
Technical
R e p o r t

Institut für Informationssys-

teme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

Institut für Informationssysteme
Abteilung Datenbanken und Artificial Intelligence

BDD-based Dynamic Programming
on Tree Decompositions

DBAI-TR-2016-95

Günther Charwat Stefan Woltran

DBAI Technical Report

2016

DBAI Technical Report
DBAI Technical Report DBAI-TR-2016-95, 2016

BDD-based Dynamic Programming on Tree
Decompositions

Günther Charwat 1 Stefan Woltran 1

Abstract. Dynamic programming on tree decompositions is a well-studied approach
for solving computationally hard problems efficiently – given that the input exhibits
small treewidth. Usually, implementations rely on tables for storing information, and
algorithms specify how tuples are manipulated during traversal of the decomposition.
However, a bottleneck of such table-based algorithms is relatively high memory con-
sumption. Binary Decision Diagrams (BDDs) and related concepts have been shown
to be very well suited to store information efficiently.
In this report we illustrate BDD-based dynamic programming on tree decomposi-
tions. We first show algorithms for several well-known NP-complete problems that
are fixed-parameter tractable w.r.t treewidth. These algorithms are specified on a
logical level in form of set-based formula manipulation operations that are executed
directly on the underlying BDD data structure.
We then extend our approach to Quantified Boolean Formula (QBF) solving. Since
the corresponding decision problem (QSAT) is PSPACE-complete, we require addi-
tional machinery. The data structure is extended to nestings of BDDs, which account
for quantifier alternations of the QBF instance. Additionally, several algorithm opti-
mizations, including heuristic data structure compression, delayed variable removal
and intermediate unsatisfiability checks, are introduced. We develop the prototypi-
cal QBF solver dynQBF, that shows to be useful in practice for instances with few
quantifier alternations and where the treewidth of the propositional formula does
not exceed 50. Compared to state-of-the-art solvers, our system performs well on
2-QBF instances, and we even identify classes of instances that are uniquely solved
by dynQBF.

1Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11,
1040 Vienna, Austria. E-mail: {gcharwat,woltran}@dbai.tuwien.ac.at

Acknowledgements: This work has been supported by the Austrian Science Fund
(FWF): Y698, P25607, P25518. The authors would like to thank Michael Abseher for his
effort on the very efficient htd tree decomposition library.

Copyright c© 2016 by the authors

Technical Report DBAI-TR-2016-95 2

Contents
1 Introduction 3

2 Preliminaries 5
2.1 Overview . 6
2.2 Tree Decompositions and Treewidth . 6
2.3 Dynamic Programming on Tree Decompositions: State of the Art 8
2.4 Binary Decision Diagrams . 9
2.5 Related Work on BDDs . 10

3 BDD-based Dynamic Programming 12
3.1 Concept . 12

3.1.1 Recursive Tree Decomposition Traversal 12
3.1.2 Decision Methods . 13

3.2 Case Studies . 14
3.2.1 3-Colorability . 14
3.2.2 Directed Independent Dominating Set 15
3.2.3 Hamiltonian Cycle . 18

4 QBF Solving 19
4.1 Basics . 20
4.2 Data Structure . 21
4.3 Main Procedure . 22
4.4 Optimizations . 26

5 Implementation and Experimental Evaluation 28
5.1 The dynQBF System . 28
5.2 QBF Solvers: An Overview . 29
5.3 dynQBF: Experimental Evaluation . 30

5.3.1 2-QBF Instances . 31
5.3.2 Prenex CNF Instances . 32

6 Conclusion 35
6.1 Summary . 35
6.2 Discussion . 36
6.3 Future Work and Open Issues . 37

Technical Report DBAI-TR-2016-95 3

1 Introduction
An important task in computer science is to develop efficient procedures for processing
large amounts of data. This imposes a great challenge, in particular for problems that
are known to be intractable. One approach, that emerged from the field of parameterized
complexity [43], is to analyze the problem at hand, and to identify parameters that are
responsible for its hardness. Then, a dedicated algorithm is designed, that aims at exploiting
those parameters. Given such a parameter p, many intractable problems can be solved in
polynomial time, assuming that p is a fixed constant. In particular, the complexity class FPT
contains problems that are solvable in time f(p) · nO(1), where f is a computable function, p
is the parameter, and n is the input size. Here, the runtime might be exponential in p, but it
is only polynomial in n. Hence, even large amounts of data can be handled. In practice, the
goal is to design algorithms that solve the problem efficiently, given that the parameter is
rather small. Parameters can, for instance, be related to restrictions of (parts of) the input,
the solution size, or the structure of the input. Here, we consider the parameter treewidth,
which is defined on the tree decomposition [94] of the graph representation of the input. A
tree decomposition is a mapping from a graph to a tree that splits the instance into smaller
parts, thereby taking into account its structure. Roughly speaking, treewidth measures the
“tree-likeness” of the input. Using treewidth as a parameter emerged from the observation
that many problems are easier to be solved on trees than they are on arbitrary graphs.
Additionally, real-world data usually is not random but exhibits certain structure (consider,
for instance, railway networks or friendship relations in social networks).

Courcelle showed that every problem that is definable in monadic second-order logic
(MSO) is fixed-parameter tractable with respect to treewidth [37]. There, the problem is
solved via translation to a finite tree automaton (FTA). However, the algorithms resulting
from such “MSO-to-FTA” translations are oftentimes impractical due to large constants [87].
One approach to overcome this problem is to develop dedicated algorithms for the problems
at hand. These algorithms usually apply dynamic programming (DP) over the tree decom-
position (see, e.g., [40] for a comprehensive introduction and examples). Several general
systems are readily available, including Sequoia [68] and D-FLAT [1]. Additionally, there
exist problem-tailored implementations, e.g. for the area of abstract argumentation [30], An-
swer Set Programming [49,84] or bio-informatics [98]. In this work, we extend this promising
research area, and push it towards Quantified Boolean Formula (QBF) solving.

Despite continuous progress, both from a conceptual perspective as well as practical
realizations, state-of-the-art systems still exhibit certain shortcomings. One major advantage
of Sequoia is its capability to directly evaluate a given MSO formula by internal execution
of a DP algorithm. D-FLAT allows one to declaratively specify the DP algorithm, and is
hence particularly useful for the prototypical implementation of novel algorithms. However,
their execution is still quite resource-intense, a problem that has been addressed for instance
in D-FLAT by a novel approach for anytime computations [20] or by providing optimized
support for problems that require subset minimization [19]. Other proposed solutions include
special heuristics [15] or reducing the number of simultaneously stored information [7].

Technical Report DBAI-TR-2016-95 4

Our approach, however, is different, as we want to explicitly tackle the problem of high
memory demand by optimizing the data structure that is used for storing intermediate results
during the dynamic programming. Additionally, the data structure should give significant
advantages in runtime performance. To this end, Binary Decision Diagrams (BDDs) [28]
are explored as a suitable substitution of simple tables (see e.g. [87]). A BDD is a data
structure that represents models of a Boolean formula in form of a rooted directed acyclic
graph (DAG). By omitting redundancies in the DAG, the models can usually be stored in a
compact way. BDDs have undergone decades of research and are a well-established concept
used, e.g., in model-checking [80], planning [65] and software verification [16].

Overall, our goal is to first elaborate on a novel concept of BDD-based dynamic pro-
gramming on tree decompositions. Ultimately, we consider the problem of QBF satisfiability
checking (QSAT), which is PSPACE-complete [99]. QBFs are a powerful tool to compactly
encode many computationally hard problems, which makes them amenable to several ap-
plication fields where highly complex tasks emerge, e.g. planning, verification, and many
more. Most of today’s QBF solvers rely on extending the DPLL/CDCL procedures (see
e.g. [77]), but also alternative methods based on Binary Decision Diagrams (BDDs) [88] or
abstraction-refinement [61] proved successful. Here we want to develop a QBF solver that
uses our novel techniques for combined dynamic programming on tree decompositions and
BDD-based solving. In our approach nestings of BDDs are to be used to account for quan-
tifier alternations in the QBF instance. We deem BDDs suitable since (1) they allow for a
compact representation of (partial) assignments to the QBF; and (2) BDDs are canonical in
the sense that equivalent formulas are represented by identical BDDs; thus in order to keep
our data structure compact, explicit tests for duplicates are not needed. Our motivation is
to develop a novel method for QBF solving that has not been considered yet.

In summary, we tackle the imminent problem of performance shortcomings in state-of-
the-art systems that implement dynamic programming on tree decompositions. To this end,
the question is how (classically used) tables can be replaced by BDDs. Since BDDs com-
pactly represent Boolean formulae, also the algorithms are to be specified on a logical level,
and implications (advantages as well as disadvantages) are to be studied. A particular focus
is on QBF solving, following the aforementioned paradigm. For several logical problems,
e.g. SAT [96] and CSP [95], such treewidth-based algorithms have already been presented
in the literature. For QBF solving, approaches based on treewidth have been developed
in [90]. There, the algorithms use BDDs or Zero-suppressed Decision Diagrams (ZDDs).
However, in contrast to our approach, they proceed by eliminating the variables from inside
out (w.r.t. to the quantification level). Additionally, in [92] a QBF solver that combines
search and resolution-based approaches is presented. There, structural parameters of the
input are taken into account to decide how to proceed in the solving process. Here, our goal
is to develop an alternative QBF solving procedure, that combines dynamic programming
on tree decompositions with BDDs. Furthermore, current QBF solvers implement sophis-
ticated optimization strategies. We want to identify existing strategies that are suitable
for our approach. Additionally, our approach paves the way for novel optimization strate-
gies during the tree decomposition traversal, which are to be investigated. Our task is to

Technical Report DBAI-TR-2016-95 5

develop a system that is competitive with state-of-the-art QBF solvers, thus showing that
our approach can be indeed superior to classical approaches on instances that exhibit low
treewidth. Thereby, new insights into QBF solving shall be gained.

In Section 3 we introduce BDD-based dynamic programming on tree decompositions.
In particular, we provide logic-based algorithm specifications for several NP-complete prob-
lems that are fixed-parameter tractable w.r.t. treewidth. These problems impose different
challenges to the algorithm designer:

• 3-Colorability: Once set, the truth value of all variables in the BDDs remains fixed.

• Directed Independent Dominating Set: We additionally have to handle vari-
ables with changing truth value (during the dynamic programming, vertices become
dominated).

• Hamiltonian Cycle: Connectedness has to be handled in the DP algorithm.

In Section 4 a novel algorithm for QBF solving of instances in prenex CNF (PCNF) form is
presented. The data structure to be used contains (nested) sets of BDDs. The size of each
BDD is bounded by the width of the used decomposition, and the overall number of BDDs
required in each decomposition node is bounded by the width and by the number of quanti-
fiers in the instance. Thus, the runtime depends exponentially on the structural parameters
instead of the size of the formula. In Section 4.4 we introduce several optimizations for the
developed algorithm that are crucial for its performance. The approach is implemented in
the dynQBF system. In Section 5 we provide an experimental evaluation which indicates
that our method already performs well on QBFs with one quantifier alternation, while for
QBFs with a higher number of alternations our system does not reach the performance of
state-of-the-art tools yet. However, we encountered several instances that our solver was able
to solve, but where others (we compared our system with DepQBF, RAReQS, and EBD-
DRES) ran into a timeout. Our method gives rise to several directions of advancements,
such as QBF-tailored tree decomposition heuristics and width-reducing preprocessing.

Substantial parts of this report are based on papers published at LPNMR’15 [32] and
QBF’16 [33].

2 Preliminaries
In this section, we introduce tree decompositions and give account to the structural param-
eter treewidth. Furthermore, we define Binary Decision Diagrams (BDDs), that serve as the
key ingredient for our dynamic-programming based algorithms over the tree decompositions.
Additionally, we review state-of-the-art tree decomposition-based systems and study their
specifics.

Technical Report DBAI-TR-2016-95 6

2.1 Overview

In the area of parameterized complexity [43] one considers the complexity of the problem at
hand with respect to certain parameters of the input or output. The idea is that many hard
problems become tractable in case the parameters are bounded by a fixed constant. The
complexity class FPT comprises of problems that are solvable in time f(p) · nO(1), where p
is a (fixed) parameter, f is a computable function with a runtime that is only dependent
on p, and n is the input size of the problem. Observe that here the explosion in runtime
is confined to p instead of the input size. In case p is small, the problem can be solved
efficiently, despite a potentially large input size. For problems that are represented as graphs,
“obvious” parameters include the number of vertices or edges in the input, or the solution
size. Furthermore, there exist several parameters that describe the structure of the graph,
such as minimum and maximum degree, connectivity, cliquewidth, branchwidth, pathwidth
or treewidth (for a survey on width parameters, see [59]). The latter will be exploited in this
work.

2.2 Tree Decompositions and Treewidth

Many computationally hard problems, where the input is represented in form of a graph,
become tractable when the input graph forms a tree. One approach to exploit this is the
notion of tree decompositions (TDs), which were originally introduced in 1984 in [94]. Similar
notations appeared already earlier, see, e.g., [14,58]. A tree decomposition is a mapping from
an (arbitrary) graph to a tree, where each node in the tree decomposition can contain several
vertices of the original graph (called the node’s bag).

