construction of SF FN , no subset of E ′ attacks a′.
Hence, a is not defended by E ′ and we reach a contradiction.

Let us focus on the unattacked attacker case. If bRa, then {b}R′a and thus E ′ has to be
able to attack b in SF FN . If not every powerful sequence for b is attacked by C, then not
every powerful sequence for b is attacked a non–b element, and thus b′ /∈ E ′ (if it exists in
the first place). If no c ∈ E attacks b inR, then no {c} attacks b inR′ either. In conclusion,
no subset of E ′ can attack b, and we reach a contradiction. Thus, we can finally conclude
that E ′ is complete in SF FN .

Let E ′ ⊆ A′ be a complete extension of SF FN . By the previous parts of this proof we
know that E = E ′ ∩ A is at least admissible in FN . What remains to be shown is that
there is no argument a ∈ A \ E defended by E in FN . Assume it is not the case and that
E defends a, even though E ′ does not.

We can observe that if E defends a in FN , then E ∪ {a} is coherent. If a requires no
support through N in the first place, then it does not posses a primed argument attacking
it in SF FN . If it does require support, then for every F ⊆ A s.t. FNa, F ∩ E 6= ∅.
Thus, there is a subset of E (and thus E ′) capable of attacking the primed argument for a.
Consequently, E ′ defends a against its primed argument, assuming it exists.

We can now see that if E ′ does not defend a against some attack, this attack can only
come from R and be carried out by a standard argument. Let us thus assume that there is
an argument b ∈ A s.t. {b}R′a, but E ′ does not attack b. We know that E attacks every
powerful sequence of b in FN . If at least one of these attacks are carried out towards b
itself, then there exists c ∈ E s.t. cRb and thus {c}R′b. Hence, E must be defending b.
Let us thus assume that none of the attacks is on b. However, we can reuse the previous
parts of this proof to show that E ′ defends the auxiliary argument b′ of b. Consequently,
b′ ∈ E ′ and E ′ attacks b, thus again defending a. We reach a contradiction. We can finally
conclude that E is complete in FN .

Let us now show that there is a one–to–one relation between the complete extensions
of FN and SF FN . Assume it is not the case. Thus, there exist two different complete
extensions E ′ and E ′′ of SF FN s.t. E ′ ∩A = E ′′ ∩A. This means they can only differ by
primed arguments. Assume there is an argument a′ ∈ E ′, but not in E ′′. By construction,
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a′ is attacked only by (minimal) subsets of A that share a common element with every set
that supports a through N . Thus, there exists such a set B ⊆ A s.t. BR′a′ and E ′ attacks
an argument from B, but E ′′ does not. Due to the fact that we are dealing with strongly
valid AFN, we can observe that every such attacking set B is a part of a set that would
sufficiently support a, and by Theorem 4.32 is coherent. In other words, B is a part of
a powerful sequence for a. We can observe that an attacker for B cannot be a standard
argument (i.e. attack cannot originate from R), otherwise both sets E ′ and E ′′ would be
capable of it. Hence, there is another primed argument corresponding to the argument in
B attacked by E ′. We can can find a set B′ attacking this primed argument which in turn
is attacked by E ′, but not by E ′′. By using previous observations, we can show that both
B and B′ are a part of a powerful sequence for a. We can continue this analysis until we
reach a set of arguments in which no argument possesses a primed attacker, and as we are
dealing with a strongly valid framework, this is bound to happen. Therefore, if E ′ attacks
this argument, it is only by using attacks from standard arguments. However, if this is
the case, then E ′′ attacks this argument as well, and we reach a contradiction. Therefore,
E ′ ⊆ E ′′. In a similar manner we can show that E ′′ ⊆ E ′. Hence, there is a one–to–one
relation between the complete extensions of FN and SF FN .

By using the results above and Theorems 2.24 and 2.95, we can easily prove the rela-
tion between preferred and grounded extensions of FN and SF FN stated in the theorem.

Let us focus on the stable semantics. Assume that E is stable in FN . Then E ′ =
E ∪ Enp is at least complete, and thus conflict–free in SF FN . From the fact that every
argument e ∈ A \ E is in E att, we can use previous parts of the proof to show that e is
attacked by E ′ as well. What remains to be shown is that every auxiliary argument not
in E ′ is also attacked by E ′ in SF FN . Let a′ be an arbitrary auxiliary argument outside
of the extension. If the original argument a is in E ′, then by the fact that E ′ is complete
(and thus defends a) it has to be the case that E ′ attacks a′. If a is not in E ′, then by
the correspondence with E it means that all of its coherent sets were attacked. Should all
members of its powerful sequences be attacked on a non–a member, then a′ must be in E ′

and we reach a contradiction. Thus, we are left with the case where all the sequences are
attacked on a only. However, by the completeness of E in FN this means that E must
have included the members of these sequences (excluding a). By the construction of the
sequences, we can show that E ′ had sufficient means to attack a′ again. Consequently, E ′

is stable in SF FN .
Let us now focus on the other way around and show that if E ′ ⊆ A′ is stable in SF FN ,

then so is E = E ′ ∩ A in FN . By Theorems 2.23 and 2.24 we know that E ′ is complete
in SF FN . Consequently, E is complete in FN . Due to the one–to–one relation between
the complete extensions, we can observe that E ′ must be of the form E ∪Enp. Let us now
assume that there is an argument a ∈ A\E which is not in E att. This means that not every
coherent set of this argument is attacked by E . Thus, it cannot be the case that E ′ contains
a′ – it just wouldn’t be able to defend it. Hence, E ′ is not be able to attack a in SF FN (all
the other attacks are after all the same as in FN ) and it could not have been stable in the
first place. We reach a contradiction. Therefore, E is stable in FN . 2
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Theorem 10.13. Let FN = (A,R,N) be a strongly valid and support binary AFN and
BF FN = (A,R, S) its associated BAF obtained through Translation 67. Then BF FN is
support acyclic.

Proof. Let N ′ = {(a, b) | ({a}, b) ∈ N} be the binary version of N . Due to the fact that
FN is support binary, we can observe that for every argument a ∈ A, the set suf(a) from
Definition 4.30 will consist of exactly one set of arguments equal to sup(a). Thus, there
exists only one support assignment function for FN from Definition 4.30. Since FN is
strongly valid, A can be ordered into a powerful sequence w.r.t. this function. We can
observe that this ordering will define a topological ordering on A w.r.t. N ′. Thus, (A,N ′)
has to be a directed acyclic graph, and therefore the support subgraph ofBF FN is directed
acyclic. 2

Theorem 10.15. Let FN = (A,R,N) be an AFN and ESFN = (A,R,E) its associated
EAS obtained through Translation 68. Then, ESFN is attack binary. If FN is weakly
(relation, strongly) valid, then so is ESFN . If FN is strongly consistent, then so is ESFN .
ESFN does not have to be in minimal form, even if FN is.

Proof. The next theorem (Theorem 10.16) explains how powerful and evidential se-
quences of our frameworks are connected. By using this result it is easy to show that
if FN is weakly valid, then so is ESFN . By analyzing the sequences we can also show
relation validity; if for every argument b appearing in a supporting set in N for an argu-
ment a we can find a powerful sequence in which it precedes a, then for every supporter
in E for a we can find a suitable evidential sequence. Consequently, if FN is relation
valid, then so is ESFN . Strong validity can be shown simply by analyzing the definitions
of the forms and Translation 68; the sup and suf sets we have used in establishing strong
validity for AFNs are the same construction we have used in creating support sets in E in
Translation 68 (the continuation merely removes some redundancies).

Let us now look at the strong consistency form. Let N(a) = {b | ∃C ⊆ A, b ∈ C s.t.
CNa} and R(a) = {b | bRa} be the arguments supporting and attacking a in FN . Let
E(a) = {b | ∃C ⊆ A, b ∈ C s.t. CEa} and R′(a) = {b | ∃C ⊆ A, b ∈ C s.t. CR′a} be
the arguments supporting and attacking a in FN . We can observe that R(a) = R′(a) and
that {η} ∩ R′(a) = ∅. Moreover if N(a) 6= ∅, then N(a) = E(a), and if N(a) = ∅, then
E(a) = {η}. Consequently, we can show that ifR(a)∩N(a) = ∅, thenR′(a)∩E(a) = ∅.
Hence, if FN is strongly consistent, then so is ESFN .

Let us now consider a simple AFN ({a, b, c, d}, ∅, {({a, b}, d), ({a, c}, d)}).
We can observe it is in minimal normal form. The associated EAS is
({a, b, c, d, η}, ∅, {({η}, a), ({η}, b), ({η}, c), ({a}, d), ({a, c}, d), ({a, b}, d), ({b, c}, d)}).
We can observe it is not in minimal normal form anymore. 2

Theorem 10.16. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. Let a ∈ A be an argument. If (a0, ..., an)
is a powerful sequence for a on S ⊆ A in FN , then (η, a0, ..., an) is an evidential sequence
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for a on S ∪ {η} in ESFN . If (η, a0, ..., an) is an evidential sequence for a on S ⊆ A′ in
ESFN , then (a0, ..., an) is a powerful sequence for a on S \ {η} in FN . If a set S ⊆ A is
coherent in FN , then S ∪ {η} is self–supporting in ESFN . If S ′ ⊆ A is self–supporting
in ESFN , then S ′ ∩ A is coherent in FN .

Proof. Let (a0, ..., an), where an = a, be a powerful sequence for a on S ∪ {a}. Then
(η, a0, .., an) is an evidential sequence for a on S ∪ {a, η}. Since a0 requires no support
in FN , then by Translation 68 it is supported by η in ESFN and the evidential condition
is satisfied. Let ai be an arbitrary, nonzero element of the powerful sequence. For any set
X s.t. XNai, we know that X ∩ {a0, .., ai−1} 6= ∅. Thus, if at least one such supporting
set X exists, it is easy to see by Translation 68 (and its continuation) that there is X ′ ⊆
{a0, .., ai−1} s.t. X ′Eai and that the evidential condition is satisfied. If no supporting set
X exists, then we have that ai is supported by η, and the condition is again satisfied. Thus,
we have a valid evidential sequence on S ∪ {a, η} for a.

Showing that if (η, a0, .., an) is an evidential sequence for a then (a0, .., an) is powerful
follows quite similarly. We can only note on the requirement on a0 (and basically all other
arguments supported purely by η): if an argument is supported by η in ESFN , then by the
construction of ESFN , it required no support in FN . Thus the powerful condition on a0
is met.

Based on these results, the correspondence between the self–supporting and coherent
sets of ESFN and FN is straightforward. 2

Theorem 10.17. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. If a ∈ A is defended by a coherent set
S ⊆ A in FN , then it is acceptable w.r.t. S ∪ {η} in ESFN . If a ∈ A is acceptable w.r.t.
a self–supporting set S ′ ⊆ A′ in ESFN , then it is defended by S ∩ A in FN .

Proof. Let a ∈ A be defended by a coherent set S ⊆ A in FN . From Theorem 10.16
it follows that S ∪ {η} is self–supporting. Moreover, if a is defended by S in FN , then
S ∪ {a} is coherent as well, and thus S ∪ {a, η} is also self–supporting in ESFN . Thus, a
has an evidential sequence on S∪{a, η}, and by Theorem 2.99, is e–supported by S∪{η}.
Now let b be an argument in A s.t. bRa. Since a is defended by S in FN , then for every
coherent set C ⊆ A s.t. b ∈ C, ∃c ∈ S, d ∈ C s.t. cRd. Thus, after Translation 68, we
have that for {b}R′a and for every (and thus also minimal) self–supporting set C ∪ {η}
containing b, ∃H ⊆ S, d ∈ C s.t. HRd. It is easy to see that C ∪ {η} is an e–supported
attack against a and since S ∪ {η} is assumed to be self–supporting, any attack it carries
out against an element of C ∪ {η} is also e–supported. As all attacks in ESFN come
from FN and η cannot attack or be attacked in the framework, we can conclude that a is
acceptable w.r.t. S ∪ {η} in ESFN .

Let a ∈ A be acceptable w.r.t. a self supporting set S ′ ⊆ A′ in ESFN . We can observe
that if S ′ is self–supporting and e–supports a, then S ′ ∪ {a} is also self–supporting. Thus,
by Theorem 10.16, S ′∩A is coherent. From acceptability of a it follows that given any set
C ⊆ A′ that carries out a minimal e–supported attack on a, S ′ support attacks a member
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of C. Since S ′ is self–supporting, any attack carried out by it will be e–supported. By
Lemma 2.108, C is self–supporting, and thus C \ {η} is coherent in FN . Since C attacks
a, there exists C ′ ⊆ C s.t. C ′R′a. By Translation 68 all such sets C ′ consist of exactly one
element and {c}R′a in ESFN iff cRa in FN (observe that η does not carry out attacks).
The attack by S ′ against C follows a similar analysis. Please note that although technically
we attack only minimal e–supported attacks on a, it is easy to see that it cannot be the case
that there exists an unattacked e–supported attack on a. Every such attack either contains
a minimal one, or is one – either case, it still remains attacked. Consequently, it holds that
for every coherent set C \ {η} s.t. CRa, S \ {η} contains a suitable attacker in FN . We
can conclude that if a is acceptable w.r.t. s′ in ESFN , then it is defended by S ′∩A in FN .
2

Theorem 10.18. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its corre-
sponding EAS obtained through Translation 68. If a set S ⊆ A is (strongly) coherent in
FN , then S ∪ {η} is (strongly) self–supporting in ESFN . If S ⊆ A is (strongly) self–
supporting in ESFN , then S ∩A is (strongly) coherent in FN . If S ⊆ A is a σ–extension
in FN , where σ ∈ {conflict–free, admissible, complete, preferred, grounded, stable} then
S ∪ {η} is a σ–extension in ESFN . If S ⊆ A is a σ–extension of ESFN , then S ∩ A is a
σ–extension of FN .

Proof. The coherence and self–support analysis has already been carried out in Theorem
10.16. Let us therefore continue with conflict–freeness. It is easy to see by Translation 68
that if a given set S ⊆ A is conflict–free in FN , then both S and S ∪{η} are conflict–free
in ESFN . Similarly, if a set S ′ ⊆ A′ is conflict–free in ESFN , then S ′ ∩A is conflict–free
in FN . This is due to the fact that the attack relation only undergoes a minor change to
account for a shift from binary to group attack and that η does participate in any attacks.

The relation between the strongly coherent and strongly self–supporting extensions
follows straightforwardly from the results above. We can use Lemma 2.109, Theorems
10.16 and 10.17 in order to prove the correspondence between the admissible extensions.
Please observe that ∅ and {η} are trivially conflict–free, (strongly) self–supporting and
admissible in ESFN , even though they correspond to ∅ in FN .

We can use the relation between the admissible extensions and Theorem 10.17 in order
to show that if S ⊆ A is complete in FN , then S ∪ {η} is complete in ESFN , and that
if S ′ ⊆ A′ is complete in ESFN , then S ′ ∩ A is complete in FN . We can observe that η
is acceptable w.r.t. ∅ and will always be present in any complete extension in ESFN . It is
therefore easy to show that the complete extensions of both frameworks are in a one–to–
one relation.

Based on the relation between the complete extensions and the fact that the grounded
extensions are the least w.r.t. set inclusion complete both in FN and ESFN (Theorems
2.112 and 2.95), we can show that the grounded extensions correspond as well. The same
holds for the preferred semantics.

We are left with the stable semantics. Let us first show that if S ⊆ A is stable in FN ,
then S ∪ {η} is stable in ESFN . Based on the definition of AFN stable semantics and the

557



previous parts of this proof, it holds that S ∪ {η} is complete in ESFN . Therefore, it is
also strongly self–supporting. Let S+ be the deactivated set and a ∈ S+. If a is in the
set because there exists b ∈ S s.t. bRa, then naturally S ∪ {η} carries out an e–supported
attack on a, independently of whether a is e–supported byA′ or not inESFN . Let us focus
on the case when a is in the deactivated set due to lack of support. If a is not powerful in
A, then by Theorem 10.16 it is not e–supported in A′ in ESFN and thus does not affect
S∪{η}. Therefore, let us assume there exists at least one powerful sequence (a0, ..., an, a)
for A. Without the loss of generality, we can assume this sequence is minimal. Since a
is in the deactivated set, part of this sequence is not present in S. Let 0 ≤ i ≤ n be the
position of the first argument in the sequence that does not belong to S. If it is i = 0,
then since a0 requires no support and is in S+, it has to be the case that S (and thus also
S ∪ {η} contains an attacker of a0. For other t 6= 0, since all the required support for ai is
in S but ai ∈ S+, then again it has to be the case that S (and thus also S ∪ {η} contains
an attacker of ai. This minimal powerful sequence for a in FN gives rise to a minimal
evidential sequence in ESFN (see proof of Theorem 10.16), from which by Theorem 2.99
we can obtain a minimal set e–supporting a. Since S can attack all sequences for a, then
by Translation 68 so can S∪{η}. Moreover, as S∪{η} is a self–supporting set, the attacks
are e–supported. Consequently, the stability conditions of ESFN are satisfied for S ∪{η}.

Let us show that if S ′ ⊆ A′ is complete in ESFN , then S = S ′ ∩ A is complete in
FN . By Theorem 2.112, every stable extension in ESFN is also complete. Therefore,
based on the previous parts of this proof, S is complete in FN . Assume now that S ′ is
stable in ESFN , but S is not stable in FN . This means there exists an argument a ∈ A\S
that is not in the deactivated set. Consequently, it has to be the case that a is not attacked
by S and either requires no support or is supported by S. Based on the previous parts
of this proof this means that a is not e–support attacked by S ′ and has to be e–supported
by S ′ in ESFN ). Since a is not in the stable extension in ESFN , it has to be the case
that all of the sets minimally e–supporting it are attacked. However, if S ′ attacks all sets
minimally e–supporting a, then naturally all coherent sets containing a are also attacked in
FN . Therefore, if a requires no support in FN (and therefore (a) is a powerful sequence
for it), then we reach a contradiction with it not being attacked directly. If S supports a,
then since S is strongly coherent in FN , it cannot be the case that at the same time all
powerful sequences of a are attacked (through an element different than a). Thus, S has
to be stable in FN . 2

Theorem 10.19. Let FN = (A,R,N) be a strongly consistent AFN and DFN =
(A,L,C) its corresponding ADF obtained through Translation 69. DFN is a BADF. It
is also in cleansed form. If FN is in minimal form, then DFN is redundancy–free. If FN
is weakly valid, then so is DFN . If it is minimal and relation valid, then DFN is relation
valid. If FN is strongly valid, then DFN is an AADF+. If it is in addition minimal, then
DFN is strongly valid.

Proof. Let us assume that DFN is not a BADF. This means there exists a link (a, b) ∈ L
in DFN that is neither supporting nor attacking. Consequently, there exists E ⊆ par(b)
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s.t. Cb(E ) = in and Cb(E ∪ {a}) = out and a set E ′ ⊆ par(b) s.t. Cb(E ′) = out and
Cb(E

′ ∪ {a}) = in. Based on Translation 69, we can observe that if Cb(E ) = in, then
E ∩ F 6= ∅ for every set F ⊆ A s.t. FNb and there is no argument e ∈ E s.t. eRb.
Thus, if Cb(E ∪{a}) = out, then it can only be the case that aRb. Therefore, there cannot
exist a set of arguments E ′ s.t. Cb(E ′ ∪ {a}) = in, as by definition in every such case
Cb(E

′ ∪ {a}) = out. Hence, DFN is a BADF.
W can observe that if an argument is consistent in FN , then it has an acceptance

condition in DFN that maps at least one set of arguments to in. In other words, the
condition is not (or not equivalent to) falsum. Consequently, if there is a set that maps the
condition to in, then there exists at least one decisively in interpretation for this argument.
Thus, all constructed pd–functions are sound on A and we can easily create a standard
evaluation containing all arguments in A (and therefore a standard evaluation for every
a ∈ A). We can conclude that DFN is in cleansed form.

Let s focus on the redundancy–free form and let us assume that FN is in minimal
form. Let a, b ∈ A be argument s.t. aRb and E ⊆ A a minimal set of arguments s.t.
C ∩ E 6= ∅ where C ⊆ A is a set of arguments s.t. CNb. Due to strong consistency of
FN , we can observe that E ∩ {a} = ∅. By the construction of DFN , it can be seen that
Cb(E ) = in and Cb(E ∪ {a}) = out. Thus, the (a, b) link cannot be supporting, and as a
result, it is not redundant.

Let now b ∈ A and F ⊆ A be an argument and a set of arguments s.t. FNb. Let a ∈ F
be a supporter of b. Due to strong consistency of FN , we can observe that it cannot be the
case that aRb. Therefore, by the construction of DFN , Cb(F ) = in. Moreover, since FN
is minimal, no subset of F supports b. Hence, Cb(F \{a}) = out. Consequently, the (a, b)
link cannot be attacking and thus, is not redundant. We can finally conclude that DFN is
in redundancy–free form if FN is in minimal form.

In order to see that if FN is weakly valid, then so is D, please consult the proof of
Lemma 10.20.

Let us focus on relation validity and assume that FN is both in minimal and relation
valid forms. Based on the previous parts of the proof, we know that DFN is redundancy–
free and weakly valid. With N(a) = {b | ∃F ⊆ A, b ∈ F s.t. FNa} we will denote the
arguments supporting a. Let E ⊆ A be a set of arguments s.t. E ⊆ N(a) and for every
F ⊆ A s.t. FNa, F ∩ E 6= ∅. Due to the fact that FN is relation valid, it holds that
there exists a coherent subset S ⊆ A \ {a} s.t. E ⊆ S. A coherent set can be represented
as a powerful sequence in FN and this powerful sequence will correspond to an acyclic
pd–evaluation in DFN (see Lemma 10.20). Due to the strong consistency of FN , we can
observe that E does not contain any attacker of a. Furthermore, based on the construction
ofDFN , we can also see that any subset of parents of a evaluating Ca to inwill correspond
to a subset of N(a) that has an element in common with every set supporting a in N .
Therefore, it holds that Ca(E ) = in and there exists a minimal decisively in interpretation
va for a s.t. vta ⊆ E . Since we could have represented S as a powerful sequence and
E ⊆ S, we can extend this sequence with a in order to obtain a powerful sequence for
a itself. Similarly, by using the analysis in Lemma 10.20, we can extend the acyclic pd–
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evaluation for S by a and va in order to obtain an acyclic pd–evaluation for a. Due to the
aforementioned relation between the sets satisfying the conditions of arguments in DFN

and the support in FN , we can show that every minimal decisively in interpretation for a
can be used in constructing an acyclic pd–evaluation for it. Thus, DFN is relation valid.

Let FN be now strongly valid. Assume DFN is not an AADF+. This means there
exists a pd–function and a standard evaluation (F,B) created with it that we cannot trans-
form into an acyclic one. Based on the previous analysis we can observe that given an
argument a and the decisively in interpretation va assigned to it by the pd–function, vta is
a subset of N(a) in FN that has an element in common with every set supporting a in
N . Thus, from our pd–function we can derive a function meeting the construction require-
ments from Definition 4.30. Since we cannot order an evaluation based on this pd–function
into an acyclic evaluation, it can be shown that we cannot create a powerful sequence with
the associated function in FN . Thus, we reach a contradiction with strong validity of FN .
We can conclude that DFN has to be an AADF+.

Let now FN be minimal and strongly valid. This means that our DFN is redundancy–
free and an AADF+. In addition, based on the previous parts of this proof, it is in cleansed
form. Consequently, by Theorem 4.43, DFN is strongly valid. 2

Lemma 10.20. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69 and E ⊆ A a set of arguments.
For a given powerful sequence for an argument e ∈ E we can construct a corresponding
acyclic pd–evaluation and vice versa. E is coherent in FN iff it is pd–acyclic in DFN .

Proof. Let E ⊆ A be a set of arguments, e ∈ E and a0, ..., an a powerful sequence for e.
We will show it satisfies the pd–sequence requirements.

First of all, the an = e condition is satisfied. Secondly, we have that for a0 there is no
B ⊆ A s.t. BNa0. This means that that a0 faces only binary attack and its condition basi-
cally consists only of the att part. Based on the explanations we presented in Section 5.7
concerning AFs, a0 has a single minimal decisively in interpretation that maps every at-
tacker of a0 to f . The t part is empty and thus the interpretation satisfies the pd–evaluation
criterion of a0.

Finally, in the powerful sequence we have that for every nonzero ai, it holds that for
each B ⊆ A s.t. BNai, B ∩ {a0, ..., ai−1} 6= ∅. Let Ei = {a0, ..., ai−1} ∩ par(ai). Since
FN is strongly consistent, no argument in Ei is an attacker of ai. Thus, by the construction
of DFN it holds that Cai(Ei) = in. An interpretation assigning t to Ei and f to A \ Ei
will be a decisively in interpretation for ai. Thus, we can extract a minimal interpretation
v from it, which will assign t to a subset E ′i ⊆ Ei and f to all those arguments b ∈ A s.t.
bRai. Based on this, we can conclude that v satisfies the pd–sequence condition. There-
fore, we obtain an acyclic pd–evaluation ((a0, ..., an),

⋃n
0{ai}−) for e on E corresponding

to the powerful sequence (a0, ..., an).
Let E ⊆ A be a set of arguments, e ∈ E and ((a0, ..., an), B) an acyclic pd–evaluation

for e. We will show that the sequence part satisfies the powerful conditions. Again, the
an = e condition is easily met. Since the decisively in interpretation for a0 consists only
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from negative mappings, which by Translation 69 come from the attackers of a0. As a0 is
strongly consistent, none of those attackers is also a supporter, and thus we can conclude
that there exists no supporting set for a0 and that another powerful requirement is met.
Now, we know that for every nonzero ai and its minimal decisively in interpretation vi,
vti ⊆ {a0, ..., ai−1}. By construction of the arguments we know that ∀Z ⊆ A s.t. ZNai,
vti ∩ Z 6= ∅. Consequently, Z ∩ {a0, ..., ai−1} 6= ∅ and the final powerful requirement is
satisfied. Therefore, the pd–sequence of the evaluation produces a powerful sequence.

The correspondence between coherent and pd–acyclic sets follows straightforwardly
from this analysis. 2

Lemma 10.21. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69. A set of arguments E ⊆ A is
strongly coherent in FN iff it is a pd–acyclic conflict–free extension of DFN .

Proof. Let us assume that E is strongly coherent in FN , but not pd–acyclic conflict–free
in DFN . By Lemma 10.20 we know that every argument in E possesses a pd–acyclic
evaluation on E . What remains to be shown is that every argument has an evaluation on
E that is also unblocked (as a result of this, the condition of every argument will also be
satisfied). By Lemma 10.20 we can create an evaluation corresponding to the powerful
sequence of e on E . The blocking set of such an evaluation corresponds exactly to the
union of attackers of all its sequence members. As all the members of the pd–sequence
of this evaluation are in E , it has to be the case that an element of the blocking set is
accepted. However, it would clearly breach the conflict–freeness of E in FN and we
reach a contradiction. Therefore, E is pd–acyclic conflict–free in DFN .

Let us now assume that E is pd–acyclic conflict–free inDFN , but not strongly coherent
in FN . By Lemma 10.20, E is at least coherent. If E is not conflict–free in FN , it means
that ∃x, y ∈ E s.t. xRy. However, by the strong consistency of FN and Translation 69, it
would mean that Cy(E ∩ par(y)) = out. Consequently, E could not have been conflict–
free in DFN , and as every pd–acyclic conflict–free extension is also just conflict–free, we
reach a contradiction. Hence, if E is pd–acyclic conflict–free in DFN , then it is strongly
coherent in FN . 2

Lemma 10.22. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C) its
corresponding ADF obtained through Translation 69. Let E ⊆ A be strongly coherent
in FN and thus pd–acyclic conflict–free in DFN . Then E att coincides with the acyclic
discarded set of E .

Proof. If every coherent set containing a is attacked by E , it means that every powerful
sequence for a is attacked by E . By Lemma 10.20, we have that every powerful sequence
corresponds to an acyclic pd–evaluation. As seen in the proof, attackers of the members
of this sequence form the blocking set of the evaluation. Thus, if E attacks a member of
the powerful sequence, it means that an argument from the blocking set of the evaluation
is in E . Therefore, the evaluation is blocked, and whatever is in E att is in E a+.
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Now let us assume there is an argument a ∈ E a+, but not in E att. This means that
a has an unattacked powerful sequence, but every acyclic pd–evaluations (F,B) for a is
blocked through the blocking set (see Lemma 2.128). By Lemma 10.20 we can construct
a pd–evaluation corresponding to the unattacked sequence. Since the blocking set of the
evaluation is composed of the attackers of members of the powerful sequence, it cannot be
the case that there is no b ∈ E attacking the sequence and at the same time E ∩ B 6= ∅.
We reach a contradiction. Therefore, whatever is in E a+ is also in E att. 2

Theorem 10.23. Let FN = (A,R,N) be a strongly consistent AFN and DFN =
(A,L,C) its corresponding ADF obtained through Translation 69. Let E ⊆ A be strongly
coherent in FN and thus pd–acyclic conflict–free in DFN . Then E defends an argument
a ∈ A in FN iff this argument is decisively in w.r.t. vaE in DFN .

Proof. We will use the formulation of defense in AFNs from Lemma 2.93.
Let us assume that a is defended in FN , but is not decisively in w.r.t. vaE . This means

there exists at least one completion v′ of the range interpretation that outs the acceptance
condition of a. Let E ′ = v′t. According to Translation 69, the condition of a is not
satisfied if there exists b ∈ E ′ s.t. bRa or there exists C ⊆ A s.t. CNa and C ∩ E ′ = ∅.
If it is the first case, then from the fact that E att = E a+ by Lemma 10.22, it follows that
there is an attacker b of a not included in E att. Thus, a could have not been defended in
FN . If it is the latter case, it means that there exists C ⊆ A s.t. CNa ∧ C ∩ E = ∅
as well. Consequently, E ∪ {a} could not have been coherent. We reach a contradiction.
Therefore, if an argument a is defended by E in FN , then it is decisively in w.r.t. vaE in
DFN .

