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Abstract. As well-known, answer-set programs do not satisfy the replacement property in
general, i.e., programs P andQ that are equivalent may cease to be so when they are put in the
context of some other program R, i.e., R∪P and R∪Q may have different (sets of) answer
sets. Pearce et al. thus introduced strong equivalence for context-independent equivalence,
and proved that such equivalence holds between given programs P and Q iff P and Q are
equivalent theories in the monotonic logic of here-and-there. In this article, we consider
a related question: given a program P , does there exist some program Q from a certain
class C of programs such that P and Q are equivalent under a given notion of equivalence?
Furthermore, if the answer to this question is positive, how can we recast P to an equivalent
program from C (i.e., construct such aQ)? In particular, we consider classes of programs that
emerge by (dis)allowing disjunction and/or negation, and as equivalence notions we consider
strong, uniform, and ordinary equivalence. Based on general model-theoretic properties and
a novel form of canonical programs, we develop semantic characterisations for the existence
of such a program Q, determine the computational complexity of checking existence, and
provide (local) rewriting rules for recasting.
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1 Introduction
Answer-set programming, which is rooted in the answer-set semantics of logic programs (Gelfond
& Lifschitz, 1988, 1991), has become an increasingly popular formalism for declarative problem
solving for a range of different application areas (Brewka, Eiter, & Truszczyński, 2011). Besides the
declarative and elegant approach of the latter to deal with negation as failure in programs, which has
occupied the research community quite some time, the availability of efficient solvers like clasp,
DLV, or Smodels to evaluate programs that encode solutions of a problem at hand is an important
factor of the success of answer-set programming.

All this builds on a rich body of foundational results, regarding both semantic and computational
properties, with a detailed understanding of the computational complexity and optimal algorithms
in the light of this insight.

While Gelfond and Lifschitz (1988) based their seminal definition of a stable model on the
notion of a program reduct, inspired by ideas underlying default logic (Reiter, 1980) to handle
negation as failure, an interpretation of the latter in terms of a weakening of classical logic took some
time to be realised. Enlightening for this question was the work of David Pearce, who aimed at a
logical reconstruction of answer sets in terms of intuitionistic logic, the most well-known weakening
of classical logic. He gave a characterisation of answer-set semantics in terms of intuitionistic
provability (Pearce, 1999) and he developed a non-monotonic version of the logic of here-and-there
(HT ), which is a monotonic intermediate logic between (full) intuitionistic logic and classical
logic. His equilibrium logic (EQL) (Pearce, 2006) is a milestone for answer-set programming, as it
enables us to bypass answer-set construction through the auxiliary device of reduct and perform
it in pure model-theoretic terms, using a Kripke structure with two worlds, “here” and “there”,
where the latter intuitively serves to evaluate negation. Not only is EQL strikingly elegant from a
logical perspective, it also comes with the benefit that it immediately extends from a simple core
language as that of Gelfond and Lifschitz (1988) to richer languages including constructs such as
strong negation (often also called classical negation) and disjunction in rule heads; this and other
properties nurture the view that EQL is a proper characterisation of answer-set semantics from a
logical perspective. Among these properties is another one concerning modularity, which is in fact
crucial for the present article. As well-known, programs under answer-set semantics suffer from a
violation of the replacement property. That is, given programs P and Q which are equivalent, i.e.,
have the same (sets of) answer sets, and given another program R, then it is not guaranteed that the
programs R ∪ P and R ∪Q are equivalent, i.e., having the same sets of answer sets—note that for
classical logic this property holds.

In a landmark paper (Lifschitz, Pearce, & Valverde, 2001), Pearce et al. developed the notion
of strong equivalence which ensures the replacement property: P and Q are regarded as strongly
equivalent, denoted P ≡s Q, if for every program R the programs R ∪ P and R ∪Q are equivalent
in the ordinary sense, i.e., they have the same collections of answer sets. Pearce et al. established
the beautiful and surprising result that P ≡s Q holds if and only if P and Q are equivalent theories
in the logic of here-and-there. This in fact drew attention to EQL as a tool to work with and analyse
answer-set programs, and proved extremely fruitful to tackle, e.g., a number of issues regarding
modular replacement that refine and extend the basic notion of strong equivalence. For instance,
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starting with uniform equivalence, where R is restricted to be a set of facts, many other notions
have been studied; see the survey article by Woltran (2010) and the works of Eiter, Tompits, and
Woltran (2005), Woltran (2008), and Fink (2011) for fairly general frameworks capturing various
such notions.

