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Abstract. Answer set programming (ASP) is a popular framework for declarative modelling
and problem solving. It has successfully been used to solve a wide variety of problems in
artificial intelligence and reasoning. Many problems in propositional disjunctive ASP are of
high computational complexity, such as reasoning, counting, and enumeration; in particular,
the reasoning problems are complete for the second level of the Polynomial Hierarchy and
thus even “harder than NP”.
In this paper, we introduce backdoor trees for ASP and present a parameterized complexity
analysis that takes the input size of an instance along with a composed parameter, which is
based on backdoor trees, into account. When using backdoors for a parameterized complexity
analysis one only considers the size k of a backdoor as a parameter. Evaluating a given
backdoor results in 2k assignments and thus 2k programs the assignments. However, an
assignment to fewer than k atoms can already yield a program under assignment that belongs
to the fixed target class. Therefore, we consider binary decision trees, which make gradually
assigning truth values to backdoor atoms in a program precise and lead us to the notion
of backdoor trees, originally defined for propositional satisfiability. In this way, backdoor
trees provide a more precise approach to the evaluation of backdoors, where we take the
interaction of the assignments in the evaluation into account.
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1 Introduction
Answer set programming (ASP) is a popular framework for declarative modelling and problem
solving [29, 31, 21]. It has successfully been used to solve a wide variety of problems in artificial
intelligence and reasoning, e.g., match making [19], optimization of packaging of Linux distri-
butions [20], reasoning in robots [4], shift design [1]. In ASP, problems are usually modelled by
means of rules and constraints that form a logic program. The solutions to the program are the
so-called answer sets (or stable models). Solving a problem means to search for answer sets of
logic programs. In this paper, we are mainly interested in computational decision problems for
propositional disjunctive ASP such as deciding whether a program has a solution (CONSISTENCY),
or whether a certain atom is contained in at least one (BRAVE REASONING) or in all solutions
(SKEPTICAL REASONING). Further, we consider a counting (COUNTING) and an enumeration
problem (ENUM).

Developers of modern solvers such as Clasp [22] or Wasp [3] have demonstrated in several
competitions [10, 9, 2, 23, 24] that ASP solving can be efficiently used to solve a wide variety
of instances. However from the perspective of classical worst case complexity, many decision
problems for disjunctive ASP are “harder than NP” and have a higher worst-case complexity than
CSP and SAT. More precisely, the problems CONSISTENCY, BRAVE REASONING, and SKEPTICAL

REASONING are complete for the second level of the Polynomial Hierarchy [13].
In the literature, more fine-grainted results on computational complexity of the ASP decision

problems have been established. Syntactic properties where the input is restricted to certain
fragments have been identified under which the computational complexity drops and where the
problems can be solved more efficiently [25, 5, 6, 34, 16]. Parameterized complexity analyses,
which take the input size of an instance along with a certain “hidden structure” (parameter), have
been carried out [28, 7, 15, 14]. The central idea of parameterized complexity is that instances
originating in practical applications are often structured in a way that facilitates obtaining a solution
relatively fast. An interesting parameter for answer set programming are backdoors, which can
be used as clever reasoning shortcuts through the search space. For a backdoor one usually fixes
a class of programs, commonly called target class, where the problem under consideration is
computationally easier. Then, a strong backdoor into a certain target class C is a (preferably small)
set of atoms for which the given program with respect to any assignment τ ∈ 2X belongs to C.
Exploiting backdoors usually consists of two steps (i) finding a backdoor of the given instance
(backdoor detection) and (ii) applying the backdoor to the instance and determining a candidate
solution and verifying its minimality (backdoor evaluation). The computational blowup is confined
to the size of the backdoor in both steps. Hence, the size of the backdoor can be seen as a distance
measure that indicates how far the instance is from the target class.

In this paper, we consider backdoor trees, which provide a more precise approach to the
evaluation of strong backdoors, where we take the interaction of the assignments in the evaluation
into account. When using backdoors for a parameterized complexity analysis one only considers
the size k of a backdoor as a parameter. Evaluating a given backdoor results in 2k assignments and
thus 2k programs with respect the possible assignments. However, an assignment to fewer than k
atoms can already yield a program, with respect to a considered assignment, that belongs to the
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fixed target class. Therefore, we consider binary decision trees, which make gradually assigning
truth values to backdoor atoms in a program precise and lead us to the notion of backdoor trees. We
investigate under which conditions (i) we need to consider significantly fewer than 2k assignment
reducts and (ii) we can significantly improve parts of the backdoor evaluation (minimality check) if
those assignments set only a small number of atoms to true.

Our main contributions are as follows:

1. We define backdoor trees for answer set programming, extend the concept of backdoors from
sets to trees (with similar steps detection and evaluation), and establish that the reducts that
we obtain from a backdoor tree are sufficient to find all answer sets.

2. We show that backdoor tree evaluation is fixed-parameter tractable when parameterized by a
composed parameter, which incorporates considerations of (i) and (ii) from above of a given
backdoor tree.

3. We establish fixed-parameter tractability for backdoor tree detection for backdoor trees into
the target class Horn.

Related Work Backdoor trees have been introduced by Samer and Szeider [32] in the context of
propositional satisfiability. Backdoor trees provide a more refined concept of backdoor evaluation
and take the interaction of variables that form a backdoor into account. The propositional satisfia-
bility problem can be solved by means of a backdoor tree and is fixed parameter tractable when
parameterized by the number of leaves in a backdoor tree. The problems of detecting backdoor
trees into 2CNF and Horn formulas are fixed parameter tractable. Gallo-Scutellà [18] have consid-
ered generalized classes (Γ1,Γ2, . . .) of propositional Horn formulas by investigating the maximal
number of positive literals that have be set to true to obtain a propositional Horn formula. The
notion provides a parameter that measures in a certain sense the distance of a propositional formula
from being Horn. The problem to decide whether a propositional formula belongs to a class Γk
(parameter detection) has been shown to be non-uniform polynomial-time solvable where the order
of the polynomial depends on the parameter (XP). However, it is an open research question whether
it is also uniform polynomial-time solvable (FPT).