Definition 1. A tree decomposition of an arbitrary graph G = (V,E) is defined as a pair
T = (T, bagT) where T = (N,F) is a (rooted) tree with nodes N and edges F , and bagT :
N → 2V assigns to each node a set of vertices, such that the following conditions are met:

1. For every v ∈ V , there exists a node n ∈ N such that v ∈ bagT (n).

2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ bagT (n).

3. For every v ∈ V , the subtree of T induced by {n ∈ N | v ∈ bagT (n)} is connected.

Intuitively, Condition 1 and 2 guarantee that the whole input graph is covered by the
tree decomposition, and Condition 3 is the connectedness property, which, roughly speaking,
states that a vertex cannot “reappear” in unconnected parts (w.r.t. to the bag contents) of
the decomposition.

The width of T is defined as maxn∈N |bagT (n)| − 1. The treewidth of a graph is the
minimum width over all its tree decompositions. Treewidth is a measurement of the “tree-
likeness” of a graph: the smaller the treewidth, the easier the problem becomes to solve,
with trees having a treewidth of one. Although, given a graph and an integer k, deciding
whether the graph has at most treewidth k is NP-complete [4], the problem itself is in FPT

Technical Report DBAI-TR-2016-95 7

when k is considered as parameter. Furthermore, there are heuristics that give “good” tree
decompositions in polynomial time [25,41,42].

In this work we will consider several normalization types of tree decompositions. A tree
decomposition can be transformed into a (weakly) normalized one in linear time without
increasing the width [67].

Definition 2. A tree decomposition T = (T, bagT) with T = (N,F) is weakly normalized if
each node n ∈ N is of one of the following types:

• join node: n has children n1, . . . , nm such that m ≥ 2, and bagT (n) = bagT (n1) =
· · · = bagT (nm) holds.

• exchange node: n has exactly one child n1, such that bagT (n) 6= bagT (n1).

• leaf node: n has no children.

Definition 3. A tree decomposition T = (T, bagT) with T = (N,F) is normalized (or nice)
if each node n ∈ N is of one of the following types:

• join node: n has exactly two children n1 and n2, and bagT (n) = bagT (n1) = bagT (n2).

• introduction node: n has exactly one child n1, such that bagT (n) = bagT (n1) ∪ {x}
with x 6∈ bagT (n1).

• removal node: n has exactly one child n1, such that bagT (n) = bagT (n1) \ {x} with
x ∈ bagT (n1).

• leaf node: n has no children.

In the root node r of T we have bagT (r) = {}.

In this work, normalization types are merely used to provide a more succinct and readable
representation of our algorithms, but could be easily transformed to algorithms for non-
normalized tree decompositions. Furthermore, note that join nodes are defined differently
in weakly normalized and normalized tree decompositions. The node type to be considered
will be made clear from the context.

Example 1. Figure 1 shows an example graph G and a possible tree decompositions T of G.
The different normalization types are illustrated by means of Tw (weakly normalized) and Tn
(normalized). The tree decompositions have a width of 2, which corresponds to the optimal
width (i.e., the treewidth) of G.

Given a tree decomposition T = (T, bagT) with T = (N,F), for a tree decom-
position node n ∈ N we denote its set of children in T by childrenT (n). In order
to iterate over the children, we specify firstChildT (n) and nextChildT (n) as procedures
to access the children, and hasNextChildT (n) to check whether further children exist.
isLeafT (n) returns true if n has no children, introduction (removal) nodes are tested by

Technical Report DBAI-TR-2016-95 8

G: a b c

d e

T : b, c

a, b b, c, d

c, d, e

Tw: b, c

b, c

a, b

b, c

b, c, d

c, d, e

Tn: ∅

c

b, c

b, c

b

a, b

b, c

b, c, d

c, d

c, d, e

Figure 1: Example graph G, tree decomposition T , weakly-normalized tree decomposition
Tw and normalized tree decomposition Tn.

isIntroductionT (n) (isRemovalT (n)). Exchange nodes are tested with isExchangeT (n). For
nodes with more than one child, isJoinT (n) returns true. For a node n with single child
node n1, we denote by introducedT (n) = bagT (n) \ bagT (n1) the variables introduced in
n; and removedT (n) = bagT (n1) \ bagT (n) gives the variables removed in n. Furthermore,
edges of a graph instance G = (V,E) are related to nodes in the tree decomposition by
edgesT ,G(n) = {e | e ∈ E, e ⊆ bagT (n)}. For improved readability, we will usually omit
subscript T and G.

2.3 Dynamic Programming on Tree Decompositions: State of the
Art

The famous theorem by Courcelle in 1990 (see [37]), stating that any problem definable in
Monadic Second-Order logic (MSO) can be solved in linear time on graphs with bounded
treewidth, provides an important theoretical basis for today’s tree decomposition-based ap-
proaches. MSO is an extension to First-Order logic (FO), where not only quantification over
objects, but also over sets of objects is allowed. In [5], the theorem is extended to a large
class of decision, counting and optimization problems. There, an additional function can be
provided along with the MSO formula to evaluate the solutions to the formula. The proof
of Courcelle’s theorem is based on the translation of an MSO formula to a suitable finite-
state tree automaton (FTA). A software that follows this approach is called MONA [66]. It
implements particular algorithms for minimizing the finite-state automata that use BDDs.
However, in general it was observed that a direct implementation following the proof of Cour-
celle’s theorem is oftentimes impractical, since there are large constants involved resulting

Technical Report DBAI-TR-2016-95 9

in space explosion, even for instances of small treewidth, see [87]. This calls for a second
step, in which problem-specific algorithms with improved efficiency are to be developed [87].
Other authors provide similar arguments, see, e.g., [56, 57].

A vast amount of dedicated algorithms was developed in recent years. Most of today’s
algorithms are based on dynamic programming (DP) and follow the concepts presented in [6].
A prominent representative is the system SEQUOIA [68,71], that solves a given MSO formula
via dynamic programming over an internally constructed tree decomposition. It follows a
game-theoretic approach, and avoids the space-explosion that usually emerges during the
expensive power-set construction in automata-based approaches. Since the tool can evaluate
MSO formulae directly, it is quite expressive and easy to use. However, it does not give
control over the applied dynamic programming algorithm. The D-FLAT system [1] allows
one to specify the dynamic programming algorithm in the declarative language of answer-set
programming [27, 53]. Hence, the algorithm developer can take problem-specific shortcuts
into account, despite, of course, a new dynamic programming algorithm has to be designed
for every problem separately. The algorithm is then executed on the internally constructed
tree decomposition. It was shown that the tool can solve any MSO-definable problem in fpt
time as stated in Courcelle’s theorem [21].

Additionally, systems for particular problem domains were developed. For instance, in the
logic domain, there exists the ASP solver dynASP [84, 85]. Additionally, algorithms for the
Boolean Satisfiability problem [96] and the Constraint Satisfaction problem [95]
were designed. In the area of abstract argumentation [45], the dynPARTIX system was
developed [30]. For counting problems, this system can outperform state-of-the-art systems
on instances of small treewidth.

Excellent surveys on algorithms for graphs of bounded treewidth include [22] and [24].
An intuitive introduction to dynamic programming on tree decompositions is given in [40].
Additionally, in [72] a comprehensive overview on MSO and tree decompositions is given.

2.4 Binary Decision Diagrams

A BDD is a well-studied and widely-used data structure that represents Boolean formulae in
form of a rooted directed acyclic graph [3,73]. In this work, we use a special type of BDDs,
so-called Reduced Ordered Binary Decision Diagrams (ROBDDs) [28] as one key ingredient
for efficiently storing information. Furthermore, for a fixed ordering over variables occurring
in the formula, they are canonical, i.e., equivalent formulae are represented by the same
ROBDD.

Definition 4. An Ordered Binary Decision Diagram B = (VB, AB) is a rooted, connected,
directed acyclic graph where VB = VT ∪ VN and AB = A> ∪ A⊥. The following conditions
have to be satisfied:

1. VT may contain the terminal nodes > and ⊥.

2. VN contains the internal nodes, where each v ∈ VN represents a variable v.

Technical Report DBAI-TR-2016-95 10

B: a

b1 b2

c1 c2 c3 c4

> ⊥

Br : a

b

c

> ⊥

Figure 2: OBBD B and ROBBD Br of formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

3. Each v ∈ VN has exactly one outgoing arc in A> and one in A⊥.

4. For every path from the root to a terminal node, each variable occurs at most once and
in the same order (i.e., we have a strict total order over the variables).

Given an OBDD B, propositional variables VN and an assignment A to VN , the corre-
sponding path in B is the unique path from the root node to a terminal node, such that for
every v ∈ VN it includes the outgoing arc in A> (A⊥) iff A gets assigned true (false) for v.
A is a satisfying assignment of the formula represented by B iff the path ends in >.

Definition 5. A Reduced OBDD (ROBBD), is an OBDD where isomorphic nodes are
merged into a single node with several incoming edges. Furthermore, nodes v ∈ VN where
both outgoing arcs reach the same node v′ ∈ VB, are removed.

Example 2. Figure 2 shows an OBBD B and the corresponding ROBBD Br for formula
(a∧ b∧ c)∨ (a∧¬b∧ c)∨ (¬a∧ b∧ c). Arcs in A> are represented by a solid arrow, a dashed
arrow marks arcs in A⊥. Nodes c1, c2 and c3 represent the same variable c and have arcs
to the same terminal nodes. Hence, these isomorphic nodes are merged to a single node c.
Then, both outgoing arcs of b1 reach c, and b1 is removed. Furthermore, c4 is removed.

BDDs support standard logical operators conjunction (∧), disjunction (∨), negation (¬)
and equivalence (↔). Furthermore, for a BDD B, existential quantification over a set of
variables V , V ⊆ VN is denoted by ∃V B. Restriction of a variable v ∈ VN to true (>) or
false (⊥) and renaming to a variable v′ is denoted by B[v/·] where · ∈ {>,⊥, v′}. For sets
of variables V ⊆ VN , B[V/·] with · ∈ {>,⊥, V ′} and V ′ = {v′ | v ∈ V }, denotes restriction
or renaming of each v ∈ V by applying B[v/·]. In the following we will not explicitly give
the BDDs, but state Boolean formulae instead.

2.5 Related Work on BDDs

As mentioned before, Binary Decision Diagrams were originally proposed in [73] and later
refined in [3]. In 1984, Bryant’s work on Reduced Ordered BDDs [28] paved the way to
obtain efficient algorithms and implementations. Although today’s focus shifts to efficient
SAT solving techniques (usually based on the Davis–Putnam– Logemann–Loveland (DPLL)

Technical Report DBAI-TR-2016-95 11

procedure), BDD technology is still popular in applications to software verification and model
checking (see [44] for an overview of the topic).

Besides BDDs, there exists a vast amount of decision diagrams, each providing its distinct
set of features. For sparse graphs, Zero-suppressed DDs (ZDD) [82] showed to be suitable
(see also the superseding “review article” [83]). Multi-Terminal BDDs (MTBDDs) [51] ex-
tend the binary terminal nodes to terminal nodes with real numbers, which are also called
Algebraic DDs (ADDs) [11]. Edge-valued BDDs (EVBDDs) [70] allow for arcs to be labelled
with Integers. They are particularly useful for solving Integer linear programming (ILP)
problems [69]. In Multi-valued DDs (MDDs) [64], variables can have multiple values (over
a fixed domain), and were extended to Edge-valued MDDs (EV+MDDs) [52], where arcs
additionally get a weight, applicable for instance to constraint programming. Data DDs
(DDDs) [38] also allow for multiple values, but with an a priori unbounded domain. Addi-
tionally, the variable order is not necessarily fixed. If the domain is fixed, they correspond
to MDDs, if the domain is Boolean, they are just BDDs. Set DDs (SDDs) [39,101] have arcs
labelled with sets that are themselves stored as SDDs. Sentential DDs (also called SDDs)
are decision diagrams that contain decision nodes (disjunction) and elements (conjunction).
Sigma DDs (

∑
DDs) [29] handle sets of terms efficiently. In this work we stick to (Reduced

Ordered) BDDs, since we want to ultimately tackle the problem of efficient QBF solving.
Since BDDs can efficiently represent Boolean formulae (and are designed for this purpose),
they provide all features we require.

Examples for successful implementations of (Binary) Decision Diagrams include
CUDD [97], BuDDy [74] and Biddy [81]. All systems provide similar features, such as
dynamic variable reordering heuristics and garbage collection, and are implemented in C.
Both CUDD and BuDDy additionally provide a C++ interface. Furthermore, CUDD sup-
ports BDDs, ADDs and ZDDs. Besides that, there are also Java implementations available,
such as JavaBDD [103] and JDD [102]. JINC [89] implements Shared OBDDs, and is tailored
towards multi-threading. A (rather old) survey on available systems is given in [62]. In this
work we use CUDD due to its continuous maintenance and good performance.

