
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

On Rejected Arguments and Implicit
Conflicts: The Hidden Power of

Argumentation Semantics

DBAI-TR-2016-102

Ringo Baumann Wolfgang Dvořák
Thomas Linsbichler Christof Spanring

Hannes Strass Stefan Woltran

DBAI TECHNICAL REPORT

2016

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2016-102, 2016

On Rejected Arguments and Implicit Conflicts: The
Hidden Power of Argumentation Semantics

Ringo Baumann 1 Wolfgang Dvořák 2

Thomas Linsbichler 3 Christof Spanring 4 Hannes Strass 5

Stefan Woltran 6

Abstract. Abstract argumentation frameworks (AFs) are one of the most studied formalisms
in AI and are formally simple tools to model arguments and their conflicts. The evaluation
of an AF yields extensions (with respect to a semantics) representing alternative acceptable
sets of arguments. For many of the available semantics two effects can be observed: there
exist arguments in the given AF that do not appear in any extension (rejected arguments);
there exist pairs of arguments that do not occur jointly in any extension, albeit there is
no explicit conflict between them in the given AF (implicit conflicts). In this paper, we
investigate the question whether these situations are only a side-effect of particular AFs, or
whether rejected arguments and implicit conflicts contribute to the expressiveness of the
actual semantics. We do so by introducing two subclasses of AFs, namely compact and
analytic frameworks. The former class contains AFs that do not contain rejected arguments
with respect to a semantics at hand; AFs from the latter class are free of implicit conflicts
for a given semantics. Frameworks that are contained in both classes would be natural
candidates towards normal forms for AFs since they minimize the number of arguments on
the one hand, and on the other hand maximize the information on conflicts, a fact that might
help argumentation systems to evaluate AFs more efficiently. Our main results show that
under stable, preferred, semi-stable, and stage semantics neither of the classes is able to
capture the full expressive power of these semantics; we thus also refute a recent conjecture
by Baumann et al. on implicit conflicts. Moreover, we give a detailed complexity analysis
for the problem of deciding whether an AF is compact, resp. analytic. Finally, we also study
the signature of these subclasses for the mentioned semantics and shed light on the question
under which circumstances an arbitrary framework can be transformed into an equivalent
compact, resp. analytic, AF.

1Leipzig University, Germany. baumann@informatik.uni-leipzig.de
2University of Vienna, Austria. wolfgang.dvorak@univie.ac.at
3TU Wien, Austria. linsbich@dbai.tuwien.ac.at
4TU Wien, Austria and University of Liverpool, UK. spanring@dbai.tuwien.ac.at
5Leipzig University, Germany. strass@informatik.uni-leipzig.de
6TU Wien, Austria. woltran@dbai.tuwien.ac.at

Acknowledgements: The authors are grateful to the anonymous reviewers of the preceding papers
and the current article for their detailed reviews and helpful comments that led to an improved
presentation. Furthermore, the authors are grateful to Paul Dunne for helpful discussions. This
research has been supported by the German Research Foundation (DFG) under project BR 1817/7-
1 and the Austrian Science Fund (FWF) under projects I1102, I2854, and P25518.

Copyright c© 2016 by the authors

2

1 Introduction
In recent years argumentation has emerged to become one of the major fields of research in Arti-
ficial Intelligence [34, 11]. In particular, Dung’s well-studied abstract argumentation frameworks
(AFs) [18] are a simple, yet powerful formalism for modeling and deciding argumentation problems
that are integral to many advanced argumentation systems, see e.g. [12]. The evaluation of AFs in
terms of finding reasonable positions with respect to a given framework is defined via so-called
argumentation semantics (cf. [1] for an overview). Given an AF F , an argumentation semantics σ
returns acceptable sets of arguments σ(F), the (σ-)extensions of F . Several semantics have been
introduced over the years [18, 39, 13, 2] with motivations ranging from the desired treatment of
specific examples to fulfilling certain abstract principles. One important line of research in abstract
argumentation is thus the systematic comparison of the different semantics available. Hereby, the
behavior of extensions with respect to certain properties [4] has been analyzed and the expres-
sive power of semantics [23, 26, 28, 36] has been studied by identifying the set of extension-sets
achievable under certain semantics. On the other hand, subclasses of AFs such as acyclic, symmet-
ric, odd-cycle-free or bipartite AFs, have been considered, since for some of these classes different
semantics collapse [14, 19]. Beside these subclasses based on the graph structure there are also
classes defined via properties of extensions. The probably most prominent such subclass is the
class of coherent AFs [21], i.e. AFs where the stable and preferred semantics coincide. Further
examples for subclasses that are defined via extensions can be found in [5, 25].

In this work we contribute to both streams of research. We introduce two new classes, which
to the best of our knowledge have not received attention in the literature. The actual definition of
these two classes is motivated by typical phenomena that can be observed for several semantics.
First, there exist arguments in a given AF that do not appear in any extension. Since these so-called
rejected arguments do not appear in the result of extension-based semantics, it is a natural question
whether such arguments can be “removed” from the AF at hand without changing its outcome
(in a certain way, this question is similar to the problem of simplifying propositional formulas
by removing “don’t care” atoms). In order to have a handle for analyzing the effect of rejected
arguments, we introduce the class of compact AFs: an AF is compact (with respect to a semantics
σ), if each of its arguments appears in at least one σ-extension. Second, we are interested in the
concept of implicit conflicts. An attack between two arguments represents an explicit conflict. By
the nature of most argumentation semantics, conflicts can however also be implicit in the sense
that some arguments do not occur together in any extension, although there is no attack between
them. In order to understand the expressive power of implicit conflicts we introduce the class of
analytic frameworks. Given a semantics σ, if every conflict between two arguments a, b in an AF F
is explicit (i.e., for all arguments a, b, if {a, b} ∩ E 6= {a, b} for all σ-extensions E, then a attacks
b in F or b attacks a in F) then F is called analytic. Both compact and analytic AFs thus yield
a “semantic” subclass since their definitions rely on the actual extensions obtained via the chosen
semantics.

The role of rejected arguments Although rejected arguments are natural ingredients in typical
argumentation scenarios, it is of interest to understand in which ways rejected arguments contribute

2

Figure 1: Rejected argument x cannot be removed without changing the stable extensions.

to the “strength” of a particular semantics. Let us first have a brief look on the naive semantics,
which is defined as subset-maximal conflict-free sets: Here, it is rather easy to see that any AF can
be transformed into an equivalent compact AF by just removing all self-attacking arguments. In
other words, the same outcome (in terms of the naive extensions) can be achieved by a simplified
AF without rejected arguments. On the one hand, this can be seen as a general weakness of naive
semantics, since any possible outcome can be equivalently achieved in the absence of rejected
arguments. On the other hand, this shows that towards evaluating an AF under naive semantics, the
transformation into a compact AF can provide a beneficial pre-processing step for computing the
extensions (which afterwards should however be interpreted in terms of the original AF).

How is the situation with semantics that are considered more mature? We borrow an exam-
ple from (author?) [22]. Consider the AF F1 in Figure 1, where nodes represent arguments and
directed edges represent attacks.

The stable extensions (conflict-free sets attacking all other arguments) of F1 are given by the
set S = {{a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a, b, c′}, {a′, b, c}, {a, b′, c}}. Observe that
x is rejected, i.e. x does not appear in any stable extension of F1. Hence, this framework is not
compact for the stable semantics. Moreover, it was shown in [22] that there is no compact AF

(in this case an AF not using argument x) that yields the same stable extensions as F1. By the
necessity of conflict-freeness any such compact AF would only allow conflicts between arguments
a and a′, b and b′, and c and c′, respectively. Moreover, there would have to be attacks in both
directions for each of these conflicts in order to ensure stability. Hence any compact AF having the
same stable extensions as F1 necessarily yields {a′, b′, c′} in addition. In other words, under the
stable semantics particular outcomes (in the example the set S of extensions) can only be achieved
via AFs containing at least one rejected argument. Thus, the stable semantics makes proper use
of rejected arguments. As we will see, all semantics under consideration (except naive semantics)
show a similar behaviour.

The role of implicit conflicts As introduced earlier, implicit conflicts arise when two arguments
are never jointly accepted although they do not attack each other. The AF F2 in Figure 2 provides
a simple example for this effect.

It can be seen that stable semantics yields two extensions {a, d} and {b, c} for F2. Since c and
d do not occur together in an extension there is an implicit conflict and thus F2 is not analytic (for
stable semantics). However, the naive extensions of F2 are given by {a, d}, {b, c}, {c, d}. Thus c
and d are not in an implicit conflict here, and the AF is easily seen to be analytic for naive semantics.

3

arg(a).arg(ap).
arg(b).arg(bp).
arg(c).arg(cp).
arg(x).

att(a,ap).att(ap,a).
att(b,bp).att(bp,b).
att(c,cp).att(cp,c).

att(a,x).att(b,x).att(c,x).

att(x,x).

Figure 2: AF illustrating an implicit conflict between c and d for stable semantics.

Indeed, by definition of naive semantics, two arguments occur together in a naive extension if
and only if there is no attack between them and they are not self-attacking. Thus not every AF is
analytic for naive semantics, but it is quite easy to see that every AF can be turned into an equivalent
analytic one over the same arguments, by just connecting the self-attacking arguments to any other
argument. Coming back to our example and to stable semantics, the question remains whether F2

can be turned into an equivalent analytic one? This is quite an easy exercise. Just add an attack
from c to d, or likewise from d to c. In fact, this addition does not change the set of extensions.
However, it has been left as open question in [7] (stated as “Explicit Conflict Conjecture”) whether
such a manipulation of an AF is always possible. In this work, we shall negatively answer this
question showing that (i) for preferred and semi-stable semantics, there exist AFs such that there is
no equivalent analytic AF; and (ii) for stable and stage semantics, there exist AFs such that there is
no equivalent analytic AF, unless we are allowed to add rejected arguments.

Expressiveness of compact and analytic argumentation frameworks Before giving an
overview of the obtained results, let us further illustrate some issues that come along with the
subclasses of compact and analytic argumentation frameworks. One natural question is whether
any AF F can be transformed to an equivalent AF G, i.e. σ(F) = σ(G) for a given semantics
σ, that is compact or analytic. In case the answer is no, we can conclude that the full range of
expressiveness of σ indeed relies on the concepts of rejected arguments and implicit conflicts.
Knowing which sets of extensions a semantics is able to express is of central interest in approaches
of extension-based revision of AFs [16]. As the result of the revision may also be subject to certain
syntactic constraints (e.g. a fixed set of arguments [15]) it is important to know about the role of
rejected arguments and implicit conflicts. For instance, a revised AF might be required (e.g. in
order to fulfill revision postulates) to have exactly the extension-set S from above under stable se-
mantics while consisting solely of the arguments {a, b, c, a′, b′, c′}. As we have already observed,
and we will show in a more comprehensive and general manner in the paper, such a revision is not
possible since getting S under stable semantics would require an additional, rejected argument.

Implications for argumentation systems An even more promising application of our results
lies in the field of concrete software systems for computing semantics of abstract argumentation
frameworks. A considerable number of such systems (“solvers”) exist, as has been witnessed by
the First International Competition on Computational Models of Argument (ICCMA 2015) [38].1

Using instances from that competition and additional instances created according to the same graph
model as the competition instances, we also performed an experimental evaluation on the theoret-

1A total number of 18 solvers participated, see http://argumentationcompetition.org.

4

arg(a).arg(b).arg(c).arg(d).

att(a,b).att(b,a).
att(a,c).
att(b,d).

http://argumentationcompetition.org

ical phenomena we study in this paper. The results can be found in A, and demonstrate the clear
computational benefit of knowing about implicit conflicts in an argumentation framework. More
precisely, once all implicit conflicts of an AF are made explicit, then the competition winners are
able to compute the AF’s extensions (for stable and preferred semantics) much faster than before
(without implicit conflicts made explicit). Thus it is a naturally arising research question whether
information about implicit conflicts can be obtained “cheaply” in terms of computational cost, a
question that we will also address in the paper. For knowing about rejected arguments, the com-
putational gain is immediately clear, since the lower the number of arguments, the smaller is the
search space a solver has to go through in order to find all extensions. Thus, preprocessing steps
that remove rejected arguments might also be beneficial to solving runtime. Moreover, if an AF

has no rejected arguments then all of its arguments are contained in at least one extension, and so
credulous as well as skeptical reasoning become easy tasks [7].

Overall, the research question we are interested in is: how computationally costly is it to de-
termine whether an AF can be simplified along the dimensions rejected arguments and implicit
conflicts? Answering this question would be crucial towards the development of clever methods
for preprocessing AFs before solving. However, more fundamental questions need to be addressed
first. On the one hand, we analyse how hard it is to decide whether an AF is compact (resp. ana-
lytic); on the other hand, we ask whether any AF can be transformed into an AF that is compact
(resp. analytic) and equivalent under a particular semantics. Unfortunately, the answers to both
of these questions is in a certain sense negative for all of the semantics we consider: intuitively
speaking, our complexity results will show that deciding whether simplification is applicable (hav-
ing certain reasoning tasks in mind) is as expensive as solving the reasoning tasks themselves.
Furthermore, we can even show that there are AFs that cannot be exhaustively simplified. (More
formally, there are AFs that have “pathological” implicit conflicts that cannot be made explicit
even if we allow arbitrary semantics-preserving changes in other parts of the AF.) This does not
make our results less applicable to implementation of reasoning systems, however. These nega-
tive results help the solver development community to delineate what can and cannot be done in
improving solver performance by intelligent preprocessing. That is, by our results, we know that
computing all rejected arguments and implicit conflicts are not viable candidates for simplifying
given argumentation frameworks.

Main contributions & structure of the paper The main contributions of this article are orga-
nized as follows. Recall that the semantics we mainly investigate are stable, preferred, semi-stable,
stage, and naive semantics.

• In Section 3 we formally introduce the subclasses of compact and analytic AFs with respect
to the considered semantics and investigate their relationship. For both classes the picture is
similar: for instance, if an AF is compact (resp. analytic) for stable it also is for semi-stable
(preferred, stage, and naive); but the other direction does not hold in general.

• Section 4 answers the question how hard it is to decide whether an AF is compact (resp.
analytic). As it turns out, the complexity of this problem for a given semantics σ is the

5

same as credulous acceptance under σ. Thus, we obtain tractability for naive semantics, NP-
completeness for stable and preferred semantics, and ΣP

2 -completeness for semi-stable and
stage semantics.

• In Section 5 we refute the Explicit Conflict Conjecture [7] for σ being among stable, pre-
ferred, semi-stable and stage semantics. In fact, we provide AFs such that there is no AF

equivalent under σ that contains solely explicit conflicts. On the other hand, we identify
sufficient conditions guaranteeing equivalence-preserving translations to analytic AFs.

• The final collection of results in Section 6 is concerned with signatures for compact and
analytic frameworks. Signatures as introduced in [23] plainly collect all possible sets of
extensions AFs can deliver under a given semantics. For instance, it is shown in [23] that
preferred and semi-stable semantics yield an equal signature Σ, while the signature of stage
semantics is a proper subset of Σ. Compared to [23], we do not give exact characterizations
of signatures for compact (resp. analytic) frameworks, but obtain a full picture of their re-
lationship with respect to the different semantics. For instance, we show that in terms of
compact AFs, the signatures for semi-stable and preferred semantics become incomparable,
while for analytic AFs, the signature for semi-stable semantics is a proper subset of the signa-
ture for preferred semantics. Finally, we generalize some recent results on maximal numbers
of extensions [9] to give some impossibility results for compact realizability.

In this work we consider several rather complex examples of argumentation frameworks, whose
evaluation is a non-trivial task. Thus, for the reader’s convenience, we provide encodings in the
.apx format, which can be used to evaluate the AFs with systems like ASPARTIX [29]2. These en-
codings can be either downloaded from http://www.dbai.tuwien.ac.at/proj/adf/
HiddenPowerAFs.zip or directly accessed by clicking at the corresponding figure. (Depend-
ing on the actual pdf viewer, a right or double-click should initiate saving.)

This article is based on [7] and [32], but also contains several new results.

2 Preliminaries
In what follows, we briefly recall the necessary background on abstract argumentation and com-
putational complexity. For an excellent overview on abstract argumentation and in particular on
argumentation semantics, we refer to [1].

Abstract Argumentation
Throughout the paper we assume a countably infinite domain A of arguments. An argumentation
framework (AF) is a pair F = (A,R) where A ⊆ A is a finite set of arguments and R ⊆ A × A
is the attack relation. The collection of all AFs is given as AFA. For an AF F = (B, S) we use
AF and RF to refer to B and S, respectively. We write a �F b for (a, b) ∈ RF and S �F a

2A web front-end is available at http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/.

6

http://www.dbai.tuwien.ac.at/proj/adf/HiddenPowerAFs.zip
http://www.dbai.tuwien.ac.at/proj/adf/HiddenPowerAFs.zip
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

(resp. a �F S) if there exists some s ∈ S such that s �F a (resp. a �F s). Symmetric attacks
{(a, b), (b, a)} ⊆ RF are occasionally denoted by a, b ∈ RF . For S ⊆ A, the range of S (w.r.t.
F), denoted S+

F , is the set S∪{b | S �F b}. Moreover, F|S denotes the AF (AF ∩ S,R ∩ (S × S)).
Given an AF F , an argument a ∈ AF is defended (in F) by S ⊆ AF if for each b ∈ AF , such

that b �F a, also S �F b. A set T of arguments is defended (in F) by S if each a ∈ T is
defended by S (in F). A set S ⊆ AF is conflict-free (in F), if there are no arguments a, b ∈ S,
such that (a, b) ∈ RF . We denote the set of all conflict-free sets in F as cf(F). S ∈ cf(F) is called
admissible (in F) if S defends itself. We denote the set of admissible sets in F as adm(F).

The terms semantics and extension are often used almost synonymously. Formally a semantics
is a mapping, while extensions are concrete elements of its image. The semantics we study in
this work are those characterized by the naive, stable, preferred, stage, and semi-stable extensions.
Given an AF F they are defined as subsets of cf(F) as follows:

• S ∈ nai(F), if @T ∈ cf(F) with T ⊃ S;

• S ∈ stb(F), if S+
F = AF ;

• S ∈ prf(F), if S ∈ adm(F) and @T ∈ adm(F) with T ⊃ S;

• S ∈ stg(F), if @T ∈ cf(F) with T+
F ⊃ S+

F ;

• S ∈ sem(F), if S ∈ adm(F) and @T ∈ adm(F) with T+
F ⊃ S+

F .

The following relations between these semantics are well-known to hold for any AF F :

stb(F) ⊆ sem(F) ⊆ prf(F)

stb(F) ⊆ stg(F) ⊆ nai(F)

Furthermore, apart from stable semantics all considered semantics guarantee the existence of
at least one (possibly empty) extension as long as finite AFs are considered (cf. [8] for a detailed
overview including the infinite case).

We will also make frequent use of the following concepts.

Definition 1. Given S ⊆ 2A, ArgsS denotes
⋃
S∈S S and PairsS denotes {(a, b) | ∃S ∈ S : {a, b} ⊆

S}. S is called an extension-set (over A) if ArgsS is finite.

In words, ArgsS stands for all arguments occurring in some element of S and PairsS for all pairs
of arguments occurring together in some element of S. As is easily observed, for all semantics σ,
σ(F) is an extension-set for any AF F .

Example 1. Consider the AF F depicted in Figure 3. We have that a′, b′ and f ′ are self-attacking,
since all semantics considered build upon conflict-freeness these three arguments can thus not be
included in any extension. Similarly we may accept only one argument from a and c as these two
are mutually attacking each other; the same holds for b and d and also for c and d. Naive semantics
generates maximal conflict-free sets, we thus get nai(F) = {{a, b, e}, {a, d, e}, {b, c, e}}.

7

Figure 3: Argumentation framework F used in Example 1.

Argument e is contained in each naive extension as it does not share any attacks with not self-
attacking arguments. However e is attacked by f and can not defend itself against this attack. Thus
the set {a, b, e} is not admissible. Preferred semantics, as maximal admissible sets, then computes
to prf(F) = {{a, b}, {a, d, e}, {b, c, e}}.

Now for stable extensions we need conflict-freeness as well as a partition of all arguments into
accepted or attacked. Naturally this means that only maximal conflict-free sets are candidates.
However neither of the naive sets has full range: {a, b, e} does not attack f , {a, d, e} does not
attack b′ and {b, c, e} does not attack a′. Thus there is no stable extension, i.e. stb(F) = ∅.

Stage semantics can be seen as a less restrictive form of stable semantics in that we do not
need to cover all arguments in range but want extensions to be conflict-free and range-maximal.
As emphasized above all naive extensions have incomparable range (missing f , b′, or resp. a′) and
thus stg(F) = nai(F). Similarly semi-stable extensions are those admissible sets that are range-
maximal. And in this case also the preferred extensions all have incomparable range (missing f
and e, b′, or resp. a′) and thus sem(F) = prf(F).

Now as for the concepts introduced in Definition 1 we have Args which are all the arguments
occurring in any extension; in this case for all semantics σ ∈ {nai, stg, sem, prf}we get Argsσ(F) =
{a, b, c, d, e}. And we have Pairs, all pairs of arguments that occur together in any extension;
in this case as can easily be checked again for all semantics σ ∈ {naive, stg, sem, prf} we get
Pairsσ(F) = {(a, b), (b, a), (a, e), (e, a), (b, e), (e, b), (a, d), (d, a), (d, e), (e, d), (b, c), (c, b),
(c, e), (e, c), (a, a), (b, b), (c, c), (d, d), (e, e)}. ♦

Computational Complexity
We assume the reader is familiar with standard complexity concepts, such as P, NP and com-
pleteness. Nevertheless we briefly recapitulate the concept of NP-oracle machines and the related
complexity class ΣP

2 . By an NP-oracle machine we mean a Turing machine that can access an
oracle that decides a given sub-problem from NP (or coNP) within one step. The class ΣP

2 (some-
times also denoted by NPNP), contains the problems that can be decided in polynomial time by a
nondeterministic NP-oracle machine.

The known complexity results for the argumentation semantics under consideration are sum-
marized in Table 1 [13, 17, 19, 21, 27]. Here, Verσ refers to the problem of verifying that a given
set is an extension of a given arbitrary AF F w.r.t. the semantics σ; Credσ refers to the problem
of verifying that a given argument x is credulously accepted w.r.t. σ in F (there is at least one σ-

8

arg(a).arg(ap).
arg(b).arg(bp).
arg(c).
arg(d).
arg(f).
arg(e).

att(a,ap).
att(ap,ap).
at(b,bp).
att(bp,bp).
att(a,c).att(c,a).
att(b,d).att(d,b).
att(c,d).att(d,c).
att(c,f).
att(d,f).
att(f,f).
att(f,e).

Table 1: Complexity of decision problems (C-c denotes completeness for class C).

Verσ Credσ Skeptσ
nai in P in P in P

stb in P NP-c coNP-c

adm in P NP-c trivial

prf coNP-c NP-c ΠP
2 -c

stg coNP-c ΣP
2 -c ΠP

2 -c

sem coNP-c ΣP
2 -c ΠP

2 -c

extension of F containing x); and Skeptσ refers to the problem of verifying that a given argument x
is skeptically accepted w.r.t. σ in F (x is contained in each σ-extension of F). For a more detailed
discussion of the complexity results the interested reader is referred to [20, 24]. We only mention
that the hardness results still hold if restricted to frameworks without self-attacking arguments,
which we will make use of later on.

Later, for semantics σ, we will also need upper bounds for the problem Cred 2
σ defined as

follows: given AF F and arguments a and b, does there exist an extension S ∈ σ(F) such that
{a, b} ⊆ S (see e.g. [19]). For the semantics under consideration, it is rather straightforward to see
that membership for Credσ carries over to Cred 2

σ . For σ ∈ {prf, stb, sem, stg} this is witnessed by
the standard NP-algorithm of guessing a set S containing a and b and apply an oracle for verifying
whether S is a σ-extension. The complexity of the verification problem then yields the desired
upper bound. Membership in P for the naive semantics can be decided by just checking whether
a, b are neither self-attacking nor attacking each other. Indeed, in this case {a, b} is conflict-free in
the given AF F , and thus there must exist a naive extension of F containing both a and b.

3 Subclasses of Argumentation Frameworks
In this section, we formally introduce the two central subclasses of argumentation frameworks
of this paper, namely compact and analytic frameworks. We study basic properties and relations
within the classes first. At the end of the section we will compare the two classes.

3.1 Compact Argumentation Frameworks
The main idea behind compact argumentation frameworks is the absence of rejected arguments
(w.r.t. a given semantics).

Definition 2. Given a semantics σ, an AF F is called compact for σ (or σ-compact) if Argsσ(F) =
AF . The set of all compact argumentation frameworks for σ is denoted by CAFσ.

9

Figure 4: AF discussed in Example 2, which is prf-compact but neither sem-compact nor stg-
compact.

Example 2. Let us consider the AF F depicted in Figure 4.3 The preferred extensions of F are
prf(F) = {{z}, {x1, a1}, {x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, meaning that F is prf-
compact (F ∈ CAFprf) since each argument occurs in at least one preferred extension. On the other
hand observe that sem(F) = prf(F)\{{z}} and stg(F) = {{xi, ai, bj}, {yi, bi, aj} | 1 ≤ i, j ≤ 3},
i.e. z is not contained in any semi-stable or stage extension. Therefore F is neither compact for
semi-stable nor compact for stage semantics (i.e. F /∈ CAFsem and F /∈ CAFstg). ♦

As indicated by Example 2, the contents of CAFσ differ with respect to the semantics σ. Con-
cerning relations between the classes of compact AFs we start with an easy observation. In the
following result, the only requirement on a semantics σ is that extensions are subsets of the argu-
ments in the framework, i.e. Argsσ(F) ⊆ AF for any AF F .

Lemma 1. For any two semantics σ and θ such that for each AF F , for every S ∈ σ(F) there is
some S ′ ∈ θ(F) with S ⊆ S ′, we have CAFσ ⊆ CAFθ.

Proof. Suppose F ∈ CAFσ. By definition, Argsσ(F) = AF . Now if for each S ∈ σ(F) there is
some S ′ ∈ θ(F) with S ⊆ S ′, we have Argsσ(F) ⊆ Argsθ(F). Since Argsθ(F) ⊆ AF by definition,
Argsθ(F) = AF follows. Hence, F ∈ CAFθ.

Note that the case where σ(F) ⊆ θ(F) holds for each AF F is a special case of the premise of
Lemma 1. The next result provides a full picture of the relations between classes of compact AFs
for the semantics we consider (see also Figure 5).

Theorem 2. The following relations hold:

1. CAFstb ⊂ CAFσ ⊂ CAFnai for σ ∈ {prf, sem, stg};

2. CAFsem ⊂ CAFprf;

3. CAFstg 6⊆ CAFθ and CAFθ 6⊆ CAFstg for θ ∈ {prf, sem}.

Proof. (1) Let σ ∈ {prf, sem, stg}. The ⊆-relations are due to Lemma 1 together with following
facts: (a) in any AF F , stb(F) ⊆ σ(F); (b) each σ-extension E of an AF F is conflict-free in F ,
thus there exists a naive extension E ′ of F with E ⊆ E ′.

10

arg(a1). arg(a2). arg(a3).
arg(b1). arg(b2). arg(b3).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).
arg(z).

att(a1,a2).att(a2,a3).att(a3,a1).
att(b1,b2).att(b2,b3).att(b3,b1).

att(x1,a3).att(x2,a1).att(x3,a2).
att(y1,b3).att(y2,b1).att(y3,b2).

att(x1,x2). att(x1,x3). att(x1,y1). att(x1,y2). att(x1,y3). att(x1,z).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y2). att(x2,y3). att(x2,z).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2). att(x3,y3). att(x3,z).
att(y1,x1). att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3). att(y1,z).
att(y2,x1). att(y2,x2). att(y2,x3). att(y2,y1). att(y2,y3). att(y2,z).
att(y3,x1). att(y3,x2). att(y3,x3). att(y3,y1). att(y3,y2). att(y3,z).

att(z,x1). att(z,x2). att(z,x3). att(z,y1). att(z,y2). att(z,y3).