Let us now assume that a is decisively in w.r.t. vaE , but is not defended in FN . This
means that either there is an argument b ∈ A s.t. bRa and b /∈ E att, or E ∪ {a} is not
coherent. By Translation 69 and Lemma 10.22, it is easy to see that if it were the first case,
then a could not have been decisively in w.r.t. the acyclic range of E . Let us thus assume
that the issue lies in the coherence. Since we know that E is strongly coherent, a is the
only argument that would not have a powerful sequence on E∪{a}. This means that either
there is no powerful sequence for a to start with, or there is a set C ⊆ A s.t. CNa and
C ∩ E = ∅. If it is the first case, then by Lemma 10.20 there is no acyclic pd–evaluation
for a in D. Consequently, it has to mapped to false by vaE and is therefore decisively out
w.r.t. it by Proposition 2.150. We reach a contradiction with the assumption it is decisively
in. If it is the latter case, then by the Translation 69 the acceptance condition of a could
not have been satisfied by E . Hence, a could not have been decisively in w.r.t. vaE and
we reach a contradiction. We can therefore conclude that if a is decisively in w.r.t. vaE in
DFN , then it is defended by E in FN . 2

Theorem 10.24. Let FN = (A,R,N) be a strongly consistent AFN, DFN = (A,L,C)
its corresponding ADF obtained through Translation 69. A set of arguments E ⊆ A
is coherent in FN iff it is pd–acyclic in DFN . E is strongly coherent in FN iff it is
pd–acyclic conflict–free in DFN . E is a σ–extension of FN , where σ ∈ {admissible,
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complete, preferred} iff it is an aa–σ–extension of DFN . E is stable in FN iff it is stable
in DFN . E is grounded in FN iff it is acyclic grounded in DFN .

Proof. Let E be an admissible extension in FN . By Lemma 10.21 and Theorem 10.23 we
know that it is pd–acyclic conflict–free in DFN and that all arguments in E are decisively
in w.r.t. vaE . Since the members of the blocking sets correspond to the attackers of the
arguments, they are naturally falsified in the range interpretation. Consequently, all aa–
admissible criterions are satisfied. The other way around follows straightforwardly from
the theorems.

We now know that the admissible extensions of FN and DFN coincide. Thus, the
maximal w.r.t. set inclusion admissible sets are the same, and E is preferred in FN iff it
is aa–preferred in DFN .

The completeness follows straightforwardly from admissibility and Theorem 10.23.
We can use Theorems 2.95 and 2.158 in order to show that E is grounded in FN iff it is
acyclic grounded in DFN .

What remains to be shown is the correspondence of stable semantics. Let E be AFN
stable. By Lemma 10.21 we know that E is then at least pd–acyclic conflict–free in DFN .
It is easy to see by the definition of the deactivated set and Translation 69, that the accep-
tance condition of every argument a /∈ E will be out. Thus, E satisfies the model criterion
and we can conclude that it is ADF stable.

Let now E be ADF stable.Since E is also a model, then we know by Lemma 2.159
that E a+ = A \ E . We know it is pd–acyclic conflict–free, thus at least strongly coherent
in FN by Lemma10.21. By this and Lemma 10.22 we can conclude that E a+ coincides
with E att. Thus, by Lemma 2.94 E is AFN stable. 2

15.9 Translating EASs: Proof Appendix

Theorem 11.3. Let ES = (A,R,E) be an EAS and SFES = (A′, R′) its corresponding
SETAF obtained by Translation 72. If S ⊆ A is conflict–free in ES, then there might not
exist a conflict–free extension S ′ ⊆ A′ of SFES s.t. S =

⋃
S ′. If S ⊆ A is strongly

self–supporting in ES, then there exists a conflict–free extension S ′ ⊆ A′ of SFES s.t.
S =

⋃
S ′. If S is a σ–extension of ES, where σ ∈ {admissible, complete, preferred,

grounded stable}, then there exists a σ–extension S ′ ⊆ A′ of SFES s.t. S =
⋃
S ′.

If S ′ ⊆ A′ is conflict–free in SFES , then
⋃
S ′ is strongly self–supporting (and thus

also conflict–free) in ES. If S ′ ⊆ A′ is a σ–extension of SFES , then
⋃
S ′ is a σ–extension

of ES.

Proof. The fact that not every conflict–free extension of ES has an associated conflict–
free extension in SFES comes simply from the fact that arguments not possessing eviden-
tial sequences can participate in conflict–free extensions, but not in self–supporting ones,
which form the arguments in SFES .

Let S ⊆ A be a strongly self–supporting set of ES. Let S ′ = {X | X is a minimal
self–supporting set for an argument a ∈ S s.t. X ⊆ S} be its associated set in SFES . We
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can observe that
⋃
S ′ = S; every argument a ∈ S possesses an evidential sequence on S

and thus a suitable self–supporting set for a can be extracted from it. Let us assume that S ′

is not conflict–free in SFES . This means there is an argumentX ∈ S ′ and a subset F ⊆ S ′

s.t. FR′X . However, by the construction ofR′, this means there exists an argument x ∈ X
(and thus in S) and a set F ′ ⊆

⋃
F (and thus also a subset of S) s.t. F ′Rx. Hence, S

could not have been conflict–free in ES and we reach a contradiction. We can therefore
conclude that if S is strongly self–supporting in ES, then it is conflict–free in SFES .

Let S ′ ⊆ A′ be a conflict–free extension of SFES and S =
⋃
S ′ the associated set in

ES. It can be easily shown that S is self–supporting. What remains to be proved is that it
is also conflict–free. Let us assume it is not the case, i.e. there exists X ⊆ S and y ∈ S
s.t. XRy. From the fact that X ⊆ S, there must be a set of SETAF arguments X ′ ⊆ S ′

s.t. X ⊆
⋃
X ′. Similarly, there has to exist an argument Y ∈ S ′ s.t. y ∈ Y . However, by

the construction of R′, this means that X ′R′Y . Hence, S ′ cannot be conflict–free in SFES

and we reach a contradiction. We can conclude that S is strongly self–supporting in ES.
Let S ⊆ A be an admissible set of ES and S ′ its associated conflict–free extension of

SFES constructed in the way described in the first paragraph. Let a ∈ A be an argument
acceptable w.r.t. S. This means that S ∪ {a} is a self–supporting set for a; from it we can
extract a minimal self–supporting set X ⊆ S ∪ {a} for a, which becomes an argument
X ∈ A′. Let us assume that S ′ does not defend X . Consequently, there exists a set of
SETAF arguments Y ⊆ A′ s.t. Y R′X , but there is no subset V ⊆ S ′ and no SETAF
argument y ∈ Y s.t. V R′y. Based on the construction of SFES , we can extract a set of
EAS arguments Y ′ ⊆

⋃
Y and an argument x ∈ X s.t. Y ′Rx. Due to the fact that every

argument in Y represents a self–supporting set,
⋃
Y is an e–supported attack against x.

Since x ∈ S ∪ {a}, then S defends x in ES and there has to be a subset of S attacking
an argument in

⋃
Y . Thus, there is a subset of S ′ attacking an argument in Y . We reach

a contradiction. Hence, if S defends an argument a ∈ A, then S ′ defends an argument
containing a as well. Thus, it can be shown that S ′ is admissible in SFES .

Let now S ′ ⊆ A′ be an admissible extension of SFES and S =
⋃
S ′ the associated

strongly self–supporting set of ES. Let X ∈ S ′ be a SETAF argument defended by S ′ in
SFES . However, assume that there is an argument x ∈ X that is not acceptable w.r.t. S
in ES. Due to the fact that S is self–supporting, we can observe that S e–supports every
argument in S, including x. Thus, it is the attacks that we need to be concerned with. Let
T ⊆ A be a minimal e–supported attack against x. By the construction of R′, we can
find a set T ′ ⊆ A′ s.t. T =

⋃
T ′ and T ′R′X . Due to admissibility of S ′, we can find a

subset of S ′ attacking a member of T ′. Consequently, we can find a subset of S attacking
an argument in T as well. Thus, we reach a contradiction, and S in fact defends x. Hence,
if S ′ is admissible in SFES , then S =

⋃
S ′ is admissible in ES.

Let S ⊆ A a complete extension of ES and S ′ its associated admissible extension of
SFES constructed in the way described in the first paragraph. Let us assume that SFES

is not complete; this means there exists an argument X ′ ∈ A′ \ S ′ that is defended by S ′.
By using the previous analysis, we can show that if S ′ defends X ′, then every argument
x ∈ X ′ is defended against attacks by S in ES. The issue lies with coherence. Since
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X ′ is a self–supporting set, it can be represented as an evidential sequence (a0, ..., an).
Due to the fact that a0 = η, a0 is trivially contained in S. Based on the construction of
the sequence, we can observe that {a0}Ea1. Therefore, S ∪ {a1} is a coherent set, and
as it is defended against attacks as well, it holds that a1 is acceptable w.r.t. S. By the
completeness of S, it has to be the case that a1 ∈ S. We can continue this analysis until an
and the conclusion that an ∈ S. This, by the construction of S ′, means that X ′ ∈ S ′ and
we reach a contradiction. Hence, if S is complete in ES, then so is S ′ in SFES .

Let S ′ ⊆ A′ be a complete extension of SFES and S =
⋃
S ′ its associated admissible

extension of ES. Assume that S is not complete; this means there exists an argument
x ∈ A \ S that is acceptable w.r.t. S. This means that S ∪ {a} is a self–supporting set for
x. We can extract from it a minimal set X ⊆ S ∪ {a} for x that will become an argument
in A′. We can observe that X /∈ S ′ (otherwise, x would have appeared in S). Based on
the previous analysis of conflicts, we can show that due to the acceptability of x w.r.t. S,
X has to be defended by S ′. Since X /∈ S ′, we reach a contradiction with completeness
of S ′. We can therefore conclude that if S ′ is complete, then so is S.

We will now show that there is a one–to–one correspondence between the EAS and
SETAF complete extensions. Assume it is not the case and that there exist two complete
extensions S ′, S ′′ ⊆ A′ of SFES s.t.

⋃
S ′ =

⋃
S ′′. This means that there exists an

argument X ∈ A′ that is contained in S ′ \S ′′ or S ′′ \S ′. Without the loss of generality, let
us focus on the first case. This means that S ′ defends X and S ′′ does not. Let Y ⊆ A′ be
a set of SETAF arguments attacking X . By the construction of R′, this means that there
is an argument x ∈ X which is attacked by a subset of

⋃
Y . However, we can observe

that since
⋃
S ′ =

⋃
S ′′, there has to be an argument X ′ ∈ S ′′ s.t. x ∈ X ′. Consequently,

as S ′′ has to defend X ′, then it attacks an argument in Y . Hence, S ′′ defends X , and we
reach a contradiction. Therefore, S ′ ⊆ S ′′. We can perform a similar analysis for the other
way and show that S ′′ ⊆ S ′. Thus, S ′ = S ′′ and the correspondence between the EAS and
SETAF complete extensions has to be one–to–one.

It is easy to show that given two complete extensions S ⊂ T in ES, their associated
complete extensions S ′ and T ′ in SFES are also of the form S ′ ⊂ T ′. Thus, by combining
the one–to–one relation between the complete extensions, Theorems 2.10 and 2.112, we
can prove the stated relation between the preferred and grounded extensions of ES and
SFES .

What remains to be shown is the relation between the stable extensions. Let S ⊆ A
be a stable extension of ES and S ′ ⊆ A′ the associated complete extension of SF (see
Theorems 2.9, 2.10 and 2.112) created as in the first paragraph of this proof. Assume it
is not stable; this means there exists an argument X ′ ∈ A′ \ S ′ that is not attacked by S ′.
Thus, it can be shown that there is no subset of S attacking any of the arguments x ∈ X ′.
Based on the completeness and construction of S ′, we can observe that X ′ is not a subset
of S, i.e. there exists at least one argument y ∈ X ′ s.t. y /∈ S. We can observe that X ′

is a self–supporting set for y; from it we can extract a minimal one. Consequently, due
to the fact that no argument in this set is attacked by S, we reach a contradiction with the
stability of S. Hence, we can conclude that if S is stable in ES, then so is S ′ in SFES .
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Let S ′ ⊆ A′ be a stable extension of SFES and S =
⋃
S ′ its associated complete

extension of ES. Let us assume that S is not stable; this means there exists an argument
x ∈ A \ S and a minimal self–supporting set X ⊆ A for x s.t. no argument in X is
attacked by S. We can observe that X will become an argument in A′. Based on the
previous analysis we can observe that if there is no subset of S attacking an argument in
X , then there is no subset of S ′ attacking X either. Thus, we reach a contradiction with
the stability of S ′ in SFES . We can thus conclude that if S ′ is stable in SFES , then so is
S =

⋃
S ′ in ES. 2

Theorem 11.4. Let ES = (A,R,E) be an EAS and SFES = (A′, R′′) its corresponding
attack propagated SETAF obtained by Translation 73. If S ⊆ A is strongly self–supporting
in ES, then it is conflict–free in SFES . It does not necessarily hold for conflict–free
semantics. If S is a σ–extension of ES, where σ ∈ {admissible, complete, preferred,
grounded, stable}, then it is a σ–extension of SFES . If S ′ ⊆ A′ is a σ′–extensions of
SFES ,where σ′ ∈ {conflict–free, complete, preferred, grounded, stable}, then it is also a
σ′–extension of ES. Not every conflict–free extension of SFES is strongly self–supporting
in ES.

Proof. By Theorem 4.20, the extensions of ES and ESwv under semantics that are self–
supporting coincide, what needs to be shown is that the extensions of ESwv = (A′, R′, E ′)
and SFES = (A′, R′′) coincide as well.

Let us consider a simple weakly valid framework
({η, a, b, c}, {({a}, b)}, {({η}, a), ({η}, b), ({b}, c)}). We can observe that {a} has
the power to attack all self–supporting sets for c. Thus, in the target SETAF, {a, c} is not
a conflict–free extension. Unfortunately, it is such in our source EAS.

Let S ⊆ A′ be a strongly self–supporting set of ESwv. For every a ∈ S, S will be in
a′s collection of self–supporting sets. Since S is conflict–free, no subset of S will be in
the set Z containing all and only attackers of S. Consequently, no nonempty subset of S
will be a propagated attack on any of the elements of S, as no set in Z will be its subset.
We can thus conclude that S is conflict–free in SFES .

Let S ⊆ A′ be a conflict–free extension of SFES . Since R′′ contains the attacks from
R′, it is easy to see that S is also conflict–free in ESwv.

Let S ⊆ A′ be an admissible extension of ESwv and a ∈ A′ an argument acceptable
w.r.t. S. Therefore, S e–supports a, and S∪{a} is in the collection of self–supporting sets
of a. Let Z be the collection of all sets of arguments attacking S ∪ {a}, X the collection
of all sets of arguments attacking S and Y the collection of sets of arguments attacking a
in ESwv. It is easy to see that Z = X ∪ Y . We know that any propagated attack on a will
have at least one set in Z as a subset. If this set originates in Y , then since a is acceptable
w.r.t. S we know that every minimal self–supporting set containing this set (i.e. a minimal
e–supported attack) is attacked by S. Consequently, there will exist an attack in R′′ from
a set S ′ ⊆ S to this set. If this set originates in X , then as S is admissible and all of its
members are acceptable w.r.t. it, then again there will be a propagated attack in R′′ from
a set S ′′ ⊆ S to this set. Thus, any propagated attack on a will be in turn attacked and we
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can conclude that an argument acceptable w.r.t. S in ESwv is defended in SFES . Hence,
S is admissible in SFES .

We can again consider the framework from the second paragraph of this proof. We
can observe that a will be an initial argument in the target SETAF. Hence, {a} is an ad-
missible extension. Unfortunately, due to the absence if η, it is neither self–supporting nor
admissible in the source EAS.

Let S ⊆ A′ be a complete extension in ESwv. By the previous parts of this proof, we
know that S is admissible in SFES and that whatever is acceptable w.r.t. S in ESwv, is
also defended in SFES . What remains is to be proved is that there is no argument b ∈ A′
which is defended by S in SFES , but is not acceptable w.r.t. S in ESwv.

Let us assume it is not the case and that b is defended by S in SFES , but it is either
not e–supported by S or there exists an e–supported attack on b not countered by S in
ES. Let (a0, ..., an) be an arbitrary evidential sequence for b. We can observe that b is
e–supported by A′ (i.e. we are dealing with a weakly valid framework) and therefore at
least one such sequence will exist. Since a0 = η and S is admissible, it must be the case
that a0 ∈ S. Let us thus assume that a1 is not in S; it must be then the case that it is not
acceptable w.r.t. S. From evidential conditions it follows that {η}Ea1 and as η ∈ S, then
S e–supports a1. Consequently, there must exist a minimal e–supported attack T ⊆ A on
a1 which is not attacked by S. Let X1, ..., Xn be the subsets of T that carry out the attack,
i.e. XiRa. By construction, Xi is a possible propagated attack against a1. Since T is a
possible self–supporting set for any of its elements and no subset of S carries out an attack
against any argument in T , no subset of S will be a propagated attack against any argument
in T and, in particular, in any Xi. If it is the case that a1 in S, we can continue with a2
and repeat the same reasoning until we reach an = b and the conclusion that there must
have been a minimal e–supported attack on some argument in the sequence not attacked
by S. We can repeat this reasoning for any evidential sequence for b, each time coming
to a conclusion that there must have been an e–supported attacker not covered by S. By
combining the subsets of the attackers that perform the actual attack through R′, we can
build a propagated attack on b, and since none of its elements is attacked in R′′ by any
subset of S, it could thus not have been the case that S defended b in SFES . We reach a
contradiction. Consequently, S is complete in SFES .

Let now S ⊆ A be a complete extension of SFES . Before we continue, we will show
that if an argument a ∈ A′ is defended by S in SFES , then so is at least one self–supporting
set containing a.

Let {Z ′1, ..., Z ′n} be the collection of sets of arguments attacking a through R′′. If there
exists no such set, then by the construction of SFES and the fact that every argument has
at least one self–supporting set, it means that for at least one self–supporting set C of a,
the collection of sets attacking arguments in C is empty. Consequently, C is not attacked,
ans as C is a self–supporting set of any of its members and it is not attacked, then it cannot
be the case that there is a propagated attack against any of its members. We thus obtain a
trivial case of defense for the arguments in C.

Let us therefore assume there is at least one Z ′i. Since a in defended in SFES , for
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every attack Z ′i on a there exists a propagated attack from some subset of S to a member
of Z ′i. The set of such attacked arguments will have at least one common element with
every attacker set of at least one self–supporting set of a in ES. If it were not the case
and for every self–supporting set there existed at least one attacker set Z in R′ that would
not have a member attacked by S in R′′, then we could always create a propagated attack
from such sets. Moreover, S would not defend a from this attack. Therefore, let C be
the self–supporting set of a whose attackers sets are covered by S and let (a0, ..., an) be
the evidential sequence for a in this set. Without the loss of generality, we can just focus
on this sequence – if all attackers of C are attacked, then so are the ones of a minimal
evidential sequence for a contained in C. What we need to show is that the fact that all
R′ attackers of the sequence are attacked by S through R′′ is sufficient for all of its R′′

attackers to be attacked through R”.
Since a0 = η and η is an unattacked argument both in SFES and ESwv, it is triv-

ially defended by any set of arguments. Let us thus start with a1 and its set attackers
B11, ..., B1n1 . Since {a0, a1} is the single minimal self–supporting set for a0, then for ev-
ery propagated attack F on a0, ∃B1i s.t. B1i ⊆ F . Since for any set B11, ..., B1n1 we can
find a subset of S attacking it through R′′, then naturally every attack on a1 through R′′ is
also attacked by S. Thus, a0 is defended.

Let us now focus on a2 and its set attackers B21, ..., B2n2 . The set {a0, a1, a2} is a
self–supporting set for a2 and X = B11, ..., B1n1 , B21, ..., B2n2 is the collection of the sets
attacking it. Consequently, for every propagated attack F on a2, should it exist, it holds
that ∃B ∈ X s.t. B ⊆ F . Since for any set in X we can find a subset of S attacking
it through R′′, then every propagated attack on a2 through R′′ is also attacked and a2 is
defended. Should there be no propagated attack against a2, by discussion above a2 is
trivially defended by S.

We can continue repeating this proof until we cover all members of the sequence,
showing that they were all defended by S. Consequently, if an argument a ∈ A′ is
defended by S in SFES , then so is at least one evidential sequence/self–supporting set
containing it.

Let us now assume that S ⊆ A is a complete extension of SFES . We know it is at
least conflict–free in ESwv. As S contains all arguments it defends, then if it contains an
argument a, it also contains at least one evidential sequence for it. Consequently, S e–
supports all of its members. Let us now focus on attacks. Assume that even though every
argument in S is defended by S in SFES , there exists a minimal e–supported attack T on
an argument a ∈ S which is not attacked by S. Let T ′ ⊆ T be the subset carrying out the
attack through R′, i.e. T ′R′a. By the construction of SFES it is a propagated attack on
a in SFES . Since T ′ is not attacked by S, then it cannot be the case that any subset of S
carries out a propagated attack against any member of T ′ and thus a could not have been
defended in SFES . We reach a contradiction. Hence, S is at least admissible in ESwv.
If it is not complete, then there is an argument a /∈ S acceptable w.r.t. S in ESwv, but
not defended in SFES . However, by the proof that every argument acceptable w.r.t. an
admissible set in ESwv is defended by the set in SFES we can see that cannot be the case.
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Thus, S is complete in ESwv.
Since we know that complete extensions coincide between ESwv and SFES , by The-

orem 2.24 and 2.112 we can conclude that so do preferred and grounded. What remains
to show is the stable semantics. Let S ⊆ A′ be a stable extension in ESwv. It is thus self–
supporting conflict–free and attacks every evidential sequence of an argument a /∈ S. By
the analysis above it is easy to see that the set will be conflict–free in SFES and for every
such a there will exist an according propagated attack. Consequently, S will be stable in
SFES .

Let S be a stable extension of SFES . By the analysis above and Theorems 2.24 and
2.23 we know it is complete and thus self–supporting in ESwv. Since every argument
a /∈ S is attacked in R′′, then by construction of R′′ we know that every self–supporting
set containing a is attacked by S in ESwv. From this follows easily that S is stable in
ESwv. 2

Theorem 11.6. Let ES = (A,R,E) be an EAS and SFES its corresponding defender
SETAF obtained by Translation 75. By Snp = {a′ | there is no self–supporting set contain-
ing a}∪ {a′ | for every self–supporting set C for a, ∃S ′ ⊆ S, c ∈ C \ {a} s.t. (S ′, c) ∈ R}
we will denote the primed arguments corresponding to a subset of S+ in which every argu-
ment a either has no self–supporting set or every such set is attacked by S on an argument
different from a.

If a set S ⊆ A is conflict–free in ES, then it is conflict–free in SFES . The set S ∪ Snp
is not necessarily conflict–free in SFES . If a set S ⊆ A is strongly self–supporting in ES,
then S∪Snp is conflict–free in SFES . If S is a σ–extension ofES, where σ ∈ {admissible,
preferred, complete, grounded, stable}, then S ∪ Snp is a σ–extension of SFES .

If a set S ′ ⊆ A′ is a σ′–extension of SFES , where σ′ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then S = S ′ ∩ A is a σ′–extension of ES. If S ′ is
conflict–free in SFES , then S = S ′ ∩ A might not be strongly self–supporting in ES.

Proof. Let S ⊆ A be a conflict–free extension ofES. We can observe that all attacks inR′

that occur only between the arguments inA correspond precisely toR. Therefore, S is eas-
ily conflict–free in SFES . However, S ′ = S∪Snp is not necessarily conflict–free in SFES .
Take for example the framework ({a, b, c, η}, {(a, b)}, {({η}, a), ({η}, b), ({b}, c)}). The
set {a, c} is conflict–free in it, despite the fact that a attacks the only supporter b of c. Thus,
{a, c}np = {c′}, and we obtain the set {a, c, c′} on the SETAF side. Clearly, a primed ar-
gument cannot appear in a conflict–free extension along with its original version.

Let S ⊆ A be a strongly self–supporting set ofES. Let us assume that S ′ = S∪np(S)
is not conflict–free. Since S is itself conflict–free in SFES , this means that for some
argument a′ ∈ np(S), either a ∈ S or there exists X ⊆ S s.t. XR′a′. However, a′ is
added to np(S) if and only if S attacks all evidential sequences of a on non–a elements.
If it were the case that a ∈ S, then S would contain an evidential sequence for a and thus
would have to attack itself. We thus breach the conflict–freeness of S in ES. If X ⊆ S,
then by the construction of SFES , X ∪{a} can be ordered into an evidential sequence for
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a. Hence, S would have to attack an argument in X , and we reach a contradiction again.
Thus, S ′ is conflict–free in SFES .

Let S ′ ⊆ A′ be a conflict–free extension of SFES . Since every attack from R is
contained inR′, it follows easily that S = S ′∩A is a conflict–free set ofES. However, not
every conflict–free extension of SFES has to correspond to a strongly self–supporting set
in ES. We can consider a trivial framework ({η, a}, ∅, {({η}, a)}); the associated SETAF
is ({η, a, a′}, {({η}, a′), ({a′}, a)}). We can observe that {a} is a conflict–free extension
of our target framework. However, due to the absence of η, it is neither self–supporting
nor strongly–self supporting in our source EAS.

Let S ⊆ A be an admissible extension of ES. From the previous parts of this proof we
know that S ′ = S ∪ np(S) is conflict–free in SFES . What remains to be shown is that S ′

defends all of its members in SFES . Let a be an argument in S. We can naturally exclude
η from this analysis. Based on the construction of SFES , we can observe that a′ ∈ A′ and
that {a′}R′a. From the fact that S is self–supporting, it follows that there exists X ⊆ S
s.t. XR′a′. Since S ⊆ S ′, it holds that S ′ defends the arguments it contains from attacks
carried out by primed arguments. What we now need to show is that a is defended by S ′

from attacks carried out by arguments in S. Since a is acceptable w.r.t. S in ES, then
every minimal e–supported attack T on a is attacked by S. Let T ′ ⊆ T be a subset of
T s.t. T ′Ra (and thus T ′R′a). There exists an argument t ∈ T ′ s.t. all of its minimal
evidential sequences are attacked – if it were not the case, then every t would have an
unattacked sequence which we could combine into a single unattacked e–supported attack
on a. Thus, all evidential sequences for t are attacked; if it is by an attack on t itself, then
obviously S ′ attacks t as well and a is defended. If it is not through t, then due to the
presented construction, np(S) contains t′ and again a is defended by S ′. Moreover, if a set
of arguments attacking a contains an element not possessing an evidential sequence at all,
then by the construction of S ′, the suitable primed argument is in S ′. Finally, we need to
analyze the status of arguments in np(S). We can observe that if a′ ∈ np(S), then every
evidential sequence for a is attacked by S on a non–a member. Thus, we can observe that
every set of arguments attacking a′ in R′ is attacked by a subset of S (and thus a subset of
S ′). We can therefore finally conclude that S ′ is admissible in SFES .

Let S ′ ⊆ A′ be an admissible extension of SFES . By the previous parts of this proof
we know that the set S = S ′ ∩ A is conflict–free in ES. However, let us assume that S
is not self–supporting, i.e. there exists n argument a ∈ S that does not have an evidential
sequence on S. If a does not have an evidential sequence on A to start with, then by
Translation 75 it is attacked by a′ and the same time there is no set of arguments attacking
a′. This contradicts the admissibility of S ′ in SFES . Consequently, there exists at least
one (minimal) evidential sequence for a on A. If a = η, then it is trivially e–supported
by S. Otherwise, we know that a has an attacker a′ in A′ and that every set of arguments
attacking a′ corresponds to the members of an evidential sequence for a that precede a.
Thus, if there is no evidential sequence on S for a, then a could not have been defended
by S ′ against a′ in SFES . This leads us to a conclusion that S is self–supporting in ES.

Let us now assume that S is not admissible inES. This means that there exists an argu-
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ment a ∈ S and a minimal e–supported attack T on a s.t. no element of T is attacked by S.
Since T is a minimal e–supported attack, it is also a self–supporting set by Lemma 2.108.
Thus, it can be represented as an evidential sequence; let (b0, .., bn) be this sequence. Since
b0 = η, it cannot be attacked in any of the frameworks. Let us focus on b1; we know that
there exists an argument b′1 in A′ attacking b1. As {b0}R′b′1 and there is no set in S (and
no set in S ′) attacking b0, b′1 cannot be in S ′ due to admissibility. Moreover, no set in S
attacks b1 in ES either. Thus, it cannot be the case that S ′ attacks b1 in SFES . Let us
now consider b2; we know it is supported either by {b0}, {b0, b1} or {b1} in E. However,
based on the previous analysis, none of these sets can be attacked by S ′, and thus b′2 cannot
be in S ′ due to admissibility. This, in addition to the fact that no subset of S attacks b2,
means that S ′ cannot attack b2 in SFES . We can repeat this analysis till we reach bn = b
and conclude that there was no set in S ′ attacking T , and thus no set in S ′ attacking the
set T ′ ⊆ T that is responsible for carrying out the conflict in R′. Consequently, a could
not have been defended by S ′ in the first place and we reach a contradiction. Thus, S is
admissible in ES.

Let S ⊆ A be complete in ES. By the previous parts of this proof we know that
S ′ = S ∪ np(S) is admissible in SFES . If it is not complete, it means there exists an
argument a ∈ A′ \ S ′ defended by S ′. We will now distinguish between cases where a is
a primed argument and where it is a standard one.

Let us first assume that a is primed version of an argument b ∈ A and is defended by
S ′ in SFES . However, we can observe that based on the construction on S ′, it must be the
case that not every evidential sequence for b is attacked on a non–b element. Moreover,
at least one sequence for b on A has to exist; otherwise, a would be in np(S). Thus,
let (b0, ..., bn) be this unattacked evidential sequence on A for b. By the construction of
SFES , it holds that {b0, ..., bn−1} attacks a. We can observe that for any argument bi in
the sequence, (b0, ..., bi) is an evidential sequence for this argument. Due to the fact that
b0 = η, it cannot be the case that either S or S ′ attack b0. Since {b0}R′b′1, then due to the
admissibility of S ′, b′1 /∈ S ′. Moreover, as no subset of S attacks b1, then we can conclude
that S ′ cannot attack b1. Based on the definition of the evidential sequence, it has to be the
case that either {b0}, {b1} or {b0, b1} support b2 in E. Hence, they also are the attackers of
b′2 in R′, and as S ′ does not attack neither b0 nor b1, it cannot contain b′2. Since no subset
of S attacks b2, we can thus show that S ′ cannot attack b2 either. We can continue this
analysis until we reach bn−1 and the conclusion that if S did not attack any bi, then neither
did S ′. Consequently, S ′ could not have defended a and we reach a contradiction.