2 Preliminaries

Answer Set Programming
We consider a universe U of propositional atoms. A literal is an atom a ∈ U or its negation ā. A
disjunctive logic program (or simply a program) P is a set of rules of the form a1 ∨ . . . ∨ al ←
b1, . . . , bn, c̄1, . . . , c̄m where a1, . . . , al, b1, . . . , bn, c1, . . . , cm are atoms and l, n,m are non-negative
integers. We write H(r) = {a1, . . . , al} (the head of r), B+(r) = {b1, . . . , bn} (the positive body
of r), and B−(r) = {c1, . . . , cm} (the negative body of r). We denote the sets of atoms occurring in
a rule r or in a program P by at(r) = H(r)∪B+(r)∪B−(r) and at(P ) =

⋃
r∈P at(r), respectively.

We denote the number of rules of P by |P | = |{ r : r ∈ P }|. The size ‖P‖ of a program P is
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defined as
∑

r∈P |H(r)|+ |B+(r)|+ |B−(r)|. A rule r is is normal if |H(r)| ≤ 1, r is a constraint
(integrity rule) if |H(r)| = 0, r is Horn if it is positive and normal or a constraint. We say that
a program has a certain property if all its rules have the property. Horn refers to the class of all
Horn programs. We denote the class of all normal programs by Normal. Let P and P ′ be programs.
We say that P ′ is a subprogram of P (in symbols P ′ ⊆ P ) if for each rule r′ ∈ P ′ there is some
rule r ∈ P with H(r′) ⊆ H(r), B+(r′) ⊆ B+(r), B−(r′) ⊆ B−(r). Let C be a class of programs.
We call a class C of programs hereditary if for each P ∈ C all subprograms of P are in C as well.

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩ M 6= ∅ or B+(r) \M 6= ∅. M
is a model of P if it satisfies all rules of P . The Gelfond-Lifschitz (GL) reduct of a program P
under a set M of atoms is the program PM obtained from P by first removing all rules r with
B−(r) ∩M 6= ∅ and then removing all z̄ where z ∈ B−(r) from the remaining rules r [26]. M is
an answer set (or stable model) of a program P if M is a minimal model of PM . We denote by
AS(P ) the set of all answer sets of P . A class C of programs is enumerable if for each P ∈ C we
can compute AS(P ) in polynomial time.

In this paper, we consider the following fundamental ASP problems:

Problem: CONSISTENCY

Input: Program P .
Question: Decide whether P has an answer set.

Problem: BRAVE REASONING

Input: Program P .
Question: Decide whether a belongs to some answer set of P .

Problem: SKEPTICAL REASONING

Input: Program P .
Question: Decide whether a belongs to all answer sets of P .

Problem: COUNTING

Input: Program P .
Question: Compute the number of answer sets of P .

Problem: ENUM

Input: Program P .
Question: List all answer sets of P .

We denote by AspFull the family of all problems CONSISTENCY, BRAVE REASONING, SKEP-
TICAL REASONING, COUNTING, and ENUM.

Parameterized Complexity
We briefly give some background on parameterized complexity. For more detailed information
we refer to other sources [11, 12, 17, 27, 30]. An instance of a parameterized problem L is a
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pair (I, k) ∈ Σ∗ × N for some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N we call I the
main part and k the parameter. ‖I‖ denotes the size of I . L is fixed-parameter tractable if there
exist a computable function f and a constant c such that we can decide by an algorithm whether
(I, k) ∈ L in time O(f(k)‖I‖c). Such an algorithm is called an fpt-algorithm. FPT is the class of
all fixed-parameter tractable decision problems.

Backdoors of Answer Set Programs
In the following, we briefly summarize the concept of ASP backdoors by Fichte and Szeider [15]. A
(truth) assignment is a mapping τ : X → {0, 1} defined for a set X ⊆ U of atoms. For x ∈ X , we
define τ(x̄) = 1 − τ(x). By 2X we denote the set of all assignments τ : X → {0, 1}. By τ−1(b)
we denote the preimage τ−1(b) := { a : a ∈ X, τ(a) = b } of the assignment τ for some truth
value b ∈ {0, 1}.

Definition 1 (Strong C-Backdoor [15]). Let P be a program, X a set of atoms, and τ ∈ 2X an
assignment. The reduct of P under τ is the logic program Pτ obtained from P by (i) removing all
rules r with H(r) ∩ τ−1(1) 6= ∅ or H(r) ⊆ X; (ii) removing all rules r with B+(r) ∩ τ−1(0) 6= ∅;
(iii) removing all rules r with B−(r) ∩ τ−1(1) 6= ∅; (iv) removing from the heads and bodies of the
remaining rules all literals a, ā with a ∈ X . Let C be a class of programs. A set X of atoms is a
strong C-backdoor of a program P if Pτ ∈ C for all assignments τ ∈ 2X .

By a minimal strong C-backdoor of a program P we mean a strong C-backdoor of P that does
not properly contain a smaller strong C-backdoor of P ; a smallest strong C-backdoor of P is one of
smallest cardinality.

The a result by Fichte and Szeider [15] states that all ASP problems that are of interest in this
paper are fixed-parameter tractable when parameterized by the size of a given strong C-backdoor for
an enumerable target class C ⊆ Normal and that finding a strong backdoor is also fixed-parameter
tractable for various target classes.

3 Backdoor Trees of Answer Set Programs
When we exploit a backdoor X of a program P to find answer sets according to a backdoor-
based approach [15], the exponential blowup of the running time depends only on the size of the
backdoor X . Thus, the focus when considering backdoors for a complexity analysis is to efficient
algorithms to find smallest backdoors into certain target classes. The actual algorithm then consists
of two steps: (i) computing the answer sets of the program P under the assignment τ for all τ ∈ 2X ,
which produces candidates for answer sets of P , and (ii) checking for each M ∈ AS(P,X) whether
M ∈ AS(P,X) is a minimal model of PM . In Step (i) we determine for each τ ∈ 2X the answer
sets of the reducts Pτ and then check whether these answer sets give rise to an answer set of P .
Consequently, we have to consider all the 2|X| assignments in the worst case. However, there are
answer set programs where we can find a backdoor X for which we do not need all 2|X| assignments,
as “shorter” assignments already yield a reduct that belongs to the considered target class. More
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Py1y2y3 Py1y2ȳ3
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Py1ȳ2y3 Py1ȳ2ȳ3
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Pȳ1y2
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Pȳ1ȳ2
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. . . . . . . . . . . . . . . . . . . . . . . .

(a) Constructed from the strong Horn-backdoor Y

P

Px1

Px1,x2

Px1x2x3 Px1x̄2x3

Px1x̄2

Px̄1

. . .