CAFσ ⊂ CAFnai: The AF ({a, b}, {(a, b)}) is compact for naive semantics but not for σ.
CAFstb ⊂ CAFσ: Consider AF F from Figure 6a. We have prf(F) = sem(F) = {{x1, a1},

{x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, and each of these extensions can be extended to
a stage extension (the former three by adding one of the arguments b1, b2, b3 the latter three by
adding one of the arguments a1, a2, a3), but stb(F) = ∅. Thus AF = Argsσ(F) 6= Argsstb(F) = ∅,
meaning that F ∈ CAFσ but F /∈ CAFstb.

(2) CAFsem ⊆ CAFprf is by the fact that, in any AF F , sem(F) ⊆ prf(F) (cf. Lemma 1). Properness
is by the AF in Figure 4, which is (as discussed in Example 2) prf-compact but not sem-compact.

(3) First we show CAFstg 6⊆ CAFθ for θ ∈ {prf, sem}. To this end, consider the simple AF F ′ =
({a, b, c}, {(a, b), (b, c), (c, a)}). We have stg(F ′) = {{a}, {b}, {c}}, thus F ′ ∈ CAFstg. On the
other hand, sem(F ′) = prf(F ′) = {∅}, thus F ′ /∈ CAFσ.

CAFprf 6⊆ CAFstg follows by the observations in Example 2.
CAFsem 6⊆ CAFstg: Consider the AF F ′′ in Figure 6b. One can check that this AF is sem-

compact, but not stg-compact. In fact, argument a does not occur in any stage extension. Although
{a, u1, x5}, {a, u2, x6}, {a, u3, x7} ∈ sem(F ′′), the range of any conflict-free set containing a
is a proper subset of the range of every stage extension of F ′′: stg(F ′′) = {{c, ui, x4} | i ∈
{1, 2, 3}} ∪ {{b, ui, sj, xi+4} | i, j ∈ {1, 2, 3}} ∪ {{ti, uj, si, xi} | i, j ∈ {1, 2, 3}}. Hence
CAFsem 6⊆ CAFstg.

Finally note that every symmetric and irreflexive (i.e. no self-attacking arguments) AF is con-
tained in CAFstb, as already observed in [14, Proposition 6], and therefore also in each CAFσ
for all semantics σ under consideration. But already CAFstb contains strictly more AFs than the
class of symmetric and irreflexive AFs, which is, for instance, indicated by the AF ({a, b, c, d},
{(a, b), (b, c), (c, d), (d, a)}), which is clearly not symmetric but compact for the stable semantics.
On the other hand observe that CAFnai ⊂ AFA, as every AF having self-attacking arguments is not
contained in CAFnai.

3.2 Analytic Argumentation Frameworks
In this section we deal with AFs containing no implicit conflicts, which we will call analytic.
We differentiate between the concept of an attack (as a syntactical element) and the concept of a
conflict (with respect to the evaluation under a given semantics).

3The construct in the lower part of the figure represents symmetric attacks between each pair of distinct arguments.
We will make use of this style in illustrations throughout the paper.

CAFnai

CAFprfCAFsem

CAFstb

CAFstg

⊂
⊂ ⊂

⊂ ⊂

Figure 5: Relations between classes of compact AFs (cf. Theorem 2).

11

(a) AF F ′ contained in CAFprf, CAFsem, and CAFstg but not in CAFstb.

(b) AF F ′′ contained in CAFsem but not in CAFstg.

Figure 6: AF used in the proof of Theorem 2 to show the incomparability of certain classes of
compact AFs.

Definition 3. Given some AF F = (A,R), a semantics σ and arguments a, b ∈ A. If (a, b) /∈
Pairsσ(F), we say that a and b are in conflict in F for σ. If (a, b) ∈ R or (b, a) ∈ R we say that the
conflict between a and b is explicit, otherwise the conflict is called implicit (with respect to σ).

Notice that Definition 3 does not require a and b to be different arguments. In particular, an
argument that is not contained in any σ-extension is in conflict with itself. This conflict is explicit
if the argument is self-attacking and implicit otherwise.

Definition 4. Given a semantics σ, an AF F is called analytic for σ (or σ-analytic) if all conflicts
of F for σ are explicit in F . The set of all analytic argumentation frameworks for σ is denoted by
XAFσ.

Example 3. As a simple example consider the AF F2 from the introduction, depicted in Figure 2.
For σ ∈ {stb, prf, sem, stg} we have σ(F2) = {{a, d}, {b, c}}. Observe that there is an implicit
conflict between arguments c and d, denoted by a dashed line in Figure 2. Hence F2 is not σ-
analytic, i.e. F2 /∈ XAFσ. Observe however that nai(F2) = σ(F2) ∪ {{c, d}}, which means that F2

is analytic for naive semantics. ♦

As indicated in Example 3 the sets of analytic AFs can differ for different semantics. Again,
well-known relations between the extensions of certain semantics allow us to obtain ⊆-relations
between classes of analytic AFs.

Lemma 3. For any two semantics σ and θ such that for each AF F , for every S ∈ σ(F) there is
some S ′ ∈ θ(F) with S ⊆ S ′, we have XAFσ ⊆ XAFθ.

12

arg(a1). arg(a2). arg(a3).
arg(b1). arg(b2). arg(b3).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).

att(a1,a2).att(a2,a3).att(a3,a1).
att(b1,b2).att(b2,b3).att(b3,b1).

att(x1,a3).att(x2,a1).att(x3,a2).
att(y1,b3).att(y2,b1).att(y3,b2).

att(x1,x2). att(x1,x3). att(x1,y1). att(x1,y2). att(x1,y3).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y2). att(x2,y3).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2). att(x3,y3).
att(y1,x1). att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3).
att(y2,x1). att(y2,x2). att(y2,x3). att(y2,y1). att(y2,y3).
att(y3,x1). att(y3,x2). att(y3,x3). att(y3,y1). att(y3,y2).

arg(a).arg(b).arg(c).
arg(s1).arg(s2).arg(s3).
arg(t1).arg(t2).arg(t3).
arg(u1).arg(u2).arg(u3).
arg(x1).arg(x2).arg(x3).arg(x4).
arg(x5).arg(x6).arg(x7).

att(s1,s2).att(s2,s3).att(s3,s1).
att(t1,t2).att(t2,t3).att(t3,t1).
att(u1,u2).att(u2,u3).att(u3,u1).

att(a,b).att(b,a).
att(a,c).

att(s1,c).att(s2,c).att(s3,c).
att(b,t1).att(b,t2).att(b,t3).

att(x1,a).att(x1,b).
att(x1,t3).att(x1,s3).
att(x2,a).att(x2,b).
att(x2,t1).att(x2,s1).
att(x3,a).att(x3,b).
att(x3,t2).att(x3,s2).
att(x4,a).att(x4,b).
att(x4,t1).att(x4,t2).att(x4,t3).
att(x4,s1).att(x4,s2).att(x4,s3).
att(x5,u3).
att(x6,u1).
att(x7,u2).

att(x1,x2).
att(x2,x1).
att(x1,x3).
att(x3,x1).
att(x1,x4).
att(x4,x1).
att(x1,x5).
att(x5,x1).
att(x1,x6).
att(x6,x1).
att(x1,x7).
att(x7,x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att(x4,x2).
att(x2,x5).
att(x5,x2).
att(x2,x6).
att(x6,x2).
att(x2,x7).
att(x7,x2).
att(x3,x4).
att(x4,x3).
att(x3,x5).
att(x5,x3).
att(x3,x6).
att(x6,x3).
att(x3,x7).
att(x7,x3).
att(x4,x5).
att(x5,x4).
att(x4,x6).
att(x6,x4).
att(x4,x7).
att(x7,x4).
att(x5,x6).
att(x6,x5).
att(x5,x7).
att(x7,x5).
att(x6,x7).
att(x7,x6).

XAFnai

XAFprfXAFsem

XAFstb

XAFstg

⊂
⊂ ⊂

⊂ ⊂

Figure 7: Relations between classes of analytic AFs (cf. Theorem 4).

Proof. Let F ∈ XAFσ and let there be a conflict between arguments a, b ∈ AF for θ, i.e. (a, b) /∈
Pairsθ(F). Now since for every S ∈ σ(F) there is some S ′ ∈ θ(F) with S ⊆ S ′ it follows that
Pairsσ(F) ⊆ Pairsθ(F). Hence also (a, b) /∈ Pairsσ(F). By the assumption that F ∈ XAFσ we know
that there is an attack a�F b or b�F a, hence also F ∈ XAFθ.

Similarly as for compact AFs, observe that every symmetric and irreflexive (i.e. no self-
attacking arguments) AF is contained in XAFσ for all semantics under consideration.

The next result provides a full picture of the relations between classes of analytic AFs for the
semantics we consider (see also Figure 7). We will frequently use Lemma 3, with either the exact
condition or the special case σ(F) ⊆ θ(F).

Theorem 4. The following relations hold:

1. XAFstb ⊂ XAFσ ⊂ XAFnai for σ ∈ {prf, sem, stg};

2. XAFsem ⊂ XAFprf;

3. XAFstg 6⊆ XAFθ and XAFθ 6⊆ XAFstg for θ ∈ {prf, sem}.

Proof. (1) Let σ ∈ {prf, sem, stg}. The ⊆-relations are due to Lemma 3 together with following
facts: (a) in any AF F , stb(F) ⊆ σ(F); (b) each σ-extension E of an AF F is conflict-free in F ,
thus there exists a naive extension E ′ of F with E ⊆ E ′.

XAFσ ⊂ XAFnai: The AF in Figure 2 is, as discussed in Example 3, nai-analytic but not σ-
analytic.

XAFstb ⊂ XAFσ: Consider the AF F from Figure 8. It contains several kinds of complete
subframeworks, in the sense that each member of such a subframework attacks each other member.
Two complete subframeworks of nine arguments ({ri, ui, xi | 1 ≤ i ≤ 3} and {si, vi, yi | 1 ≤ i ≤
3}) and three complete subframeworks of six arguments ({ri, si | 1 ≤ i ≤ 3}, {ui, vi | 1 ≤ i ≤ 3}
and {xi, yi | 1 ≤ i ≤ 3}). Further there are three directed three-cycles (among {ai | 1 ≤ i ≤ 3},
{bi | 1 ≤ i ≤ 3} and {ci | 1 ≤ i ≤ 3}), and each argument from the complete subframeworks
attacks exactly two arguments from one three-cycle, effectively activating the third one. Now
observe that we have stb(F) = ∅, as at least one argument of ai, bi, ci remains out of range due
to conflict-freeness, i.e. a conflict-free set in F can have only one argument from each complete
nine-component and thus leaves at least one of the three-cycles unattacked. Therefore there is an
implicit conflict for stb for every pair of non-attacking arguments, hence F /∈ XAFstb. On the other
hand we have prf(F) = sem(F) = {{ri, vj, ai, bj}, {si, uj, ai, bj}, {ri, yj, ai, cj}, {si, xj, ai, cj},
{ui, yj, bi, cj}, {vi, xj, bi, cj} | 1 ≤ i, j ≤ 3} and stg(F) = {{ri, vj, ai, bj, ck}, {si, uj, ai, bj, ck},

13

Figure 8: AF F with F ∈ XAFσ for σ ∈ {prf, sem, stg} and F 6∈ XAFstb.

Figure 9: AF F with F ∈ XAFprf and F 6∈ XAFσ for σ ∈ {stb, sem, stg}.

{ri, yj, ai, cj, bk}, {si, xj, ai, cj, bk}, {ui, yj, bi, cj, ak}, {vi, xj, bi, cj, ak} | 1 ≤ i, j, k ≤ 3}, which
allows to verify that all conflicts for σ are explicit in F , hence F ∈ XAFσ.

(2) By Lemma 3 we get XAFsem ⊆ XAFprf. In order to obtain properness of this relation con-
sider the AF F from Figure 9 and define a cyclic successor function s as s(1) = 2, s(2) =
3, s(3) = 1, and s(4) = 5, s(5) = 6, s(6) = 4. We have sem(F) = {{xi, yj, zs(i), zs(j)} |
i ∈ {1, 2, 3}, j ∈ {4, 5, 6} or i ∈ {4, 5, 6}, j ∈ {1, 2, 3}}, yielding plenty of implicit con-
flicts, e.g. between xi and yi. Hence F is not analytic for semi-stable semantics. We further
define s({i}) = s(i) and for s(i) = j also s({i, j}) = s(j). Now on the other hand we have
prf(F) = sem(F)∪{{xi, yj, zs({i,j})} | i, j ∈ {1, 2, 3} or i, j ∈ {4, 5, 6}}, witnessing F ∈ XAFprf.
(3) XAFstg 6⊆ XAFσ: Consider a directed cycle of five arguments F , AF = {x1, x2, x3, x4, x5}
and RF = {(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x1)}. Here we have stg(F) =
{{x1, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}} and thus F ∈ XAFstg. On the other hand
sem(F) = prf(F) = {∅}, marking all pairs of arguments as being in conflict and thus for in-
stance the conflict between x1 and x3 is implicit for prf and sem (and also stb).

XAFprf 6⊆ XAFstg: The AF F in Figure 9 is, as argued in (2), explicit for prf, but not for sem.

14

arg(a1).
arg(a2).
arg(a3).
arg(b1).
arg(b2).
arg(b3).
arg(c1).
arg(c2).
arg(c3).
arg(r1).
arg(r2).
arg(r3).
arg(s1).
arg(s2).
arg(s3).
arg(u1).
arg(u2).
arg(u3).
arg(v1).
arg(v2).
arg(v3).
arg(x1).
arg(x2).
arg(x3).
arg(y1).
arg(y2).
arg(y3).

att(a1,a2).
att(a2,a3).
att(a3,a1).
att(b1,b2).
att(b2,b3).
att(b3,b1).
att(c1,c2).
att(c2,c3).
att(c3,c1).
att(r1,r2).
att(r1,r3).
att(r2,r1).
att(r2,r3).
att(r3,r1).
att(r3,r2).
att(s1,s2).
att(s1,s3).
att(s2,s1).
att(s2,s3).
att(s3,s1).
att(s3,s2).
att(u1,u2).
att(u1,u3).
att(u2,u1).
att(u2,u3).
att(u3,u1).
att(u3,u2).
att(v1,v2).
att(v1,v3).
att(v2,v1).
att(v2,v3).
att(v3,v1).
att(v3,v2).
att(x1,x2).
att(x1,x3).
att(x2,x1).
att(x2,x3).
att(x3,x1).
att(x3,x2).
att(y1,y2).
att(y1,y3).
att(y2,y1).
att(y2,y3).
att(y3,y1).
att(y3,y2).

att(r1,u1).
att(r1,u2).
att(r1,u3).
att(r2,u1).
att(r2,u2).
att(r2,u3).
att(r3,u1).
att(r3,u2).
att(r3,u3).
att(r1,x1).
att(r1,x2).
att(r1,x3).
att(r2,x1).
att(r2,x2).
att(r2,x3).
att(r3,x1).
att(r3,x2).
att(r3,x3).
att(r1,s1).
att(r1,s2).
att(r1,s3).
att(r2,s1).
att(r2,s2).
att(r2,s3).
att(r3,s1).
att(r3,s2).
att(r3,s3).

att(u1,r1).
att(u1,r2).
att(u1,r3).
att(u2,r1).
att(u2,r2).
att(u2,r3).
att(u3,r1).
att(u3,r2).
att(u3,r3).
att(u1,x1).
att(u1,x2).
att(u1,x3).
att(u2,x1).
att(u2,x2).
att(u2,x3).
att(u3,x1).
att(u3,x2).
att(u3,x3).
att(u1,v1).
att(u1,v2).
att(u1,v3).
att(u2,v1).
att(u2,v2).
att(u2,v3).
att(u3,v1).
att(u3,v2).
att(u3,v3).

att(x1,r1).
att(x1,r2).
att(x1,r3).
att(x2,r1).
att(x2,r2).
att(x2,r3).
att(x3,r1).
att(x3,r2).
att(x3,r3).
att(x1,u1).
att(x1,u2).
att(x1,u3).
att(x2,u1).
att(x2,u2).
att(x2,u3).
att(x3,u1).
att(x3,u2).
att(x3,u3).
att(x1,y1).
att(x1,y2).
att(x1,y3).
att(x2,y1).
att(x2,y2).
att(x2,y3).
att(x3,y1).
att(x3,y2).
att(x3,y3).

att(s1,r1).
att(s1,r2).
att(s1,r3).
att(s2,r1).
att(s2,r2).
att(s2,r3).
att(s3,r1).
att(s3,r2).
att(s3,r3).
att(s1,v1).
att(s1,v2).
att(s1,v3).
att(s2,v1).
att(s2,v2).
att(s2,v3).
att(s3,v1).
att(s3,v2).
att(s3,v3).
att(s1,y1).
att(s1,y2).
att(s1,y3).
att(s2,y1).
att(s2,y2).
att(s2,y3).
att(s3,y1).
att(s3,y2).
att(s3,y3).

att(v1,u1).
att(v1,u2).
att(v1,u3).
att(v2,u1).
att(v2,u2).
att(v2,u3).
att(v3,u1).
att(v3,u2).
att(v3,u3).
att(v1,s1).
att(v1,s2).
att(v1,s3).
att(v2,s1).
att(v2,s2).
att(v2,s3).
att(v3,s1).
att(v3,s2).
att(v3,s3).
att(v1,y1).
att(v1,y2).
att(v1,y3).
att(v2,y1).
att(v2,y2).
att(v2,y3).
att(v3,y1).
att(v3,y2).
att(v3,y3).

att(y1,x1).
att(y1,x2).
att(y1,x3).
att(y2,x1).
att(y2,x2).
att(y2,x3).
att(y3,x1).
att(y3,x2).
att(y3,x3).
att(y1,s1).
att(y1,s2).
att(y1,s3).
att(y2,s1).
att(y2,s2).
att(y2,s3).
att(y3,s1).
att(y3,s2).
att(y3,s3).
att(y1,v1).
att(y1,v2).
att(y1,v3).
att(y2,v1).
att(y2,v2).
att(y2,v3).
att(y3,v1).
att(y3,v2).
att(y3,v3).

att(r1,a2).
att(r1,a3).
att(r2,a1).
att(r2,a3).
att(r3,a1).
att(r3,a2).

att(u1,b2).
att(u1,b3).
att(u2,b1).
att(u2,b3).
att(u3,b1).
att(u3,b2).

att(x1,c2).
att(x1,c3).
att(x2,c1).
att(x2,c3).
att(x3,c1).
att(x3,c2).

att(s1,a2).
att(s1,a3).
att(s2,a1).
att(s2,a3).
att(s3,a1).
att(s3,a2).

att(v1,b2).
att(v1,b3).
att(v2,b1).
att(v2,b3).
att(v3,b1).
att(v3,b2).

att(y1,c2).
att(y1,c3).
att(y2,c1).
att(y2,c3).
att(y3,c1).
att(y3,c2).

arg(x1).
arg(x2).
arg(x3).
arg(x4).
arg(x5).
arg(x6).
arg(y1).
arg(y2).
arg(y3).
arg(y4).
arg(y5).
arg(y6).
arg(z1).
arg(z2).
arg(z3).
arg(z4).
arg(z5).
arg(z6).

att(x1,x2).
att(x1,x3).
att(x1,x4).
att(x1,x5).
att(x1,x6).
att(x2,x1).
att(x2,x3).
att(x2,x4).
att(x2,x5).
att(x2,x6).
att(x3,x1).
att(x3,x2).
att(x3,x4).
att(x3,x5).
att(x3,x6).
att(x4,x1).
att(x4,x2).
att(x4,x3).
att(x4,x5).
att(x4,x6).
att(x5,x1).
att(x5,x2).
att(x5,x3).
att(x5,x4).
att(x5,x6).
att(x6,x1).
att(x6,x2).
att(x6,x3).
att(x6,x4).
att(x6,x5).

att(y1,y2).
att(y1,y3).
att(y1,y4).
att(y1,y5).
att(y1,y6).
att(y2,y1).
att(y2,y3).
att(y2,y4).
att(y2,y5).
att(y2,y6).
att(y3,y1).
att(y3,y2).
att(y3,y4).
att(y3,y5).
att(y3,y6).
att(y4,y1).
att(y4,y2).
att(y4,y3).
att(y4,y5).
att(y4,y6).
att(y5,y1).
att(y5,y2).
att(y5,y3).
att(y5,y4).
att(y5,y6).
att(y6,y1).
att(y6,y2).
att(y6,y3).
att(y6,y4).
att(y6,y5).

att(z1,z2).
att(z2,z3).
att(z3,z1).
att(z4,z5).
att(z5,z6).
att(z6,z4).

att(x1,z1).
att(y1,z1).
att(x2,z2).
att(y2,z2).
att(x3,z3).
att(y3,z3).
att(x4,z4).
att(y4,z4).
att(x5,z5).
att(y5,z5).
att(x6,z6).
att(y6,z6).

Figure 10: AF F with F ∈ XAFsem for F 6∈ XAFstg. Here FX refers to the AF from Figure 8 and x̄
is in a symmetric attack relationship with all arguments from FX .

However, it holds that stg(F) = sem(F), hence also F /∈ XAFstg.
XAFsem 6⊆ XAFstg: As witness of XAFsem 6⊆ XAFstg consider the AF F from Figure 10. This AF

is composed of two subframeworks, FX from Figure 8 and FC from Figure 6b, and a connecting
interface consisting of argument x̄ and its counterpart set Y = {s̄i, t̄i, ūi | i ∈ {1, 2, 3}}. There are
symmetric attacks between the members ᾱ of Y and their counterparts α from FC , between x̄ and
all members of Y , and between x̄ and all arguments from FX .

A key ingredient to this construction is that both, FC and FX , on their own do not provide
stable extensions and thus at least one argument remains out of range for any stage or semi-stable
extension. In addition observe that FX is compact for both semi-stable and stage, while FC is
compact only for semi-stable, where a is the argument that does not occur in any S ∈ stg(FC).

Considering range-maximal (conflict-free or admissible) sets for F we first distinguish between
sets S in relation to the argument x̄. In case x̄ ∈ S we have that all arguments from FX are in range,
Y is attacked and thus FC needs to be evaluated on its own. In case x̄ 6∈ S, wlog. assume Y ⊆ S
and a, x5 ∈ S, we have that all of FC and Y are in range, x̄ is attacked and FX needs to be evaluated
on its own. This means that either some argument from FC or some argument from FX remains
out of range of any semi-stable or stage extension in F and thus stb(F) = ∅. On a sidenote observe
that for very similar reasons F is compact for both, semi-stable and stage semantics.

Recall that FC is compact for semi-stable, but not for stage (cf. Theorem 2). This immediately
means that for stage semantics there is an implicit conflict between x̄ and FC (argument a to be
precise). This also means that for semi-stable semantics there are no implicit conflicts between x̄
and any argument from FC .

It remains to show that F indeed is analytic for semi-stable semantics. To this end we still need
to investigate possible implicit conflicts between FX and Y , between FC and Y , as well as between
FX and FC , and among arguments from FC , as well as among arguments from Y .

As mentioned before the range of any semi-stable extension will cover Y and x̄ and either
all of FC or all of FX . We start with extensions S with Y ⊆ S and thus x̄ /∈ S and, wlog.

