
TE C H N I C A L

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Multiparametric View on Answer Set
Programming

DBAI-TR-2016-99

Johannes K. Fichte, Martin Kronegger, Stefan Woltran

DBAI TECHNICAL REPORT

2016

1

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2016-99, 2016

Multiparametric View on Answer Set Programming

Johannes K. Fichte 1 Martin Kronegger 1

Stefan Woltran 1

Abstract. Disjunctive answer set programming (ASP) is one of the fundamental reasoning
tasks. Even the consistency problem, i.e., asking whether a given program has an answer set,
is on the second level of the polynomial hierarchy. Thus, understanding the computational
complexity and in particular the search for tractable fragments is of great importance for the
design of efficient algorithms. During the last decades different approaches have been used
find such tractable fragments. One such approach is by parameterized complexity theory.
However, in the past, the full potential of this approach has not been used since only one or
very few parameters have been considered at once.
In this paper, we close this gap by considering several natural parameters for the consistency
problem of disjunctive ASP. Therefore, we also take the size of the answer set into account.
Such a restriction is particularly interesting for applications that require small solutions.
Further, we investigate on the main reasoning problems (brave and skeptical reasoning) of
propositional answer set programming also taking the size of the answer sets into account.
We show several novel fixed-parameter tractability (fpt) results based on combinations of
parameters, XP-membership results and a variety of hardness results (para-NP, W[2], and
W[1]-hardness) for the problems mentioned above. Several of these results are obtained by
novel reductions to the Weighted Minimal Models Satisfiability problem (WMMSAT).

Keywords: answer set programming, propositional satisfiability

1TU Wien, Austria. E-mail: {jfichte, kronegger, woltran}@dbai.tuwien.ac.at

Acknowledgements: The authors gratefully acknowledge support by the Austrian Science Fund
(FWF), Grant Y698. The first author is also affiliated with the Institute of Computer Science and
Computational Science at University of Potsdam, Germany.

Copyright c© 2016 by the authors

TECHNICAL REPORT DBAI-TR-2016-99 2

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Propositional Satisfiability . 7
2.2 Answer Set Programming . 7
2.3 Parameterized Complexity . 10

3 Considered Parameters 13

4 Hardness Results 16

5 Membership Results 22

6 Conclusion 33

TECHNICAL REPORT DBAI-TR-2016-99 3

1 Introduction
Answer set programming (ASP) is an important framework for declarative modelling and problem
solving (Gebser et al., 2012; Marek and Truszczyński, 1999; Niemelä, 1999). In propositional ASP,
a problem is described in terms of a logic program consisting of rules over propositional atoms.
Answer sets, which are sometimes also referred as stable models, are then the solutions to such a
logic program. Over the last years, many important problems, in particular, originating from the
field of AI and reasoning have succinctly been represented and successfully been solved within the
ASP framework, even at industrial scale, e.g., (Gebser et al., 2013), (Gebser et al., 2012b; Pontelli
et al., 2012; Ricca et al., 2012), (Gebser et al., 2011). An important feature that contributes to
the popularity of ASP as declarative modelling framework is its rich modeling language, which
includes extended (choice, cardinality, weight constraint) rules and first-order programs. In fact,
these programs can be transformed into propositional programs without extended rules (Abiteboul
et al., 1995; Gebser et al., 2007; Niemelä et al., 1999; Syrjänen, 2009).

Several ASP solvers have been developed and their efficiency made huge improvements to
ASP solving; among them Clasp (Drescher et al., 2008; Gebser et al., 2012a, 2013; Kaufmann
et al., 2015), DLV (Leone et al., 2006), and WASP (Alviano et al., 2013). However, computational
problems for disjunctive, propositional ASP (such as deciding whether a program has a solution, or
whether a certain atom is contained in at least one or in all solutions) are complete for the second
level of the Polynomial Hierarchy (Eiter and Gottlob, 1995). Thus, propositional ASP problems are
harder than NP and therefore have a higher worst-case complexity compared to CSP and SAT.

When comparing the theoretical results with the performance of nowadays solvers, a huge gap
becomes visible: theoretical results showing computational hardness and solvers being able to solve
big real-world instances quickly. Unfortunately, there is little theoretical knowledge why modern
solvers can deal with many real-world instances (see e.g., (Vardi, 2014) for SAT) efficiently. It is
widely believed that these solvers exploit the presence of “hidden structure”, see e.g., (Biere et al.,
2009). Several results have been established to improve on the theoretical understanding of the
effectiveness of modern SAT solvers. Among them are results by Ansótegui et al. (2008); Atserias
et al. (2011); Biere et al. (2009); Gaspers and Szeider (2012); Gomes et al. (2008); Pipatsrisawat and
Darwiche (2011); Williams et al. (2003a,b). In ASP theoretical results, in particular in computational
complexity (Fichte and Szeider, 2015a,b; Gottlob et al., 2010; Jakl et al., 2009; Pichler et al., 2014),
have been carried out to overcome this gap. However, most of these results consider hidden structure
in terms of a single structural property. In the field of AI, a more fine-grained complexity analysis
where hidden structure may consist of a combination of various structural properties has also been
established for problems such as weighted minimal model satisfiability (WMMSAT) (Lackner and
Pfandler, 2012b) and planning (Kronegger et al., 2013). The problem WMMSAT asks to decide
given two propositional (CNF) formulas Fmin and Fcons and an integer k whether there is a minimal
model M of Fmin that sets at most k variables to true and also satisfies Fcons.

In this paper, we study the computational complexity of propositional disjunctive ASP and
consider several combinations of structural properties at once. Since the problem WMMSAT and
ASP are quite related in terms of their problem questions, we start from results by Lackner and
Pfandler (2012b) for WMMSAT, transform several of these results to ASP, point out limitations

TECHNICAL REPORT DBAI-TR-2016-99 4

where the methods used for WMMSAT are insufficient and require to take additional structural
properties into account, and finally extend them accordingly.

A mathematical framework that allows for capturing the notion of hidden structure is parameter-
ized complexity theory (Cygan et al., 2015; Downey and Fellows, 1999, 2013; Downey et al., 1999;
Flum and Grohe, 2006; Niedermeier, 2006). A complexity analysis in parameterized complexity
provides a multivariate view of complexity by considering the size n of an instance together with an
integer value (the parameter k) that describes properties of a given input instance. The parameter
can describe (or limit) properties of an instance such as the solution size, the treewidth (Bodlaen-
der, 1993; Robertson and Seymour, 1984), clique-width (Courcelle and Olariu, 2000), size of a
smallest backdoor (Fichte and Szeider, 2015a; Williams et al., 2003a,b), or even combinations
thereof. A more fine grained complexity analysis gives hope to identify techniques and structural
properties of instances that enable us to solve a problem instance sufficiently fast in practice and
thus provide a theoretically in-depth explanation of what makes a problem hard or easy to solve.
A fundamental concept of parameterized complexity is fixed-parameter tractability, which relaxes
classical polynomial-time tractability in such a way that all non-polynomial parts depend only on
the size of the parameter and not on the size of the input. In more detail, fixed-parameter tractable
problems can be solved in time f (k) ·nO(1) by an algorithm, where f (k) is a computable function
depending on the parameter k only, such an algorithm is called fpt-algorithm. The exponential
runtime is thus confined to the parameter, i.e., the function f (k). An fpt-algorithm can be considered
sufficiently fast as long as the parameter values of an instance are relatively low. In principle,
any (natural) characteristic of problem instances is worth considering as parameter. Of course,
there is no guarantee that a particular parameter permits an fpt-algorithm. However, parameterized
complexity also offers methods to establish strong theoretical evidence that such an fpt-algorithm is
not possible.

In this work, we use parameterized complexity to obtain a fine-grained complexity analysis
and improve on the theoretical understanding of the computational complexity in ASP under a
multiparametric view. Previous work in ASP mostly considered a parameter that describes a single
structural property. In contrast, we identify several natural parameters and various combinations
thereof based on results for WMMSAT (Lackner and Pfandler, 2012b). This allows us to draw a
detailed map for various combined ASP parameters.

Main Contributions
Our main contributions can be summarized as follows:

1. We provide a parameterized complexity analysis for fundamental ASP problems that respects
various combinations of natural ASP parameters, which allows us to draw a detailed map for
a multivariate view on ASP complexity.

2. We study main ASP problems that also take the size of the answer set into account. Such a
restriction is particularly interesting for applications that require small solutions. To the best
of our knowledge, the analysis of ASP so far mainly focused on arbitrary large answer sets.

TECHNICAL REPORT DBAI-TR-2016-99 5

More specifically, we provide the following novel contributions: After giving some preliminary
explanations on propositional satisfiability, answer set programming, and parameterized complexity
in Section 2, we formally define the considered parameters in Section 3. We then turn our attention
to the hardness results presented in Section 4. It will turn out that the hardness results hold for
the problems k-CONSISTENCY, CONSISTENCY, k-BRAVE REASONING, BRAVE REASONING,
k-SKEPTICAL REASONING, and SKEPTICAL REASONING. In particular, we present a para-NP-,
three W[2]- and three W[1]-hardness results for each of the problems. In Section 5, we then present
several novel membership results for k-CONSISTENCY. In that section, we first show how known
results for backdoors relate to our setting and then illustrate how to use known tractability results
for WMMSAT in order to obtain tractability results for our settings.

Related Work
Gottlob et al. (2002) have provided fixed-parameter tractability results of several problems in
artificial intelligence and non-monotonic reasoning. Gottlob and Szeider (2008) presented a survey
on parameterized complexity of problems in artificial intelligence, database theory and automated
reasoning. Various parameters have been considered in the literature for ASP.1 Some of these
results already provide fixed-parameter tractability. The considered parameters include the number
of atoms of a normal program that occur in negative rule bodies (Ben-Eliyahu, 1996), the number of
non-Horn rules of a normal program (Ben-Eliyahu, 1996), the size of a smallest feedback vertex set
in the dependency digraph of a normal program (Gottlob et al., 2002), the number of cycles of even
length in the dependency digraph of a normal program (Lin and Zhao, 2004), the maximum size of
heads, positive, or negative bodies (Truszczyński, 2011), the treewidth of the incidence graph of a
disjunctive program (Jakl et al., 2009; Morak et al., 2010), the size of backdoors into various target
classes (Fichte and Szeider, 2015b), and the clique-width of the dependency graph, the incidence
graph, or the signed incidence graph of a program (Bliem et al., 2016). and a combination of two
parameters: the length of the longest cycle in the dependency digraph and the treewidth of the
interaction graph of a head-cycle-free program (Ben-Eliyahu and Dechter, 1994). Furthermore,
several experiments regarding the size of the backdoors of ASP instances were performed (Fichte,
2015). Interestingly, some of the instances were obtained through ASP-encodings of planning
instances. Recently, backdoors have also been used to construct parameterized reductions to SAT
for problems harder than NP such as ASP (Fichte and Szeider, 2015a) and Abduction (Pfandler
et al., 2013).

In various areas of reasoning and graph theory, systematic parameterized complexity analyses
by considering all combinations of several problem parameters have recently been conducted. For
instance, the parameterized complexity of abduction was studied by Gottlob and Szeider (2008)
and by Fellows et al. (2012), of circumscription by Lackner and Pfandler (2012a), of constraint
satisfaction by Samer and Szeider (2010), of planning by Kronegger et al. (2013), of subgraph
isomorphism by Marx and Pilipczuk (2014), and of handling minimal models by Lackner and
Pfandler (2012b). So far there has been no rigorous study of disjunctive ASP within the framework
of parameterized complexity.

1Several results are not stated in terms of parameterized complexity, but can be defined in terms of such.