Regarding BDDs and decomposition-based approaches, in the area of knowledge com-
pilation, so-called “Tree-of-BDDs” [48, 100] are constructed in an offline phase from a given
CNF, and queried in the online phase to answer questions on this data structure in linear
time. Furthermore, ADDs are used for compiling Bayesian networks in such a way that
the structure of the network can be exploited in order to compute inference efficiently [34].
Combining DP and decision diagrams has been proven well-suited also for Constraint Opti-
mization Problems (COPs) [95]. The key idea is to employ ADDs to store the set of possible
solutions, and the branch-and-bound algorithm is executed on a decomposition of the COP
instance. This was shown to be superior to earlier approaches in [26], where additionally
(no)good recording is applied during computation.

Furthermore, BDDs were already successfully applied in the area of QBF solving, and
we review different applications in Section 5.2.

Technical Report DBAI-TR-2016-95 12

3 BDD-based Dynamic Programming
In this section we introduce the general concept of how dynamic programming proceeds over
the tree decomposition. We introduce different algorithm design principles, called early deci-
sion method (EDM) and late decision method (LDM). Several NP-complete problems, that
are fixed-parameter tractable with respect to treewidth, are introduced, and their dynamic-
programming algorithms are presented. In Section 4 we extend our approach to a prob-
lem beyond NP, namely QBF solving. An experimental comparison to state-of-the-art tree
decomposition-based tools is given in Section 5.

3.1 Concept

Given some problem P and input instance I, we can decide P on I as follows.

1. Transform I into an appropriate graph representation IG. For some problems, the input
is already specified in form of a graph (e.g. for 3-Colorability or Hamiltonian
Cycle). Instances of other problems, such as Boolean Satisfiability, can be
transformed into a graph, e.g., by constructing the incidence or primal graph of I
(see [96]).

2. Construct a tree decomposition T of IG in fpt time, or use heuristics to obtain a “good”
one in polynomial time (see Section 2.2). Depending on the dynamic programming al-
gorithm specification, normalize the tree decomposition. In this section we will assume
T to be normalized.

3. Traverse T = (T, bag) with T = (N,F) in post-order (i.e., start at the leaves, and con-
tinue upwards until the root node of the tree decomposition). At each decomposition
node n ∈ N , compute a BDD Bn that represents partial solution candidates for P on
I (details are given in Section 3.1.1).

4. At the root node r of T , either Br = > or Br = ⊥ holds, giving the solution to the
problem.

3.1.1 Recursive Tree Decomposition Traversal

Algorithm 1 illustrates our generic procedure for dynamic programming over a tree decom-
position to solve some problem P . Here, it is assumed that the tree decomposition T is
globally available to the algorithm. computeBDD(n) is called recursively (in post-order) on
the children of n. In each recursion step, the algorithm distinguishes between the four node
types of a normalized tree decomposition. Depending on the node type of the current n, it
calls the problem-specific implementations of leaf P ,removeP , introP or joinP . These proce-
dures return a BDD B for the current node n, which is constructed based on information
related to n as well as BDDs B1 and B2 of the child node(s) (if any). Each model in B
represents a partial solution candidate with respect to the subtree of T that is rooted in

Technical Report DBAI-TR-2016-95 13

Algorithm 1: Generic recursive procedure computeBDD(n) for problem P
Input : A tree decomposition node n
Output: A BDD B with partial solution candidates for n

1 if isLeaf (n) then B := leaf P(n)
2 else
3 B1 := computeBDD(firstChild(n))
4 if isRemoval(n) then B := removeP(n,B1)
5 else if isIntroduction(n) then B := introP(n,B1)
6 else if isJoin(n) then
7 B2 := computeBDD(nextChild(n))
8 B := joinP(n,B1, B2)

9 return B

n (which are restricted to elements in bag(n); thus named “partial”), which might turn out
to not represent a solution, later during the tree traversal (thus named “candidate”). If the
procedure is called with the root r of T , it returns the overall solution.

For a BDD Bn computed at some node n, all variables in Bn are related to vertices
contained in bag(n). In other words, the size of Bn (i.e., the number of nodes in Bn) is
restricted by f(|bag(n)|), where f is some computable function. For the algorithms presented
in the remainder of the section, the size is bounded by O(2wl) where w is the width of T
and l the number of variables stored per bag element. However, in practice the size may be
exponentially smaller, in particular in case a “good” variable ordering is applied [50]. Since
finding an optimal variable ordering is in general NP-hard [28], we rely on BDD-internal
heuristics for finding such a good ordering [97]. With this, the BDDs require much less
space than an equivalent table representation.

3.1.2 Decision Methods

We present two algorithm design choices that affect how leaf P , removeP , introP and joinP

are specified.

Early decision method (EDM). Here, bag information is incorporated within introP .
This approach is comparable to “classical” table-based implementations (such as usually done
in D-FLAT [1]). For unsatisfiable instances, conflicts can be detected early (i.e., immediately
when the conflict is introduced).

Late decision method (LDM). BDD manipulation (w.r.t. bag elements) is delayed until
removal of vertices. Typically, this approach yields smaller BDDs and less computational
effort, and is hence particularly useful for “complicated” algorithms.

Technical Report DBAI-TR-2016-95 14

3.2 Case Studies

We now illustrate how dynamic programming on tree decompositions with BDDs can be
applied to well-known NP-complete problems. We introduce EDM- and LDM-based algo-
rithms for 3-Colorability, Directed Independent Dominating Set and Hamilto-
nian Cycle. The problems impose different challenges on the algorithm design, which
oftentimes reoccur in other problem domains. While the 3-Colorability problem only
requires to guess the color assignment of vertices, in the Directed Independent Domi-
nating Set problem it is necessary to keep track of dominated vertices during the dynamic
programming. The Hamiltonian Cycle problem additionally requires to handle connect-
edness of vertices in the cycle.

3.2.1 3-Colorability

Input: A simple graph G = (V,E).

Question: Is G 3-colorable?

The 3-Colorability problem is well-suited to illustrate how DP algorithms for problems
that are fixed-parameter tractable with respect to tree-width can be specified following our
approach. First, we define the set of colors C = {r, g, b}. Then, the following variables are
to be used in the BDDs. For all c ∈ C and x ∈ V , the truth value of variable cx denotes
whether vertex x gets assigned color c.

EDM. Algorithm 2 shows the BDD manipulation operations for the respective decompo-
sition node types. In order to solve the problem, the operations have to encode that every
vertex gets assigned exactly one color, and adjacent vertices do not have the same color.
Intuitively, leaf 3cole and intro3cole add the respective constraints for introduced vertices to
the returned BDD. In remove3cole , due to the definition of tree decompositions, we know
that all constraints related to removed vertex u were already taken into account. Hence,
we can abstract away the variables associated with u, thereby keeping the size of the BDD
bound by the width of the tree decomposition. In join nodes, join3cole combines the inter-
mediate results obtained in the child nodes of the decomposition by a simple conjunction of
the BDDs.

LDM. Another possibility for specifying the algorithm is to incorporate information as late
as possible, that is, when a vertex is removed from the decomposition, see Algorithm 3. In
leaf nodes the BDD leaf 3col l is initialized with > (i.e., there is no constraint to be considered
yet), and in introduction nodes the BDD intro3col l corresponds to that of the child nodes.
When a vertex u is removed, one variable out of ru, gu, bu is set to true, thereby assigning to
the vertex exactly one color c ∈ C. Furthermore, adjacent vertices x with {x, u} ∈ edges(n1)

Technical Report DBAI-TR-2016-95 15

Algorithm 2: Operations for 3-Colorability (EDM)

leaf 3cole(n): Bcolor =
∧
c∈C
∧

{x,y}∈edges(n) ¬(cx ∧ cy)
∧
x∈current(n)(rx ∨ gx ∨ bx)

Bneighbor =
∧
x∈current(n)

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
return Bcolor ∧Bneighbor

remove3cole(n,B1): {u} = removed(n)
return ∃rugubu[B1]

intro3cole(n,B1): {u} = introduced(n)
Bcolor =

∧
c∈C
∧

{x,u}∈edges(n) ¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)
Bneighbor = ¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)
return B1 ∧Bcolor ∧Bneighbor

join3cole(n,B1, B2): return B1 ∧B2

Algorithm 3: Operations for 3-Colorability (LDM)

leaf 3col l(n): return >
remove3col l(n,B1): {u} = removed(n)

n1 = firstChild(n)
B = B1[ru/>, gu/⊥, bu/⊥] ∧

∧
{x,u}∈edges(n1)

¬rx
)
∨

B1[ru/⊥, gu/>, bu/⊥] ∧
∧

{x,u}∈edges(n1)
¬gx
)
∨

B1[ru/⊥, gu/⊥, bu/>] ∧
∧

{x,u}∈edges(n1)
¬bx
)

return B

intro3col l(n,B1): return B1

join3col l(n,B1, B2): return B1 ∧B2

for child n1 of n must not get assigned the same color, which is achieved by adding ¬cx to
the formula. remove3col l simply combines the three BDDs resulting from the choice of the
color via disjunction. As in EDM, it is sufficient to compute join3col l via conjunction of the
child BDDs.

3.2.2 Directed Independent Dominating Set

The Directed Independent Dominating Set problem corresponds to the (decision
variant of the) Stable Extension problem from the area of abstract argumentation [45].
In this area, the parameterized complexity of various semantics and reasoning types with
respect to several parameters has been studied, including a table-based DP approach for
treewidth [31,46].

Technical Report DBAI-TR-2016-95 16

Algorithm 4: Operations for Directed Independent Dominating Set (EDM)

leaf dome(n): Bind =
∧

(x,y)∈edges(n) (¬ix ∨ ¬iy)
Bdom =

∧
y∈bag(n)

(
dy ↔

∨
(x,y)∈edges(n) ix

)
return Bind ∧Bdom

removedome(n,B1): {u} = removed(n)
return B1[iu/>, du/⊥] ∨B1[iu/⊥, du/>]

introdome(n,B1): {u} = introduced(n)
n1 = firstChild(n)
Bind =

∧
{u,y}∈edges(n) (¬iu ∨ ¬iy)

Bdom =
(
du ↔

∨
(x,u)∈edges(n) ix

)
∧
∧

(u,y)∈edges(n)∧
u6=y

(
dy ↔ d′y ∨ iu

)
∧∧

y∈bag(n)∧(u,y) 6∈edges(n)
(
dy ↔ d′y

)
return ∃D(n1)

′(B1[D(n1)/D(n1)
′] ∧Bind ∧Bdom)

joindome(n,B1, B2): Bdom =
∧
x∈bag(n) (dx ↔ d′x ∨ d′′x)

B = B1[D(n)/D(n)′] ∧B2[D(n)/D(n)′′] ∧Bdom

return ∃D(n)′∃D(n)′′B

Input: A directed graph G = (V,E) (with self-loops).

Question: Is there a independent dominating set X ⊆ V in G, i.e.:
(1) for all x, y ∈ X : {x, y} 6∈ E (X is independent); and
(2) for all y ∈ V \X : ∃x ∈ X such that (x, y) ∈ E (y is dominated)?

For a directed graph G = (V,E), an arc from x to y in G is given by a pair (x, y) ∈ E,
while we denote by {x, y} ∈ E that (x, y) ∈ E or (y, x) ∈ E. We encode the problem using
variables I ∪ D ∪ D′ ∪ D′′ with I = {ix | x ∈ V } and D = {dx | x ∈ V }. The truth value
of some ix ∈ I denotes whether x is in some set X. Furthermore, the assignment of true
to some variable dx ∈ D represents that x is dominated. The sets D′ = {d′x | x ∈ V } and
D′′ = {d′′x | x ∈ V } will serve as temporary variables that represent “dominated” information
in child nodes during the bottom-up traversal. For a node n of a tree decomposition T , we
denote by DT (n) = {dx | x ∈ bagT (n)} (T will be omitted in the following).

EDM. Algorithm 4 shows the operations for solving the Directed Independent Dom-
inating Set problem. In leaf dome the BDD encodes that adjacent vertices can not both
be contained in a dominating set, and a vertex y (in the node’s bag) is dominated (dy is
true) iff there exists an arc from some x ∈ bag(n) to y, such that ix is true. For removal
nodes, removedome guarantees that the removed vertex u is either contained in the dominat-
ing set (by iu/>) or it is dominated (du/>). Note that the “independent property” would

Technical Report DBAI-TR-2016-95 17

Algorithm 5: Operations for Directed Independent Dominating Set (LDM)

leaf doml(n): return
∧
x∈bag(n) ¬dx

removedoml(n,B1): {u} = removed(n)
n1 = firstChild(n)
Bind =

∧
{u,y}∈edges(n1)

(¬iu ∨ ¬iy)
Bdom =

∧
y∈bag(n)(dy ↔ d′y ∨(u,y)∈edges(n1) iu)∧

(du ↔ d′u ∨
∨

(x,u)∈edges(n1)
ix)

B = ∃D(n1)
′(B1[D(n1)/D(n1)

′] ∧Bind ∧Bdom)
return B[iu/>, du/⊥] ∨B[iu/⊥, du/>]

introdoml(n,B1): {u} = introduced(n)
return B1 ∧ ¬du

joindoml(n,B1, B2): Bdom =
∧
x∈bag(n) (dx ↔ d′x ∨ d′′x)

B = B1[D(n)/D(n)′] ∧B2[D(n)/D(n)′′] ∧Bdom

return ∃D(n)′∃D(n)′′B

be violated in case u is both in the extension and defeated. In introdome , for introduced
vertex u the formula is constructed as in leaf nodes. In order to update the truth value of
variables representing the domination of vertices, for any vertex y we apply a general pattern
of ∃y′[B1[y/y

′]∧ (y ↔ (y′ ∨ cond))], that is, renaming, potentially adding conditions (cond),
and removing the renamed variable y′ by existential quantification. Here, cond contains iu
in case u is an incoming neighbor of y. With this, the size of the BDDs remains bounded
by the width of the decomposition. Finally, in joindome , a vertex is “dominated” if it was in
one of the child nodes. This information is again propagated via renaming, equivalence, and
existential quantification.