Let us thus assume that a is an argument in A and that it is defended by S ′ in SFES ,
but is not acceptable w.r.t. S in ES. If a is not acceptable w.r.t. S, then either S does not
e–support a or there exists a minimal e–supported attack T on a not attacked by S. If it is
the first case, then based on the fact that S is self–supporting, we can show that there is no
evidential sequence for a s.t. the elements of this sequence preceding a are in S. Moreover,
clearly a 6= η, as η has to be in S already. This means that S ′ cannot defend a against a′ and
we reach a contradiction. If it is the second case, then we can repeat previously performed
analysis in order to show that if S does not attack any argument in T , then S ′ cannot attack
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any subset T ′ ⊆ T carrying out the actual conflict. Consequently, a cannot be defended
by S ′ in SFES , and we reach a contradiction. We can finally conclude that S ′ is complete
in SFES .

Let S ′ ⊆ A′ be a complete extension of SFES . From the previous parts of this proof
we know that S = S ′ ∩ A is admissible in ES. What remains to be shown is that there is
no argument a ∈ A\S that is acceptable w.r.t. S in ES. Assume it is not the case. We can
observe that if a is acceptable w.r.t. S, then S e–supports a. Thus, there is an evidential
sequence for a s.t. elements of the sequence preceding a are contained in S. Hence, they
are also contained in S ′, and based on the construction of SFES , it holds that S ′ attacks
the auxiliary argument a′ for a. Consequently, based on the fact that S ′ does not defend a,
there must be an attack on a that is carried out by a set of standard arguments only. Let us
thus assume that there is a set B ⊆ A s.t. BR′a and S ′ does not attack B. Based on the
relation between R and R′, it holds that BRa as well. Due to the fact that a is acceptable
w.r.t. S in ES, either there is no e–supported attack T s.t. B ⊆ T or every such T is
attacked by S. If it is the first case, then it has to be the case that there exists b ∈ B that
does not possess an evidential sequence on A. Consequently, b 6= η, and there exists a
primed argument b′ ∈ A′ s.t. {b′}R′b. We can observe that b′ will be an initial argument in
SFES . Thus, by completeness of S ′, b′ ∈ S ′, and S ′ defends a from B. If it is the second
case, then we can show that for at least one argument b ∈ B, S attacks every evidential
sequence for b. If it were not the case, then we could use an unattacked sequence for every
argument in B in order to construct an e–supported attack which S cannot attack. If S
attacks b directly, then so does S ′. If it attacks a non–b member in every sequence, then it
is easy to see that S ′ defends (and thus contains) b′. This again means that S ′ can attack
B. Hence, in all of the cases we can show that S ′ defends a and we reach a contradiction.
We can finally conclude that S is complete in ES.

Let us now assume that the relation between the complete extensions in ES and SFES

is not one–to–one. Based on the previous proofs this means that there exist two complete
extensions S ′, S ′′ ⊆ A′ of SFES s.t. S ′ ∩ A = S ′′ ∩ A. This means there is a primed
argument a′ ∈ A′ s.t. either a′ ∈ S ′ \ S ′′ or a′ ∈ S ′′ \ S ′. We can observe that if a′ ∈ S ′,
then every set of arguments {a0, ..., an−1} s.t. (a0, ..., an−1, a) is an evidential sequence
for a is attacked by S ′. By using previous parts of this proof we can show this cannot be
done without attacks from standard arguments. However, since S ′ ∩A = S ′′ ∩A, then S ′′

also can attack every such set {a0, ..., an−1}. Thus, S ′′ defends a′ and a′ ∈ S ′′. We reach a
contradiction with our assumptions and therefore S ′ ⊆ S ′′. We can how that S ′′ ⊆ S ′ in a
similar fashion. Consequently, S ′ = S ′′ and the relation between the complete extensions
of ES and SFES is one–to–one.

By using Theorems 2.24 and 2.112 and the analysis above we can easily prove the
relation between preferred and grounded extensions of these frameworks.

Let us focus on the stable semantics. Assume that S ⊆ A is stable in ES. Based on
Theorem 2.112 and the previous analysis, S ′ = S ∪ np(S) is complete (and thus conflict–
free) in SFES . Now, since every argument e /∈ S has every evidential sequence attacked
by S, then it is easy to see that every such e is attacked by S ′ as well, be it by the use of
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standard or primed arguments. What remains to be shown is that every auxiliary argument
not in S ′ is also attacked by S ′. Let a′ be an arbitrary auxiliary argument outside of the
extension. If a is in S ′, then by the fact that S ′ is complete it has to be the case that
S ′ attacks a′. If a is not in S ′, then by the correspondence with S it means that every
evidential sequence of a is attacked by S. If these attacks occur on non–a members, then
a′ must be in S ′. Thus, we are left with a case were all the sequences are attacked on
a only. However, by the completeness of S this means that S must have included the
members of these sequences (excluding a). Thus, S ′ had sufficient means to attack a′

again. Consequently, S ′ is stable in SFES .
Let us now focus on the other way around and show that if S ′ ⊆ A′ is stable in SFES ,

then so is S = S ′ ∩ A in ES. By Theorems 2.23 and 2.24 and the previous analysis,
we know that both S ′ and S are complete. Let us now assume that S is not stable, i.e.
there is an argument a ∈ A \ S which has an evidential sequence unattacked by S. We
can use previously done analysis to show that no subset of standard arguments of S ′ can
attack a and that a′ cannot be in S ′ (we would not be able to defend it). Thus, we reach a
contradiction with the stability of S ′ and can conclude that S is stable in ES. 2

Theorem 11.7. Let ES = (A,R,E) be a strongly valid EAS and SFES its corresponding
defender SETAF obtained by Translation 76. By Snp = {a′ | for every self–supporting set
C for a, ∃S ′ ⊆ S, c ∈ C \ {a} s.t. (S ′, c) ∈ R} we will denote the primed arguments
corresponding to a subset of S+ in which every self–supporting set for an argument a is
attacked by S on an argument different from a.

If a set S ⊆ A is conflict–free in ES, then it is conflict–free in SFES . The set S ∪ Snp
is not necessarily conflict–free in SFES . If a set S ⊆ A is strongly self–supporting in ES,
then S∪Snp is conflict–free in SFES . If S is a σ–extension ofES, where σ ∈ {admissible,
preferred, complete, grounded, stable}, then S ∪ Snp is a σ–extension of SFES .

If a set S ′ ⊆ A′ is a σ′–extension of SFES , where σ′ ∈ {conflict–free, admissible,
preferred, complete, grounded, stable}, then S = S ′ ∩ A is a σ′–extension of ES. If S ′ is
conflict–free in SFES , then S = S ′ ∩ A might not be strongly self–supporting in ES.

Proof. Let S ⊆ A be a conflict–free extension of ES. We can observe that
all attacks in R′ that occur only between the arguments in A correspond precisely
to R. Therefore, S is easily seen to be conflict–free in SFES . However, S ′ =
S ∪ Snp is not necessarily conflict–free in SFES . Take for example the framework
({a, b, c, η}, {(a, b)}, {({η}, a), ({η}, b), ({b}, c)}). The set {a, c} is conflict–free in it,
despite the fact that a attacks the only supporter b of c. Thus, {a, c}np = {c′}, and we
obtain the set {a, c, c′} on the SETAF side. Clearly, a primed argument cannot appear in a
conflict–free extension along with its original version.

Let S ⊆ A be a strongly self–supporting set ofES. Let us assume that S ′ = S∪np(S)
is not conflict–free. Since S is itself conflict–free in SFES , this means that for some
argument a′ ∈ np(S), either a ∈ S or there exists a set of standard arguments X ⊆ S s.t.
XR′a′. However, a′ is added to np(S) if and only if S attacks all evidential sequences of
a on non–a elements. If it were the case that a ∈ S, then S would contain an evidential
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sequence for a, and thus a set T ⊆ S s.t. TEa. However, since a′ ∈ np(S), it means
we breach the conflict–freeness of S in ES. Let us focus on the case that there exists
X ⊆ S s.t. XR′a′. Due to the fact that S is a self–supporting set, every x ∈ X contains
an evidential sequence on S. We can recombine them into a single sequence. From the
construction of SFES it holds that XEa; thus, we can extend the sequence with a in order
to provide an evidential sequence for a s.t. every member of the sequence preceding a is
in S. However, by the construction of np(S), it means that S would have to attack itself
and we reach a contradiction. Thus, S ′ is conflict–free in SFES .

Let S ′ ⊆ A′ be a conflict–free extension of SFES . Since every attack from R is
contained inR′, it follows easily that S = S ′∩A is a conflict–free set ofES. However, not
every conflict–free extension of SFES has to correspond to a strongly self–supporting set
in ES. We can consider a trivial framework ({η, a}, ∅, {({η}, a)}); the associated SETAF
is ({η, a, a′}, {({η}, a′), ({a′}, a)}). We can observe that {a} is a conflict–free extension
of our target framework. However, due to the absence of η, it is neither self–supporting
nor strongly–self supporting in our source EAS.

Let S ⊆ A be an admissible extension of ES. From the previous parts of this proof we
know that S ′ = S ∪ np(S) is conflict–free in SFES . What remains to be shown is that S ′

defends all of its members in SFES . Let a be an argument in S. We can naturally exclude
η from this analysis. Based on the construction of SFES , we can observe that a′ ∈ A′ and
{a′}R′a. From the fact that S is self–supporting in ES, it follows that there exists X ⊆ S
s.t. XEa and thus X ⊆ S ′ s.t. XR′a′. Therefore, S ′ defends the arguments it contains
from attacks carried out by primed arguments.

What we also need to show is that a is defended by S ′ from attacks carried out by
arguments in S. Since a is acceptable w.r.t. S in ES, then every minimal e–supported
attack T on a is attacked by S. Let T ′ ⊆ T be a subset of T s.t. T ′Ra (and thus T ′R′a).
There exists an argument t ∈ T ′ s.t. all of its minimal evidential sequences are attacked
– if it were not the case, then every t would have an unattacked sequence which we could
combine into a single unattacked e–supported attack on a. Thus, all evidential sequences
for t are attacked; if it is by an attack on t itself, then obviously S ′ attacks t as well and a
is defended against T . If it is not through t, then due to the presented construction, np(S)
contains t′ and again a is defended by S ′. We can observe that since ES is strongly valid,
there exists no T ⊆ A s.t. TR′a in SFES that would not be a part of an e–supported attack
on a in ES.

Finally, we need to analyze the status of arguments in np(S). Let a = b′ be a primed
argument for b ∈ A; assume it is not defended by S ′. Consequently, there exists a set
of arguments X ⊆ A s.t. XR′b′ and at the same time there is no x ∈ X ′ and no set
of arguments T ′ ⊆ S ′ s.t. T ′R′x. By the construction of SFES , the set T ′ would either
correspond to a set of arguments attacking x in R in ES or be the primed version of x
(if it exists). Therefore, S cannot directly attack x, and due to the absence of x′ in S ′,
it cannot attack all evidential sequences for x on non–x members. Hence, we can show
that it cannot be the case that S attacks every self–supporting set for x in ES. As it holds
for every x ∈ X , we can collect these unattacked self–supporting sets into one single
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set C ⊆ A. By using Theorem 4.37, it can be observed that C ∪ {b} would be a self–
supporting set for b and no argument in C is attacked by E in FN . Hence, we reach a
contradiction with the construction of S ′ and b′ should not have been in the set in the first
place. We can therefore conclude that S ′ is admissible in SFES .

Let S ′ ⊆ A′ be an admissible extension of SFES . By the previous parts of this proof
we know that the set S = S ′ ∩ A is conflict–free in ES. However, let us assume that S
is not self–supporting, i.e. there exists n argument a ∈ S that does not have an evidential
sequence on S. We can observe that if a = η, then it has a trivial evidential sequence (η)
on any set containing it. Thus, let us assume a 6= η. By Theorem 4.37, this means there is
an argument a ∈ S for which there is no T ⊆ S s.t. TEa. However, by the construction
of SFES , this means that S ′ cannot defend a against a′. This contradicts the admissibility
of S ′ in SFES . Thus, for every argument a ∈ S, there exists a subset T ⊆ S s.t. TEa,
and by Theorem 4.37, S is self–supporting in ES.

Let us now assume that S is not admissible in ES. Based on the previous analysis,
this means that there exists an argument a ∈ S and a minimal e–supported attack T on
a s.t. no element of T is attacked by S. Since T is a minimal e–supported attack, it is
also a self–supporting set by Lemma 2.108. Thus, it can be represented as an evidential
sequence; let (b0, .., bn) be this sequence. Since b0 = η, it cannot be attacked in any of the
frameworks. Let us focus on b1; we know that there exists an argument b′1 in A′ attacking
b1. As {b0}R′b′1 and there is no set in S (and no set in S ′) attacking b0, b′1 cannot be in S ′

due to admissibility. Moreover, no set in S attacks b1 in ES either. Thus, it cannot be the
case that S ′ attacks b1 in SFES . Let us now consider b2; we know it is supported either by
{b0}, {b0, b1} or {b1} in E. However, based on the previous analysis, none of these sets
can be attacked by S ′, and thus b′2 cannot be in S ′ due to admissibility. This, in addition
to the fact that no subset of S attacks b2, means that S ′ cannot attack b2 in SFES . We can
repeat this analysis till we reach bn = b and conclude that there was no set in S ′ attacking
T , and thus no set in S ′ attacking the set T ′ ⊆ T that is responsible for carrying out the
conflict in R′. Consequently, a could not have been defended by S ′ in the first place and
we reach a contradiction. Thus, S is admissible in ES.

Let S ⊆ A be complete in ES. By the previous parts of this proof we know that
S ′ = S ∪ np(S) is admissible in SFES . If it is not complete, it means there exists an
argument a ∈ A′ \ S ′ defended by S ′. We will now distinguish between cases where a is
a primed argument and where it is a standard one.

Let us first assume that a is the primed version of an argument b ∈ A and is defended
by S ′ in SFES . However, we can observe that based on the construction on S ′, it must be
the case that not every evidential sequence for b is attacked on a non–b element. Due to
the fact that we are dealing with a strongly valid framework, b must possess at least one
sequence on A. We can observe that since S is self–supporting in ES, it is the case that
η ∈ S and thus b 6= η. Let now (b0, ..., bn) be the unattacked evidential sequence on A for
b. We can observe that there exists a nonempty set T ⊆ {b0, ..., bn−1} s.t. TEb in ES and
thus TR′a in SFES . Let us start with b0. By the requirements of the evidential sequences,
b0 = η, and is thus an initial argument both in ES and SFES . Consequently, it cannot
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be attacked neither by S nor S ′. Let us thus focus on b1. We can observe that no subset
of S attacks b1; therefore, if S ′ attacks b1, it can only be through the primed argument b′1.
However, by the properties of the evidential sequence, {b0}Eb1 and thus {b0}R′b′1. Since
S ′ does not attack b0, it cannot contain b′1 due to admissibility. Consequently, S ′ does not
attack b1. Let us now analyze b2. Based on the properties of the evidential sequence, either
{b0}Eb2, or {b1}Eb2, or {b0, b1}Eb2. All of these supporting sets are possible attackers
of b′2, and due to the fact that S ′ cannot attack any of them, b′2 /∈ S ′. Since S does not
contain any subset that would attack b2 either, we can finally conclude that S ′ does not
attack b2. We can continue this line of reasoning until we reach bn−1 and the conclusion
that E ′ could not have defended a = b′. We reach a contradiction. Therefore, if S ′ defends
a primed argument in SFES , then this argument is already in S ′.

Let us thus assume that a is an argument in A and that it is defended by S ′ in SFES ,
but is not acceptable w.r.t. S in ES. If a is not acceptable w.r.t. S, then either S does not
e–support a or there exists a minimal e–supported attack T on a not attacked by S. If it
is the first case, then based on the fact that S is self–supporting, this means that there is
no X ⊆ S s.t. XEa. Moreover, clearly a 6= η, as η has to be in S already. Therefore,
we can show that S ′ cannot defend a against a′ and we reach a contradiction. If it is the
second case, then we can repeat previously performed analysis in order to show that if S
does not attack any argument in T , then S ′ cannot attack any subset T ′ ⊆ T carrying out
the actual conflict. Consequently, a cannot be defended by S ′ in SFES , and we reach a
contradiction. We can finally conclude that S ′ is complete in SFES .

Let S ′ ⊆ A′ be a complete extension of SFES . From the previous parts of this proof
we know that S = S ′ ∩A is an admissible extension of ES. What remains to be shown is
that there is no argument a ∈ A \ S that is acceptable w.r.t. S in ES. Assume it is not the
case. We can observe that if a is acceptable w.r.t. S, then S e–supports a. Thus, there is a
subset X ⊆ S s.t. XEa, and based on the construction of SFES , it holds that S ′ attacks
the auxiliary argument a′ for a. Consequently, based on the fact that S ′ does not defend a,
there must be an attack on a that is carried out by a set of standard arguments only.

Let us thus assume that there is a set B ⊆ A s.t. BR′a and S ′ does not attack B. Based
on the relation between R and R′, it holds that BRa as well and no argument in B is
directly attacked by S either. Due to the fact that ES is strongly valid, there will be an e–
supported attack T on a in ES s.t. B ⊆ T . Now, since S ′ does not attack B, then it cannot
contain any primed argument b′ of any b ∈ B. This also means that S ′ does not defend any
of the primed arguments; consequently for every b′, there is a set C ⊆ A s.t. CR′b′ and S ′

(and thus also S) does not attack any of the arguments in C (it might even be the case that
C ⊆ S ′). Again, the primed arguments of such a set cannot be in S ′. We can continue this
analysis and gathering the sets of arguments that are attacking primed arguments which are
not attacked by S ′ until we cannot add any further elements. Since these sets correspond
to support sets from E and we are dealing with a strongly valid framework, at some point
all of the required arguments will be gathered. Based on the construction of SFES and
Theorem 4.37, it can be shown that the union of all of the gathered sets will form a self–
supporting set containing all elements in B. Thus, this set will be a self–supported attack

576



in ES against a and S will not attack any of its elements. This means that a cannot be
acceptable w.r.t. S in ES and we reach a contradiction. Hence, S is a complete extension
of ES.

Let us now assume that the relation between the complete extensions in ES and SFES

is not one–to–one. Based on the previous proofs this means that there exist two complete
extensions S ′, S ′′ ⊆ A′ of SFES s.t. S ′ ∩ A = S ′′ ∩ A. This means there is a primed
argument a′ ∈ A′ s.t. either a′ ∈ S ′ \ S ′′ or a′ ∈ S ′′ \ S ′. By construction, a′ is attacked
by those subsets of A that support a through E. Thus, there exists such a set B ⊆ A s.t.
BR′a′ (equivalently, BEa) and S ′ attacks an argument B, but S ′′ does not. Due to the
fact that we are dealing with strongly valid EAS, we can observe that every such set B is
a part of an evidential sequence for a. We can also note that the subset of S ′ attacking an
argument in B cannot consist of standard arguments (i.e. the attack cannot originate from
R), otherwise both sets S ′ and S ′′ would be capable of it. Hence, there is another primed
argument corresponding to the argument in B attacked by E ′. We can can find a set B′

attacking this primed argument which in turn is attacked by E ′, but not E ′′. By using
previous observations, we can show that both B and B′ are a part of a powerful sequence
for a. We can continue this analysis until we reach a set of arguments in which no argument
possesses a primed attacker, and as we are dealing with a strongly valid framework, this is
bound to happen. Therefore, if S ′ attacks this argument, it is only by using attacks from
standard arguments. However, if this is the case, then S ′′ attacks this argument as well,
and we reach a contradiction. Therefore, S ′ ⊆ S ′′. In a similar manner we can show that
S ′′ ⊆ S ′. Hence, there is a one–to–one relation between the complete extensions of ES
and SFES .

By using Theorems 2.24 and 2.112 and the analysis above we can easily prove the
relation between preferred and grounded extensions of these frameworks.

Let us focus on the stable semantics. Assume that S ⊆ A is stable in ES. Based on
Theorem 2.112 and the previous analysis, S ′ = S ∪ np(S) is complete (and thus conflict–
free) in SFES . Now, since every argument e /∈ S has every evidential sequence attacked
by S, then it is easy to see that every such e is attacked by S ′ as well, be it by the use of
standard or primed arguments. What remains to be shown is that every auxiliary argument
not in S ′ is also attacked by S ′. Let a′ be an arbitrary auxiliary argument outside of the
extension. If a is in S ′, then by the fact that S ′ is complete it has to be the case that
S ′ attacks a′. If a is not in S ′, then by the correspondence with S it means that every
evidential sequence of a is attacked by S. If these attacks occur on non–a members, then
a′ must be in S ′. Thus, we are left with a case were all the sequences are attacked on
a only. However, by the completeness of S this means that S must have included the
members of these sequences (excluding a). Thus, S ′ had sufficient means to attack a′

again. Consequently, S ′ is stable in SFES .
Let us now focus on the other way around and show that if S ′ ⊆ A′ is stable in SFES ,

then so is S = S ′ ∩ A in ES. By Theorems 2.23 and 2.24 and the previous analysis,
we know that both S ′ and S are complete. Let us now assume that S is not stable, i.e.
there is an argument a ∈ A \ S which has an evidential sequence unattacked by S. We
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can use previously done analysis to show that no subset of standard arguments of S ′ can
attack a and that a′ cannot be in S ′ (we would not be able to defend it). Thus, we reach a
contradiction with the stability of S ′ and can conclude that S is stable in ES. 2

Theorem 11.8. Let ES = (A,R,E) be a support singular, attack binary and strongly
valid EAS and BFES = (A,R′, S) its associated BAF created with Translation 77. Then
BFES is support acyclic and η ∈ A is the only argument s.t. @a ∈ A, aSη.

Proof. Let E ′ = {(a, b) | ∃X ⊆ A s.t. a ∈ X and (X, b) ∈ E} be the binary version of
E. Due to the fact that ES is support singular, we can that here exists only one support
assignment function for ES from Definition 4.35. Since ES is strongly valid, A can be
ordered into an evidential sequence w.r.t. this function. We can observe that this ordering
will define a topological ordering on A w.r.t. E ′. Thus, (A,E ′) has to be a directed acyclic
graph, and therefore the support subgraph of BFES is directed acyclic. 2

Theorem 11.10. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. If FNES is strongly consistent, then
so is ES. However, it is not the case that if ES is strongly consistent, then so is FNES .
If ES is all–supported and strongly consistent, then FNES is strongly consistent. FNES

might not be in minimal form, even if ES is. If ES is weakly (strongly) valid, then so is
FNES . If ES is weakly and relation valid, then FNES is relation valid.

Proof. Let us focus on strong consistency. Let FNES be strongly consistent and let
N(a) = {b | ∃B ⊆ A, b ∈ B s.t. BNa} and R′(a) = {b | bRa} be the sets of arguments
supporting and attacking an argument a ∈ A in FN . In a similar fashion, we can introduce
the sets E(a) = {b | ∃B ⊆ A, b ∈ B s.t. BEa} and R(a) = {b | ∃B ⊆ A, b ∈ B s.t.
BRa} of arguments supporting and attacking a ∈ A in FNES . It is easy to see that
if a = η, then N(a) = E(a) = R(a) = R′(a) = ∅. If E(a) = ∅ and a 6= η, then
N(a) = {a}; if E(a) 6= ∅ and a 6= η, then E(a) = N(a). Finally, due to the fact
that ES is attack binary, R′(a) = R(a). Consequently, in all cases E(a) ⊆ N(a) and
R′(a) = R(a). This means that if N(a) ∩ R′(a) = ∅, then E(a) ∩ R(a) = ∅. This shows
that if FNES is strongly consistent, then so is ES.

Let us now assume a simple strongly consistent EAS ({η, a}, {({a}, a)}, ∅).
We can observe that a is not supported by evidence. Its corresponding AFN is
({η, a}, {(a, a)}, {({a}, a)}), which is neither consistent nor strongly consistent.

Let us now assume that FNES is a strongly consistent and an all–supported frame-
work. This means that every non–η argument in the framework is supported by a subset
of arguments. Thus, {a | ∃X ⊆ A s.t. a ∈ X,XEa} = {a | ∃X ⊆ A s.t. a ∈ X,XNa}.
Since the collection of arguments connected through the attack relation is also the same in
ES as in FNES , strong consistency of FNES follows.

Let us assume an evidential framework in which argument a is supported by the set
{a, b} in E. The necessary support sets created for a will be {a}, {b} and {a, b}. Thus, the
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new collection of support sets is comparable, even though the old one was not. Therefore,
the produced AFN does not have to be in minimal form, even if the original EAS was.

By using the correspondence between the powerful and evidential sequences (see The-
orem 11.11) it is easy to show that if ES is weakly valid, then so is FNES . If ES is
weakly valid, then we can observe that E(a) = N(a) for any argument a ∈ A. Conse-
quently, if for every supporting set of a in ES we can find an evidential sequence for a
s.t. the elements of this set precede a, then we can do the same with powerful sequences
in FNES . Hence, if ES is weakly and relation valid, then FNES is relation valid. Strong
validity can be easily shown based on the similarity between the support functions from
Definitions 4.30 and 4.35 and the changes the E relation undergoes in order to become N .
2

Theorem 11.11. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. (a0, ..., an) is an evidential sequence
for a on S ⊆ A in ES iff (a0, ..., an) is a powerful sequence for a on S in FNES . S is
self–supporting in ES iff it is coherent FNES .

Proof. Let (η, a0, ..., an), where an = a, be an evidential sequence for a in ES on S ⊆ A.
Then it is also a powerful sequence for a on S in FNES . Since by the definition of an
evidential framework, there is no T ⊆ A s.t. TEη and Translation 78 adds no additional
support relation to η, it holds that there is no T ⊆ A s.t. TNη in FNES . Therefore, the
first two requirements of the powerful sequence are satisfied. By the evidential sequence,
we know that {η}Ea0. Hence, by Translation 78, every set Z ⊆ A s.t. ZNa0 contains η,
and thus a0 satisfies the powerful requirement. Let ai, where 1 ≤ i ≤ n, be an element
of the evidential sequence. We know that for every such ai, there exists a nonempty T ⊆
{η, a0, .., ai−1}s.t. TEai. By Translation 78, for every Z ⊆ A s.t. ZNa0, T ∩ Z 6= ∅,
it holds that for every Z, Z ∩ {η, a0, .., ai−1} 6= ∅. Thus the powerful requirements are
satisfied.

Let now (a0, ..., an), where an = a, be a powerful sequence for a on S ⊆ A in FNES .
Then it is also an evidential sequence for a on S in ES. By Translation 78, it is easy to
see that η is the only argument that requires no support in FNES and thus it is the only
candidate for a0. Thus, the first two requirements of an evidential sequence are satisfied.
Let ai be an arbitrary, nonzero argument. This means that for every Z ⊆ A s.t. ZNai,
Z ∩ {a0, ..., ai−1} 6= ∅. Please note that Translation 78 guarantees the existence of at least
one supporting set Z. Let us assume that ai does not satisfy the evidential requirements,
i.e. ∀T ⊆ A s.t. TEai, T 6⊆ {a0, ..., ai−1}. This means that for every such T , there is
some argument t ∈ T s.t. t /∈ {a0, ..., ai−1}. However, by Translation 78, from such t′s
we can construct a set Z s.t. ZNai. For this set it holds that Z ∩ {a0, ..., ai−1} = ∅, which
breaks the powerful requirement and we reach a contradiction. Therefore, the evidential
conditions are satisfied and (a0, ..., an) is an evidential sequence for a on S in ES.

Based on these results, the correspondence between the self–supporting and coherent
sets of ES and FNES is straightforward. 2

579



Theorem 11.12. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its associated AFN obtained through Translation 78. Let S ⊆ A be a self–supporting
(coherent) set in ES (FNES). An argument a ∈ A is acceptable w.r.t. S in ES iff it is
defended by S in FNES .

Proof. Let a be acceptable w.r.t. a self–supporting set S ⊆ A in ES. We can observe that
as S is self–supporting and e–supports a, S ∪ {a} is also self–supporting in ES. Thus,
by Theorem 11.11, S ∪ {a} is coherent in FNES . Let us focus on the conflict part of
acceptability. Given any set C ⊆ A that carries out a minimal e–supported attack on a, S
support attacks a member of C. Since S is self–supporting, any attack carried out by it will
be e–supported. Please note that although technically we attack only minimal e–supported
attacks on a, it is easy to see that it cannot be the case that there exists an unattacked e–
supported attack on a. Every such attack either contains a minimal one, or is one – either
case, it still remains attacked. By Lemma 2.108, C is self–supporting, and thus coherent
in FNES . Since C attacks a and ES in an attack binary EAS, ∃c ∈ C s.t. {c}Ra. By
Translation 78, it follows that cR′a in FNES . The attack by S against C follows a similar
analysis. Since for every conflict in FNES there is a corresponding one inES, it holds that
for every coherent set C containing an attacker of a, S contains an attacker of an element
in C in FNES . Taking into account the fact that S ∪{a} is coherent, we can conclude that
if a is acceptable w.r.t. S in ES, then it is defended by S in FN .

Let a be defended by a coherent set S ⊆ A in FNES . Since S ∪ {a} is coherent in
FNES , it is also self–supporting in ES. This means that a has an evidential sequence
on S ∪ {a}, and by Theorem 2.99 is e–supported by S. Let now b ∈ A be an argument
s.t. bR′a. Since S defends a, every coherent set C ⊆ A containing b is attacked by S. By
Translation 78, bR′a in FNES iff {b}Ra inES. Similarly, if S attacks C in FNES , then S
attacks C in ES as well. Since every C is coherent, it is also self–supporting by Theorem
11.11. Consequently, it is an e–supported attack against a in ES and as S is assumed to be
self–supporting, the attack it carries out against C is also e–supported. Therefore, S can
respond to every (and thus also minimal) e–supported attack on a. Hence, a is acceptable
w.r.t. S in ES. 2

Theorem 11.13. Let ES = (A,R,E) be an attack binary EAS and FNES = (A,R′, N)
its corresponding AFN obtained through Translation 78. A set S ⊆ A is (strongly)
self–supporting in ES iff it is (strongly) coherent in FNES . S is a σ–extension in ES,
where σ ∈ {conflict–free, admissible, preferred, complete, grounded, stable}, iff it is a
σ–extension in FNES .