TECHNICAL REPORT DBAI-TR-2016-99 6

The rich modeling language of ASP is an important feature that contributes to the popularity
of ASP as declarative modelling framework, which includes in the core language extended and
first-order programs. Extended programs allow for so-called choice rules, cardinality, and weighted
constraint rules (Niemelä et al., 1999). First-order programs, which are also known as non-
ground programs, allow for a restricted form of first-order variables. Usually, first-order variables
are systematically instantiated by means of grounding techniques within common ASP solvers
and hence are transformed into a propositional program (Abiteboul et al., 1995; Gebser et al.,
2007; Syrjänen, 2009). Extended rules can be transformed into rules that contain no choice, no
cardinality, and no weighted constraint rules (Bomanson et al., 2014; Janhunen and Niemelä, 2011;
Niemelä et al., 1999). In this work, we assume that answer set programs contain no choice, no
cardinality, no weighted constraint rules, and are grounded.

TECHNICAL REPORT DBAI-TR-2016-99 7

2 Preliminaries
In this section, we give definitions that are used throughout this work. We start with some general
concept and pointers to the standard literature for complexity theory. Then, we give an introduction
to answer set programming in Section 2.2, followed by an introduction to parameterized complexity
theory, in Section 2.3.

We assume that the reader is familiar with complexity theory, in particular, algorithms, (decision)
problems, and complexity classes (Arora and Barak, 2009; Goldreich, 2008; Papadimitriou, 1994).

2.1 Propositional Satisfiability
First, we need some notions from propositional satisfiability. We consider a universe U of proposi-
tional variables. Note that we usually say variable instead of atom in the context of formulas. A lit-
eral is a variable x or its negation ¬x. We sometimes use the notation x0 for ¬x and x1 for x. A clause
is a finite set of literals, interpreted as the disjunction of these literals. A propositional formula in
conjunctive normal form (CNF) is a finite set of clauses, interpreted as the conjunction of its clauses.
A truth assignment (or simply an assignment) is a mapping τ : X →{0,1} defined for a set X ⊆U
of variables (atoms). For x ∈ X , we define τ(¬x) = 1− τ(x). By 2X we denote the set of all truth
assignments τ : X → {0,1}. By τ−1(b) we denote the preimage τ−1(b) := {a : a ∈ X ,τ(a) = b}
of the truth assignment τ for some truth value b ∈ {0,1}. The truth assignment reduct of a CNF
formula F with respect to τ ∈ 2X is the CNF formula Fτ obtained from F by first removing all
clauses c that contain a literal set to 1 by τ , and then removing from the remaining clauses all
literals set to 0 by τ . A truth assignment τ satisfies a given CNF formula F if Fτ = /0. Moreover, F
is satisfiable if it is satisfied by some truth assignment τ . We refer to other sources (Biere et al.,
2009; Kleine Büning and Lettman, 1999) for further definitions.

2.2 Answer Set Programming
Let U be a universe of propositional atoms. A literal is an atom a ∈ U or its negation ¬a. A
disjunctive logic program (or simply a program) P is a set of rules of the form

a1∨ . . .∨al ← b1, . . . ,bn,¬c1, . . . ,¬cm

where a1, . . . ,al,b1, . . . ,bn,c1, . . . ,cm are atoms and l,n,m are non-negative integers. Further, let H,
B+, and B− map rules to sets of atom such that for a rule r we have H(r) = {a1, . . . ,al} (the
head of r), B+(r) = {b1, . . . ,bn} (the positive body of r), and B−(r) = {c1, . . . ,cm} (negative
body of r). We denote the sets of atoms occurring in a rule r or in a program P by at(r) =
H(r)∪B+(r)∪B−(r) and at(P) =

⋃
r∈P at(r), respectively. We write occp(a) := {r ∈ P : a∈ at(r)}.

We denote the number of rules of P by |P|= |{r : r ∈ P}|. The size ‖P‖ of a program P is defined
as ∑r∈P |H(r)|+ |B+(r)|+ |B−(r)|.

A rule r is positive (basic/negation-free) if B−(r) = /0, r is normal if |H(r)| ≤ 1, r is a constraint
(integrity rule) if |H(r)| = 0, r is constraint-free if |H(r)| > 0, r is Horn if it is positive and
normal or a constraint, r is definite Horn if it is Horn and constraint-free, r is tautological if

TECHNICAL REPORT DBAI-TR-2016-99 8

B+(r)∩ (H(r)∪B−(r)) 6= /0, and non-tautological if it is not tautological, r is positive-body-free
if B+(r) = /0, and r is a fact if r is definite and (B+(r)∪B−(r)) = /0. We say that a program has a
certain property if all its rules have the property. Horn refers to the class of all Horn programs. We
denote the class of all normal programs by Normal. Pos+Cons refers to the class of all programs
where positive rules and arbitrary constraint rules (may also contain negative atoms) are allowed.
A normal program P is stratified if there is a mapping str : at(P)→ N, called stratification, such
that for each rule r in P the following holds: (i) if x ∈ H(r) and y ∈ B+(r), then str(x)≤ str(y) and
(ii) if x ∈H(r) and y ∈ B−(r), then str(x)< str(y) (see, for example, (Apt et al., 1988; Chandra and
Harel, 1985; Gelder, 1989)). We denote the class of all stratified programs by Strat. Let P and
P′ be programs. We say that P′ is a subprogram of P (in symbols P′ ⊆ P) if for each rule r′ ∈ P′

there is some rule r ∈ P with H(r′)⊆ H(r), B+(r′)⊆ B+(r), B−(r′)⊆ B−(r). Let P ∈Horn, we
write Constr(P) for the set of constrains of P and DH(P) = P \Constr(P). We also identify the
parts of a program P consisting of proper rules as Pr = {r ∈ P : H(r) 6= /0} and constraints as
Pc = P\Pr. In this paper we are particularly interested in the following class. We occasionally write
⊥ if H(r) = /0. If B+(r)∪B−(r) = /0, we simply write H(r) instead of H(r)← /0, /0. We also write
H(P) :=

⋃
r∈P H(r), B−(P) :=

⋃
r∈P B−(r).

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩M 6= /0 or B+(r)\M 6= /0. M is a model
of P if it satisfies all rules of P. The Gelfond-Lifschitz (GL) reduct of a program P under a set M of
atoms is the program PM obtained from P by first removing all rules r with B−(r)∩M 6= /0 and then
removing all ¬z where z ∈ B−(r) from the remaining rules r (Gelfond and Lifschitz, 1991). M is an
answer set (or stable model) of a program P if M is a minimal model of PM. In other words, we
consider a subset M of atoms of P as a “candidate” for an answer set. By default we interpret all
atoms in M as “positive literals” and all others as “negative literals”. The GL reduct establishes a
semantics which treats the negative body of a rule in such a way that the positive literals naturally
behave as exceptions for the implication, e.g., the rule a← b,¬c reads as b implies a unless c
belongs to M. The negative literals that occur in negative bodies of a rule have no effect on the rule
(negative atoms are simply removed to construct PM). The positive literals that occur in a literal
of the negative body of a rule, however, effect the entire rule as an occurring exception (the entire
rule is removed to construct PM). M is an answer set if M is a minimal model after considering
exceptions. We denote by AS(P) the set of all answer sets of P and for some integer k ≥ 0 by
ASk(P) the set of all answer sets of P of size at most k.

In the following, we restrict ourselves for simplicity of exposition to programs that do not
contain any tautological rules. This restriction is not significant as tautological rules can be omitted
from a program without changing its answer sets (Brass and Dix, 1998), i.e., AS(P) = AS(P′)
where P′ is a program obtained from P′ by removing all tautological rules (Brass and Dix, 1998;
Eiter et al., 2004).

It is well known that normal Horn programs have a unique answer set or no answer set and
that this set can be found in linear time. Note that every definite Horn program P has a unique
minimal model which equals the least model LM(P) (Gelfond and Lifschitz, 1988). Dowling and
Gallier (1984) have established a linear-time algorithm for testing the satisfiability of propositional
Horn formulas which easily extends to Horn programs. Further, Niemelä and Rintanen (1994) have

TECHNICAL REPORT DBAI-TR-2016-99 9

shown that stratified programs have at most one answer set, which can be found in linear-time. In
the following, we state the well-known linear-time results.

Lemma 1 Every program in {Horn, Strat} has at most one minimal model which can be found in
linear time.

Observation 2 (Folkore) Let P be a program and M be an answer set of P, then

1. M ⊆
⋃

r∈H(r)H(r) and

2. |M| ≤ |Pr|.

Observation 3 (Folklore) Let P be a program and M be a minimal model of PM. Then M is a
minimal model of P.

Proof. Assume that M is a minimal model of PM. By definition of an answer set for each rule r ∈ P
we have (i) B−(r)∩M 6= /0 or (ii) there is a corresponding rule r′ ∈ PM such that H(r) = H(r′),
B+(r) = B+(r′), and B−(r′) = /0. If Case (i) holds, M satisfies r. If Case (ii) holds, M satisfies r′ as
M is a minimal model of PM. Thus, M also satisfies r. Consequently, M satisfies every r ∈ P and is
hence a model of P.

In order to show that no proper subset of M is a model of P choose arbitrarily a proper subset N (
M. Since M is a minimal model of PM, N cannot be a minimal model of PM. Consequently, there
must be a rule r ∈ P such that B−(r)∩M = /0 (i.e., r is not deleted by forming PM), B+(r) ⊆ N
and H(r)∩N = /0. Since N (M and B−(r)∩M = /0, we obtain B−(r)∩N = /0. Hence, (H(r)∩
B−(r))∩N = /0 and B+(r)\N 6= /0. Thus, N does not satisfy r and is consequently not a model of P.
We conclude that M is a minimal model of PM. �

In this work, we consider the following fundamental ASP problems.

Problem: k-CHECKING

Input: A program P, an integer k, and a set M ⊆ at(P) such that |M| ≤ k.
Task: Decide whether M is an answer set of P.

Problem: k-CONSISTENCY

Input: A program P and an integer k.
Task: Decide whether P has an answer set of size at most k.

Problem: k-BRAVE REASONING

Input: A program P, an atom a ∈ at(P), and an integer k.
Task: Decide whether P has an answer set M of size at most k such that a ∈M.

Problem: k-SKEPTICAL REASONING

Input: A program P, an atom a ∈ at(P), and an integer k.
Task: Decide whether a belongs to every answer set of size at most k of P.

We refer to the problems as CHECKING, CONSISTENCY, BRAVE REASONING and SKEPTICAL

REASONING, respectively, if the integer k can be arbitrarily large.

TECHNICAL REPORT DBAI-TR-2016-99 10

2.3 Parameterized Complexity
In this section we give some background on parameterized complexity. For more detailed infor-
mation we refer to other sources (Cygan et al., 2015; Downey and Fellows, 1999, 2013; Flum and
Grohe, 2006; Niedermeier, 2006). An instance of a parameterized problem L is a pair (I,k)∈ Σ∗×N
for some finite alphabet Σ. For an instance (I,k) ∈ Σ∗×N we call I the main part and k the parame-
ter. ‖I‖ denotes the size of I. L is fixed-parameter tractable if there exist a computable function f
and a constant c such that we can decide by an algorithm whether (I,k) ∈ L in time O(f (k)‖I‖c).
Such an algorithm is called an fpt-algorithm. If L is a decision problem, then we identify L with the
set of all yes-instances (I,k). FPT is the class of all fixed-parameter tractable decision problems.