15

arg(a).arg(b).arg(c).
arg(s1).arg(s2).arg(s3).
arg(t1).arg(t2).arg(t3).
arg(u1).arg(u2).arg(u3).
arg(x1).arg(x2).arg(x3).arg(x4).
arg(x5).arg(x6).arg(x7).

arg(xbar).
arg(s1bar).
arg(s2bar).
arg(s3bar).
arg(t1bar).
arg(t2bar).
arg(t3bar).
arg(u1bar).
arg(u2bar).
arg(u3bar).

arg(fx_a1).
arg(fx_a2).
arg(fx_a3).
arg(fx_b1).
arg(fx_b2).
arg(fx_b3).
arg(fx_c1).
arg(fx_c2).
arg(fx_c3).
arg(fx_r1).
arg(fx_r2).
arg(fx_r3).
arg(fx_s1).
arg(fx_s2).
arg(fx_s3).
arg(fx_u1).
arg(fx_u2).
arg(fx_u3).
arg(fx_v1).
arg(fx_v2).
arg(fx_v3).
arg(fx_x1).
arg(fx_x2).
arg(fx_x3).
arg(fx_y1).
arg(fx_y2).
arg(fx_y3).

att(s1,s2).att(s2,s3).att(s3,s1).
att(t1,t2).att(t2,t3).att(t3,t1).
att(u1,u2).att(u2,u3).att(u3,u1).

att(a,b).att(b,a).
att(a,c).

att(s1,c).att(s2,c).att(s3,c).
att(b,t1).att(b,t2).att(b,t3).

att(x1,a).att(x1,b).
att(x1,t3).att(x1,s3).
att(x2,a).att(x2,b).
att(x2,t1).att(x2,s1).
att(x3,a).att(x3,b).
att(x3,t2).att(x3,s2).
att(x4,a).att(x4,b).
att(x4,t1).att(x4,t2).att(x4,t3).
att(x4,s1).att(x4,s2).att(x4,s3).
att(x5,u3).
att(x6,u1).
att(x7,u2).

att(x1,x2).
att(x2,x1).
att(x1,x3).
att(x3,x1).
att(x1,x4).
att(x4,x1).
att(x1,x5).
att(x5,x1).
att(x1,x6).
att(x6,x1).
att(x1,x7).
att(x7,x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att(x4,x2).
att(x2,x5).
att(x5,x2).
att(x2,x6).
att(x6,x2).
att(x2,x7).
att(x7,x2).
att(x3,x4).
att(x4,x3).
att(x3,x5).
att(x5,x3).
att(x3,x6).
att(x6,x3).
att(x3,x7).
att(x7,x3).
att(x4,x5).
att(x5,x4).
att(x4,x6).
att(x6,x4).
att(x4,x7).
att(x7,x4).
att(x5,x6).
att(x6,x5).
att(x5,x7).
att(x7,x5).
att(x6,x7).
att(x7,x6).

att(xbar,s1bar).att(s1bar,xbar).
att(xbar,s2bar).att(s2bar,xbar).
att(xbar,s3bar).att(s3bar,xbar).
att(xbar,t1bar).att(t1bar,xbar).
att(xbar,t2bar).att(t2bar,xbar).
att(xbar,t3bar).att(t3bar,xbar).
att(xbar,u1bar).att(u1bar,xbar).
att(xbar,u2bar).att(u2bar,xbar).
att(xbar,u3bar).att(u3bar,xbar).

att(s1,s1bar).att(s1bar,s1).
att(s2,s2bar).att(s2bar,s2).
att(s3,s3bar).att(s3bar,s3).
att(t1,t1bar).att(t1bar,t1).
att(t2,t2bar).att(t2bar,t2).
att(t3,t3bar).att(t3bar,t3).
att(u1,u1bar).att(u1bar,u1).
att(u2,u2bar).att(u2bar,u2).
att(u3,u3bar).att(u3bar,u3).

att(xbar,fx_a1).att(xbar,fx_a2).att(xbar,fx_a3).att(xbar,fx_b1).
att(xbar,fx_b2).att(xbar,fx_b3).att(xbar,fx_c1).att(xbar,fx_c2).
att(xbar,fx_c3).att(xbar,fx_r1).att(xbar,fx_r2).att(xbar,fx_r3).
att(xbar,fx_s1).att(xbar,fx_s2).att(xbar,fx_s3).att(xbar,fx_u1).
att(xbar,fx_u2).att(xbar,fx_u3).att(xbar,fx_v1).att(xbar,fx_v2).
att(xbar,fx_v3).att(xbar,fx_x1).att(xbar,fx_x2).att(xbar,fx_x3).
att(xbar,fx_y1).att(xbar,fx_y2).att(xbar,fx_y3).

att(fx_a1,xbar).att(fx_a2,xbar).att(fx_a3,xbar).att(fx_b1,xbar).
att(fx_b2,xbar).att(fx_b3,xbar).att(fx_c1,xbar).att(fx_c2,xbar).
att(fx_c3,xbar).att(fx_r1,xbar).att(fx_r2,xbar).att(fx_r3,xbar).
att(fx_s1,xbar).att(fx_s2,xbar).att(fx_s3,xbar).att(fx_u1,xbar).
att(fx_u2,xbar).att(fx_u3,xbar).att(fx_v1,xbar).att(fx_v2,xbar).
att(fx_v3,xbar).att(fx_x1,xbar).att(fx_x2,xbar).att(fx_x3,xbar).
att(fx_y1,xbar).att(fx_y2,xbar).att(fx_y3,xbar).

att(fx_a1,fx_a2).
att(fx_a2,fx_a3).
att(fx_a3,fx_a1).
att(fx_b1,fx_b2).
att(fx_b2,fx_b3).
att(fx_b3,fx_b1).
att(fx_c1,fx_c2).
att(fx_c2,fx_c3).
att(fx_c3,fx_c1).
att(fx_r1,fx_r2).
att(fx_r1,fx_r3).
att(fx_r2,fx_r1).
att(fx_r2,fx_r3).
att(fx_r3,fx_r1).
att(fx_r3,fx_r2).
att(fx_s1,fx_s2).
att(fx_s1,fx_s3).
att(fx_s2,fx_s1).
att(fx_s2,fx_s3).
att(fx_s3,fx_s1).
att(fx_s3,fx_s2).
att(fx_u1,fx_u2).
att(fx_u1,fx_u3).
att(fx_u2,fx_u1).
att(fx_u2,fx_u3).
att(fx_u3,fx_u1).
att(fx_u3,fx_u2).
att(fx_v1,fx_v2).
att(fx_v1,fx_v3).
att(fx_v2,fx_v1).
att(fx_v2,fx_v3).
att(fx_v3,fx_v1).
att(fx_v3,fx_v2).
att(fx_x1,fx_x2).
att(fx_x1,fx_x3).
att(fx_x2,fx_x1).
att(fx_x2,fx_x3).
att(fx_x3,fx_x1).
att(fx_x3,fx_x2).
att(fx_y1,fx_y2).
att(fx_y1,fx_y3).
att(fx_y2,fx_y1).
att(fx_y2,fx_y3).
att(fx_y3,fx_y1).
att(fx_y3,fx_y2).

att(fx_r1,fx_u1).
att(fx_r1,fx_u2).
att(fx_r1,fx_u3).
att(fx_r2,fx_u1).
att(fx_r2,fx_u2).
att(fx_r2,fx_u3).
att(fx_r3,fx_u1).
att(fx_r3,fx_u2).
att(fx_r3,fx_u3).
att(fx_r1,fx_x1).
att(fx_r1,fx_x2).
att(fx_r1,fx_x3).
att(fx_r2,fx_x1).
att(fx_r2,fx_x2).
att(fx_r2,fx_x3).
att(fx_r3,fx_x1).
att(fx_r3,fx_x2).
att(fx_r3,fx_x3).
att(fx_r1,fx_s1).
att(fx_r1,fx_s2).
att(fx_r1,fx_s3).
att(fx_r2,fx_s1).
att(fx_r2,fx_s2).
att(fx_r2,fx_s3).
att(fx_r3,fx_s1).
att(fx_r3,fx_s2).
att(fx_r3,fx_s3).

att(fx_u1,fx_r1).
att(fx_u1,fx_r2).
att(fx_u1,fx_r3).
att(fx_u2,fx_r1).
att(fx_u2,fx_r2).
att(fx_u2,fx_r3).
att(fx_u3,fx_r1).
att(fx_u3,fx_r2).
att(fx_u3,fx_r3).
att(fx_u1,fx_x1).
att(fx_u1,fx_x2).
att(fx_u1,fx_x3).
att(fx_u2,fx_x1).
att(fx_u2,fx_x2).
att(fx_u2,fx_x3).
att(fx_u3,fx_x1).
att(fx_u3,fx_x2).
att(fx_u3,fx_x3).
att(fx_u1,fx_v1).
att(fx_u1,fx_v2).
att(fx_u1,fx_v3).
att(fx_u2,fx_v1).
att(fx_u2,fx_v2).
att(fx_u2,fx_v3).
att(fx_u3,fx_v1).
att(fx_u3,fx_v2).
att(fx_u3,fx_v3).

att(fx_x1,fx_r1).
att(fx_x1,fx_r2).
att(fx_x1,fx_r3).
att(fx_x2,fx_r1).
att(fx_x2,fx_r2).
att(fx_x2,fx_r3).
att(fx_x3,fx_r1).
att(fx_x3,fx_r2).
att(fx_x3,fx_r3).
att(fx_x1,fx_u1).
att(fx_x1,fx_u2).
att(fx_x1,fx_u3).
att(fx_x2,fx_u1).
att(fx_x2,fx_u2).
att(fx_x2,fx_u3).
att(fx_x3,fx_u1).
att(fx_x3,fx_u2).
att(fx_x3,fx_u3).
att(fx_x1,fx_y1).
att(fx_x1,fx_y2).
att(fx_x1,fx_y3).
att(fx_x2,fx_y1).
att(fx_x2,fx_y2).
att(fx_x2,fx_y3).
att(fx_x3,fx_y1).
att(fx_x3,fx_y2).
att(fx_x3,fx_y3).

att(fx_s1,fx_r1).
att(fx_s1,fx_r2).
att(fx_s1,fx_r3).
att(fx_s2,fx_r1).
att(fx_s2,fx_r2).
att(fx_s2,fx_r3).
att(fx_s3,fx_r1).
att(fx_s3,fx_r2).
att(fx_s3,fx_r3).
att(fx_s1,fx_v1).
att(fx_s1,fx_v2).
att(fx_s1,fx_v3).
att(fx_s2,fx_v1).
att(fx_s2,fx_v2).
att(fx_s2,fx_v3).
att(fx_s3,fx_v1).
att(fx_s3,fx_v2).
att(fx_s3,fx_v3).
att(fx_s1,fx_y1).
att(fx_s1,fx_y2).
att(fx_s1,fx_y3).
att(fx_s2,fx_y1).
att(fx_s2,fx_y2).
att(fx_s2,fx_y3).
att(fx_s3,fx_y1).
att(fx_s3,fx_y2).
att(fx_s3,fx_y3).

att(fx_v1,fx_u1).
att(fx_v1,fx_u2).
att(fx_v1,fx_u3).
att(fx_v2,fx_u1).
att(fx_v2,fx_u2).
att(fx_v2,fx_u3).
att(fx_v3,fx_u1).
att(fx_v3,fx_u2).
att(fx_v3,fx_u3).
att(fx_v1,fx_s1).
att(fx_v1,fx_s2).
att(fx_v1,fx_s3).
att(fx_v2,fx_s1).
att(fx_v2,fx_s2).
att(fx_v2,fx_s3).
att(fx_v3,fx_s1).
att(fx_v3,fx_s2).
att(fx_v3,fx_s3).
att(fx_v1,fx_y1).
att(fx_v1,fx_y2).
att(fx_v1,fx_y3).
att(fx_v2,fx_y1).
att(fx_v2,fx_y2).
att(fx_v2,fx_y3).
att(fx_v3,fx_y1).
att(fx_v3,fx_y2).
att(fx_v3,fx_y3).

att(fx_y1,fx_x1).
att(fx_y1,fx_x2).
att(fx_y1,fx_x3).
att(fx_y2,fx_x1).
att(fx_y2,fx_x2).
att(fx_y2,fx_x3).
att(fx_y3,fx_x1).
att(fx_y3,fx_x2).
att(fx_y3,fx_x3).
att(fx_y1,fx_s1).
att(fx_y1,fx_s2).
att(fx_y1,fx_s3).
att(fx_y2,fx_s1).
att(fx_y2,fx_s2).
att(fx_y2,fx_s3).
att(fx_y3,fx_s1).
att(fx_y3,fx_s2).
att(fx_y3,fx_s3).
att(fx_y1,fx_v1).
att(fx_y1,fx_v2).
att(fx_y1,fx_v3).
att(fx_y2,fx_v1).
att(fx_y2,fx_v2).
att(fx_y2,fx_v3).
att(fx_y3,fx_v1).
att(fx_y3,fx_v2).
att(fx_y3,fx_v3).

att(fx_r1,fx_a2).
att(fx_r1,fx_a3).
att(fx_r2,fx_a1).
att(fx_r2,fx_a3).
att(fx_r3,fx_a1).
att(fx_r3,fx_a2).

att(fx_u1,fx_b2).
att(fx_u1,fx_b3).
att(fx_u2,fx_b1).
att(fx_u2,fx_b3).
att(fx_u3,fx_b1).
att(fx_u3,fx_b2).

att(fx_x1,fx_c2).
att(fx_x1,fx_c3).
att(fx_x2,fx_c1).
att(fx_x2,fx_c3).
att(fx_x3,fx_c1).
att(fx_x3,fx_c2).

att(fx_s1,fx_a2).
att(fx_s1,fx_a3).
att(fx_s2,fx_a1).
att(fx_s2,fx_a3).
att(fx_s3,fx_a1).
att(fx_s3,fx_a2).

att(fx_v1,fx_b2).
att(fx_v1,fx_b3).
att(fx_v2,fx_b1).
att(fx_v2,fx_b3).
att(fx_v3,fx_b1).
att(fx_v3,fx_b2).

att(fx_y1,fx_c2).
att(fx_y1,fx_c3).
att(fx_y2,fx_c1).
att(fx_y2,fx_c3).
att(fx_y3,fx_c1).
att(fx_y3,fx_c2).

fix the evaluation of FX and consider some arbitrary SX ∈ sem(FX). First observe that this
immediately means that Y does not contain any conflicts and, due to FX being compact, there are
also no conflicts between Y and FX . As Y ∪ SX ∪ {c, xi} ∈ sem(F) for i ∈ {1, 2, 3, 4}, and for
i ∈ {5, 6, 7} also Y ∪SX ∪{a, xi} ∈ sem(F) as well as Y ∪SX ∪{b, c, xi} ∈ sem(F), there are no
conflicts between Y and a, b, c, x1 . . . x7, between c and b, x1 . . . x7, or between a, b and x5, x6, x7.

We now investigate extensions S ∈ sem(F) that contain gradually less arguments from Y . In
the following we will omit certain xi from extensions, due to in FC explicit conflicts, for instance
x2 as well as x4 attack s1 and t1. For (Y \{s̄1}∪{s1}) ⊆ S we can have xi ∈ S for i ∈ {1, 3}, and
for i ∈ {5, 6, 7} on the other hand xi, a ∈ S or xi, b ∈ S. For (Y \ {t̄1} ∪ {t1}) ⊆ S we can have
xi, c ∈ S for i ∈ {1, 3}, or for i ∈ {5, 6, 7} on the other hand xi, a ∈ S. For (Y \{ū1}∪{u1}) ⊆ S
we can have xi, a ∈ S or xi, b, c ∈ S for i ∈ {5, 7}, or for i ∈ {1, 2, 3, 4} on the other hand xi, c ∈
S. Hence for symmetry reasons for i ∈ {1, 2, 3} there are no implicit conflicts between arguments
si, ti, ui on the one side and on the other side Y and arguments a, b, c, xj for j ∈ {1, 2 . . . 7}. Here
we can already conclude that there are no implicit but only explicit conflicts between FC and Y in
F .

For i, j, k ∈ {1, 2, 3} fixed and SY = Y \ {s̄i, t̄j, ūk} we have that SX ∪ SY ∪ {si, tj, uk, xi} ∈
sem(F). This means that there are no conflicts between si, tj and uk, and subsequently that the
subframework FC does not have any implicit conflicts in F .

Now finally, as elaborated on, each argument from FC can appear in semi-stable extensions S
of F that do not contain x̄ and thus contain some arbitrary FX-extension SX . This means that there
are no conflicts between FC and FX , which closes the gaps and shows that F indeed is analytic for
semi-stable semantics.

3.3 Relations between Compact and Analytic Frameworks
In the previous two subsections we have separately investigated relations between semantics for
compact and analytic AFs respectively. It looks like the relations (Theorems 2 and 4) are not only
similar but indeed equal. The question why we looked at the different classes of AFs separately and
whether the equal subset relations are based on stronger similarities must be answered two-fold.

On the one hand the examples used for the different proofs share exploitation of similar prop-
erties for each semantics considered, and for instance Figure 10 actually builds upon fine-tuned
relations between the properties of being compact or analytic. On the other hand in fact not a
single example could be used in the other subsection. The compact AFs are not analytic or the
analytic AFs are not compact. In what follows we draw some relations between the two classes.
We start with similarities as observed in self-loop free AFs.

Proposition 5. For any F ∈ XAFσ that is self-loop free, F ∈ CAFσ (σ ∈ {nai, stb, prf, sem, stg}).

Proof. Observe that in Definition 3 we allow arguments in conflict to be equal. Hence for any
semantics rejected arguments are in conflict with themselves, and rejected arguments in analytic
AFs need to be self-attacking. If there is no self-loop in some analytic AF then naturally there is no
rejected argument.

For naive semantics we can provide even stronger observations.

16

Proposition 6. For any self-loop free AF F we have F ∈ CAFnai and F ∈ XAFnai.

Proof. Two self-loop free arguments where none is attacking the other form a conflict-free set.
Since we are dealing with finite sets only this immediately means that there is a naive extension
containing both arguments.

Proposition 7. CAFnai ⊂ XAFnai .

Proof. For an AF F ∈ CAFnai it holds that F is self-loop free, hence F ∈ XAFnai by Proposition 6.
Properness is by the AF ({a}, {(a, a)}), which is nai-analytic, but not nai-compact.

However observe that still not every AF is analytic for naive semantics. To see this consider
the AF ({a, b}, {(a, a)}). Here {b} is the only naive extension, which means that a and b share an
implicit conflict.

Finally we conclude this subsection with an observation on the missing relations. That is, we
provide reasons why except for naive semantics the properties of being compact or analytic are
sufficiently distinct, despite their similarities.

Proposition 8. For σ ∈ {stb, sem, prf, stg}, we have CAFσ 6⊆ XAFσ and XAFσ 6⊆ CAFσ.

Proof. Consider the AF from Figure 2. We have as σ-extensions {a, d} and {b, c}. Hence the AF

is compact, but not analytic as the conflict between c and d is implicit only, resulting in CAFσ 6⊆
XAFσ.

For XAFσ 6⊆ CAFσ consider the AF ({a, b}, {(a, b), (b, b)}). This AF consists of one accepted
and one rejected argument only. It is analytic but not compact.

4 Complexity
When aiming for the simplification of an AF along the dimensions of rejected arguments and
implicit conflicts the very first questions one has to face is whether there are any rejected arguments
or implicit conflicts, in other words whether the AF is already compact, analytic resp., or there is
potential for simplifications. That is, in the following we focus on the computational complexity
of the following problems for the semantics σ under consideration: (1) decide whether a given AF

is σ-compact or not and (2) to decide whether a given AF is σ-analytic or not. Note that the first
problem can also be stated as a decision problem for fairness: given an AF, does each argument
appear in at least one σ-extension? Further complexity issues for these two classes are mentioned
at the end of the section.

As being compact means that each argument must be credulously accepted, this question is
closely related to credulous reasoning (the decision problem Credσ is defined by the question
whether, given an AF F and an argument a, a is contained in at least one σ-extension of F , i.e.
whether a ∈ Argsσ(F) holds). Exploiting this observation we first give a generic upper bound for
the computational complexity.

17

Theorem 9. For any argumentation semantics σ, with Credσ ∈ C for a complexity class C closed
under conjunction4, we have that deciding whether an AF is compact for σ is in C.

Proof. By definition an AF F = (A,R) is σ-compact if each a ∈ A is credulously accepted w.r.t.
σ. Hence to check whether F is compact we simply evaluate

∧
a∈A Cred(F, a), which is only of

linear size and by assumption can be evaluated in C as well.

We have a similar observation for analytic frameworks, when employing complexity results for
Cred2

σ.

Theorem 10. For any argumentation semantics σ, with Cred2
σ ∈ C for a complexity class C closed

under conjunction, we have that deciding whether an AF is analytic for σ is in C.

Proof. By definition an AF F = (A,R) is σ-analytic if each pair {a, b} ∈ Awith neither (a, b) ∈ R
nor (b, a) ∈ R is credulously accepted w.r.t. σ. Hence to check whether F is analytic for σ we
simply conjoin all these tests (only polynomially many), each of which can be done in C.

As P, NP and ΣP
2 are closed under conjunctions we obtain upper bounds for all semantics under

our considerations.
In particular, we have the following results for naive semantics.

Corollary 11. The following problems are in P:

1. Given AF F , deciding whether F ∈ CAFnai;

2. Given AF F , deciding whether F ∈ XAFnai.

Towards our generic hardness result we introduce the concept of SCC-splittable5 semantics.
Recall that we write F|S as shorthand for (AF ∩ S,RF ∩ (S × S)).

Definition 5. A semantics σ is called SCC-splittable if there exists a function GFσ : F×2A → 2A,
with F being the set of all AFs over A, such that the following holds for every AF F = (A,R) ∈ F.

• GFσ(F,A) = σ(F)

• If A = B ∪ C and R does not contain attacks from C to B then

σ(F) =
⋃

E∈GFσ(F|B ,B)

{E ∪ E ′ | E ′ ∈ GFσ(F|C\E+
F
, UC

E)}

with UC
E = {c ∈ C \ E+

F | ∀a ∈ B : (a, c) ∈ R→ a ∈ E+
F }.

4A complexity class C is closed under conjunctions iff for any problem Γ ∈ C the problem of deciding whether for
a finite set of instances of Γ each of these instances is a yes-instance is also in C.

5Here SCC refer to strongly connected component and reflects the fact that our notion of SCC-splittable is inspired
by the notion of SCC-recursiveness [4].

18

Figure 11: The AF F ′ from the reduction in the proof of Theorem 13, for AF F =
({a, b, c, x}, {(a, b), (b, x), (c, x)}).

Observe that the second item implies that each strongly connected component of F is either
included in B or C.

Splitting argumentation frameworks was studied in [6] where (among others) splittings for
stable and preferred semantics are presented. Although the splitting theorem in [6] is not stated in
terms of Definition 5 it immediately gives a function GFσ with the desired properties. We need
one more definition.

Definition 6. A semantics σ is called rational, if for any AF F that is a clique (i.e. F is of the form
(A, {(a, b) | a, b ∈ A, a 6= b})) it holds that σ(F) = {{a} | a ∈ AF}.

Proposition 12. Stable and preferred semantics are rational and SCC-splittable.

Next we give the generic hardness results for semantics that are rational and SCC-splittable.

Theorem 13. For any rational SCC-splittable argumentation semantics σ deciding whether an AF

is compact for σ is as hard as Credσ when restricted to AFs without self-attacks.

Proof. We reduce the problem Credσ to deciding whether an AF is compact for σ. That is given
an instance F = (A,R), x ∈ A of Credσ we build the following AF F ′ = (A ∪ A′, R ∪ R′) with
A′ = {ta | a ∈ A} and

R′ = {(ta, tb) | a, b ∈ A, a 6= b} ∪ {(ta, b) | a, b ∈ A, a 6= x, b 6= a}.

That is, we add a clique AF CA = (A′, {(ta, tb) | a, b ∈ A, a 6= b}) of size |A| and link it to the
original framework as follows: The argument tx does not attack any of the original arguments. All
the other arguments ta attack all but one of the original arguments and thus, as we discuss below,
enforces that this argument is credulously accepted. The construction is illustrated in Figure 11.

To prove the claim we have to show that x is credulously accepted in F iff F ′ is σ-compact.
First observe that the new arguments in F ′ form a SCC and are not attacked by arguments from
outside. As σ is SCC-splittable we can evaluate F ′ as follows:

1. Compute the extensions of the clique CA.

19

arg(a).
arg(b).
arg(c).
arg(x).

arg(ta).
arg(tb).
arg(tc).
arg(tx).

att(a,b).att(b,x).att(c,x).

att(ta,tb).att(ta,tc).att(ta,tx).
att(tb,ta).att(tb,tc).att(tb,tx).
att(tc,ta).att(tc,tb).att(tc,tx).
att(tx,ta).att(tx,tb).att(tx,tc).

att(ta,b).att(ta,c).att(ta,x).
att(tb,a).att(tb,c).att(tb,x).
att(tc,a).att(tc,b).att(tc,x).

Figure 12: The AF F ′ from the reduction in the proof of Theorem 14, for AF F =
({a, b, c}, {(a, b)}).

2. For each such extension E of CA build the AF F|A\E+
F ′

by removing all arguments in E+
F ′

from F .

3. For each extension E ′ ∈ GFσ(F|A\E+
F ′
, UA

E) return E ∪ E ′.

By assumption the extensions of CA are the singletons {ta}. First, consider Ea = {ta} with a 6= x,
then F|A\E+

F ′
= ({a}, {}) and UA

E = {a}. We have GFσ(F|A\E+
F ′
, UA

E) = GFσ(({a}, {}), {a}) =

σ(({a}, {})) = {a} (the latter is since σ is rational). Thus for each a 6= x the set {ta, a} is a
σ-extension of F ′. Second, consider Ex = {tx}. Here F|A\E+

F ′
= F and UA

E = A. Thus for each
E ⊆ A we have that E ∈ GFσ(F,A) = σ(F) iff {tx} ∪ E ∈ σ(F ′). Hence, x is credulously
accepted (w.r.t. σ) in F iff x is credulously accepted (w.r.t. σ) in F ′ iff F ′ is σ-compact.

Theorem 14. For any rational SCC-splittable argumentation semantics σ deciding whether an AF

is analytic for σ is as hard as deciding whether an AF is compact for σ. The result even holds if
one knows that the AF being tested for being analytic is already compact.

Proof. We reduce the problem of deciding whether an AF F is compact to deciding whether F
is analytic. That is given an instance F = (A,R) (we can assume that F has no self-attacks as
otherwise it is an immediate no-instance) we build the following AF F ′ = (A ∪ A′, R ∪ R′) with
A′ = {t} ∪ {t{a,b} | a, b ∈ A, (a, b) /∈ R, (b, a) /∈ R} and

R′ = {(t1, t2) | t1, t2 ∈ A′, t1 6= t2} ∪ {(t{a,b}, c) | t{a,b} ∈ A′, c ∈ A, a 6= c, b 6= c}.

That is we add a clique AF C of size at most (|A|2 + |A|)/2+1 to F with a distinguished element t
and link it to the original framework as follows: The argument t does not attack any of the original
arguments. All the other arguments t{a,b} attack all original arguments in F except a and b (note
that a and b are not necessarily distinct). The construction is illustrated in Figure 12.

To prove the claim we have to show that F is σ-compact iff F ′ is σ-analytic. First observe
that the new arguments in F ′ form a strongly connected component (SCC) and are not attacked by
arguments from outside. As σ is SCC-splittable we can evaluate F ′ as follows:

1. Compute the extensions of the clique C.

20

arg(a).
arg(b).
arg(c).

arg(tac).
arg(tbc).
arg(ta).
arg(tb).
arg(tc).
arg(t).

att(a,b).

att(tbc,tac).att(ta,tac).att(tb,tac).att(tc,tac).
att(t,tac).att(tac,tbc).att(ta,tbc).att(tb,tbc).
att(tc,tbc).att(t,tbc).att(tac,ta).att(tbc,ta).
att(tb,ta).att(tc,ta).att(t,ta).att(tac,tb).
att(tbc,tb).att(ta,tb).att(tc,tb).att(t,tb).
att(tac,tc).att(tbc,tc).att(ta,tc).att(tb,tc).
att(t,tc).att(tac,t).att(tbc,t).att(ta,t).
att(tb,t).att(tc,t).

att(tac,b).
att(tbc,a).
att(ta,b).att(ta,c).
att(tb,a).att(tb,c).
att(tc,a).att(tc,b).

2. For each such extension E of C build the AF F|A\E+
F ′

by removing all arguments in E+
F ′ from

F .

3. For each extension E ′ ∈ GFσ(F|A\E+
F ′
, UA

E) return E ∪ E ′.

By assumption that σ is rational we have σ(C) = {{t′} | t′ ∈ A′}. First consider an exten-
sion E of the form {t{a,b}} and recall that then we have (a, b) /∈ R and (b, a) /∈ R. Then
F|A\E+

F ′
= ({a, b}, R∩{a, b}×{a, b}) = ({a, b}, {}). UA

E = {a, b}. We have GFσ(F|A\E+
F ′
, UA

E) =

GFσ(({a, b}, {}), {a, b}) = σ(({a, b}, {})) = {{a, b}}.6 Thus for each a, b ∈ A such that
(a, b) /∈ R and (b, a) /∈ R, the set {t{a,b}, a, b} is a σ-extension of F ′. This already shows that
for any pair (x, y) of arguments in F ′ where x and y are different from the distinguished argument
t in C, we have that x, y are jointly contained in at least one σ-extension iff there is no attack
x � y or y � x in F ′. Now, consider E = {t}. Here F|A\E+

F ′
= F and UA

E = A. Thus for each
E ⊆ A we have that E ∈ GFσ(F,A) = σ(F) iff {t} ∪ E ∈ σ(F ′). Recall that there is no attack
between t and arguments in F . Now, F is σ-compact iff, for each a ∈ A, t occurs together with
a in at least one σ-extension of F ′. Together with our previous observation, we conclude that F is
σ-compact iff F ′ is σ-analytic.

Finally, as for each a ∈ A and t{a} = t{a,a} the set {t{a}, a} is credulously accepted the AF F ′

is compact.

From the generic results above we immediately get the complexity characterization for stable
and preferred semantics.

Corollary 15. The following problems are NP-complete for σ ∈ {stb, prf}.

1. Given AF F , deciding whether F ∈ CAFσ;

2. Given AF F , deciding whether F ∈ XAFσ; hardness already holds if the problem is restricted
to AFs F ∈ CAFσ.

Proof. Recall that Credstb and Credprf are NP-complete [17] and that NP is closed under conjuction.
Membership thus follows from Theorems 9 and 10. Furthermore, stb and prf are SCC-splittable [6]
and rational. Theorems 13 and 14 thus give the matching hardness results.

Theorems 13 and 14 do not apply to stage and semi-stable semantics (as they are not SCC-
splittable). However we can extend the results to these semantics by carefully adapting the ideas
from the proofs of Theorem 13 and 14. The main idea is still the same: we take the original AF

F and add a gadget of arguments that attack certain arguments in F but whose arguments are not
attacked by arguments of F . Such a gadget (replacing the clique) has to satisfy certain properties:
(i) its evaluation is independent of F ; (ii) all arguments of the gadget are credulously accepted;
(iii) there are certain arguments selecting a single argument, resp. a pair, of the original AF for
acceptance, by attacking all the other arguments of the original AF; (iv) the gadget for testing
F ∈ CAF does not affect the acceptance of the argument under question and in the gadget for
testing F ∈ XAF there is an argument t that maintains all extensions E of F as extensions {t}∪E.

6Notice that σ(({a, b}, {})) = {{a, b}} for each rational SCC-splittable argumentation semantics σ.