LDM. A very compact algorithm for Directed Independent Dominating Set can be
specified following the LDM paradigm (see Algorithm 5). Introduced vertices cannot become
dominated in leaf or introduction nodes, and the corresponding variables are initialized with
⊥. In removedoml , we guess whether the removed vertex u is in the dominating set or
dominated. Furthermore, we guarantee independence with vertices adjacent to u. A vertex
y becomes dominated if there is some incoming edge from u and u is in the dominating set,
and u is dominated if it was already dominated by an already-removed vertex, or by a vertex
on an arc in edges(n1). Note that we use a small disjunction symbol with condition whenever
there is at most one disjunction in the instantiated formula, and a large symbol otherwise.
Finally, joindoml is specified as in the EDM variant.

Technical Report DBAI-TR-2016-95 18

3.2.3 Hamiltonian Cycle

Input: A simple graph G = (V,E).

Question: Is there a Hamiltonian cycle F ⊆ E in G?

Here, a more involved algorithm specification is required. Monolithic propositional encodings
(where the whole instance is available at once) allow one to assign a global order over the
variables that specifies the ordering over the vertices in the cycle. However, in our DP-based
approach, we are restricted to information that is available in the current decomposition
node. Hence, we consider a relative ordering as follows. We use variables S = I ∪ O ∪ T ∪
A∪ I ′ ∪O′ ∪A′ ∪ I ′′ ∪O′′ ∪A′′, where an assignment of true to variables in I = {ix | x ∈ V }
(O = {ox | x ∈ V }) specifies that a variable x has exactly one incoming (outgoing) edge.
Variables in T = {txy | {x, y} ∈ E} represent edges that are selected on a cycle. Additionally,
we have to guarantee that we have a single cycle that covers all vertices. Therefore we
select a fixed vertex f ∈ V that denotes where the cycle starts and ends. Variables in
A = {axy | x, y ∈ V } denote that x lies after y on the path from f to f . Primed variables
are again used to temporarily hold changing information from the child node(s). For a tree
decomposition node n we have CT (n) = {ix, ox, axy | x, y ∈ Xt}. Furthermore, for a vertex
u ∈ bagT (n), let TT (n, u) = {txu, tux | {x, u} ∈ edgesT (n)}. In the following we only present
the LDM version, but the concepts can be directly carried over to an EDM-based algorithm.

LDM. Algorithm 6 illustrates the operations for Hamiltonian Cycle. In leaf and intro-
duction nodes all changing variables are initialized with ⊥. In removal nodes, at least one
incoming edge for removed vertex u is selected. Here, i′u is true iff the incoming neighbor of u
was already removed from the bag. Furthermore, at most one incoming edge from edges(n1)
is selected. Finally, if i′u is true, we cannot select an additional incoming edge, and the
incoming and outgoing edges for u have to be different. The same construction is used to
guarantee exactly one outgoing edge for u. For vertices x ∈ bag(n), ix and ox are updated in
case u was a neighbor of x. Again, at most one incoming (outgoing) edge must be selected.
For x, z ∈ bag(n), axz becomes true if u 6= f and u lies on the path between x and z. With
this, we keep information on the path (from f to f), restricted to bag(n), where the truth
value of txy-variables represents selected edges in edges(n) and axy-variables denote that x
is before y on the path where intermediate vertices were already removed. Finally, in case
axx for x 6= f is true, we know that there is a cycle that does not cover f , and is therefore
no Hamiltonian cycle. In join nodes, ix, ox and axy variables are propagated as usual. Here,
whenever both i′x and i′′x are true, due to the connectedness condition of tree decompositions
and the fact that these variables are updated when a vertex is removed, x has two different
incoming edges, and is hence not a solution. The same holds for outgoing edges.

Technical Report DBAI-TR-2016-95 19

Algorithm 6: Operations for Hamiltonian Cycle (LDM)

leaf haml(n): return
∧
x∈bag(n)(¬ix ∧ ¬ox) ∧

∧
x,y∈bag(n) ¬axy

removehaml(n,B1): {u} = removed(n)
n1 = firstChild(n)
Biu = i′u ∨

∨
{x,u}∈edges(n1)

txu
Bou = o′u ∨

∨
{u,y}∈edges(n1)

tuy
Bs1u

=
∧

{x′,u}∈edges(n1)∧
{x′′,u}∈edges(n1)∧x′ 6=x′′

(
¬(tx′u ∧ tx′′u) ∧ ¬(tux′ ∧ tux′′)

)
Bs2u

=
∧

{x,u}∈edges(n1)

(
¬(i′u ∧ txu) ∧ ¬(o′u ∧ tux) ∧ ¬(txu ∧ tux)

)
Bix =

∧
x∈bag(n)

(
ix ↔ (i′x ∨{u,x}∈edges(n1) tux)

)
Box =

∧
x∈bag(n)

(
ox ↔ (o′x ∨{x,u}∈edges(n1) txu)

)
Bsx =

∧
{x,u}∈edges(n1)

(
¬(i′x ∧ tux) ∧ ¬(o′x ∧ txu)

)
Ba =

∧
x,z∈bag(n)

(
axz ↔ a′xz ∨u6=f

(
(a′xu ∨{x,u}∈edges(n1) txu)∧

(a′uz ∨{u,z}∈edges(n1) tuz)
))

Bnoc =
∧
x∈bag(n)∧x 6=f ¬axx

B = Biu ∧Bou ∧Bs1u
∧Bs2u

∧Bix ∧Box ∧Bsx ∧Ba ∧Bnoc

return ∃T (n1, u)∃C (n1)
′(B1[C (n1)/C (n1)

′] ∧B)

introhaml(n,B1): {u} = introduced(n)
return B1 ∧ ¬iu ∧ ¬ou ∧

∧
x∈bag(n)(¬axu ∧ ¬aux)

joinhaml(n,B1, B2): Bio =
∧
x∈bag(n)

((
ix ↔ (i′x ∨ i′′x)

)
∧
(
ox ↔ (o′x ∨ o′′x)

)
∧

¬(i′x ∧ i′′x) ∧ ¬(o′x ∧ o′′x)
)

Ba =
∧
x,y∈bag(n)

(
axy ↔ (a′xy ∨ a′′xy)

)
B = B1[C (n)/C (n)′] ∧B2[C (n)/C (n)′′] ∧Bio ∧Ba

return ∃C (n)′∃C (n)′′B

4 QBF Solving
Here, we elaborate on a novel approach for QBF solving. We again exploit the parameter
treewidth, which is obtained from the matrix of a given QBF in prenex CNF. The resulting
algorithm is designed to be particularly efficient on tree-like QBF instances with a low
number of quantifier alternations. For other logical problems, e.g. algorithms for SAT [96]
and CSP [95], such treewidth-based algorithms have already been presented in the literature.
Similar to the algorithms presented in Section 3, we make use of BDDs for efficient storage of
intermediate results. However, we now store so-called nested sets of formulae (NSF) where
the formulae are represented by BDDs, and the nestings of the BDDs handle quantifier
alternations in the QBF (see Section 4.2).

The main procedure for tree decomposition-based QBF solving is given in Section 4.3.

Technical Report DBAI-TR-2016-95 20

Overall, in our approach the size of each BDD is bounded by the width of the used decompo-
sition, and the overall number of BDDs required in each node is bounded by the width and
by the number of quantifier alternations in the instance. Thus, the runtime depends expo-
nentially on the structural parameter instead of the size of the formula. To be competitive
with state-of-the-art systems on instances of low treewidth, we develop further techniques to
reduce the size of the data structure (see Section 4.4). It turns out that our method already
performs well on QBFs with one quantifier alternation, while for QBFs with a higher number
of alternations our system does not reach the performance of state-of-the-art tools yet (see
Section 5.3).

4.1 Basics

We briefly introduce QBFs and present the running example used in the subsequent sections.
As usual, a literal is a variable or its negation. A clause is a disjunction of literals. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses. Depending on the
context, we will sometimes denote clauses as sets of literals, and a formula in CNF as a set
of clauses. Herein, we consider Quantified Boolean Formulae (QBFs) in closed prenex CNF
(PCNF) form.

Definition 6. A PCNF QBF instance is of the form Q.ψ where Q is the quantifier prefix
and ψ is a CNF formula. The quantifier prefix Q is of the form Q1X1Q2X2 . . . QkXk where
Qi 6= Qi+1 for 1 ≤ i < k. Furthermore, every variable in ψ occurs in exactly one set Xj for
1 ≤ j ≤ k.

The level of a variable x is specified by its appearance in Q, i.e. if x ∈ Xj then the level
of x is j. We define the depth of x as k minus its level plus one.

In the following we will frequently use the following notation: Given a QBF instance Q.ψ
with Q = Q1X1 . . . QkXk and an index i with 1 ≤ i ≤ k, quantifierQ(i) = Qi gives the i-th
quantifier. Furthermore, for a variable x, levelQ(x) returns the level of x, and depthQ(x)
returns the depth of x in Q of the instance; Additionally, quantifierQ(x) = QlevelQ (x) returns
the quantifier for variable x. Finally, for a clause c ∈ ψ, we denote by variablesψ(c) the
variables occurring in c. For the ease of representation, in the following we will omit subscript
Q or ψ whenever no ambiguity arises.

The problem we are interested in states as follows.

Input: A QBF instance Q.ψ in prenex CNF form.

Question: Is Q.ψ satisfiable?

Example 3. As our running example, we will consider QBF Q.ψ with Q = ∃ab ∀cd ∃ef
and ψ = (a∨ c∨ e)∧ (¬b∨ d)∧ (e∨ f)∧ (c∨¬e)∧ (¬d∨ f), which is satisfiable (for a = >,
b = ⊥). Note that this example is designed to illustrate our approach. Hence, simplifications
(e.g. pure literal elimination) are not considered.

Technical Report DBAI-TR-2016-95 21

G: a

b

c

d

e

f

T : d, fn6

d, fn2 d, fn5

b, dn1 e, fn4

a, c, en3

Figure 3: Graph G and possible (weakly-normalized) tree decomposition T of G.

In order to employ dynamic programming on tree decompositions for QBF solving, we
have to construct a tree decomposition from the given QBF instance. Herein, we consider
hypergraphs, i.e. graphs where the edges may have multiple endpoints. A QBF instance Q.ψ
can naturally be represented as a hypergraph G = (V,E) where V are the variables occurring
in Q.ψ and for each clause c ∈ ψ, variables(c) forms a hyperedge in G. Furthermore,
clauses in Q.ψ are related to nodes in the tree decomposition by clausesT ,ψ(n) = {c | c ∈
ψ, variablesψ(c) ⊆ bagT (n)}. As usual, we will omit subscript T and ψ in the following. Note
that this representation of CNF formulae is commonly used, e.g. for tree decomposition-
based SAT solving [96]. The number of nodes in the tree decomposition is linear in the size
of the QBF (i.e., its variables).

Example 4. Given formula ψ = (a ∨ c ∨ e) ∧ (¬b ∨ d) ∧ (e ∨ f) ∧ (c ∨ ¬e) ∧ (¬d ∨ f) of
our running example, Figure 3 illustrates its hypergraph representation G, and T represents
a weakly-normalized tree decomposition for ψ of width 2.

4.2 Data Structure

As data structure we use so-called nested sets of formulae (NSFs) where the innermost sets
contain Boolean formulae, represented as BDDs. Intuitively, an NSF resembles the structure
of the QBF instance. The depth of the nesting in the NSF corresponds to the number of
quantifiers in the QBF. The nestings are used to differentiate between variables that are at
different depth in the quantifier prefix. NSFs, in relation to a QBF instance, are defined as
follows.

Definition 7. Given a QBF instance Q.ψ with k quantifiers, we have a nested set of formulae
(NSF) of depth k whose elements are inductively defined over the depth of nestings d with
0 ≤ d ≤ k: for d = 0, the NSF is a BDD; for 1 ≤ d ≤ k, the NSF is a set of NSFs of depth
d− 1.

For a QBF Q.ψ with Q = Q1X1 . . . QkXk and an NSF N of depth k, for any NSF
M appearing somewhere in N we denote by depth(M) the depth of the nesting of M ,
levelQ(M) = k − depth(M) + 1 is the level of M , and quantifierQ(M) = QlevelQ(M) (for
levelQ(M) ≤ k). Subscripts will be again omitted in the following.