The possibility of program replacement, expressed by a suitable notion ≡e of equivalence
between programs, is at the foundation of program optimisation and modular program reuse. The
question whether P ≡e Q for given programs P and Q has been studied in a number of papers, for
different program classes, and semantic and computational complexity results have been obtained.
The work of Eiter, Fink, and Woltran (2007) is an example of a thorough study that has considered
this issue exhaustively for strong (≡s) and uniform (≡u) equivalence between disjunctive logic
programs (DLPs) and fragments of this class, including Horn logic programs and normal logic
programs (NLPs).

In the present article, we consider a similar yet different question: given a program P , does
there exist some program Q from a certain class C of programs such that P ≡e Q, i.e., P and Q are
equivalent under a notion e of equivalence? Furthermore, if the answer to this question is positive,
how can we construct from P a respective program Q? More specifically, we shall consider these
questions for classes of programs that emerge by (dis)allowing disjunction and/or negation, and for
e being either strong, uniform, or ordinary equivalence.

The existence and construction of a program Q equivalent to P is crucial for modular replace-
ment in combination with a program recast, i.e., we also change the syntactic class of the underlying
program. In other terms, the issue is to recognise programs in disguise. This may be exploited to
arrive at a program that can be be evaluated more easily, or with an algorithm that is tailored for a
specific program class. The availability of a suite of algorithms for different program classes that
allows for graceful evaluation and offers nice down-scaling properties (if a program falls into an
“easy class”, a solver should evaluate it efficiently) is a versatile feature of advanced answer-set
solvers. Prominent examples of such program classes that are exploited in practice are Horn pro-
grams, stratified programs (Apt, Blair, & Walker, 1988) and head-cycle free programs (Ben-Eliyahu
& Dechter, 1994).

For an illustrative example, the disjunctive program P = {a ∨ b← } is ordinarily equivalent
to Q = {a← not b; b← not a}; this can be exploited to recast P to Q for evaluation on an ASP
solver for normal (i.e., non-disjunctive) programs. On the other hand, it is well known that P is not
strongly equivalent to Q. In fact, as it turns out, P is not strongly equivalent to any disjunction-free
program Q. This means that P cannot, for the sake of modular replacement in an arbitrary context
R, be rewritten to a non-disjunctive program. However, such a rewriting is possible if the context R
is a set of facts.

Briefly, the main results of this article are as follows.

• We present some general properties of HT -models of disjunctive programs, and a new form of
canonical program (Section 3). Canonical programs have already been addressed in the literature.
Cabalar and Ferraris (2007) have shown that for any set S of HT -interpretations, satisfying
(X, Y ) ∈ S implies (Y, Y ) ∈ S, there exists a generalised disjunctive logic program (i.e., a
program which also permits negations-as-failure in the head of rules) having as its set of HT -
models exactly the set S. Eiter, Tompits, and Woltran (2005) use a similar method to construct
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counterexamples within their correspondence framework. We provide here a new approach to obtain
disjunctive logic programs from a given set of HT -interpretations, which turns out to be convenient
for eliminating disjunctions. Roughly speaking, the canonical program PA,S,S′ for alphabet A has
two parameters, S and S ′, that are sets of HT -interpretations, such that the HT -models of the
program include all elements of S but no element of S ′.

• We provide results for the elimination of disjunction from a logic program P , i.e., recasting it
to an equivalent normal program Q. We first give a semantic characterisation of the existence of
such a program Q for strong equivalence. More precisely, we show that this amounts to a natural
intersection condition on the models of P in the logic HT (which is coNP-complete); for uniform
and ordinary equivalence, Q always does exist.

We then consider local recasting, i.e., whether an equivalent Q can be constructed using local
rewriting rules. More specifically, we consider the common operation of body-shifting, in which
all literals but one in the head of a rule are moved to the body. This operation preserves uniform
and ordinary equivalence for head-cycle free programs, but not for arbitrary disjunctive programs.
We show that by adding further rules to the shift program, uniform resp. strong equivalence can
be preserved. In particular, it suffices to add the canonical program PA,S,S′ for suitable S and S ′.
This rewriting subsumes previous rewritings discussed in earlier work (Eiter, Faber, Fink, Pfeifer, &
Woltran, 2004).