21

Figure 13: The AF F ′ from Reduction 1, for AF F = ({a, b, c, x}, {(a, b), (b, x), (c, x)}).

Theorem 16. Given AF F :

1. Deciding whether F ∈ CAFstg is ΣP
2 -complete.

2. Deciding whether F ∈ CAFsem is ΣP
2 -complete.

We split the proof of Theorem 16 into several Lemmas. First, we have to show that both
problems can be solved in ΣP

2 .

Lemma 17 (Membership in ΣP
2). Both deciding whether F ∈ CAFstg and deciding whether F ∈

CAFsem are in ΣP
2 .

Proof. The membership in ΣP
2 follows from the memberships of Credstg and Credsem in ΣP

2 [27, 13]
and Theorem 9.

For hardness we give a reduction that constructs an AF F ′ given an AF F and an argument
x. Although, this reduction will be used for both hardness proofs we will apply it to different
problems, i.e. Credstg and Credsem, to show hardness for both stg and sem.

Reduction 1. Given an AF F = (A,R) and x ∈ A we build the AF F ′ = (A ∪ A′, R ∪R′) with

A′ = {ta | a ∈ A} ∪ {ty, tz} ∪ {h1, h2, h3}
R′ = {(ta, tb) | a, b ∈ A ∪ {y, z}, a 6= b} ∪ {(ta, b) | a ∈ A\{x}, b ∈ A\{a}}∪

{(h1, h2), (h2, h3), (h3, h1)} ∪ {(tx, h1), (ty, h2), (tz, h3)}

The construction is illustrated in Figure 13.

For both semantics we can assume that F has no self-attacks [27] and no stable extension. To
achieve the second we can add an odd length cycle to F that is not connected to any other argument.
This will guarantee that there is no stable extension and does not affect credulous acceptance w.r.t.
semi-stable or stage semantics.

22

arg(a).
arg(b).
arg(c).
arg(x).

arg(ta).
arg(tb).
arg(tc).
arg(tx).
arg(ty).
arg(tz).

arg(h1).
arg(h2).
arg(h3).

att(a,b).att(b,c).att(c,a).att(c,x).

att(tb,ta).att(tc,ta).att(tx,ta).att(ty,ta).
att(tz,ta).att(ta,tb).att(tc,tb).att(tx,tb).
att(ty,tb).att(tz,tb).att(ta,tc).att(tb,tc).
att(tx,tc).att(ty,tc).att(tz,tc).att(ta,tx).
att(tb,tx).att(tc,tx).att(ty,tx).att(tz,tx).
att(ta,ty).att(tb,ty).att(tc,ty).att(tx,ty).
att(tz,ty).att(ta,tz).att(tb,tz).att(tc,tz).
att(tx,tz).att(ty,tz).

att(h1,h2).att(h2,h3).att(h3,h1).

att(tx,h1).
att(ty,h2).
att(tz,h3).
att(ta,b).att(ta,c).att(ta,x).
att(tb,a).att(tb,c).att(tb,x).
att(tc,a).att(tc,b).att(tc,x).

Lemma 18. Given an AF F without self-attacks and stable extensions then F ′ ∈ CAFstg iff (F, x) ∈
Credstg.

Proof. Below we will show that all arguments except x are always credulously accepted in F ′ and
that x is credulously accepted in F ′ iff x is credulously accepted in F .

First, we show that each stage extension E contains at least one argument from {ta | a ∈
A ∪ {y, z}}. Suppose that not, then ,as at most one of the arguments h1, h2, h3 is contained in E,
two of the sets E ∪ {tx}, E ∪ {ty}, E ∪ {tz} are conflict-free. Hence we have a contradiction to
the maximality of E. Further, as {ta | a ∈ A ∪ {y, z}} forms a clique in F we get that each stage
extension contains exactly one argument from the set.

Next we show that the ranges of naive sets E containing an argument from {ta | a ∈ {x, y, z}}
cannot be contained in the ranges of conflict-free sets E ′ not containing any of these arguments.

• If tx ∈ E then h1 is attacked by E and cannot be in E but is in the range of E. Now as
h2 gives the larger range than h3 we can conclude that h2 ∈ E and {h1, h2, h3} ∈ E+

F ′ . By
similar arguments we get that {h1, h2, h3} ⊆ E+

F ′ if either ty ∈ E or tz ∈ E.

• If ta ∈ E ′ with a 6∈ {x, y, z} then only one of {h1, h2, h3} can be contained in E ′ and thus
at most two of them are in the range of E ′.

We will next consider these two kinds of extensions separately.

• First, consider the sets E containing an argument from {ta | a ∈ {x, y, z}}. By the above
we have that either {tx, h2} ⊆ E, {ty, h3} ⊆ E, or {tz, h1} ⊆ E. All of these three sets
have the same attacks to the remaining arguments and thus we have that for each E ′ ⊆ A,
{tx, h2} ∪ E ′ ∈ stg(F ′) iff {ty, h3} ∪ E ′ ∈ stg(F ′) iff {tz, h1} ∪ E ′ ∈ stg(F ′). As at least
for E ′ = ∅ these sets are conflict-free this implies that the arguments {tx, ty, tz, h1, h2, h3}
are all credulously accepted in F ′.

Moreover, the set {tx, h2} does not attack any argument in A nor does A have any outgoing
attacks. Thus

(i) {tx, h2} ∪ E ′ ∈ cf(F ′) iff E ′ ∈ cf(F) and

(ii) as arguments in A do not attack arguments in A′ we have that ({tx, h2} ∪ E ′)+F ′ =
{tx, h2}+F ′ ∪ E ′+F ′ and thus ({tx, h2} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Hence, {tx, h2} ∪ E ′ ∈ stg(F ′) iff E ′ ∈ stg(F) and x is credulously accepted in F iff x is
credulously accepted in F ′.

As, by assumption, F has no stable extension there cannot be an extension E containing an
argument from {ta | a ∈ {x, y, z}} and having all arguments A in its range.

• Second, consider the sets E containing an argument from {ta | a ∈ A \ {x}}. Now it is easy
to verify that the sets {ta, a} for a ∈ A \ {x} are conflict-free sets of F ′ and have maximal
range among the sets containing {ta | a ∈ A \ {x}}. In particular A is in the range of each
of these extensions, and as the extensions of the first type never have the whole set A in their

23

range (cf. first item) a set {ta, a} for a ∈ A \ {x} is incomparable to these extensions, i.e.
{ta, a} is a stage extension. Hence, we have that the arguments {a, ta | a ∈ A \ {x}} are
credulously accepted. Moreover, no extensions E ′ with {ta | a ∈ A \ {x}} ∩ E 6= ∅ can
contain x.

Finally, combining the above results, we have that all arguments in A′ except x are credulously
accepted in F ′ and x is credulously accepted in F ′ iff x is credulously accepted in F iff F ′ is
stg-compact.

Now, as Reduction 1 can be performed in polynomial-time and Credstg is ΣP
2 -hard [27],

Lemma 18 implies that deciding whether F ∈ CAFstg is ΣP
2 -hard.

Lemma 19. Given an AF F without self-attacks and stable extensions then F ′ ∈ CAFsem iff
(F, x) ∈ Credsem.

The proof of the above lemma is very similar to the proof of Lemma 18 and thus omitted here,
but provided in B. Now, as Reduction 1 can be performed in polynomial-time and Credsem is ΣP

2 -
hard [27], Lemma 19 implies that deciding whether F ∈ CAFstg is ΣP

2 -hard. This completes the
proof of Theorem 16.

Next, starting from Theorem 16 we can show that also deciding whether an AF is analytic for
stage or semi-stable is ΣP

2 -complete.

Theorem 20. Given AF F :

1. Deciding whether F ∈ XAFstg is ΣP
2 -complete.

2. Deciding whether F ∈ XAFsem is ΣP
2 -complete.

For both problems, hardness already holds if the problem is restricted to AFs F ∈ CAFσ.

We split the proof of Theorem 20 into several Lemmas, starting with showing that both prob-
lems can be solved in ΣP

2 .

Lemma 21 (Membership in ΣP
2). Both deciding whether F ∈ XAFstg and deciding whether F ∈

XAFsem are in ΣP
2 .

Proof. The membership in ΣP
2 follows from the memberships of Cred2

stg, Cred2
sem in ΣP

2 [27, 13]
and Theorem 10.

For hardness we give a reduction that constructs an AF F ′ given an AF F . Again this reduction
will be used for both stg and sem but the hardness arguments will start from different problems,
i.e. from testing whether an AF is in CAFstg, in CAFsem respectively.

24

Figure 14: The AF F ′ from Reduction 2, for AF F = ({a, b, c}, {(a, b)}).

Reduction 2. Given an AF F = (A,R) and the AF7 G = (AG, RG) from Figure 8 we build the AF

F ′ = (A ∪ AG ∪ A′, R ∪RG ∪R′) with

A′ = {ta,b | {a, b} ⊆ A, {(a, b), (b, a)} ∩R = ∅} ∪ {t}
R′ = {(t1, t2) | t1, t2 ∈ A′, t1 6= t2} ∪ {(t, x) | x ∈ AG} ∪

{(ta,b, c) | {a, b} ⊆ A, {(a, b), (b, a)} ∩R = ∅, c ∈ A \ {a, b}}

For both semantics we can assume that F has no self-attacks and no stable extension. This is
by the fact that we made the same assumptions for the hardness proofs of Theorem 16 and the fact
that Reduction 1 introduces neither self-attacks nor stable extensions.

Lemma 22. Given an AF F without self-attacks and stable extensions then F ′ ∈ CAFstg, and
F ∈ CAFstg iff F ′ ∈ XAFstg.

Proof. First, we show that each stage extensionE contains at least one argument fromA′. Suppose
that not, then E \ AG ∪ {t} is a conflict-free set that has AG in its range. Hence we have a
contradiction to the range maximality of E. Further, as A′ forms a clique in F we get that each
extension contains exactly one argument from the set.

Next we show that the ranges of naive sets E containing argument t cannot be contained in the
ranges of conflict-free sets E ′ containing an argument ta,b with a, b ∈ A.

• If t ∈ E then all arguments in AG are attacked by E and thus are in the range of E.

• If t 6∈ E ′ at least one argument of AG is not in the range of E ′. Otherwise, E ′ ∩ AG would
be a stable extension of G, which contradicts stb(G) = ∅.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing t. As t does not attack any argument in A nor does A
have any outgoing attacks we have

(i) {t} ∪ E ′ ∈ cf(F ′) iff E ′ ∈ cf(F) and

7We can use here any AF G without self-attacks with G ∈ XAFstg, G ∈ XAFsem and stb(G) = ∅.

25

arg(a).
arg(b).
arg(c).
arg(d).

arg(tad).
arg(tbd).
arg(taa).
arg(tbb).
arg(tcc).
arg(tdd).
arg(t).

arg(g_a1).
arg(g_a2).
arg(g_a3).
arg(g_b1).
arg(g_b2).
arg(g_b3).
arg(g_c1).
arg(g_c2).
arg(g_c3).
arg(g_r1).
arg(g_r2).
arg(g_r3).
arg(g_s1).
arg(g_s2).
arg(g_s3).
arg(g_u1).
arg(g_u2).
arg(g_u3).
arg(g_v1).
arg(g_v2).
arg(g_v3).
arg(g_x1).
arg(g_x2).
arg(g_x3).
arg(g_y1).
arg(g_y2).
arg(g_y3).

att(a,b).att(b,c).att(c,a).att(c,d).

att(tbd,tad).att(taa,tad).att(tbb,tad).att(tcc,tad).
att(tdd,tad).att(t,tad).att(tad,tbd).att(taa,tbd).
att(tbb,tbd).att(tcc,tbd).att(tdd,tbd).att(t,tbd).
att(tad,taa).att(tbd,taa).att(tbb,taa).att(tcc,taa).
att(tdd,taa).att(t,taa).att(tad,tbb).att(tbd,tbb).
att(taa,tbb).att(tcc,tbb).att(tdd,tbb).att(t,tbb).
att(tad,tcc).att(tbd,tcc).att(taa,tcc).att(tbb,tcc).
att(tdd,tcc).att(t,tcc).att(tad,tdd).att(tbd,tdd).
att(taa,tdd).att(tbb,tdd).att(tcc,tdd).att(t,tdd).
att(tad,t).att(tbd,t).att(taa,t).att(tbb,t).
att(tcc,t).att(tdd,t).

att(tad,b).att(tad,c).
att(tbd,a).att(tbd,c).

att(taa,b).att(taa,c).att(taa,d).
att(tbb,a).att(tbb,c).att(tbb,d).
att(tcc,a).att(tcc,b).att(tcc,d).
att(tdd,a).att(tdd,b).att(tdd,c).

att(t,g_a1).att(t,g_a2).att(t,g_a3).att(t,g_b1).
att(t,g_b2).att(t,g_b3).att(t,g_c1).att(t,g_c2).
att(t,g_c3).att(t,g_r1).att(t,g_r2).att(t,g_r3).
att(t,g_s1).att(t,g_s2).att(t,g_s3).att(t,g_u1).
att(t,g_u2).att(t,g_u3).att(t,g_v1).att(t,g_v2).
att(t,g_v3).att(t,g_x1).att(t,g_x2).att(t,g_x3).
att(t,g_y1).att(t,g_y2).att(t,g_y3).

att(g_a1,g_a2).
att(g_a2,g_a3).
att(g_a3,g_a1).
att(g_b1,g_b2).
att(g_b2,g_b3).
att(g_b3,g_b1).
att(g_c1,g_c2).
att(g_c2,g_c3).
att(g_c3,g_c1).
att(g_r1,g_r2).
att(g_r1,g_r3).
att(g_r2,g_r1).
att(g_r2,g_r3).
att(g_r3,g_r1).
att(g_r3,g_r2).
att(g_s1,g_s2).
att(g_s1,g_s3).
att(g_s2,g_s1).
att(g_s2,g_s3).
att(g_s3,g_s1).
att(g_s3,g_s2).
att(g_u1,g_u2).
att(g_u1,g_u3).
att(g_u2,g_u1).
att(g_u2,g_u3).
att(g_u3,g_u1).
att(g_u3,g_u2).
att(g_v1,g_v2).
att(g_v1,g_v3).
att(g_v2,g_v1).
att(g_v2,g_v3).
att(g_v3,g_v1).
att(g_v3,g_v2).
att(g_x1,g_x2).
att(g_x1,g_x3).
att(g_x2,g_x1).
att(g_x2,g_x3).
att(g_x3,g_x1).
att(g_x3,g_x2).
att(g_y1,g_y2).
att(g_y1,g_y3).
att(g_y2,g_y1).
att(g_y2,g_y3).
att(g_y3,g_y1).
att(g_y3,g_y2).

att(g_r1,g_u1).
att(g_r1,g_u2).
att(g_r1,g_u3).
att(g_r2,g_u1).
att(g_r2,g_u2).
att(g_r2,g_u3).
att(g_r3,g_u1).
att(g_r3,g_u2).
att(g_r3,g_u3).
att(g_r1,g_x1).
att(g_r1,g_x2).
att(g_r1,g_x3).
att(g_r2,g_x1).
att(g_r2,g_x2).
att(g_r2,g_x3).
att(g_r3,g_x1).
att(g_r3,g_x2).
att(g_r3,g_x3).
att(g_r1,g_s1).
att(g_r1,g_s2).
att(g_r1,g_s3).
att(g_r2,g_s1).
att(g_r2,g_s2).
att(g_r2,g_s3).
att(g_r3,g_s1).
att(g_r3,g_s2).
att(g_r3,g_s3).

att(g_u1,g_r1).
att(g_u1,g_r2).
att(g_u1,g_r3).
att(g_u2,g_r1).
att(g_u2,g_r2).
att(g_u2,g_r3).
att(g_u3,g_r1).
att(g_u3,g_r2).
att(g_u3,g_r3).
att(g_u1,g_x1).
att(g_u1,g_x2).
att(g_u1,g_x3).
att(g_u2,g_x1).
att(g_u2,g_x2).
att(g_u2,g_x3).
att(g_u3,g_x1).
att(g_u3,g_x2).
att(g_u3,g_x3).
att(g_u1,g_v1).
att(g_u1,g_v2).
att(g_u1,g_v3).
att(g_u2,g_v1).
att(g_u2,g_v2).
att(g_u2,g_v3).
att(g_u3,g_v1).
att(g_u3,g_v2).
att(g_u3,g_v3).

att(g_x1,g_r1).
att(g_x1,g_r2).
att(g_x1,g_r3).
att(g_x2,g_r1).
att(g_x2,g_r2).
att(g_x2,g_r3).
att(g_x3,g_r1).
att(g_x3,g_r2).
att(g_x3,g_r3).
att(g_x1,g_u1).
att(g_x1,g_u2).
att(g_x1,g_u3).
att(g_x2,g_u1).
att(g_x2,g_u2).
att(g_x2,g_u3).
att(g_x3,g_u1).
att(g_x3,g_u2).
att(g_x3,g_u3).
att(g_x1,g_y1).
att(g_x1,g_y2).
att(g_x1,g_y3).
att(g_x2,g_y1).
att(g_x2,g_y2).
att(g_x2,g_y3).
att(g_x3,g_y1).
att(g_x3,g_y2).
att(g_x3,g_y3).

att(g_s1,g_r1).
att(g_s1,g_r2).
att(g_s1,g_r3).
att(g_s2,g_r1).
att(g_s2,g_r2).
att(g_s2,g_r3).
att(g_s3,g_r1).
att(g_s3,g_r2).
att(g_s3,g_r3).
att(g_s1,g_v1).
att(g_s1,g_v2).
att(g_s1,g_v3).
att(g_s2,g_v1).
att(g_s2,g_v2).
att(g_s2,g_v3).
att(g_s3,g_v1).
att(g_s3,g_v2).
att(g_s3,g_v3).
att(g_s1,g_y1).
att(g_s1,g_y2).
att(g_s1,g_y3).
att(g_s2,g_y1).
att(g_s2,g_y2).
att(g_s2,g_y3).
att(g_s3,g_y1).
att(g_s3,g_y2).
att(g_s3,g_y3).

att(g_v1,g_u1).
att(g_v1,g_u2).
att(g_v1,g_u3).
att(g_v2,g_u1).
att(g_v2,g_u2).
att(g_v2,g_u3).
att(g_v3,g_u1).
att(g_v3,g_u2).
att(g_v3,g_u3).
att(g_v1,g_s1).
att(g_v1,g_s2).
att(g_v1,g_s3).
att(g_v2,g_s1).
att(g_v2,g_s2).
att(g_v2,g_s3).
att(g_v3,g_s1).
att(g_v3,g_s2).
att(g_v3,g_s3).
att(g_v1,g_y1).
att(g_v1,g_y2).
att(g_v1,g_y3).
att(g_v2,g_y1).
att(g_v2,g_y2).
att(g_v2,g_y3).
att(g_v3,g_y1).
att(g_v3,g_y2).
att(g_v3,g_y3).

att(g_y1,g_x1).
att(g_y1,g_x2).
att(g_y1,g_x3).
att(g_y2,g_x1).
att(g_y2,g_x2).
att(g_y2,g_x3).
att(g_y3,g_x1).
att(g_y3,g_x2).
att(g_y3,g_x3).
att(g_y1,g_s1).
att(g_y1,g_s2).
att(g_y1,g_s3).
att(g_y2,g_s1).
att(g_y2,g_s2).
att(g_y2,g_s3).
att(g_y3,g_s1).
att(g_y3,g_s2).
att(g_y3,g_s3).
att(g_y1,g_v1).
att(g_y1,g_v2).
att(g_y1,g_v3).
att(g_y2,g_v1).
att(g_y2,g_v2).
att(g_y2,g_v3).
att(g_y3,g_v1).
att(g_y3,g_v2).
att(g_y3,g_v3).

att(g_r1,g_a2).
att(g_r1,g_a3).
att(g_r2,g_a1).
att(g_r2,g_a3).
att(g_r3,g_a1).
att(g_r3,g_a2).

att(g_u1,g_b2).
att(g_u1,g_b3).
att(g_u2,g_b1).
att(g_u2,g_b3).
att(g_u3,g_b1).
att(g_u3,g_b2).

att(g_x1,g_c2).
att(g_x1,g_c3).
att(g_x2,g_c1).
att(g_x2,g_c3).
att(g_x3,g_c1).
att(g_x3,g_c2).

att(g_s1,g_a2).
att(g_s1,g_a3).
att(g_s2,g_a1).
att(g_s2,g_a3).
att(g_s3,g_a1).
att(g_s3,g_a2).

att(g_v1,g_b2).
att(g_v1,g_b3).
att(g_v2,g_b1).
att(g_v2,g_b3).
att(g_v3,g_b1).
att(g_v3,g_b2).

att(g_y1,g_c2).
att(g_y1,g_c3).
att(g_y2,g_c1).
att(g_y2,g_c3).
att(g_y3,g_c1).
att(g_y3,g_c2).

(ii) as arguments in A do not attack arguments outside A we have that ({t} ∪ E ′)+F ′ =
{t}+F ′ ∪ E ′+F ′ and thus ({t} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Hence, {t} ∪ E ′ ∈ stg(F ′) iff E ′ ∈ stg(F) and thus for each a ∈ A we have that {t, a} is
credulously accepted in F ′ iff a is credulously accepted in F .

As, by assumption, F has no stable extension there cannot be an extension E containing t
and having all arguments A in its range.

• Second, consider the sets E containing an argument ta,b with a, b ∈ A. Now it is easy to
verify that the sets {ta,b, a, b} are conflict-free sets of F ′ and A is in the range of each of
these extensions. As the extensions of the first type never have the whole set A in their range
(cf. first item) a set {ta,b, a, b} is incomparable to these extensions.

As ta,b does not attack any argument in AG nor does AG have any outgoing attacks we have

(i) {ta,b, a, b} ∪ E ′ ∈ cf(F ′) iff E ′ ∈ cf(G) and

(ii) as arguments in AG do not attack arguments outside Ag we have that ({ta,b, a, b} ∪
E ′)+F ′ = {t}+F ′ ∪ E ′+F ′ and thus ({ta,b, a, b} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Thus, {ta,b, a, b} ∪ E ′ ∈ stg(F ′) iff E ′ ∈ stg(G). Now, as G ∈ XAFstg we have that for each
g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG there is an E ′ ∈ stg(G) with g, g′ ∈ E. Furthermore as
G has no self-attacks it is also compact (cf. Proposition 5) and thus for each g ∈ AG there is
an E ′ ∈ stg(G) with g ∈ E ′. From these stage extensions we obtain that:

– {ta,b, a}, {ta,b, b} are credulously accepted in F ′;

– {ta,b, g, g′} is credulously accepted in F ′, for g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG;

– {ta,b, g} is credulously accepted in F ′, for each g ∈ G;

– {a, g} is credulously accepted in F ′, for each a ∈ A and g ∈ G;

Combining the above results, we have that all non-conflicting pairs of arguments in F ′ except
{t, a} with a ∈ A are credulously accepted in F ′. Thus F ′ is stg-analytic iff all the pairs {t, a}
with a ∈ A are credulously accepted in F ′ iff each a ∈ A is credulously accepted in F iff F is
stg-compact.

Finally we show that F ′ ∈ CAFstg (independent of whether F ∈ CAFstg). As (i) for each
a ∈ A the set {ta,a, a} is credulously accepted, and (ii) for each g ∈ AG and a, b ∈ A with
(a, b), (b, a) 6∈ R the set {ta,b, g} is credulously accepted, the AF F ′ is stg-compact.

Now, as Reduction 2 can be performed in polynomial-time and CAFstg is ΣP
2 -hard [Th. 16],

Lemma 22 implies that deciding whether F ∈ CAFstg is ΣP
2 -hard.

Lemma 23. Given an AF F without self-attacks and stable extensions then F ′ ∈ CAFsem, and
F ∈ CAFsem iff F ′ ∈ XAFsem.

26

Table 2: Complexity Results (C-c denotes completeness for class C).

F ∈ CAFσ? F ∈ XAFσ?

nai in P in P

stb NP-c NP-c

prf NP-c NP-c

stg ΣP
2 -c ΣP

2 -c

sem ΣP
2 -c ΣP

2 -c

The proof of the above lemma is very similar to the proof of Lemma 22 and thus omitted here,
but provided in B. Now, as Reduction 2 can be performed in polynomial-time and CAFsem is ΣP

2 -
hard [Th. 16], Lemma 23 implies that deciding whether F ∈ CAFstg is ΣP

2 -hard. This completes
the proof of Theorem 20.

In conclusion we have that for all the semantics under our considerations the complexity of
testing whether an AF is compact or analytic is as hard as credulous acceptance. We summarize
the results of this section in Table 2.

Complexity of further decision problems Similar to other subclasses, compact and analytic
AFs decrease the complexity of certain decision problems. Let us first discuss the case of compact
AFs. By definition for credulous acceptance (does an argument occur in at least one extension),
this problem becomes trivial for this class. For skeptical acceptance (does an argument a occur in
all extensions) in compact AFs the problem reduces to checking whether a is isolated. If yes, it is
skeptically accepted; if no, a is connected to at least one further argument that has to be credulously
accepted by the definition of compact AFs. But then, it is the case for any semantics that is based
on conflict-free sets that a cannot be skeptically accepted, since it will not appear together with b
in an extension. For analytic AFs we can distinguish between AFs with self-attacks and without.
In the latter case the AFs are also compact (cf. Proposition 5) and thus credulous and skeptical
acceptance can be solved as described above. In the former case, for credulous acceptance we
only have to check whether the argument is self-attacking or not. For skeptical acceptance the
behavior seems to diverge between different semantics. On the one hand, for deciding whether an
argument is skeptically accepted w.r.t. stable semantics one can test if the argument is credulously
accepted and all its attackers are not credulously accepted, which can be done in polynomial time.
On the other hand side, for preferred and semi-stable semantics analytic AFs seem to have no
computational benefits. Moreover, [7] showed that in compact AFs the verification problem (given
AF F and a set of arguments E, is E a σ-extension of F ?) is still coNP-hard for stage, semi-stable
and preferred semantics. Theses results can be extended to analytic AFs by the observation that the
reductions used in the proofs of Theorems 14 and 20 are also valid reductions for the verification
problem.

27

5 Explicit Conflict Conjecture
In this section we take another look at the issue of implicit conflicts and the possibility of making
them explicit. In Section 3.2 we identified the classes of AFs where all conflicts are explicit w.r.t.
a given semantics. Recall the notion of an analytic AF from Definition 4. In [7] the authors
conjectured that, under stable semantics, every AF can be translated to an equivalent analytic AF

(having the same set of arguments), i.e. that all implicit conflicts can be made explicit without
changing the stable extensions. We will refute this conjecture and show that the claim also does
not hold for preferred, semi-stable and stage semantics.

Definition 7. An AF F is called quasi-analytic for σ if there is an AF G such that AF = AG,
σ(F) = σ(G) and G is analytic for σ, i.e., it has only explicit conflicts for σ. On the other hand,
F is called non-analytic for σ if it is not quasi-analytic for σ.

Example 4. Consider again the AF in Figure 2, which, as we have seen in Example 3, is not
analytic for σ ∈ {stb, prf, sem, stg}. However, adding the attack c � d (or d � c or both) we
obtain an equivalent (under σ) AF F ′, where all conflicts are explicit. Thus F is quasi-analytic. ♦

In other words, an AF is quasi-analytic for a given semantics σ if it can be translated to another
AF that has the same arguments, has the same extensions under σ, and all conflicts are explicit.
The conjecture from [7] says that every AF containing implicit conflicts for stable semantics is
quasi-analytic, in the sense that all implicit conflicts can be made explicit without adding further
arguments. We repeat the conjecture from [7], just parameterized by an arbitrary semantics. In line
with the following definition, [7] claimed that ECC holds for stable semantics.