(b) Constructed from the strong Horn-backdoor X

Figure 1 Illustration of reducts of the program P and the strong Horn-backdoors X and Y from
Example 1. A gray colored note indicates that the respective program does not belong to
Horn. A white colored note indicates that the respective program belongs to Horn.

formally, there is an assignment τ ′ such that τ ′−1 ( τ−1 for some τ ∈ 2X and the reduct Pτ ′ already
belongs to the target class C. Hence, when we gradually assign truth values to atoms (similar to
binary search) instead of taking an assignment τ ∈ 2X , some atoms in τ can be irrelevant for the
question whether the reduct belongs to C.

Interestingly, in some cases it is more effective to use a backdoor that is not a smallest backdoor
into the target class C. We show this in the following example.

Example 1. Let n be some integer. Consider the following program:

P := { y0 ∨ x0 ← x1, . . . , x2n }∪
{ yj ∨ xi ← x0 . . . , xi−1, xi+1, . . . , x2n−1 : j = (i mod n), 1 ≤ i < 2n }∪
{x0 ← x1, . . . , x2n−1, ȳj }
{xi ← x0, xi−1, xi+1, x2n−1, ȳj : j = (i mod n), 0 ≤ i < 2n }.

We observe that Y = {y0, . . . , yn−1} is a smallest strong Horn-backdoor. Figure 1 (a) visualizes
the assignments that we obtain when gradually constructing the reducts for τ ∈ 2Y . Obviously,
we need all 2|Y | reducts since “removing” any atom from an assignment τ results in Pτ /∈ Horn.
The set X = {x0, . . . , x2n−1} is also a strong backdoor into Horn. The set X is larger than
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P n
x1

P n
x̄1

P n
x̄1x2

P n
x1x̄2

P n
x̄1x̄2x3

. . .

P n
x̄1...x̄2n−1

P n
x̄1...x̄2n−1x2n

P n
x̄1...x̄2n−1x̄2n

Figure 2 A Horn-backdoor tree BT = (T, χ) of program P n from Example 2.

the set Y , but already for “shorter” assignments τ ′ than the assignment reducts τ ∈ 2X we
obtain that the reduct belongs to Horn. For instance, the assignment τ ′ = {x̄1} yields the
reduct Px̄1 = { y1 ← x0, x2, . . . , x2n−1 }, which belongs to Horn. Hence, we obtain only 2n + 1
reducts, see Figure 1 (b).

Example 1 shows that gradually assigning backdoors can “earlier” yield reducts that belong to
the considered target class and that larger backdoors can yield an exponentially smaller number
of such reducts. A main part for backdoor evaluation is to check whether a model is a minimal
model (“minimality check”). The task is co-NP-complete in general, but fixed-parameter tractable
when parameterized by the size of a smallest backdoor into a subclass of normal programs. For
the minimality check we have to consider all backdoor atoms that have been set to true by any
assignment. Hence the backdoor Y from Example 1 yields a significantly smaller number of
reducts, however for the minimality check we still have to consider all subsets of Y . Conversely, we
construct subsequently in Example 2 a program where the number of assignments that we obtain
from a smallest strong backdoor can be arbitrarily larger than the maximum number of atoms in a
backdoor that have been set to true by any assignment on a much larger number of atoms.

Example 2. Let n be some large integer. We define the following program:

P := { y0 ∨ x̄0 ← x̄1, . . . , x̄2n−1 }∪
{ yj ∨ xi ← x̄0 . . . , x̄i−1, x̄i+1, . . . , x̄2n−1 : j = (i mod n), 1 ≤ i < 2n }∪
{x0 ← x1, . . . , x2n−1, ȳj }
{xi ← x̄0, x̄i−1, x̄i+1, x̄2n−1, ȳj : j = (i mod n), 0 ≤ i < 2n }.

We observe that Y = {y0, . . . , yn−1} is a smallest strong Horn-backdoor. Gradually constructing
the reducts as carried out above yields a complete tree with 2n leaves and a maximum number n
of atoms that might be set to true. Obviously, we need all 2|Y | reducts since “removing” any atom
from an assignment τ results in Pτ /∈ Horn. Further, we easily observe that X = {y1, . . . , yn} is a
smallest strong Horn-backdoor. Figure 2 visualizes the assignments that we obtain when gradually
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constructing the reducts τ ∈ 2X . There we have only 2n+ 1 reducts where at most one atom is set
to true.

Before we can make the observations from the previous examples precise, we provide some
basic definitions. Let X be a set of atoms, T = (N,E, r) a binary tree, and χ a labeling that maps
any node t ∈ N to a set χ(t) ⊆ { a, ā : a ∈ X }. We denote by X1(t) the positive literals of the
labeling χ(t), i.e.,X1(t) := χ(t)∩X . The corresponding assignment τχ(t) of t is the assignment τχ(t)

where τχ(t)(a) = 1 if a ∈ χ(t) and τχ(t)(a) = 0 if ā ∈ χ(t). The pair BT = (T, χ) is a binary
decision tree of P if the following conditions hold: (i) for the root r we have χ(r) = ∅, (ii) for
any two nodes t, t′ ∈ N , if t′ is a child of t, then either χ(t′) = χ(t) ∪ {ā} or χ(t′) = χ(t) ∪ {a}
for some atom a ∈ X \ τ−1

χ(t), and (iii) for any three nodes t, t1, t2 ∈ N , if t1 and t2 are children
of t, then χ(t1) 6= χ(t2). We denote by at(BT ) the atoms occurring in assignments of BT , i.e.,
at(BT ) :=

⋃
t∈N τ

−1
χ(t).

Next, we give a definition for backdoor trees of answer set programs.

Definition 2. Let P be a program, X = at(P ), and BT = (T, χ) be a binary decision tree and T =
(N,E). The pairBT = (T, χ) is a C-backdoor tree of P if Pτ ∈ C for every leaf t ∈ N and τ = τχ(t).
We denote by #leaves(BT) the number of leaves of T , i.e., #leaves(BT ) := |{ t : t is a leaf of T }|.
We denote by gs(BT ) the maximum number of atoms that have been set to true by a corresponding
assignment of any leaf of T , more specifically, gs(BT ) := max{ |X1(t)| : t is a leaf of T }. For
reasons explained below, we call gs(BT ) the Gallo-Scutellà parameter of BT .