• Furthermore, we consider the elimination of negation from logic programs, i.e., recasting to
positive programs. We provide a semantic characterisation for settings when under strong resp.
uniform equivalence a program P is equivalent to some positive (i.e., negation-free) program Q
(for ordinary equivalence, such a Q always exists). We show that this is the case if and only if a
particular subset of the HT -models of P satisfies some natural condition (which is coNP-complete,
respectively ΠP

2 -complete, to check on P ); furthermore, we show that there is a simple candidate
for Q that is given by the left (head) shift of literals that occur in the body of a rule under default
negation to the head of the same rule.

• Finally, we also consider the joint elimination of disjunction and negation from a logic program.
We provide a semantic criterion which combines the respective criteria for strong and uniform
equivalence; the precise computational complexity of this criterion remains open.

We thus significantly extend preliminary results towards semantic recasting that appeared in
preliminary works (Eiter, Fink, Tompits, & Woltran, 2004b; Eiter, Faber, et al., 2004), establishing
a theoretical basis for improving and enhancing the computation of answer sets of a given program.

The remainder of this article is organised as follows. In the next section, we recall basic notions
from ASP and equilibrium logic that are relevant for our study. We then consider the elimination of
disjunction in Section 4, followed by the elimination of negation in Section 5, including the joint
elimination of disjunction and negation. After a discussion of possible generalisations in Section 6,
we conclude in Section 7.
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2 Background
We start by first introducing the syntax of logic programs and corresponding program classes
considered in this article. We recall their semantics, specifically also in terms of equilibrium logic,
which provides suitable means for the investigation of semantic properties and characterisations.
Eventually, we introduce the notions of equivalence, and review seminal corresponding results, that
shall later be faithfully retained while transforming between different syntactical program classes.

2.1 Syntax and Program Classes
We deal with disjunctive logic programs, which allow the use of default negation not in rules. A
rule r is a triple 〈H(r), B+(r), B−(r)〉, alternatively written as

H(r)← B+(r), not B−(r),

where H(r) = {A1, . . . , Al}, B+(r) = {Al+1, . . . , Am}, and B−(r) = {Am+1, . . . , An}, where
0 ≤ l ≤ m ≤ n and Ai, 1 ≤ i ≤ n, are atoms from a first-order language. We also use the
traditional representation of a rule as an expression of the form

A1 ∨ · · · ∨ Al ← Al+1, . . . , Am, not Am+1, . . . , not An. (1)

We call H(r) the head of r and B(r) = {Al+1, . . . , Am, not Am+1, . . . , not An} the body of
r. If H(r) = ∅, then r is a constraint. A constraint with B−(r) = ∅ is called positive constraint,
otherwise it is called negative constraint. As usual, r is a disjunctive fact if B(r) = ∅, and r is a
(non-disjunctive) fact if B(r) = ∅ and |H(r)| ≤ 1, both also represented by H(r); for H(r) = ∅,
we occasionally write ⊥.

A rule r is normal (or non-disjunctive), if |H(r)| ≤ 1; and definite, if |H(r)| = 1. For
H(r) = {h}, we denote normal rules also as

h← B+(r), not B−(r).

A rule r is positive, if B−(r) = ∅, and Horn, if it is normal and positive.
A disjunctive logic program (DLP), is a finite set of rules. Unless stated otherwise the term

program refers to a disjunctive logic program.
In the rest of this article, we focus on propositional programs over a finite set A of atoms—

programs with variables reduce to their ground (propositional) versions as usual. We say that a
program P is given over A ⊆ A, if each propositional atom in P is from A.

We shall deal with classes of programs which are defined via syntactical restrictions of each of
their rules. A program P is a normal logic program (NLP) if all rules in P are normal. Accordingly,
P is positive, if each rule in P is positive and constraint-free, if no rule in P is a constraint.