Definition 8. We say that the Explicit Conflict Conjecture (ECC) holds for semantics σ if every
AF is quasi-analytic for σ.

First note that, as discussed in the introduction, ECC holds for naive semantics. Every pair of
non-self-attacking arguments occurs together in a naive extension if and only if there is no attack
between them. Hence a conflict can only be implicit for naive semantics if at least one of the
arguments involved is self-attacking. But letting each self-attacking argument be attacked by all
other arguments does not change the naive extensions (and obviously does not change the set of
arguments), hence every AF is quasi-analytic.

In the remainder of this section we will refute ECC for all semantics in {stb, prf, sem, stg} by
providing non-analytic AFs.

Example 5. Take into account the AF F = (A,R) depicted in Figure 15, which features an implicit
conflict for stable semantics between a and b:

A ={a, b, c} ∪ {ui, vi, xi, yi | i ∈ {1, 2}}
R ={ a, c , b, c } ∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}

∪ {(ui, a), (a, xi), (vi, b), (b, yi), ui, vi | i ∈ {1, 2}}

28

Figure 15: Illustration of the AF from Example 5.

In the following we refer to A1 = {v1}, A2 = {u1}, A3 = {x1, y1}, and B1 = {v2}, B2 =
{u2}, B3 = {x2, y2} The stable extensions of F can be separated into extensions containing c and
others. For i, j ∈ {1, 2, 3} the former are given as:

Sij = {c} ∪ Ai ∪Bj

If on the other hand c 6∈ S one of a, b will be a member of S and thus:

S1 = {a, v1, v2} S3 = {a, v1, y2} S5 = {b, u1, x2}
S2 = {b, u1, u2} S4 = {a, y1, v2} S6 = {b, x1, u2}

For S ∈ stb(F) and wlog. a ∈ S take into account that a is attacked by u1 and the only possible
defenders v1 and y1 are explicitly in conflict with b. Thus clearly a and b share an implicit conflict,
as one cannot be defended without the other being attacked. However observe that all the other
conflicts implicitly defined by the extension-set S = {S1, S2, . . . , S6} ∪ {Sij | i, j ∈ {1, 2, 3}}
are already given explicitly in F . Furthermore the remaining maximal conflict-free sets Sa =
{a, y1, y2} and Sb = {b, x1, x2} do attack neither b nor a respectively and thus are not stable
extensions of F . ♦

We now proceed by showing that the AF depicted in Figure 15 and discussed in Example 5
serves as a counter-example for ECC for stable semantics.

Theorem 24. There are non-analytic AFs for stable semantics.

Proof. Consider the AF F from Example 5 and recall its set of stable extensions S. We will show
that there is no AF G with AG = AF , stb(G) = S and (a, b) ∈ RG. (Observe that due to symmetry
reasons we need not consider (b, a) ∈ RG and (a, b) 6∈ RG.) For a contradiction take such an AF

as given.
The extensions containing c ensure that there is no attack in G between arguments c and αi

for α ∈ {x, u, v, y} and i ∈ {1, 2}, or between α1 and α2. By definition any stable extension
S ∈ S attacks all outside arguments, S � α for α ∈ AG \ S. Hence from S3 = {a, v1, y2} being
a stable extension we conclude a � c and {a, y2} � α2 for α ∈ {x, u, v}. Similarly due to
S4 = {a, y1, v2} we conclude that {a, y1}� α1 for α ∈ {x, u, v}. But now by assumption a� b

29

arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(a).arg(b).arg(c).

att(x1,u1).att(u1,x1).
att(x1,v1).att(v1,x1).
att(u1,v1).att(v1,u1).
att(u1,y1).att(y1,u1).
att(v1,y1).att(y1,v1).
att(x2,u2).att(u2,x2).
att(x2,v2).att(v2,x2).
att(u2,v2).att(v2,u2).
att(u2,y2).att(y2,u2).
att(v2,y2).att(y2,v2).

att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).

att(a,c).att(c,a).
att(b,c).att(c,b).

Figure 16: A non-analytic AF for prf as used in Example 6.

and thus for Sa = {a, y1, y2} we acquire full range, Sa � α for any α ∈ AG \ Sa, i.e. Sa becomes
an unwanted stable extension. Therefore F is non-analytic.

We observe that in this counter-example for ECC for stable semantics the stable extensions
coincide with semi-stable, preferred and stage extensions. With the following lemma this leads to
some straightforward generalizations.

Lemma 25. Let F be an AF with prf(F) = stb(F) (resp. sem(F) = stb(F)). If F is quasi-analytic
for preferred (resp. semi-stable) semantics, then it is also quasi-analytic for stable semantics.

Proof. By assumption, for σ ∈ {prf, sem}, there is a σ-analytic AF G such that AG = AF and
σ(F) = σ(G). We want to show that stb(G) = σ(G). Using the fact that for any AF F , stb(F) ⊆
σ(F) holds, it remains to show that σ(G) ⊆ stb(G). To this end observe that any attack of F still
represents an explicit conflict in G. Now for S ∈ stb(F) we know that for all a ∈ AF \ S we
have S �F a. Since by assumption also S ∈ σ(F) this immediately implies an explicit conflict
between S and a in G. Due to admissibility of σ-extensions this means that actually S �G a as
otherwise S would not defend itself from a in G. Therefore we have S �G a for all a ∈ AG \ S.
Hence S ∈ stb(G), resulting in σ(G) = stb(G) and thus G being stb-analytic and also F being
stb-quasi-analytic.

Using the AF F from Example 5 and the contraposition of Lemma 25 yields the following
result, refuting ECC for preferred and semi-stable semantics.

Corollary 26. There are non-analytic AFs for preferred and semi-stable semantics, respectively.

The next example shows that some AFs prove to be non-analytic for preferred semantics while
being quasi-analytic for all the other semantics under consideration.

Example 6. Take into account the AF F = (A,R) as depicted in Figure 16 with

A = {ai, bi, xi, ui | i ∈ {1, 2, 3}}
R = { ai, bi , (bi, xi), (xi, ui) | i ∈ {1, 2, 3}} ∪ {(x1, x2), (x2, x3), (x3, x1)}

30

arg(a1).arg(a2).arg(a3).
arg(b1).arg(b2).arg(b3).
arg(x1).arg(x2).arg(x3).
arg(u1).arg(u2).arg(u3).

att(a1,b1).att(b1,a1).
att(a2,b2).att(b2,a2).
att(a3,b3).att(b3,a3).
att(b1,x1).
att(b2,x2).
att(b3,x3).
att(x1,x2).att(x2,x3).att(x3,x1).
att(x1,u1).
att(x2,u2).
att(x3,u3).

Figure 17: Analytic AF for stage semantics, cf. Example 5.

We have prf(F) = {Sa, Sb, A1, A2, A3, B1, B2, B3} and

Sa = {a1, a2, a3} Sb = {b1, b2, b3, u1, u2, u3}
A1 = {a2, a3, b1, x2, u1, u3} B1 = {a1, b2, b3, x1, u2, u3}
A2 = {a1, a3, b2, x3, u1, u2} B2 = {a2, b1, b3, x2, u1, u3}
A3 = {a1, a2, b3, x1, u2, u3} B3 = {a3, b1, b2, x3, u1, u2}

In the following we show that F is non-analytic for preferred semantics. For a contradiction we
assume that there exists an analytic AF G with AG = A and prf(F) = prf(G). We now investigate
this hypothetical AF G. Observe that for i, j ∈ {1, 2, 3} due to Sb there is no conflict between ui
and bj , due to A1, A2, A3 there is no conflict between ui and aj , and for i 6= j there is no conflict
between xi and uj; in other words in G the ui can be attacked only by the xi. Furthermore we
have an implicit conflict between a1 and x2. Due to Sa being admissible and G being analytic now
Sa �G x2. But then Sa defends u2 and thus can not be a preferred extension in G. For symmetry
reasons it follows that the implicit conflicts (ai, xj) of F cannot be made explicit for preferred
semantics.

On the other hand for stable (or stage or semi-stable) semantics we observe that Sa is not
an extension. Although the overall conflicts remain the same, this allows us to include conflicts
(xj, ai) without any harm for the other extensions. Thus for stable, semi-stable and stage semantics
this AF is quasi-analytic. ♦

We still have not answered the question whether stage semantics possesses non-analytic AFs.
A candidate for a non-analytic AF for stage semantics would be the AF F from Example 5, but it
turns out to be quasi-analytic for stage semantics. In fact, the analytic AF G depicted in Figure 17
has the same stage extensions as F , stb(F) = stg(F) = stg(G).

However, the following slightly more involved example yields a non-analytic AF for stage
semantics.

31

arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(a).arg(b).arg(c).

att(u1,x1).
att(x1,v1).
att(v1,u1).
att(u1,y1).
att(y1,v1).
att(u2,x2).
att(x2,v2).
att(v2,u2).
att(u2,y2).
att(y2,v2).
att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).
att(c,a).
att(b,c).att(c,b).
att(a,b).

Figure 18: Illustration of the AF from Example 7.

Example 7. Take into account the AF F = (A,R) depicted in Figure 18 with:

A = {a, b, c} ∪ {ui, vi, xi, yi, ri, si | i ∈ {1, 2}}
R = { a, c , b, c } ∪ { ri, xi , si, yi | i ∈ {1, 2}}
∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}
∪ {(ui, a), (a, xi), (vi, b), (b, yi), ui, vi | i ∈ {1, 2}}

In the following we will refer to Mi1 = {ri, vi, si},Mi2 = {ri, ui, si},Mi3 = {ri, yi},Mi4 =
{xi, si},Mi5 = {xi, yi}. The stable extensions of F can be separated into extensions containing c
and others. For i, j ∈ {1 . . . 5} the former are given as:

Sij = {c} ∪M1i ∪M2j

If, on the other hand, c 6∈ S, one of a, b will be a member of S:

S1 = {a, r1, r2, v1, v2, s1, s2} S4 = {a, r1, r2, y1, v2, s2}
S2 = {b, r1, r2, u1, u2, s1, s2} S5 = {b, r1, u1, x2, s1, s2}
S3 = {a, r1, r2, v1, y2, s1} S6 = {b, r2, x1, u2, s1, s2}

Similarly to Example 5 we have that a and b share an implicit conflict for stable and thus stage
semantics, as stb(F) = stg(F) = S = {S1 . . . S6} ∪ {Sij | i, j ∈ {1 . . . 5}}. Again except for the
implicit conflict between a and b all conflicts in F already are explicit, and the only other maximal
conflict-free sets Sa = {a, r1, r2, y1, y2} and Sb = {b, x1, x2, s1, s2} are not stable extensions here.
♦

Theorem 27. There are non-analytic AFs for stage semantics.

Proof. Consider the AF F = (A,R) from Example 7. We first show that F is non-analytic for
stable semantics by assuming a contradicting analytic AF G of the same arguments and extensions.
We will then use this observation to proceed similarly for stage semantics. As for any AF G with
stb(G) 6= ∅ we have stb(G) = stg(G), we will assume some AF G which is analytic for stage

32

arg(r1).arg(r2).
arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(s1).arg(s2).
arg(a).arg(b).arg(c).

att(r1,x1).att(x1,r1).
att(x1,u1).att(u1,x1).
att(x1,v1).att(v1,x1).
att(u1,v1).att(v1,u1).
att(u1,y1).att(y1,u1).
att(v1,y1).att(y1,v1).
att(y1,s1).att(s1,y1).
att(r2,x2).att(x2,r2).
att(x2,u2).att(u2,x2).
att(x2,v2).att(v2,x2).
att(u2,v2).att(v2,u2).
att(u2,y2).att(y2,u2).
att(v2,y2).att(y2,v2).
att(y2,s2).att(s2,y2).
att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).
att(a,c).att(c,a).
att(b,c).att(c,b).

semantics where stb(G) = ∅. In fact for both, stable and stage semantics, we show a slightly
stronger result; for the given extension-set the conflict between a and b has to be implicit. For
symmetry reasons, wlog. we assume (a, b) ∈ RG. In what follows, we use the same naming
schema for extensions as in Example 7.

For stable semantics we need a � c, since e.g. S1 has to be a stable extension. From S33 ∈
stb(G), a � b by assumption and as observed a � c we conclude Sa ∈ stb(G), as c ∈ S33 is
allowed to attack only a and b. Thus if G is analytic for stable semantics then stb(F) 6= stb(G).

We now turn to stage semantics and have the following observations:

• For i ∈ {1, 2}, due to maximal conflict-freeness and the given conflicts, we need explicit
conflicts between si and yi, ri and xi (ri, si 6∈ S55), between c and a, c and b (a 6∈ S33,
b 6∈ S44), and between ui and vi (vi 6∈ S22). We will frequently make use of these necessities
in the following.

• For the explicit conflict between s1 and y1, we need s1 � y1 for otherwise S+
55 ⊂ S+

45.
Similarly we conclude s2 � y2, r1 � x1 and r2 � x2;

• As the conflict between c and a is explicit, furthermore necessarily c � a for otherwise (in
case a� c and c 6� a) S+

11 ⊂ S+
1 ;

• Now since ui and vi need to be in conflict we need c 6� b for otherwise at least one of Sij
for i, j ∈ {1, 2} becomes a stable extension. By conflict-implicitness hence b� c.

• From c � a, r1 � x1 and s1 � y1 we conclude u1 � v1 due to the danger of S+
21 ⊂ S+

11.
Similarly u2 � v2.

• Since c� a and ui � vi furthermore we need xi � ri, xi � ui and xi � vi, due to range
comparison of Mi4 and Mi2.

• By previous range observations we have to assume b 6� a and ui 6� a, for otherwise S2

becomes a stable extension.

• But now S+
2 ⊆ S+

b , i.e. either we gain the unwanted extension Sb or we lose the desired
extension S2.

To conclude this section we investigate the question of conditions such that ECC holds. We
have mentioned earlier that every AF is quasi-analytic for naive semantics. This insight can be
generalized as follows.

Proposition 28. Let σ ∈ {stg, stb, sem, prf}. If for some AF F there exists an AF G such that
σ(F) = nai(G), then F is quasi-analytic for σ.

33

Proof. Let F,G be AFs with σ(F) = nai(G). We define the AF H with AH = AF and RH =
{ a, b | (a, b) ∈ RG, a, b ∈ Argsσ(F)} ∪ { a, x , (x, x) | a ∈ AF , x 6∈ Argsσ(F)}. As this AF

H provides the same conflicts as the AF G for naive semantics, we deduce that also the maximal
conflict-free sets are the same, nai(H) = nai(G). By definition of H , for any S ∈ nai(H) and
a ∈ AF \ S we have S �H a and hence S is a stable extension of H . Finally observe that
stb(H) ⊆ σ(H) ⊆ nai(H) for any AF H , hence the result follows.

Another property that guarantees that ECC holds relies on the existence of what we call “iden-
tifying arguments”. We say that an AF F is determined for semantics σ if for every S ∈ σ(F)
there exists an a ∈ S such that for S ′ ∈ σ(F) we have that a ∈ S ′ implies S ′ = S. In other words,
every σ-extension contains an identifying argument in the sense that it does not occur in any other
σ-extension. A simple necessary condition for an AF to be determined for σ is that the number of
σ-extensions does not exceed the number of arguments.

Proposition 29. Let σ ∈ {stb, prf, sem, stg}. Then, any AF F determined for σ is quasi-analytic
for σ.

Proof. Consider an AF F determined for σ and for each S ∈ σ(F) let aS be some fixed identifying
argument. Now taking into account the sets I = {aS | S ∈ σ(F)} and RI = { aS, aS′ | S, S ′ ∈
σ(F), S 6= S ′}, clearly σ((I, RI)) = {{aS} | S ∈ σ(F)}. Furthermore let O = AF \ I be the
remaining arguments of F and RO = { a, b | a, b ∈ O, (a, b) /∈ Pairsσ(F)}. We now define G as
AG = AF = O ∪ I and RG = RI ∪ RO ∪ {(aS, b) | S ∈ σ(F), b ∈ (O \ S)}. Observe that I
forms a clique within G, a clique that is not attacked by arguments in O. For the SCC-splittable
(cf. Definition 5) stable semantics we can evaluate G as follows:

1. Compute the extensions of the clique I .

2. For each such extension E of I build the AF G|O\E+
G

.

3. For each extension E ′ ∈ GF stb(G|O\E+
G
, UO

E) return E ∪ E ′.

Now the stable extensions of I are singletons {aS} for each S ∈ stb(F). Moreover G|O\{aS}+G =

(S \ {aS}, ∅) and UO
{aS} = S \ {aS}. We get GF stb(G|O\{aS}+G

, UO
{aS}) = stb((S \ {aS}, ∅)) =

S\{aS}. Hence stb(G) = stb(F). The result for preferred semantics, which is also SCC-splittable,
follows in the same way. For θ ∈ {stg, sem} we get stb(G) = θ(F) in the same way as above and
since θ(F) 6= ∅ it follows that θ(G) = stb(G) = θ(F).

Finally observe that all conflicts in G for σ (among I , among O or between I and O) are
explicit by definition.

6 Signatures
The last section dealt with the problem of making conflicts explicit without changing the set of
arguments, or, in other words, finding an analytic AF with the same arguments that is equivalent

34

with respect to a given semantics. Abstaining from the condition that the set of arguments must
be preserved, the focus is not on the given AF any more but on its sets of extensions. Given an
extension-set S and a semantics σ, the question is then whether the extension-set can be analyt-
ically realized, i.e. whether there is an analytic AF F having exactly σ(F) = S, but imposing
no restrictions on the arguments of F . We will deal with analytic realizability in Section 6.1.
Likewise, Section 6.2 will be concerned with compact realizability where the AF realizing a given
extension-set needs to be compact.

Prima facie this may seem similar to the concepts of analytic and compact argumentation
frameworks studied in Section 3. However, relations between semantics from there do not carry
over to realizability. For example we have seen in Theorem 2 that CAFprf ⊂ CAFnai, that is, ev-
ery AF that is compact for preferred semantics is also compact for naive semantics and there exist
AFs compact for naive but not compact for preferred semantics. In terms of compact realizabil-
ity we will see that these semantics are related conversely, because compact realizability under
naive semantics implies compact realizability under preferred semantics, but not vice versa (cf.
Theorem 34).

Both analytic and compact realizability are restricted versions of the concept of (general) re-
alizability studied in [23]. We first repeat the basic definitions and main results from there. Then
we will for the analytic and compact scenario, respectively, first analyze the difference to general
realizability and then deal with relations between the semantics under consideration.

Definition 9. An extension-set S is called realizable under semantics σ if there is an AF F with
σ(F) = S. The signature of a semantics σ is defined as

Σσ = {σ(F) | F ∈ AFA}.

The main results from [23] include Σnai ⊂ Σstg = (Σstb \ {∅}) ⊂ Σprf = Σsem.

6.1 Analytic Signatures
In this section we deal with the restricted form of realizability, namely without the use of implicit
conflicts.

Definition 10. An extension-set S is called analytically realizable under semantics σ if there is
some analytic AF F ∈ XAFσ with σ(F) = S. The analytic signature (x-signature) Σx

σ of semantics
σ consists of all extension-sets that are analytically realizable under σ:

Σx
σ = {σ(F) | F ∈ XAFσ}

First of all note that every extension-set in the analytic signature of a semantics is also in the
signature, i.e., Σx

σ ⊆ Σσ. In the following we will, for each semantics under consideration, either
show that the relation is strict in the sense that certain extension-sets in Σσ are not analytically
realizable or show that also Σx

σ ⊇ Σσ holds, meaning that Σx
σ and Σσ coincide.

First we consider the relation between the signature Σnai and the analytic signature Σx
nai of naive

semantics and formalize what we have already discussed in the introduction.

35

Theorem 30. It holds that Σx
nai = Σnai.

Proof. Consider some S ∈ Σnai with F being the AF realizing S under naive semantics. It holds
that a pair of arguments is contained in PairsS iff there is no attack between these arguments and
none of them is self-attacking. Moreover, letting each self-attacking argument be attacked by all
other arguments has no effect on the naive extensions. Hence the AF F ′ obtained from doing so
has nai(F ′) = S and F ′ ∈ XAFnai, therefore Σx

nai = Σnai.

Preferred and semi-stable semantics show strictly less expressiveness with respect to realizable
extension-sets without implicit conflicts.

Theorem 31. For σ ∈ {prf, sem} it holds that Σx
σ ⊂ Σσ.

Proof. Again consider the AF F in Figure 16 and let S = prf(F), which is given in Example 6.
There we showed that there is no prf-analytic AF G having σ(G) = S and AG = AF . Here we can
abstain from the last condition. So assume there is an AF G′ ∈ XAFprf with σ(G′) = S. We know
from Example 6 that there cannot be an attack between Sa = {a1, a2, a3} ∈ S and u2 and that in
order for G′ to be analytic a1 �G x2. Moreover note that x2 is the only possible attacker of u2
among ArgsS. Finally, every additional argument z /∈ ArgsS in G′ must be attacked by Sa since G′

is prf-analytic and Sa must be admissible. This causes Sa ∪ {u2} to be admissible in G′, hence Sa
cannot be preferred in G′. Thus any AF realizing S is non-analytic for preferred semantics or, in
other words, S ∈ Σprf \ Σx

prf.
Due to [26, 23] we know that Σsem = Σprf, hence there is an AF F ′ having sem(F ′) = S.

But when trying to analytically realize S under sem, we make the same observations as above,
meaning that Sa ∪ {u2} is necessarily admissible, a contradiction to Sa being semi-stable. Hence
also S ∈ Σsem \ Σx

sem.

We now turn to stable and stage semantics. In contrast to preferred and semi-stable semantics,
we will see that the use of additional arguments allows us to make each implicit conflict explicit.
Therefore the analytic signature coincides with the signature for stable and stage semantics.

The following proposition shows that one additional argument allows, together with an appro-
priate modification of the attack relation, to make any single implicit conflict explicit.

Proposition 32. For stable semantics and some AF F , if there is an implicit conflict between a and
b, then there is an AF G with |AG| = |AF | + 1, RG ⊇ RF , (a, b) ∈ RG and stb(G) = stb(F) and
all implicit conflicts in G are implicit conflicts in F as well.

Proof. Let F be an arbitrary AF with an implicit conflict between two arguments a and b. We
define R′ = RF ∪ {(a, b)}. Observe that F ′ = (AF , R

′) has the same and possibly more stable
extensions as compared to F . By construction of F ′, any S ∈ stb(F ′) \ stb(F) has a ∈ S and
S 6�F b. We collect the arguments of these unwanted extensions in Aa = Args(stb(F ′)\stb(F)) and
observe that Aa 6�F b. Now define the AF G with AG = AF ∪ {x} and

RG = R′ ∪ {(x, x)} ∪ {(x, v) | v ∈ Aa} ∪ {(u, x) | u ∈ AF \ Aa}.

36

Σx
nai

Σx
prfΣx

sem
Σx

stb\{∅} = Σx
stg

Figure 19: A Venn-Diagram illustrating analytic signatures of stable, semi-stable, stage and pre-
ferred semantics.

First note that obviously |AG| = |AF | + 1, RG ⊇ RF , and (a, b) ∈ RG. Moreover, since the
new argument x attacks or is attacked by every other argument, G does not introduce any further
implicit conflicts compared to F . It remains to show that stb(G) = stb(F). Let S ′ ∈ stb(F) and
assume that b ∈ S ′. As by assumption b and a do not occur together in any stable extension of F ,
we know that b �G x and thus S ′ ∈ stb(G). On the other hand assume that b /∈ S ′. Then we
have some c ∈ S ′ with c �F b. If S ′ /∈ stb(G), then only because S ′ 6�G x, hence S ′ ⊆ Aa, a
contradiction to Aa 6�F b. Therefore S ′ ∈ stb(G). Now assume there is some S ∈ stb(G) with
S /∈ stb(F). By the construction of G this S must be among stb(F ′) \ stb(F). However, we then
have S 6�G x, a contradiction to S ∈ stb(G), concluding the proof for stb(F) = stb(G).

Now we can show that analytic and general signatures coincide for stable and stage semantics.

Theorem 33. For σ ∈ {stb, stg} it holds that Σx
σ = Σσ.

Proof. We consider as special case stb(F) = ∅ or stg(F) = {∅} where by definition the AF F =
({x}, {(x, x)}) serves as analytic witness. Let S ∈ Σσ, i.e., there is some AF F with σ(F) = S. As
by definition any AF F is finite we can have at most finitely many implicit conflicts for semantics
σ ∈ {stb, stg}. Each of them can be removed by repeated application of Proposition 32 for σ = stb.
Hence there is an analytic AF F ′ with σ(F ′) = S, meaning that S ∈ Σx

stb. For σ = stg semantics
we know from [26] that there is an AF G with stb(G) = stg(G) = S. Now, again, we can remove
all implicit conflicts and end up with the stg-analytic AF G′ with stg(G′) = S. Hence S ∈ Σx

stg.

So far we have compared general signatures and analytic signatures for the semantics under
consideration. We have seen that preferred and semi-stable semantics can realize strictly more
when allowing the use of implicit conflicts, while this is not the case for stable and stage semantics.

In the following we relate the analytic signatures of naive, stable, preferred, stage and semi-
stable semantics to each other. For general signatures it was shown in [23] that Σnai ⊂ Σstg =
(Σstb \ {∅}) ⊂ Σsem = Σprf. In the analytic case preferred and semi-stable signatures do not
coincide anymore.

Theorem 34. In accordance with Figure 19, it holds that:

1. Σx
nai ⊂ Σx

σ for σ ∈ {stb, stg, sem, prf};

2. Σx
stb \ {∅} = Σx

stg;

37

Figure 20: The AF witnessing Σx
nai ⊂ Σx

σ for σ ∈ {stb, sem, stg, prf}.

3. Σx
stg ⊂ Σx

sem;

4. Σx
sem ⊂ Σx

prf.

Proof. (1) First recall from [23] that for a given S ∈ Σx
nai, the canonic AF F where AF = ArgsS

and RF = (AF ×AF) \PairsS gives S = nai(F) = σ(F), and F is analytic for σ, thus Σx
nai ⊆ Σx

σ.
Further consider the AF F where AF = {x1, x2, x3, y1, y2, y3} and RF = {(xi, xj), (xi, yi) |

i, j ∈ {1, 2, 3}}, cf. Figure 20, the AF featured in [26] to show that σ(F) =
{{x1, y2, y3}, {x2, y1, y3}, {x3, y1, y2}} can not be realized under naive semantics. With the fact
that this AF is analytic for σ we obtain Σx

nai 6⊇ Σx
σ, hence Σx

nai ⊂ Σx
σ.

(2) Considering Σstb \ {∅} = Σstg [23] and Theorem 33 we obtain Σx
stb \ {∅} = Σx

stg.

(3) For S ∈ Σx
stg with S 6= {∅} we know from (2) that there is an analytic AF F with stb(F) = S.

Now as S 6= {∅} also sem(F) = S, hence S ∈ Σx
sem. As obviously {∅} ∈ Σx

sem (witnessed by
({x}, {(x, x)})), we get Σx

stg ⊆ Σx
sem.

For properness take a look at the AF F from Figure 8, which, as discussed in the proof of The-
orem 4, is analytic for semi-stable semantics. Now consider, for instance, S = {r1, a1, v1, b1} ∈
sem(F). Observe that ci 6∈ S for i ∈ {1, 2, 3} besides ci not being in conflict with S. If there was
an AF F ′ ∈ XAFstg with stg(F ′) = sem(F), then there can not be any attack between S and ci in
F . But then S ∪ {c1} is conflict-free in F ′ and its range is strictly larger than the range of S. Thus
sem(F) 6∈ Σx

stg and therefore Σx
stg ⊂ Σx

sem.