Proof. The relation between the coherent and self–supporting sets has already been shown
in Theorem 11.11. It it is easy to see by Translation 78 that a given set is conflict–free in
ES iff it is conflict–free in FNES . Consequently, we can also conclude that a given set is
strongly self–supporting in ES iff it is strongly coherent in FNES .

The correspondence between the admissible (preferred, complete) semantics follows
straightforwardly from Lemma 2.109, Theorems 11.11 and 11.12. Since complete exten-
sions coincide and the grounded extensions are the least w.r.t. set inclusion complete sets
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both in ES and FNES (see Theorems 2.112 and 2.95), the grounded extensions coincide
as well.

What remains is the analysis of the stable semantics. Let S ⊆ A be a stable extension
of ES. Based on the correspondence between the complete extensions of two frameworks
and Theorem 2.112, we can observe that S is complete in FNES . However, assume that it
is not stable. This means there exists an argument a ∈ A \ S that is not in the deactivated
set of S. Consequently, a is not attacked by S in FNES and either requires no support at
all or sufficient support is provided by S. If a requires no support, by Translation 78 it has
to be the case that a = η. However, since S is self–supporting/coherent, η has to be in S
and we reach a contradiction. If a is sufficiently supported by S, then based on the fact that
S is coherent, it is easy to see that we can construct a powerful sequence for a on S ∪{a}.
We can use the relation between the powerful and evidential sequence and Theorem 11.11
in order to show that a is e–supported by S in ES. However, as S is stable in ES, there
is s ∈ S s.t. {s}Ra in ES or every set minimally supporting a is attacked. Consequently,
either sR′a or every coherent set containing a is attacked in FN . If it is the first case, then
a has to be in the deactivated set and we reach a contradiction. If it is the latter, then as
S ∪ {a} is coherent and S does not attack a, it has to be the case that S attacks itself. This
contradicts the conflict–freeness of S. Hence, there cannot be any a ∈ A \ S that is not in
the deactivated set and S is stable in FNES .

Let S ⊆ A be stable in FNES . Based on the previous parts of this proof, it holds
that S is strongly self–supporting in ES. Let us assume it is however not stable. This
means there exists an argument a ∈ A \ S that is e–supported by A that is not attacked
by S and has a set of arguments minimally e–supporting it that is not attacked by S either.
Since a is in the deactivated set of S in FN , then either ∃s ∈ S s.t. sR′a or ∃X ⊆ A s.t.
XNa and S ∩X = ∅. If it is the first case, then obviously {s}Ra in ES and we reach a
contradiction. Thus, let us focus on the case where a is in the deactivated set due to lack
of support. Since a is e–supported by A, it is powerful in A by Theorem 11.11. Lack of
support means that for every powerful sequence, part of the sequence is not in S. Without
the loss of generality, we can assume this sequence is minimal. Let 1 ≤ i ≤ n be the
position of the first argument in the sequence that does not belong to S. Since a0 = η,
it cannot be the case that it does not belong to S. As all the required support for ai is in
S but ai ∈ S+, then it has to be the case that ∃s ∈ S s.t. sR′ai. Thus, {s}Rai as well,
and we reach a contradiction. This minimal powerful sequence for a in FNES gives rise
to a minimal evidential sequence in ES (see proof of Theorem 11.11), from which by
Theorem 2.99 we can obtain a minimal set e–supporting a. Since it is the case that for
any sequence S carries out an attack in FNES , then by Translation 78 it also carries out
an attack in ES and as it is a self–supporting set, the attack is e–supported. Consequently,
we reach a contradiction and S is stable in ES. 2

Theorem 11.14. Let ES = (A,R,E) be an EAS and FNES = (A,R′, N) its associated
AFN obtained through Translation 79. It is not the case that if ES is strongly consistent,
then so is FNES . Moreover, it is not the case that if FNES is strongly consistent, then so
is ES. If ES is all–supported and strongly consistent, then FNES is strongly consistent.
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FNES might not be in minimal form, even if ES is. If ES is weakly (strongly) valid, then
so is FNES . If ES is weakly and relation valid, then FNES is relation valid.

Proof. In order to show that it can happen that ES is strongly consistent but FNES is not,
it suffices to repeat the example from the proof of Theorem 11.10.

We will now show that ES does not have to be strongly consistent even if FNES is.
Consider a simple EAS ({a, b, c, η}, {({a, b}, c)}, {({η}, a), ({η}, b), ({a}, c)}); we can
see it is not strongly consistent, as a participates both in a support for and an attack against
c. The associated AFN is ({a, b, c, η, {a, b}}, {({a, b}, c)}, {({η}, a), ({η}, b), ({a}, c),
({a}, {a, b}), ({b}, {a, b})}) and we can observe it satisfies the consistency requirements.

Let us now assume that FNES is a strongly consistent and an all–supported frame-
work. This means that every non–η argument in the framework is supported by a subset of
arguments. Therefore, we can show that for an argument a ∈ A, E(a) = N(a) (see proof
of Theorem 11.10). Moreover, we can observe that (R′(a) ∩ A) ⊆ R(a). Additionally,
every attack argument is strongly consistent, as there cannot be any argument in A′ attack-
ing it. Similarly, no attack argument is a part of any supporting set for another argument.
All of this combined means that N(a) ∩ R′(a) = ∅ for any argument a ∈ A′. Therefore,
FNES is strongly consistent.

In order to show that FNES does not have to be in minimal form, even if ES is, we
can repeat the example given in the proof of Theorem 11.10.

Please refer to the proof of Theorem 11.15 in order to see that if an argument has
an evidential sequence in ES, then it has an evidential sequence in FNES . Moreover,
since we are dealing with a weakly valid ES, then for every set of arguments B ⊆ A
s.t. there exists a ∈ A,BRa, we can find an e–supported attack T s.t. B ⊆ T and T is
self–supporting. Hence, every attack argument in att(A) will have a powerful sequence in
FNES as well. Thus, if ES is weakly valid, then so is FNES .

IfES is weakly valid, then we can observe thatE(a) = N(a) for any argument a ∈ A.
Consequently, if for every supporting set of a inES we can find an evidential sequence for
a s.t. the elements of this set precede a, then we can do the same with powerful sequences
in FNES . Moreover, for every attacking argument in att(A), every supporting set in N
contains one argument only; we can combine the coherent sets of these arguments into a
single set not containing a given attack argument and at the same time having all of its
supporters. Thus, we can show that if ES is weakly and relation valid, then FNES is
relation valid.

Strong validity can be easily shown based on the similarity between the support func-
tions from Definitions 4.30 and 4.35 and the changes the E relation undergoes in order
to become N . We can observe that for every attack argument, there will exist precisely
one suf(a) set in the sound of Definitions 4.30. Moreover, we can always put attack ar-
guments on the top of the powerful sequences, as they are only on the “receiving” end
of support. Consequently, any EAS support function can be adapted to an AFN support
function meeting the strong validity requirements. Hence, if ES is strongly valid, then so
is FNES . 2
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Theorem 11.15. Let ES = (A,R,E) be an EAS and FNES = (A,R′, N) its corre-
sponding AFN obtained through Translation 79. If S ⊆ A is conflict–free in ES, then
both S and S ′ = S ∪ att(S) are conflict–free in FNES . If S ⊆ A is (strongly) self–
supporting in ES, then S and S ′ = S ∪ att(S) are (strongly) coherent in FNES . If S
is a σ–extension of ES, where σ ∈ {admissible, preferred, complete, grounded, stable},
then S ′ = S ∪ att(S) is a σ–extension of FNES . If S ′ ⊆ A′ is a conflict–free extension
of FNES , then S = S ′ ∩ A might not be conflict–free in ES. If S ′ is coherent in FNES ,
then S = S ′ ∩ A is self–supporting in ES. If S ′ is strongly coherent in FNES , then
S = S ′ ∩ A might not be strongly self–supporting in ES. If S ′ is σ–extension of FNES ,
then S = S ′ ∩ A is a σ–extension of ES.

Proof. Let S ⊆ A be a conflict–free set of ES. Therefore, there are no B ⊆ S, a ∈ S s.t.
BRa. In particular, there are also no arguments c, d ∈ S s.t. {c}Rd. Hence, there are no
c, d ∈ S s.t. cR′d and S is conflict–free in FN . Additionally, there will be no arguments
B, a ∈ S ∪ att(S) s.t. BR′a. Consequently, S ′ = S ∪ att(S) is conflict–free in FNES as
well.

Let us consider an EAS ({a, b, c, η}, {({a, b}, c)}, {({η}, a), ({η}, b), ({η}, c)}) and
its associated AFN ({a, b, c, η, {a, b}}, {({a, b}, c)}, {({η}, a), ({η}, b), ({η}, c),
({a}, {a, b}), ({b}, {a, b})}). We can observe that the set {a, b, c, η} is conflict–free
(and strongly coherent) in the target AFN. Only the set {a, b, c, η, {a, b}} is no longer
conflict–free. However, in the source EAS, {a, b, c, η} is neither conflict–free nor strongly
self–supporting. Thus, not every conflict–free (strongly coherent) extension of FNES is
conflict–free (strongly self–supporting) in ES.

Let us now analyze the powerful and evidential sequences between the two frame-
works. We can use the analysis from the proof of Theorem 11.11 in order to show that if
an argument a ∈ A has an evidential sequence on a set S ⊆ A, then the same sequence is
a powerful sequence for a on S in FNES . Similarly, a powerful sequence for an argument
a ∈ A on S ⊆ A in FNES will be an evidential sequence for this argument on S in ES.
This analysis can be easily adapted to show that if (a0, ..., an) is an evidential sequence for
an argument an ∈ A on S ⊆ A in ES and there exist B ⊆ {a0, ..., an}, a ∈ A s.t. BRa
(i.e. we are dealing with an e–supported attack), then (a0, ..., an, B) will be a powerful
sequence for B ∈ A′ on S ∪ {B} in FNES . In a similar fashion, a powerful sequence for
an argument a ∈ A′ on S ′ ⊆ A′ in FNES , after removing all arguments not in A, remains
an evidential sequence on S ′ ∩A in ES for the last standard argument in the sequence. In
other words, if a ∈ A, then the sequence is for a, and if a ∈ att(A), then the sequence is
for an argument b contained in a.

By using the previous analysis, we can show that if S ⊆ A is self–supporting in
ES, then both S and S ′ = S ∪ att(S) are coherent in FNES . We can refer to the
conflict–freeness proof in order to show that the same holds for strongly self–supporting
and strongly coherent sets.

From the analysis of the sequences it also follows that if S ′ ⊆ A′ is coherent in FNES ,
then S = S ′ ∩ A is self–supporting in ES. Nevertheless, the previously given example
shows this is not the case for strongly coherent and strongly self–supporting sets.
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Let S ⊆ A be an admissible extension of ES and S ′ = S ∪ att(S) the associated set
in FNES . From the previous parts of this proof it follows that S ′ is strongly coherent. Let
us assume it is however not admissible; due to coherence, it can only be the case that there
exist arguments a ∈ S ′, b ∈ A′ s.t. bR′a and a coherent set B ⊆ A′ s.t. b ∈ B and no
argument in B is attacked by S ′. Since arguments in att(S) cannot be directly attacked,
we can conclude that a ∈ S. Moreover, if bR′a, then either bRa or {b}Ra (depends on
whether b ∈ A or b ∈ att(A)). Due to the relation between coherent and self–supporting
sets, we can observe that B will be an e–supported attack on a. Hence, if there is no
c ∈ S ′, d ∈ B s.t. cR′d, then either there is no c ⊆ S, d ∈ B s.t. cRd (or c ∈ S, d ∈ B s.t.
{c}Rd if c ∈ A). Hence, we reach a contradiction with the admissibility of S in ES, and
can conclude that S ′ = S ∪ att(S) is admissible in FNES .

Let S ′ ⊆ A′ be an admissible extension of FNES and S = S ′ ∩ A the associated
set in ES. From the previous parts of this proof it follows that S is self–supporting.
Let us assume it is not conflict–free; this means there exist B ⊆ S, c ∈ S s.t. BRc.
Consequently, there exist B ∈ A′, c ∈ S s.t. BR′c (or bRc if B is of the form B = {b}).
We can observe that all arguments inB possess powerful sequences onA′ in FNES . Since
S ′ is admissible, it has to be the case that it attacks all powerful sequences for B (or b if
B = {b}). However, due to the fact that B ⊆ S and S ′ is coherent (i.e. attack arguments
cannot appear without the standard arguments carrying them out), it holds that B ⊆ S ′.
Since arguments in att(A) cannot be directly attacked, then in order to defend a against
B, S ′ has to attack another argument in S ′. We thus breach the conflict–freeness of S ′

in FNES and reach a contradiction. Consequently, S is conflict–free (and therefore, also
strongly self–supporting) in ES.

Let us now assume that S is not admissible in ES. Since it is already self–supporting,
it can only be the case that there exists a minimal e–supported attack T ⊆ A against
an argument a ∈ S which is in turn not attacked by S. Let T ′ ⊆ T be a subset of T s.t.
T ′Ra.We can observe that T and T ∪att(T ) are coherent sets in FNES (see Lemma 2.108
and previous parts of this proof). Consequently, T ′ (or t, if T ′ = {t}) will have a powerful
sequence on T ∪ att(T ) and it holds that T ′R′a (or tR′a if T ′ = {t}). Hence, S ′ has to
defend a against T ′. Based on the previous analysis and the fact that att(A) arguments
cannot be directly attacked we can observe that if there is no subset of S attacking any
argument in T in ES, then there cannot be any argument in S ′ attacking any argument
in T ∪ att(T ) in FNES . We reach a contradiction with the admissibility of S ′. We can
therefore conclude that S is admissible in ES.

Let S ⊆ A be a complete extension of ES. By the previous parts of this proof,
S ′ = S ∪ att(S) is an admissible extension of FNES . Let us assume it is not complete;
this means there exists an argument a ∈ A′\S ′ that is defended by S ′. We can observe that
if the defended argument is an attack argument, then it has to be the case that S ′ contains
every standard argument contained in the attack one. However, then this attack argument
would have been already included in S ′ and we reach a contradiction. Let us therefore
assume that a is a standard argument. If S ′ defends a, then S ′ ∪{a} is a coherent set. This
means that S ′ has an element in common with every set of arguments supporting a through
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N . Based on the way FNES is constructed, this means that there exists X ⊆ S s.t. XEa,
and as S is self–supporting, it holds that S e–supports a. From the fact that S ′ defends a
it follows that for any argument b ∈ A′ attacking a, S ′ attacks every coherent set B ⊆ A′

containing b. We can use the previous parts of this proof to show that B ∩A carries out an
e–supported attack on a and that if S ′ attacks B, then S attacks B ∩ A. We can therefore
conclude that a is acceptable w.r.t. S, which breaches the completeness of our set in ES.
We reach a contradiction. Hence, S ′ = S ∪ att(S) is complete in FNES .

Let S ′ ⊆ A′ be a complete extension of FNES . Due to the fact that the defense of
attack arguments boils down to coherence, we can observe that if S ′ contains standard
arguments carrying out a group attack in R in ES, then it has to contain the attack argu-
ment related to this conflict. Now, let S = S ′ ∩ A be the admissible extension of FNES

associated with S ′. If it is not complete, then there exists an argument a ∈ A \ S accept-
able w.r.t. S. First of all, this means that S e–supports a, which due to the fact that S is
self–supporting boils down to the existence of a set X ⊆ S s.t. XEa. From this follows
that S ′ has an argument in common with every set of arguments supporting a in N . As S ′

is coherent, it can be therefore shown that S ′ ∪ {a} is coherent as well. Second of all, S
attacks every minimal e–supported attack T ⊆ A against a. Let T ′ ⊆ T be a set s.t. T ′Ra.
We can observe that T ∪ att(T ) is a coherent set in FNES for T ′ (or t if T ′ = {t}) and
that T ′R′a (or tR′a). Let X ⊆ S, y ∈ T be the subset of S and argument in y s.t. XRy.
Based on the completeness of S ′, it has to be the case thatX ∈ S ′ (or x ∈ S ′ ofX = {x}).
This means that if S can attack T , then S ′ can attack both T ∪ att(T ) and T (please note
that arguments in att(A) cannot be attacked in R′). Based on the relation between R and
R′ and the coherent and self–supporting sets in both frameworks we can also show that all
arguments attacking a in R′ that need to be defended from would correspond with attacks
from R that a needs to be defended from as well. We can thus conclude that if a is accept-
able w.r.t. S in ES, then S ′ defends a in FNES . This breaches the completeness of S ′.
We can thus conclude that S has to be complete in ES.

Let S ⊆ A be a complete extension of ES. Let us assume there exists two different
complete extensions S ′, S ′′ ⊆ A′ of FNES s.t. S ′ ∩ A = S ′′ ∩ A = S. It can only be the
case that there exists an attack argument a ∈ att(A) s.t. either a ∈ S ′ \ S ′′ or a ∈ S ′′ \ S ′.
Let us focus on the first case. Since S ′ is complete, it is also self–supporting. Hence, it
has to be the case that the arguments participating in a are in S ′, i.e. not only a ∈ S ′,
but a ⊆ S ′ as well. Consequently, a ⊆ S and a ⊆ S ′′. Due to the fact that no argument
attacks a, it has to be the case that a ∈ S ′′; otherwise we breach the completeness of S ′′.
Therefore, S ′ ⊆ S ′′. In a similar fashion we can show that S ′′ ⊆ S ′. Thus, S ′ = S ′′ and
the relation between the complete extensions of ES and FNES is one–to–one.

We can use the relation between the complete extensions of two frameworks and Theo-
rems 2.95 and 2.112 in order to show the correspondence between the grounded (preferred)
extensions of ES and FNES .

Let S ⊆ A be a stable extension of ES. This means that S ′ = S ∪ att(S) is a
complete (and therefore, conflict–free) extension of FNES . Let us assume it is not stable;
by Lemma 2.94 this means there exists an argument b ∈ A′ and a coherent set B ⊆ A′
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for b s.t. no argument in B is attacked by S ′. If b ∈ A is a standard argument, then we
can show it has an unattacked evidential sequence on A, which breaches the stability of
S in ES. If b ∈ att(A), then due to completeness of S ′ it cannot be the case that all the
arguments represented by b are in S ′ and therefore, in S. Based on the completeness of
S, this means that all the self–supporting sets for at least one argument in b are attacked
by S. This would however mean that S ′ attacks all coherent sets for b as well; we reach a
contradiction. Therefore, S ′ is stable in FNES .

Let S ′ ⊆ A be a stable extension of FNES and S = S ′ ∩ A the associated complete
extension of ES. If S is not complete, then there exists an argument a ∈ A and an
evidential sequence not attacked by S. Using the previous analysis we can thus show
that there exists a powerful sequence (coherent set) for a in FNES and that this sequence
cannot be attacked by S ′. We reach a contradiction with the stability of S ′. Therefore, S
has to be stable in ES. 2

Theorem 11.16. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Then DES is a BADF. If ES is
all–supported, then DES is cleansed. If ES is all–supported and minimal, then DES is
redundancy–free. If ES is weakly valid, then DES is weakly valid. If it is minimal, all–
supported and relation valid, then DES is relation valid. If ES is strongly valid, then DES

is an AADF+. If it is in addition minimal, then DES is strongly valid.

Proof. Throughout the proof we will use the following auxiliary notions. Let E(a) = {b |
∃B ⊆ A, b ∈ B s.t. BEa} and R(a) = {b | ∃B ⊆ A, b ∈ B s.t. BRa} denote the sets
of arguments connected to an argument a either through support or attack. Since ES is
strongly consistent, we can observe that E(a) ∩R(a) = ∅ for every argument a ∈ A.

Let us assume that DES is not a BADF. This means there exists a link (a, b) ∈ L
that is neither supporting nor attacking. Consequently, there exist a set X ⊆ par(b) s.t.
Cb(X) = in and Cb(X ∪ {a}) = out and a set X ′ ⊆ par(b) s.t. Cb(X

′) = out and
Cb(X

′ ∪ {a}) = in. We can also observe that it cannot be the case that b = η, as η cannot
be attacked or supported by any argument.

Let us now assume that originally, there existed a supporting set for b in E in ES,
i.e. E(b) 6= ∅. Therefore, based on Translation 80, we can observe that if Cb(X) = in,
then there exists B ⊆ X s.t. BEb and there is no subset F ⊆ X s.t. FRb. Thus, if
Cb(X ∪ {a}) = out, then it can only be the case that there now is a set F ′ ⊆ X ∪ {a}
s.t. F ′Rb and a ∈ F ′. By strong consistency, this means that a /∈ E(b). Hence, it cannot
be the case that we have a set X ′ s.t. Cb(X ′) = out and Cb(X ′ ∪ {a}) = in. We reach a
contradiction. Consequently, the (a, b) link has to be supporting or attacking.

Let us now assume that there was no support set for b in E in ES, i.e. E(b) = ∅. This
means that a self–supporting link is added for b in DES . We now have two options; either
there exists a set X ⊆ par(b) s.t. Cb(X) = in or not (i.e. b also attacked itself and we
have created a falsum condition). If it is the first case, then we can observe that b ∈ X and
there is no subset F ⊆ X s.t. FRb. Hence, if Cb(X) = in and Cb(X ∪ {a}) = out, then
a 6= b and a ∈ R(b). Since E(b) = ∅, it cannot be the case that there is a set X ′ ⊆ par(b)
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s.t. Cb(X ′) = out and Cb(X ′ ∪ {a}) = in. Consequently, it cannot be the case that the
(a, b) link is neither attacking nor supporting. If there is no set evaluating Cb to in, then all
links targeted at b will be considered both supporting and attacking (i.e. redundant). We
can therefore conclude that DES is a BADF.

Let us assume that ES is all–supported; this means that for every argument a ∈ A \
{η}, E(a) 6= ∅. Since it is also strongly consistent, then for every argument a ∈ A,
E(a) ∩ R(a) = ∅. Therefore, by the construction of acceptance conditions for arguments
s.t. E(a) 6= ∅, we can observe that Ca(E(a)) = in. Moreover, the condition of η is always
satisfied. Hence, DES is cleansed.

Let us now focus on redundancy–freeness. We can observe that if ES is not all–
supported, then it can happen that a condition of a given argument cannot be met. In
this case, every link coming to this argument would be considered redundant in DES ,
independently of whether ES is itself in minimal form or not. Consequently, we need
to assume that ES is both all–supported and minimal in order to ensure redundancy–
freeness of DES . Let us now assume that DES is not redundancy–free. This means there
exists a link (a, b) ∈ L that is both supporting and attacking. In other words, for any
set X ⊆ par(b), Cb(X) = Cb(X ∪ {a}) (or equivalently, Cb(X) = Cb(X \ {a})) for
every X ⊆ par(b). We can observe that b 6= η, since the evidence argument always has a
condition > in DES and is never the target of an attack or support in ES.

Let now a be an argument s.t. ∃B ⊆ A, a ∈ B and BEb. Due to strong consistency
assumption, we can observe that B ∩ R(b) = ∅ and Cb(B) = in. If the (a, b) link is
redundant in DES , then it would have to be the case that Cb(B \ {a}) = in. However, this
would mean that there existsB′ ⊆ B\{a} s.t. B′Eb, which clearly violates the minimality
of ES.

Let a be an argument s.t. ∃C ⊆ A, a ∈ C and CRb. Let B ⊆ A be a set s.t. BEb. Due
to the fact that ES is all–supported, such a set is guaranteed to exist. Moreover, from the
strong consistency ofES we can observe that C∩B = ∅, and based on the construction of
DES , it holds that Cb(B) = in and Cb(B ∪ C) = out. If the (a, b) ∈ A link is redundant,
then it means that Cb(B ∪ (C \ {a})) = out. However, this means there has to exist
C ′ ⊆ B ∪ (C \ {a}) s.t. C ′Rb. Moreover, as ES is strongly consistent, this means that
C ′ ∩B = ∅ and thus C ′ ⊆ C \ {a}. This clearly violates the minimality of ES.

Since we are dealing with an all–supported EAS, the above analysis accounts for all
links in DES . We can therefore conclude that if ES is minimal and all–supported, then
DES is redundancy–free.

In order to show that weak ifES is weakly valid, then so isDES , we can use (the proof
of) Theorem 11.17.

Let ES be all–supported, minimal and relation valid. By the previous parts of this
proof, we know that DES is redundancy–free. If it is not relation valid, then it means there
is an argument a ∈ A and a minimal decisively in interpretation va for it s.t. no pd–function
with which we can produce an acyclic pd–evaluation for a assigns va to a. In other words,
there is no pd–acyclic subset of A \ {a} s.t. vta is contained in this set. Clearly, we can
exclude η from this analysis, as the minimal decisively in interpretation for it is empty and
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η forms its own evaluation ((η), ∅) easily. Based on the proof of Theorem 11.17, we can
show that vta corresponds to a subset of A supporting a through E, and as va cannot be
used in an acyclic pd–evaluation, then there is no self–supporting set B ⊆ A \ {a} s.t.
vta ⊆ B. This means that ES cannot be relation valid and we reach a contradiction.

Let now ES be strongly valid. Assume DES is not an AADF+. This means there
exists a pd–function and a standard pd–evaluation (F,B) created with it that we cannot
transform into an acyclic one. We can observe that given an argument a and the decisively
in interpretation va assigned to it by the pd–function, then unless a = η, vta is nonempty
and corresponds to a set supporting a through E. Thus, from our pd–function we can
derive a function meeting the construction requirements from Definition 4.35. Since we
cannot order a pd–evaluation based on this pd–function into an acyclic one, it can be shown
that we cannot create an evidential sequence with the associated function in ES. Thus, we
reach a contradiction with strong validity of ES. We can conclude that DES has to be an
AADF+.

Let now ES be minimal and strongly valid. By Lemma 4.73, ES is all–supported.
From the previous parts of our proof it follows that our DES is cleansed, redundancy–free,
and an AADF+. Consequently, by Theorem 4.43, DES is strongly valid. 2

Theorem 11.17. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be a set of argu-
ments. For a given evidential sequence on S for an argument s ∈ S we can construct a
corresponding acyclic pd–evaluation and vice versa. S is self–supporting in ES iff it is
pd–acyclic in DES .

Proof. Let S ⊆ A be a set of arguments, s ∈ S and (a0, ..., an) an evidential sequence for
s on S (i.e. {a0, ..., an} ⊆ S). We will show that this sequence satisfies the pd–sequence
requirements.

First of all, the an = s condition is satisfied. Since a0 = η, it has a > acceptance con-
dition in DES and its minimal decisively in interpretation is simply empty. This naturally
satisfies the pd–sequence conditions for the starting argument. Let us now focus on the
last requirement. In the evidential sequence we have that for every nonzero ai, there exists
a nonempty B ⊆ {a0, ..., ai−1} s.t. BEai. Thus, our translation does not introduce addi-
tional links for ai. We can naturally choose such B which is minimal w.r.t set inclusion
out of all supporting sets contained in {a0, ..., ai−1}. Since ai is consistent, then no subset
of B attacks ai. Therefore, Cai(B) = in, and we can construct a (minimal) decisively in
interpretation vi for ai s.t. vti = B. Let X = {X1, X2, ..., Xm} be the collection of all and
only sets attacking ai inR. We can observe that Cai(B∪Xi) = out for any of theXi ∈ X .
Moreover, due to strong consistency of ES, B ∩Xi = ∅. Consequently, in order for vi to
be decisively in for ai, it needs to map to f at least one argument in every Xi and none of
these elements will come from B 33. We can easily choose a minimal f assignment that
still satisfies this requirement. We now have a description of a possible minimal decisively

33In case of doubt, please consult the proof of SETAF–ADF Translation 31.
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in interpretation for ai. It is easy to see that for every (non–zero) ai, vti ⊆ {a0, ..., ai−1}.
Consequently, ((a0, ..., an),

⋃n
0 v

f
i ) is an acyclic pd–evaluation for s on S corresponding to

the evidential sequence (a0, ..., an). Please note that we can in fact produce more than just
one evaluation. There can be several minimal sets that we can use for constructing vfi and
even though the sequence part of an evaluation will correspond to the evidential one, the
blocking sets can be different. Consequently, we obtain a number of evaluation that differ
only by the blocking set.

Let S ⊆ A be a set of arguments, s ∈ S and ((a0, ..., an), B) an acyclic pd–evaluation
for s on S. We will show that the sequence part satisfies the evidential conditions. Again,
the an = s condition is easily met. Since by Translation 80 the only argument that has a
minimal decisively in interpretation with an empty t part is η, then it has to be the case
that a0 = η and thus another condition is met.

Now, we know that for every nonzero ai and its minimal decisively in interpretation
vi, vti ⊆ {a0, ..., ai−1}. Since ai 6= η, we can observe from Translation 80 that vti 6= ∅.
By the construction of the arguments we know that ∃Z ⊆ A s.t. ZEai (it is easy to
see that arguments to which a self–support link was added cannot participate in acyclic
evaluations). Moreover, we can find such a Z for which Z = vti . Consequently, Z ⊆
{a0, ..., ai−1} and the final evidential requirement is satisfied. Therefore, the pd–sequence
of the evaluation produces an evidential sequence. 2

Theorem 11.18. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. A set of arguments S ⊆ A is
strongly self–supporting in ES iff it is pd–acyclic conflict–free in DES .