Additionally, we define the procedure init(k, φ) that initializes an NSF of depth k, such
that each set contains exactly one NSF, and the innermost NSF represents φ. For instance,

Technical Report DBAI-TR-2016-95 22

> ⊥ (¬a ∨ b) ⊥ a ∧ b c ⊥ (¬a ∨ b) ∧ c ⊥ a ∧ b ∧ c

Figure 4: Example NSF N , represented as tree, and N [B/B ∧ c] applied to N .

init(3,>) returns {{{>}}}. Furthermore, for an NSF N we denote by N [B/B′] the replace-
ment of each BDD B in N by some B′.

Example 5. Suppose we have given an NSF N = {{{>,⊥}}, {{¬a ∨ b}, {⊥}, {a ∧ b}}}.
For the ease of readability, we will illustrate nested sets in form of a tree where the leaves
contain the Boolean formulae represented by the BDDs, and each circle denotes a non-leaf
NSF in the nestings with its contents being the children in the tree. Figure 4 shows the tree
representing NSF N together with the one resulting from N [B/B ∧ c].

NSFs are tailored towards efficient representation of partial solution candidates. Opposed
to the similar concept of quantifier trees [12], NSFs follow set semantics in order to automat-
ically remove (trivial) redundancies. Furthermore, the depth of nestings is specified by the
number of quantifiers, not by the number of variables in the instance. As we will see, NSFs
can be directly used to keep track of parts of the solution space, instead of representing the
whole QBF instance at once.

4.3 Main Procedure

Algorithm 7 illustrates the recursive procedure for the bottom-up traversal of the tree de-
composition and computing the partial solution candidates. It is similar to the general
procedure for problems in NP, see Algorithm 1. However, the algorithm supports weakly-
normalized tree decompositions, and uses procedures particularly designed for QBF solving.
When called with the root node of the tree decomposition, it returns an NSF that represents
the overall solution to the problem.

Procedure compute(n) calls itself based on the child nodes of n. At each node, we
distinguish between leaf, exchange and join nodes. In leaf nodes, an NSF of depth k (i.e.,
the number of quantifiers in the QBF instance) is initialized with the innermost set containing
a BDD that represents the clauses associated with the current decomposition node. In an
exchange node, we have to deal with removed as well as introduced variables (w.r.t. the
bag’s contents). First the NSF of the child node is computed. Then, removed variables
are handled by “splitting” the NSF. Procedure split(N, x) (see Algorithm 8) handles this
removal of a variable x. It is called recursively for the contents of the NSF until the level
of x is reached. Then, for each NSF at this level, the NSF is updated once by replacing all
occurrences of x in the BDDs with >, and once with ⊥. Due to the connectedness property
of the tree decomposition, we know that a removed variable will never reappear somewhere
upwards the tree decomposition, and therefore all clauses related to the removed variable were

Technical Report DBAI-TR-2016-95 23

Algorithm 7: Recursive procedure compute(n) for QBF solving

Input : A tree decomposition node n
Output: An NSF with partial solution candidates for n

1 if isLeaf (n) then
2 N := init(k, clauses(n))
3 if isExchange(n) then
4 N := compute(firstChild(n))
5 for x ∈ removed(n) do
6 N := split(N, x)
7 end
8 N := N [B/B ∧ clauses(n)]
9 if isJoin(n) then

10 N := compute(firstChild(n))
11 while hasNextChild(n) do
12 M := compute(nextChild(n))
13 N := join(N,M)

14 end
15 return N

Algorithm 8: Recursive procedure split(N, x)

Input : An NSF N and a variable x
Output: An NSF split at level(x)

if level(N) = level(x) then
return {M [B/B[x/>]],M [B/B[x/⊥]]) |M ∈ N}

else
return {split(M,x) |M ∈ N}

Algorithm 9: Recursive procedure join(N1, N2)

Input : NSFs N1 and N2 of same depth
Output: A joined NSF

if depth(N1) = 0 then
return N1 ∧N2

else
return {join(M1,M2) |M1 ∈ N1,M2 ∈ N2}

already considered. Thereby we are also guaranteed that the size of each BDD is bounded
by the bag’s size. After splitting, the BDDs in the NSF are updated by adding the clauses
associated with the current node via conjunction to the BDDs in the NSF. In join nodes,

Technical Report DBAI-TR-2016-95 24

⊥ d ∧ f d ∧ f ⊥ d ∧ f ⊥ f (¬d ∨ f) f ⊥ f (¬d ∨ f)
n6

d ∧ f (¬d ∨ f)
n2

⊥ f (¬d ∨ f) f ⊥ f (¬d ∨ f)
n5

(¬b ∨ d)
n1

⊥ (e ∨ f) ¬e ∧ f (e ∨ f)
n4

(a ∨ c ∨ e) ∧ (c ∨ ¬e)
n3

Figure 5: Computed NSFs for our running example.

NSFs computed in the child nodes are successively combined by procedure join(N1, N2) (see
Algorithm 9). Observe that the procedure guarantees that the structure (nesting) of the
NSFs to be joined is preserved. BDDs in the NSFs are then combined via conjunction, thus
already considered information (i.e., clauses of the sub-hypergraph induced by the subtree’s
bag) of both child tree decomposition nodes is combined. Note that this procedure does not
take the quantifiers of the QBF instance into account. They will be evaluated on the NSF
of the root node.

Example 6. Figure 5 shows the NSFs computed at the tree decomposition nodes of our
running example. In n1, an NSF of depth 3 is initialized with (¬b ∨ d), i.e., the clause
associated with this tree decomposition node. In n2 variable b is removed. Hence the NSF
is split at level(b) = 1, once by setting b to true (left NSF branch), yielding formula d and
once by false (right branch), yielding >. Furthermore, the current clause (¬d ∨ f) is added
to these BDDs via conjunction. Similarly, the right branch of the tree decomposition (nodes
n3–n5) is computed. In n6, the NSFs are joined. For instance, the leftmost branches in n2

and n5 are joined by conjunction of d ∧ f and ⊥, yielding⊥.

Obtaining the solution. At the root node r of the tree decomposition, we can decide
the problem since the whole input instance was taken into account. We apply quantifier
elimination by evaluating the NSF as shown in Algorithm 10, which is similar to the approach
described in [90]. Procedure evaluateQ(r,N) recursively combines the elements of the NSF
by disjunction (for existential quantifiers) or conjunction (for universal quantifiers), starting
at the innermost NSFs. Furthermore, variables contained in the current bag are abstracted
away from the merged BDD according to the quantifier. Thus, this procedure finally returns
a single BDD B without variables. There, if B ≡ ⊥, the QBF instance is unsatisfiable,
otherwise it is satisfiable.

Technical Report DBAI-TR-2016-95 25

Algorithm 10: Recursive procedure evaluateQ(n,N)

Input : A tree decomposition node n and an NSF N
Output: A BDD B of N , obtained by evaluating the quantifiers

if depth(N) = 0 then
B := N

else
X := {x | x ∈ bag(n) and level(x) = level(N)}
if quantifier(N) = ∃ then

B := ∃X
∨
M∈N evaluateQ(n,M)

else if quantifier(N) = ∀ then
B := ∀X

∧
M∈N evaluateQ(n,M)

return B

>

⊥

⊥

⊥

d

d ∧ f

⊥

d

d ∧ f ⊥

d

d ∧ f

⊥

⊥

⊥

>

f (¬d ∨ f)

>

>

f ⊥

>

f (¬d ∨ f)

∃

∀

∃

Figure 6: Results for evaluateQ(n6, N) executed on the NSF of root node n6.

Example 7. Figure 6 shows the NSF N in root node n6 of our running example, and the
BDDs obtained recursively (bottom-up) when applying evaluateQ(r,N). Note that bag(n6) =
{d, f} with level(d) = 2 and level(f) = 3, which are additionally taken into account when
evaluating the quantifiers. The procedure returns > for our running example, hence the QBF
is satisfiable.

We omit a formal proof of the correctness of the proposed algorithm; instead we give
an informal discussion about its runtime. Given a QBF Q.ψ with Q = Q1X1 . . . QkXk and
a tree decomposition for ψ of width w, the algorithm determines the truth of Q.ψ in time

O(22.
.2
w+1

· |ψ|), where the height of the tower of exponents in 22
..
2w+1

is k+1, since the size
of each BDD is at most 2w+1 and we have k quantifiers1. Furthermore, |ψ| denotes the size
of ψ. We recall that the number of nodes of a tree decomposition is linear in the size of ψ.
Moreover, any BDD involved in the algorithm is given over at most w variables and NSFs
are just built upon such BDDs. Thus all operations on NSFs are also bound by w. Recall
that due to the canonical form of BDDs, there are no duplicates at any level of an NSF, thus
yielding this runtime.

1 It is known that QSAT can be solved in FPT time when treewidth and number of quantifiers are bounded,
which follows, for instance, from [35]. However, the QSAT problem is not fixed-parameter tractable w.r.t.
parameter treewidth [8], unless the number of quantifiers is also bound or, more generally, the dependencies
between variables are restricted (see [47]).

Technical Report DBAI-TR-2016-95 26

4.4 Optimizations

Algorithm 11: Recursive procedure removeInnermostQuantifier(N)

Input : An NSF N
Output: An NSF with combined BDDs for innermost quantifier

if depth(N) = 1 then
if quantifier(N) = ∃ then

B :=
∨
M∈N M

if quantifier(N) = ∀ then
B :=

∧
M∈N M

return {B}
else

return {removeInnermostQuantifier(M) |M ∈ N}

Algorithm 12: Recursive procedure removeRedundant(N)

Input : An NSF N
Output: An NSF without supersets

if depth(N) > 1 then
for M ∈ N do

M := removeRedundant(M)
end
for M1,M2 ∈ N and M1 6=M2 do

if M1 ⊂M2 then
N := N \ {M2}

end
else

// N contains a set of BDDs
for M1,M2 ∈ N and M1 6=M2 do

if quantifier(N) = ∃ and M1 ∨M2 =M1 then
N := N \ {M2}

if quantifier(N) = ∀ and M1 ∧M2 =M1 then
N := N \ {M2}

end
return N

Although our algorithm runs in polynomial time for bounded treewidth of the QBF
instance (for a fixed number of quantifiers), refinements are necessary in order to make it
useful in practice. Herein, we discuss several optimizations for our algorithm.

Technical Report DBAI-TR-2016-95 27

Intermediate unsatisfiability checks. One optimization is to check for unsatisfiability
of the QBF instance during the bottom-up traversal of the tree decomposition. We can
directly reuse procedure evaluateQ(n,N). Whenever it returns ⊥, the QBF is unsatisfiable,
and we can immediately abort our main procedure compute(n). However, if it returns >,
the QBF might still be unsatisfiable due to clauses that are encountered later during the
traversal.

Evaluate innermost quantifier. For any NSF N at depth one, the quantifier can be
evaluated immediately: Procedure removeInnermostQuantifier(N) (see Algorithm 11) spec-
ifies that for an NSF N the NSFs at depth one are sets containing exactly one BDD. This
BDD is constructed by disjunction (for existential quantification) or conjunction (for uni-
versal quantification) of the original BDDs. Thereby, the overall size can be reduced, since
usually the single BDD stores models more efficiently than several BDDs. Furthermore,
redundant models (i.e., models that are stored in several BDDs) are now only kept once,
and for universal quantification additionally only models appearing in all BDDs are stored
in the newly created BDD.

Remove redundant NSFs. Redundant NSFs can be removed by checking for subsets
w.r.t. models represented by the BDDs (similar to subsumption checking [17]), and subsets
w.r.t. nested sets. Procedure removeRedundant(N) (see Algorithm 12) gives the pseudo-code
for removing unnecessary elements.

Example 8. Figure 7 shows some NSF before and after the application of
removeRedundant(N). For instance, consider the leftmost branch of the NSF at depth 1,
which is existentially quantified. It contains two NSFs, i.e. the BDDs ⊥ and ¬a: since
⊥ ∨ ¬a = ¬a, ⊥ is removed. Next, at depth 2, we subsequently have NSFs {¬a} and
{¬a, c}. Since {¬a} ⊆ {¬a, c}, {¬a, c} is removed. Similarly, in the right branch at depth
1, a ∨ (a ∨ c) = a, and (a ∨ c) is removed.

⊥ ¬a ¬a c a a ∨ c

∃
∀
∃

¬a a ∨ c

∃
∀
∃

Figure 7: Example NSF before (left) and after (right) compression with procedure
removeRedundant(N).

Balance NSF and BDD size. By delaying the split of removed variables (and storing
them in a cache), the size of the NSF can be kept small. However, this usually increases the
size of the BDDs (since the variables are not abstracted away). Note that a join node can
drastically increase the size of an NSF, which has to be considered already below that tree
decomposition node, when vertices are removed.

Technical Report DBAI-TR-2016-95 28

Example 9. Figure 8 shows the NSFs computed at the tree decomposition nodes of our
running example. Compared to Figure 5, here our algorithm optimizations were taken into
account. For instance, due to immediate evaluation of the innermost quantifier, the sets at
level three only contain one BDD. Another example would be the NSF in n4, where in the
left branch the NSF containing BDD (e ∨ f) (cf. Figure 5) is removed since its models are
a superset of ⊥.