(4) For the last part of the theorem recall that the exact translation for sem → prf from [26]
does not add any implicit conflicts between arguments from the original AF. In more detail for a
given (analytic) AF F we add one self-attacking argument xS for any unwanted preferred extension
S ∈ prf(F)\sem(F), and further add attacks (xS, a) for a ∈ S and (b, xS) for b ∈ AF \S. Thus the
only implicit conflicts generated by this translation are conflicts between new and self-attacking
arguments. However we can simply make such conflicts explicit by adding attacks between any
self-attacking arguments, which does not affect preferred semantics, and hence Σx

sem ⊆ Σx
prf.

Now, for properness, consider the prf-analytic AF F from Figure 9. Define a cyclic successor
functions with s(1) = 2, s(2) = 3, s(3) = 1 and s(4) = 5, s(5) = 6, s(6) = 4. We have as preferred
extensions prf(F) = S0 ∪ S1 ∪ S2 with

S0 = {{xi, yj, zs(i), zs(j)} | i ∈ {1, 2, 3}, j ∈ {4, 5, 6} or i ∈ {4, 5, 6}, j ∈ {1, 2, 3}}
S1 = {{xi, yi, zs(i)} | i ∈ {1, 2, 3, 4, 5, 6}}
S2 = {{xi, ys(i), zs(s(i))}, {xs(i), yi, zs(s(i))} | i ∈ {1, 2, 3, 4, 5, 6}}

38

arg(x1).arg(x2).arg(x3).
arg(y1).arg(y2).arg(y3).

att(x1,x2).att(x2,x1).
att(x1,x3).att(x3,x1).
att(x2,x3).att(x3,x2).
att(x1,y1).
att(x2,y2).
att(x3,y3).

Assume that there is some G ∈ XAFsem with sem(G) = prf(F). We take a look at S1 and
more specifically {x1, y1, z2} ∈ S1. Now we need an explicit conflict between x1 and x4, but
in the selected set only x1 can possibly defend against this attack, hence (x1, x4) ∈ RG. The
same argument works for x1 and x3 as well as z2 and z3, meaning that also (x1, x3), (z2, z3) ∈
RG. For symmetry reasons {(xi, xj), (xj, xi), (yi, yj), (yj, yi) | i ∈ {1, 2, 3}, j ∈ {4, 5, 6}} ∪
{(xs(i), xi), (zi, zs(i)) | i ∈ {1, 2 . . . 6}} ⊆ RG.

We take a look at S2 and more specifically {x1, y2, z3} ∈ S2. As there should be an explicit
conflict between x1 and x2 with only x1 possibly defending this extension against x2 we need
(x1, x2) ∈ RG. Further as in this set only y2 and z3 can possibly attack z2 we have the set {y2, z3}
attacking z2. For symmetry reasons {(xi, xs(i)), (yi, ys(i)) | i ∈ {1, 2 . . . 6}} ⊆ RG and each set
{xi, zs(i)}, {yi, zs(i)} for i ∈ {1, 2 . . . 6} attacks zi.

Finally we take a look at S0 and more specifically the set S = {x1, y4, z2, z5} ∈ S0. Since
S necessarily is an admissible extension in an analytic AF we have that S attacks all rejected
arguments. By the above observations we now have that S even attacks all arguments not being
member of S in G, which means that S is a stable extension and stable semantics and semi-stable
semantics thus coincide on G. But then, with T = {x1, y1, z2} ∈ S1 not being in conflict with for
instance z4 we have that T can not be a stable or semi-stable extension in G. We finally conclude
that indeed prf(F) 6∈ Σx

sem and thus Σx
sem ⊂ Σx

prf.

6.2 Compact Signatures
We now turn to the issue of realizing extension-sets without the use of rejected arguments.

Definition 11. An extension-set S is called compactly realizable under semantics σ if there is some
compact AF F ∈ CAFσ with σ(F) = S. The compact signature (c-signature) Σc

σ of semantics σ
consists of all extension-sets that are compactly realizable under σ:

Σc
σ = {σ(F) | F ∈ CAFσ}.

It is clear that Σc
σ ⊆ Σσ holds for any semantics. The following theorem repeats the equality

of compact and general signatures for naive semantics discussed in the introduction, and shows a
⊂-relation for all other semantics.

Proposition 35. It holds that

1. Σc
nai = Σnai, and

2. Σc
σ ⊂ Σσ for σ ∈ {stb, stg, sem, prf}.

Proof. nai: Consider some S ∈ Σnai with F being the AF realizing S under naive semantics. It
holds that an argument is contained in ArgsS iff it is not self-attacking. Moreover removing any
self-attacking argument together with its associated attacks has no effect on the naive extensions.
Hence the AF F ′ obtained from removing all self-attacking arguments together with their associ-
ated attacks has nai(F ′) = S and F ′ ∈ CAFnai, therefore Σc

nai = Σnai.

39

Σc
nai

Σc
prf

Σc
stg Σc

sem

Σc
stb

Figure 21: A Venn-Diagram illustrating compact signatures of stable, semi-stable, stage and pre-
ferred semantics.

By definition we have Σc
σ ⊆ Σσ. It remains to show that Σc

σ 6= Σσ for σ ∈ {stb, stg, sem, prf}.
stb, stg: Consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′}, {a′, b, c},

{a′, b, c′}, {a′, b′, c}} from the example in the introduction. We have seen that S is realized under
stb and stg by the AF F1 from the introduction. Assume there is an AF F = (ArgsS, R) realizing S
under stb or stg. Inspecting PairsS we infer that R ⊆ {(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)}.
Note that, for any remaining choice of R, stb(F) = stg(F). Now for {a, b, c} ∈ stb(F) we need
(a, a′), (b, b′), (c, c′) ∈ R. On the other hand, for {a′, b, c}, {a, b′, c}, {a, b, c′} ∈ stb(F) we need
(a′, a), (b′, b), (c′, c) ∈ R. But then also {a′, b′, c′} ∈ stb(F). Hence S /∈ Σc

stb and also S /∈ Σc
stg,

witnessing Σc
stb ⊂ Σstb and Σc

stg ⊂ Σstg.
prf, sem: Let σ ∈ {prf, sem} and consider S = {{a, b}, {a, d, e}, {b, c, e}}. S ∈ Σσ holds

since Figure 3 shows an AF (with additional arguments) realizing S as its semi-stable and pre-
ferred extensions. Now suppose there exists an AF F = (ArgsS, R) such that σ(F) = S. Since
{a, d, e}, {b, c, e} ∈ S, it is clear that R must not contain an edge involving e. But then, e is
contained in each E ∈ σ(F). It follows that σ(F) 6= S and therefore S /∈ Σc

σ.

In the following we relate the compact signatures of the semantics under consideration to each
other. Recall that for general signatures it holds that Σnai ⊂ Σstg = (Σstb \ {∅}) ⊂ Σsem = Σprf

[23]. Similarly, but not equivalently though, we have Σx
nai ⊂ Σx

stg = (Σx
stb \ {∅}) ⊂ Σx

sem ⊂ Σx
prf

for analytic signatures (cf. Theorem 34). This picture changes when considering the relationships
between compact signatures. Figure 21 depicts the relations between compact signatures which
we will show in the next theorem. The dashed areas represent particular intersections for which
the question of extistence of extension-sets has to be left open. Also notice that stable semantics
cannot realize the empty extension set within compact AFs.

Theorem 36. In accordance with Figure 21, it holds that:

1. Σc
nai ⊂ Σc

σ for σ ∈ {stb, stg, sem, prf};

2. Σc
stb ⊂ Σc

σ for σ ∈ {stg, sem};

40

Figure 22: AF showing Σc
prf \ (Σc

stb ∪ Σc
sem ∪ Σc

stg) 6= ∅.

3. Σc
prf \ (Σc

stb ∪ Σc
sem ∪ Σc

stg) 6= ∅;

4. Σc
stg \ (Σc

stb ∪ Σc
prf ∪ Σc

sem) 6= ∅;

5. Σc
stb \ Σc

prf 6= ∅;

6. (Σc
prf ∩ Σc

sem) \ (Σc
stb ∪ Σc

stg) 6= ∅;

7. Σc
sem \ (Σc

stb ∪ Σc
prf ∪ Σc

stg) 6= ∅.

Proof. (1) First recall that for a given S ∈ Σc
nai, the canonic AF F where AF = ArgsS and RF =

(AF ×AF)\PairsS gives S = nai(F) = σ(F), and F is compact for σ, thus Σx
nai ⊆ Σx

σ. Moreover,
the AF depicted in Figure 20 is compact for σ ∈ {stb, stg, sem, prf}, but σ(F) can not, as discussed
in the proof of Theorem 34, be realized under the naive semantics. Hence Σx

nai ⊂ Σx
σ.

(2) Σc
stb ⊆ Σc

σ for σ ∈ {stg, sem}, follows from the fact that stg(F) = sem(F) = stb(F) for
every F ∈ CAFstb [13]. Properness is by (4) and (7), to be shown in the remainder of this proof.

In the following we provide, as part of the proof, examples witnessing the remaining state-
ments. The general procedure is as follows: Let σ1, . . . , σn and τ1, . . . , τm be semantics. To show
that

(⋂
1≤i≤n Σc

σi

)
\
(⋃

1≤j≤m Σc
τj

)
6= ∅ holds, we fix some extension-set S, provide an AF F with

σi(F) = S for all i ∈ {1, . . . , n}, and show that S is not compactly realizable under any of the
semantics τ1, . . . , τm.

We begin by showing (3) Σc
prf \ (Σc

stb ∪ Σc
sem ∪ Σc

stg) 6= ∅.

Example 8. Consider the extension-set S = {{a, b}, {a, xi, si}, {b, yi, si}, {xi, yi, si} | 1 ≤
i ≤ 3} and observe that the AF F depicted in Figure 22 has exactly prf(F) = S. Since F is
compact for prf we have S ∈ Σc

prf. Let σ ∈ {stb, stg, sem}. We show that S /∈ Σc
σ. Towards a

contradiction assume that there is an AF G with AG = ArgsS and σ(G) = S. First observe that
there cannot be any attack between a and b on the one hand and s1, s2, and s3 on the other. For
σ = stb we have a contradiction to σ(G) = S since s1, s2, s3 /∈ {a, b}+G. Also for σ = stg we
have a contradiction since for each i, {a, b, si} is conflict-free and {a, b, si}+G ⊃ {a, b}

+
G, hence

{a, b} /∈ stg(G). Finally consider σ = sem. Let S = {a, x1, s1}, T = {x1, y1, s1}. If there
was no attack between a and y1 then S ∪ T would be conflict-free and therefore S, T /∈ σ(G).

41

arg(a). arg(b).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).
arg(s1).arg(s2).arg(s3).

att(b,x1).att(b,x2).att(b,x3).
att(x1,b).att(x2,b).att(x3,b).
att(a,y1).att(a,y2).att(a,y3).
att(y1,a).att(y2,a).att(y3,a).

att(x1,x2). att(x1,x3). att(x1,y2). att(x1,y3).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y3).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2).
att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3).
att(y2,x1). att(y2,x3). att(y2,y1). att(y2,y3).
att(y3,x1). att(y3,x2). att(y3,y1). att(y3,y2).

att(x1,s3).
att(x2,s1).
att(x3,s2).
att(y1,s3).
att(y2,s1).
att(y3,s2).

att(s1,s2).att(s2,s3).att(s3,s1).

Figure 23: A directed cycle of nine arguments.

Figure 24: AF showing Σc
stb \ Σc

prf 6= ∅.

Since each of T and {a, b}must defend itself, necessarily both (y1, a), (a, y1) ∈ RG. By symmetry
we get { a, yi , b, xi | 1 ≤ i ≤ 3} ⊆ RG. Now in order to have {a, b} ∈ sem(G), no si can
be defended by {a, b}, hence each si must have an attacker that is not attacked by {a, b} and si.
Hence wlog. {(s1, s2), (s2, s3), (s3, s1)} ⊆ RG. Now observe that S has to defend s1 from s3,
therefore (x1, s3) ∈ RG. So far we have S+

G ⊇ (ArgsS \ {x2, x3}). S has to attack both x2 and x3
since otherwise either S would not defend itself or at least one of S ∪ {x2} and S ∪ {x3} would
be admissible and have greater range than S. But now S+

G = ArgsS ⊃ {a, b}+G, a contradiction to
{a, b} ∈ sem(G). ♦

We continue with (4) Σc
stg \ (Σc

stb ∪ Σc
prf ∪ Σc

sem) 6= ∅.

Example 9. Let ⊕ such that a ⊕ b = (a + b) mod 9. Consider the AF F =
({a0, . . . , a8}, {(ai, ai⊕1) | 0 ≤ i < 9, }), i.e. the directed cycle of nine arguments. We get
stg(F) = {{ai, ai⊕2, ai⊕4, ai⊕6} | 0 ≤ i < 9}. Now assume this extension-set is compactly real-
izable under stable, preferred or semi-stable semantics, i.e. there is some G with σ(G) = stg(F)
(σ ∈ {stb, prf, sem}) and AG = AF . Since ai and aj occur together in some stage extension of F
for all i, j with i⊕ 1 6= j and i 6= j ⊕ 1, the only possible attacks in G are (ai, aj) with i⊕ 1 = j
or i = j ⊕ 1. Now let Si = {ai, ai⊕2, ai⊕4, ai⊕6}. In order to have Si ∈ σ(G), ai has to attack
ai⊕8 and ai⊕6 has to attack ai⊕7, first for Si to be maximal and second to be defended. Hence
RG = { ai, ai⊕1 | 0 ≤ i < 9} and σ(G) = stg(F) ∪ {ai, ai⊕3, ai⊕6 | 0 ≤ i < 3}, showing that
there is no compact AF realizing stg(F) under σ. ♦

The following example witnesses that (5) Σc
stb \ Σc

prf 6= ∅.

Example 10. Consider stable semantics for the AF F depicted in Figure 24 and let S = stb(F) be
its extension-set. Observe that neither {a, b, c} nor any superset is a stable extension.

42

arg(a0).
arg(a1).
arg(a2).
arg(a3).
arg(a4).
arg(a5).
arg(a6).
arg(a7).
arg(a8).

att(a0,a1).
att(a1,a2).
att(a2,a3).
att(a3,a4).
att(a4,a5).
att(a5,a6).
att(a6,a7).
att(a7,a8).
att(a8,a0).

arg(a).arg(b).arg(c).
arg(x1).arg(x2).	
arg(y1).arg(y2).
arg(z1).arg(z2).
arg(s1).arg(s2).arg(s3).

att(a,x1).att(a,x2). att(x1,a).att(x2,a).
att(b,y1).att(b,y2). att(y1,b).att(y2,b).
att(c,z1).att(c,z2). att(z1,c).att(z2,c).

att(x1,x2). att(x2,x1).
att(y1,y2). att(y2,y1).
att(z1,z2). att(z2,z1).

att(x1,s3).att(s3,x1).
att(x2,s1).att(s1,x2).
att(y1,s3).att(s3,y1).
att(y2,s2).att(s2,y2).
att(z1,s1).att(s1,z1).
att(z2,s2).att(s2,z2).

att(s1,s2).att(s2,s3).att(s3,s1).

Figure 25: AF showing (Σc
prf ∩ Σc

sem) \ (Σc
stb ∪ Σc

stg) 6= ∅.

Assume there exists some AF G compactly realizing S under preferred semantics, i.e. prf(G) =
S and AG = ArgsS. One can check that F is analytic for stable semantics, i.e. for the AF G there
can only be attacks between arguments being linked in Figure 24.

Consider the extension S = {b, c, x1, s1} ∈ S. For S ∈ prf(G) there are two possible reasons
for a /∈ S. Either a is in conflict with S or a is not defended by S. Assume a not to be defended by
S. Then x2 �G a and x1 6�G x2 and s1 6�G x2. But then x2 /∈ S defends itself, hence S cannot
be a maximal admissible set in G. It follows that a is in conflict with S, the only possibility being
a conflict with x1, hence x1 �G a (a �G x1 is not sufficient since no other argument in S can
defend x1 against a). Considering {a, y1, z1, s2} ∈ S, none of y1, z1, and s2 can defend a against
x1, hence also a�G x1.

Similarly, one can justify the existence of symmetric attacks between a and x2, b and yi, and
c and zi (i ∈ {1, 2}). Therefore the set {a, b, c} is admissible in G, hence there must be some
S ′ ∈ prf(G) with S ′ ⊇ {a, b, c}, a contradiction to S being compactly realizable under the preferred
semantics. ♦

We proceed with an example showing that (6) (Σc
prf ∩ Σc

sem) \ (Σc
stb ∪ Σc

stg) 6= ∅.

Example 11. Consider the AF F from Figure 25. We have S = sem(F) = prf(F) =
{{vi, yj, ri, sj}, {wi, xj, ti, sj}, {vi, wj, ri, tj} | 1 ≤ i, j ≤ 3}. For σ = stg or σ = stb, assume
there is an AF G with σ(G) = S and and AG = ArgsS. First note that for all i, j ∈ {1, 2, 3} each
pair {vi, sj}, {wi, sj}, {ri, sj}, {ti, sj} is contained in some element of S, hence there cannot be an
attack between any of these pairs in G. Now let S = {vi, wj, ri, tj} for some i, j ∈ {1, . . . , 3}. We
have S+

G ⊆ AG \ {s1, s2, s3}, hence S cannot be a stable extension of G. Moreover, since G must
be self-loop-free, S ∪ {sk} with 1 ≤ k ≤ 3 is conflict-free and obviously has a bigger range than
S. Therefore S cannot be a stage extension in G. ♦

For (7) we will make use of the following lemma, which might be of interest on its own.

Lemma 37. Let σ, τ ∈ {stb, prf, sem, stg} and F,G be τ -compact AFs such that τ(F) /∈ Σc
σ and

AF ∩ AG = ∅. It holds that τ(F ∪G) /∈ Σc
σ.

43

arg(r1).
arg(r2).
arg(r3).
arg(s1).
arg(s2).
arg(s3).
arg(t1).
arg(t2).
arg(t3).
arg(v1).
arg(v2).
arg(v3).
arg(w1).
arg(w2).
arg(w3).
arg(x1).
arg(x2).
arg(x3).
arg(y1).
arg(y2).
arg(y3).

att(r1,r2).att(r2,r3).att(r3,r1).
att(s1,s2).att(s2,s3).att(s3,s1).
att(t1,t2).att(t2,t3).att(t3,t1).

att(v1,v2).att(v1,v3).
att(v2,v1).att(v2,v3).
att(v3,v1).att(v3,v2).
att(w1,w2).att(w1,w3).
att(w2,w1).att(w2,w3).
att(w3,w1).att(w3,w2).
att(x1,x2).att(x1,x3).
att(x2,x1).att(x2,x3).
att(x3,x1).att(x3,x2).
att(y1,y2).att(y1,y3).
att(y2,y1).att(y2,y3).
att(y3,y1).att(y3,y2).

att(v1,x1).att(v1,x2).att(v1,x3).
att(v2,x1).att(v2,x2).att(v2,x3).
att(v3,x1).att(v3,x2).att(v3,x3).

att(x1,v1).att(x1,v2).att(x1,v3).
att(x2,v1).att(x2,v2).att(x2,v3).
att(x3,v1).att(x3,v2).att(x3,v3).

att(w1,y1).att(w1,y2).att(w1,y3).
att(w2,y1).att(w2,y2).att(w2,y3).
att(w3,y1).att(w3,y2).att(w3,y3).

att(y1,w1).att(y1,w2).att(y1,w3).
att(y2,w1).att(y2,w2).att(y2,w3).
att(y3,w1).att(y3,w2).att(y3,w3).

att(x1,y1).att(x1,y2).att(x1,y3).
att(x2,y1).att(x2,y2).att(x2,y3).
att(x3,y1).att(x3,y2).att(x3,y3).

att(y1,x1).att(y1,x2).att(y1,x3).
att(y2,x1).att(y2,x2).att(y2,x3).
att(y3,x1).att(y3,x2).att(y3,x3).

att(v1,r3).
att(v2,r1).
att(v3,r2).

att(x1,s3).
att(x2,s1).
att(x3,s2).

att(y1,s3).
att(y2,s1).
att(y3,s2).

att(w1,t3).
att(w2,t1).
att(w3,t2).

Proof. Assume there is some compact AF H such that σ(H) = τ(F ∪G). Since AF ∩ AG = ∅, it
follows that τ(F∪G) = τ(F)×τ(G). Due to compactness every argument a ∈ AF occurs together
with every argument b ∈ AG in some τ -extension of F ∪ G, meaning that H cannot contain any
attack between a and b. Hence σ(H) = σ(H1)×σ(H2) withAH1 = AF andAH2 = AG. Therefore
it must hold that σ(H1) = τ(F), a contradiction to the assumption that τ(F) /∈ Σc

σ.

Now we get (7) Σc
sem \ (Σc

stb ∪ Σc
prf ∪ Σc

stg) 6= ∅ as follows: Let F = F1 ∪ F2 where F1 is the AF

in Figure 24 and F2 is the AF in Figure 25 (observe that for AF1 ∩ AF2 = ∅ some renaming is
necessary). From sem(F1) /∈ Σc

prf (see Example 10) we get sem(F) = (sem(F1)× sem(F2)) /∈ Σc
prf

by Lemma 37. In the same way sem(F) /∈ Σc
stb ∪ Σc

stg follows from sem(F2) /∈ Σc
stb ∪ Σc

stg (see
Example 11).
This concludes the proof of Theorem 36.

Comparing the insights obtained from Theorem 36 with the results on expressiveness of seman-
tics in [23] we observe notable differences depending on whether rejected arguments are allowed
or not. When allowing rejected arguments (as utilized in [23]), preferred and semi-stable semantics
are equally expressive and at the same time strictly more expressive than stable and stage seman-
tics. As we have seen, this does not carry over to the compact setting where, with the exception of
Σc

stb ⊂ Σc
sem and Σc

stb ⊂ Σc
stg, signatures become incomparable.

What remains an open issue is the existence of extension-sets lying in the intersection between
Σc

prf (resp. Σc
sem) and Σc

stg but outside of Σc
stb (see Venn-diagram in Figure 21). We approach this

issue in the remainder of this section.

Lemma 38. In self-attack free AFs every stage extension that is admissible is also stable.

Proof. Take some AF F = (A,R), and some admissible stage extension S, S ∈ stg(F), S ∈
adm(F) as given. Suppose there is some argument that is not in the range of S, i.e. a ∈ A \ S+

F .
Then by admissibility a cannot attack S, by assumption S does not attack a. Consider that any
stage extension is maximal conflict-free, thus for a 6∈ S we in fact would need (a, a) ∈ R. It
follows that there is no such argument a and thus S+

F = A. Hence S ∈ stb(F).

Proposition 39. Let σ ∈ {sem, prf} and F,G be σ-compact AFs such that stg(F) = σ(G). If
stg(F) /∈ Σc

stb then

1. F 6= G, and

2. G is non-analytic for σ.

Proof. Assume that F = G. But then, as by assumption stg(F) = σ(F), by Lemma 38 also
σ(F) = stb(F), a contradiction to the assumption that stg(F) /∈ Σc

stb. Therefore F 6= G.
For a contradiction, wlog. assume G to be σ-analytic (for any quasi-analytic H there is some

corresponding analytic G). Observe that for stage extensions S ∈ stg(F) and any argument a ∈
A \ S it holds that either there is an explicit conflict between S and a in F , or a is self-attacking
in F , for otherwise S+

F would not be maximal. With stg(F) = σ(G) and G being analytic for
the admissibility based semantics σ this means that S �G a, i.e. S+

G = A. With all σ-extensions
becoming stb-extensions and the fact that stb(F) ⊆ σ(F) for any F , we derive a contradiction to
the initial statement: stb(G) = stg(F).

44

Assume that for σ ∈ {prf, stg} there exists an extension-set S ∈ (Σc
σ ∩ Σc

stg) \ Σc
stb. Now

Proposition 39 says that S is compactly realized by different AFs under σ and stg, i.e. stg(F) = S
and σ(G) = S with F 6= G. Moreover, G is non-analytic. Recent investigations encourage us
to conjecture that such extension-sets do not exist (we already know that Σc

stb ⊆ Σc
sem ∩ Σc

stg (cf.
Theorem 36.2) and Σc

stb \ Σc
prf 6= ∅ (cf. Theorem 36.5) hold):

Conjecture. It holds that Σc
prf ∩ Σc

stg ⊂ Σc
stb and Σc

sem ∩ Σc
stg = Σc

stb.

6.3 Numbers of Extensions in Compact Frameworks
In the previous section we have related the semantics under consideration with respect to their
capabilities in compactly realizing extension-sets. The concrete problem which was tackled in
[23] is deciding, given an extension-set S, whether S is realizable. For compact realizability this
is, in general, a hard problem; that is, we have no reason to believe that we can do any better than
guessing a compact AF and checking whether its extension-set coincides with S. Nevertheless,
in this section we provide a number of shortcuts to detect non-compactness. By “shortcut”, we
mean a property of the given extension-set S that is easily computable (preferably in polynomial
time) and lets us (sometimes) give a definitive answer to the decision problem. These shortcuts
are related to numerical aspects of argumentation frameworks, some of which have been studied
in graph theory.

Among the most basic properties that are necessary for compact realizability, we find numerical
aspects like possible cardinalities of σ-extension-sets.

Example 12. Consider the following AF F2:

a1 a2

a3

c1 c2

c3

b1 b2

z

Let us determine the stable extensions of F2. Clearly, taking one ai, one bi and one ci yields a
conflict-free set that is also stable as long as it attacks z. Thus from the 3 · 2 · 3 = 18 combinations,
only one (the set {a1, b1, c2}) is not stable, whence F2 has 18 − 1 = 17 stable extensions. We
note that this AF is not compact since z occurs in none of the extensions. Is there an equivalent
stb-compact AF? The results of this section will provide us with a negative answer. ♦

(author?) ((year?)) have shown that there is a correspondence between the maximal number
of stable extensions in argumentation frameworks and the maximal number of maximal indepen-
dent sets in undirected graphs [33]. Recently, the result was generalized to further semantics [23,

45

Proposition 11 and Theorem 5].8 To set the scene for the subsequent results building upon it, we
recall the result below (Theorem 40). For any natural number n we define:9

σmax(n) = max {|σ(F)| | F ∈ AFA, |AF | = n}

σmax(n) returns the maximal number of σ-extensions among all AFs with n arguments. Surpris-
ingly, there is a closed expression for σmax.

Theorem 40. The function σmax(n) : N→ N is given by

σmax(n) =

1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

What about the maximal number of σ-extensions on weakly connected10 graphs? Does this
number coincide with σmax(n)? The next theorem provides a negative answer to this question and
thus gives space for impossibility results as we will see. For a natural number n define

σcon
max(n) = max {|σ(F)| | F ∈ AFA, |AF | = n, F connected}

σcon
max(n) returns the maximal number of σ-extensions among all connected AFs with n arguments.

Again, a closed expression exists.

Theorem 41. The function σcon
max(n) : N→ N is given by

σcon
max(n) =

n, if n ≤ 5,

2 · 3s−1 + 2s−1, if n ≥ 6 and n = 3s,

3s + 2s−1, if n ≥ 6 and n = 3s+ 1,

4 · 3s−1 + 3 · 2s−2, if n ≥ 6 and n = 3s+ 2.

Proof. First some notations: for an AF F = (A,R), denote its irreflexive version by

irr(F) = (A,R \ {(a, a) | a ∈ A});

denote its symmetric version by

sym(F) = (A,R ∪ {(b, a) | (a, b) ∈ R});
8We mention that it is not the case that for all semantics σ the so-called diversity function ∆σ(n) introduced in [23]

coincides with σmax(n) as introduced in [9] and defined below. This can be seen by considering complete semantics
[23, 10].