In other words, a backdoor tree of a program P is a binary decision tree where the nodes of
the tree are labeled by assignments τ ∈ 2X on subsets X ⊆ at(P ), the corresponding partial
assignment τ of an inner node yields a reduct Pτ that does not belong to the considered target class,
and the corresponding assignment τ of a leaf yields a reduct Pτ that belongs to the considered target
class.

Relationship to a Parameter by Gallo and Scutellà
The maximal number of positive variables in a propositional formula has been considered as
parameter by Gallo and Scutellà [18] to measure in a certain sense the distance from being Horn.
Recall that a formula is Horn if each clause has at most one positive literal. Gallo and Scutellà have
also established an XP-algorithm to determine the parameter of a propositional formula.

We consider the parameter in its original context and definition as nested classes of families of
sets on a family to generalize Horn formulas. Let S be a family of sets S1, . . . , Sm, SX = S \ {Y ∈
S : X ⊆ Y }, and S − X := {S \ X : S ∈ S } for some set X . Moreover, (i) S ∈ Σ0 if and
only if |S| ≤ 1 for each S ∈ S and (ii) S ∈ Σk if and only if there is some v ∈

⋃
1≤i≤m Si such

that S{v} ∈ Σk−1 and S − {v} ∈ Σk. Then, the class Γk consists of all propositional formulas F
such that F ′ ∈ Σk where F ′ is obtained from F by removing all negative literals (note that we
consider F ′ as a set of clauses and a clause is a set of variables). Observe that Γ0 consists of all
Horn formulas.

A backdoor tree of F into Horn formulas is a binary decision tree where the formula Fτ is Horn
for each leaf t and its corresponding assignment τ .
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Proposition 3. A propositional formula F belongs to Γk if and only if there is a backdoor treeBT =
(T, χ) into Horn formulas of F such that gs(BT ) ≤ k.

Proof. We refer to the appendix (Appendix A, p. 18).

4 Backdoor Tree Evaluation
In this section, we establish an analogue to backdoor evaluation for backdoor trees. Again we
consider the reducts Pτ together with the atoms that are set to true and extend this notion to the
corresponding assignments of the leaves for binary decision trees.

Definition 4. Let P be a program, X = at(P ), and BT = (T, χ) a binary decision tree.

AS(P, τ) :={M ∪ τ−1(1) : M ∈ AS(Pτ ) } and
AS(P,BT ) :={M : t is a leaf of T, τ = χ(t),M ∈ AS(P, τ) }.

In other words, the sets in AS(P,BT ) are answer sets of Pτ for assignments τ to χ(t) ∩ at(P )
extended by those atoms which are set to true by τ . In the following lemma we will see that the
elements in AS(P,BT ) are “answer set candidates” of the original program P . The concepts are
similar to ASP backdoors, but slightly more sophisticated.

Lemma 5. Let P be a program, BT = (T, χ) a binary decision tree of P , and X := at(BT ). Then
AS(P ) ⊆ AS(P,BT ).

Proof. We refer to the appendix (Appendix A, p. 18).

The subsequent observation states that we obtain less “answer set candidates” when evaluating
ASP backdoor trees than by evaluation ASP backdoors.

Observation 6. Let P be a program, BT = (T, χ) a binary decision tree of P , X := at(BT ), and
AS(P,X) := {M ∪ τ−1(1) : τ ∈ 2X∩ at(P ),M ∈ AS(Pτ ) }. Then AS(P,BT ) ⊆ AS(P,X).

Proof. We refer to the appendix (Appendix A, p. 18).

Theorem 7. Let C ⊆ Normal be an enumerable class. The problems in AspFull are all fixed-
parameter tractable when parameterized by gs(BT ) + #leaves(BT ) of a C-backdoor tree BT ,
assuming that the backdoor tree is given as input.

Before proving this Theorem, we need to make some observations. In view of Lemma 5
we have to consider the corresponding reducts of the leaves in the backdoor tree. For each
assignment τ ∈ ta(T ) we construct the reduct Pτ and compute the set AS(Pτ ). Then, we obtain
the set AS(P ) by checking for each M ∈ AS(Pτ ) whether it gives rise to an answer set of P .
The crucial part is again to consider minimality with respect to the Gelfond-Lifschitz reduct. For
the leaf t and its corresponding assignment τ we can guarantee minimality with respect to the
reduct (Pτ )

M . Setting atoms to true by the assignment τ does apparently not guarantee minimality
with respect to PM (cf. Lemma 5). Hence, we have to check for each atom in τ−1(1) whether there
is a “justification” to set the atom to true.

We establish the following result.
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Proposition 8. Let C ⊆ Normal. Given a program P of input size n, a C-backdoor tree BT =
(T, χ) of P of Gallo-Scutellà parameter k = gs(BT ), a leaf t of T , and a set M ⊆ AS(P, τχ(t)) of
atoms, we can check in time O(2k · n) whether M is an answer set of P .

Proof. We refer to the appendix (Appendix A, p. 19).

Now, we are in position to establish Theorem 7.

Proof of Theorem 7. Let BT = (T, r, χ) be the given C-backdoor tree, g = gs(BT ), l =
#leaves(BT ), T = (N,E, r), and n the input size of P . According to Lemma 5, AS(P ) ⊆
AS(P,BT ). Since Pτ ∈ C and C is enumerable, we can compute AS(Pτ ) in polynomial time for
each leaf t ∈ N and τ = τχ(t), say in time O(nc) for some constant c. Hence, |AS(Pτ )| ≤ O(nc)
for each leaf t ∈ N and τ = τχ(t). By Proposition 8, we can decide whether M ∈ AS(P ) in
time O(2g · nc) and |AS(P, τ)| ≤ O(2g · nc) for each M ∈ AS(P, τ) where τ = τχ(t) and t is a
leaf of T . Since there are at most l many leaves, we can compute AS(P, T ) and check whether for
M ∈ AS(P, T ) also M ∈ AS(P ) holds in time O(l · 2g · nc) and |AS(P, T )| ≤ O(l · 2g · nc). Then
we can also solve all problems in AspFull from AS(P ) within polynomial time. Consequently, the
problem is fixed-parameter tractable when parameterized by g + l.