We need also the notion of head-cycle free programs and rules. A program P is head-cycle
free (HCF) (Ben-Eliyahu & Dechter, 1994), if each r ∈ P is head-cycle free (in P ), i.e., if the
dependency graph of P (which is defined as usual) where literals of form not A are disregarded,
has no directed cycle that contains two atoms belonging to H(r).
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2.2 Semantics
Concerning semantics, we first briefly review (propositional) equilibrium semantics (Pearce, 2006,
1997), which is based on the logic of here-and-there (HT ). The latter provides a logical underpinning
of the answer-set semantics, and the corresponding semantic structures, i.e., HT -models, play a
fundamental role in the study of semantic properties, specifically equivalences, of logic programs.
The relation to the original definition of answer sets is pointed out by a quick review of the latter.

Propositional Logic of Here-and-There (HT ). The logic of here-and-there is an intermediate
logic between intuitionistic logic and classical logic. Like intuitionistic logic it can be semantically
characterised by Kripke models, in particular using just two worlds, namely “here” and “there”
(assuming that the “here“ world is prior to the “there” world). Accordingly, HT -interpretations are
pairs (X, Y ) of sets of atoms from A, such that X ⊆ Y . An HT -interpretation is total if X = Y .
The intuition is that atoms in X (the here part) are considered to be true, atoms not in Y (the there
part) are considered to be false, while the remaining atoms (from Y \X) are undefined. By INTA
we denote the set of all HT -interpretations over A.

These pairs are used to define the semantics of HT by a satisfaction relation for formulas over
the propositional signatureA, the binary connectives ∧, ∨, and→ (for conjunction, disjunction, and
implication, respectively), and the nullary connective ⊥ (for falsity). Moreover, for convenience,
we consider the following abbreviations: φ ≡ ψ for (φ→ ψ) ∧ (ψ → φ); ¬φ for φ→ ⊥; and >
for ⊥ → ⊥.

Let X be an interpretation, i.e., a set of atoms from A. We use X |= φ to denote classical
satisfaction of a formula φ by X , and define satisfaction in the logic of here-and-there by an
HT-interpretation (X, Y ), denoted as (X, Y ) |= φ, inductively as follows:

1. (X, Y ) 6|= ⊥,

2. (X, Y ) |= a if a ∈ X , for any atom a,

3. (X, Y ) |= φ ∧ ψ if (X, Y ) |= φ and (X, Y ) |= ψ,

4. (X, Y ) |= φ ∨ ψ if (X, Y ) |= φ or (X, Y ) |= ψ,

5. (X, Y ) |= φ→ ψ if (i) (X, Y ) 6|= φ or (X, Y ) |= ψ, and (ii) Y |= φ→ ψ.1

An HT -interpretation (X, Y ) such that (X, Y ) |= φ is called an HT -model of φ. This definition
is extended to theories, i.e., sets of formulas, as usual: (X, Y ) satisfies a theory T , iff it satisfies
all formulas φ ∈ T . The set of all HT -models of T (over A) is denoted by HTA(T ) (or simply
by HT (T ) if A is fixed). For a single formula φ, we write HT (φ) instead of HT ({φ}). Moreover,
we will make use of the following simple properties: if (X, Y ) |= T then (Y, Y ) |= T ; and
(X, Y ) |= ¬φ iff Y |= ¬φ. For an axiomatic proof system of the logic of here-and-there, we refer,
e.g., to the work of Pearce (2006).

Equilibrium semantics is obtained by imposing an additional equilibrium condition. A total
HT -interpretation (Y, Y ) is called an equilibrium model of a theory T , iff (Y, Y ) |= T and for all

1That is, Y satisfies φ→ ψ classically.

6



HT -interpretations (X, Y ) such that X ⊂ Y , it holds that (X, Y ) 6|= T . An interpretation Y is an
answer set of T iff (Y, Y ) is an equilibrium model of T . ByAS(T ) we denote the set of all answer
sets of T .

The applicability of the above semantic definitions to our logic programming setting is given by
a strict correspondence between rules and formulas of the above form: A rule of the form (1) is
identified with the formula

Al+1 ∧ . . . ∧ Am ∧ ¬Am+1 ∧ . . . ∧ ¬An → A1 ∨ · · · ∨ Al.