9In this section, unless stated otherwise we use σ as a placeholder for stable, semi-stable, preferred, stage and naive
semantics.

10In the following we simply write connected and take it to mean weakly connected.

46

and its associated undirected graph by

und(F) = (A, {{a, b} | (a, b) ∈ R}).

Furthermore, for a simple and undirected graph G = (V,E) we use MIS(G) for the set of
maximal independent sets of G. Remember, a set S ⊆ V is called independent if no edge e ∈ E
has both its endpoints in S. Moreover, an independent set S is called maximal independent if it is
⊆-maximal among the independent sets of G. Finally, we denote its associated symmetric AF by

dir(G) = (V, {(a, b), (b, a) | {a, b} ∈ E}).

Now for the proof. We start with showing that the number of naive extensions does not exceed
the claimed value range of σcon

max(n). Given a connected AF F . Observe that the deletion of self-
loops does not reduce the number of naive extensions, i.e. |nai(F)| ≤ |nai(irr(F))|. This can be
seen as follows. First, for any E ∈ nai(F) exists an E ′ ∈ nai(irr(F)), such that E ⊆ E ′ and sec-
ond, for each twoE1, E2 ∈ nai(F) there is noE ′ ∈ nai(irr(F)), such thatE1 ⊆ E ′ andE2 ⊆ E ′ si-
multaneously. Furthermore, it is easy to see that for any irreflexive AF G, nai(G) = MIS(und(G)).
Roughly speaking, this is due to the fact that first, both concepts call for ⊆-maximal sets and sec-
ond, naive semantics does not distinguish between the presence of an attack (a, b) or the presence
of (b, a) or the presence of both of them. Consequently, |nai(F)| ≤ |MIS(und(irr(F)))|. Fortu-
nately, due to Theorem 2 in [30] the maximal number of maximal independent sets in connected
n-graphs are exactly given by the claimed value range of σcon

max(n).
We proceed with arguing that the maximal number of stable extensions within the class of

connected AFs is at least as large as the claimed value range of σcon
max(n). In Figure 1 in [30]

graphs realizing the maximal number of maximal independent sets for connected n-graphs are
presented. These so-called extremal graphs can be used to derive AFs where former maximal
independent sets become stable extensions. This can be done by replacing undirected edges by
symmetric directed attacks. This construction is justified by the fact that for any simple graph G,
|MIS(G)| = |nai(dir(G))| and furthermore, as shown in [14, Propositions 4 and 5] naive and stable
semantics coincide on the class of irreflexive and symmetric AFs. Example 13 below provides an
illustration.

In order to conclude the proof we use well-known subset-relations between the considered
semantics (compare Section 2). Since stb(F) ⊆ stg(F) ⊆ nai(F) for any AF F , we derive that
|stb(F)| ≤ |stg(F)| ≤ |nai(F)|. Furthermore, we have already shown that first, σcon

max(n) does not
exceed the claimed value range in case of naive semantics and second, σcon

max(n) is at least as great
as the claimed value range in case of stable semantics. Consequently, the stated equality provides
us with a tight upper bound for stable, stage and naive semantics. What about semi-stable and
preferred semantics? Since the result is already shown for stable semantics and in consideration
of stb(F) ⊆ sem(F) ⊆ prf(F) for any AF F , it suffices to prove that σcon

max(n) does not exceed the
claimed value range in case of preferred semantics. This can be seen as follows. First, one may
easily verify that for any AF F we have, |prf(F)| ≤ |prf(irr(F))| as well as prf(F) ⊆ prf(sym(F)).
Hence, |prf(F)| ≤ |prf(sym(irr(F)))|. In [3, Corollary 1] it was already shown that preferred and
stable semantics agree on irreflexive and symmetric AFs, i.e. for any AF F , prf(sym(irr(F))) =

47

stb(sym(irr(F))). In summary, for any AF F we have, |prf(F)| ≤ |stb(sym(irr(F)))|. Assuming
the existence of an AF F possessing more preferred extension than the claimed value range of
σcon

max(n) implies the existence of an witnessing AF, namely sym(irr(F)), possessing more stable
extension than the claimed value range of σcon

max(n) in contrast to the already shown upper bound.
Hence, the stated value range of σcon

max(n) serves as a tight upper bound for semi-stable and preferred
semantics too.

The following illustration provides an example how connected AFs having the maximal number
of σ-extensions look like.

Example 13. Consider the following AF G:

a1 a2

a3

c1 c2

c3

b1 b2

b3

The AF G is connected and possesses 22 σ-extensions. More precisely:

σ(G) = {{ai, bj, ck} | 1 ≤ i, j, k ≤ 3} \ {{ai, bj, ck} | i = j = 3 ∨ j = k = 3}

This justifies |σ(G)| = 27 − 5 = 22. Furthermore, G consists of 9 arguments. Applying Theo-
rem 41 we obtain σcon

max(n) = 2 · 33−1 + 23−1 = 2 · 32 + 22 = 18 + 4 = 22. This means, G is an
extremal AF within the class of connected graphs. As an aside, in case of arbitrary frameworks,
the maximal number of stable extensions given n arguments can be realized by deleting the mutual
attacks between a3 and b3 as well as b3 and c3 (cf. Theorem 40). Restoring mutual attacks between
one pair only yields the second largest number, which will be proven in Theorem 42. ♦

A further interesting question concerning arbitrary AFs is whether all natural numbers less than
σmax(n) are realizable by AFs possessing n arguments.11 The following theorem shows that there
is a serious gap between the maximal and second largest number. For any positive natural n define

σ2nd(n) = max ({|σ(F)| | F ∈ AFA, |AF | = n} \ {σmax(n)})

σ2nd(n) returns the second largest number of σ-extensions among all AFs with n arguments. Graph
theory provides us with an expression.

Theorem 42. Function σ2nd(n) : N \ {0} → N is given by

σ2nd(n) =

σmax(n)− 1, if 1 ≤ n ≤ 7,

σmax(n) · 11
12
, if n ≥ 8 and n = 3s+ 1,

σmax(n) · 8
9
, otherwise.

11We sometimes speak about realizing a natural number k and mean finding an AF having exactly k extensions.

48

Proof. At first we argue that the second largest number of σ-extensions is at least as large as the
claimed value range of σ2nd(n). For this it suffices to present witnessing AFs. In [31, Theorem 2.4]
graphs realizing the second largest number of maximal independent sets for n-graphs are given.
These simple graphs can be used to derive AFs where former maximal independent sets become
σ-extensions. Replacing undirected edges by symmetric directed attacks accounts for this. This
can be seen as follows. First, for any simple graph G, |MIS(G)| = |nai(dir(G))|. Second, for any
irreflexive and symmetric AF F we have, stb(F) = nai(F) [14, Propositions 4 and 5] and finally,
applying well-known subset-relations, namely stb(F) ⊆ sem(F) ⊆ prf(F) and stb(F) ⊆ stg(F)
(for any AF F) justifies the claim for all considered semantics.

We show now that the second largest number of σ-extensions does not exceed the claimed value
range of σ2nd(n). Given an AF F where |AF | = n. Observe that we have nothing to show if n ≤ 7
since σ2nd(n) is given as the maximal number minus one. Let n ≥ 8 and suppose, towards a con-
tradiction, that l · σmax(n) < σ2nd(n) = |σ(F)| < σmax(n) where l depends on the remainder of n
on division by 3 (l ∈ {11

12
, 8
9
}). Similar to the proof of Theorem 41 one may easily show that for all

considered semantics σ, |σ(F)| ≤ |σ(sym(irr(F)))| as well as that for any symmetric and irreflex-
ive G, σ(F) = MIS(und(G)). This means, l · σmax(n) < |σ(F)| ≤ |MIS(und(sym(irr(F))))| ≤
σmax(n). We further conclude that |MIS(und(sym(irr(F))))| = σmax(n). This equality has to hold
because the term l ·σmax(n) as well as the value range of σmax(n) precisely coincide with the second
largest or maximal number of maximal independent sets in simple graphs [31, 33]. This means,
l · σmax(n) < |MIS(und(sym(irr(F))))| < σmax(n) would contradict the second largest number
of maximal independent sets. Note that up to isomorphisms the extremal graphs are uniquely de-
termined (cf. Theorem 1 in [30]). In the following we use Kn to denote a complete graph on n
vertices. Depending on the remainder of n on division by 3 we have K3s for n ≡ 0, either one K4

or two K2s and the rest are K3s in case of n ≡ 1 and one K2 plus K3s for n ≡ 2. Remember that
we have |σ(F)| < |σ(sym(irr(F)))| = σmax(n). In particular, this means F 6= sym(irr(F)).
Consequently, depending on the remainder we may thus estimate |σ(F)| ≤ k · σmax(n) where
k ∈ {2

3
, 3
4
, 1
2
}. This can be seen as follows: First, computing the σ-extensions of an AF can be

reduced to computing the σ-extensions of each of its component (see Lemma 46) and second, the
minimal factors decreasing the number of σ-extension (through adding self-loops or deleting at-
tacks) within a component where 3, 4 or 2 arguments attack each other are 2

3
, 3
4

or 1
2
, respectively.

We finally state l · σmax(n) < |σ(F)| ≤ k · σmax(n) where l ∈ {11
12
, 8
9
} and k ∈ {2

3
, 3
4
, 1
2
}. This is a

clear contradiction concluding the proof.

The attentive reader might have noticed that all maximal number functions introduced in this
subsection refer to arbitrary argumentation frameworks instead of compact ones. The following
theorem shows that this is not incidental since the compact versions of these functions return the
same values (provided that they are defined). We first introduce the corresponding functions:

σcmax(n) = max {|σ(F)| | F ∈ CAFσ, |AF | = n}
σc,con

max (n) = max {|σ(F)| | F ∈ CAFσ, |AF | = n, F connected}
σc2nd(n) = max ({|σ(F)| | F ∈ CAFσ, |AF | = n} \ {σcmax(n)})

49

Theorem 43. For any n ∈ N, σcmax(n) = σmax(n) and σc,con
max (n) = σcon

max(n). Furthermore, for any
n ∈ N \ {0, 1}, σc2nd(n) = σ2nd(n).

Proof. (sketch) Given n ∈ N as claimed above.
(≤) Obviously, σcmax(n) ≤ σmax(n), σc,con

max (n) ≤ σcon
max(n) and σc2nd(n) ≤ σ2nd(n) since CAFσ ⊆ AFA.

(≥) Inspecting the proofs of Theorems 40, 41 and 42 (respective the proofs of the mentioned
references therein) reveals that the witnessing examples, i.e. the AFs realizing a certain maximal
number are already compact.

From now on we implicitly presuppose that the introduced maximal number functions re-
stricted to compact frameworks coincide with their unrestricted versions.

Example 14. Recall that the (non-compact) AF we discussed in Example 12 had the extension-
set S with |S| = 17 and |ArgsS| = 8. Is there a stable-compact AF with the same extensions?
Firstly, nothing definitive can be said by Theorem 40 since 17 ≤ 18 = σmax(8). Furthermore, in
accordance with Theorem 41 the set S cannot be compactly σ-realized by a connected AF since
17 > 15 = σcon

max(8). Finally, using Theorem 42 we infer that the set S is not compactly σ-realizable
because σ2nd(8) = 16 < 17 < 18 = σmax(8). ♦

The compactness property is instrumental here, since Theorem 42 has no counterpart in non-
compact AFs. More generally, allowing additional arguments as long as they do not occur in
extensions enables us to realize any number of stable extensions up to the maximal one.

Proposition 44. Let n be a natural number. For each k ≤ σmax(n), there is an AF F with
|Argsstb(F)| = n and |stb(F)| = k.

Proof. To realize k stable extensions with n arguments, we start with the construction for the
maximal number from Theorem 40. We then subtract extensions as follows: We choose σmax(n)−k
arbitrary distinct stable extensions of the AF realizing the maximal number. To exclude them, we
use the construction of Definition 9 in [23].

Corollary 45. Let n be a natural number and σ among preferred, semi-stable and stage semantics.
For each k ≤ σmax(n), there is an AF F with |Argsσ(F)| = n and σ(F) = k.

Proof. Follows from Lemmata 2.2 and 4.2 in [23].

Now we are prepared to provide possible short cuts when deciding realizability of a given
extension-set by initially simply counting the extensions. First some formal definitions.

Definition 12. Given an AF F = (A,R), the component-structure K(F) = {K1, . . . , Kn} of F is
the set of sets of arguments, where each Ki coincides with the arguments of a weakly connected
component of the underlying graph; K≥2(F) = {K ∈ K(F) | |K| ≥ 2}.

Example 15. The AF F = ({a, b, c}, {(a, b)}) has component-structure K(F) = {{a, b}, {c}}.
♦

50

The component-structure K(F) gives information about the number n of components of F
as well as the size |Ki| of each component. Knowing the components of an AF, computing the
σ-extensions can be reduced to computing the σ-extensions of each component and building the
cross-product. The AF resulting from restricting F to componentKi is given by F↓Ki = (Ki, RF ∩
Ki ×Ki).

Lemma 46. Given an AF F with component-structure K(F) = {K1, . . . , Kn} it holds that the
extensions in σ(F) and the tuples in σ(F↓K1

)× · · ·×σ(F↓Kn) are in one-to-one correspondence.

Proof. By induction on n; the base case n = 1 is trivial. For the induction step let K(F) =
{K1, . . . , Kn, Kn+1}.

“⊆”: Let S ∈ σ(F). Define Dn+1 = S ∩ Kn+1. By induction hypothesis, there are sets
D1, . . . , Dn such that each Di is a σ-extension of F↓Ki and S \ Kn+1 = D1 ∪ · · · ∪ Dn. We
have to show that Dn+1 is a σ-extension of F↓Kn+1

. σ = stb: Clearly Dn+1 is conflict-free, and
any a ∈ Kn+1 \ Dn+1 is attacked since S is stable and the attacks must come from Dn+1 due to
connectivity. σ ∈ {nai, prf}: If there is a conflict-free/admissible superset of Dn+1, then S is not
naive/preferred for F . σ ∈ {stg, sem}: If there is a superset of Dn+1 with greater range, then S is
not stage/semi-stable for F .

“⊇”: LetD1, . . . , Dn, Dn+1 such that eachDi is a σ-extension of F↓Ki . Define S = D1∪· · ·∪
Dn ∪ Dn+1; we show that S ∈ σ(F). By induction hypothesis, D1 ∪ · · · ∪ Dn ∈ σ(F↓K1,...,Kn).
σ = stb: Clearly S is conflict-free since all Di are conflict-free; since Dn+1 is stable for F↓Kn+1

it
attacks all a ∈ Kn+1\Dn+1 and thus S is stable for F . σ ∈ {nai, prf}: If S is not naive/preferred for
F , there is a conflict-free/admissible superset of S in F . There is at least one additional argument,
that is either in D1 ∪ · · · ∪Dn or in Dn+1. But the first is impossible due to induction hypothesis,
and the second due to presumption. σ ∈ {stg, sem}: If S is not stage/semi-stable for F , there
is a conflict-free/admissible set S ′ with greater range. The range difference must manifest itself
in D1 ∪ · · · ∪ Dn or Dn+1, which leads to a contradiction with the induction hypothesis and the
presumption that Dn+1 is stage/semi-stable for F↓Kn+1

.

Given an extension-set S we want to decide whether S is realizable by a compact AF under se-
mantics σ. For an AF F = (A,R) with σ(F) = S we know that there cannot be a conflict between
any pair of arguments in PairsS, hence R ⊆ PairsS = (A × A) \ PairsS. The next proposition
implicitly shows that for argument-pairs (a, b) /∈ PairsS, although there is not necessarily a direct
conflict between a and b, they are definitely in the same component. In other words, this shows
that implicit conflicts cannot arise across (weakly connected) components but only within them.

Proposition 47. Let S be an extension-set. (1) The transitive closure of PairsS, the set
(
PairsS

)∗,
is an equivalence relation, that is, it is reflexive, symmetric, and transitive. (2) For each AF F ∈
CAFσ that compactly realizes S under semantics σ (that is, σ(F) = S), the component structure
K(F) of F is given by the equivalence classes of

(
PairsS

)∗, that is, K(F) is the quotient set of
ArgsS by

(
PairsS

)∗.
Proof. Consider some extension-set S together with an AF F ∈ CAFσ with σ(F) = S. We have
to show that for any pair of arguments a, b ∈ ArgsS it holds that (a, b) ∈

(
PairsS

)∗ iff a and b are
connected in the graph underlying F .

51

If a and b are connected in F , this means that there is a sequence s1, . . . , sn such that a = s1,
b = sn, and (s1, s2), . . . , (sn−1, sn) /∈ PairsS, hence (a, b) ∈

(
PairsS

)∗.
If (a, b) ∈

(
PairsS

)∗ then also there is a sequence s1, . . . , sn such that a = s1, b = sn, and
(s1, s2), . . . , (sn−1, sn) ∈ PairsS. Consider some (si, si+1) ∈ PairsS and assume, towards a contra-
diction, that si occurs in another component of F than si+1. Recall that F ∈ CAFσ, so each of si
and si+1 occur in some extension and σ(F) 6= ∅. Hence, by Lemma 46, there is some σ-extension
E ⊇ {si, si+1} of F , meaning that (si, si+1) ∈ PairsS, a contradiction. Hence all si and si+1 for
1 ≤ i < n occur in the same component of F , proving that also a and b do so.

It is particularly nice to note that the only conditions we used in the proof were compactness
and conflict-freeness, which indeed shows the Proposition for all five semantics considered here.

We will denote the component-structure induced by an extension-set S as K(S), i.e. K(S)
is the quotient set of ArgsS by

(
PairsS

)∗. Note that, by Proposition 47, K(S) is equivalent to
K(F) for every F ∈ CAFσ with σ(F) = S. Given S, the computation of K(S) can be done in
polynomial time. With this we can use results from graph theory together with number-theoretical
considerations in order to get impossibility results for compact realizability.

Recall that for a single connected component with n arguments the maximal number of σ-
extensions is denoted by σcon

max(n) and its values are given by Theorem 41. In the compact setting it
further holds for a connected AF F with at least 2 arguments that |σ(F)| ≥ 2.

Proposition 48. Given an extension-set S where |S| is odd, it holds that if ∃K ∈ K(S) : |K| = 2
then S is not compactly realizable under semantics σ.

Proof. Assume to the contrary that there is an F ∈ CAFσ with σ(F) = S. We know that K(F) =
K(S). By assumption there is a K ∈ K(S) with |K| = 2, whence |σ(K)| = 2. Thus by Lemma 46
the total number of σ-extensions is even. Contradiction.

Example 16. Consider the extension-set S = {{a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a, b, c′},
{a′, b, c}, {a, b′, c}} = stb(F1) where F1 is the non-compact AF from the proof of Proposition 35.
There, it took us some effort to argue that S is not compactly stb-realizable. Proposition 48 now
gives an easier justification: PairsS yields K(S) = {{a, a′}, {b, b′}, {c, c′}}. Thus S with |S| = 7
cannot be realized. ♦

We denote the set of possible numbers of σ-extensions of a compact AF with n arguments as
P(n); likewise we denote the set of possible numbers of σ-extensions of a compact and connected
AF with n arguments as Pc(n). Although we know that p ∈ P(n) implies p ≤ σmax(n), there may
be q ≤ σmax(n) that are not realizable by a compact AF under σ; likewise for q ∈ Pc(n).

Clearly, any p ≤ n is possible by building an undirected graph with p arguments where every
argument attacks all other arguments, a Kp, and filling up with k isolated arguments (k distinct
copies of K1) such that k + p = n. This construction obviously breaks down if we want to realize
more extensions than we have arguments, that is, p > n. In this case, we have to use Lemma 46
and further graph-theoretic gadgets for addition and even a limited form of subtraction. Let us
show how for n = 7 any number of extensions up to the maximal number 12 is realizable. For
12 = 3 · 4, Theorem 40 yields the realization, a disjoint union of a K3 and a K4 (). For

52

the remaining numbers, we have that 8 = 2 · 4 · 1 and so we can combine a K2, a K4 and a K1 (
). Likewise, 9 = 3 · 3 · 1 (); 10 = 3 · 3 + 1 () and finally 11 = 3 · 4− 1 ().

These small examples already show that P and Pc are closely intertwined and let us deduce some
general corollaries: Firstly, Pc(n) ⊆ P(n) since connected AFs are a subclass of AFs. Next,
P(n) ⊆ P(n + 1) as in the step from to . We even know that P(n) ⊂ P(n + 1)
since σmax(n+ 1) ∈ P(n+ 1) \ P(n). Furthermore, whenever p ∈ P(n), then p+ 1 ∈ Pc(n+ 1),
as in the step from to . The construction that goes from 12 to 11 above obviously only
works if there are two weakly connected components overall, which underlines the importance of
the component structure of the realizing AF. Indeed, multiplication of extension numbers of single
components is our only chance to achieve overall numbers that are substantially larger than the
number of arguments. This is what we will turn to next.

Having to leave the exact contents of P(n) and Pc(n) open, we can still state the following
result:

Proposition 49. Let S be an extension-set that is compactly realizable under semantics σ where
K≥2(S) = {K1, . . . , Kn}. Then for each 1 ≤ i ≤ n there is a pi ∈ Pc(|Ki|) such that |S| =∏n

i=1 pi.

Example 17. Consider the extension-set S′ = {{a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}}. (In fact
there exists a (non-compact) AF F with stb(F) = S′). We have the same component-structure
K(S′) = K(S) as in Example 16, but since now |S′| = 4 we cannot use Proposition 48 to show
impossibility of realization in terms of a compact AF. But with Proposition 49 at hand we can
argue in the following way: Pc(2) = {2} and since ∀K ∈ K(S′) : |K| = 2 it must hold that
|S| = 2 · 2 · 2 = 8, which is obviously not the case. ♦

In particular, we have a straightforward non-realizability criterion whenever |S| is a prime
number: the AF (if any) must have at most one weakly connected component of size greater than
two. Theorem 41 gives us the maximal number of σ-extensions in a single weakly connected
component. Thus whenever the number of desired extensions is larger than that number and prime,
it cannot be realized.

Corollary 50. Let extension-set S with |ArgsS| = n be compactly realizable under σ. If |S| is a
prime number, then |S| ≤ σcon

max(n).

Example 18. Let S be an extension-set with |ArgsS| = 9 and |S| = 23. We find that
σcon

max(9) = 2 · 32 + 22 = 22 < 23 = |S| and thus S is not compactly realizable under semantics σ.
♦

We can also make use of the derived component structure of an extension-set S. Since the
total number of extensions of an AF is the product of these numbers for its weakly connected
components (Lemma 46), each non-trivial component contributes a non-trivial amount to the total.
Hence if there are more components than the factorization of |S| has primes in it, then S cannot be
realized.

53

Corollary 51. Let extension-set S be compactly realizable under σ and let f z11 · . . . · f zmm be the
integer factorization of |S|, where f1, . . . , fm are prime numbers. Then,

z1 + . . .+ zm ≥ |K≥2(S)|.

Example 19. Consider an extension-set S containing 21 extensions and |K≥2(S)| = 3. Since
21 = 31 ∗ 71 and further 1 + 1 < 3, S is not compactly realizable under semantics σ. ♦

We conclude this section with a partial recipe for determining compact (non-)realizability.
Given an extension-set S, compute:

• the number of extensions k = |S|,

• the number of arguments n = |ArgsS|,

• the component-structure K(S), in particular the number of non-trivial components c =
K≥2(S),

• the integer factorization of k = f z11 · . . . · f zmm

Towards deciding compact realizability, we can use the results of this section in the following way:

1. If σmax(n) < k then S is not compactly realizable.

2. If σ2nd(n) < k < σmax(n) then S is not compactly realizable.

3. If c = 1 and σcon
max(n) < k then S is not compactly realizable.

4. If k is prime and σcon
max(n) < k then S is not compactly realizable.

5. If k is odd and there is a K ∈ K(S) with |K| = 2 then S is not compactly realizable.

6. If z1 + . . .+ zm < c then S is not compactly realizable.

7 Discussion
In this work we studied several aspects concerning the fundamental concepts of rejected arguments
and implicit conflicts in abstract argumentation frameworks. For that, we focused on naive, stable,
preferred, semi-stable and stage semantics, all of which satisfy the principle of I-maximality [4].
We omitted prominent basic semantics like complete, admissible and conflict-free sets from our
studies as they do not align in this respect. However, for the sake of completeness we provide a
complete account of results for the issues tackled in this paper for these semantics in C.

The idea of avoiding rejected arguments or implicit conflicts, lead us to introduce and study
the novel classes of compact and analytic argumentation frameworks, each parameterized by a
particular semantics. For both classes we obtained a similar picture for the relationship between
semantics.

54

Concerning computational issues, we have analyzed the complexity of deciding whether a
given AF is compact (resp. analytic) for a semantics σ. Our results range from tractability for naive
semantics, over NP-completeness for stable and preferred semantics, up to ΣP

2 -completeness for
semi-stable and stage semantics. We also have argued that the problem of credulous acceptance
becomes trivial and skeptical acceptance is often polynomial time computable when we restrict
ourselves to the subclasses under consideration, while the verification problems remain as hard as
in the general case. The overall picture is now as follows: On the one hand we have illustrated
that the classes of compact and analytic AFs provide computational benefits both in practice and in
terms of theoretical worst-case analysis. On the other hand testing for membership in one of the
classes is, for most of the semantics, of rather high complexity and thus these classes cannot be
directly used to improve systems. However, for future work, we plan to take the rather negative
complexity results for deciding membership in the subclass of compact (resp. analytic) AFs into
account and seek for efficiently checkable (but not necessarily complete) criteria in order to decide
whether a given AF (a) is compact (resp. analytic); and (b) whether it can be easily transformed
into a compact (resp. analytic) one. The ultimate goal remains to design pre-processing procedures
that identify rejected arguments that can be removed and implicit conflicts that can be made ex-
plicit; in other words, simplifications of the given AF into a semantically equivalent AF with better
computational properties.

One of our main results was the refutation of the Explicit Conflict Conjecture, originally pro-
posed in [7] for stable semantics. In fact, for each semantics σ among stable, preferred, semi-stable,
and stage, we provided AFs where it is not possible to find an equivalent (under σ) AF where all
conflicts become explicit. As a consequence, this result shows that in order to express a certain
set S of extensions via an AF, one cannot just draw attacks between any pair of arguments that
do not occur jointly in any extension E ∈ S. We believe that this not only gives a new insight
into the fundamental properties of argumentation semantics, but also is important to be taken into
account in research about the dynamics and evolvement of AFs. In particular these results indicate
that techniques similar to Conflict-Driven Clause Learning [35] in SAT-solvers cannot be directly
applied in the argumentation setting, as it can happen that a solver identifies a conflict between two
arguments but it is impossible to add this conflict to the AF without changing the outcome. This is
in particular interesting as most of the leading abstract argumentation systems are built on top of
SAT-solvers [37, 38].

Finally, we addressed the question of signatures and realizability. We studied the relationship
between signatures of compact and resp. analytic AFs. Our results complement the analysis from
[23] and give a more fine-grained landscape about the expressive power of different semantics
when the shape of AFs is restricted. Building on initial research from [9], we also analyzed possible
numbers of extensions AFs can yield under a semantics at hand. Extending these considerations to
admissible and complete semantics will be part of future work (cf. [10] for a conjecture regarding
the maximal number of complete extensions). Results of the latter kind can also be beneficial for
argumentation systems, since they may allow AF solvers to navigate more efficiently through the
search space of possible extensions.

55

References
[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-

tation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[2] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based family
of abstract argumentation semantics and its grounded instance. Artificial Intelligence, 175(3-
4):791–813, 2011.