Proof. Let us assume that S is self–supporting conflict–free in ES, but not pd–acyclic
conflict–free in DES . By Theorem 11.17 we know that S is at least pd–acyclic. What
remains to be shown is that all arguments have satisfied accepted conditions and possess
unblocked evaluations on S. We can observe that η always has a satisfied acceptance
condition. If another argument e ∈ S has an unsatisfied acceptance condition (i.e. Ce(E ∩
par(e)) = out), then by Translation 80 it means that ∃S ′ ⊆ S s.t. SRe or @Z ⊆ S
s.t. ZEe. The first one breaches the conflict–freeness in ES, the other self–support. Let
us now show that every argument e ∈ S has an unblocked acyclic pd–evaluation on S.
By Theorem 11.17, for every evidential sequence of e on S we can create at least one
corresponding acyclic evaluation. As seen in the proof, we can in fact produce a number
of evaluations, differing only by the choice of the blocking set. Since S is conflict–free in
ES, it means that for every set Xi attacking e, there is an argument x ∈ Xi s.t. x /∈ S. By
collecting such x′s for all attacking sets of all arguments in the sequence we can construct
a blocking set of the evaluation for which it is clearly not the case that any of its elements
is in S. In this way we obtain an unblocked acyclic evaluation for e on S. We can thus
conclude that S is pd–acyclic conflict–free in DES .

Let us now assume that S is pd–acyclic conflict–free, but not self–supporting conflict–
free. By Theorem 11.17, S is at least self–supporting. If S is not conflict–free in ES, it
means that ∃S ′ ⊆ S s.t. SRy. However, by Translation 80, it would mean that Cy(S ∩
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par(y)) = out. Consequently, S could not have been conflict–free in DES and we reach a
contradiction. 2

Lemma 11.19. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be self–supporting
conflict–free in ES and thus pd–acyclic conflict–free in DES . S attacks a ∈ A or every
set of arguments e–supporting a in ES iff the acyclic range vaS of S blocks every acyclic
pd–evaluation of a in DES .

Proof. It is easy to see that saying that S attacks a or every set of arguments minimally
supporting it is equivalent to saying that every evidential sequence of a on A is attacked
by S. By Theorem 11.17 we know that every evidential sequence has (at least one) corre-
sponding acyclic pd–evaluation. From the proof we see that the blocking set B of every
evaluation ((a0, ..., an, B) is B =

⋃n
i=0Ai, where the Ai set for an argument ai is a min-

imal set s.t. ∀S ′ ⊆ AS ′Rai, S ′ ∩ Ai 6= ∅. It is easy to see that if a given evidential
sequence for a is attacked by S, then the blocking sets of all of the corresponding acyclic
pd–evaluations have at least one element in common with S. Finally, we can observe that
if an argument does not possess an evidential sequence in ES, then it does not have an
acyclic pd–evaluation in DES and is automatically contained in the acyclic discarded set
of S. Hence, if S attacks a or every set of arguments e–supporting a in ES, then the
acyclic range vaS of S blocks all of its acyclic pd–evaluations.

Let us now assume that every acyclic pd–evaluation of a is blocked by vaS in DES ,
but there exists an evidential sequence of a unattacked by S in ES. For this sequence we
can construct a number of corresponding acyclic pd–evaluations, and since the sequence is
not attacked, then it cannot be the case that these evaluations are blocked via the blocking
set. Consequently, it has to be the case the sequence part of these evaluations (which is
exactly the evidential sequence) contains an argument falsified by vaS . Let (a0, ..., an) be
the sequence part of the evaluations and ai the first element falsified by vaS . Since by the
construction of DES , a0 = η and Cη = >, it is easy to see that i 6= 0. Let us move to
i = 1 and let v1 be the decisively in interpretation of a1 that was used in constructing the
sequence. We know that vt1 = {a0}, vaS(a0) 6= f and that vf1 ∩ S = ∅. This means that a1
could not have been decisively out w.r.t. vaS , and thus by Proposition 2.150 could not have
been falsified by vaS . Hence, i 6= 1. We can proceed with analyzing i = 2 and again see
that v2 could not have been falsified by vaS . We can continue in the same manner until we
reach a (i.e. i = n) and conclude that it could have not had all of its acyclic pd–evaluations
blocked. We reach a contradiction. Hence if every acyclic pd–evaluation of awas blocked,
then every evidential sequence of a had to be attacked. 2

Lemma 11.20. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. Let S ⊆ A be self–supporting
conflict–free in ES and thus pd–acyclic conflict–free in DES . An argument a ∈ A is
acceptable w.r.t. S in ES iff it is decisively in w.r.t. vaS in DES .
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Proof. Let us assume that a is acceptable w.r.t. S in ES, but is not decisively in w.r.t. vaS
in DES . This means there exists at least one completion v′ of the range interpretation s.t.
Ca(v

′t ∩ par(a)) = out. Let S ′ = v′t. According to Translation 80, the condition of a
is not satisfied if ∃X ⊆ S ′ s.t. XRa or @Z ⊆ S ′ s.t. ZEa. If it is the first case, then no
member of X was falsified in v, which means that every one of them possessed at least
one unblocked acyclic pd–evaluation. Hence, by Lemma 11.19 S could not have attacked
any member of X nor any set e–supporting it. Thus, a could not have been acceptable
w.r.t. S in ES. Let us therefore assume that it is the case that @Z ⊆ S ′ s.t. ZEa. Since
there is no such subset of S ′, then there cannot be any supporting subset of S either. Thus,
S could not have supported, let alone e–supported, a. We reach a contradiction with our
assumptions again. Hence, if an argument is acceptable w.r.t. S inES, then it is decisively
in w.r.t. vaS in DES .

Let us now assume that a is decisively in w.r.t. vaS in DES , but is not acceptable
w.r.t. S in ES. This means that a is either not e–supported by S or that there exists
some e–supported attack T against a which is in turn not e–support attacked by S. Since
S is self–supporting, every attack carried out by it is e–supported and and S e–supports
a iff it supports a through E. This means we can simplify the acceptability conditions.
Let us first assume that there exists some e–supported attack T not attacked by S. By
the definition of e–supported attack and Lemma 11.19 this means that no member of T
has every acyclic pd–evaluation blocked. Hence, no argument in T is falsified by vaS .
Consequently, there exists a completion v′ of vaS s.t. T ⊆ v′t, which by Translation 80
means that Ca(v′t ∩ par(a)) = out. Therefore, a could not have been decisively in w.r.t.
vaS and we reach a contradiction. Let us thus assume that a is not supported by S. However,
looking at Translation 80 brings us to a conclusion that Ca(S ∩ par(a)) = out and again,
a could not have been decisively in. We reach a contradiction. Hence, if a is decisively in
w.r.t. vaS in DES , then it is acceptable w.r.t. S in ES. 2

Theorem 11.21. Let ES = (A,R,E) be a strongly consistent EAS and DES = (A,L,C)
its corresponding ADF obtained through Translation 80. A set of arguments S ⊆ A is a σ–
extension of ES, where σ ∈ {admissible, preferred, complete} iff it is an aa–σ–extension
of DES . S is stable in ES iff it is stable in DES . S is grounded in ES iff it is acyclic
grounded in DES .

Proof. Let S be an admissible extension in ES. By Theorems 11.18 and Lemma 11.20 we
know that it is pd–acyclic conflict–free in DES and that all arguments in S are decisively
in w.r.t. vaS . By the correspondence between the blocking sets and attackers shown in
the proofs of the theorems and of Theorem 11.17, the members of the blocking sets are
naturally falsified in the range interpretation. Consequently, all aa–admissible criterions
are satisfied. The other way around also follows straightforwardly from these theorems
and lemma.

We now know that the admissible extensions of ES and DES coincide. Thus, the
maximal w.r.t. set inclusion admissible sets are the same, and S is preferred in ES iff it is
aa–preferred in DES .
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The completeness follows straightforwardly from admissibility and Lemma 11.20. We
can use Theorems 2.112 and 2.158 in order to show that E is grounded in ES iff it is
acyclic grounded in DES .

What remains to be shown is the correspondence of stable semantics. Let S be stable
in ES. By Theorem 11.18 we know that S is at least pd–acyclic conflict–free in DES . If
an argument a /∈ S is not e–supported by A, then it has no evidential sequence and thus
no acyclic pd–evaluation by Theorem 11.17. Consequently, it will be falsified in vaS . If
a is e–supported by A, then by the stability condition in ES and Lemma 11.19, all of its
acyclic pd–evaluations are blocked by vaS . Hence, a is again falsified in vaS . By Proposition
2.150 we know that all elements falsified by vaS are decisively out w.r.t. vaS , and thus their
acceptance conditions w.r.t. S are simply out. Consequently, S satisfies the model criterion
and we can conclude that it is stable in DES .

Let now S be a stable extension of DES . Since by definition it is pd–acyclic conflict–
free in DES , then by Theorem 11.18 it is self–supporting conflict–free in ES. From the
fact that S is a model and from Lemma 2.159 it follows that Sa+ = A \ S. Consequently,
every argument a /∈ S is falsified in the acyclic range, which means all of its acyclic
pd–evaluations are blocked. By Lemma 11.19 this means that either a or every set of
arguments e–supporting a is attacked by S. Consequently, S is a stable extension of ES.
2

15.10 Translating ADFs: Proof Appendix

Theorem 12.1. Let D = (A,C) be an ADF and FD
AA its corresponding AF ob-

tained from Translation 82. If S ⊆ A is a pd–acyclic conflict–free (aa–admissible,
aa–complete, aa–preferred, stable, acyclic grounded) extension of D, then there ex-
ists a conflict–free (admissible, complete, preferred, stable, grounded) extension S ′ =
{(F1, B1), ..., (Fn, Bn)} ⊆ A′ of FD

AA s.t. S =
⋃n
i=1 Fi. If S ′ = {(F1, B1), ..., (Fn, Bn)} ⊆

A′ is a conflict–free (admissible, complete, preferred, stable, grounded) extension of FD
AA,

then S =
⋃n
i=1 Fi is pd–acyclic conflict–free (aa–admissible, aa–complete, aa–preferred,

stable, acyclic grounded) extension of D.

Proof. We will use V to denote the set of all arguments that are pd–acyclic in A in D. Let
(E,B) be an arbitrary argument in A′ in FD

AA. We can observe that by the nature of the
evaluations, if E ∩ B = ∅, then ∀e ∈ E,Ce(par(e) ∩ E) = in and every argument e ∈ E
has an unblocked acyclic pd–evaluation on E.

Let S = {(E1, B1), ..., (En, Bn)} be conflict–free in FD
AA and T =

⋃n
i=1Ei its cor-

responding set of arguments in D. First of all, we can observe the positive part of the
interpretation with which an argument a ∈ Ei entered the evaluation (Ei, Bi) is obviously
in T . By conflict–freeness of S,

⋃n
i=1Ei∩

⋃n
i=1Bi = ∅. Consequently, the false part of the

interpretation of a is not in T . From this follows that ∀e ∈ T, Ce(par(e)∩ T ) = in. Con-
sequently, T is conflict–free in D and every acyclic pd–evaluation represented by a given
(Ei, Bi) is unblocked in T . We can conclude that

⋃n
i=1Ei is pd–acyclic conflict–free in

D.
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Let now S ′ ⊆ A be pd–acyclic conflict–free in D. Every argument in S ′ has an
unblocked acyclic pd–evaluation on S ′, and without the loss of generality we can focus on
the minimal ones. Thus, for every argument s ∈ S ′ we can choose an argument in A′ in
FD
AA corresponding to this evaluation, and since they are unblocked it follows that the set

of the AF arguments is conflict–free in FD
AA.

Let S = {(E1, B1), ..., (En, Bn)} be conflict–free in FD
AA and T =

⋃n
i=1Ei the cor-

responding pd–acyclic conflict–free extension in D. We would like to show the relation
between the discarded sets of S and T in their respective frameworks. Let S+ ⊆ A′ be
the set of arguments attacked by S in FD

AA and XS = {a ∈ A | ∀(F, V ) ∈ A′ s.t. a ∈ F ,
(F, V ) ∈ S+} be the set of those arguments in D s.t. all of the acyclic pd–evaluations in
which they participate are in the discarded set of S+34. We will show that XS corresponds
to T a+. First of all, if an argument a ∈ A is in XS , then all of the AF arguments in A′

that contain a in the pd–sequence are attacked by S. This means that for every (F, V )
containing a,

⋃n
i=1Ei ∩ V 6= ∅. From this follows that every acyclic pd–evaluation of a

is blocked through the blocking set by the members of T . Therefore, every acyclic pd–
evaluation of this argument is blocked by vaT and thus the argument is in T a+. The fact
that every argument that is in T a+ is also in XS follows easily from Lemma 2.128 and the
construction of AF arguments.

Let S = {(E1, B1), ..., (En, Bn)} be admissible in FD
AA and T =

⋃n
i=1Ei its corre-

sponding set of arguments in D. From the previous part of this proof we know that T is
pd–acyclic conflict–free. Let us now assume that even though S is admissible in FD

AA, T
is not aa–admissible in D. This means that there is an argument a ∈ T that has no acyclic
pd–evaluation on T for which the blocking would be completely contained in T a+. This
also implies that all acyclic pd–evaluations of a have a non–empty blocking set and at least
one of the arguments in every blocking set has an acyclic pd–evaluation on A (this comes
from the fact that arguments not possessing at least one acyclic pd–evaluation are always
in T a+). Consequently, the evaluations of these argument appear as arguments in FD

AA and
it holds that for any argument (F, V ) ∈ S s.t. a ∈ F , there exists c ∈ V and (F ′, V ′) ∈ A′
s.t. c ∈ F ′. Moreover, by the relation between the discarded sets in both frameworks, it is
easy to see that we can always find such (F ′, V ′) that is not attacked by S. However, this
means that no AF argument in S that brought a to T is properly defended by S. Thus, we
reach a contradiction and conclude that if S is admissible in FD

AA, then T is aa–admissible
in D.

Let now S ′ ⊆ A be aa–admissible in D. This means that every argument in S ′ has at
least one acyclic pd–evaluation on S ′ s.t. its blocking set is falsified by the acyclic range
interpretation vaS′ . By collecting all such evaluations of all arguments in S ′ and repeating
the approach like in pd–acyclic conflict–free extensions of D, we can easily construct a
set V ⊆ A′ which is at least conflict–free in FD

AA. Let us assume V is not admissible in
FD
AA, i.e. there exists an argument F ∈ A′ s.t. F attacks an argument in V and it is not

attacked by any element in V . Clearly, F is not in V +, and by the discarded set analysis
in the previous parts of this proof, none of the arguments in the pd–sequence of F can be

34Please observe it means that an ADF argument possessing no acyclic pd–evaluation at all is also in XS
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falsified by vaS′ . Since the pd–sequence of F contains a member of the blocking set of an
evaluation of some argument s ∈ S ′ and this member is not falsified by the range, we reach
a contradiction with the construction of the AF extension. Thus, V has to be admissible in
FD
AA.

Let S = {(E1, B1), ..., (En, Bn)} be complete in FD
AA. From the previous part of the

proof we can observe that T =
⋃n
i=1Ei is aa–admissible in D. Let us assume it is not

aa–complete. This means there exists an argument a /∈ T which is decisively in w.r.t. vaT .
We can observe that T can be represented by a single acyclic pd–evaluation containing
all arguments in T in its pd–sequence and with a blocking set in T a+. Thus, by using a
decisively in interpretation for a of which vaT is a completion, we can extend this evaluation
for T in order to create an evaluation for a. It has a blocking set contained in T a+ and will
appear as an argument in FD

AA. Therefore, from the analysis of the discarded sets we are
able to observe that this evaluation has to be defended by S, and as it is not in S (otherwise,
a would appear in T ), we reach a contradiction with the completeness of S. Hence, T is
aa–complete in D.

Let now S ′ ⊆ A be aa–complete in D and V ⊆ A′ its corresponding set in FD
AA

constructed in the same manner as in the admissible case. We know that V is admissible
in FD

AA. Let us now assume it is not complete, i.e. there exists an evaluation argument
F ∈ A′ in FD

AA for some argument a ∈ A in D that is defended by V , but not contained in
V . We will analyze two cases; one where the set corresponding to V ∪ {F} in D is equal
to S ′ and one where it is not.

Let us focus on the first case, i.e. where all arguments in the pd–sequence of F are
contained in S ′. By the construction of V this means that this particular evaluation for a did
not satisfy the admissibility criterion, i.e. its blocking set was not completely falsified by
the range. This means there is some argument b ∈ A that is not falsified by the range and
which is in the blocking set of F . Since it is not falsified, it has an acyclic pd–evaluation
which is not blocked by the range interpretation. From this follows that there is an AF
argument corresponding to this evaluation that is not attacked by V . Thus, F could not
have been defended by V and we reach a contradiction.

Let us thus assume the latter case and that the ADF set corresponding to V ∪{F} is not
equal to S ′. This means that there is at least one argument b in the pd–sequence of F which
is not contained in S ′. Assume that b is the first such argument in the pd–sequence and let
vb be the decisively in interpretation with which it entered F . By aa–completeness of S ′

this means that b is not decisively in w.r.t. vaS′ . Moreover, due to the construction of the
sequence and the fact that b is the first argument in the sequence not contained in S ′, it has
to be the case that vtb ⊆ S ′ but vfb contains an argument that is not in the acyclic discarded
set of S ′. If this member is S ′ itself, then it is easy to see that V attacked F and thus could
not have defended it. If this member is not in S ′, then we can repeat previous parts of this
analysis and show that V could not have defended F again. We reach a contradiction and
thus V is complete in FD

AA.
We can observe that there is a one–to–one relation between the complete and aa–

complete extensions of D and FD
AA. This comes from the fact that if we had two different
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complete extension S1 and S2 in FD
AA corresponding to the same D one, their discarded

sets would have to be the same and thus defending the same arguments. Consequently, as
we are dealing with complete extensions, every argument in S1 has to be in S2 and the vice
versa, thus showing that S1 = S2.

Additionally, it also easy to see that if two aa–complete extensions T1 and T2 of D are
s.t. T1 ⊆ T2, then their corresponding complete extensions S1 and S2 of FD

AA are also s.t.
S1 ⊆ S2. Thus, by the one–to–one relation and Theorems 2.10 and 2.158 we can show the
correspondence between the preferred and aa–preferred extensions and the grounded and
acyclic grounded extensions.

Finally, we can focus on the stable semantics. Let S = {(E1, B1), ..., (En, Bn)} be
stable in FD

AA. By the previous parts of this proof, its corresponding set T =
⋃n
i=1Ei is

pd–acyclic conflict–free inD. What remains to be shown is that it is also a model. Assume
it is not the case, i.e. there exists an argument a ∈ A \ T s.t. Ca(T ∩ par(a)) = in. Since
by Proposition 2.150 every argument in the acyclic range interpretation of T is decisively
out, it cannot be the case that a is falsified by the range. From this and the construction of
the range it also follows that a has at least one acyclic pd–evaluation that is not blocked
by vaT . We can thus extract a minimal evaluation for a not blocked by the range. It is easy
to see that this evaluation will appear as an argument in A′ in FD

AA and that it will not be
attacked by S. Consequently, S could not have been stable in the first place and we reach
a contradiction. Thus, T is in fact a model and as it is also pd–acyclic conflict–free, it is
stable in D.

Let now S ′ ⊆ A be a stable extension of D and V ⊆ A′ its corresponding set in FD
AA

created using the admissibility construction. From the previous parts of this proof it holds
that V conflict–free. What remains to be shown is that V + = A′ \ V . Assume it is not
the case and that there exists an evaluation argument F ∈ A′ for an ADF argument a ∈ A
which is not in V +. Let first consider the case where a /∈ S ′. Since F is not in V +, a is
not in S ′a+ as well and thus S ′ could not have been stable in D by Lemma 2.139. Let us
now assume that a ∈ S ′. By the construction of V , since F /∈ V , then it must be the case
that the blocking set of F is not fully falsified by vaS′ . If any of the members of the set
was in S ′, then V would have attacked F and we reach a contradiction. Thus, we have at
least one argument that is neither in S ′ nor in S ′a+. However, this again by Lemma 2.139
means that S ′ could not have been stable in D. We reach a contradiction. Thus, if S ′ is
stable in D, then V is stable in FD

AA. 2

Theorem 12.2. Let D = (A,C) be an ADF and FD
AC its corresponding AF obtained from

Translation 83. If S ⊆ A is a pd–acyclic conflict–free (ac–admissible, ac–complete, ac–
preferred, grounded) extension of D, then there exists a conflict–free (admissible, com-
plete, preferred, grounded) extension S ′ = {(E1, B1), ..., (En, Bn)} ⊆ A′ of FD

AC s.t.
S =

⋃n
i=1Ei. If S ′ = {(E1, B1), ..., (En, Bn)} ⊆ A′ is a conflict–free (admissible, com-

plete, preferred, grounded) extension of FD
AC , then S =

⋃n
i=1Ei is pd–acyclic conflict–free

(ac–admissible, ac–complete, ac–preferred, grounded) extension of D.

Proof. Please note that if an argument (E,B) ∈ A′ is not self–attacking, then it is an
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acyclic pd–evaluation for some argument a ∈ A. The inverse does not hold, as evaluations
can be self–blocking.

Let S = {(E1, B1), ..., (En, Bn)} be conflict–free in FD
AC and T =

⋃n
i=1Ei its cor-

responding set of arguments in D. By the previous comment we can observe that every
pd–evaluation argument in S is acyclic. Moreover, due to conflict–freeness of S, we can
observe that for all i, j, Ei ∩Bj = ∅. Consequently, every argument in T has an unlocked
acyclic pd–evaluation on T and thus the set is pd–acyclic conflict–free in D.

Let now S ′ ⊆ A be pd–acyclic conflict–free in D. Every argument s ∈ S ′ has an
unblocked acyclic pd–evaluation, and without the loss of generality we can take a minimal
one. Thus, for every argument s ∈ S ′ we can choose an AF argument corresponding to
this evaluation, and since the evaluation is unblocked and acyclic then it follows that the
set V ⊆ A′ consisting of them is conflict–free.

Let now S = {(E1, B1), ..., (En, Bn)} be conflict–free in FD
AC and let T =

⋃n
i=1Ei be

its corresponding pd–acyclic conflict–free set of D. We would like to show the relation
between the discarded sets of S and T . Let S+ be the set of arguments in A′ attacked by
S in FD

AC and XS = {a ∈ A | ∀(F, V ) ∈ A′, a ∈ F, (F, V ) ∈ S+} the set of D arguments
for which all evaluation arguments are in S+. We will show that XS corresponds to the
set T+. First of all, if an argument a ∈ A is in XS , then all of the evaluation arguments
in A′ that contain it in the pd–sequence/pd–set are attacked by S. This means that for
every (F, V ) containing a,

⋃n
i=1Ei ∩ V 6= ∅. From this follows that every evaluation of

this argument is blocked through the blocking set by the members of T . Thus, by Lemma
2.125, every such argument is in T+. Let us now assume that an argument a is in T+,
but not in XS . This means that even though for every evaluation (F, V ) of a, T ∩ V 6= ∅
by Lemma 2.125, there is an evaluation (F ′, V ′) for a in A′ which is not attacked by S.
However, if there is no argument (G,H) in S s.t. G ∩ C ′ 6= ∅, then obviously it cannot be
the case that T ∩ V ′ 6= ∅. We reach a contradiction. Thus, whatever is in T+, is in XS .

Let S = {(E1, B1), ..., (En, Bn)} be admissible in FD
AC and T =

⋃n
i=1Ei its corre-

sponding set of arguments in D. By the previous parts of this proof we know that T is
pd–acyclic conflict–free in D. Let us now assume that even though S is admissible in
FD
AC , T is not ac–admissible in D. This means it that there is an argument a ∈ T that

has no evaluation on T for which the blocking set would be contained in T+. Since a
originates from some acyclic pd–evaluation in S, then a possesses at least one acyclic pd–
evaluation on T , and as none of the blocking sets of such evaluations are completely in
T+, they cannot be empty to start with. Every such blocking set will contain an argument
not in T+, and thus one possessing at least one evaluation onA, which by construction will
appear in FD

AC . Hence, for any argument (F, V ) ∈ S s.t. a ∈ F , there exists c ∈ V and
(F ′, V ′) ∈ A′ s.t. c ∈ F ′. Since the arguments are not in T+, they will not be present in
XS and consequently there will always be such evaluation argument (F ′, V ′) in A′ which
is not attacked by S. This obviously breaches the defense and we reach a contradiction.
Thus, we can conclude that if S is admissible in FD

AC , then T is ac–admissible in D.
Let now S ′ ⊆ A be ac–admissible in D. First of all, every argument in S ′ has at least

one acyclic pd–evaluation on S ′ s.t. its blocking set is contained in the standard discarded
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set of S ′. By collecting all such evaluations of all arguments in S ′ and repeating the
procedure from the conflict–free proof, we can easily construct a corresponding conflict–
free set V ⊆ A′ in FD

AC . Let us assume V is not admissible in FD
AC . This means there

exists an argument F in A′ s.t. F attacks an argument in V and it is not attacked by any
element of V . Clearly, this argument is not in V +, and consequently none of the arguments
in its pd–sequence/pd–set are in XS . From this follows they are also not in the standard
discarded set of S ′. Since the pd–sequence/pd–set of F contains an argument f appearing
in the blocking set of an evaluation of an argument s ∈ S ′ and f is not in the discarded
set, we reach a contradiction with the construction of the AF extension. Thus, V has to be
admissible in FD

AC .
Let S = {(E1, B1), ..., (En, Bn)} be complete in FD

AC . By the previous parts of this
proof, the set T =

⋃n
i=1Ei is ac–admissible in D. Let us assume it is not ac–complete;

this means there exists an argument a /∈ T which is decisively in w.r.t. vT . We can
observe that it is possible to construct an acyclic pd–evaluation with the members of T
being its pd–sequence and its blocking set contained in T+. Thus, we can use a decisively
in interpretation for a of which vT is a completion to extend this evaluation into an acyclic
pd–evaluation (G,H) for a. Due to decisiveness, H would still be contained in T+. Thus,
by the previous parts of this analysis, (G,H) is an argument in A′ and is defended by S.
As it cannot be the case that it is contained in S (otherwise a would have appeared in T ),
we reach a contradiction with th completeness of S. Therefore, it has to be the case that T
is an ac–complete extension of D.

Let now S ′ ⊆ A be ac–complete in D and let V ⊆ A′ be its corresponding ac–
admissible extension in FD

AC . Let us now assume V is not complete, i.e. there is an
argument F ∈ A′ \ V defended by V . Since V is conflict–free and defends F , then it
cannot be the case that F is not an acyclic pd–evaluation – otherwise F would be a self–
attacker and defending it would breach the conflict–freeness of V . Let us assume that all
arguments in the pd–sequence of F are contained in S ′. Therefore, by the construction
of V , this particular evaluation for a did not satisfy the admissibility criterion, i.e. its
blocking set was not falsified by the range. This means there is some argument b in the
blocking set of F that is not in the standard discarded set of S ′. From this follows that
there is an AF argument in A′ corresponding to this evaluation that attacks F and is not
attacked by V . Thus, F could not have been defended by V and we reach a contradiction.

Let us thus assume that at least one argument b in the pd–sequence of F is not contained
in S ′; let b be the first such element and vb the decisively in interpretation with which it
entered F . By ac–completeness of S ′ this means that b is not decisively in w.r.t. vS′ . By
the construction of the pd–sequence and the fact it is the first argument not contained in
S ′, it has to be the case that vtb ⊆ S ′. Therefore, there exists an argument in vfb that is not
in the discarded set of S ′. If this member is actually in S ′, then it is easy to see that V
attacked F and thus could not have defended it. If this member was not in S ′, then we
can repeat previous parts of the analysis and conclude that V could not have defended F
again. We reach a contradiction and thus V is complete in FD

AC .
We can observe that there is a one–to–one relation between the complete and ac–
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complete extensions of D and FD
AC . This comes from the fact that if we had two different

complete extension S1 and S2 in FD
AA corresponding to the same D one, their discarded

sets would have to be the same and thus defending the same arguments. Consequently, as
we are dealing with complete extensions, every argument in S1 has to be in S2 and vice
versa, thus showing that S1 = S2.

Additionally, it also easy to see that if two ac–complete extensions of T1 and T2 of
D are s.t. T1 ⊆ T2, then their corresponding complete extensions S1 and S2 of FD

AC are
also s.t. S1 ⊆ S2. Thus, by the one–to–one relation and Theorems 2.10 and 2.158 we can
show the correspondence between the preferred and ac–preferred extensions. The relation
between the grounded extensions can be shown in the same way. 2

Theorem 12.3. Let D = (A,C) be an ADF and FD
CC its corresponding AF obtained from

Translation 85. If S ⊆ A is a conflict–free (cc–admissible, cc–complete, cc–preferred,
grounded) extension of D, then there exists a conflict–free (admissible, complete, pre-
ferred, grounded) extension S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev of FD

CC s.t.
S =

⋃n
i=1 Fi ∪ Gi. If S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev is a conflict–free

(admissible, complete, preferred, grounded) extension of FD
CC , then S =

⋃n
i=1 Fi ∪ Gi is

conflict–free (cc–admissible, cc–complete, cc–preferred, grounded) extension of D.

Proof. Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a conflict–free set of FD
CC

and T =
⋃n
i=1 Fi ∪ Gi its associated set in D. It follows from the construction of the

evaluations that for every argument a ∈ T there is at least one decisively in interpretation
va s.t. vta ⊆ T with which it entered any of the evaluations (Fi, Gi, Bi). Since S ′ is
conflict–free in FD

CC , the false part of this interpretation is not in T . Thus, every t ∈ T will
have a satisfied acceptance condition. Conflict–freeness of T in D follows easily.