There are two factors for hardness of ASP problems when parameterized by the Gallo-Scutellà
parameter plus the size a backdoor tree (i) atoms that are set to true which yield potential candidates
and are hence important for the minimality check in each leaf; and (ii) leaves in a backdoor tree
which yield the reducts we have to consider. Both factors of hardness are “used” in the proof of
Theorem 7. Hence, in contrast to SAT backdoor trees we do not simply parameterize the reasoning
problems in AspFull by #leaves(BT ) of a given backdoor tree BT = (T, χ) of P to obtain a more
refined view on backdoors. Instead we also consider gs(BT ) which is the maximum number of
atoms that are set to true in a leaf of T . This is attributed to the minimality check where we have to
consider the number of atoms that are set to true.

5 Relation to Backdoors
In this section, we investigate on connections between backdoors and backdoor trees. We show that
our composed parameter based on backdoor trees is more general than the size of a backdoor.

Lemma 9. Let P be a program and C be an hereditary class of programs. If BT is a C-backdoor
tree of P , then at(BT ) is a strong C-backdoor of P .

Proof. We refer to the appendix (Appendix A, p. 20).

We make the following observations about binary decision trees.

Observation 10. Let BT be a binary decision tree. Then, gs(BT ) ≤ |at(BT )| ≤ #leaves(BT )−1.
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Observation 11. Let BT be a binary decision tree, n = |at(BT )|, g = gs(BT ), and l =
#leaves(BT ). Then, l ≤ (1 + n)g.

We establish that every strong backdoor of size k yields a backdoor tree consisting of at least k+1
leaves and at most 2k leaves.

Lemma 12. Let P be a program, C an hereditary class of programs, X a strong C-backdoor of
smallest size of P , and BT = (T, χ) a C-backdoor tree of smallest number of leaves of P . Then,
|X|+ 1 ≤ #leaves(BT ) ≤ 2|X|.

Proof. We refer to the appendix (Appendix A, p. 20).

Lemma 13. Let P be a program, C a hereditary class of programs, X a strong C-backdoor of
smallest size of P , andBT = (T, χ) a C-backdoor tree of smallest Gallo-Scutellà parameter gs(BT )
of P . Then, gs(BT ) ≤ |X|.

Proof. We refer to the appendix (Appendix A, p. 20).

6 Backdoor Tree Detection
In this section, we pay attention to the detection of backdoor trees. We first define the following
decision problem:

C-BACKDOOR-TREE DETECTION(GS,LEAVES)

Given: A program P , an integer g ≥ 0, and an integer l ≥ 0.
Parameter: The integer g + l.
Task: Decide whether P has a C-backdoor tree BT of Gallo-Scutellà parame-

ter gs(BT ) ≤ g and #leaves(BT ) ≤ l.

By self-reduction (or self-transformation) [33, 11, 12], we can use a decision algorithm for
C-BACKDOOR-TREE DETECTION(GS,LEAVES) to actually find the backdoor. Again we only
require the target class to be hereditary.

Lemma 14. Let C be a hereditary class of programs. If C-BACKDOOR-TREE DETEC-
TION(GS,LEAVES) is fixed-parameter tractable, then also finding a C-backdoor tree of a given
program P of Gallo-Scutellà parameter at most g and at most l leaves is fixed-parameter tractable
(when parameterized by g + l).

Proof. We refer to the appendix (Appendix A, p. 20).

In the following, we consider backdoor tree detection when parameterized by the Gallo-Scutellà
parameter and the number of leaves of a backdoor tree. Therefore, we consider notions coined
by Samer and Szeider [32] in the setting of propositional satisfiability and apply it to answer set
programming.
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Theorem 15. The problem Horn-BACKDOOR-TREE DETECTION(GS,LEAVES) is fixed-parameter
tractable.

Before we can establish the result, we introduce the notion of a loss-free kernelization for answer
set programming and establish how we can use loss-free kernelizations to solve the backdoor tree
detection problem.

Definition 16. Let C be a class of programs. A loss-free kernelization of the problem STRONG

C-BACKDOOR DETECTION is a polynomial-time algorithm that given an instance (I, k), either
correctly decides that I does not have a strong C-backdoor of size at most k, or computes a set
K ⊆ at(P ) such that the following conditions hold:

1. X ⊆ K for every minimal strong C-backdoor X of size at most k and

2. there is a computable function f such that |K| ≤ f(k).

We establish the following proposition about target classes C that admit loss-free kernelizations.

Proposition 17. Let C be a class of programs. If the problem STRONG C-BACKDOOR DETECTION

has a loss-free kernelization, then the problem C-BACKDOOR-TREE DETECTION(GS,LEAVES) is
fixed-parameter tractable.

Proof. We refer to the appendix (Appendix A, p. 21).

The following is a direct consequence of results presented by Samer and Szeider [32].

Lemma 18. The problem STRONG Horn-BACKDOOR DETECTION has a loss-free kernelization
with loss-free kernels of size k2 + k.

Proof. We refer to the appendix (Appendix A, p. 22).

We are now in position to establish Theorem 15.

Proof of Theorem 15. It follows directly from Proposition 17 and Lemma 18.

Then we can drop the assumption in Theorem 7 that the backdoor is given.

Corollary 19. Let C ⊆ Normal be an enumerable class. The problems in AspFull are
all fixed-parameter tractable when parameterized by gs(BT ) + #leaves(BT ) of a smallest
gs(BT ) + #leaves(BT ) C-backdoor tree BT .

Proof. Let P be a program and k an integer. Since there are only linear many combinations for
k = g + l, we can use Lemma 14 to find a C-backdoor tree BT of smallest gs(BT ) + #leaves(BT )
where gs(BT ) ≤ g and #leaves(BT ) ≤ l or to decide that no such backdoor tree exists. The
remainder follows from Theorem 7.

13



7 Discussion and Future Work
We have introduced backdoor trees to answer set programming. The general concepts are similar
to the propositional setting. We also take the number of leaves of a backdoor tree into account.
However, the minimality check, which is necessary to verify minimality of potential answer
set candidates with respect to the Gelfond-Lifschitz reduct, yields an additional hardness factor.
Therefore, we parameterize the problem of backdoor tree evaluation by the composed parameter
number of leaves of a backdoor tree and maximum number of atoms that are set to true by a
corresponding assignment in a leaf. The former parameter is crucial to bound the number of
potential reducts and hence to bound the number of answer set candidates. The latter parameter is
crucial to bound the number of atoms in any assignment, which we additionally have to consider for
the minimality check.