Let L ⊆ Σ∗×N and L′ ⊆ Σ′∗×N be two parameterized decision problems for some finite
alphabets Σ and Σ′. An fpt-reduction r from L to L′ is a many-to-one reduction from Σ∗×N to
Σ′∗×N such that for all I ∈ Σ∗ we have (I,k) ∈ L if and only if r(I,k) = (I′,k′) ∈ L′ such that
k′ ≤ g(k) for a fixed computable function g : N→ N and there is a computable function f and
a constant c such that r is computable in time O(f (k)‖I‖c) (Flum and Grohe, 2006). Thus, an
fpt-reduction is, in particular, an fpt-algorithm. It is easy to see that the class FPT is closed under
fpt-reductions. It is clear for parameterized problems L1, and L2 that if L1 ∈ FPT and there is an
fpt-reduction from L2 to L1, then L2 ∈ FPT. We would like to note that the theory of fixed-parameter
intractability is based on fpt-reductions (Downey and Fellows, 1999, 2013; Flum and Grohe, 2006).

Parameterized complexity also facilitates hardness theory to rule out the existence of fpt-
algorithms. Next, we will define several parameterized complexity classes capturing fixed-
parameter intractability needed in this work. For this we first define the model-checking prob-
lem over Σt,u formulas, MC[Σt,u]. The class Σt,u contains all first-order formulas of the form
∃x1∀x2∃x3 . . .Qxtϕ(x1, . . . ,xt), where the formula ϕ is quantifier free and the quantifier Q is an ∃ if
t is odd and a ∀ if t is even, and the quantifier blocks – with the exception of the first ∃ block – are
of length at most u. We write Σ1 to denote Σ1,u for arbitrary u≥ 1. The problem MC[Σt,u] is then
defined as follows.

Problem: MC[Σt,u]
Input: A finite structure A and a formula ψ ∈ Σt,u.
Task: Decide whether A is a model of ψ , i.e., A |= ψ .

The so-called W-hierarchy can be defined with help of the problem MC[Σt,u]. For t ≥ 1,u ≥ 1,
the class W[t] contains all problems that are fpt-reducible to MC[Σt,u] when parameterized by
the length of ψ (Downey et al., 1998; Flum and Grohe, 2005). Showing W[1]-hardness for a
problem rules out the existence of a fixed-parameter algorithm under the usual complexity theoretic
assumption FPT 6= W[1].

The class XP of non-uniform polynomial-time tractable problems consists of all parameterized
decision problems that can be solved in polynomial time if the parameter is considered constant.
That is, (I,k) ∈ L can be decided in time O(‖I‖ f (k)) for some computable function f .

Parameterized complexity theory also offers complexity classes for problems that lie higher
in the polynomial hierarchy. Let C be a classical complexity class, e.g., NP. The parameterized
complexity class para-C is then defined as the class of all parameterized problems L⊆ Σ∗×N, for

TECHNICAL REPORT DBAI-TR-2016-99 11

some finite alphabet Σ, for which there exist an alphabet Π, a computable function f : N→ Π∗,
and a problem P ⊆ Σ∗×Π∗ such that P ∈ C and for all instances (x,k) ∈ Σ∗×N of L we have
that (x,k) ∈ L if and only if (x, f (k)) ∈ P. Intuitively, the class para-C consists of all problems that
are in C after a precomputation that only involves the parameter (Flum and Grohe, 2003). The
class para-NP can also be defined via non-deterministic fpt-algorithms, i.e., para-NP contains all
parameterized decision problems L such that (I,k) ∈ L can be decided non-deterministically in
time O(f (k)‖I‖c) for some computable function f and constant c (Flum and Grohe, 2006). A
parameterized decision problem is para-NP-complete if it is in NP and NP-complete when restricted
to finitely many parameter values (Flum and Grohe, 2006). For parameterizations of problems that
are harder than NP (like the main reasoning problems of propositional disjunctive ASP) para-NP-
completeness is a desirable property as it allows us to exploit the parameter to solve the problem for
small parameter values more efficiently.

For our results we will need the definition of the following two problems. The problem WSAT≤
is defined as follows.

Problem: WEIGHTED SATISFIABILITY (WSAT≤)
Input: A CNF formula ϕ and some integer k
Task: Decide whether ϕ has a model M ⊆ var(ϕ) of cardinality |M| ≤ k

It is well-known that different variations of WSAT≤ can be used to define the W-hierarchy (see,
e.g., the work of Flum and Grohe (2006)). The problem WMMSAT is defined as follows.

Problem: WEIGHTED MINIMAL MODEL SATISFIABILITY (WMMSAT)
Input: Two CNF formulas ϕ and π where var(π)⊆ var(ϕ) and some integer k
Task: Decide whether ϕ has a minimal model M ⊆ var(ϕ) of cardinality |M| ≤ k

such that M is also a model of π .

The parameterized complexity of these problems has been studied in the work of (Lackner and
Pfandler, 2012b). In their work, they have considered the parameters as listed in Table 1. Several
hardness and tractability results for combined parameter turn out to be useful to show hardness and
tractability results for the considered ASP problems.

TECHNICAL REPORT DBAI-TR-2016-99 12

k maximum weight of the minimal model
d maximum clause size
d+,d− maximum positive / negative clause size
h number of non-horn clauses
b minimum size of strong Horn backdoor set
o maximum number of occurrences of a variable in ϕ

p maximum number of positive occurrences of a variable in ϕ

v+,v− number of variables that occur as positive / negative literals in ϕ or in π

|ϕ| number of clauses in ϕ

|π| number of clauses in π

d+
π maximum positive clause size in π

||π|| length of π , i.e., the total number of variable occurrences in π

Table 1: List of considered parameters in the work of Lackner and Pfandler (2012b) for the problems
WSAT and WMMSAT.

TECHNICAL REPORT DBAI-TR-2016-99 13

k maximum size of an answer set
maxsizer

H,B+,B− maximum size of a non-constraint rule
maxsizer

H,B− maximum size of the head and negative body of a rule
maxsizeH maximum size of the head of a rule
maxsizer

B+ maximum size of the positive body of a non-constraint rule
maxsizer

B− maximum size of the negative body of a rule
maxsizec

B+ maximum size of the positive body of a constraint
maxsizec

B− maximum size of the negative body of a constraint
#non-Hornr number of non-(definite Horn) rules
maxoccr

H,B+,B− maximum number of occurrences of a variable in Pr

maxoccr
H,B− maximum number of occurrences of a variable in Pr when

only the head and negative-body occurrences are counted
#atH number of atoms that occur in the head
#atB+ number of atoms that occur in the positive body
#atB− number of atoms that occur in the negative body
|Pr| number of rules in Pr
|Pc| number of rules in Pc
||Pc|| the total number of variable occurrences in Pc

Table 2: List and informal description of the considered parameters.

3 Considered Parameters
In this section, we introduce a list of ASP-parameters, which mainly originate from earlier work
for WMMSAT, for our parameterized complexity analysis. In particular, we are interested in
parameter combinations. Table 2 contains a list of the considered parameters and their intuitive
description. Note that all considered parameters can be computed in polynomial time. A more
formal descriptions is given below. Therefore, let P be a program and X ⊆ {H,B+,B−} where H,
B+, and B− are mappings defined as in Section 2.2. We omit P if the program is clear from the
context. Further, let

atX ,r :=∪ f∈X f (r)
#atX :=|∪r∈P atX ,r|

maxsizer
X :=max

{
∑

f∈X ,r′∈P
| f (r′)| : |H(r′)|> 0

}
maxsizec

X :=max
{

∑
f∈X ,r′∈P

| f (r′)| : |H(r′)|= 0
}

#non-Hornr :=|{r′ : r′ ∈ P,r′ not Horn}|
maxoccr

X :=max
{

i : a ∈ at(P), i = ∑
f∈X ,r′∈P, |H(r′)|>0

|{a : a ∈ f (r′)}|
}

TECHNICAL REPORT DBAI-TR-2016-99 14

Parameter Comparison
Let p and q be ASP parameters. We say that p dominates q (in symbols p� q) if there is a function
f such that p(P) ≤ f (q(P)) holds for all programs P. The parameters p and q are similar (in
symbols p ∼ q) if p � q and q � p. The parameter p strictly dominates q (in symbols p ≺ q) if
p� q but not q� p, and p and q are incomparable (in symbols p ./ q) if neither p� q nor q� p.

We now list some parameter dependencies that are useful for our results. Note, however, that
this list is not complete.

Lemma 4 The following parameter dependencies hold:

(1) maxsizer
H,B− �maxsizer

H,B+,B−

(2) maxsizeH �maxsizer
H,B+,B−

(3) maxsizer
B+ �maxsizer

H,B+,B−

(4) maxsizer
B− �maxsizer

H,B+,B−

(5) maxsizeH �maxsizer
H,B−

(6) maxsizer
B− �maxsizer

H,B−

(7) maxsizer
B+ � #atB+

(8) maxsizeH � #atH

(9) k � |Pr|

(10) #non-Hornr � |Pr|

(11) maxoccr
H,B− �maxoccr

H,B+,B−

(12) maxoccr
H,B+,B− � |Pr|

(13) maxsizec
B− � ||Pc||

(14) |Pc| � ||Pc||

Proof. Most dependencies trivially follow from the definition of the parameters. Concerning (12),
notice that maxoccr

H,B+,B− ≤ 3 · |Pr|. �

15

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

D
B

A
I-T

R
-2016-99

15

Problem Parameter Result Reference

k-CONSISTENCY

maxsizer
H,B+,B−+maxoccr

H,B+,B−+#atB+ + |Pc|+maxsizec
B−+ ||Pc|| para-NP Thm. 6 (Statement 1, p. 16)

k+maxsizer
B−+maxsizec

B+ +maxsizec
B− W[2] Thm. 6 (Statement 2, p. 16)

k+maxsizer
B+ +#atB+ + |Pc|+maxsizec

B−+ ||Pc|| W[2] Thm. 6 (Statement 3, p. 16)
k+maxsizer

B+ +#non-Hornr +maxoccr
H,B+,B−+#atB+ + |Pr| W[2] Thm. 6 (Statement 4, p. 16)

k+maxsizer
B+ +#non-Hornr +maxoccr

H,B−+ |Pc|+maxsizec
B−+ ||Pc|| W[1] Thm. 6 (Statement 5, p. 16)

maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pc|+maxsizec
B−+ ||Pc|| W[1] Thm. 6 (Statement 6, p. 16)

k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pr|+maxsizec
B− W[1] Thm. 6 (Statement 7, p. 16)

CONSISTENCY,
k-BRAVE REASONING,
BRAVE REASONING,
k-SKEPTICAL

REASONING, and
SKEPTICAL

REASONING

maxsizer
H,B+,B−+maxoccr

H,B+,B−+#atB+ + |Pc|+maxsizec
B−+ ||Pc|| para-NP Cor. 7 (Statement 1, p. 19)

k+maxsizer
B−+maxsizec

B+ +maxsizec
B− W[2] Cor. 7 (Statement 2, p. 19)

k+maxsizer
B+ +#atB+ + |Pc|+maxsizec

B−+ ||Pc|| W[2] Cor. 7 (Statement 3, p. 19)
k+maxsizer

B+ +#non-Hornr +maxoccr
H,B+,B−+#atB+ + |Pr| W[2] Cor. 7 (Statement 4, p. 19)

k+maxsizer
B+ +#non-Hornr +maxoccr

H,B−+ |Pc|+maxsizec
B−+ ||Pc|| W[1] Cor. 7 (Statement 5, p. 19)

maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pc|+maxsizec
B−+ ||Pc|| W[1] Cor. 7 (Statement 6, p. 19)

k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pr|+maxsizec
B− W[1] Cor. 7 (Statement 7, p. 19)

Table 3: Summary of hardness results for k-CONSISTENCY, CONSISTENCY, k-BRAVE REASONING, BRAVE REASONING,
k-SKEPTICAL REASONING, and SKEPTICAL REASONING.