Let S ⊆ A be a conflict–free set of D. Since it is conflict–free, then we can easily
construct at least standard evaluations on S for every s ∈ S s.t. the blocking set of this
evaluation is disjoint from S. These evaluations can be transformed into partially acyclic
ones, even if the pd–sequence of the result would be empty. Consequently, we can con-
struct a set V ⊆ Aev in FD

CC corresponding to these evaluations. Since their blocking set
are disjoint from S, it is easy to see that no two arguments in V can be in conflict. Thus,
the set is conflict–free in FD

CC .
Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a conflict–free set of FD

CC and T =⋃n
i=1 Fi∪Gi its corresponding conflict–free extension ofD. Let S+ be the set of arguments

in A′ attacked by S and XS = {a ∈ A | ∀(F,G,B) ∈ Aev s.t. a ∈ F ∪ G, (F,G,B) ∈
S+} be the set of ADF arguments for which all of their evaluations are in S+. We will
show that XS corresponds to the standard discarded T+ of T in D. Let us assume that
an argument a ∈ A is in XS , but not in T+. By Lemma 2.125, this means that a has a
standard evaluation (F ′, B′) on A s.t. B′ ∩ T = ∅. This evaluation can be transformed
into a partially acyclic one and will appear as an argument in Aev. Since B′ ∩ T = ∅,
then for every evaluation argument (G,H, J) ∈ S, (G ∪H) ∩ B′ = ∅. Therefore, by the
construction of FD

CC , it cannot be the case that (F ′, B′) ∈ S+. Consequently, a could not
have been in XS and we reach a contradiction. Let us now assume there is an argument
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a ∈ A which is in T+, but not in XS . Since A /∈ XS , there is a partially acyclic pd–
evaluation (F ′, G′, B′) s.t. a ∈ (F ′ ∪ G′) which is not in S+. Based on the fact that there
is no (F ′′, G′′, B′′) ∈ S s.t. (F ′′ ∪ G′′) ∩ B′ 6= ∅ and the way T is constructed, we can
conclude that T ∩B′ = ∅. As (F ′ ∪G′, B′) is a standard evaluation for a, then by Lemma
2.125 we can conclude that a could not have been in T+. We reach a contradiction and
can conclude that XS = T+.

Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be admissible in FD
CC and let T =⋃n

i=1 Fi ∪ Gi be its corresponding conflict–free set in D. Let us assume that T is not cc–
admissible. This means there is an argument a ∈ A which is not decisively in w.r.t. the
range interpretation vT , which is equivalent to every partially acyclic evaluation on T for
a having a blocking set not entirely contained in T+. Thus, for every evaluation (F,G,B)
for a on T , there exists an argument b ∈ B with a partially acyclic evaluation (F ′, G′, B′)
s.t. B′ ∩ T = ∅ (see Lemma 2.125). Based on the relation between the discarded sets
and the fact that S cannot contain arguments from Ab, we can observe that S could not
have been admissible in FD

CC . We reach a contradiction and can conclude that T is cc–
admissible in D.

Let S ⊆ A be a cc–admissible extension of D. Therefore, every argument s ∈ S has at
least one standard evaluation on S whose blocking set is in S+. Every such pd–evaluation
can be transformed into a partially acyclic one. We can thus collect arguments in Aev

corresponding to these evaluations and construct a set V ⊆ Aev, which by the previous
analysis, will be at least conflict–free in FD

CC . Let us assume that V is not admissible in
FD
CC ; this means it contains an evaluation argument (F,G,B) for which there exists an at-

tacker Z ∈ A′ that is not attacked by any element of V . If Z ∈ Ab, then by the Translation
85, Z represents an argument a ∈ A s.t. a ∈ F and as (F,G,B)RZ and (F,G,B) ∈ V ,
V defends the argument against Z. Thus, it has to be the case that Z ∈ Aev. Since
Z = (F ′, G′, B′) is not in V +, elements of F ′ ∪G′ are not in XV and consequently, not in
S+. Therefore, the blocking set of (F,G,B) could not have been completely falsified by
vS and we reach a contradiction with the construction of V . Hence, if S is cc–admissible
in D, then so is V in FD

CC .
Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a complete extension of FD

CC and
T =

⋃n
i=1 Fi ∪ Gi its corresponding cc–admissible set in D. Let us assume T is not cc–

complete. This means there exists an argument a /∈ T which is decisively in w.r.t. vT , even
though no partially acyclic pd–evaluation for a is defended by S. By the cc–admissibility
of T , we can construct a partially acyclic evaluation on T containing all elements of T
in its pd–set and pd–sequence and s.t. its blocking set is contained in T+. Based on the
decisiveness of a w.r.t. vT , we can extend the pd–sequence of this evaluation with a and
its decisively in interpretation that was contained in vT . Thus, we can create a partially
acyclic pd–evaluation (F,G,B) for a on T ∪ {a} s.t. B ⊆ T+. We can extract a minimal
evaluation from it that will appear as an argument in Aev. As it is not in S, it is not
defended by S. Therefore, by the previous parts of this proof and the relation between the
discarded sets, we can observe it can only be the case that there is an argument Z ∈ Ab
attacking it. Thus, by Translation 85, Z represents an argument c in the pd–set of our
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evaluation. As S does not attack Z, there is no evaluation argument in S containing c in its
pd–sequence or pd–set. However, then it could not have been the case that c ∈ T . Since
a 6= c as a can only appear in the pd–sequence, then (F,G,B) could not have been an
evaluation for a satisfying our requirements. Therefore, it could not have been the case
that a was decisively in w.r.t. vT . We can thus conclude that if S is complete in FD

CC , then
T is cc–complete in D.

Let S ⊆ A be a cc–complete extension ofD and V ⊆ Aev its corresponding admissible
set in FD

CC . Let us assume that V is not complete in FD
CC ; this means there exists an

argument Z ∈ A′ \ V which is defended by V . If Z ∈ Ab, then it is a self–attacker
by Translation 85, and defending it would breach the conflict–freeness of V . If Z =
(F,G,B) ∈ Aev, then we can consider two situations: one in which the cc–admissible set
in D corresponding to {Z} ∪ V (see Lemma 2.22) is equal to S and one in which it is not.
Let us focus on the first case. By the construction of V this means that the blocking set of
the evaluation represented by Z is not completely contained in S+. Consequently, there
exists at least one argument a ∈ B possessing a standard evaluation with a blocking set
disjoint from S. We can transform this pd–evaluation into a partially acyclic pd–evaluation
and extract a minimal one out of it, which will appear as an argument in Aev. By the
relation between S+, XV and V + it holds that this argument will not be attacked by V
and will have the power to attack Z. Thus, V could not have defended Z and we reach a
contradiction. Let us thus assume that the set S ′ ⊆ A in D corresponding to {Z} ∪ V is
not equal to S. It is easy to see that it has to be the case that S ⊂ S ′. This means there
is at least one argument a ∈ F ∪ G which is not in S (and thus no evaluation containing
a in the pd–set or pd–sequence can already be in V ). If a ∈ F , then Z could not have
been defended by V from the breaker argument F ∈ Ab and we reach a contradiction. Let
us thus assume that a ∈ G and without the loss of generality, let a be the first argument
in the sequence that is not in S. Let v be the decisively in interpretation for a with which
it entered Z. Since elements of F and the ones from G preceding it are in S and b is
not decisively in w.r.t. vS , then there is an argument c ∈ vf s.t. c /∈ S+. If c ∈ S,
then (F,G,B) would be attacked by V , thus making defense impossible. If c /∈ S, then
it possesses a partially acyclic evaluation not blocked by S through the blocking set (see
Lemma 2.125) which appears in Aev, attacks (F,G,B) and is not attacked in turn. We
reach a contradiction. Thus, if S is cc–complete in D, then V is complete in FD

CC .
We can observe that there is a one–to–one relation between the complete and cc–

complete extensions of D and FD
CC . This comes from the fact that if we had two different

complete extension S1 and S2 in FD
CC corresponding to the same one forD, their discarded

sets would have to be the same – even the arguments attacked in Ab would have to be the
same due the fact that the pd–sets and pd–sequences of arguments in S1 and S2 amount
to the same set. Thus, S1 and S2 defend the same arguments. Consequently, as we are
dealing with complete extensions, every argument in S1 has to be in S2 and the vice versa,
thus showing that S1 = S2.

Additionally, it also easy to see that if two cc–complete extensions of T1 and T2 of
D are s.t. T1 ⊆ T2, then their corresponding complete extensions S1 and S2 of FD

AC are
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also s.t. S1 ⊆ S2. Thus, by the one–to–one relation and Theorems 2.10 and 2.158 we can
show the correspondence between the preferred and cc–preferred extensions. The relation
between the grounded extensions can be shown in the same way. 2

Theorem 12.4. Let D = (A,C) be an ADF and FD
CA2

= (A′, R) its corre-
sponding AF obtained from Translation 86. If E ⊆ A is a conflict–free (ca2–
admissible, ca2–complete, ca2–preferred, model, grounded) extension of D, then there
exists a conflict–free (admissible, complete, preferred, stable, grounded) extension E ′ =
{(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a

b
m} ⊆ A′ of FD

CA2
s.t. E =

⋃n
i=1 Fi ∪ Gi. If

E ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a
b
m} ⊆ A′ is a conflict–free (admissible, sta-

ble, grounded) extension of FD
CA2

, then E =
⋃n
i=1 Fi∪Gi is conflict–free (ca2–admissible,

model, grounded) extension of D.

Proof. Most of the proof of this theorem will depend on the relation between extensions
and labelings of ADFs (see Section 2.3.7) and Theorem 12.5 that will be discussed in the
next section.

Let E ⊆ A be a conflict–free extension ofD. Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)}
be the collection of all minimal partially acyclic evaluations on E for every argument
a ∈ E s.t. for every i, j, (Fi ∪ Gi) ∩ Bj = ∅. We can observe that due to the fact that E
is conflict–free, every argument a ∈ E will posses at least one such unblocked evaluation
on E . Based on the construction of FD

CA2
we can observe that S is conflict–free in FD

CA2
.

Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a
b
k} be a conflict–free extension of

FD
CA2

and E =
⋃n
i=1 Fi ∪ Gi the associated set of arguments in D. Let a ∈ E be an

argument and (F,G,B) ∈ S an evaluation s.t. a ∈ F ∪ G. Let v be the decisively
in interpretation with which a entered (F,G,B). Since S is conflict–free, B ∩ E = ∅.
Consequently, vt ⊆ E and vf ∩ E = ∅. Thus, Ca(E ∩ par(a)) = in and E is
conflict–free in D. By using Theorems 2.166 and 12.5, we can show that every ad-
missible extension of D is admissible in FD

CA2
. What remains to be shown is that the

other way around also holds, which had its issue for the labeling–based semantics. Let
S = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a

b
k} be an admissible extension of FD

CA2
and

E =
⋃n
i=1 Fi ∪Gi its associated set of arguments in D. By the previous parts of this proof

we can observe that E is conflict–free in D. Let E p+ be the partially acyclic discarded set
of E andX = {b ∈ A | every minimal partially acyclic evaluation (F,G,B) s.t. a ∈ F∪G
is in S+ in FD

CA2
} the set of arguments s.t. all of their evaluations are attacked by S.

We will show that X ⊆ E p+. Let a be an argument in X; assume that it is not present
in E p+. This means there exists a partially acyclic evaluation (F,G,B) for a s.t. F ⊆ E
and B ∩ E = ∅. Without the loss of generality, we can assume that this evaluation is
minimal. This evaluation will appear as an argument in Aev. We can observe that from
the construction of FD

CA2
and the fact that B ∩ E = ∅ and E =

⋃n
i=1 Fi ∪ Gi, it cannot

be the case that there is an evaluation argument in S attacking (F,G,B). If F = ∅, then
there is no breaker argument attacking (F,G,B) in A′. Hence, S cannot attack (F,G,B),
and a /∈ X . We reach a contradiction. If F 6= ∅, then for every b ∈ F , there is a breaker
argument bb ∈ Ab and this argument attacks (F,G,B) in R. However, as F ⊆ E , for
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every b ∈ F we can find an evaluation argument in S that contains b in its pd–set or pd–
sequence. Since this argument attacks bb, it cannot be the case that bb ∈ S. Hence, S
cannot attack (F,G,B), and a /∈ X . We can finally conclude that X ⊆ E p+.

We can now observe that based on the admissibility of S and the construction of FD
CA2

,
if (F,G,B) ∈ S, then B ⊆ X . Consequently, for any argument a ∈ E , we can find
a partially acyclic evaluation containing this argument in the pd–set or pd–sequence s.t.
F ∪G ⊆ E andB ⊆ E p+. Therefore, if va is the minimal decisively in interpretation for a
with which it entered this evaluation, then vta ⊆ E and vfa ⊆ E p+. Therefore, the partially
acyclic range of E is a completion of va, and it must be the case that a is decisively in
w.r.t. this range. Hence, E is an admissible extension of D.

The correspondence between the grounded extensions follows from Theorems 2.169
and 12.5.

The (one way) relation between the (ca2) preferred extensions follows from Theorems
2.167 and 12.5.

The (one way) relation between the (ca2) complete extensions follows from Theorems
2.168 and 12.5.

What remains to be shown is the correspondence between the model and stable
extensions between D and FD

CA2
. Let E ⊆ A be a model of D. Let Sev =

{(F1, G1, B1), ..., (Fn, Gn, Bn)} be the collection of all minimal partially acyclic evalu-
ations on E for every argument a ∈ E s.t. for every i, j, (Fi ∪ Gi) ∩ Bj = ∅. We can
observe that due to the fact that E is conflict–free, every argument a ∈ E will posses at
least one such unblocked evaluation on E . Let Sb = {ab | ab ∈ Ab, @(F,G,B) ∈ Sev

s.t. a ∈ F ∪ G}. Based on the construction of FD
CA2

we can observe that S = Sev ∪ Sb
is conflict–free in FD

CA2
. What remains to be shown is that it is also stable. Assume it

is not the case and that there exists an argument Z ∈ A′ \ S s.t. there is no W ∈ S
with WRZ. We can observe that if a breaker argument is not in Sb, then it has to be the
case that is attacked by an argument in Sev. Consequently, it can only be the case that
Z = (F ′, G′, B′) ∈ Aev \ Sev. As Z is not attacked by any breaker argument in Sb, then it
must be the case that F ′ ⊆ E . As it is not attacked by any argument in Sev, E ∩ B′ = ∅.
This means that ifG′ = ∅, then by the construction of Sev it has to be the case that Z ∈ Sev
and we reach a contradiction. Let us assume that G′ 6= ∅ and let G′ = (g0, ..., gm). With
every argument gi we associate a decisively in interpretation vi with which it entered Z.
Let us now go through the sequence. We can observe that vt0 ⊆ F ′ and vf0 ⊆ B′, hence
vt0 ⊆ E and vt0 ∩ E = ∅. Consequently, we can show that Cg0(E ∩ par(g0)) = in. Hence,
as E is a model, it has to be the case that g0 ∈ E . From this and the fact that vt1 ⊆ F ′∪{g0}
it follows that vt1 ⊆ E . Moreover, as again vf1 ∩ E = ∅, we can show that the condition
of g1 is satisfied by E . Therefore, g1 ∈ E . We can continue in this manner until we reach
the conclusion that gm ∈ E , thus forcing the presence of Z in Sev by the construction of
the set. We reach a contradiction with our assumptions. Hence, S is a stable extension of
FD
CA2

.
Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn), ab1, ..., a

b
k} be a stable extension of FD

CA2
and

E =
⋃n
i=1 Fi∪Gi the associated conflict–free set of arguments inD. Let us assume that E
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is not a model. This means there exists an argument a ∈ A \ E s.t. Ca(E ∩ par(a)) = in.
Due to the fact that E is conflict–free, it can be represented as a standard evaluation (see
Section 2.3.5) and thus as a partially acyclic one. Since Ca(E ∩ par(a)) = in, we can
find a minimal decisively in interpretation va for a s.t. vta ⊆ E and vfa ∩ E = ∅. We can
thus extend the partially acyclic evaluation for E with va and extract a minimal evaluation
(F ′, G′, B′) for a from it. This evaluation will appear in Aev. We can observe that since
B′ ∩ E = ∅, there cannot be any evaluation argument in S attacking (F ′, G,B′). Due to
the fact that F ′ ⊆ E and a is an element of the pd–sequence, it cannot be the case there is a
breaker argument attacking (F ′, G′, B′) either – we either contradict the conflict–freeness
of E or the construction of FD

CA2
. Thus, by the stability of S, (F ′, G′, B′) ∈ S, which is

impossible due to the fact that a ∈ G′ and a /∈ E . Therefore, we reach a contradiction,
and can conclude that E is a model of D.

Let E ⊆ A be a model of D and S1 = {(F1, G1, B1), ..., (Fn, Gn, Bn), a1, ..., ak}
an associated stable extension of FD

CA2
constructed as in the previous parts

of this proof. Let us assume there exists another stable extension S2 =
{(H1, J1, K1), ..., (Hm, Jm, Km), b1, ..., bl} of FD

CA2
s.t.

⋃l
i=1Hi ∪ Ji = E . Let us as-

sume there is an evaluation argument (F ′, G′, B′) present in S1, but not in S2. This means
there has to be an argument Z2 ∈ S2 attacking this evaluation. If Z2 is itself an evaluation
argument, then its pd–set or pd–sequence contains an argument from B′. Due to the fact
that both pd–set and pd–sequence of Z2 are in E , based on the previous explanations we
would breach the conflict–freeness of both E and S2. If Z2 is a breaker argument, then the
ADF argument it represents has to be in F ′. Thus, it is also in E , and as such appears in an
evaluation argument in S2. Consequently, we breach the conflict–freeness of S2. Hence,
S1 ⊆ S2, and we can use the same line of reasoning to show that S2 ⊆ S1. This brings us
to the conclusion that S1 = S2 and every model extension ofD is associated with precisely
one stable extension of FD

CA2
. 2

Theorem 12.5. Let D = (A,C) be an ADF and FD
lab = (A′, R) its corresponding AF

obtained through Translation 86. If v is an admissible labeling of D, then there exists an
admissible labeling v′ of FD

lab s.t. vt =
⋃
E
V in(v′) and EV p(vf ) ⊆ out(v′). If v is a complete

(preferred, grounded) labeling of D, then there exists a complete (preferred, grounded)
labeling v′ of FD

lab s.t. vt =
⋃
E
V in(v′) and vf = ALL(out(v′)).

If v′ is an complete (preferred, grounded) labeling of FD
lab, then a labeling v of D s.t.

vt =
⋃
E
V in(v′) and vf = ALL(out(v′)) is complete (preferred, grounded) in D. This does

not necessarily hold for admissible semantics.

Proof. In order to show the correspondence between the labelings of D and FD
lab, we will

use the following construction. Let v be a three–valued admissible labeling of D and v2
its maximal two–valued subinterpretation. Let us define the following sets:

• Oev = {(F,G,B) ∈ EV p(A) | v2 blocks (F,G,B)}

• Iev = {(F,G,B) ∈ EV p(vt) | F ∪G ⊆ vt, B ⊆ vf}
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• Ob = {ab | ∃(F,G,B) ∈ Iev s.t. a ∈ F ∪G}

• Ib = {ab | ∀(F ′′, G′′, B′′), s.t. a ∈ F ′′ ∪G′′, (F ′′, G′′, B′′) ∈ Oev}

We will now show that the respective ev and b sets are disjoint. We can observe that no
evaluation contained in Iev can possibly be blocked by v and thus does not meet the Oev

requirements. Consequently, Iev ∩ Oev = ∅. The fact that Ob and Ib are disjoint follows
from the construction. Therefore, all of the introduced sets are disjoint, and we can create
a labeling associated with them s.t. the arguments in Iev and Ib are assigned t and those
from Oev and Ob are assigned f .

Let now v be an admissible labeling of D and v′ be a labeling in FD
lab s.t. in(v′) =

Iev ∪ Ib and out(v′) = Oev ∪ Ob. We will first show that v′ is related to v in the manner
described in the theorem; later, we will prove that v′ is admissible in FD

lab. Let a ∈ vt be an
accepted argument. We can show that for any such a, v is a completion of a decisively in
interpretation for a (see Theorem 2.148). Consequently, from v we can extract a minimal
decisively in interpretation va for a. Therefore, vta ⊆ vt and vfa ⊆ vfa. By assigning every
argument a ∈ vt such a minimal decisively in interpretation we can create a sound pd–
function pd on vt. Since the t assignments of every such interpretation are contained in
vt, it is easy to see that for any argument accepted in vt we can create a minimal partially
acyclic evaluation on this set and w.r.t. pd. Moreover, based on the relation between the f
assignments of v and the interpretations in pd, the blocking set of any such evaluation will
have to be contained in vf . Thus, these evaluations will be contained in Iev, and it is now
easy to show that

⋃
E
V in(v′) = vt. Let a ∈ vf be an argument rejected by the admissible

labeling in D and assume there exists a partially acyclic evaluation for a not blocked by
the maximal two–valued subinterpretation v2 of v. Without the loss of generality, we can
focus on minimal evaluations. Let (F,G,B) be this evaluation; we can observe that no
argument in F ∪G is mapped to false by v2 and no argument in B is be mapped to t by v2.
Let z be the minimal decisively in interpretation of a used in construction of (F,G,B).
We can observe that, based on the definition of a decisively in interpretation, it holds that
Ca(z

t) = in . Moreover, sinceB∩vt = ∅, it can be shown thatCa(zt∪(vt∩par(a))) = in.
However, this means that a cannot be decisively out w.r.t. v2, which by Theorem 2.148
means that v cannot be admissible. Therefore, all evaluations for a are blocked by v2 and
it holds that EV p(vf ) ⊆ Oev ⊆ out(v′). We can conclude that v′ and v are related in the
desired manner.

Let us now show that v′ is an admissible labeling of FD
lab; however, we first need to

prove that it is conflict–free. Assume it is not the case; thus, there exist arguments a, b ∈ A′
s.t. aRb and v′(a) = v′(b) = in or there is an argument c ∈ A′ s.t. v′(c) = out, but for no
d ∈ A′ s.t. dRc, v′(d) = in.

We will now focus on the first case; assume that a = ab ∈ Ab is a breaker argument.
Thus, by the construction of v′, ab ∈ Ib. By Translation 86, we can observe it can only be
the case that b is an evaluation argument. Let b = (F,G,B); by the construction of FD

lab,
a ∈ F . However, by the construction of v′, (F,G,B) ∈ Iev and therefore (F,G,B) /∈ Oev.
This means that ab does not qualify for Ib and we reach a contradiction. Let us now
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assume that a = (F ′, G′, B′) ∈ Aev is an evaluation argument. Consequently, b is either
an evaluation argument (F ′′, G′′, B′′) s.t. (F ′∪G′)∩B′′ 6= ∅, or a breaker argument bb s.t.
b ∈ F ′∪G′. If it is the first case and b is an evaluation, then by the construction of v′, both
a, b ∈ Iev. This means that B′′ ⊆ vf and as a result, B′′ ∩ vt = ∅. Since F ′ ∪ G′ ⊆ vt,
it has to be the case that (F ′ ∪ G′) ∩ B′′ = ∅, and we reach a contradiction. If it is the
second case and b = bb is a breaker, then by the construction of v′, a ∈ Iev (and therefore,
a /∈ Oev) and bb ∈ Ib. However, by the construction of Ib and the fact that b ∈ F ′ ∪G′, it
has to be the case that a ∈ Oev. We reach a contradiction again. We can therefore conclude
that there are no arguments a, b ∈ in(v′) s.t. aRb.

Let us now check whether for every argument c ∈ A′ s.t. v′(c) = out we can find
an argument d ∈ A′ s.t. dRc and v′(d) = in. By Translation 86 and the construction of
Ob, it is easy to see that for every argument in Ob we can find an attacker in Iev. What
remains to be shown is that for every argument in Oev we can find an attacker in Iev ∪ Ib.
Let (F,G,B) be an arbitrary partially acyclic evaluation in Oev. We know it is blocked
by v2; the blocking can now occur either by accepting a member of the blocking set or by
falsifying an argument in the pd–set or the pd–sequence of the evaluation.

We can start by considering the case where blocking occurs through the blocking set.
By Translation 86, previous analysis and the construction of Iev, this means there is an
evaluation (F ′, G′, B′) in Iev s.t. (F ′∪G′)∩B 6= ∅ and that (F ′, G′, B′) attacks (F,G,B)
in FD

lab. Consequently, we can find a suitable attacker for c.
Let us now assume that blocking occurs only by falsifying an argument in the pd–set

or pd–sequence. We will first consider the case in which F = ∅; in other words, we are in
fact dealing with an acyclic pd–evaluation, and this evaluation will not be attacked by any
breaker argument from Ib. Let G = (g0, ..., gn) be the pd–sequence of our evaluation and
vg0 , ..., vgn the minimal decisively in interpretations used in the construction of (F,G,B).
Since vtg0 = ∅ and vfg0 ⊆ B, it follows that vtg0 ∩ v

f = ∅ and vfg0 ∩ v
t = ∅. Thus, we can

show that g0 cannot be decisively out w.r.t. v2 and by Theorem 2.148, we can conclude
that v(g0) 6= f . Consequently, the evaluation cannot be blocked by falsifying g0. Let us
consider g1 now; since vfg1 ⊆ {g0}, v

f
g1
⊆ B and g0 /∈ vf , it follows that vtg1 ∩ v

f = ∅ and
vfg1 ∩ v

t = ∅. Again, g1 cannot be decisively out w.r.t. v2 and cannot be mapped to f by
v. We can repeat this analysis till we reach gn and conclude that v could not have blocked
the evaluation. Therefore, it could not have possibly been in Oev in the first place and we
reach a contradiction.

Let us now consider the case where F 6= ∅. By repeating the reasoning above, we can
show that no argument in G can be mapped to f by v without some argument a ∈ F being
mapped to f as well. However, since a ∈ F , then by the construction of partially acyclic
evaluations and FD

lab, we can observe that there will exist a breaker argument ab ∈ Ab

for a. Moreover, since v is admissible and v(a) = f , it means that every partially acyclic
evaluation containing a will be blocked by v and thus contained inOev. Therefore, ab ∈ Ib
and (F,G,B) is attacked by Ib. Thus, we can again find an accepted attacker for a rejected
argument. We can finally conclude that our labeling v′ is conflict–free in FD

lab.
Let us now show that v′ is an admissible labeling in FD

lab. By the conflict–freeness of
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v′, every argument inA′ that is mapped to out by v′ has at least one attacker that is mapped
to in by v′. Thus, our out assignments are legal. What remains to be shown that every
argument a ∈ in(v′) is legally in.

We will first assume that a = (F,G,B) ∈ Iev. Let argument b ∈ A′ be an attacker
of a; we need to show that b ∈ out(v′). If b ∈ Ab is a breaker argument, then by the
construction of FD

lab it means that the D argument represented by b is in the pd–set of a.
Consequently, even though bRa, it is the case that aRb as well. Therefore, b ∈ Ob and
b ∈ out(v′). If b = (F ′, G′, B′) ∈ Aev, then it means that B ∩ (F ′ ∪ G′) 6= ∅. However,
by the construction of Iev, B ⊆ vf , and as EV p(vf ) ⊆ Oev, it follows that b ∈ Oev and
v′(b) = out. We can therefore conclude that all arguments from Iev are legally in w.r.t. v′.
The fact that all arguments from Ib are legally in follows easily from the construction of
Ib. Therefore, v′ is an admissible labeling of FD

lab.
In order to see that not every admissible labeling v′ of FD

lab corresponds to an admissible
labeling in D, please consult Example 143.

Let v be a complete labeling of D and v′ its associated labeling of FD
lab created using

the previous construction. By the previous parts of this proof we know that v′ is admissible
in FD

lab. We now need to show it is complete. Let us assume it is not; this means there is an
argument a ∈ A′ s.t. v′(a) = undec and the assignment is not legal, i.e. a is either legally
in or legally out w.r.t. v′.

Let us assume that a is in Ab and is of the form a = cb for an argument c ∈ A. We
will first consider the case where it is legally out. By the construction of FD

lab and v′, this
means that Iev contains an evaluation argument (F,G,B) s.t. c ∈ F ∪ G. However, this
means that a qualifies for Ob and therefore v′(a) = out. We reach a contradiction. Let
us now consider the case in which a is still a breaker argument, but is legally in. By the
construction of FD

lab, a is attacked by evaluation arguments (F,G,B) s.t. c ∈ F ∪ G and
due to the fact that a was created, at least one such attacker must exist. Since a is legally
in w.r.t. v′, all such evaluation arguments are mapped to out by v′. Therefore, they must
be in Oev, and a qualifies for Ib. Hence, v′(a) = in, and we reach a contradiction.

Let us now assume that a = (F,G,B) ∈ Aev is an evaluation argument. We will
first consider the case in which it is legally out. This means there exists an argument in
in(v′) (and thus in Iev ∪ Ib) attacking it. If the attacker comes from Iev, then it means that
vt2 ∩ B 6= ∅. Thus, v2 blocks the evaluation represented by a and a ∈ Oev. Consequently,
it can only be the case that the attacker is in Ib. However, based on the construction of
FD
lab, if a breaker argument attacks an evaluation, then this evaluation attacks the breaker

argument in return. Due to the fact that v′ is admissible and the breaker is accepted, it has
to be the case that a is in Oev already. Thus, v′(a) = out and we reach a contradiction.

Let now a = (F,G,B) be legally in. This means that if F 6= ∅, then all breaker
arguments for F are out. Hence, by the nature of Ob, F ⊆ vt. Moreover, all of the
arguments in Aev attacking a also have to be out. We can therefore show that B ⊆ vf ; if it
were not the case, then by the construction ofOev it means that v2 blocks all the evaluations
of any argument b ∈ B, but does not map it to f . Since in such a case bwould be decisively
out w.r.t. v2, not mapping it to f would breach the completeness of v by Theorem 2.149. In
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order to prove that a ∈ Iev, we now only need to show that G ⊆ vt. Let G = (g0, ..., gn)
be the pd–sequence of the evaluation represented by a. Since F ⊆ vt and B ⊆ vf , we can
show that v is a completion of the decisively in interpretation for g0 with which it entered
the evaluation. Hence, g0 is decisively in w.r.t. v2 and by Theorem 2.149, v(g0) = t. Now,
as F ∪ {g0} ⊆ vt and B ⊆ vf , then v is a completion of the decisively in interpretation
for g1 with which it entered the evaluation as well. Consequently, g1 is also decisively in
w.r.t. v2 and has to be mapped to t by v. We can follow this line of reasoning to show that
F ∪G ⊆ vt and B ⊆ vf . Therefore, a has to be in Iev already. We can thus conclude that
v′ is a complete labeling of FD

lab.
Let now v′ be a complete labeling of FD

lab and v an interpretation on A in D s.t. vt =
⋃
E
V

in(v′) and vf = ALL(out(v′)). Let v2 be the maximal two–valued subinterpretation of v.
We will first show that v is an admissible labeling of D. By Theorem 2.148 this means
that for every argument a ∈ A, if v(a) = t then a is decisively in w.r.t. v2, and if v(a) = f
then a is decisively out w.r.t. v2.