Consequently, DLPs correspond to propositional theories with respective syntactic restrictions.
Since disjunctive logic programs and subclasses are the subject of our investigations, in the rest of
this article we stick to the syntax of rules (also when implicitly referring to them as formulas in
HT ).

Relation to Answer-Set Semantics. We recall the answer-set semantics for DLPs (Gelfond &
Lifschitz, 1991), which generalises the answer-set semantics for NLPs (Gelfond & Lifschitz, 1988).
An interpretation Y satisfies (or models) the head of a rule r, denoted Y |= H(r), iff A ∈ Y for
some A ∈ H(r). It satisfies B(r), i.e., Y |= B(r), iff (i) each A ∈ B+(r) is true in Y , i.e., A ∈ Y ,
and (ii) each A ∈ B−(r) is false in Y , i.e., A 6∈ Y . Furthermore, Y satisfies a rule r, or Y is a
model of r, symbolically Y |= r, iff Y |= H(r) whenever Y |= B(r). Finally, Y is a model of a
program P , denoted Y |= P , iff Y |= r, for all r ∈ P .

The Gelfond-Lifschitz reduct of a program P relative to a set of atoms Y , denoted P Y , is defined
as P Y = {H(r)← B+(r) | r ∈ P, Y ∩B−(r) = ∅}. For convenience, we write, for a single rule r,
rY instead of {r}Y . An interpretation Y is an answer set (or a stable model (Przymusinski, 1991))
of a program P iff Y is a minimal model (under inclusion ⊆) of P Y .

Beyond yielding equivalent definitions of answer sets (for a generalisation of the original reduct-
based approach from programs to general propositional theories, cf. the work of Ferraris (2005),
Ferraris and Lifschitz (2005), and Truszczyński (2010)), another well-known relationship is that
(X, Y ) ∈ INTA is an HT -model (over A) of a DLP P , iff Y |= P and X |= P Y . This is a
straightforward consequence of the basic properties mentioned above, i.e., that (X, Y ) |= P implies
(Y, Y ) |= P , and that (X, Y ) |= not a iff Y |= not a.

2.3 Notions of Equivalence
Next, we review the central notions of equivalence in answer-set programming, together with their
characterisations and complexity. Two programs P and Q are ordinarily equivalent, in symbols
P ≡ Q, iff P and Q possess the same answer sets. Not surprisingly, checking ordinary equivalence
between programs of a class C is as hard as checking whether a program from C has at least one
answer set (which is referred to as the consistency problem). More precisely, deciding P ≡ Q
is ΠP

2 -complete for DLPs in general, coNP-complete if both P and Q are HCF or normal, and
P-complete if both programs are Horn.

Strong Equivalence. Two programs P and Q are strongly equivalent, denoted P ≡s Q, iff for any
program R, the programs P ∪ R and Q ∪ R are equivalent, i.e., P ∪ R ≡ Q ∪ R. That strong
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equivalence coincides with logical equivalence in HT (Lifschitz et al., 2001; Pearce, 2006), is one
of the most important findings of the foundation of answer-set programming, and specifically for
the study of program equivalences.

Proposition 1 ((Lifschitz et al., 2001)). For every DLP P and Q, P ≡s Q iff HT (P ) = HT (Q).

To check strong equivalence of two programs P and Q, it is obviously sufficient to consider HT -
interpretations (X, Y ) over A such that A contains the atoms occurring in P or Q. We implicitly
make use of this simplification whenever convenient.

We also introduce the following notation for HT -consequences, in particular for a DLP P and a
rule r: we say that r is an HT -consequence (or strong consequence) of P , denoted P |=s r, iff for
each (X, Y ) ∈ HT (P ), it holds that (X, Y ) ∈ HT (r). Furthermore, we write P |=s Q iff P |=s r,
for every r ∈ Q.

Proposition 2. For every DLP P and Q, P ≡s Q iff P |=s Q and Q |=s P .

The complexity of checking strong equivalence between two programs is as follows.

Proposition 3 ((Eiter, Fink, & Woltran, 2007)). Checking strong equivalence between given DLPs
P and Q is coNP-complete, even if one of the programs is normal or positive and the other is Horn.
If both P and Q are Horn, the problem is P-complete.