TECHNICAL REPORT DBAI-TR-2016-99 16

4 Hardness Results
In this section, we present several hardness results for the problems k-CONSISTENCY, CONSIS-
TENCY, k-BRAVE REASONING, BRAVE REASONING, k-SKEPTICAL REASONING, and SKEPTICAL

REASONING, which are summarized in Table 3. To this aim, we establish reductions from the
problems WSAT≤ and WMMSAT.

In the next proposition, we summarize known hardness results for WMMSAT which turn out to
be useful for showing hardness for several combined parameters for k-CONSISTENCY.

Proposition 5 (Lackner and Pfandler (2012b)) WMMSAT is para-NP-hard when parameterized
by the following combined parameter

1. d +d++d−+o+ p+ v−+ |π|+d+
π + ||π||

WMMSAT is W[2]-hard when parameterized by the following combined parameters

2. k+d−+ v−+ |π|+d+
π + ||π||

3. k+d−+h+o+ p+ v−+ |ϕ|

WMMSAT is W[1]-hard when parameterized by the following combined parameters

4. k+d−+h+ p+ |π|+d+
π + ||π||

5. d−+h+o+ p+ |π|+d+
π + ||π||

6. k+d−+h+o+ p+ |ϕ|+d+
π

Now we are ready to present several hardness results for k-CONSISTENCY. The main idea is
to provide a polynomial-time reduction from WSAT or WMMSAT that preserves the considered
parameters. In fact, one reduction is sufficient for all the considered parameters.

Theorem 6 k-CONSISTENCY is para-NP-hard when parameterized by the following parameters

1. maxsizer
H,B+,B−+maxoccr

H,B+,B−+#atB+ + |Pc|+maxsizec
B−+ ||Pc||

k-CONSISTENCY is W[2]-hard when parameterized by the following parameters

2. k+maxsizer
B−+maxsizec

B+ +maxsizec
B−

3. k+maxsizer
B+ +#atB+ + |Pc|+maxsizec

B−+ ||Pc||

4. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+#atB+ + |Pr|

k-CONSISTENCY is W[1]-hard when parameterized by the following parameters

5. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B−+ |Pc|+maxsizec
B−+ ||Pc||

6. maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pc|+maxsizec
B−+ ||Pc||

7. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pr|+maxsizec
B−

TECHNICAL REPORT DBAI-TR-2016-99 17

Proof. We proceed by a reduction from the problem WMMSAT for Statements (1) and (3)–(7)
and WSAT for Statement (2). Let (ϕ,π,k) be an instance of WMMSAT. We assume w.l.o.g. that ϕ

contains no clauses without positive literals, since otherwise we can shift such clauses into π without
effecting the size of the models and hence the minimality.2 We now construct an instance (P,k) of
k-CONSISTENCY as follows. For a clause C and i ∈ {0,1} we define Ci := {ai : xi ∈C,x ∈ var(C)}
where a is a fresh atom and a0 = ¬a and a1 = a. Now, let Pϕ := {C1←C0 : C ∈ ϕ } and Pπ :=
{← ¬C1,C0 : C ∈ π } and we define a program P := Pϕ ∪Pπ . Next, we show that ϕ has a minimal
model M of size at most k such that M is also a model of π if and only if P has an answer set of size
at most k.
(⇒): Let M be a minimal model of ϕ of size at most k such that M is also a model of π . For
every rule r ∈ Pϕ , there is a corresponding clause C ∈ ϕ . Since for each clause C ∈ ϕ it is true
that (i) C1∩M 6= /0, or (ii) C0 \M 6= /0, we obtain by construction of Pϕ that (i) H(r)∩M 6= /0, or
(ii) B+(r)\M 6= /0 holds. Hence, M is a model of Pϕ . Since (Pϕ)

M = Pϕ , the set M is also a model
of (Pϕ)

M. For every rule r ∈ Pπ , there is a corresponding clause C ∈ π . Since for each clause C ∈ ϕ

it holds that (i) C1∩M 6= /0, or (ii) C0 \M 6= /0, we have by construction of Pπ that (i) B−(r)∩M 6= /0,
or (ii) B+(r)\M 6= /0. Hence, M is a model of Pπ . Then, for every rule r ∈ Pπ there is either (i) a
corresponding rule r′ ∈ (Pπ)

M with B+(r) = B+(r′) and B+(r′)\M 6= /0, since B+(r)\M 6= /0, or
(ii) B−(r)\M 6= /0 and the rule r has been removed from Pπ when constructing (Pπ)

M. Consequently,
M is also a model of (Pπ)

M. It remains to observe that M is also a minimal model of PM. For proof
by contradiction assume that PM has a model N such that N (M. Let now r ∈ PM. Then, by the
construction of P there is a corresponding clause Cr such that either (i) Cr ∈ ϕ , C1

r = H(r) and
C0

r = B+(r), or (ii) Cr ∈ π and C0
r = B+(r). Since N is a model of P for every rule r ∈ PM, it holds

that H(r)∩N 6= /0 or B+(r)\N 6= /0. Thus we can conclude in Case (i) C1
r ∩N 6= /0 or C0

r \N 6= /0
and thus N is also a model of ϕ , which however contradicts the assumption that M is a minimal
model of ϕ . Further, we can conclude in Case (ii) that C0

r \N 6= /0, which however contradicts the
assumption that M is a model of π . Consequently, M is an answer set of P of size at most k.
(⇐): Conversely, assume that M is an answer set of P of size at most k. For each rule r ∈ P there is
a corresponding clause (i) Cr ∈ π such that C0

r = B+(r) and C1
r = B−(r) if H(r) = /0, or (ii) Cr ∈ ϕ

such that C1
r = H(r) and C0

r = B+(r) if B−(r) = /0. We proceed with Case (i): By definition of
an answer set, M is a model of P. Hence, for rules where H(r) = /0, we have B+(r) \M 6= /0 or
B−(r)∩M 6= /0. Thus, we obtain C1

r ∩B−(r) 6= /0 or C0
r \M 6= /0, which yields that M is a model of

π . We proceed with Case (ii): By definition of an answer set, the set M is a model of P. Hence, for
rules where H(r) 6= /0, we have H(r)∩M 6= /0 or B+(r)\M 6= /0. Since H(r) =C1

r and B+(r) =C0
r ,

we have C1
r ∩M 6= /0 or C0

r \M 6= /0. Hence, M is a model of ϕ . For proof by contradiction assume
that there is some model N of ϕ such that N (M and N is also a model of π . By construction
of P for a clause C ∈ ϕ there is a corresponding rule rc ∈ P such that H(rc) = C1, B+(rc) = C0,
and B−(rc) = /0. Since B−(r′) = /0 for every rule r ∈ Pϕ , we have that N is also a model of (Pϕ)

M,
which contradicts the assumption that M is an answer set of P. Further, by construction of P
for a clause C ∈ π there is a corresponding rule rc ∈ P such that H(rc) = /0, B+(rc) = C0, and

2Note that this has also no effect to the results we use for WMMSAT, since the parameters used in the proofs for
WMMSAT remain uneffected (it only effects d and d−, however, there d− is already bounded by v−; see the proofs of
Theorems 16 and 17 in (Lackner and Pfandler, 2012b)).

TECHNICAL REPORT DBAI-TR-2016-99 18

B−(rc) =C1. Since N is a model of π we conclude that (i) B−(rc)∩N 6= /0, or (ii) B+(rc)\N 6= /0.
Hence, N is also a model of (Pπ)

M. Thus, by Statement 1 of Observation 2 the set N is also an
answer set of P, which contradicts our assumption. Consequently, M is a minimal model of ϕ , has
size at most k, and is also a model of π .

We have established the claim that ϕ has a minimal model M of size at most k such that M is
also a model of π if and only if P has an answer set of size at most k.

Next, we can employ the construction and proofs from above to establish a reduction from
an instance (ϕ,k) of WSAT for Statement 2. Note that WSAT is a well known to be W[2]-
hard, e.g., (Downey and Fellows, 2013). Therefore, observe that ϕ has a model M of size at most k
if and only if Pϕ has an answer set of size at most k.

Finally, it remains to observe that our reduction preserves the parameters:

• k: directly corresponds to the maximum weight of a minimal model (k)

• maxsizer
H,B+,B−: directly corresponds to the maximum clause size (d)

• maxsizer
B+: directly corresponds to the maximum negative clause size (d+)

• #non-Hornr: directly corresponds to the number of non-horn clauses (h)

• maxoccr
H,B+,B−: directly corresponds to the maximum number of occurrences of a variable

in ϕ (o)

• maxoccr
H,B−: directly corresponds to the maximum number of positive occurrences of a

variable in ϕ (p)

• #atB+ : directly corresponds to the number of variables that occur as negative literals in ϕ (v−)
or in π (v−)

• |Pr|: directly corresponds to the number of clauses in ϕ (|ϕ|)

• |Pc|: directly corresponds to the number of clauses in π (|π|)

• maxsizec
B−: directly corresponds to the maximum positive clause size in π (d+

π)

• maxsizec
B+: directly corresponds to the maximum negative clause size in π (d−)

• ||Pc||: directly corresponds to the length of π , i.e., the total number of variable occurrences
in π (‖π‖)

The runtime follows from Proposition 5. This concludes the proof. �
The hardness results for k-CONSISTENCY trivially extend to CONSISTENCY. Furthermore, the

results also extend to k-BRAVE REASONING because one can solve k-CONSISTENCY by calling for
each a ∈ at(P) the problem k-BRAVE REASONING and return yes if at least one of the |at(P)| calls
of k-BRAVE REASONING returns yes. Clearly, these results then also extend to BRAVE REASONING,
k-SKEPTICAL REASONING, and SKEPTICAL REASONING. Thus, we obtain the following corollary.

TECHNICAL REPORT DBAI-TR-2016-99 19

Corollary 7 CONSISTENCY, k-BRAVE REASONING, BRAVE REASONING, k-SKEPTICAL REA-
SONING, and SKEPTICAL REASONING are para-NP-hard when parameterized by the following
combined parameter

1. maxsizer
H,B+,B−+maxoccr

H,B+,B−+#atB+ + |Pc|+maxsizec
B−+ ||Pc||

CONSISTENCY, k-BRAVE REASONING, BRAVE REASONING, k-SKEPTICAL REASONING, and
SKEPTICAL REASONING are W[2]-hard when parameterized the following combined parameters

2. k+maxsizer
B−+maxsizec

B+ +maxsizec
B−

3. k+maxsizer
B+ +#atB+ + |Pc|+maxsizec

B−+ ||Pc||

4. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+#atB+ + |Pr|

CONSISTENCY, k-BRAVE REASONING, BRAVE REASONING, k-SKEPTICAL REASONING, and
SKEPTICAL REASONING are W[1]-hard when parameterized the following combined parameters

5. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B−+ |Pc|+maxsizec
B−+ ||Pc||

6. maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pc|+maxsizec
B−+ ||Pc||

7. k+maxsizer
B+ +#non-Hornr +maxoccr

H,B+,B−+ |Pr|+maxsizec
B−

TECHNICAL REPORT DBAI-TR-2016-99 20

Problem Parameter Result Reference

k-CONSISTENCY

#atH FPT Obs. 19 (p. 24)
maxsizeH + |Pr| FPT Cor. 20 (p. 25)
k+maxsizer

H,B− FPT Thm. 22 (p. 25)
#non-Hornr +maxsizer

H,B− FPT Thm. 22 (p. 25)
k+#atB+ +maxoccr

H,B−+maxsizec
B−+#atB− FPT Thm. 29 (p. 30)

#atB+ +#non-Hornr +maxsizec
B−+#atB− FPT Thm. 29 (p. 30)

k+#atB+ +maxoccr
H,B−+ |Pc|+#atB− FPT Thm. 29 (p. 30)

#atB+ +#non-Hornr + |Pc|+#atB− FPT Thm. 29 (p. 30)
|Pr|+ |Pc|+#atB− FPT Thm. 29 (p. 30)
maxsizer

H,B−+#non-Hornr FPT Thm. 32 (p. 31)
|Pr| XP Thm. 34 (p. 32)
k XP Obs. 16 (p. 23)

sbHorn FPT Cor. 13 (p. 23)
sbStrat FPT Cor. 13 (p. 23)
sbno-DBEC W[2] Cor. 13 (p. 23)

k-CONSISTENCY
restricted to
programs from
Pos+Cons

k+#atB+ +maxoccr
H,B−+maxsizec

B− FPT Thm. 27 (p. 29)
#atB+ +#non-Hornr +maxsizec

B− FPT Thm. 27 (p. 29)
k+#atB+ +maxoccr

H,B−+ |Pc| FPT Thm. 27 (p. 29)
#atB+ +#non-Hornr + |Pc| FPT Thm. 27 (p. 29)
|Pr|+ |Pc| FPT Thm. 27 (p. 29)

Table 4: Summary of membership results for k-CONSISTENCY and k-CONSISTENCY when re-
stricted to programs from Pos+Cons.