Let us focus on the decisively in arguments first. Every argument in vt comes from
some evaluation in in(v′). An evaluation argument (F,G,B) is assigned in by v′ in FD

lab iff
all of its attackers are mapped to out. Consequently, every evaluation argument containing
any element from B in its pd–set or pd–sequence is mapped to out. Therefore, B ⊆
ALL(out(v′)) and as a result, B ⊆ vf . Since F ∪ G ⊆ vt as well, it follows that v2 is a
completion of a decisively in interpretation of any argument in F ∪ G, including a. We
can thus show that all arguments in vt are decisively in w.r.t. v2.

Let us now show that every argument mapped to f is decisively out w.r.t. v2. Assume it
is not the case and that there exists an argument a ∈ A s.t. v2(a) = f and a is not decisively
out w.r.t. v2. This means there exists a completion vc of v2 to A s.t. Ca(vtc ∩ par(a)) = in.
Let E = vtc . By the construction of v, E ∩ALL(out(v′)) = ∅. Consequently, every e ∈ E
possesses an evaluation argument (F,G,B) not mapped to out by v′. Due to completeness
of v′, it means that none of these evaluations are attacked by in(v′). We can observe that
it cannot be the case that a ∈ F ∪ G as all such evaluations are mapped to out by v′ due
to the fact that a ∈ ALL(out(v′)). By collecting these evaluations for the arguments in E
we can create another evaluation (F ′, G′, B′).We can then extract a minimal decisively in
interpretation for a from vc and extend (F ′, G′, B′) with it in order to obtain an evaluation
for a. We can then extract a minimal evaluation (F ′′, G′′, B′′) for a from the modified
(F ′, G′, B′) that will appear as an argument in A′. We can observe that B′′ is a subset of
the union of the blocking sets of the initial evaluations and the false part of vc. Since the
initial evaluations were not attacked by in(v′) and vc is disjoint from vt2 (and thus from the
pd–set and pd–sequence of any evaluation argument accepted in v′), then (F ′′, G′′, B′′) is
not attacked by any evaluation argument in in(v′) either. As F ′′ is a subset of the union of
the pd–sets of the initial evaluations, which are not attacked by any breaker argument in
v′, (F ′′, G′′, B′′) will also not be attacked by a breaker accepted in v′. Thus, (F ′′, G′′, B′′)
is not attacked altogether. Hence, we obtain an evaluation argument for a not attacked by
in(v′) in FD

lab. Therefore, it cannot be the case that a ∈ ALL(out(v′)) and we reach a
contradiction. Thus, a has to be decisively out w.r.t. v2, and we can finally conclude that v
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is an admissible labeling of D.
In order to show that v is complete in D, we can use Theorem 2.149 and prove that

there is no argument in vu that would be decisively in or decisively out w.r.t. v2.
Let us assume it is not the case and there is some argument a ∈ vu that is decisively

in w.r.t. v2. This means it possesses a minimal decisively in interpretation va s.t. vta ⊆ vt2
and vfa ⊆ vf2. We can observe that as v is an admissible labeling, we can create a partially
acyclic evaluation (F,G,B) s.t. F ∪ G = vt and B ⊆ vf . Let G = (g0, ..., gn) be the
pd–sequence of (F,G,B). We can extend this evaluation with va and since vta ⊆ F ∪ G
and no decisively in interpretation used in the construction of (F,G,B) maps a to t, the
evaluation (F, (g0, ..., gn, a), B ∪ vfa) will be a partially acyclic evaluation for a. From
it, we can extract a minimal evaluation (F ′, G′, B′) for a. It is important to notice that
F ′ ⊆ F and B′ ⊆ B ∪ vfa ⊆ vf . Since vf = ALL(out(v′)), then all arguments in Aev

attacking (F ′, G′, B′) are out in v′. As F ′ ⊆ F and all breaker arguments for F are out in
v′, it has to be the case that that (F ′, G′, B′) is legally in w.r.t. v′ and therefore a ∈ vt. We
reach a contradiction. Therefore, an argument that is decisively in w.r.t. v2 is assigned t
by v in D.

Let us now assume that there is some argument a ∈ vu that is decisively out w.r.t. v2.
We can observe that if a possesses no decisively in interpretation at all (i.e. there is no set
of arguments evaluating its condition to in), then a ∈ ALL(out(v′)) automatically and it
cannot be the case that a ∈ vu. Let us therefore assume at least one such interpretation
exists. Since a is decisively out w.r.t. v2, in every minimal decisively in interpretation va
for a there is an argument b s.t. va(b) = t and v2(b) = f or va(b) = f and v2(b) = t.
We can therefore observe that b 6= a and that all partially acyclic evaluations for a have
to be blocked by v2. Let (F,G,B) be an arbitrary evaluation for a. If the blocking occurs
through the blocking set, i.e. va(b) = f and v2(b) = t, then by the construction of v there
is an evaluation argument in in(v′) attacking (F,G,B). If the blocking occurs through
falsifying a required argument, i.e. va(b) = t and v2(b) = f , then it means that b ∈
ALL(out(v′)). We can observe that due to the fact that va(b) = t, (F,G,B) ∈ EV p(b).
Since b ∈ ALL(out(v′)), in(v′) has to attack (F,G,B). Thus, for every evaluation for a
we can find an attacker in in(v′). Since v′ is complete in FD

lab, all those evaluations have to
be mapped to out and therefore a ∈ ALL(out(v′)). Consequently, v(a) = f and we reach
a contradiction with the initial assumption that v(a) = u. This means that every argument
decisively out w.r.t. v2 is assigned f by v. We can now conclude that v is a complete
labeling of D.

Let v be a complete labeling of D. Let us assume there are two complete labelings v′

and v′′ of DD
lab s.t. v′ 6= v′′,

⋃
E
V in(v′) =

⋃
E
V in(v′′) and ALL(out(v′)) = ALL(out(v′′)).

Since v′ 6= v′′, then there exists a ∈ A′ s.t. v′(a) 6= v′′(a).
Let us assume that a = bb ∈ Ab. We will first consider the case where v′(a) = in.

Therefore, all evaluation arguments (F,G,B) ∈ Aev s.t. b ∈ F ∪ G are out in v′. In
other words, all evaluation arguments containing b need to be out. Due to the fact that
ALL(out(v′)) = ALL(out(v′′)), all evaluations arguments containing b need to be out in
v′′ as well. Thus, by the completeness of v′′, it has to be the case that v′′(bb) = in, and we
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reach a contradiction.
We can now consider the case that a = bb is still a breaker argument, but v′(a) = out.

This means there exists an evaluation argument (F,G,B) ∈ Aev s.t. b ∈ F ∪ G and
v′((F,G,B)) = in. However, since

⋃
E
V in(v′) =

⋃
E
V in(v′′), there has to exist an evaluation

argument in in(v′′) containing b in the pd–set or pd–sequence as well. Therefore, v′′(bb) =
out, and we reach a contradiction.

Let us now assume that a = (F,G,B) ∈ Aev is an evaluation argument and that
v′(a) = out. Therefore, there is either an argument b ∈ F s.t. v′(bb) = in or an evaluation
argument (F ′, G′, B′) ∈ in(v′) s.t. (F ′ ∪ G′) ∩ B 6= ∅. Based on the previous analysis,
it suffices to focus on the latter case. Due to the fact that

⋃
E
V in(v′) =

⋃
E
V in(v′′), for every

argument c ∈ F ′ ∪ G′ we can find an evaluation argument accepted in v′′ that has this
argument in the pd–sequence or pd–set. Consequently, we will be able to find a suitable
attacker for (F,G,B) in in(v′′), and v′′(a) = out. We reach a contradiction.

Let us now assume that a = (F,G,B) ∈ Aev is an evaluation argument and that
v′(a) = in. Therefore, all evaluation arguments (F ′, G′, B′) ∈ Aev s.t. (F ′ ∪G′)∩B 6= ∅
need to be out in v′ and all breaker arguments for elements in F (if they exist) need to be
out w.r.t. v′ as well. However, we can use previous analysis to show that v′′ satisfies these
requirements. Consequently, v′′(a) = in, and we reach a contradiction. We can finally
conclude that v′ = v′′ and that the relation between the complete labelings of D and the
complete labelings of DD

lab is one–to–one.
Let v a preferred labeling of D and v′ the associated complete labeling in FD

lab created
using the previously described construction. If v′ is not preferred in FD

lab, it means there
exists another complete labeling v′′ s.t. in(v′) ⊂ in(v′′) (see Definition 2.14). Let a ∈
in(v′′) \ in(v′). Since we are working with AFs, we can observe that the set of arguments
attacked by in(v′′) contains all the arguments attacked by in(v′). Therefore, due to the
fact that both v′ and v′′ are complete, it has to be the case that out(v′) ⊆ out(v′′). It is also
easy to see that v′(a) 6= out.

Let us now assume that a = bb ∈ Ab is in fact a breaker argument for an argument
b ∈ A. Since it is accepted in v′′, it means that all of its attackers are mapped to out by v′′.
As the attackers are all evaluation arguments containing b in the pd–set or pd–sequence,
it follows that b ∈ ALL(out(v′′)). We can also observe that there has to be an evaluation
argument containing b that is not attacked by in(v′); otherwise, v′ would be capable of
defending a and thus would have to accept a due to completeness. Therefore, it cannot
be the case that b ∈ ALL(out(v′)). This, along with the fact that out(v′) ⊆ out(v′′),
means that ALL(out(v′)) ⊂ ALL(out(v′′)). Since in(v′) ⊆ in(v′′), then

⋃
E
V in(v′) ⊆

⋃
E
V

in(v′′) as well. Therefore, the complete labeling of D associated with v′′ contains more
information than v. Thus, v could not have been preferred in the first place and we reach
a contradiction.

Let us now assume that a = (F,G,B) ∈ Aev is an evaluation argument. Due to the
fact that in(v′) ⊂ in(v′′), we can consider two cases; one where

⋃
E
V in(v′) =

⋃
E
V in(v′′)

and one where
⋃
E
V in(v′) ⊂

⋃
E
V in(v′′). If

⋃
E
V in(v′) =

⋃
E
V in(v′′), then it means that for

every standard argument b ∈ F ∪ G, we can find an evaluation argument accepted in v′
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containing b in its pd–set or pd–sequence. Therefore, every breaker argument for b (if
it exists) is out w.r.t. both v′ and v′′. Hence, if v′′ accepts a but v′ does not, then there
must exist another evaluation argument (F ′, G′, B′) attacking a (i.e. (F ′ ∪ G′) ∩ B 6= ∅)
which is out w.r.t. v′′, but not w.r.t. v′. Using the previous analysis, we can therefore show
that B ⊆ ALL(out(v′′)) and ∃c ∈ B s.t. c /∈ ALL(out(v′)). Therefore, we can again
show that the complete labeling associated with v′′ contains more information than v – in
this particular case, more f assignments. Hence, v cannot be preferred, and we reach a
contradiction.

We are now left with the case where
⋃
E
V in(v′) ⊂

⋃
E
V in(v′′). Since out(v′) ⊆ out(v′′)

as well, then ALL(out(v′)) ⊆ ALL(out(v′′)). Consequently, the complete labeling as-
sociated with v′′ is again more informative than v and we reach a contradiction. We can
finally conclude that if v is a preferred labeling, then the labeling v′ we constructed for it
is preferred in FD

lab.
Let us now assume we have an arbitrary preferred labeling v′ of FD

lab. Let v be its
associated complete labeling of D. Due to the one–to–one relation between the complete
labelings of D and FD

lab, we can observe that v′ follows the construction described at the
beginning of this proof. We will now show that v is a preferred labeling ofD. Assume it is
not the case. This means there exists another complete labeling z of D that contains more
information, i.e. v ≤i z. Hence, there exists at least one argument a ∈ A s.t. v(a) = u
and z(a) 6= u. We will denote the complete labeling of FD

lab associated with z by z′.
Let us consider the case where v(a) = u and z(a) = t. Since v ≤i z, then we can

show that the Iev set associated with v′ is a strict subset of the Iev set associated with
z′. Moreover, as vf ⊆ zf , then the Oev set associated with v′ is (not necessarily a strict)
subset of the Oev set associated with z′. Consequently, the same holds for the Ib sets.
Thus, in total, in(v′) ⊂ in(z′) and v′ could not have been preferred in FD

lab. We reach a
contradiction.

Let us now assume that v(a) = u and z(a) = f . Using the previous analysis, we can
show that in(v′) ⊆ in(z′) and that out(v′) ⊆ out(z′). However, since vf = ALL(out(v′))
and zf = ALL(out(z′)) and a is contained in the latter, but not the former, then it has to
be the case that the subset relation between out(v′) and out(z′) is in fact strict. Hence,
by Theorem 2.17, v′ could not have been a preferred labeling of FD

lab. We reach a contra-
diction. Thus, we can finally conclude that if v′ is a preferred labeling of FD

lab, then v is a
preferred labeling of D.

Let v be the grounded labeling ofD and v′ its associated complete labeling in FD
lab. Let

us assume v′ is not grounded; this means there exists another complete labeling v′′ of FD
lab

s.t. in(v′′) ⊂ in(v′). Let a ∈ in(v′) \ in(v′′). Since we are working with AFs, we can
observe that the set of arguments attacked by in(v′) contains all the arguments attacked
by in(v′′). Therefore, due to the fact that both v′ and v′′ are complete, it has to be the case
that out(v′′) ⊆ out(v′). It is also easy to see that v′′(a) 6= out.

Let a = bb be in fact a breaker argument. If it is neither accepted nor rejected in
v′′, then due to completeness of v′′ it means that no attacker of a in A′ is in w.r.t. v′′

and at least one is undec w.r.t. v′′. However, at the same time all such arguments need
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to be out w.r.t. v′. We can use the previous analysis to show that it has to be the case
that b ∈ ALL(out(v′)), but b /∈ ALL(out(v′′)). As out(v′′) ⊆ out(v′), it also holds
that ALL(out(v′′)) ⊂ ALL(out(v′)). Since in(v′′) ⊂ in(v′), it is also the case that⋃
E
V in(v′′) ⊆

⋃
E
V in(v′). Therefore, the complete labeling associated with v′′ in D contains

less information than v. Consequently, v cannot be a grounded extension of D, and we
reach a contradiction.

Let now a = (F,G,B) ∈ Aev be an evaluation argument. Due to the fact that in(v′′) ⊂
in(v′), we can consider two cases; one where

⋃
E
V in(v′′) =

⋃
E
V in(v′) and one where

⋃
E
V

in(v′′) ⊂
⋃
E
V in(v′).

If
⋃
E
V in(v′′) =

⋃
E
V in(v′), then it means that for every standard argument b ∈ F ∪G, we

can find an evaluation argument accepted in v′′ containing b in its pd–set or pd–sequence.
Therefore, every breaker argument for b (if it exists) is out both w.r.t. v′′ and v′. Hence, if v′

accepts a but v′′ does not, then there must exist another evaluation argument (F ′, G′, B′)
attacking a (i.e. (F ′ ∪ G′) ∩ B 6= ∅) which is out w.r.t. v′, but not w.r.t. v′′. Using
the previous analysis, we can therefore show that B ⊆ ALL(out(v′)) and ∃c ∈ B s.t.
c /∈ ALL(out(v′′)). Therefore, we can show that the complete labeling associated with
v′′ contains less information than v – in this particular case, less f assignments. Hence, v
cannot be a grounded labeling of D, and we reach a contradiction.

We are now left with the case where
⋃
E
V in(v′′) ⊂

⋃
E
V in(v′). Since out(v′′) ⊆ out(v′) as

well, then ALL(out(v′′)) ⊆ ALL(out(v′)). Consequently, the complete labeling associ-
ated with v′′ is less informative than v and we reach a contradiction with v being grounded.
We can finally conclude that if v is a grounded labeling, then the labeling v′ we constructed
for it is grounded in FD

lab.
Let v′ be the grounded labeling of FD

lab and v its associated complete labeling of D.
Due to the one–to–one relation between the complete labelings of D and FD

lab, we can
observe that v′ follows the construction described at the beginning of this proof. Let us
now assume that v is not grounded inD. This means there exists another complete labeling
z of D that contains less information, i.e. z ≤i v. Hence, there is at least one argument
a ∈ A s.t. z(a) = u and v(a) 6= u. We will denote the complete labeling of FD

lab associated
with z by z′.

Let us consider the case where z(a) = u and v(a) = t. Since v ≤i z, then we can
show that the Iev set associated with z′ is a strict subset of the Iev set associated with v′.
Moreover, as zf ⊆ vf , then the Oev set associated with z′ is (not necessarily a strict) subset
of the Oev set associated with v′. Consequently, the same holds for the Ib sets. Thus, in
total, in(z′) ⊂ in(v′) and v′ could not have been the grounded labeling of FD

lab. We reach
a contradiction.

Let us now assume that z(a) = u and v(a) = f . Using the previous analysis, we can
show that in(z′) ⊆ in(v′) and that out(z′) ⊆ out(v′). However, since vf = ALL(out(v′))
and zf = ALL(out(z′)) and a is contained in the former, but not the latter, then it has to
be the case that the subset relation between out(z′) and out(v′) is in fact strict. Hence, by
Theorem 2.16, v′ could not have been the grounded labeling of FD

lab. We reach a contra-
diction. Thus, we can finally conclude that if v′ is the grounded labeling of FD

lab, then v is
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the grounded labeling of D. 2

Theorem 12.8. Let D = (A,C) be an ADF and SFD
CC = (A′, R) its corresponding

SETAF obtained from Translation 87. If S ⊆ A is a conflict–free (cc–admissible, cc–
complete, cc–preferred, grounded) extension ofD, then there exists a conflict–free (admis-
sible, complete, preferred, grounded) extension S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆
Aev of SFD

CC s.t. S =
⋃n
i=1 Fi ∪ Gi. If S ′ = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev

is a conflict–free (admissible, complete, preferred, grounded) extension of SFD
CC , then

S =
⋃n
i=1 Fi ∪ Gi is conflict–free (cc–admissible, cc–complete, cc–preferred, grounded)

extension of D.

Proof. Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a conflict–free set of SFD
CC

and T =
⋃n
i=1 Fi ∪ Gi its associated set in D. From the construction of the evaluations it

follows that for every argument a ∈ T , there is at least one decisively in interpretation va
s.t. vta ⊆ T with which it entered any of the evaluations (Fi, Gi, Bi). Since S ′ is conflict–
free in SFD

CC , we can observe that
⋃n
i=1 Fi ∪Gi ∩

⋃n
i=1Bi = ∅. Therefore, T ∩ vfa = ∅ as

well. Therefore, Ca(T ∩ par(a)) = in, and T is a conflict–free extension of D.
Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a conflict–free set of SFD

CC and
T =

⋃n
i=1 Fi ∪ Gi its corresponding conflict–free extension in D. Let S+ be the set

of arguments in A′ attacked by S and XS = {a ∈ A | ∀(F,G,B) ∈ Aev s.t. a ∈
F ∪ G, (F,G,B) ∈ S+} be the collection of arguments in A s.t. all of the evaluations
containing them are attacked by S. We will show that XS corresponds to the standard
discarded T+ of T in D.

Let us assume that an argument a ∈ A is in XS , but not in T+. By Lemma 2.125,
this means that a has a standard evaluation (F ′, B′) on A s.t. B′ ∩ T = ∅. Without the
loss of generality, we can focus on minimal evaluations. (F ′, B′) can be transformed into
a partially acyclic evaluation that will appear as an argument in Aev. Since B′ ∩ T = ∅,
then there is no argument in S that would contain an element of B′ in its pd–set or pd–
sequence. Thus, it cannot be the case that S attacks this evaluation. Consequently, it is not
contained in S+, and as a result a cannot be in XS . We reach a contradiction and therefore
XS ⊆ T+.

Let us now assume there is an argument a ∈ A which is in T+, but not in XS . There-
fore, there is a partially acyclic pd–evaluation (F ′, G′, B′) ∈ Aev s.t. a ∈ (F ′ ∪ G′) and
(F ′, G′, B′) /∈ S+. From Translation 87 we can observe that arguments inAev are attacked
by sets of size 1. Hence, we can simplify our analysis to attacks by single evaluation argu-
ments. Based on the way T is constructed and the fact that there is no (F ′′, G′′, B′′) ∈ S
s.t. (F ′′ ∪G′′) ∩B′ 6= ∅, we can conclude that T ∩B′ = ∅. As (F ′ ∪G′, B′) is a standard
evaluation for a, a could not have been in T+ by Lemma 2.125. We reach a contradiction.
Hence, T+ ⊆ XS , and when joined with our previous result, it holds that XS = T+.

Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be an admissible extension of SFD
CC

and T =
⋃n
i=1 Fi ∪ Gi its corresponding set conflict–free set in D. Since S is admissible

in SFD
CC , any evaluation containing an argument of any Bi has to be in S+. Therefore,

we can show that
⋃n
i=1Bi ⊆ XS , and based on the previous analysis,

⋃n
i=1Bi ⊆ T+.
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Let a ∈ T . From the construction of T it holds that there is at least one evaluation
(F,G,B) ∈ S s.t. a ∈ F ∪ G. Let va be the decisively in interpretation with which
a entered (F,G,B). Based on the construction of the evaluation, we can observe that
vta ⊆ F ∪ G and vfa ⊆ B. Therefore, vta ⊆ T and vfa ⊆ T+. This means that the range
interpretation vT is a completion of va. Consequently, vT is a decisively in interpretation
for a, and we can conclude that T has to be cc–admissible in D.

Let S ⊆ A be a conflict–free set of D. This means that for every argument a ∈ S,
Ca(S ∩ par(a)) = in. We can therefore construct a trivial decisively in interpretation for
a that assigns t to S and f to everything else. From this interpretation, we can extract a
minimal one va. Hence, we can create a sound pd–function on S, and as for every va,
vta ⊆ S, then for every argument we can construct a minimal partially acyclic evaluation
on S. Due to the fact that vfa ∩ S = ∅, the blocking sets of our evaluations will be disjoint
from S. By collecting them we obtain a set E ⊆ Aev in SFD

CC which can be easily shown
to be conflict–free in SFD

CC . As all of the evaluations are on S and every argument in S
possesses one, we can observe that the union of pd–sets and pd–sequences of elements in
E will be equal to S. Therefore, E satisfies our requirements.

Let S ⊆ A be a cc–admissible extension of D. Every argument s ∈ S has at least
one (minimal) standard evaluation on S whose blocking set is falsified by vS . These pd–
evaluations can be transformed into a partially acyclic ones and will appear as arguments
in Aev. Let E = {(F,G,B) | (F,G,B) is a minimal partially acyclic evaluation for a ∈ S
on S s.t. B ⊆ S+} be the collection of such evaluations. By using the analysis above,
we can show that E is conflict–free in SFD

CC and that the union of the pd–sets and pd–
sequences of the evaluations in E equals S. Moreover, we can repeat the previous parts
of this proof in order to show that S+ = XE . Let us now assume that E is not admissible
in SFD

CC . This means it contains an evaluation argument (F,G,B) for which there exists
an attacker Z ∈ A′ that is not attacked by (any subset of) E . If Z ∈ Ab, then by the
Translation 87, Z = F b. Since {(F,G,B)} attacks Z and (F,G,B) ∈ E , E defends
(F,G,B) from Z. Thus, it has to be the case that Z ∈ Aev. If Z = (F ′, G′, B′) is not
in E+, then the elements of F ′ ∪ G′ are not in XE . Therefore, they are not in S+ either.
Consequently, the blocking set of (F,G,B) could not have been contained in S+ and we
reach a contradiction with the construction of E . Thus, if S is cc–admissible in D, then so
is E in SFD

CC .
Let S = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev be a complete extension of SFD

CC and
T =

⋃n
i=1 Fi ∪ Gi its corresponding cc–admissible extension of D. Let us assume T is

not cc–complete in D. This means there exists an argument a /∈ T which is decisively in
w.r.t. vT . It is possible to represent T as a single standard (and thus, also partially acyclic)
evaluation covering all elements in T and with a blocking set in T+. Let (F,G,B) s.t.
F ∪ G = T and B ⊆ T+ be this evaluation. Since a is decisively in w.r.t. vT , we
can extract from it a minimal decisively in interpretation va for a. We can observe that
vta ⊆ T and vfa ⊆ T+. We can now extend G with a and B with vfa in order to obtain a
partially acyclic evaluation for a. Again, from this evaluation we can extract a minimal
one (F ′, G′, B′) that will appear as an argument in Aev. Due to the fact that a can be
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added to the pd–sequence, F ′ ⊆ F . Since all arguments in F ′ appear in some evaluations
in S, it is easy to see that the breaker argument for F ′ will be attacked by a subset of S.
Additionally, B′ ⊆ T+, and therefore B′ ⊆ XS . This means that every partially acyclic
evaluation of every argument in B′ is attacked by S. We can therefore conclude that S
defends (F ′, G′, B′), and as this evaluation could not have been included in S (otherwise,
a would have appeared in T ), we reach a contradiction with the completeness of S. We
can thus conclude that if S is complete in SFD

CC , then T is cc–complete in D.
Let S ⊆ A be a cc–complete extension ofD and E ⊆ Aev its corresponding admissible

extension of SFD
CC . Let us assume that E is not complete in SFD

CC . This means there
exists an argument Z ∈ A′ \ E that is defended by E . We can observe that all arguments
from Ab are self–attackers. Defending them would breach the conflict–freeness of E .
Consequently, it has to be the case that Z = (F,G,B) ∈ Aev. Based on the SETAF
Fundamental Lemma (Lemma 2.22) we can observe that E ′ = E ∪ {Z} is an admissible
extension of SF . Let S ′ be the cc–admissible extension of D corresponding to E ′. We can
now consider two situations: one in which S = S ′ and one in which S 6= S ′.

Let us focus on the first case. By the construction of E , this means that there is an
argument a ∈ B not contained in S+. Consequently, by Lemma 2.125 there exists a
(minimal) standard evaluation for a with a blocking set disjoint from S. We can transform
this pd–evaluation into a partially acyclic one (F ′, G′, B′) that will appear as an argument
in Aev. By using the previous analysis and the relation between S+, XE and E+, we can
show that {(F ′, G′, B′)} attacks Z but is not attacked by E in return. Thus, E could not
have defended Z and we reach a contradiction.

Let us now focus on the second case. Since E ⊂ E ′ and S 6= S ′, we can show that
S ⊂ S ′. Hence, there is least one argument a ∈ F ∪G which is not in S and does not have
an evaluation in E . If a ∈ F , then we can observe that no subset of E could have attacked
the breaker argument F b ∈ Ab for Z. This contradicts our assumption that E defends Z.
Hence, a has to be contained in the pd–sequence and F ⊆ S. Let G = (g0, ..., gn) and
let vi be the decisively in interpretation with which gi entered in Z. Assume that g0 /∈ S.
We can observe that vt0 ⊆ F ⊆ S and vf0 ⊆ B. However, since g0 is not decisively in
w.r.t. vS , there is an argument b ∈ vf0 s.t. b /∈ S+. Therefore, by using the previous
analysis we can show that there exists a partially acyclic evaluation containing b that is not
in E+. This means that E cannot defend Z and we reach a contradiction. Let us therefore
assume that g0 ∈ S and it is g1 that is missing from our extension. By the definition of
partially acyclic evaluation, vt1 ⊆ F ∪ {g0} and vf1 ⊆ B. Hence, vt1 ⊆ S, and the lack of
decisiveness has to be due to insufficient coverage of B by S+. We can therefore again
construct an appropriate attacker for Z in A′ and show that E could not have defended it.
We can continue in this manner till we reach gn and the conclusion that E did not defend
Z, which contradicts our assumption. Thus, if S is cc–complete in D, then E is complete
in SFD

CC .
Let now S ⊆ A be a cc–complete extension of D. We will now show that

that there is exactly one complete extension in SFD
CC corresponding to it. Assume

it is not the case and let E = {(F1, G1, B1), ..., (Fn, Gn, Bn)} ⊆ Aev and E ′ =
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{(F ′1, G′1, B′1), ..., (F ′n, G′n, B′n)} ⊆ Aev be two complete extensions of SFD
CC s.t. S =⋃n

i=1 Fi ∪Gi =
⋃n
i=1 F

′
i ∪G′i and E 6= E ′. This means there exists an argument Z ∈ Aev.

s.t. Z ∈ E \ E ′ or Z ∈ E ′ \ E .
Let us focus on the first case. If Z = (F,G,B) is in E , but not in E ′, then by the

completeness of both of the extensions, it means that E defends Z and E ′ does not. Since
both of the extensions correspond to the same set inD, for any argument a ∈ F ∪Gwe can
find an evaluation argument in E ′ containing it. Thus, we can show that E ′ is capable for
attacking the breaker argument F b for Z (assuming it exists). Hence, if E ′ does not defend
Z, then the attacker is an evaluation argument. We can repeat the analysis of the discarded
sets in order to show that this again cannot be the case. We thus reach a contradiction
and can conclude that E ⊆ E ′. We can do the same for the other direction and show that
E = E ′, which contradicts our assumption that these two extensions are different. Hence,
the relation between the complete extensions of D and SFD

CC is one to one.
Let S, S ′ be two cc–complete extensions of D and E ,E ′ the associated complete ex-

tensions in SFD
CC . We will show that S ⊂ S ′ iff E ⊂ E ′.

Let us focus on showing that if S ⊂ S ′, then E ⊂ E ′. By using Lemma 2.124, we can
show that every argument in the standard discarded set of S is in the discarded set of S ′.
For this reason we can also observe that no argument in S ′ \ S can be in S+. Therefore,
the standard range of S ′ is a completion of S. Consequently, for any minimal partially
acyclic evaluation (F,G,B) on S for an argument in a ∈ S s.t. F ∪G ⊆ S and B ⊆ S+,
it holds that F ∪G ⊆ S ′ and B ⊆ S ′+. Based on the construction of E and E ′ and the one
to one relation between the complete extensions of D and SFD

CC , this means that E ⊆ E ′.
Since S ′ contains an argument not included in S, then E ′ must contain an evaluation for
this argument which is not in E either. Thus, E ⊂ E ′.