Uniform Equivalence. We now turn to uniform equivalence, which holds between two programs P
and Q, in symbols P ≡u Q, iff for each set F of facts, the program P ∪ F and Q∪ F are ordinarily
equivalent. The characterisation for uniform equivalence again relies on certain HT -models of the
involved programs.

Definition 1. Let P be a program and (X, Y ) an HT -model (over A) of P . Then, (X, Y ) is an
UE -model (over A) of P iff, for every HT -model (X ′, Y ) of P , it holds that X ⊂ X ′ implies
X ′ = Y . The set of all UE -models (over A) of P is denoted by UEA(P ).

As before, we mostly leaveA implicit, and consider that it contains all atoms from the compared
programs.

Proposition 4 ((Eiter & Fink, 2003)). For every DLP P and Q, P ≡u Q iff UE (P ) = UE (Q).

In accordance to strong consequence, uniform consequence is defined as follows. Let P be
a DLP and r a rule. Then, r is a uniform consequence of P , denoted P |=u r, iff for each
(X, Y ) ∈ UE (P ), it holds that (X, Y ) ∈ HT (r). Furthermore, we write P |=u Q iff P |=u r, for
every r ∈ Q.

Proposition 5. For any DLP P and Q, P ≡u Q iff P |=u Q and Q |=u P .

We again highlight corresponding complexity results.
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Proposition 6 ((Eiter, Fink, & Woltran, 2007)). Checking uniform equivalence between DLPs P
and Q is ΠP

2 -complete, and ΠP
2 -hardness holds even if one of the programs is positive. If one of the

programs is non-disjunctive, then the problem is coNP-complete, and hardness holds even if the
program is Horn. If both P and Q are Horn, the problem is P-complete.

Recall that deciding whether P ≡e Q, for e ∈ {s, u, o}, where P is from a class C and Q from
a class C ′, is different from deciding whether for a program P from C, there exists some program Q
from class C ′ such that P ≡e Q. We shall investigate this problem in the rest of this article.

3 General Properties and Canonical Forms for DLPs
In this section, we first discuss properties on the set of HT -models that all disjunctive programs share.
We also introduce some new concepts which relate HT -models to UE -models and respectively to
answer sets. After that, we introduce a new notion of canonical programs, which we finally use to
obtain further syntactic descriptions of certain sets of HT -interpretations.

Canonical programs have already been considered in the literature. Cabalar and Ferraris (2007)
have shown that for any set S of HT -interpretations such that (X, Y ) ∈ S implies (Y, Y ) ∈ S , i.e.,
where S is there-total, there exists a generalised disjunctive logic program (i.e., a program which
also permits default negation in the head of rules) having as its set of HT -models exactly the set S .
Eiter, Tompits, and Woltran (2005) use a similar method to construct counterexamples within their
correspondence framework.

We provide here a new approach to obtain disjunctive logic programs from a given set of
HT -interpretations, which will later turn out to be convenient for results on eliminating disjunctions.
We introduce a construction guided by two disjoint sets S and S ′ of HT -interpretations. The central
idea is that the canonical program P incorporates both S and S ′ in the sense that S ⊆ HT (P ) and
HT (P ) ∩ S ′ = ∅ are jointly satisfied. As we will show, if we choose S ′ to be “maximal disjoint”
to S, we end up with a program such that HT (P ) = S for every S. However, the selection of S ′
provides us with a tool to locally repair programs, as we show in the forthcoming section.

3.1 General Properties
Definition 2. A there-total set S of HT -interpretations is complete iff for all (X, Y ), (Z,Z) ∈ S
such that Y ⊆ Z it holds that (X,Z) ∈ S.

Lemma 1. For each DLP P , HT (P ) is complete.

Proof. By definition of HT -models, HT (P ) is always there-total, i.e., (X, Y ) ∈ HT (P ) implies
(Y, Y ) ∈ HT (P ). Assume that (X, Y ), (Z,Z) ∈ HT (P ) for some Y ⊆ Z. By anti-monotonicity
of the reduct of DLPs, Y ⊆ Z implies PZ ⊆ P Y , thus X |= P Y implies X |= PZ . Consequently,
(X,Z) ∈ HT (P ).

Later we show that for any complete set S of HT -interpretations, the existence of a program
possessing exactly S as its set of HT -models is guaranteed. Thus, the property of completeness is
equivalent to expressibility by a DLP.
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Next, we take a look at the general patterns of the UE -models of a DLP. To this end, we have to
weaken the notion of completeness.