TECHNICAL REPORT DBAI-TR-2016-99 21

Problem Parameter Result Reference

k-BRAVE

REASONING

#atH FPT Obs. 19 (p. 24)
maxsizeH + |Pr| FPT Cor. 20 (p. 25)
k+maxsizer

H,B− FPT Cor. 23 (p. 28)
#non-Hornr +maxsizer

H,B− FPT Cor. 23 (p. 28)
k+#atB+ +maxoccr

H,B−+maxsizec
B−+#atB− FPT Cor. 30 (p. 31)

#atB+ +#non-Hornr +maxsizec
B−+#atB− FPT Cor. 30 (p. 31)

k+#atB+ +maxoccr
H,B−+ |Pc|+#atB− FPT Cor. 30 (p. 31)

#atB+ +#non-Hornr + |Pc|+#atB− FPT Cor. 30 (p. 31)
|Pr|+ |Pc|+#atB− FPT Cor. 30 (p. 31)
maxsizer

H,B−+#non-Hornr FPT Cor. 33 (p. 32)
|Pr| XP Obs. 34 (p. 32)
k XP Obs. 16 (p. 23)

sbHorn FPT Cor. 13 (p. 23)
sbStrat FPT Cor. 13 (p. 23)
sbno-DBEC W[2] Cor. 13 (p. 23)

k-SKEPTICAL

REASONING

#atH FPT Obs. 19 (p. 24)
maxsizeH + |Pr| FPT Cor. 20 (p. 25)
|Pr| XP Obs. 34 (p. 32)
k XP Obs. 16 (p. 23)

sbHorn FPT Cor. 13 (p. 23)
sbStrat FPT Cor. 13 (p. 23)
sbno-DBEC W[2] Cor. 13 (p. 23)

Table 5: Summary of membership results for k-BRAVE REASONING and k-SKEPTICAL

REASONING.

TECHNICAL REPORT DBAI-TR-2016-99 22

5 Membership Results
In this section, we present several novel tractability results for k-CONSISTENCY, which are summa-
rized in Table 4 and 5. Further, we state conditions under which we can extend known results for
the main ASP problems where k can be arbitrarily large.

First, we need some definitions.

Definition 8 An ASP parameter is a function p that assigns to every program P some non-negative
integer p(P).

Problem: k-ENUM

Input: A program P, an atom a ∈ at(P), and an integer k.
Task: List all answer sets of size at most k of P.

We refer to the problems as ENUM if the integer k can be arbitrarily large.

The following proposition states that a fixed-parameter tractability result for the ENUM problem
when parameterized by some parameter directly extends to a fixed-parameter tractability result with
the same parameter for our main ASP problems, where we are interested only in answer sets of size
at most k. Hence, known results for backdoors, see (Fichte and Szeider, 2015b), immediately apply
to our main ASP problems for answer sets of size at most k.

Proposition 9 Let p be an ASP parameter. If the problem ENUM is fixed-parameter tractable
when parameterized by p, then for every problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING,
k-SKEPTICAL REASONING}, L is fixed-parameter tractable when parameterized by p.

Proof. If the problem ENUM is fixed-parameter tractable when parameterized by p, then the
problem k-ENUM is fixed-parameter tractable with respect to p. Thus, we can simply enumerate all
answer sets of size at most k in fpt-time and decide any of the listed problems in fpt-time. Hence,
the claim holds. �

Next, we define the concept of a truth assignment reduct.

Definition 10 (cf. Fichte and Szeider (2015b), Definition 3.1) Let P be a program, M ⊆ at(P),
and N ⊆ at(P) \M. The truth assignment reduct of P under (M,N) is the logic program PM,N
obtained from P by

(i) removing all rules r with H(r)∩M 6= /0;

(ii) removing all rules r with B+(r)∩N 6= /0;

(iii) removing all rules r with B−(r)∩M 6= /0;

(iv) removing from the heads and negative bodies of the remaining rules all atoms a with a ∈ N;

TECHNICAL REPORT DBAI-TR-2016-99 23

(v) removing from the positive bodies of the remaining rules all atoms a with a ∈M.

Definition 11 Let C be a class of programs. A set X of atoms is a strong C -backdoor of a program P
if PM,N ∈ C for all truth assignments τ ∈ 2X , M = τ−1(1), and N = τ−1(1). For a program P let
sbC (P) denote the size of a smallest strong C -backdoor. A class C of programs is enumerable if for
each P ∈ C we can compute AS(P) in polynomial time.

Proposition 12 (Fichte and Szeider (2015b)) Let C be an enumerable class of normal programs.
The problem ENUM is fixed-parameter tractable when parameterized by the size of a strong
C -backdoor.

Corollary 13 Let C be an enumerable class of normal programs. Every problem L ∈ {k-CONSIS-
TENCY, k-BRAVE REASONING, k-SKEPTICAL REASONING} is fixed-parameter tractable when
parameterized by the size of a strong C -backdoor.

The following propositions states that if the parameter yields a less restrictive result, namely, only
the decision problems are fixed-parameter tractable when parameterized by some fixed parameter
and the parameter is not effected by a standard “at most k” construction using a sequential counter,
then our main ASP problems for answer sets of size at most k are fixed-parameter tractable when
parameterized by a combined parameter that consists of the parameter together with the size k.

Definition 14 Let p be an ASP parameter. Then we call p counter-preserving if p(P) = f (p(Pk)) for
some computable function f , an integer k and P′k := P∪{⊥←¬c1,k+1 }∪{ci, j← ci+1, j,ai; ci, j←
ci+1, j : 1≤ i≤ n,0≤ j ≤ k+1}∪{cn+1,0←>} where a1, . . . ,an are the atoms of P.

Proposition 15 Let p be counter-preserving ASP parameter. If the problem L ∈ {CONSISTENCY,
BRAVE REASONING, SKEPTICAL REASONING} is fixed-parameter tractable when parameterized
by p, then its corresponding problem k-L, which decides the question of L when restricted to answer
sets of size at most k, is fixed-parameter tractable when parameterized by p.

Proof. Let P be a program. We restrict the decision question to answer sets of size at most k
by means of a simple counter. Therefore, apply the construction from Definition 14, which uses
a standard approach as described in the literature (Gebser et al., 2012) to ensure that at most k
atoms are set to true and hence belong to an answer set of P. In Pk we introduce auxiliary atoms ci, j
for 1 ≤ i ≤ n+ 1 and 0 ≤ j ≤ k+ 1 resulting in O(n · k) additional auxiliary atoms and O(n · k)
additional rules. We can then simply decide L on Pk instead of P and obtain the result for our initial
problem k-L. Since L is fixed-parameter tractable, p(P) = p(Pk), and ‖Pk‖ is polynomial in n · k,
the overall construction gives an fpt-algorithm with respect to k. Hence, the proposition sustains. �

Observation 16 For each problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING, k-SKEPTICAL

REASONING} we have L ∈ XP when parameterized by k.

TECHNICAL REPORT DBAI-TR-2016-99 24

ALGORITHM 1: ALL-SIZE-K-MOD(P,k,M)

Input: A program P and an integer k.
Output: A family of sets of size at most k.

1 if k ≤ 0 or there is some rule ⊥ ∈ P then return /0
2 if (H(r)∪B−(r))∩M or B+(r)\M 6= /0 for every r ∈ P then return {M}
3 foreach r ∈ R do
4 foreach a ∈ H(r) do
5 M :=M∪ALL-SIZE-K-MOD(PM, /0,k,M∪{a})
6 return M

Proof. Let P be a program, n = at(P), and k some integer. Then, we have at most ∑
k
i=1
(n

k

)
answer

sets of size at most k. For each of these answer set candidates, the minimality check can be done
in time O(2k) by first checking whether the candidate is a model and then try all smaller models.
Since it holds that

(n
k

)
≤ nk

k! , the algorithm runs in time O(nk). �
Before we are able to show the next two fpt-results, we need to define answer set candidates of

the original program.

Definition 17 (cf. Fichte and Szeider (2015b), Definition 3.5) Let P be a program, M and N be
a set of atoms. We define

AS(P,M,N) = {O∪ τ
−1(1) : τ

−1(1) ∈ 2(M∪N)∩at(P),O ∈ AS(PM,N)}.

Lemma 18 Let P be a program and Hp =
⋃

r∈P H(r). Then, AS(P)⊆{AS(P,M,N) : M ∈ 2Hp,N =
HP \M }.

Proof. The lemma is a special case of Lemma 3.6 in earlier work by Fichte and Szeider (2015b)
where we simply set X := M∪N. �

Observation 19 For each problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING, k-SKEPTICAL

REASONING} we have L is fixed-parameter tractable when parameterized by #atH .

Proof. First, we show the result for k-CONSISTENCY. Therefore, let h := #atH . By Statement 1
of Observation 2 for every answer set M ∈ ASk(P) holds that M ⊆

⋃
r∈H(r)H(r). Hence, we use

a simple bounded search tree approach. We construct a complete binary search tree T of depth h.
Therefore,

(1) we label the root of the tree with the triple (P, /0, /0).

(2) Then, we label the remaining nodes of the tree recursively as follows: Let (R,M,N) be
the label of a node t of T whose two children are not labeled yet. Choose an atom a ∈
at(P)H \ (M∪N).

(i) Label the left child of t with (RM,N ,M∪{a},N).

TECHNICAL REPORT DBAI-TR-2016-99 25

(ii) Label the right child of t with (RM,N ,M,N∪{a}).

(3) If there exists a node labeled with (R,M,N) such that R has no rules then M is a model of P,
it remains to check whether there is some M′ (M such that M′ is a model of PM. Therefore,

(a) we check for each atom m ∈M whether M \{m} is still a model of PM; if so, we discard
M; and

(b) we check whether |M| ≤ k; if the answer is no, we can discard M otherwise, M is an
answer set of P.

Since the depth of T is bounded by h, the size of M is at most h. We conclude that the above
algorithm solves the problem k-CONSISTENCY in time O(2h · h · nc) for n = |at(P)| and some
constant c. Notice that this results trivially extends to k-BRAVE REASONING by adding a rule that
consists of an empty head, an empty positive body and a negative body that contains only the atom
we are interested in. For k-SKEPTICAL REASONING we can simply traverse the entire bounded
search tree and obtain the same running time. �

As #at(P) is bounded by maxsizeH · |Pr| the next result follows directly from the previous one.

Corollary 20 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING, k-SKEPTICAL REASONING}.
Then, L is fixed-parameter tractable when parameterized by maxsizeH + |Pr|.

We now proceed to two tractability results that can be obtained by a reduction to WMMSAT.
Lackner and Pfandler (2012b) presented several fixed-parameter tractability results that turn out to
be useful for showing fixed-parameter tractability for k-CONSISTENCY. To proof the next theorem
we need the following results.