The other direction is quite straightforward. If E ⊂ E ′, then clearly S ⊆ S ′. However,
due to the one–to–one relation between the complete extensions of D and SFD

CC , it cannot
be the case that E ⊂ E ′ and S = S ′. Hence S ⊂ S, and this concludes our proof.

Due to the fact that S ⊂ S ′ iff E ⊂ E ′ and that the relation between the complete
extensions of both frameworks is one–to–one, we can therefore use Theorems 2.10 and
2.158 in order to prove the relations between the preferred and grounded extensions of D
and SFD

CC stated in the theorem. This concludes our proof. 2

Theorem 12.10. Let D = (A,C) be a weakly valid ADF and SFD
AA = (A,R′) its as-

sociated SETAF created through Translation 88. If E ⊆ A is pd–acyclic conflict–free
(aa–admissible) inD, then it is conflict–free (admissible) in SFD

AA. Not every conflict–free
(admissible) extension of SFD

AA is pd–acyclic conflict–free (aa–admissible) in D. E ⊆ A
is an aa–complete (aa–preferred, acyclic grounded, stable) extension of D iff it is a com-
plete (preferred, grounded, stable) extension of SFD

AA.

Proof. Let E ⊆ A be a pd–acyclic conflict–free extension of D. Consequently, every
argument a ∈ A possesses an acyclic pd–evaluation (F,B) s.t. B ∩ E = ∅. This means
that for no subset E ′ ⊆ E , E ′ has the power to block all evaluations of a through the
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blocking set. Therefore, for no such subset E ′ and argument a, E ′Ra. Consequently, E is
conflict–free in SFD

AA.
Let E ⊆ A be aa–admissible in D and let E a+ be its acyclic discarded set. Based on

the previous paragraph we know that E is conflict–free in SFD
AA. From Lemma 2.128 and

the construction of R it is easy to see that E a+ = E+, where E+ is the discarded set of E
in SFD

AA (see Definition 2.25). Every a ∈ E has to have an acyclic pd–evaluation (F,B)
s.t. B ⊆ E a+. We can observe that every set of arguments attacking a in SFD

AA will have
at least one element in common with B. From the discarded set analysis it follows that
every set of arguments attacking a in SFD

AA will have at least one element attacked by E
in R. Consequently, every a ∈ E is defended by E and E is admissible in SFD

AA.
Let us now consider a trivial framework ({a, b}, {Ca = >, Cb = a}). The associ-

ated SETAF is ({a, b}, ∅) and it produces {b} as a conflict–free and admissible extension.
Unfortunately, {b} is neither pd–acyclic conflict–free nor aa–admissible in our ADF.

Let E ⊆ A be an aa–complete extension of D. Based on the previous parts of this
proof we can observe that E is admissible in SFD

AA and that the discarded sets of E are
the same in both frameworks. Let us assume that E is not complete in SFD

AA. This means
there exists an argument a ∈ A \ E defended by E . Consequently, there exists an acyclic
pd–evaluation (F,B) for a s.t. B ⊆ E a+; if it were not the case, we could always construct
an attacking set in R not covered by E+. Since a /∈ E and B ⊆ E a+, then it means that
there is an argument in the pd–acyclic sequence (different than a) that is not in E . Let
F = (a0, ..., an) be our sequence and let us focus on a0. Due to the construction of pd–
acyclic sequences, the decisively in interpretation for a0 can only consist of f mappings.
As these mappings are in the acyclic discarded set, then a0 has to be decisively in w.r.t.
the acyclic range of E in D. Therefore, it has to be the case that a0 ∈ E . Let us analyze
a1. The t part of the decisively in interpretation for a1 that was used in the construction of
(F,B) is a subset of {a0} and thus a subset of E as well, while the f part is contained in the
acyclic discarded set. Consequently, a1 is also decisively in w.r.t. the acyclic range of E in
D. Thus, it has to be the case that a1 ∈ E . We can continue reasoning in this manner until
we reach the conclusion that a = an ∈ E , which contradicts our assumptions. Therefore,
if E is aa–complete in D, then it is complete in SFD

AA.
Let E ⊆ A be a complete extension of SFD

AA. By the construction of SFD
AA, we can

observe that if an argument a ∈ A is defended by E , then it has an acyclic pd–evaluation
(F,B) s.t. B ⊆ E+. If it were not the case and for every such evaluation we could find an
argument in the blocking set not included in the discarded one, then the collection of such
arguments would contain an attacking set on a that E does not defend a from. However,
since from (F,B) we can extract an acyclic pd–evaluation for any of the members in the
sequence and any such evaluation will have a blocking set in E+, we can show that if E
defends a, then it defends every other argument F . Therefore, by the completeness of
E , if b ∈ E , then it has an acyclic pd–evaluation (F ′, B′) s.t. F ′ ⊆ E and B′ ⊆ E+.
By the conflict–freeness of E it also means that F ′ ∩ B′ = ∅. Consequently, for any
argument b ∈ E , there exists an acyclic pd–evaluation for b on E that is not blocked by
E . Thus, E is pd–acyclic conflict–free. We can now exploit the relation between the
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discarded sets to show that E is also aa–admissible. Finally, let us assume that E is not
aa–complete in SFD

AA. In other words, there is an argument c ∈ A \E which is decisively
in w.r.t. the acyclic range. Thus, it possesses an acyclic pd–evaluation (F ′′, B′′) with
F ′′ = (a0, ..., an) s.t. {a0, ..., an−1} ⊆ E and B′′ ⊆ E+. However, by using the previous
parts of this analysis we can clearly show that c is defended by E in SFD

AA and thus reach
a contradiction with our assumptions. Therefore, E is aa–complete in D.

Based on the correspondence between the complete extensions of both structures, we
can use the discarded set analysis and Theorems 2.23, 2.24, 2.138 and 2.158 in order to
prove the relation between the preferred (grounded, stable) extensions of both frameworks.
2

Proposition 12.13. Let SF = (A,R) be a SETAF and E ,E ′ ⊆ A two admissible exten-
sions of SF . If there are no b ∈ E , B′ ⊆ E ′ s.t. B′Rb and no b′ ∈ E ′, B ⊆ E s.t. BRb′,
then E ∪ E ′ is admissible in SF .

Proof. Let us assume thatX = E ∪E ′ is not conflict–free. This means there exists x ∈ X ,
X ′ ⊆ X s.t. X ′Rx. If X ′ ⊆ E and x ∈ E (resp. X ′ ⊆ E ′ and x ∈ E ′), we violate the
conflict–freeness of E (resp. E ′). If X ′ ⊆ E ′ and x ∈ E (or X ′ ⊆ E and x ∈ E ′) we
violate our assumptions. Thus, we are left with the case that one “part” of X is in E and
the other in E ′. Without the loss of generality, let us assume that the argument attacked
by X is in E . Due to the admissibility of E , it has to be the case that there is Z ⊆ E and
z ∈ X s.t. ZRz. Moreover, due to conflict–freeness of E , z /∈ E . Therefore, z ∈ E ′, and
we reach a contradiction with our assumptions. We can thus conclude that X is conflict–
free. Showing that it defends all of its members follows easily from the admissibility of E
and E ′. Hence, X is admissible in SF . 2

Theorem 12.17. Let D = (A,C) be a cleansed form ADF and FND
AA = (A′, R′, N ′)

its corresponding AFN obtained through Translation 89. Then, FND
AA is in minimal and

(strongly) consistent normal forms. FND
AA might not be weakly valid if D is weakly valid.

If D is relation valid, then FND
AA is weakly and relation valid. If D is strongly valid, then

so is FND
AA.

Proof. Let (a, va) ∈ A′ be an argument in FND
AA created for an argument a ∈ A in

D. Based on the construction of FND
AA, we can observe that every set of arguments

supporting (a, va) in N ′ consists of arguments created for precisely one argument from
vta. Consequently, all of the sets supporting (a, va) in N ′ are completely disjoint and
incomparable. Hence, FND

AA is trivially in minimal normal form. It is also easy to see that
vta ∩ vfa = ∅. Therefore, an argument (c, vc) created for an argument c ∈ vfa cannot appear
in any supporting set of (a, va). Thus, FND

AA satisfies strong consistency requirements.
This part of the proof concerning the validity normal forms is strongly related to the

proof of Theorem 12.18. Let us now assume that we are dealing with a weakly valid
D. This means that every argument a ∈ A possesses an acyclic pd–evaluation on A.
Given such an evaluation ((a0, ..., an), B) and the pd–function it was created with, we can
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create a sequence ((a0, pd
D
E (a0)), ..., (an, pd

D
E (an))) of arguments in A′. This sequence

will satisfy the powerful requirements (see proof of Theorem 12.18) in FND
AA. Thus, we

can show that every argument (a, va) ∈ A′ s.t. va is a decisively in interpretation used
in the construction of an acyclic pd–evaluation for a on A in D, will possess a powerful
sequence on A′ in FND

AA. The question therefore is, what happens to the arguments paired
with interpretations that are not used. Since D is weakly valid, A can be represented as an
acyclic pd–evaluation containing all arguments in A in its pd–sequence. This evaluation
induces a corresponding powerful sequence built from arguments E ⊆ A′. Let (a, va) ∈
A′\E be an AFN argument not in this sequence. We can observe that vta ⊆ A and therefore
for any argument b ∈ vta, there exists an argument (b, vb) ∈ E for some vb. Consequently,
we can extend the powerful sequence representing E by (a, va) and still obtain a powerful
sequence (see proof of Theorem 12.18). This procedure can be repeated for all arguments
from A′ \ E . Hence, for every argument in A′ we can create a powerful sequence on A′.
Therefore, FND

AA is weakly valid.
Let us move on to relation validity. With coh(X) we will denote the collection of all

coherent sets on X ⊆ A′; by Arg(a) we will denote all arguments in A′ representing an
argument a ∈ A, i.e. Arg(a) = {(a, va) | va ∈ min dec(in, a)}. Let D be relation valid.
Since it is also cleansed, then by Lemma 4.77, D is weakly valid. By the previous parts of
this proof, this means that FND

AA is weakly valid as well.
However, let us assume that FND

AA is not relation valid. Therefore, there exists an
argument (a, va) ∈ A′, a set of arguments E ⊆ A s.t. EN ′(a, va) and an argument (b, vb) ∈
E s.t. (b, vb) /∈

⋃
coh(A′\{(a, va)}), where coh(X) denotes the set of all coherent subsets

on X ⊆ A′. Due to the fact that FND
AA is weakly valid, (b, vb) ∈

⋃
coh(A′}). Since

(b, vb) /∈
⋃
coh(A′ \ {(a, va)}), it has to be the case that every powerful sequence for

(b, vb) requires the presence of (a, va).
Let us assume that Arg(a) = {(a, va)}, i.e. (a, va) is the only representation of

a. Therefore, va is the only minimal decisively in interpretation for a. Moreover, since
(b, vb) ∈ E , then va(b) = t. Due to the fact that D is relation valid, b possesses an acyclic
pd–evaluation s.t. vb was used in its construction. Based on the previous analysis, we
can show that every acyclic pd–evaluation for b that uses vb contains a in its pd–sequence.
Since va depends on b, it is not possible that we can create an acyclic pd–evaluation for b
that uses vb. We reach a contradiction with the relation validity of D.

Let us assume that there exists at least one alternative representation (a, v′a) for a.
Since D is relation valid, v′a can be used in constructing an acyclic pd–evaluation for a.
From this it also follows that there is a powerful sequence for (a, v′a) s.t. the arguments
preceding it are contained in A′ \ Arg(a), i.e. the sequence does not depend on other
representations for a. Consequently, this powerful sequence will not use (a, va). Since
every powerful sequence for (b, vb) depends on (a, va), this means that (a, va) cannot be
replaced by (a, v′a). Hence, we can show that every powerful sequence for (a, v′a) depends
on (b, vb) – if it were not the case, we would have been able to recombine the sequences
for (b, vb) and (a, v′a). We can now distinguish two cases; one where (b, vb) is the only
representation for b and one in which there are more representations.
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If (b, vb) is the only argument in FND
AA for b, then it means that every representation

of a depends on b, while every evaluation for b using vb depends on a. This means that we
cannot construct an acyclic pd–evaluation for b using this interpretation, which breaches
the relation validity of D. We can therefore consider the case in which b has more than
representation; let (b, v′b) be one of them. Since D is relation valid, we can show that
there exists a powerful sequence for this argument s.t. the arguments preceding (b, v′b) are
contained inA′\Arg(b). If we cannot replace the presence of (b, vb) in any of the powerful
sequences for (a, v′a) with (b, v′b), then this means that (b, v′b) has to depend on (a, v′a). We
can continue this analysis and reach the conclusions that every representation of b comes
back to a and every representation of a comes back to b. This not only breaches relation
validity, but also weak validity of D. We reach a contradiction and can therefore conclude
that if D is relation valid, then so is FND

AA.
Let D be strongly valid. By Theorem 4.44, we can create a sequence (a0, ..., an)

consisting of all arguments in A s.t. independently of the chosen pd–function, we can
create an acyclic pd–evaluation with (a0, ..., an) as its pd–sequence. For each argument ai,
let seqi = ((ai, v

1
ai

), ..., (ai, v
ni
ai

)) be an arbitrary sequence consisting of all of its associated
arguments in A′. Since D is in cleansed form, this sequence will not be empty. Let seq
be the sequence of all elements in A′ obtained by merging the sequences from a0 to an (in
this order). We will now show that independently of the chosen support function f in the
terms of Definition 4.30, this sequence will be a powerful sequence w.r.t. f .

Due to the fact that (a0, ..., an) is a pd–sequence independently of the chosen pd–
function, every minimal decisively in interpretation for a0 has an empty t part (see proof
of Theorem 4.44). Therefore, no argument in A′ corresponding to a0 will require support
through N ′ based on the construction of FND

AA. Hence, every support function f will
assign to such an A′ argument ∅, and all arguments in seq0 will meet the requirements of
a starting argument of a powerful sequence. Thus, seq0 is a powerful sequence indepen-
dently of the chosen f .

Let us now focus on a1 and seq1. Every minimal decisively in function for a1 will
have a t part contained in {a0} (see proof of Theorem 4.44). Consequently, based on
the construction of FND

AA, every set S ∈ suf((a1, v
j
a1

)) of an argument (a1, v
j
a1

) in seq1
is a subset of {(a0, v1a0), ..., (a0, v

n0
a0

)}. Consequently, independently of the chosen f , the
merged sequence consisting of seq0 and seq1 (in this order), will be a powerful sequence.

We can continue on in this way till we reach seqn and the conclusion that the produced
sequence is a powerful sequence independently of the chosen support function f . Since
this sequence covers all arguments in A′, then by Theorem 4.33, FND

AA is strongly valid.
2

Theorem 12.18. Let D = (A,C) be a cleansed form ADF and FND
AA = (A′, R′, N ′) its

corresponding AFN obtained through Translation 89. If S = {(a1, va1), ..., (an, van)} ⊆
A′ is a coherent (strongly coherent, admissible, preferred, complete, grounded, stable)
extension of FND

AA, then S ′ =
⋃n
i=1{ai} is a pd–acyclic (pd–acyclic conflict–free, aa–

admissible, aa–preferred, aa–complete, acyclic grounded, stable) extension of D.
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If S ′ ⊆ A is a pd–acyclic (pd–acyclic conflict–free, aa–admissible, aa–preferred,
aa–complete, acyclic grounded, stable) extension of D, then there exists a coherent
(strongly coherent, admissible, preferred, complete, grounded, stable) extension S =
{(a1, va1), ..., (an, van)} ⊆ A′ of FND

AA s.t. S ′ =
⋃n
i=1{ai}.

Proof. We will start the proof by analyzing the correspondence between the acyclic pd–
evaluations in D and powerful sequences in FND

AA.
Let ((a0, ..., an), B) be an acyclic pd–evaluation on a set E ⊆ A for an argu-

ment a ∈ A and pdDE the pd–function it was created with. We can observe that
for every ai in the sequence, (ai, pd

D
E (ai)) will appear as an argument in A′. Let

((a0, pd
D
E (a0)), ..., (an, pd

D
E (an))) be a sequence of arguments in FND

AA associated with
our evaluation. We will show that it is powerful on

⋃n
i=0(ai, pd

D
E (ai)) in FND

AA. By the
pd–sequence requirements, pdDE (a0)

t = ∅. Consequently, by Translation 89, there will
be no set of arguments V ⊆ A′ s.t. V N(a0, pd

D
E (a0)). Thus, (a0, pd

D
E (a0)) satisfies the

requirements of a starting argument in a powerful sequence. Let now (ai, pd
D
E (ai)), where

1 ≤ 1 ≤ n, be an arbitrary element in our sequence. By Translation 89, every V ⊆ A′

s.t. V N(ai, pd
D
E (ai)) is generated for some argument c ∈ pdDE (ai). By this and the pd–

sequence requirement that pdDE (ai)
t ⊆ {a0, ..., ai−1}, it is easy to see that for every V ⊆ A′

s.t. V N(ai, pd
D
E (ai)), V ∩ {(a0, pdDE (a0)), ..., (ai−1, pd

D
E (ai−1))} 6= ∅. Thus, the powerful

conditions are satisfied and we can conclude that the presented sequence is powerful in
FND

AA.
Let now seq = ((b0, vb0), ..., (bm, vbm)) be a powerful sequence on a set S ⊆ A′ for

an argument (bm, vbm) ∈ S. Due to the fact that a given argument in A can have multiple
representations, it can happen that bi = bj even though i 6= j. The difference lies in the
choice of the accompanying decisively in interpretation. This duplication can also lead to
the use of decisively in interpretations in a powerful sequence that would never be used in
an acyclic pd–evaluation, as seen in Example 148. However, we will show that we can still
extract an acyclic pd–evaluation from ((b0, vb0), ..., (bm, vbm)). We will start by “purging”
seq.

Let seq′ be a subsequence of seq built in the following way. First, add (b0, vb0) to seq′.
It is easy to see that seq′ is a powerful sequence. Let us now consider (b1, vb1). Let now
(bi, vbi) be the first argument in seq s.t. bi 6= b0. Based on the construction of FND

AA and
the properties of a powerful sequence, we can observe that vtbi ⊆ {b0, ..., bi−1}. However,
since b0 = ... = bi−1, then vtbi ⊆ {b0}. Therefore, {(b0, vb0)} will still have an element in
common with every set supporting (bi, vbi) inN ′, assuming they even exist. Consequently,
we can add (bi, vbi) to seq′ and seq′ will still be a powerful sequence. We can now find the
first argument in seq that represents an argument different from b0 and bi. Let us assume
that it is (bj, vbj). It is easy to see that it appears later in the sequence than (bi, vbi). We can
repeat the previous line of reasoning in order to show that seq′ with (bj, vbj) added is still
a powerful sequence. We can continue in this manner until there are no further arguments
to add to seq′. We thus obtain a powerful subsequence of seq s.t. for every i 6= j, bi 6= bj ,
but for every (bk, vbk) in seq we can find (bp, (vbp)) in seq′ s.t. bp = bk, even though vbk
and vbp do not have to be the same. Moreover, we can observe that the last argument in seq
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and seq′ will correspond to the same argument in D. To the subsequence of a powerful
sequence of FND

AA obtained in this manner we will refer to as the purged subsequence.
Let now seq = ((b0, vb0), ..., (bm, vbm)) be a powerful sequence on a set S ⊆ A′ for an

argument (bm, vbm) ∈ S. Let seq′ = ((a0, va0), ..., (ak, vak)) be the purged subsequence
of seq. Based on the parts of the proof showing that seq′ is still a powerful sequence,
we can show that ((a0, ..., ak),

⋃k
i=0 v

f
ai

) is an acyclic pd–evaluation for ak on the set {a |
∃(c, vc) ∈ S s.t. c = a} in D.

Based on the relations between the powerful sequences and evaluations, we can
show that if S ⊆ A is a pd–acyclic set of D, then we can find a set S ′ =
{(a0, va0), ..., (an, van))} ⊆ A′ s.t. S =

⋃n
i=0{an}. Furthermore, we can also show that

if S ′ = {(a0, va0), ..., (an, van))} ⊆ A′ is a coherent set of FND
AA, then S =

⋃n
i=0{an} is

pd–acyclic in D.
Let S ⊆ A be a pd–acyclic conflict–free set of D. Every argument a ∈ S possesses

at least one acyclic pd–evaluation (F,B) on S s.t. B ∩ S = ∅. Let pdDS be the pd–
function with which (F,B) was created. For every b ∈ F we can create a pair (b, pdDS )
that will appear as an argument in A′ in FND

AA. By collecting all such pairs induced by
all the evaluations meeting our requirements we can create a set S ′ ⊆ A’ which, based
on the previous parts of this proof, will be coherent in FND

AA. In every evaluation we
had used, the blocking set was disjoint from S. Moreover, the f part of any interpretation
that appeared in the induced argument–interpretation pairs was contained in a blocking set
of an evaluation that we picked. Consequently, we can show that there are no elements
c, d ∈ S ′ s.t. cR′d. Therefore, S ′ is strongly coherent in FND

AA.
Let S ′ = {(a0, va0), ..., (an, van)} ⊆ A′ be a strongly coherent set of FND

AA and S =⋃n
i=0{ai} the associated set in D. By using previous parts of this proof, we can show

that S is coherent. Since S ′ is conflict–free in FND
AA, this means that for no arguments

(ai, vai), (aj, vaj) ∈ S ′ it is the case that vaj(ai) = f . We can therefore use previous
analysis and show that for every argument in S we can find an acyclic pd–evaluation on S
s.t. its blocking set is disjoint from S. Hence, S is a pd–acyclic conflict–free extension of
D.

Let S ⊆ A be an aa–admissible extension of D. We can observe that for every argu-
ment a ∈ S there exists an acyclic pd–evaluation (F,B) on S s.t. B ⊆ Sa+. Using the
previously described approach, we can extract argument–interpretation assignments from
these evaluations in order to construct a strongly coherent set S ′ ⊆ A′ in FND

AA. Let
us assume that this set is not admissible in FND

AA; this means there exists an argument
(b, vb) ∈ S ′, (c, vc) ∈ A′ s.t. (c, vc)R

′(b, vb) and a coherent set V ⊆ A′ containing (c, vc)
that is not attacked by S ′. We can observe that vb(c) = f based on the construction of
FND

AA. From V we can extract a powerful sequence for (c, vc) and then purge it in order
to obtain a sequence for (c, v′c). The pair (c, v′c) will still be attacking (b, vb) in R′. From
the purged sequence we can create an acyclic pd–evaluation for c with a blocking set dis-
joint from S. Therefore, c /∈ Sa+. However, since vfb ⊆ Sa+ and vb(c) = f , we reach a
contradiction with our construction. Therefore, we can conclude that S ′ is an admissible
extension of FND

AA.
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Let S ′ = {(a0, va0), ..., (an, van))} ⊆ A′ be an admissible set of FND
AA. By the pre-

vious parts of this proof we know that the associated set S =
⋃n
i=0{ai} is pd–acyclic

conflict–free in D. Let us assume it is not aa–admissible. This means there exists an ar-
gument b ∈ S that is not decisively in w.r.t. the acyclic range of S in D. Hence, for every
decisively in interpretation vb for b s.t. vtb ⊆ S, there exists an argument c ∈ vfb that is not
falsified in the acyclic range. This includes all interpretations for b that appeared with b
as a paired argument in S ′. If c is not falsified in the acyclic range, then by Lemma 2.128
it means it possess an acyclic pd–evaluation (F,B) on A s.t. B ∩ S = ∅. By using the
previous analysis we can observe that this evaluation will induce a corresponding power-
ful sequence in A′. We can also see that none of the arguments a0, ..., an are in B and B
corresponds to the f parts of the interpretations of arguments in F . Therefore, based on the
construction of FND

AA, it cannot be the case that S ′ attacks the powerful sequence created
from (F,B). Since we can construct such an attacker related to any decisively in interpre-
tation for b that could have been used in S ′, we can conclude that S ′ does not defend one
of its arguments. We reach a contradiction with the admissibility of S ′ in FND

AA. Hence,
it has to be the case that S is aa–admissible in D.

Let S ⊆ A be an aa–complete extension of D. Let S ′ = {(a, va) | a ∈ S and there
exists a pd–function pd on S and an acyclic pd–evaluation (F,B) for a on S created with
it s.t. B ⊆ Sa+ and pd(a) = va} be a set of arguments in FND

AA created in the same
fashion as in the admissible case. Although S ′ is admissible in FND

AA, it does not have to
be complete (see Example 148). We will therefore use an extended construction.

Let E = {(a, va) | a ∈ S, vta ⊆ S, vfa ⊆ Sa+} be the set argument–interpretation pairs
s.t. the acyclic range interpretation is a completion of every interpretation. We can observe
that S ′ ⊆ E . Since S ∩ Sa+ = ∅ by Lemma 2.128, then for no two (a, va), (b, vb) ∈ E it
can be the case that vb(a) = f . Therefore, we can show that E is conflict–free in FND

AA.
Let us now show it is coherent. By using the previous parts of the proof, we only need to
show that the arguments in E \S ′ possess a powerful sequence on E . We can observe that
S ′ can be represented as a single powerful sequence. Let now (a, va) be an argument in
E \ S ′. Due to the fact that both S ′ and E correspond to S, we can observe that for any
argument b ∈ vta, we can find an argument (b, vb) ∈ S ′. Consequently, E has an element
in common with every set of arguments supporting (a, va) in N ′. We can therefore append
(a, va) to the powerful sequence representing S ′ in order to obtain a powerful sequence for
(a, va) on E . Hence, we can show that E is coherent in FND

AA. We can repeat the previous
parts of this proof in order to show that E is also admissible in FND

AA.
Let us now assume that E is not complete in FND

AA. This means there exists an ar-
gument (a, va) ∈ A′ that is defended by E . Based on the coherence requirements of
defense and the construction of FND

AA, we can therefore observe that for every argument
b ∈ vta, there exists an argument (b, vb) ∈ E . We can also observe that for any argument
(c, vc) ∈ A′ s.t. va(c) = f , every powerful sequence for (c, vc) is attacked by E . We can
therefore show that every acyclic pd–evaluation for c is blocked through the blocking set
by S in D. Consequently, c is assigned f in the acyclic range interpretation (see Lemma
2.128). Therefore, vta ⊆ S and vfa ⊆ Sa+. If a ∈ S, we reach a contradiction with the
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construction of E . If a /∈ E , we reach a contradiction with aa–completeness of S in D.
Hence, we can conclude that if S is aa–complete in D, then E is complete in FND

AA.
Let now S ′ ⊆ A′ be a complete extension of FND

AA and S its associated aa–admissible
set inD. Assume that S is not aa–complete; this means there exists an argument a ∈ A\S
that is decisively in w.r.t. the acyclic range interpretation vaS of S. We can therefore
observe that vaS is a completion of a minimal decisively in interpretation va for a. Due to
the fact that vta ⊆ S, then for any argument b ∈ vta, we can find an argument (b, vb) ∈ S ′.
Therefore, we can show that S ′ ∪ (a, va) is coherent in FND

AA. Now, due to the fact that
vfa ⊆ Sa+, then every acyclic pd–evaluation for every argument c ∈ vfa is blocked through
the blocking set by S. Thus, we can reuse the previous parts of the proof to show that
every powerful sequence for argument (c, vc) ∈ A′ is attacked in S ′. Hence, S ′ defends
(a, va), and as (a, va) /∈ S ′ (otherwise a would have been in S), we reach a contradiction
with the completeness of this set in FND

AA. Hence, if S ′ is complete in FND
AA, then S is

aa–complete in D.
Let S ⊆ A be an aa–complete extension of D. Let us assume there exist two different

complete extensions E ,E ′ ⊆ A′ of FND
AA s.t. {a | (a, va) ∈ E} = {b | (b, vb) ∈ E ′} (i.e.

they both correspond to S). Therefore, there exists an argument (a, va) ∈ A′ s.t. (a, va) ∈
E \ E ′ or (a, va) ∈ E ′ \ E . Let us focus on the first case. Due to the completeness of
E ′, it must be the case that it does not defend (a, va). Based on the construction of FND

AA

and the fact that both sets correspond to the same set of arguments in D, we can show that
if E ∪ (a, va) is coherent, then so is E ′ ∪ (a, va). Consequently, if E ′ does not defend
(a, va), there must exist an argument (c, vc) with a powerful sequence on A′ unattacked
by E ′ s.t. va(c) = f . In other words, there is a powerful sequence ((c0, vc0), ..., (cn, vcn))
for (c, vc) s.t. for no argument d ∈

⋃n
i=0 v

f
ci

, there is an element (d, vd) ∈ E ′. However,
since {a | (a, va) ∈ E} = {b | (b, vb) ∈ E ′}, then it cannot be the case that E attacks this
sequence for (c, vc). Consequently E cannot defend (a, va) and we reach a contradiction.
We can conclude that every argument in E is contained in E ′. We can adapt this proof to
show that every argument in E ′ is contained in E as well. This means that E = E ′ and we
reach a contradiction with our assumptions. Hence, the relation between the aa–complete
extensions of D and the complete extension of FND

AA is one–to–one.
Let now S, S ′ ⊆ A be two aa–complete extensions of D and E ,E ′ ⊆ A′ their associ-

ated complete extensions of FND
AA. We will show that S ⊂ S ′′ iff E ⊂ E ′.

Let S be a subset of S ′. By using Lemma 2.128, we can show that the acyclic range of
S ′ is a completion of the acyclic range of S. Consequently, if the acyclic range of S is a
completion of a decisively in interpretation for an argument a ∈ S, then so is the range of
S ′. Hence, E ⊆ E ′. We can observe that S ′ contains at least one argument b not present in
S. Therefore, there will be an argument (b, vb) ∈ E ′ that is not in E , and we can conclude
that E ⊂ E ′.

Let E be a subset of E ′. Therefore, {a | (a, va) ∈ E} ⊂ {b | (b, vb) ∈ E ′}. From
this follows that S ⊆ S ′. However, based on the proved one–to–one relation between the
complete extensions of D and FND

AA, we can see it cannot be the case that S = S ′. Thus,
it holds that S ⊂ S ′.
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By using the one–to–one and monotonicity relations between the complete exten-
sions of D and FND

AA and Theorems 2.95 and 2.158, we can show that the preferred
and grounded extensions of D and FND

AA are related in the way stated in our theorem. 2
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