Definition 3. A there-total set S of HT -interpretations is quasi-complete iff, for every (X, Y ) ∈ S ,
the following conditions hold:

(i) for each X ′ with X ⊂ X ′ ⊂ Y , (X ′, Y ) /∈ S; and

(ii) for each (Z,Z) ∈ S , where Y ⊂ Z, there exists a Y ′ with Y ⊆ Y ′ ⊂ Z such that (Y ′, Z) ∈ S .

Lemma 2. For each DLP P , UE (P ) is quasi-complete.

Proof. By definition, UE (P ) is there-total. Let (X, Y ) ∈ UE (P ), then (i) is satisfied by definition
of UE -models. Recall that Y ⊆ Z implies PZ ⊆ P Y , thus Y |= P Y (which indeed holds for
(X, Y ) ∈ UE (P )) implies Y |= PZ . Hence, (Y, Z) ∈ HT (P ). Again by definition of UE -models,
there exists a Y ′ with Y ⊆ Y ′ ⊂ Z such that (Y ′, Z) ∈ UE (P ). Thus, (ii) is satisfied as well.

In words, the properties of being complete, resp. quasi-complete capture implict relations
between the models of different reducts. The weaker notion of quasi-completeness mirrors the fact
that not all models X of a reduct P Y “materialize” as an UE-model (X, Y ) of P .

For the sake of completeness, we also review some known results on answer sets, but rephrase
them in the setting of HT -interpretations.

Definition 4. Let S be a set of HT -interpretations. A total interpretation (Y, Y ) ∈ S is stable in S
iff there exists no (X, Y ) ∈ S with X ⊂ Y .

Corollary 1. For any program P , Y ∈ AS(P ) iff (Y, Y ) is stable in HT (P ).

We will also need the notion of stable equivalence of two sets of HT -interpretations.

Definition 5. Two sets S and S ′ of HT -interpretations are stably equivalent if exactly the same
HT -interpretations are stable in S and S ′.

Stable equivalence reflects ordinary equivalence on the level of HT -models.

Corollary 2. Two programs P and Q are ordinarily equivalent iff HT (P ) and HT (Q) are stably
equivalent.

Definition 6. A there-total set of HT -interpretations S is said to induce a stable anti-chain iff, for
each pair (Y, Y ) and (Z,Z) of HT -interpretations stable in S, Y ⊆ Z implies Y = Z.

Proposition 7. For each DLP P , HT (P ) induces a stable anti-chain.

Proof. By Lemma 1, HT (P ) is complete. Thus for each pair, (Y, Y ) and (Z,Z) from HT (P ),
Y ⊆ Z implies (Y, Z) ∈ HT (P ), by completeness of HT (P ). Thus, for Y ⊂ Z, (Z,Z) cannot be
stable in HT (P ). This shows that HT (P ) induces a stable anti-chain.
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3.2 The Canonical Program
To start with, we introduce some basic concepts used in the program generation. First of all, given a
set S of HT -interpretations, the following operator provides, starting from an HT -interpretation
(X,Z) (which not necessarily belongs to S), the distances (in terms of set-difference Y \X) to the
“next” HT -interpretations (Y, Z) in S.

Definition 7. Let S be a set of HT -interpretations and let (X,Z) be a further HT -interpretation.
Then,

nextS(X,Z) := { (Y \X) | (Y, Z) ∈ S, X ⊆ Y ⊆ Z,

∀Y ′ : X ⊆ Y ′ ⊂ Y ⇒ (Y ′, Z) /∈ S}.

For an example2, let S0 = {(ab, ab), (a, ab), (b, ab)} and consider the HT -interpretation (∅, ab).
Then, nextS0(∅, ab) = {{a}, {b}}.

Next, we define a special form of a generic rule-set which is guided by interpretations X , Z,
and a set Y of interpretations. For the latter, we will later plug in the next (·) operator from above.
This also explains subtle difference between the cases for Y = {∅} and Y = ∅. The former applies
if nextS(X,Z) is built from a single interpretation Y with Y = X , i.e. if and only if (X,Z) ∈ S;
the latter applies exactly if (Z,Z) /∈ S.