⊥ d ∧ f f (¬d ∨ f)
n6

d ∧ f (¬d ∨ f)
n2

⊥ f (¬d ∨ f)
n5

(¬b ∨ d)
n1

⊥ ¬e ∧ f (e ∨ f)
n4

(a ∨ c ∨ e) ∧ (c ∨ ¬e)
n3

Figure 8: Computed NSFs (including optimizations) for our running example.

5 Implementation and Experimental Evaluation
The algorithms for problems in NP (see Section 3) were designed as case studies that illus-
trate how BDD-based dynamic programming algorithms proceed. We additionally developed
a proof-of-concept system, called dynBDD, that puts these algorithms into practice. In [33]
we showed that our BDD-based approach can indeed outperform current tree decomposition-
based approaches, as implemented in D-FLAT [1], dynPARTIX [30] and Sequoia [68]. In
particular, the reduction in memory requirements was demonstrated. It thus provided the
basis for our QBF solver dynQBF, which we analyze in this section. The solver incorporates
lessons learned from dynBDD, and implements the concepts and optimizations presented in
Section 4. We compare dynQBF to state-of-the-art QBF solvers. Several of these solvers suc-
cessfully participated in the 2016 QBF competition [91]. Additionally, we identify particular
instances where our approach is superior to standard QBF solving techniques.

5.1 The dynQBF System

The dynQBF system supports PCNF QBF instances in the QDIMACS [86] format. Besides
deciding whether QBFs are satisfiable, it can enumerate the models in case the outermost

Technical Report DBAI-TR-2016-95 29

quantifier is existential and the instance is satisfiable. In this case, variables bounded by
the outermost quantifier are not abstracted away but kept during computation – thus the
NSF size is no longer bounded by the width of the decomposition. Furthermore, the system
provides various debug output options (monitoring the computation progress, giving de-
tailed NSF information, or printing performance information). Besides the standard EDM
algorithm (as presented in the previous section), also an LDM version of the algorithm is
available. Additionally, we implemented a variant called BDD (naive), where the formula is
not decomposed, but instead given to a single BDD at once. This gives a hint of whether
the overhead for constructing and traversing the decomposition pay off. Algorithm opti-
mizations can be configured by enabling intermediate unsatisfiability checks, the interval of
when the NSFs are checked for redundancies, the maximal NSF size (when it is reached,
NSFs are no longer split and the removed variable is kept in a cache of the data structure for
later removal), as well as the maximum BDD size (if it is reached, the NSF is always split,
regardless of the maximum NSF size). These options allow the system user to individually
tune the system depending on the QBF instance at hand, if necessary.

The system relies on external libraries for tree decomposition computation and BDD
handling.

• htd [2]: This library provides a rich feature set, including various input graph rep-
resentations (such as simple, directed, multi-, or hypergraphs, trees and paths). In
particular, it supports labelled hypergraphs that are used in the dynQBF system to
represent clauses (with the labels storing negation of atoms). As output, it provides
a graph, path, tree or hypertree decomposition that can additionally be adapted to
current needs (e.g., by normalizing the decomposition). The dynQBF system supports
path and tree decompositions (a path decomposition is a tree decomposition without
join nodes). Furthermore, the implemented bucket elimination algorithm for tree de-
composition generation supports various heuristics, such as minimum fill, minimum
degree and maximum cardinality search [23, 41]. All these features are utilized by
dynQBF, and configurable via the command line interface.

• CUDD [97]: BDDs, ADDs and ZDDs are supported by this library. It is implemented
in C, but also includes a C++ interface. CUDD is continuously developed for over
20 years, and one of the most widely used decision diagram packages. The library
supports many variable reordering heuristics (such as (lazy) sifting, random, simulated
annealing or genetic algorithms).

The C++ code of dynQBF is publicly available at http://dbai.tuwien.ac.at/proj/
decodyn/dynqbf.

5.2 QBF Solvers: An Overview

Advances in QBF solving are reported and benchmarked in the regular QBF competition
events. The latest 2016 event [91] lists more than 20 solvers (plus variants, obtained from

http://dbai.tuwien.ac.at/proj/decodyn/dynqbf
http://dbai.tuwien.ac.at/proj/decodyn/dynqbf

Technical Report DBAI-TR-2016-95 30

different configurations or solvers in combination with preprocessing tools). A comprehensive
overview on tools is given for example in the QBF Gallery 2013 and 2014 reports [60, 78],
and in a survey article [79]. Here, we discuss several systems that participated in the 2016
competition, as well as some (earlier) BDD-based approaches.

DepQBF [75, 77] is a search-based solver that implements conflict-driven clause learn-
ing and solution-driven cube learning [55, 104]. The solver analyzes (in)dependencies be-
tween variables, that are to be exploited in the DPLL-based procedure for QBF solving.
RAReQS [61] is based on a technique called counterexample abstraction refinement (CE-
GAR) [36]. The idea is to gradually expand the given formula into a propositional one, but
contrary to other expansion-based approaches (e.g. QUBOS [10], that utilizes propositional
SAT solvers; quantor [17]; or Nenofex [76], that expands QBFs in negation normal form
(NNF)), the CEGAR approach mitigates the problem of space explosion by terminating the
expansion process in time.

Regarding systems that are based on BDDs, EBDDRES [63] is a tool that was originally
designed as a SAT solver that provides resolution proofs. The latest version also supports
QBFs. Unfortunately, EBDDRES is only available as a 32 bit binary. Further systems include
QBFBDD [9] (based on a DPLL procedure combined with BDDs to provide flexibility on
the order of quantifiers in the QBF) and eBDD-QBF [88] (improving early quantification),
as well as the quantifier-tree based tool sKizzo [13]. However, to the best of our knowledge,
they are not publicly available.

Oftentimes, systems are combined with preprocessors. One widely-used tool is Blo-
qqer [18]. It implements many elimination techniques, such as literal, blocked clause or tau-
tology elimination, and supports subsumption checking, variable expansion and equivalence
detection. Other preprocessors include Hiqqer (a variant of Bloqqer) and sQueezeBF [54]
(that tries to recover structure that got lost during the QBF translation to CNF).

5.3 dynQBF: Experimental Evaluation

The dynQBF system (version as of 2016-08-23) is tested in the following configuration: Tree
decompositions are generated following the minimum fill heuristic, and are non-normalized.
BDD variables are dynamically reordered using the lazy-sift heuristic. The computation
checks for subsets after every fourth computation step (in particular, after joining NSFs),
the maximum NSF size is set to 1000 BDDs, and each BDD is configured to contain less than
3000 nodes. Those parameters were chosen based on an evaluation preceding this report.

We compare the total runtime (i.e., including the time from program invocation, input
parsing to decomposition generation and solving, until program termination) to DepQBF
version 5.0 and RAReQS version 1.1. Additionally, we consider the BDD-based system
EBDDRES version 1.2. Finally, we compare it to the naive self-implemented approach BDD
(naive).

Tests were performed on a single core of an Intel Xeon E5-2637 processor with 3.5GHz
running Debian 8.3 (kernel 3.16.0-4-amd64). Each run was limited to a runtime of 10 minutes
(TO) and 16 GB of memory (MO).

Technical Report DBAI-TR-2016-95 31

Table 1: 2-QBF instances: System comparison. The table gives the overall number of
solved, solved satisfiable and solved unsatisfiable instances, as well as the number of observed
timeouts (TO) and memouts (MO), the number of uniquely solved instances, and the total
user time required for solving.

System Solved SAT UNSAT TO MO Unique Time (solved)
dynQBF 143 125 18 162 0 57 3577.8s
DepQBF 122 57 65 183 0 40 5670.5s
RAReQS 70 44 26 235 0 17 1080.2s
BDD (naive) 48 47 1 257 0 0 1722.4s
EBDDRES 32 31 1 0 273 1 165.3s

0 20 40 60 80 100 120 140 160

0
10

0
20

0
30

0
40

0
50

0
60

0

Instances solved

Ti
m

e
(s

ec
)

dynQBF
DepQBF
RAReQS
BDD (naive)
EBDDRES

Figure 9: 2-QBF instances: Cactus plot of user time for compared systems. For each system,
the solved instances are sorted by the required user time (in seconds).

5.3.1 2-QBF Instances

We used 305 publicly available 2-QBF (i.e., QBFs with a ∀∃ quantifier prefix) instances [91]
(Dataset 3) of the QBFEval’16 competition. Table 1 reports on the total number of solved
instances per system, and Figures 9 and 10 show the cactus plots for our benchmark runs.
Here, dynQBF solved the most instances, followed by DepQBF. Observe that our BDD-
based implementations are particularly successful on satisfiable instances, while DepQBF
and RAReQS solved more unsatisfiable instances. EBDDRES is limited to roughly 4GB
of memory (since it is only available as 32 bit binary), which explains the high number of
memouts. However, Figure 10 shows that this system also requires more time for solved
instances compared to the better-performing systems. Our baseline implementation BDD
(naive) solves far less instances than dynQBF, indicating that the overhead for computing
and traversing the tree decomposition pays off.

Technical Report DBAI-TR-2016-95 32

0 20 40 60 80 100 120 140 160

0
25

0
50

0
75

0
10

00
15

00

Instances solved

M
em

or
y

(M
B)

dynQBF
DepQBF
RAReQS
BDD (naive)
EBDDRES

Figure 10: 2-QBF instances: Cactus plot of memory for compared systems. For each system,
the solved instances are sorted by the required memory (in MB).

Interestingly, there are several instances that are uniquely solved by one of the compared
systems (see Table 1, column “Unique”). This indicates that the solvers work particularly well
for different types of instances. In order to give strengths and weaknesses of the systems, we
analyzed the different classes of instances contained the 2-QBF dataset (identifiable by the
instance file names). Table 2 shows an overview on the groups, the number of instances per
group and average information on the number of atoms and clauses, as well as the average
(heuristically computed) width of the tree decompositions. Group “other” collects instances
that we could not assign to a particular group. Table 3 shows our results for each group
individually. It appears that dynQBF was quite successful in groups “mutex*”, “qshifter*”,
“stmt*” and “tree*”, and solved approximately one third of the instances in “rankfunc*”.
These are exactly the groups of instances with lower width, but their average number of atoms
and clauses is higher than in most of the other groups where dynQBF was less successful. This
result is in line with design of our algorithm, which directly tries to exploit this structural
parameter.

5.3.2 Prenex CNF Instances

Here, we tested the 825 available Prenex CNF instances [91] (Dataset 1) of the QBFEval’16.
In Table 4 we summarize again the number of solved instances per system, solved satisfiable
and unsatisfiable instances, as well as the measured timeouts and memouts. In Figure 11 a
cactus plot of the required time for solving the instances is given, and Figure 12 shows the
required memory. Here, dynQBF is not competitive with the other systems. In the following
we analyze the instances to identify characteristics that could be responsible for the system’s
performance.

Technical Report DBAI-TR-2016-95 33

Table 2: 2-QBF Instances: Groups of instances in the QBFEval’16 dataset. The table groups
the instances based on their file names. Furthermore, the total number of instances per group
as well as the average number of atoms, clauses and the average width are given.

Group #Instances #Atoms (avg) #Clauses (avg) Width (avg)
mutex* 7 3224.00 4172.71 15.00
other 9 1769.56 10763.00 294.89
qshifter* 6 173.50 29120.00 89.50
query* 40 2423.45 10409.80 349.20
rankfunc* 50 3364.52 8795.12 152.40
sortnet* 42 4500.31 7531.60 2173.33
stmt* 146 4457.67 16509.19 53.51
tree* 5 40.00 38.00 2.00

0 40 80 120 160 200 240 280 320 360 400 440

0
10

0
20

0
30

0
40

0
50

0
60

0

Instances solved

Ti
m

e
(s

ec
)

dynQBF
DepQBF
RAReQS
BDD (naive)
EBDDRES

Figure 11: Prenex CNF instances: Cactus plot of user time for compared systems. For each
system, the solved instances are sorted by the required user time (in seconds).