[3] Pietro Baroni and Massimiliano Giacomin. Characterizing defeat graphs where argumenta-
tion semantics agree. In Guillermo R. Simari and Paolo Torroni, editors, Proc. ArgNMR,
pages 33–48, 2007.

[4] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

[5] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumentation
frameworks where semantics agree. In Philippe Besnard, Sylvie Doutre, and Anthony Hunter,
editors, Proc. COMMA, volume 172 of Frontiers in Artificial Intelligence and Applications,
pages 37–48. IOS Press, 2008.

[6] Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and Wolfgang
Faber, editors, Proc. LPNMR, volume 6645 of Lecture Notes in Computer Science, pages 40–
53. Springer, 2011.

[7] Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Hannes Strass, and Stefan Woltran.
Compact argumentation frameworks. In Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan, editors, Proc. ECAI, volume 263 of Frontiers in Artificial Intelligence and Appli-
cations, pages 69–74. IOS Press, 2014.

[8] Ringo Baumann and Christof Spanring. Infinite Argumentation Frameworks – On the Exis-
tence and Uniqueness of Extensions. In Thomas Eiter, Hannes Strass, Miroslaw Truszczyn-
ski, and Stefan Woltran, editors, Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion
of His 60th Birthday, volume 9060 of Lecture Notes in Computer Science, pages 281–295.
Springer, 2015.

[9] Ringo Baumann and Hannes Strass. On the Maximal and Average Numbers of Stable Exten-
sions. In Elizabeth Black, Sanjay Modgil, and Nir Oren, editors, Proc. TAFA 2013, volume
8306 of Lecture Notes in Computer Science, pages 111–126. Springer, 2014.

[10] Ringo Baumann and Hannes Strass. Open Problems in Abstract Argumentation. In Thomas
Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors, Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation - Essays Ded-
icated to Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture
Notes in Computer Science, pages 325–339. Springer, 2015.

56

[11] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Arti-
ficial Intelligence, 171(10-15):619–641, 2007.

[12] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms. Arti-
ficial Intelligence, 171(5-6):286–310, 2007.

[13] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable semantics. J. Log.
Comput., 22(5):1207–1254, 2012.

[14] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. In Lluis Godo, editor, Proc. ECSQARU, volume 3571 of Lecture Notes in Com-
puter Science, pages 317–328. Springer, 2005.

[15] Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. On the
revision of argumentation systems: Minimal change of arguments statuses. In Chitta Baral,
Giuseppe De Giacomo, and Thomas Eiter, editors, Proc. KR, pages 52–61. AAAI Press,
2014.

[16] Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and Stefan Woltran. An
extension-based approach to belief revision in abstract argumentation. In Qiang Yang and
Michael Wooldridge, editors, Proc. IJCAI, pages 2926–2932. AAAI Press, 2015.

[17] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science, 170(1-2):209–244, 1996.

[18] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–
357, 1995.

[19] Paul E. Dunne. Computational properties of argument systems satisfying graph-theoretic
constraints. Artificial Intelligence, 171(10–15):701–729, 2007.

[20] Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence,
173(18):1559–1591, 2009.

[21] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artifi-
cial Intelligence, 141(1/2):187–203, 2002.

[22] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. In Christoph Beierle and Gabriele Kern-
Isberner, editors, Proc. DKB, pages 16–30, 2013.

[23] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. Artificial Intelligence, 228:153–178, 2015.

[24] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD thesis, Vienna
University of Technology, 2012.

57

[25] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. Complexity-
sensitive decision procedures for abstract argumentation. Artificial Intelligence, 206:53–78,
2014.

[26] Wolfgang Dvořák and Christof Spanring. Comparing the expressiveness of argumentation
semantics. J. Log. Comput., 2016.

[27] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage semantics in
argumentation frameworks. Inf. Process. Lett., 110(11):425–430, 2010.

[28] Sjur K. Dyrkolbotn. How to argue for anything: Enforcing arbitrary sets of labellings using
AFs. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Proc. KR, pages
626–629. AAAI Press, 2014.

[29] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings for
argumentation frameworks. Argument & Computation, 1(2):147–177, 2010.

[30] Jerrold R. Griggs, Charles M. Grinstead, and David R. Guichard. The number of maximal
independent sets in a connected graph. Discrete Mathematics, 68(23):211–220, 1988.

[31] Zemin Jin and Xueliang Li. Graphs with the second largest number of maximal independent
sets. Discrete Mathematics, 308(23):5864–5870, 2008.

[32] Thomas Linsbichler, Christof Spanring, and Stefan Woltran. The hidden power of abstract
argumentation semantics. In Elizabeth Black, Sanjay Modgil, and Nir Oren, editors, Proc.
TAFA, volume 9524 of Lecture Notes in Computer Science, pages 146–162. Springer, 2015.

[33] John W. Moon and Leo Moser. On cliques in graphs. Israel Journal of Mathematics, 3(1):23–
28, 1965.

[34] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer, 2009.

[35] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
131–153. IOS Press, 2009.

[36] Hannes Strass. The relative expressiveness of abstract argumentation and logic programming.
In Sven Koenig and Blai Bonet, editors, Proc. AAAI, pages 1625–1631. AAAI Press, 2015.

[37] Matthias Thimm and Serena Villata. System descriptions of the first international competition
on computational models of argumentation (ICCMA’15). CoRR, abs/1510.05373, 2015.

[38] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes Strass, and Mauro Val-
lati. Summary report of the first international competition on computational models of argu-
mentation. AI Magazine, 37(1):102, 2016.

58

[39] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumenta-
tion stages. In John-Jules C. Meyer and Linda C. van der Gaag, editors, Proc. NAIC, pages
357–368, 1996.

59

A Implicit Conflicts and Runtime
This appendix reports the results of experiments carried out in order to understand the impact of
implicit conflicts on the efficiency of solvers. The underlying assumption is that the explication
of implicit conflicts leads to a more succinct representation of an AF, which in turn supports the
solver by providing more information to work with. The results for extension enumeration under
stable and preferred semantics confirm this hypothesis.

The First International Competition on Computational Models of Argumentation (ICCMA, see
http://argumentationcompetition.org/2015/) featured three types of benchmark
graphs, each following a certain graph model. The one which turned out to be the hardest for most
solvers is based on a construction that aims at having many stable (and preferred) extensions.12 As
the set containing the largest instances of this type even had to be removed from the competition
due to its difficulty and therefore seems most interesting to analyze, we focus on this group of
instances.13 For stable and preferred semantics we analyze the correlation between the number
of implicit conflicts and the runtime of solving. We focus on the particular task of extension
enumeration and employ the winning solvers of the competition, that is ASPARTIX [29] for stable
semantics and CEGARTIX [25] for preferred semantics. We report statistics for the instances of
the competition as well as for a larger set of instances constructed with the same generator to get
results which are statistically more significant.

Instances of the considered type usually feature many rejected arguments – the ICCMA-
instances have an average of 78% for stable and 76% for preferred semantics. Therefore we only
take into account implicit conflicts that occur between arguments that are not rejected. Hence, in
this appendix, given an AF F and semantics σ, there is an implicit conflict between arguments
a, b ∈ AF if (a, b) /∈ Pairsσ(F), (a, b), (b, a) /∈ RF and a, b ∈ Argsσ(F). The σ-explication of F
is then (AF , RF ∪ {(a, b), (b, a) | implicit conflict between a and b}). Note that, in general, the
explicated AF is not equivalent w.r.t. σ to the original one. However, it is not a simplification in
terms of extensions, as the number of extensions of the explicated AF is always greater or equal
than in the original AF.

The tests have been run on a machine with two AMD Opteron 6308 processors (3.5GHz) hav-
ing 2 physical cores each; each of these cores puts at disposal 2 logical cores (per hyperthreading),
192 GB RAM (12 x 16GB) and a timeout of 600 seconds for each instance.

The experiments show a clear tendency to shorter runtime when decreasing the number of
implicit conflicts. Figure 26 shows the experimental results for the ICCMA instances and Figure 27
for the generated instances. The correlation between implicit conflicts per non-rejected argument
and runtime of solving turns out to be slightly greater for preferred semantics. Explication of
implicit conflicts leads to a speedup in solving for both semantics, more significantly for stable
though. Table 3 shows a few more statistics for the generated instances. While the solvers have

12Generators can be found at https://sourceforge.net/projects/probo/.
13Besides, the other two types are of limited interest also because of other reasons: (i) Instances of the first type

have only one (large) extension under all standard semantics and are therefore relatively easy to solve and, more
importantly, have no implicit conflicts among non-rejected arguments; (ii) The other instance type has a rich structure
of strongly connected components leading to very few (or no) extensions and only a small amount of implicit conflicts.

60

http://argumentationcompetition.org/2015/
https://sourceforge.net/projects/probo/

stb, ASPARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

prf, CEGARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45
lo

g
R

un
tim

e
Implicit Conflicts / # non-rej. Arguments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

Figure 26: Experimental results for implicit conflicts on ICCMA 2015 instances. Out of the 48
instances there are 30 (63%) for stb and 33 (69%) for prf which contain at least one implicit
conflict. Among those, the number of implicit conflicts divided by the number of non-rejected
arguments is 16.0 for stb and 15.6 for prf on average. The scatter plots at the top relate the number
of implicit conflicts per non-rejected argument to the runtime of extension enumeration. We get
a correlation coefficient of 0.16 for stb and 0.26 for prf. The diagrams at the bottom show the
cumulative runtime for extension enumeration for the original set of AFs on the one hand and the
corresponding explicated AFs on the other.

61

stb, ASPARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

prf, CEGARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60
lo

g
R

un
tim

e
Implicit Conflicts / # non-rej. Arguments

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

Figure 27: Experimental results for implicit conflicts on an additional 1061 instances obtained from
the same generator as the most difficult instances of ICCMA 2015. This set of AFs contains 533
(50%) for stb and 567 (53%) for prf with at least one implicit conflict. Among those, the number of
implicit conflicts divided by the number of non-rejected arguments is 17.1 for stb and 17.0 for prf
on average. Again, the scatter plots at the top of the figure relate the number of implicit conflicts
per non-rejected argument to the runtime of extension enumeration. Now we get a correlation
coefficient of 0.24 for stb and 0.30 for prf. The cumulative runtimes for extension enumeration
indicating a significant speedup for the explicated AFs are shown at the bottom of the figure.

62

Table 3: Statistics for the generated instances. The total number of instances is 533 for stable and
567 for preferred semantics. Every instance which led to a timeout for the explicated instance also
did so for the original one.

Semantics stable preferred
original explicit original explicit

solved instances 512 528 544 561
timeouts 21 5 23 6
faster 115 416 257 304
uniquely solved 0 16 0 17
average runtime (s) 49.7 11.6 60.7 23.9
maximal runtime (s) 600.0 600.0 600.0 600.0

about four times as many timeouts for the original instances than for the explicated instances for
both semantics, the number of instances which are solved faster is less significantly different for
preferred semantics. The explanation is that, for preferred semantics, explication only pays off if
the original AF is sufficiently difficult to solve.

In this appendix we have only considered implicit conflicts among non-rejected arguments.
Dropping this constraint would have the following effects on the experiments: due to the already
mentioned high number of rejected arguments (i) the size of explicated AFs significantly increases,
and (ii) the number of implicit conflicts mostly depends on the number of rejected arguments. The
effect on the runtime for extension enumeration on these explicated instances strongly differs be-
tween stable and preferred semantics. We get runtime on a constantly low level (between one and
two seconds) for stable semantics and runtimes significantly higher than on the original instances
for preferred instances. While the former observation is somehow in accordance with [7] as dis-
cussed at the end of Section 4, we attribute the latter to the almost quadratic increase in instance
size.

B Proofs of Section 4
Proof of Lemma 19. Below we will show that all arguments except x are always credulously ac-
cepted in F ′ and that x is credulously accepted in F ′ iff x is credulously accepted in F .

First we show that each semi-stable extension E contains at least one argument from {ta | a ∈
A∪{y, z}}. Suppose that not, thenE∪{tx} is a conflict-free set and, as tx defends itself against all
its attackers, the set E ∪ {tx} is also admissible. Hence we have a contradiction to the maximality
of E. Further, as {ta | a ∈ A ∪ {y, z}} forms a clique in F we get that each extension contains
exactly one argument from the set.

Next we show that the ranges of preferred extensions E containing an argument from {ta |
a ∈ {x, y, z}} cannot be contained in the ranges of admissible sets E ′ not containing any of these
arguments.

• If tx ∈ E then h2 is defended against all its attackers, that are ty and h1, and thus also

63

h2 ∈ E. As h1 is attacked by tx and h3 is attacked by h2 we have {h1, h2, h3} ⊆ E+
F ′ . By

similar arguments we get that {h1, h2, h3} ⊆ E+
F ′ if either ty ∈ E or tz ∈ E.

• If ta ∈ E ′ with a 6∈ {x, y, z} then none of the h1, h2, h3 can be in the range, as they form an
odd length cycle and all attacking arguments from outside are counter attacked by E ′.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing an argument from {ta | a ∈ {x, y, z}}. By the above
we have that either {tx, h2} ⊆ E, {ty, h3} ⊆ E, or {tz, h1} ⊆ E. All of these three sets
have the same attacks to the remaining arguments and thus we have that for each E ′ ⊆ A,
{tx, h2}∪E ′ ∈ sem(F ′) iff {ty, h3}∪E ′ ∈ sem(F ′) iff {tz, h1}∪E ′ ∈ sem(F ′). As at least
forE ′ = ∅ these sets are also admissible this implies that the arguments {tx, ty, tz, h1, h2, h3}
are credulously accepted in F ′.

Moreover, {tx, h2} defends the arguments A against all attack from arguments in A′ and
does not attack any argument in A. Thus

(i) {tx, h2} ∪ E ′ ∈ adm(F ′) iff E ′ ∈ adm(F) and

(ii) as arguments in A do not attack arguments in A′ we have that ({tx, h2} ∪ E ′)+F ′ =
{tx, h2}+F ′ ∪ E ′+F ′ and thus ({tx, h2} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Hence, {tx, h2} ∪ E ′ ∈ sem(F ′) iff E ′ ∈ sem(F) and x is credulously accepted in F iff x is
credulously accepted in F ′.

As, by assumption, F has no stable extension there cannot be an extension E containing an
argument from {ta | a ∈ {x, y, z}} and having all arguments A in its range.

• Second, consider the sets E containing an argument from {ta | a ∈ A \ {x}}. Now it is easy
to verify that the sets {ta, a} for a ∈ A \ {x} are admissible sets of F ′ and have maximal
range among the extensions containing {ta,b | a, b ∈ A}. In particular A is in the range
of each of these extensions, and thus they are incomparable with the extension of the first
type, i.e. they are semi-stable. Hence, we have that the arguments {a, ta | a ∈ A \ {x}} are
credulously accepted. Moreover, no extensions E ′ with {ta | a ∈ A \ {x}} ∩ E 6= ∅ can
contain x.

Finally, combining the above results, we have that all arguments in A′ except x are credulously
accepted in F ′ and x is credulously accepted in F iff x is credulously accepted in F ′ iff F ′ is
stg-compact.

Proof of Lemma 23. First, we show that each semi-stable extension E contains at least one argu-
ment from A′. Suppose that not, then E \ AG ∪ {t} is an admissible set that has AG in its range.
Hence we have a contradiction to the range maximality of E. Further, as A′ forms a clique in F
we get that each semi-stable extension contains exactly one argument from the set.

Next we show that the ranges of preferred extensions E containing argument t cannot be con-
tained in the ranges of admissible sets E ′ containing an argument ta,b with a, b ∈ A.

64

• If t ∈ E then all arguments in AG are attacked by E and thus are in the range of E.

• If t 6∈ E ′ at least one argument of AG is not in the range of E ′. Otherwise, E ′ ∩ AG would
be a stable extension of G, which contradicts stb(G) = ∅.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing t. As t does not attack any argument in A nor does A
have any outgoing attacks we have

(i) {t} ∪ E ′ ∈ adm(F ′) iff E ′ ∈ adm(F) and
(ii) as arguments in A do not attack arguments outside A we have that ({t} ∪ E ′)+F ′ =
{t}+F ′ ∪ E ′+F ′ and thus ({t} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Hence, {t} ∪E ′ ∈ sem(F ′) iff E ′ ∈ sem(F) and {t, a} is credulously accepted in F ′ iff a is
credulously accepted in F .

As, by assumption, F has no stable extension there cannot be a semi-stable extension E
containing t and having all arguments A in its range.

• Second, consider the extensions E containing an argument ta,b with a, b ∈ A. Now it is easy
to verify that the sets {ta,b, a, b} are admissible sets of F ′ and A is in the range of each of
theses extensions. Thus they are incomparable with the extension of the first type.

As ta,b does not attack any argument in AG nor does AG have any outgoing attacks we have

(i) {ta,b, a, b} ∪ E ′ ∈ adm(F ′) iff E ′ ∈ adm(G) and
(ii) as arguments in AG do not attack arguments outside Ag we have that ({ta,b, a, b} ∪

E ′)+F ′ = {t}+F ′ ∪ E ′+F ′ and thus ({ta,b, a, b} ∪ E ′)+F ′ is maximal when E ′+F ′ is maximal.

Thus, {ta,b, a, b} ∪ E ′ ∈ sem(F ′) iff E ′ ∈ sem(G). Now, as G ∈ XAFsem we have that
for each g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG there is an E ′ ∈ sem(G) with g, g′ ∈ E.
Furthermore as G has no self-attacks it is also compact (cf. Proposition 5) and thus for each
g ∈ AG there is an E ′ ∈ sem(G) with g ∈ E ′. From these stage extensions we obtain that:

– {ta,b, a}, {ta,b, b} are credulously accepted in F ′;
– {ta,b, g, g′} is credulously accepted in F ′, for g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG;
– {ta,b, g} is credulously accepted in F ′, for each g ∈ G;
– {a, g} is credulously accepted in F ′, for each a ∈ A and g ∈ G;

Combining the above results, we have that all non-conflicting pairs of arguments in F ′ except
{t, a} with a ∈ A are credulously accepted in F ′. Thus F ′ is stg-analytic iff all the pairs {t, a}
with a ∈ A are credulously accepted in F ′ iff each a ∈ A is credulously accepted in F iff F is
sem-compact.

Finally we show that F ′ ∈ CAFsem (independent of whether F ∈ CAFsem). As (i) for each
a ∈ A the set {ta,a, a} is credulously accepted, and (ii) for each g ∈ AG and a, b ∈ A with
(a, b), (b, a) 6∈ R the set {ta,b, g} is credulously accepted, the AF F ′ is stg-compact.

65

C Basic Semantics
In the following show how the concepts considered in the paper carry over to conflict-free, admis-
sible and complete semantics. For that we have to introduce complete semantics first [18]:

Definition 13. Given F ∈ AFA, S ∈ com(F) if S ∈ adm(F) and for each a ∈ A that is defended
by S it holds that a ∈ S.

Proposition 52. It holds that CAFcf = CAFnai and CAFadm = CAFcom = CAFprf.

Proof. Since naive (resp. preferred) extensions of any given AF F are exactly the ⊆-maximal
conflict-free (resp. admissible and complete) extensions it holds that Argsnai(F) = Argscf(F) and
Argsprf(F) = Argsadm(F) = Argscom(F). Therefore F ∈ CAFnai iff F ∈ CAFcf and F ∈ CAFprf iff
F ∈ CAFadm iff F ∈ CAFcom.

Proposition 53. It holds that XAFcf = XAFnai and XAFadm = XAFcom = XAFprf.

Proof. Since naive (resp. preferred) extensions of any given AF F are exactly the ⊆-maximal
conflict-free (resp. admissible and complete) extensions it holds that Pairsnai(F) = Pairscf(F) and
Pairsprf(F) = Pairsadm(F) = Pairscom(F). Therefore F ∈ XAFnai iff F ∈ XAFcf and F ∈ XAFprf iff
F ∈ XAFadm iff F ∈ XAFcom.

Corollary 54. The following problems are in P:

1. Given AF F , deciding whether F ∈ CAFcf;

2. Given AF F , deciding whether F ∈ XAFcf.

Proof. Follows from Corollary 11 and Propositions 52 and 53.

Corollary 55. The following problems are NP-complete for σ ∈ {adm, com}.

1. Given AF F , deciding whether F ∈ CAFσ;

2. Given AF F , deciding whether F ∈ XAFσ; hardness already holds if the problem is restricted
to AFs F ∈ CAFσ.

Proof. Follows from Corollary 15 and Propositions 52 and 53.

Proposition 56. ECC holds for cf.

Proof. Consider an arbitrary AF F , and observe that in order to have an implicit conflict between
arguments a and b, at least one of these arguments has to be self-attacking. Hence we obtain an
analytic AF F ′ having cf(F ′) = cf(F) by letting each self-attacking argument be attacked by all
other arguments.

Proposition 57. ECC does not hold for adm and com.

66

Figure 28: AF F compactly realizing an extension-set S /∈ Σc
adm ∪ Σc

cf under com.

Proof. Assume ECC holds for adm (resp. com) and let F be an AF which is non-analytic for prf. By
assumption there is an AF F ′ with AF ′ = AF and adm(F ′) = adm(F) (resp. com(F ′) = com(F)).
But then also prf(F ′) = prf(F), a contradiction to F being non-analytic for prf.

Proposition 58. It holds that

1. Σc
cf = Σcf and

2. Σc
σ ⊂ Σσ for σ ∈ {adm, com}.

Proof. (1) Follows directly from Proposition 35.1.
(2)Let σ ∈ {adm, com}, S = {∅, {a, b}} and assume there is an AF F ∈ CAFσ with σ(F) = S.

Since a and b are free of conflict it must hold that F = ({a, b}, ∅). But then we get adm(F) =
{∅, {a}, {b}, {a, b}} and com(F) = {{a, b}}, hence S /∈ Σc

σ. On the other hand there is the non-
compact AF F ′ = ({a, b, c, d}, {(a, c), (c, c), (c, b), (b, d), (d, d), (d, a)}) having σ(F ′) = S, hence
S ∈ Σσ.

70

Proposition 59. It holds that

1. Σc
cf ⊂ Σc

adm and

2. Σc
com 6⊆ Σc

σ and Σc
σ 6⊆ Σc

com for σ ∈ {cf, adm}.

Proof. (1) Given an arbitrary AF F it holds that cf(F) = adm(sym(F)), where sym(F) is the AF

obtained from making all attacks of F symmetric, hence Σc
cf ⊆ Σc

adm. Properness is by the AF

G = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}), that is the directed cycle of four arguments, having
adm(G) = {∅, {a, c}, {b, d}}, which is an extension-set not realizable under cf. This is by the fact
that if {a, c} is conflict-free in some AF then clearly also {a} and {c} must be conflict-free. Hence
Σc

cf ⊂ Σc
adm.

(2) Σc
com 6⊆ Σc

σ: Any extension-set S containing exactly one non-empty set of arguments
S is compactly realizable under com by the AF (S, ∅), but not under cf and adm since ∅ is
not contained in S. The following example shows that these trivial cases are not the only AFs
in Σc

com \ Σc
σ. To this end consider the AF F depicted in Figure 28. We have com(F) =

{∅, {a1}, {a2}, {b1}, {b2}, {a1, b2}, {a2, b1}, {a1, a2, c}, {b1, b2, d}}. On the one hand it is easy to
see that F is compact for complete semantics, on the other hand observe that both {a1}, {a2} ∈
com(F), (a1, a2) ∈ Pairscom(F), but {a1, a2} /∈ com(F). So com(F) violates a necessary condition

67

arg(a1).
arg(a2).
arg(b1).
arg(b2).
arg(c).
arg(d).

att(a1,d).
att(a2,d).
att(b1,c).
att(b2,c).
att(a1,b1).
att(b1,a1).
att(a2,b2).
att(b2,a2).

#show in/1.

for admissible and conflict-free extension-sets (cf. [23]). Hence com(F) /∈ Σσ and therefore by
Proposition 58 also com(F) /∈ Σc

σ.
Σc
σ 6⊆ Σc

com: Let F = ({a, b, c}, { a, b , b, c }) and observe that cf(F) = adm(F) =
{∅, {a}, {b}, {c}, {a, c}}. Now assume there is an AF G ∈ CAFcom with com(G) = cf(F). Clearly
AG = {a, b, c} and RG ⊆ {(a, b), (b, a), (b, c), (c, b)}. Now for ∅ ∈ com(G) each argument must
be attacked and, moreover, the singletons {a}, {b} and {c}must defend themselves. Hence it must
be that G = F which means com(G) = {∅, {a, c}, {b}}, a contradiction.

Proposition 60. It holds that

1. Σx
cf = Σcf and

2. Σx
σ ⊂ Σσ for σ ∈ {adm, com}.

Proof. (1) Follows directly from Theorem 30.
(2) Consider the AF depicted in Figure 16 which was discussed in Example 6. We show in

Theorem 31 that prf(F) /∈ Σx
prf. Observe that F has the same implicit conflicts (namely between

a1 and x2, a2 and x3, and a3 and x1) for preferred, admissible and complete semantics. Now
assuming that com(F) ∈ Σx

com (resp. adm(F) ∈ Σx
adm) means that there is some AF F ′ which is

analytic for com (resp. adm) and has com(F ′) = com(F) (resp. adm(F ′) = adm(F)). But then
F ′ is also analytic for prf and has prf(F ′) = prf(F), a contradiction to prf(F) /∈ Σx

prf. Hence
com(F) /∈ Σx

com and adm(F) /∈ Σx
adm.

Proposition 61. It holds that

1. Σx
cf ⊂ Σx

adm and

2. Σx
com 6⊆ Σx

σ and Σx
σ 6⊆ Σx

com for σ ∈ {cf, adm}.

Proof. (1) The argument from in the proof of Proposition 59 applies here as well.
(2) Σx

com 6⊆ Σx
σ: Consider the AF F from the proof of Proposition 59 (resp. Figure 28) and

extend it by a symmetric attack between arguments c and d as follows F ′ = (AF , RF ∪ { c, d }).
Now com(F) = com(F ′) and it is easy to verify that F ′ is analytic for complete semantics, but as
discussed before com(F) = com(F ′) /∈ Σσ. Hence, we have a witness for Σx

com 6⊆ Σx
σ.

Σx
σ 6⊆ Σx

com: Again consider the AF F = ({a, b, c}, { a, b , b, c }) and recall that cf(F) =
adm(F) = {∅, {a}, {b}, {c}, {a, c}}. Assume there is an AF G ∈ XAFx with com(G) = cf(F).
Clearly {a, b, c} ⊆ AG and RG∩ (AG×AG) ⊆ {(a, b), (b, a), (b, c), (c, b)}. Consider arguments in
AG that are different from a, b, c. As such arguments do not appear in any extensions they have to be
self-attacking and in conflict with all the other arguments. From {a}, {b}, {c} ∈ cf(F) = adm(F)
we obtain that a, b, c attack all arguments in AG \ {a, b, c}. Now as {b} ∈ com(G) we have that
a and c must be attacked by some argument not attacked by b. Thus (b, a) ∈ RG and (b, c) ∈ RG

and as {a}, {c} ∈ com(G) and have to defend themselves also (a, b) ∈ RG and (c, b) ∈ RG. But
then we have com(G) = {∅, {a, c}, {b}}, a contradiction.

68

	Introduction
	Preliminaries
	Subclasses of Argumentation Frameworks
	Compact Argumentation Frameworks
	Analytic Argumentation Frameworks
	Relations between Compact and Analytic Frameworks

	Complexity
	Explicit Conflict Conjecture
	Signatures
	Analytic Signatures
	Compact Signatures
	Numbers of Extensions in Compact Frameworks

	Discussion
	Implicit Conflicts and Runtime
	Proofs of Section 4
	Basic Semantics