Our parameterization raises the question of whether we can drop one parameter from the
composed parameter. On the one hand, one could parameterize the evaluation problem just by
the number of leaves of the backdoor tree, which yields fixed-parameter tractability, but then the
evaluation algorithm does not necessarily yield any speedup in the algorithm since we still have
to consider the minimality check where a bound on the number of leaves does not pay off when
using our minimality check approach. In other words, the evaluation problem is fixed-parameter
tractable when parameterized by the number of leaves of backdoor tree. We obtain a parameter that
might be significantly smaller, but the running time of the evaluation algorithm can be significantly
worse (exponentially). On the other hand, one could parameterize the evaluation problem just by
the Gallo-Scutellà parameter (the maximal number of atoms that we have to set to true in any leaf)
of the backdoor tree. Since the Gallo-Scutellà parameter of a backdoor tree can be arbitrarily small
compared to the number of leaves of a backdoor tree (and hence the size of a smallest backdoor),
we obtain an arbitrarily smaller parameter. However, since our upper bound for the number of
reducts is (1 + n)g, where n is the number of atoms of the given program and g the Gallo-Scutellà
parameter of the backdoor tree, the number of reducts remains non-uniformly bounded. Hence,
it remains open whether we obtain fixed-parameter tractability. Moreover, the problem backdoor
tree detection when parameterized by the Gallo-Scutellà parameter is only known to be in XP and
the question of whether it can be carried out in fixed-parameter tractable time is currently an open
research question.

Finally, we would like to note that it is unlikely that the problem backdoor tree detection is
fixed-parameter tractable for the classes based on the absence of certain cycles since backdoor
detection is already W[2]-hard and co-para-NP-hard [15], respectively.
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A Appendix: Omitted Proofs

Proof of Proposition 3
Proof. Let F be a propositional formula and BT = (T, χ) be a backdoor tree BT into Horn
formulas of F of Gallo-Scutellà parameter k. Observe that the labelings χ of the paths in T from
the root to a leaf provide witnesses for Conditions (i) and (ii). Hence, F ∈ Γk. Conversely, we
construct a C-backdoor tree from the fact that F ∈ Γk. Take the binary decision tree (T, χ) where
T = (N,E, r) and E = ∅. Since F ∈ Γk, the formula F ′ ∈ Σk where F ′ is obtained from F
by removing all negative literals. By Condition (ii) there is a variable v such that F ′{v} ∈ Σk−1

and F ′ − {v} ∈ Σk. We add two fresh nodes n1 and n2 to N , edges (r, n1) and (r, n2) to E, and
extend the mapping χ by labelings χ(n1) := χ(r) ∪ {v} and χ(n2) := χ(r) ∪ {v̄}. We proceed
inductively with F ′{v} and Σk−1 for the leaf n1 of T and F ′ − {v} and Σk for the leaf n2 of T . We
easily observe that by construction BT is a C-backdoor tree and since at most k variables are set to
true gs(BT ) ≤ k.

Proof of Lemma 5
Proof. Let M ∈ AS(P ) be chosen arbitrarily. We consider the assignments τ = χ(t) for each
leaf t of T . Let M ′ = M \ τ−1(1). Observe that M ′ ∈ AS(Pτ ) implies M ∈ AS(P,BT )
since M = M ′ ∪ τ−1(1) by definition. Hence, to establish the lemma, it suffices to show that
M ′ ∈ AS(Pτ ). We have to show that M ′ is a model of PM ′

τ , and that no proper subset of M ′ is
a model of PM ′

τ (which we already carried out in the proof for ASP backdoors [15, Lemma 3.7].
Consequently, AS(P ) ⊆ AS(P,BT ) and the lemma is established.

Proof of Observation 6
Proof. We show that AS(P,BT ) ⊆ AS(P,X). By Definition 4 we have AS(P,X) =⋃
τ∈2X AS(P, τ). Let Uτ := { τ ′ : τ ′ ∈ 2X , τ ′(a) = τ(a) for every a ∈ τ−1 }, in other words,

Uτ contains all assignments τ ′ ∈ 2X such that τ−1 ⊆ τ ′−1 for a possible assignment τ ′ ∈ 2X . It
remains to observe that AS(P, τ) ⊆

⋃
τ ′∈Uτ AS(P, τ ′). We define l := |τ−1 \ τ ′−1| for some assign-

ments τ and τ ′ where τ−1 ⊆ τ ′−1 and proceed an induction proof on l. The case l = 0 is obvious.
The case l = 1 follows simply from [15, Lemma 3.7] since AS(P, τ) = AS(P, τ0) ∪ AS(P, τ1)
where τ0(a) = 0 and τ1(a) = 1 for the atom a ∈ τ−1 \ τ ′−1. Consider the case l > 1. Let
τ ′′ be an assignment such that τ ′−1 = τ ′′−1 \ {a}. Then from known results [15, Lemma 3.7]
we obtain AS(P, τ ′′) ⊆ AS(P, τ ′0) ∪ AS(P, τ ′1) where τ ′0(a) = τ ′1(a) = τ ′′(a) for each a ∈ τ ′′−1,
τ ′0(b) = 0 and τ ′1(b) = 1 for some b /∈ τ−1. Since, AS(P, τ) ⊆ AS(P, τ ′′) by induction, we conclude
AS(P, τ) ⊆

⋃
τ ′∈Uτ AS(P, τ ′).
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Proof of Proposition 8
Lemma 20 (Folkore). Every Horn program has at most one minimal model which can be found in
linear time.

Lemma 21 (Minimality Check [14]). Let C be a class of normal programs. Given a program P of
input size n, a strong C-backdoor X of P of size k, and a set M ⊆ at(P ) of atoms, we can check in
time O(2kn) whether M is an answer set of P .

of Proposition 8. We would like to use a similar construction as in [15, Lemma 3.7] and therefore
need slightly stronger arguments.

Let BT = (T, χ) be a C-backdoor tree of P . We first check whether M is a model of PM . If M
is not a model of PM , then M cannot be an answer set of P . Hence, assume that M is a model of
PM .

We construct from PM a program PM
Y⊆X1(t) by (i) removing all rules r for which H(r)∩ Y 6= ∅,

and (ii) replacing for all remaining rules r the head H(r) with H(r) \ X1(t), and the positive
body B+(r) with B+(r) \ Y .

Claim: PM
Y⊆X1(t) is Horn.