Proposition 21 (Lackner and Pfandler (2012b)) WMMSAT is fixed-parameter tractable when
parameterized by at least one of the following combined parameters

1. k+d+

2. d++h

Now we are ready to show two fixed-parameter tractability results.

Theorem 22 k-CONSISTENCY is fixed-parameter tractable when parameterized by at least one of
the following combined parameters

1. k+maxsizer
H,B−

2. #non-Hornr +maxsizer
H,B−

TECHNICAL REPORT DBAI-TR-2016-99 26

Proof. The main idea of the proof is a reduction to WMMSAT. This reduction runs in linear time
and preserves all necessary parameters.

In more detail, for a program P this reduction consists of two reductions:

1. from P we construct in linear time a program P∗ = P′∪Psupset

2. from P∗ we construct in linear time an instance of WMMSAT.

With these reductions in hand we will then be able to proof the following claims. For this, let P
be a program, M ⊆ at(P) and M′ = {a′ | a ∈M }.

Claim 1: From P, we can construct in linear time the program P* such that M is an answer set of P if
and only if M∪M′ is a minimal model of P′ and M∪M′ is a model of Psupset.

Claim 2: From P*, we can construct in linear time two CNF formulas FP’ and Fsupset such that M∪M′ is
a minimal model of P′ and M∪M′ is a model of Psupset if and only if VM∪M′ is a minimal model
of FP’ and VM∪M′ is a model of Fsupset where VM∪M′ := {v[a] : a ∈M }∪{v[a′] : a′ ∈M′ }.

From these claims it immediately follows that P is a yes-instance, i.e., M is an answer set of P,
if and only if the constructed WMMSAT instance with ϕ = FP’ and π = Fsupset is a yes-instance,
i.e., VM∪M′ is a minimal model of ϕ and VM∪M′ is a model of π .

Let us now proof Claim 1. For a set X , with the help of the macro (X)′ we denote the set
{a′ | a ∈ X}. Let us now construct the following set of rules.

Pmin :=
{

H(r)← B+(r),
(
B−(r)

)′ : r ∈ P
}

Psubset :=
{

a′← a : a ∈ at(P)
}

P′ :=Pmin∪Psubset

Psupset :=
{

a← a′ : a ∈ at(P)
}

P* :=P′∪Psupset

It is straightforward to see that this reduction runs in linear time in the size of P. Now we show
now that M is an answer set of P if and only if M∪M′ is a minimal model of P′.
(⇒): Let M be an answer set of P. By Observation 3 it suffices to show that M∪M′ is a minimal
model of (P′)M∪M′ . Hence, for proof by contradiction assume that there is some N ((M∪M′) such
that N is a model of (P′)M∪M′ .

(i) Let b ∈M \N: By definition of an answer set and the rules in Psubset, we have that b ∈M
implies b′ ∈M∪M′. However, then there is some N′ ⊆M and b ∈M \N′ such that N′ is a
model of PM, which contradicts the assumption that M is an answer set of P.

(ii) Let b′ ∈M′ \N: Since every atom a′ ∈ at(P) occurs only in the head of rules in Psubset, we
conclude by Statement 1 of Observation 2 that there is a corresponding atom b ∈M. Hence,
we proceed as in Case (i), which yields a contradiction.

TECHNICAL REPORT DBAI-TR-2016-99 27

(⇐): Let M∪M′ be an answer set of (P′)M∪M′ . For proof by contradiction assume that there is
some N (M such that N is a model of PM. However, by Statement 1 of Observation 2 there exists
a set N′ ⊆M∪M′ such that N′ is a minimal model of (P′)M∪M′ , which contradicts the assumption
that M∪M′ is an answer set of (P′)M∪M′ .

Now we show that if M∪M′ is a minimal model of P′ it follows that M ∪M′ is a model of
Psupset. For this, let M∪M′ be a minimal model of P′. The rules in Psubset ensure by definition of an
answer set that if a ∈M∪M′ then a′ ∈M∪M′. By Statement 1 of Observation 2 we also obtain that
if a′ ∈M∪M′ then a ∈M∪M′. Consequently, M∪M′ satisfies each rule in Psubset. Hence, Claim 1
holds.

We now proceed to show Claim 2. From program P* we construct the following CNF formulas.

Fmin :=
∧

r∈Pmin

 ∨
a∈B+(r)

¬v[a]∨
∨

a∈H(r)

v[a]

 (encodes Pmin)

Fsubset :=
∧

r∈Psubset

 ∨
a∈B+(r)

¬v[a]∨
∨

a∈H(r)

v[a]

 (encodes Psubset)

FP’ :=Fmin∧Fsubset (encodes P′)

Fsupset :=
∧

r∈Psupset

 ∨
a∈B+(r)

¬v[a]∨
∨

a∈H(r)

v[a]

 (encodes Psupset)

The WMMSAT instance is then given by ϕ =FP’ and π =Fsupset. It is straight-forward to see that
M∪M′ is a minimal model of P′ and M∪M′ is a model of Psupset if and only if VM∪M′ is a minimal
model of FP’ and VM∪M′ is a model of Fsupset where VM∪M′ := {v[a] : a ∈M }∪{v[a′] : a′ ∈M′ }.
Hence, Claim 2 holds.

It remains to observe that the reduction preserves all parameters.

• maxsizer
H,B−: Let d ≥ 2 be some integer. Moreover, assume that maxsizer

H,B− ≤ d, by
construction of FP’ each clause in Fsubset contains at most 1 positive literal and the maximum
number of positive literals in a clause of Fmin is at most d. Moreover, each clause in Fsupset
contains at most 1 positive literal. Hence, maximum number of positive literals in each clause
of the resulting formulas is at most d.

• k: Let k ≥ 0 be some integer. Moreover, assume that |M| ≤ k. By construction of FP’,
M ⊆ at(P) is an answer set of P if and only if VM∪M′ is a minimal model of FP and VM∪M′ is a
model of Fsupset. Hence, we have |VM∪M′| ≤ 2k by construction. Consequently, the maximum
weight of the minimal model of FP is bounded by 2k.

• #non-Hornr: Let h≥ 0 be some integer and assume that #non-Hornr ≤ h. By construction of
Fsubset and Fsupset contain only Horn clauses. Moreover, a rule is not Horn if and only if the
corresponding clause in Fmin is not Horn. Hence, h provides an upper bound for the number
of non-Horn clauses of Fmin and thus of FP’ and Fsupset.

TECHNICAL REPORT DBAI-TR-2016-99 28

Hence, the statement of the theorem holds. �

Corollary 23 The problem k-BRAVE REASONING is fixed-parameter tractable when parameterized
by at least one of the following combined parameters

1. k+maxsizer
H,B−

2. #non-Hornr +maxsizer
H,B−

We denote by Modk(P) the set of all models of P where |M| ≤ k for every M ∈Modk(P).

Observation 24 ASk(P)⊆Modk(P) holds for every positive-body-free program P and some inte-
ger k ≥ 0.

Proof. Follows trivially from the definitions. �

In the following, we consider the parameterized complexity of the problem k-CONSISTENCY

when the input is restricted to programs from Pos+Cons and establish new fpt results. In fact,
Statement 2 in Theorem 6 already states W[2]-hardness for k-CONSISTENCY when restricted to
programs from Pos+Cons. The subsequent proposition establishes, in addition, that the prob-
lem CONSISTENCY remains ΣP

2 -complete under the restrictions.

Proposition 25 (Truszczyński (2011)) The problem CONSISTENCY is ΣP
2 -complete when the input

is restricted to programs from Pos+Cons.

Proof. The statement has already been established by Truszczyński (2011)[Theorem 2]. More
precisely, by definition of programs in Pos+Cons, we have maxsizer

B− = 0 and maxsizeH and
maxsizer

B+ are unbounded, maxsizec
B+ and maxsizec

B− are unbounded. However, CONSISTENCY is
already ΣP

2 -complete when the input is restricted to programs where maxsizer
B− = 0 and maxsizeH

and maxsizer
B+ are unbounded, maxsizec

B+ is unbounded and maxsizec
B− = 0.

�
In the next proposition, we summarize the fixed-parameter tractability results for WMMSAT

by Lackner and Pfandler (2012b).

Proposition 26 (Lackner and Pfandler (2012b)) WMMSAT is fixed-parameter tractable when
parameterized by at least one of the following combined parameters

1. k+ v−+ p+d+
π

2. v−+h+d+
π

3. k+ v−+ p+ |π|

4. v−+h+ |π|

TECHNICAL REPORT DBAI-TR-2016-99 29

5. |ϕ|+ |π|

Lemma 27 k-CONSISTENCY when restricted to programs from Pos+Cons is fixed-parameter
tractable and parameterized by at least one of the following combined parameters

1. k+#atB+ +maxoccr
H,B−+maxsizec

B−

2. #atB+ +#non-Hornr +maxsizec
B−

3. k+#atB+ +maxoccr
H,B−+ |Pc|

4. #atB+ +#non-Hornr + |Pc|

5. |Pr|+ |Pc|

Proof. In order to decide k-CONSISTENCY when the input is restricted to programs from
Pos+Cons, we give a reduction to WMMSAT, which preserves all parameters considered in
the statement. Therefore, we use ideas from the construction in the proof of Theorem 6 for
the opposite direction. Let (P,k) be an instance of k-CONSISTENCY where P ∈ Pos+Cons. We
now construct an instance (ϕ,π,k) of WMMSAT as follows. The variables of the CNF for-
mulas ϕ and π will consist of a variable for each atom of P. Then for a rule r ∈ P we let
C(r) := {xa : a ∈ H(r)}∪{¬xa : a ∈ B+(r)}. Further, we define ϕ := {C(r) : r ∈ P,H(r) 6= /0}
and π := {C(r) : r ∈ P,H(r) = /0}. Then, we show that ϕ has a minimal model M of size at most k
such that M is also a model of π if and only if P has an answer set of size at most k. We can use
the exact same construction as in the proof of Theorem 6 to establish the statement, since there
program Pπ consists only of constraint rules and program Pϕ consists only of non-constraint rules.

Next, we observe that our reduction preserves the parameters:

• k: directly corresponds to the maximum weight of a minimal model (k)

• maxsizer
B+: directly corresponds to the maximum negative clause size (d+)

• #non-Hornr: directly corresponds to the number of non-horn clauses (h)

• maxoccr
H,B−: directly corresponds to the maximum number of positive occurrences of a

variable in ϕ (p)

• #atB+ : directly corresponds to the number of variables that occur as negative literals in ϕ (v−)
or in π (v−)

• |Pr|: directly corresponds to the number of clauses in ϕ (|ϕ|)

• |Pc|: directly corresponds to the number of clauses in π (|π|)

• maxsizec
B−: directly corresponds to the maximum positive clause size in π (d+

π)

TECHNICAL REPORT DBAI-TR-2016-99 30

Finally, fixed-parameter tractability follows from Proposition 26. This concludes the proof.
�

Remark 28 We would like to mention that, using the reductions above, instances from WMMSAT

and k-CONSISTENCY restricted to Pos+Cons coincide. More precisely, the proofs give a linear
time reduction that transforms an instance from WMMSAT into an instance of Pos+Cons from
k-CONSISTENCY and vice versa.