Table 5 gives details on the benchmark tests for dynQBF. 84 instances could not even
be decomposed within the time limit. These instances are very large, with an average
number of more than 160000 atoms and 500000 clauses. Here, a faster tree decomposition
heuristic (e.g. minimum degree instead of minimum fill) could be used. However, the resulting
decompositions then typically exhibit a higher width. The decomposed instances are (on
average) much smaller, but have a very high width (448.58) and a high number of quantifier
alternations (20.16). It is not surprising that many of these instances could not be solved
with our approach, since our algorithm runs (in the worst case) exponentially both in the
width and the number of quantifier alternations. Regarding the 192 solved instances (with
an average width of 33.98 and 8.53 quantifier alternations) it becomes evident that these

Technical Report DBAI-TR-2016-95 34

Table 3: 2-QBF instances: System comparison, grouped by instance types.
Group System Solved SAT UNSAT TO MO Unique
mutex* DepQBF 3 3 0 4 0 0
mutex* dynQBF 7 7 0 0 0 0
mutex* BDD (naive) 1 1 0 6 0 0
mutex* EBDDRES 7 7 0 0 0 0
mutex* RAReQS 7 7 0 0 0 0
other DepQBF 6 3 3 3 0 0
other dynQBF 3 2 1 6 0 0
other BDD (naive) 2 2 0 7 0 0
other EBDDRES 1 1 0 0 8 0
other RAReQS 6 3 3 3 0 0
qshifter* DepQBF 3 3 0 3 0 0
qshifter* dynQBF 5 5 0 1 0 0
qshifter* BDD (naive) 2 2 0 4 0 0
qshifter* EBDDRES 6 6 0 0 0 1
qshifter* RAReQS 1 1 0 5 0 0
query* DepQBF 9 3 6 31 0 0
query* dynQBF 1 1 0 39 0 0
query* BDD (naive) 0 0 0 40 0 0
query* EBDDRES 0 0 0 0 40 0
query* RAReQS 17 10 7 23 0 8
rankfunc* DepQBF 22 21 1 28 0 10
rankfunc* dynQBF 18 17 1 32 0 6
rankfunc* BDD (naive) 1 0 1 49 0 0
rankfunc* EBDDRES 1 0 1 0 49 0
rankfunc* RAReQS 0 0 0 50 0 0
sortnet* DepQBF 18 9 9 24 0 0
sortnet* dynQBF 0 0 0 42 0 0
sortnet* BDD (naive) 0 0 0 42 0 0
sortnet* EBDDRES 0 0 0 0 42 0
sortnet* RAReQS 27 11 16 15 0 9
stmt* DepQBF 56 10 46 90 0 30
stmt* dynQBF 104 88 16 42 0 51
stmt* BDD (naive) 37 37 0 109 0 0
stmt* EBDDRES 12 12 0 0 134 0
stmt* RAReQS 7 7 0 139 0 0
tree* DepQBF 5 5 0 0 0 0
tree* dynQBF 5 5 0 0 0 0
tree* BDD (naive) 5 5 0 0 0 0
tree* EBDDRES 5 5 0 0 0 0
tree* RAReQS 5 5 0 0 0 0

Technical Report DBAI-TR-2016-95 35

Table 4: Prenex CNF instances: System comparison. The table gives the overall number of
solved, solved satisfiable and solved unsatisfiable instances, as well as the number of observed
timeouts (TO) and memouts (MO), the number of uniquely solved instances, and the total
user time required for solving.

System Solved SAT UNSAT TO MO Unique Time (solved)
DepQBF 435 188 247 386 4 86 7655.67
RAReQS 346 136 210 479 0 38 10799.33
EBDDRES 214 116 98 7 604 41 913.42
dynQBF 192 94 98 619 14 11 6155.06
BDD (naive) 140 75 65 682 3 1 7092.65

0 40 80 120 160 200 240 280 320 360 400 440

0
20

00
60

00
10

00
0

Instances solved

M
em

or
y

(M
B)

dynQBF
DepQBF
RAReQS
BDD (naive)
EBDDRES

Figure 12: Prenex CNF instances: Cactus plot of memory for compared systems. For each
system, the solved instances are sorted by the required memory (in MB).

instance (and decomposition) characteristics are important for our approach.

6 Conclusion

6.1 Summary

In this report, we developed a novel approach for dynamic programming on tree decomposi-
tions, where BDDs are used as a compact representation of intermediate results during the
computation process. We first provided several case studies for NP-complete problems that
are fixed-parameter tractable with respect to treewidth. There, a single BDD is sufficient
to store results obtained in the decomposition nodes. We illustrated how various properties,
that reoccur in many problem domains, can be implemented in our approach (such as con-

Technical Report DBAI-TR-2016-95 36

Table 5: Prenex CNF instances: Details for dynQBF. The table categorizes the instances
based on the solving status, and reports on the number of instances, the average number of
atoms, clauses, with and quantifiers per category, as well as the average decomposition (TD)
and average overall (O) solving time.

Category # Atoms Clauses Width Quant. Time TD Time O
not decomposed 84 162866.72 526224.11 - 8.63 - -
decomposed 741 8363.42 34478.75 448.58 20.16 18.49 -
- not solved 549 9907.89 43548.67 592.06 24.22 23.94 -
- solved 192 3900.71 8271.45 33.98 8.53 2.77 32.06
- SAT 94 1408.80 6521.31 30.85 6.40 0.05 26.77
- UNSAT 98 6340.71 9985.14 37.04 10.56 5.44 37.13

nectedness for Hamiltonian Cycle or changing information (in Directed Independent
Dominating Set)).

These case studies paved the way to our technique of solving the QSAT problem, which
is PSPACE-complete, but known to be fixed-parameter tractable for a fixed number of
quantifier alternations plus treewidth. We developed a dedicated data structure, called
nested set of formulae (NSF), where the nestings account for quantifier alternations in the
QBF instance, and BDDs compactly store partial assignments to variables in the QBF
instance. Despite providing an fpt algorithm, a direct implementation is still infeasible in
practice. Hence, we developed various optimizations for our approach. Most importantly,
the NSF data structure can be reduced in size by removing redundant nestings or BDDs.
The number of elements in an NSF and the maximum size of the BDDs can be balanced
by delaying removal of variables from the BDDs. Additionally, checking for unsatisfiability
during the tree decomposition traversal allows us to abort the computation earlier.

In our experimental evaluation we compared the developed system dynQBF to state-
of-the-art QBF solvers (DepQBF, RAReQS), as well as an earlier BDD-based approach for
QBF solving (EBDDRES). Additionally, we analyzed whether the overhead of computing
and traversing the tree decomposition pays off (BDD (naive)).

6.2 Discussion

Our approach provides a novel method of specifying dynamic programming algorithms on
tree decompositions. They are given as Boolean formula manipulation operations, and define
how sets of partial solution candidates are computed (contrary to table-based approaches).
Additionally, we shift the challenging task of maintaining an efficient data structure from the
algorithm developer to the BDDs, which is natively supported by current ROBDD libraries.

Regarding QBF solving, we also rely on BDDs, but additionally provide algorithms that
are required to keep our NSFs compact. Experiments showed the potential of this method for
∀∃-QBFs, revealing that this method appears to be well suited for particular classes of QBFs
that are hard to solve for other systems. This is in line with observations for SAT solving,

Technical Report DBAI-TR-2016-95 37

where resolution-based solving can outperform search (DPLL-like) solving for instances of
small width [93]. However, for formulas with more alternations and higher width, further
improvements are necessary to be competitive with state-of-the-art solvers. One explanation
for the rather poor performance of our method on more involved formulas is that we have
not considered any analysis of quantifier dependencies in our algorithm yet.

Different QBF solving techniques have their respective merits on different types of in-
stances. This could be important in the design of portfolio QBF solvers. Additionally, our
ideas could help to improve other systems by also taking the structural property treewidth
explicitly into account.

6.3 Future Work and Open Issues

The current implementation of dynQBF does not include any preprocessing. For instance,
simply by splitting large clauses into smaller ones, the width of the decomposition could
be reduced. Additionally, the aforementioned analysis of quantifier dependencies could be
implemented in a preprocessing step. Besides that, standard techniques (such as blocked
clause elimination or equivalence detection) could be added to the system.

Furthermore, we still need a better understanding of the interplay between different
variable orderings in the BDDs and the shape of the used decomposition. Since good variable
orderings are crucial to keep the size of the BDDs low, we expect that such insights can also
lead to significant improvements on certain instances. Furthermore, we could study how
the shape of the tree decomposition influences the solving process. Currently, we aim at
decompositions that exhibit a low width, but other properties could be important as well.
For instance, it could be beneficial to have variables with a high quantification level near the
leaf nodes of the tree decomposition.

In principle, techniques from other dynamic programming systems, such as lazy solv-
ing [20], could be adapted and integrated into our approach. Also incremental solving (as
e.g. available for DepQBF) could be useful, and be applied, for instance, by dynamically
extending the tree decomposition. Furthermore, our ideas of BDD-based dynamic program-
ming could be integrated into other systems.

References
[1] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, Markus

Hecher, and Stefan Woltran. The D-FLAT system for dynamic programming on tree
decompositions. In Proc. of the 14th European Conference on Logics in Artificial
Intelligence (JELIA 2014), volume 8761 of LNCS, pages 558–572. Springer, 2014.

[2] Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – a free, open-source frame-
work for tree decompositions and beyond. Technical Report DBAI-TR-2016-96, DBAI,
Fakultät für Informatik an der Technischen Universität Wien, 2016.

Technical Report DBAI-TR-2016-95 38

[3] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
100(6):509–516, 1978.

[4] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8:277–284, 1987.

[5] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12(2):308–340, 1991.

[6] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard prob-
lems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[7] Bengt Aspvall, Jan Arne Telle, and Andrzej Proskurowski. Memory requirements for
table computations in partial k-tree algorithms. Algorithmica, 27(3):382–394, 2000.

[8] Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. J. Com-
put. Syst. Sci., 80(7):1415–1429, 2014.

[9] Gilles Audemard and Lakhdar Sais. SAT based BDD solver for quantified Boolean
formulas. In Proc. of the 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2004), pages 82–89. IEEE Computer Society, 2004.

[10] Abdelwaheb Ayari and David A. Basin. QUBOS: deciding quantified boolean logic
using propositional satisfiability solvers. In Proc. of the 4th International Conference
on Formal Methods in Computer-Aided Design (FMCAD 2002), volume 2517 of LNCS,
pages 187–201. Springer, 2002.

[11] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applica-
tions. Formal Methods in System Design, 10(2/3):171–206, 1997.

[12] Marco Benedetti. Quantifier trees for QBFs. In Proc. of the 8th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT 2005), volume 3569 of
LNCS, pages 378–385. Springer, 2005.

[13] Marco Benedetti. sKizzo: A suite to evaluate and certify QBFs. In Proc. of the
20th International Conference on Automated Deduction (CADE 2005), volume 3632
of LNCS, pages 369–376. Springer, 2005.

[14] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. J.
Comb. Theory, Ser. A, 14(2):137–148, 1973.

[15] Nadja Betzler, Rolf Niedermeier, and Johannes Uhlmann. Tree decompositions of
graphs: Saving memory in dynamic programming. Discrete Optimization, 3(3):220–
229, 2006.

Technical Report DBAI-TR-2016-95 39

[16] Dirk Beyer and Andreas Stahlbauer. BDD-based software verification – applications
to event-condition-action systems. STTT, 16(5):507–518, 2014.

[17] Armin Biere. Resolve and expand. In Proc. of the 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004), Revised Selected Papers,
volume 3542 of LNCS, pages 59–70, 2004.

[18] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF.
In Proc. of the 23rd International Conference on Automated Deduction (CADE 2011),
volume 6803 of LNCS, pages 101–115. Springer, 2011.

[19] Bernhard Bliem, Günther Charwat, Markus Hecher, and Stefan Woltran. D-FLATˆ2:
Subset minimization in dynamic programming on tree decompositions made easy. Fun-
damenta Informaticae, 147:27–61, 2016. To appear.

[20] Bernhard Bliem, Benjamin Kaufmann, Torsten Schaub, and Stefan Woltran. ASP for
anytime dynamic programming on tree decompositions. In Proc. of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2016), pages 979–986. AAAI
Press, 2016.

[21] Bernhard Bliem, Reinhard Pichler, and Stefan Woltran. Implementing Courcelle’s
Theorem in a declarative framework for dynamic programming. Journal of Logic and
Computation, 2016.

[22] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In International
Symposium on Mathematical Foundations of Computer Science, pages 19–36. Springer,
1997.

[23] Hans L. Bodlaender. Discovering treewidth. In Proc. of the 31st Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2005), volume 3381 of
LNCS, pages 1–16. Springer, 2005.

[24] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs
of bounded treewidth. Comput. J., 51(3):255–269, 2008.

[25] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. Upper
bounds. Inf. Comput., 208(3):259–275, 2010.

[26] Karim Boutaleb, Philippe Jégou, and Cyril Terrioux. (No)good recording and ROB-
DDs for solving structured (V)CSPs. In Proc. of the 18th IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2006), pages 297–304. IEEE Com-
puter Society, 2006.

[27] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming
at a glance. Commun. ACM, 54(12):92–103, 2011.

Technical Report DBAI-TR-2016-95 40

[28] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 100(8):677–691, 1986.

[29] Didier Buchs and Steve P. Hostettler. Sigma decision diagrams. In Prelim. procs. of
the 5th International Workshop on Computing with Terms and Graphs (TERMGRAPH
2009), 2009. ID: unige:12331.

[30] Günther Charwat and Wolfgang Dvořák. dynPARTIX 2.0 - dynamic programming
argumentation reasoning tool. In Proc. of the 4th International Conference on Com-
putational Models of Argument (COMMA 2012), volume 245 of FAIA, pages 507–508.
IOS Press, 2012.

[31] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter Wallner, and
Stefan Woltran. Methods for solving reasoning problems in abstract argumentation -
a survey. Artif. Intell., 220:28–63, 2015.

[32] Günther Charwat and StefanWoltran. Efficient problem solving on tree decompositions
using binary decision diagrams. In Proc. of the 13th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2015), volume 9345 of LNCS,
pages 213–227. Springer, 2015.

[33] Günther Charwat and Stefan Woltran. Dynamic programming-based QBF solving. In
International Workshop on Quantified Boolean Formulas (and Beyond) (QBF 2016),
2016. To appear.