We first establish that PY⊆X1(t) is normal. Since BT = (T, χ) is a backdoor tree, the partial
reduct Pτ is normal for each leaf t of T and χ := τχ(t). Let r′ be an arbitrarily chosen rule in Pτ .
Then there is a corresponding rule r ∈ P and a corresponding rule r′′ ∈ PY⊆X1(t). Since we remove
in both constructions exactly the same literals from the head of every rule, H(r′) = H(r′′) holds.
Consequently, PY⊆X1(τ) is normal and PM

Y⊆X1(τ) is Horn.

If PM
Y⊆X1(t) has no model, then stop and return True.

Otherwise, compute the unique minimal model L of the Horn program PM
Y⊆X1(t). If

L ⊆M \X , L ∪ Y (M , and L ∪ Y is a model of PM , then return False. Otherwise
return True.

For each set Y ⊆M∩X1(t) the above procedure runs in linear time by Lemma 20. By Lemma 5
we consider only the atoms that have been set to true in M , i.e., Y ⊆ X1(t) and run the algorithm
from above for each X1 ⊆ X ∩M and M is a minimal model of PM if and only if the algorithm
returns True for each Y ⊆ X1(t). Consequently, we have to consider at most 2|X1(t)| many subsets
of X1(t). Since k = max{ |X| : X ∈ X1(T ) }, we obtain a running time of O(2k‖P‖).

Claim: M is a minimal model of PM if and only if the algorithm returns True for each Y ⊆
M ∩X1(t).

The claim follows directly from the proof of Lemma 21 and establishes the correctness of the
above procedure.

Consequently the problem is fixed-parameter tractable when parameterized by k.
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Proof of Lemma 9
Proof. Let X = at(BT ). For every leaf t ∈ T we have Pτ ∈ C where τ = τχ(t) according to
Definition 2. Then, we observe that one obtains all assignments 2|X| simply by extending the
assignments τ = τχ(t) by assignments τ ′ on the atoms at(BT ) \ τ−1. Since C is hereditary and
already Pτ ∈ C, also Pτ∪τ ′ ∈ C. Hence, for all possible assignments τ ∈ 2X we have Pτ ∈ C.
Consequently, X is a strong C-backdoor of P and the lemma holds.

Proof of Observation 11
Proof. Let BT = (T, χ) a binary decision tree, T = (N,E, r), n = |at(BT )|, g = gs(BT ), and
l = #leaves(BT ). According to Definition 2, for every leaf t of T we have |χ(t)| ≤ n and at most g
atoms are set to true in the corresponding assignment τχ(t). Hence, we have at most

∑g
i=0

(
n
i

)
possible combinations of assignments. Thus, l ≤

∑g
i=0

(
n
i

)
. By binomial expansion we obtain∑g

i=0

(
n
i

)
≤
∑g

i=0(ni · 1g−i) ≤ (1 + n)g.

Proof of Lemma 12
Proof. Let P be a program, X a strong C-backdoor of smallest size of P , and BT = (T, χ) a
C-backdoor tree of smallest number of leaves of P . According to Lemma 9 the set at(BT ) is
also a strong C-backdoor of P . By Observation 10 and the definition a backdoor tree we have
|at(BT )| ≤ #leaves(BT )−1. It remains to observe that we can construct from X a complete binary
decision tree (T ′, χ) of P with 2|X| leaves by labeling the root of T ′ by ∅, and for each level the
nodes by an a or ā (which did not occur in a lower level) for a ∈ X in an arbitrary fixed order. We
obtain for a leaf t that χ(t) = τ if and only if τ ∈ 2X . Hence, Pτ ∈ C for every τ = χ(t) and leaf t.
Then (T ′, χ) is a C-backdoor tree of P where T has 2|X| many leaves. Since the number of leaves
of T is less or equal the number of leaves of T ′, we conclude #leaves(BT ) ≤ 2|X|. Consequently,
the lemma holds.

Proof of Lemma 13
Proof. Let P be a program, X a strong C-backdoor of smallest size of P , and BT = (T, χ) a
C-backdoor tree of smallest Gallo-Scutellà parameter gs(BT ) of P . We can construct from X
a C-backdoor tree (T ′, χ) of P which is a complete binary tree (cf. proof of Lemma 12). Since
χ(t) = τ if and only if τ ∈ 2X for every leaf t, |{X1(t) : t is a leaf of T }| = 2|X|. Hence,
max{ |X1(t)| : t is a leaf of T } = |X| and we conclude gs(BT ) ≤ |X|. Consequently, the
proposition holds.

Proof of Lemma 14
Proof. Given a program P of input size n and integers g ≥ 0 and l ≥ 0. We check whether P
has a C-backdoor tree of Gallo-Scutellà parameter at most g and at most l leaves by means of
Algorithm 1. Assume that the decision problem C-BACKDOOR-TREE DETECTION(GS,LEAVES) is
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fixed-parameter tractable and runs in timeO(f(g+ l) ·nc) for some constant c and some computable
function f .

Steps 1 and 2 of Algorithm 1 are trivial. In Step 3 we use the decision problem C-BACK-
DOOR-TREE DETECTION(GS,LEAVES) to find an atom a ∈ at(P ) where (i) for the assignment τ1

that assigns τ1(a) = 1 the program Pτ1 has a C-backdoor tree BT1 of gs(BT1) ≤ g − 1 and
#leaves(BT1) ≤ l1 and (ii) for the assignment τ0 that assigns τ0(a) = 0 the program Pτ0 has a
C-backdoor tree BT0 of gs(BT0) ≤ g and #leaves(BT0) ≤ l0, and 2 ≤ l1 + l0 ≤ l for some
integers l1 and l0. Such an atom a and a C-backdoor tree BT = (T, χ) of gs(BT ) ≤ g and
#leaves(BT ) ≤ l exist since C-BACKDOOR-TREE DETECTION(GS,LEAVES) returns Yes in Step 1.
Then, by definition of a binary decision tree there are also trees BT1 and BT0 where #leaves(BT1)+
#leaves(BT0) ≤ l. There are only linear many combinations l1 + l0 ≤ l and we determine the
integers l1 and l0 simply by means of binary search in Steps 3a–3g. We ensure that C-BACKDOOR-
TREE DETECTION(GS,LEAVES) yields No for every value of i and Yes for every value of j; by
setting i initially to 0 (Step 3a), checking whether C-BACKDOOR-TREE DETECTION(GS,LEAVES)
yields Yes for the initial values (Step 3b), and assigning i and j accordingly in Step 3e. In Step 4
we compute the backdoor trees BT1 and BT0 for Pτ1 and Pτ0 . Finally, in Step 5 we merge BT1

and BT0 into a solution BT for the input program. Obviously, BT is a C-backdoor tree of P of
gs(BT ) ≤ g and #leaves(BT ) ≤ l.