Theorem 29 The problem k-CONSISTENCY is fixed-parameter tractable and parameterized by at
least one of the following combined parameters

1. k+#atB+ +maxoccr
H,B−+maxsizec

B−+#atB−

2. #atB+ +#non-Hornr +maxsizec
B−+#atB−

3. k+#atB+ +maxoccr
H,B−+ |Pc|+#atB−

4. #atB+ +#non-Hornr + |Pc|+#atB−

5. |Pr|+ |Pc|+#atB−

Proof. In order to decide k-CONSISTENCY, we give an fpt-algorithm that uses the fpt-results
established in Theorem 27 for k-CONSISTENCY when the input is restricted to programs from
Pos+Cons. Therefore, let (P, `) be an instance of k-CONSISTENCY, N := ∪r∈P

(
atB−,r

)
, τ ∈ 2N ,

M1 := τ−1(1), and M0 := τ−1(0). Further, we define Pc
M1,M0

:= {⊥←¬a : a ∈M1 }∪{← a : a ∈
M0 }, use PM1,M0 as defined in Definition 10, and let P[τ] := PM,N ∪Pc

M,N .
Then, the program P has an answer set of size at most k if and only if at least one program P[τ]

has an answer set of size at most k. Therefore, observe that AS(P)⊆ {AS(P[τ]) : τ ∈ 2N }, which
is a special case of Lemma 3.6 in earlier work by Fichte and Szeider (2015b) where we simply
set X := M0∪M1. It is easy to see from the definitions of an answer set and the construction of
P[τ] that the opposite direction {AS(P[τ]) : τ ∈ 2N }= τ−1(0)} ⊆ AS(P) also holds. In this way,
we give a reduction to 2(#atB−+1) many instances of k-CONSISTENCY that consists of 2(#atB−+1)

many subprograms by constructing “partial” GL reducts under a set M1, which consists of atoms
that we have set to true, and a set M0, which consists of atoms that we have set to false, together
with constraints that enforce that any minimal model M of the GL reduct satisfies that atoms in M1
belong to M and atoms in M0 do not belong to M. It remains to observe that our reduction preserves
the parameters:

• k remains unaffected,

• maxoccr
H,B−(P[τ])≤maxoccr

H,B−(P),

• maxsizec
B−(P[τ]) = max{maxsizec

B−(P),1},

• #non-Hornr(P[τ]) = #non-Hornr(P),

TECHNICAL REPORT DBAI-TR-2016-99 31

• #atB+(P[τ]) = #atB+(P)+#atB−(P),

• |(P[τ])r| ≤ |Pr|+#atB−(P), and

• |(P[τ])c| ≤ |Pc|+#atB−(P).

Since our algorithm constructs 2(#atB−+1) many programs that can be solved in fpt-time according
to Theorem 27, our algorithm runs in fpt-time. Hence, the theorem follows. �

Corollary 30 The problem k-BRAVE REASONING is fixed-parameter tractable and parameterized
by at least one of the following combined parameters

1. k+#atB+ +maxoccr
H,B−+maxsizec

B−+#atB−

2. #atB+ +#non-Hornr +maxsizec
B−+#atB−

3. k+#atB+ +maxoccr
H,B−+ |Pc|+#atB−

4. #atB+ +#non-Hornr + |Pc|+#atB−

5. |Pr|+ |Pc|+#atB−

The reductions in the proofs of Theorems 2 and 27 already state that ASP and WMMSAT are
very related with respect to the consistency and the considered reasoning problems. Hence, it seems
reasonable to apply and extend concepts from WMMSAT by Lackner and Pfandler (2012b) to ASP.
However, since answer sets additionally require minimality with respect to the GL reduct of the
given program, we need to parameterize additionally in the number of negative atoms that occur
in rules (both constraint and non-constraint rules) of the given program. Particularly, we do not
have a direct counterpart of the concept of a compact representation for atoms in the head (see the
concept of SSMs in the work by Lackner and Pfandler (2012b)) if the positive body is empty, but
the negative body is not empty. Note that our reductions make certain concepts of parameters in
the setting of answer set programming such as acyclicity-based backdoors by (Fichte and Szeider,
2015a) directly accessible to WMMSAT.

Proposition 31 (Lackner and Pfandler (2012b), The. 3) WMMSAT is fixed-parameter tractable
when parameterized by the maximum number of positive literals in a clause and the number of
non-Horn clauses.

Theorem 32 k-CONSISTENCY when parameterized by maxsizer
H,B− + #non-Hornr is fixed-

parameter tractable.

TECHNICAL REPORT DBAI-TR-2016-99 32

Proof. We use the reduction defined in the proof of Lemma 22 to reduce to WMMSAT. It remains
to observe that the reduction preserves the parameters. Let P be a program and d ≥ 2 be some integer.
Moreover, assume that maxsizer

H,B− ≤ d, by construction of FP each clause in Fsubset contains at
most 1 positive literal and the maximum number of positive literals in a clause of Fmin is at most d.
Moreover, each clause in Fsupset contains at most 1 positive literal. Hence, maximum number of
positive literals in each clause of the resulting formulas is at most d. �

Corollary 33 k-BRAVE REASONING when parameterized by maxsizer
H,B−+#non-Hornr is fixed-

parameter tractable.

Observation 34 For each problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING, k-SKEPTICAL

REASONING} we have L when parameterized by |Pr| is in XP.

Proof. Let P be a program with k = |Pr| rules and n be the number of different atoms occurring in
the head of a rule. By Statement 2 of Observation 2 the size of an answer set is at most k. Thus, an
algorithm can check all possible ∑

k
i=1
(n

k

)
answer sets of size at most k. For each of these answer

set candidates, the minimality check can be done in time O(2k). Since it holds that
(n

k

)
≤ nk

k! , the
algorithm runs in time O(nk). Consequently, the observation is established. �

Finally, we conclude with an observation that states that the results trivially extend to the main
ASP problems where the answer sets can be arbitrarily large if the considered parameter does not
depend on the maximum size of an answer set.

Observation 35 Let p be an ASP parameter. If the problem L ∈ {k-CONSISTENCY, k-BRAVE

REASONING, k-SKEPTICAL REASONING} is fixed-parameter tractable when parameterized by p
and p does not depend on k, then its corresponding problem L′, which decides the question of L for
answer sets of arbitrary size, is fixed-parameter tractable when parameterized by p.

Proof. The observations follows trivially by setting k = at(P). �

TECHNICAL REPORT DBAI-TR-2016-99 33

6 Conclusion
We have identified several natural structural parameters of ASP instances (as summarized in Table 2)
and carried out a fine-grained complexity analysis of the main reasoning problems in answer set
programming when parameterized by various combinations of these parameters. Our study also
considers the parameterized complexity of the main ASP reasoning problems while taking the
size of the answer set into account. Such a restriction is particularly interesting for applications
that require small solutions. We have presented various hardness (see Table 3) and membership
results (see Table 4 and 5). Every hardness result of the reasoning problems when parameterized by
a combined parameter also holds for any parameter that consists of a subset of the combination.
Further, every fixed-parameter tractability result of the considered problems when parameterized
by a combined parameter also holds for any extension of the parameter by additional structural
properties (superset of the parameter combination). In that way, we have improved on the theoretical
understanding by providing a novel multi parametric view on the parameterized complexity of ASP,
which allows us to draw a detailed map for various combined ASP parameters.

Open Parameter Combinations Regarding k-CONSISTENCY we have identified slightly more
than 80% of possible combined parameters when we consider FPT-membership and W[1]-hardness
as final results that do not need further treatment. To be more precise, from 217 = 131072 possible
combined parameters, only 25993 are left open for k-CONSISTENCY.

Future Work The results and concepts of this paper give rise to several research questions.
For instance, it would be interesting to close the gap for the remaining parameter combinations.
Therefore, we need to identify important corner cases. An interesting further research direction
is to study how the parameters empirically distribute among ASP instances from the last ASP
competitions, in particular, in random versus structured instances.

TECHNICAL REPORT DBAI-TR-2016-99 34

References
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases: The Logical Level,

1st ed. Addison-Wesley, Boston, MA, USA.

ALVIANO, M., DODARO, C., FABER, W., LEONE, N., AND RICCA, F. 2013. WASP: A native
ASP solver based on constraint learning. In Proceedings of the 12th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar and T. Son, Eds.
Lecture Notes in Computer Science, vol. 8148. Springer Verlag, Corunna, Spain, 54–66.

ANSÓTEGUI, C., BONET, M. L., LEVY, J., AND MANYA, F. 2008. Measuring the hardness of
SAT instances. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI ’08),
R. C. Holte and A. E. Howe, Eds. The AAAI Press, Chicago, IL, USA, 222–228.

APT, K. R., BLAIR, H. A., AND WALKER, A. 1988. Towards a theory of declarative knowledge.
Foundations of deductive databases and logic programming, 89–148.

ARORA, S. AND BARAK, B. 2009. Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge.

ATSERIAS, A., FICHTE, J. K., AND THURLEY, M. 2011. Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373.

BEN-ELIYAHU, R. 1996. A hierarchy of tractable subsets for computing stable models. J. Artif.
Intell. Res. 5, 27–52.

BEN-ELIYAHU, R. AND DECHTER, R. 1994. Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell. 12, 1, 53–87.

BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T., Eds. 2009. Handbook of Satisfi-
ability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam,
Netherlands.

BLIEM, B., ORDYNIAK, S., AND WOLTRAN, S. 2016. Clique-width and directed width measures
for answer-set programming. In Proceedings of the 22st Eureopean Conference on Artificial
Intelligence (ECAI’16), M. Fox and G. Kaminka, Eds. Frontiers in Artificial Intelligence and
Applications, vol. 285. IOS Press, The Hague, Netherlands, 1105–1113. Extended version
CoRR:1606.09449.

BODLAENDER, H. L. 1993. A tourist guide through treewidth. Acta Cybernetica 11, 1-2, 1–22.

BOMANSON, J., GEBSER, M., AND JANHUNEN, T. 2014. Improving the normalization of weight
rules in answer set programs. In Proceedings of the 14th European Conference on Logics in
Artificial Intelligence (JELIA’14), E. Fermé and J. Leite, Eds. Lecture Notes in Computer Science,
vol. 8761. Springer Verlag, Funchal, Madeira, Portugal, 166–180.

https://arxiv.org/abs/1606.09449

TECHNICAL REPORT DBAI-TR-2016-99 35

BRASS, S. AND DIX, J. 1998. Characterizations of the disjunctive well-founded semantics:
Confluent calculi and iterated GCWA. J. Automated Reasoning 20, 143–165.

CHANDRA, A. K. AND HAREL, D. 1985. Horn clause queries and generalizations. J. Logic
Programming 2, 1, 1–15.

COURCELLE, B. AND OLARIU, S. 2000. Upper bounds to the clique width of graphs. Discr. Appl.
Math. 101, 1–3, 77–114.

CYGAN, M., FOMIN, F. V., KOWALIK, L., LOKSHTANOV, D., DÁNIEL MARX, M. P., PILIPCZUK,
M., AND SAURABH, S. 2015. Parameterized Algorithms. Springer Verlag.

DOWLING, W. F. AND GALLIER, J. H. 1984. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Logic Programming 1, 3, 267–284.

DOWNEY, R. G. AND FELLOWS, M. R. 1999. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York, NY, USA.

DOWNEY, R. G. AND FELLOWS, M. R. 2013. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer Verlag, London, UK.

DOWNEY, R. G., FELLOWS, M. R., AND REGAN, K. W. 1998. Descriptive complexity and the
W hierarchy. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science 39,
119–134.

DOWNEY, R. G., FELLOWS, M. R., AND STEGE, U. 1999. Parameterized complexity: A
framework for systematically confronting computational intractability. In Contemporary Trends
in Discrete Mathematics: From DIMACS and DIMATIA to the Future, R. L. Graham, J. Kratochvı́l,
J. Nešetřil, and F. S. Roberts, Eds. DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, vol. 49. American Mathematical Society, 49–99.