[34] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks using variable elim-
ination. In Proc. of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pages 2443–2449, 2007.

[35] Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In Proc. of
the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pages 161–165.
IOS Press, 2004.

[36] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[37] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput., 85(1):12–75, 1990.

[38] Jean-Michel Couvreur, Emmanuelle Encrenaz, Emmanuel Paviot-Adet, Denis Poitre-
naud, and Pierre-André Wacrenier. Data decision diagrams for petri net analysis. In
Proc. of the 23rd International Conference on Applications and Theory of Petri Nets
(ICATPN 2002), volume 2360 of LNCS, pages 101–120. Springer, 2002.

Technical Report DBAI-TR-2016-95 41

[39] Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to ex-
ploit model structure. In Proc. of the 25th International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE 2005), volume 3731 of LNCS,
pages 443–457. Springer, 2005.

[40] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[41] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[42] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Benjamin J. McMahan, Nysret Mus-
liu, and Marko Samer. Heuristic methods for hypertree decomposition. In Proc. of the
7th Mexican International Conference on Artificial Intelligence (MICAI 2008), volume
5317 of LNCS, pages 1–11. Springer, 2008.

[43] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999.

[44] Rolf Drechsler and Detlef Sieling. Binary decision diagrams in theory and practice.
STTT, 3(2):112–136, 2001.

[45] Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321
– 357, 1995.

[46] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artif. Intell., 186:1–37, 2012.

[47] Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Using decomposition-
parameters for QBF: Mind the prefix! In Proc. of the 13th AAAI Conference on
Artificial Intelligence (AAAI 2016), pages 964–970. AAAI Press, 2016.

[48] Hélène Fargier and Pierre Marquis. Knowledge compilation properties of Trees-of-
BDDs, revisited. In Proc. of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 772–777, 2009.

[49] Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Counting
answer sets via dynamic programming. In Workshop on Trends and Applications of
Answer Set Programming (TAASP 2016), 2016. To appear.

[50] Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variable ordering for
binary decision diagrams. In Proc. of the IEEE Design Automation Conference (DAC
1987), pages 348–356. ACM, 1987.

Technical Report DBAI-TR-2016-95 42

[51] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. Multi-terminal bi-
nary decision diagrams: An efficient data structure for matrix representation. Formal
Methods in System Design, 10(2-3):149–169, 1997.

[52] Graeme Gange, Peter J. Stuckey, and Pascal Van Hentenryck. Explaining propagators
for edge-valued decision diagrams. In Proc. of the 19th International Conference on
Principles and Practice of Constraint Programming (CP 2013), volume 8124 of LNCS,
pages 340–355. Springer, 2013.

[53] Michael Gelfond and Nicola Leone. Logic programming and knowledge representation
– the A-Prolog perspective. Artif. Intell., 138(1-2):3–38, 2002.

[54] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. squeezebf: An effective
preprocessor for qbfs based on equivalence reasoning. In Proc. of the 13th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2010), volume
6175 of LNCS, pages 85–98. Springer, 2010.

[55] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term reso-
lution and learning in the evaluation of quantified boolean formulas. J. Artif. Intell.
Res., 26:371–416, 2006.

[56] Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite structures
of bounded treewidth. ACM Trans. Comput. Log., 12(1):3, 2010.

[57] Martin Grohe. Descriptive and parameterized complexity. In Proc. of the 13th In-
ternational Workshop on Computer Science Logic (CSL 1999), volume 1683 of LNCS,
pages 14–31. Springer, 1999.

[58] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[59] Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width parameters beyond
tree-width and their applications. Comput. J., 51(3):326–362, 2008.

[60] Mikolas Janota, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl, and
Allen Van Gelder. The QBFGallery 2014: The QBF competition at the FLoC olympic
games. Journal on Satisfiability, Boolean Modeling and Computation, 9:187–206, 2016.

[61] Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke. Solv-
ing QBF with counterexample guided refinement. In Proc. of the 15th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2012), volume
7317 of LNCS, pages 114–128. Springer, 2012.

[62] Geert Janssen. A consumer report on BDD packages. In Proc. of the 16th Annual
Symposium on Integrated Circuits and Systems Design (SBCCI 2003), page 217. IEEE
Computer Society, 2003.

Technical Report DBAI-TR-2016-95 43

[63] Toni Jussila, Carsten Sinz, and Armin Biere. Extended resolution proofs for symbolic
SAT solving with quantification. In Proc. of the 9th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2006), volume 4121 of LNCS,
pages 54–60. Springer, 2006.

[64] Timothy Kam, Tiziano Villa, Robert Brayton, and Alberto Sangiovanni-Vincentelli.
Multi-valued decision diagrams: theory and applications. Multiple-Valued Logic, 4(1-
2):9–62, 1998.

[65] Peter Kissmann and Jörg Hoffmann. BDD ordering heuristics for classical planning.
J. Artif. Intell. Res., 51:779–804, 2014.

[66] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Depart-
ment of Computer Science, Aarhus University, January 2001. Notes Series NS-01-1.
Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

[67] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994.

[68] Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem - A
game-theoretic approach. Discrete Optimization, 8(4):568–594, 2011.

[69] Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula. EVBDD-based algorithms
for integer linear programming, spectral transformation, and function decomposition.
IEEE Trans. on CAD of Integrated Circuits and Systems, 13(8):959–975, 1994.

[70] Yung-Te Lai and Sarma Sastry. Edge-valued binary decision diagrams for multi-level
hierarchical verification. In Proc. of the 29th ACM/IEEE Design Automation Con-
ference (DAC 1992), pages 608–613, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

[71] Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Evaluation of
an MSO-solver. In Proc. of the 14th Meeting on Algorithm Engineering & Experiments
(ALENEX 2012), pages 55–63. SIAM / Omnipress, 2012.

[72] Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practical
algorithms for MSO model-checking on tree-decomposable graphs. Computer Science
Review, 13-14:39–74, 2014.

[73] C.Y. Lee. Representation of switching circuits by binary-decision programs. Bell
System Technical Journal, 38:985–999, 1959.

[74] Jorn Lind-Nielsen. BuDDy – a BDD package. https://sourceforge.net/projects/
buddy/. Accessed: 2016-09-14.

https://sourceforge.net/projects/buddy/
https://sourceforge.net/projects/buddy/

Technical Report DBAI-TR-2016-95 44

[75] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl. En-
hancing search-based QBF solving by dynamic blocked clause elimination. In Proc. of
the 20th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR 2015), volume 9450 of LNCS, pages 418–433. Springer, 2015.

[76] Florian Lonsing and Armin Biere. Nenofex: Expanding NNF for QBF solving. In
Proc. of the 11th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2008), volume 4996 of LNCS, pages 196–210. Springer, 2008.

[77] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. JSAT,
7(2-3):71–76, 2010.

[78] Florian Lonsing, Martina Seidl, and Allen Van Gelder. The QBF gallery: Behind the
scenes. Artif. Intell., 237:92–114, 2016.

[79] Paolo Marin, Massimo Narizzano, Luca Pulina, Armando Tacchella, and Enrico
Giunchiglia. An empirical perspective on ten years of QBF solving. In Proc. of the
22nd RCRA International Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion 2015 (RCRA 2015), volume 1451 of
CEUR Workshop Proceedings, pages 62–75. CEUR-WS.org, 2015.

[80] Artur Mȩski, Wojciech Penczek, Maciej Szreter, Bożena Woiźna-Szcześniak, and An-
drzej Zbrzezny. BDD-versus SAT-based bounded model checking for the existential
fragment of linear temporal logic with knowledge: algorithms and their performance.
Autonomous Agents and Multi-Agent Systems, 28(4):558–604, 2014.

[81] Robert Meolic. Biddy BDD package. http://savannah.nongnu.org/projects/
biddy/. Accessed: 2016-09-14.

[82] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In Proc. of the 30th ACM/IEEE Design Automation Conference (DAC 1993),
pages 272–277, 1993.

[83] Shin-ichi Minato. Zero-suppressed BDDs and their applications. International Journal
on Software Tools for Technology Transfer, 3(2):156–170, 2001.

[84] Michael Morak, Nysret Musliu, Reinhard Pichler, Stefan Rümmele, and Stefan
Woltran. A new tree-decomposition based algorithm for answer set programming. In
Proc. of the IEEE 23rd International Conference on Tools with Artificial Intelligence
(ICTAI 2011), pages 916–918. IEEE Computer Society, 2011.

[85] Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. A dynamic-
programming based ASP-solver. In Proc. of the 12th European Conference on Logics in
Artificial Intelligence (JELIA 2010), volume 6341 of LNCS, pages 369–372. Springer,
2010.

http://savannah.nongnu.org/projects/biddy/
http://savannah.nongnu.org/projects/biddy/

Technical Report DBAI-TR-2016-95 45

[86] Massimo Narizzano, Luca Pulina, and Armando Tacchella. QDIMACS standard, ver-
sion 1.1, realeased on December 21, 2005. http://www.qbflib.org/qdimacs.html,
2005. Accessed: 2016-09-12.

[87] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications. OUP, 2006.

[88] Oswaldo Olivo and E. Allen Emerson. A more efficient BDD-based QBF solver. In
Proc. of the 17th International Conference on Principles and Practice of Constraint
Programming (CP 2011), volume 6876 of LNCS, pages 675–690. Springer, 2011.

[89] Jörn Ossowski. JINC: a multi-threaded library for higher-order weighted decision dia-
gram manipulation. PhD thesis, University of Bonn, 2010.

[90] Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures for QBF. In Proc. of
the 10th International Conference on Principles and Practice of Constraint Program-
ming (CP 2004), volume 3258 of LNCS, pages 453–467. Springer, 2004.

[91] Luca Pulina. QBFEval’16 – competitive evaluation of QBF solvers. http://www.
qbflib.org/qbfeval16.php. Accessed: 2016-09-12.

[92] Luca Pulina and Armando Tacchella. A structural approach to reasoning with quanti-
fied boolean formulas. In Proc. of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 596–602, 2009.

[93] Irina Rish and Rina Dechter. Resolution versus search: Two strategies for SAT. J.
Autom. Reasoning, 24(1/2):225–275, 2000.

[94] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984.

[95] Martin Sachenbacher and Brian C. Williams. Bounded search and symbolic inference
for constraint optimization. In Proc. of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), pages 286–291. PBC, 2005.

[96] Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J.
Discrete Algorithms, 8(1):50–64, 2010.

[97] Fabio Somenzi. CU Decision Diagram package release 3.0.0. Department of Electrical
and Computer Engineering, University of Colorado at Boulder, 2015.

[98] Yinglei Song, Chunmei Liu, Russell Malmberg, Fangfang Pan, and Liming Cai. Tree
decomposition based fast search of rna structures including pseudoknots in genomes.
In Proc. of the Computational Systems Bioinformatics Conference (CSB 2005), pages
223–234. IEEE, 2005.

http://www.qbflib.org/qdimacs.html
http://www.qbflib.org/qbfeval16.php
http://www.qbflib.org/qbfeval16.php

Technical Report DBAI-TR-2016-95 46

[99] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time
(preliminary report). In Proc. of the 5th annual ACM symposium on Theory of Com-
puting (TOC 1973), pages 1–9. ACM, 1973.

[100] Sathiamoorthy Subbarayan. Integrating CSP decomposition techniques and BDDs for
compiling configuration problems. In Proc. of the 2nd International Conference on
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2005),
volume 3524 of LNCS, pages 351–365. Springer, 2005.

[101] Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and Fabrice Kordon. Hier-
archical set decision diagrams and regular models. In Proc. of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2001), volume 5505 of LNCS, pages 1–15. Springer, 2009.

[102] Arash Vahidi. JDD – a pure Java BDD and Z-BDD library. https://bitbucket.
org/vahidi/jdd/wiki/Home. Accessed: 2016-09-14.

[103] John Whaley. JavaBDD – a Java binary decision diagram library. http://javabdd.
sourceforge.net/. Accessed: 2016-09-14.

[104] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction and
conflicts in quantified boolean formula evaluation. In Proc. of the 8th International
Conference on Principles and Practice of Constraint Programming (CP 2002), volume
2470 of LNCS, pages 200–215. Springer, 2002.

https://bitbucket.org/vahidi/jdd/wiki/Home
https://bitbucket.org/vahidi/jdd/wiki/Home
http://javabdd.sourceforge.net/
http://javabdd.sourceforge.net/

	Introduction
	Preliminaries
	Overview
	Tree Decompositions and Treewidth
	Dynamic Programming on Tree Decompositions: State of the Art
	Binary Decision Diagrams
	Related Work on BDDs

	BDD-based Dynamic Programming
	Concept
	Recursive Tree Decomposition Traversal
	Decision Methods

	Case Studies
	3-Colorability
	Directed Independent Dominating Set
	Hamiltonian Cycle

	QBF Solving
	Basics
	Data Structure
	Main Procedure
	Optimizations

	Implementation and Experimental Evaluation
	The dynQBF System
	QBF Solvers: An Overview
	dynQBF: Experimental Evaluation
	2-QBF Instances
	Prenex CNF Instances

	Conclusion
	Summary
	Discussion
	Future Work and Open Issues