By assumption Step 1 runs in time O(f(g + l) · nc) for some constant c, Step 2 runs in
time O(nd) for some constant d, since we can check in polynomial time whether P ∈ C. Step 3
runs in timeO(n · (dlog2 le+ 2) · f(g+ l) ·nc). Hence, Steps 1–3 run in timeO(f(g+ l) ·nc +nd +
f(g+ l) · (dlog2 le+ 2) ·nc+1) = O(ne · (f(g+ l) + f(g+ l)dlog2 le)) for some constant e. Since a
binary search tree with l leaves has exactly l − 1 inner nodes, we have to run the recursion in Step 4
for at most l − 2 times. Thus, the algorithm runs in time O(ne · l · (f(g + l) + f(g + l)dlog2 le)) =
O(ne · f ′(g + l)) for some computable function f ′.

Proof of Proposition 17
Proof. Let C be a class of programs, P a program, and g, l > 0 integers. We consider g as bound
for the Gallo-Scutellà parameter and l for the maximum number of leaves. If l ≤ 2 we can check
in polynomial time by definition of a loss-free kernelization whether P ∈ C. Assume l ≥ 2. We
compute by means of the loss-free kernelization in polynomial-time a set K ⊆ at(P ) (if it exists).
If P has a C-backdoor tree BT = (T, χ) of Gallo-Scutellà parameter g and at most l leaves, then
at(BT ) is a strong C-backdoor, g ≤ at(BT ), and #leaves(BT ) ≤ l−1. Since the problem STRONG

C-BACKDOOR DETECTION has a loss-free kernelization, the size of K is bounded by l and the
number of binary decision trees T where at(BT ) ⊆ K is bounded by some computable function
of l. Finally, we check for at most f(l) · |K| times by testing at most f(l) times whether Pτ ∈ C
and |τ−1| ≤ g for the leaves in T and hence determine whether BT is a C-backdoor tree of P of
Gallo-Scutellà parameter g and of at most l leaves. Hence the proposition follows.
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ALGORITHM 1: C-BDTREECOMP(P, g, l)

Input: A disjunctive program P , an integer g, an integer l, and a assignment τ .
Output: A C-backdoor tree of Gallo-Scutellà parameter at most g and at most l leaves or None if no such

C-backdoor tree exists.

1. Return None
if C-BACKDOOR-TREE DETECTION(GS,LEAVES) returns No for input P , g, and l.

2. Return the backdoor tree (T, χ) where T = ({r}, ∅, r) and χ(r) = ∅ if P ∈ C.

3. For each atom a ∈ at(P ) carry out the following steps:

(a) Let i := 0, j := l − 1, and τ1 be the assignment that assigns τ1(a) = 1

(b) Decide C-BACKDOOR-TREE DETECTION(GS,LEAVES) for Pτ1 and integers g − 1 and j

i. Proceed with Step 3c if the answer is Yes.
ii. Proceed with the next atom in Step 3 if the answer is No.

(c) Let m := b i+j2 c
(d) Let l1 := j and proceed with Step 3g if i = m or j = m

(e) Decide C-BACKDOOR-TREE DETECTION(GS,LEAVES) for Pτ1 and integers g − 1 and m

i. Let j := m if the answer is Yes.
ii. Let i := m if the answer is No.

iii. Proceed with Step 3c

(f) Let τ0 be the assignment that assigns τ0(a) = 0.

(g) Decide C-BACKDOOR-TREE DETECTION(GS,LEAVES) for Pτ0 , and integers g and l − l1.

i. Proceed with Step 4 if the answer is Yes.
ii. Proceed with the next atom in Step 3 if the answer is No.

4. Compute BT1 using C-BDTREECOMP(Pτ1 , g − 1,m) and compute BT0 using
C-BDTREECOMP(Pτ0 , g, l −m)

5. Return BT = (T, χ) from BT1 = (T1, χ1) where T1 = (N1, E1, r1) and BT0 = (T0, χ0) where
T0 = (N0, E0, r0) as follows:

• let r be a fresh node, i.e., r /∈ (N1 ∪N0),

• N := N1 ∪N0 ∪ {r}, E := E1 ∪ E0 ∪ {(r, r1), (r, r0)}, T := (N,E, r), and

• χ(t) :=

{
χ1(t) ∪ {a}, if t ∈ N1,

χ0(t) ∪ {ā}, if t ∈ N0,

Proof of Lemma 18
Proof. Let P be a program and k an integer. According to results by Fichte and Szeider [15] the
set X ⊆ at(P ) is a strong Horn-backdoor of P if and only if X is a vertex cover of the negation
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dependency graph Np. Thus, we consider kernelizations of VERTEX COVER for the input graph Np.
In fact the well-known algorithm by Buss and Goldsmith [8] provides a kernelization with kernels of
size k2 + k. Buss’ kernelization works as follows: Consider instance (Np, k). Let X ⊆ V be the set
of vertices with more than k neighbors. IfX > k then output an arbitrary instance (I ′, 1) /∈VERTEX

COVER (as (I, k) /∈VERTEX COVER).Otherwise, consider the instance (N ′p, k
′) where N ′p is

obtained from Np by removing the vertices in X and all isolated vertices, and k′ = k − |X|. Since
each vertex in V has at most k neighbors, a vertex cover of N ′p of size k′ can cover at most k · k′
edges. Hence, there can be at most k′(k+1) ≤ k2 +k vertices. Then ifN ′p contains more than k2 +k
vertices return (I ′, 1) /∈VERTEX COVER (as (I, k) /∈VERTEX COVER). Otherwise, return (N ′p, k

′)
and the set X . It remains to observe that the algorithm runs in time O(k + ‖Np‖), and yields a
loss-free kernel of size at most k2 + k as X ′ ⊆ N ′P ∪X for every minimal strong C-backdoor X ′ of
size at most k. Consequently, the algorithm is a loss-free kernelization and the lemma sustains.
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