DRESCHER, C., GEBSER, M., GROTE, T., KAUFMANN, B., KÖNIG, A., OSTROWSKI, M., AND

SCHAUB, T. 2008. Conflict-driven disjunctive answer set solving. In Proceedings of the 11th
International Conference on Principles of Knowledge Representation and Reasoning (KR’08),
G. Brewka and J. Lang, Eds. The AAAI Press, Sydney, NSW, Australia, 422–432.

EITER, T., FINK, M., TOMPITS, H., AND WOLTRAN, S. 2004. Simplifying logic programs
under uniform and strong equivalence. In Proceedings 7th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’04), I. Niemelä and V. Lifschitz, Eds.
Lecture Notes in Computer Science, vol. 2923. Springer Verlag, Tempe, AZ, USA, 87–99.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15, 3–4, 289–323.

FELLOWS, M. R., PFANDLER, A., ROSAMOND, F. A., AND RÜMMELE, S. 2012. The param-
eterized complexity of abduction. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAA’12), J. Hoffmann and B. Selman, Eds. The AAAI Press, Toronto, ON, Canada.

TECHNICAL REPORT DBAI-TR-2016-99 36

FICHTE, J. K. 2015. Backdoors to tractability of disjunctive answer set programming. Ph.D. thesis,
Fakultät für Informatik an der Technischen Universität Wien.

FICHTE, J. K. AND SZEIDER, S. 2015a. Backdoors to normality for disjunctive logic programs.
ACM Trans. Comput. Log. 17, 1 (Dec.), 7.

FICHTE, J. K. AND SZEIDER, S. 2015b. Backdoors to tractable answer-set programming. Artificial
Intelligence 220, 0, 64–103.

FLUM, J. AND GROHE, M. 2003. Describing parameterized complexity classes. Information and
Computation 187, 2, 291–319.

FLUM, J. AND GROHE, M. 2005. Model-checking problems as a basis for parameterized intractabil-
ity. Logical Methods in Computer Science 1, 1, 1–36.

FLUM, J. AND GROHE, M. 2006. Parameterized Complexity Theory. Theoretical Computer Science,
vol. XIV. Springer Verlag, Berlin.

GASPERS, S. AND SZEIDER, S. 2012. Backdoors to satisfaction. In The Multivariate Algorithmic
Revolution and Beyond, H. Bodlaender, R. Downey, F. Fomin, and D. Marx, Eds. Lecture Notes
in Computer Science, vol. 7370. Springer Verlag, Heidelberg, Germany, 287–317.

GEBSER, M., GLASE, T., SABUNCU, O., AND SCHAUB, T. 2013. Matchmaking with answer
set programming. In Proceedings of 12th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar and T. C. Son, Eds. Lecture Notes in
Computer Science, vol. 8148. Springer Verlag, Corunna, Spain, 342–347.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2011. Multi-Criteria Opti-
mization in Answer Set Programming. In Technical Communications of the 27th International
Conference on Logic Programming (ICLP’11), J. Gallagher and M. Gelfond, Eds. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 11. Dagstuhl Publishing, Lexington, KY, USA,
1–10.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2012. Answer Set Solving in
Practice. Morgan & Claypool.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012a. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52–89.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2013. Advanced conflict-driven disjunctive
answer set solving. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI’13), F. Rossi and S. Thrun, Eds. The AAAI Press, Beijing, China,
912–918.

TECHNICAL REPORT DBAI-TR-2016-99 37

GEBSER, M., KAUFMANN, R., AND SCHAUB, T. 2012b. Gearing up for effective ASP planning.
In Correct Reasoning – Essays on Logic-Based AI in Honour of Vladimir Lifschitz, E. Erdem,
J. Lee, Y. Lierler, and D. Pearce, Eds. Lecture Notes in Computer Science, vol. 7265. Springer
Verlag, 296–310.

GEBSER, M., SCHAUB, T., AND THIELE, S. 2007. Gringo: A new grounder for answer set
programming. In Proceedings of the 9th International Conference Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), C. Baral, G. Brewka, and J. Schlipf, Eds. Lecture Notes
in Computer Science, vol. 4483. Springer Verlag, Tempe, AZ, USA, 266–271.

GELDER, A. V. 1989. Negation as failure using tight derivations for general logic programs. J.
Logic Programming 6, 1–2, 109–133.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference and Symposium on Logic Programming
(ICLP/SLP’88), R. A. Kowalski and K. A. Bowen, Eds. Vol. 2. MIT Press, Seattle, WA, USA,
1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9, 3/4, 365–386.

GOLDREICH, O. 2008. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, Cambridge.

GOMES, C. P., KAUTZ, H., SABHARWAL, A., AND SELMAN, B. 2008. Chapter 2: Satisfiability
solvers. In Handbook of Knowledge Representation, V. L. Frank van Harmelen and B. Porter,
Eds. Foundations of Artificial Intelligence, vol. 3. Elsevier Science Publishers, North-Holland,
Amsterdam, Netherlands, Chapter 2, 89–134.

GOTTLOB, G., PICHLER, R., AND WEI, F. 2010. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artificial Intelligence 174, 1, 105–132.

GOTTLOB, G., SCARCELLO, F., AND SIDERI, M. 2002. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence 138, 1-2, 55–86.

GOTTLOB, G. AND SZEIDER, S. 2008. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. The Computer Journal 51, 3, 303–325.

JAKL, M., PICHLER, R., AND WOLTRAN, S. 2009. Answer-set programming with bounded
treewidth. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI’09), C. Boutilier, Ed. Vol. 2. The AAAI Press, Pasadena, CA, USA, 816–822.

JANHUNEN, T. AND NIEMELÄ, I. 2011. Compact translations of non-disjunctive answer set
programs to propositional clauses. In Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning – Essays Dedicated to Michael Gelfond on the Occasion of His 65th
Birthday, M. Balduccini and T. Son, Eds. Lecture Notes in Artificial Intelligence, vol. 6565.
Springer Verlag, 111–130.

TECHNICAL REPORT DBAI-TR-2016-99 38

KAUFMANN, B., GEBSER, M., KAMINSKI, R., AND SCHAUB, T. 2015. clasp – a conflict-driven
nogood learning answer set solver. http://www.cs.uni-potsdam.de/clasp/.

KLEINE BÜNING, H. AND LETTMAN, T. 1999. Propositional logic: deduction and algorithms.
Cambridge University Press, Cambridge, New York, NY, USA.

KRONEGGER, M., PFANDLER, A., AND PICHLER, R. 2013. Parameterized complexity of optimal
planning: A detailed map. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), F. Rossi, Ed. The AAAI Press, Beijing, China, 954–961.

LACKNER, M. AND PFANDLER, A. 2012a. Fixed-parameter algorithms for closed world reasoning.
In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14), T. Schaub,
G. Friedrich, and B. O’Sullivan, Eds. Frontiers in Artificial Intelligence and Applications, vol.
242. IOS Press, Prague, Czech Republic, 492–497.

LACKNER, M. AND PFANDLER, A. 2012b. Fixed-parameter algorithms for finding minimal models.
In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12), T. Eiter and S. McIlraith, Eds. The AAAI Press, Rome, Italy, 85–95.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO,
F. 2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7, 3, 499–562.

LIN, F. AND ZHAO, X. 2004. On odd and even cycles in normal logic programs. In Proceedings
of the 19th National Conference on Artificial Intelligence (AAAI’04), D. L. McGuinness and
G. Ferguson, Eds. The AAAI Press, San Jose, CA, USA, 80–85.

MAREK, V. W. AND TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, K. R. Apt, V. W.
Marek, M. Truszczyński, and D. S. Warren, Eds. Artificial Intelligence. Springer Verlag, 375–398.

MARX, D. AND PILIPCZUK, M. 2014. Everything you always wanted to know about the parame-
terized complexity of Subgraph Isomorphism (but were afraid to ask). In Proceedings of the 31st
International Symposium on Theoretical Aspects of Computer Science (STACS’14), E. W. Mayr
and N. Portier, Eds. Leibniz International Proceedings in Informatics (LIPIcs), vol. 25. Dagstuhl
Publishing, Lyon, France, 542–553.

MORAK, M., PICHLER, R., RÜMMELE, S., AND WOLTRAN, S. 2010. A dynamic-programming
based ASP-solver. In Proceedings of 12th European Conference on Logics in Artificial Intelli-
gence (JELIA’10), T. Janhunen and I. Niemelä, Eds. Lecture Notes in Computer Science, vol.
6341. Springer Verlag, Helsinki, Finland, 369–372.

NIEDERMEIER, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, New York, NY, USA.

http://www.cs.uni-potsdam.de/clasp/

TECHNICAL REPORT DBAI-TR-2016-99 39

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25, 3, 241–273.

NIEMELÄ, I. AND RINTANEN, J. 1994. On the impact of stratification on the complexity of
nonmonotonic reasoning. J. Applied Non-Classical Logics 4, 2, 141–179.

NIEMELÄ, I., SIMONS, P., AND SOININEN, T. 1999. Stable model semantics of weight constraint
rules. In Proceedings of the 5th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’99), M. Gelfond, N. Leone, and G. Pfeifer, Eds. Lecture Notes in
Computer Science, vol. 1730. Springer Verlag, El Paso, TX, USA, 317–331.

PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley.

PFANDLER, A., RÜMMELE, S., AND SZEIDER, S. 2013. Backdoors to abduction. In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), F. Rossi, Ed. The
AAAI Press, Beijing, China, 1046–1052.

PICHLER, R., RÜMMELE, S., SZEIDER, S., AND WOLTRAN, S. 2014. Tractable answer-set
programming with weight constraints: bounded treewidth is not enough. Theory Pract. Log.
Program. 14, 2, 141–164.

PIPATSRISAWAT, K. AND DARWICHE, A. 2011. On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175, 2, 512–525.

PONTELLI, E., SON, T., BARAL, C., AND GELFOND, G. 2012. Answer set programming and
planning with knowledge and world-altering actions in multiple agent domains. In Correct
Reasoning – Essays on Logic-Based AI in Honour of Vladimir Lifschitz, E. Erdem, J. Lee,
Y. Lierler, and D. Pearce, Eds. Lecture Notes in Computer Science, vol. 7265. Springer Verlag,
509–526.

RICCA, F., GRASSO, G., ALVIANO, M., MANNA, M., LIO, V., IIRITANO, S., AND LEONE, N.
2012. Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract.
Log. Program. 12, 361–381.

ROBERTSON, N. AND SEYMOUR, P. 1984. Graph Minors. III. Planar Tree-Width. J. Combin.
Theory Ser. B 36, 1, 49–64.

SAMER, M. AND SZEIDER, S. 2010. Constraint satisfaction with bounded treewidth revisited. J.
Comput. Syst. Sci. 76, 2, 103–114.

SYRJÄNEN, T. 2009. Logic programs and cardinality constraints: Theory and practice. Ph.D. thesis,
Helsinki University of Technology.

TRUSZCZYŃSKI, M. 2011. Trichotomy and dichotomy results on the complexity of reasoning with
disjunctive logic programs. Theory Pract. Log. Program. 11, 881–904.

TECHNICAL REPORT DBAI-TR-2016-99 40

VARDI, M. Y. 2014. Boolean satisfiability: Theory and engineering. Communications of the
ACM 57, 3 (Mar.), 5–5.

WILLIAMS, R., GOMES, C., AND SELMAN, B. 2003a. Backdoors to typical case complexity.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03),
G. Gottlob and T. Walsh, Eds. Morgan Kaufmann, Acapulco, Mexico, 1173–1178.

WILLIAMS, R., GOMES, C., AND SELMAN, B. 2003b. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In Informal Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing (SAT’03). Portofino,
Italy, 222–230.

	Introduction
	Preliminaries
	Propositional Satisfiability
	Answer Set Programming
	Parameterized Complexity

	Considered Parameters
	Hardness Results
	Membership Results
	Conclusion