Definition 8. Let X and Z be interpretations and let Y = {Y1, . . . , Yn} be a set of interpretations.
Then,

Y ⇐ (X,Z) :=


∅ if Y = {∅};
{⊥ ← X, not Z} if Y = ∅;
{{y1, . . . , yn} ← X, not Z | y1 ∈ Y1, . . . , yn ∈ Yn} otherwise.

For illustration, let X = {c}, Y = {{a}, {b}} and Z = {d, e}. Then,

Y ⇐ (X,Z) = {a ∨ b← c, not d, not e}.

For X = Z = ∅, and Y = {{a, a′}, {b, b′}} we get four rules, viz.

Y ⇐ (X,Z) = {a ∨ b←; a ∨ b′ ←; a′ ∨ b←; a′ ∨ b′ ←}.

We finally need a further set S ′ which provides those elements (X,Z) used to initialise rules of
the form Y ⇐ (X,A \ Z) for Y = nextS(X,Z).

Definition 9. A set S ′ of HT -interpretations is called complementary to a set S of HT -
interpretations iff, S ∩ S ′ = ∅, and, for all (X, Y ) ∈ S ′ it holds that either X = Y or (Y, Y ) ∈ S.

We are now prepared to define our notion of a canonical program. Recall that A denotes the
universe of atoms.

2We sometimes denote interpretations {a1, . . . , an} by juxtaposition a1 · · · an of their elements.
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Definition 10. For every complete set S of HT -interpretations and every set S ′ complementary to
S, define the canonical program over A for S with respect to S ′ as

PA,S,S′ :=
⋃

(X,Z)∈S′
nextS(X,Z)⇐ (X,A \ Z).

Lemma 3. Consider A, S, and S ′ as in Definition 10. Then, S ⊆ HT (PA,S,S′).

Proof. Let P abbreviate PA,S,S′ , and, towards a contradiction, assume an HT -interpretation
(X,Z) ∈ S exists such that (X,Z) /∈ HT (P ). From the latter, there exists a rule r ∈ P such
that (X,Z) /∈ HT (r). By construction of P , it follows that there exists an HT -interpretation
(X ′, Z ′) ∈ S ′ such that r ∈ nextS(X ′, Z ′)⇐ (X ′,A \ Z ′). As S ′ is complementary to S , we have
that (X ′, Z ′) /∈ S, and furthermore one of the following two cases applies: (i) X ′ = Z ′; or (ii)
(Z ′, Z ′) ∈ S.

(i) As S ′ is complementary to S , we have (Z ′, Z ′) /∈ S . Thus, by construction, nextS(X ′, Z ′)⇐
(X ′,A \ Z ′) contains r as the single constraint. As r is a constraint, (X,Z) /∈ HT (r) iff Z is
a model of the body of r. Hence, B+(r) = Z ′ ⊆ Z and Z ⊆ Z ′ = A \ B−(r) jointly have to
hold, yielding Z = Z ′. Since S is there-total, we get from the assumption (X,Z) ∈ S that also
(Z,Z) = (Z ′, Z ′) ∈ S, a contradiction.

(ii) SupposeX ′ ⊂ Z ′ and (Z ′, Z ′) ∈ S . In what follows, we setX = Z in case (Z,Z) 6∈ HT (r).
As r ∈ nextS(X ′, Z ′) ⇐ (X ′,A \ Z ′) and (X,Z) /∈ HT (r), we have B+(r) = X ′ ⊆ X and, as
before, Z ⊆ Z ′. Now, H(r) ∩X = ∅. Hence, each Y ∈ nextS(X ′, Z ′) contains at least one atom
y which is not contained in X . Hence, each Y ∈ nextS(X ′, Z ′) fulfills Y 6⊆ X . However, since
X ′ ⊆ X , (X,Z ′) /∈ S then has to hold. On the other hand, S is complete, and since (X,Z) ∈ S by
assumption, Z ⊆ Z ′, and (Z ′, Z ′) ∈ S, we get (X,Z ′) ∈ S, a contradiction.

The next result provides an inverse characterisation in terms that no HT -interpretation from S ′
is HT -model of the canonical program PA,S,S′ .

Lemma 4. Consider A, S, and S ′ as in Definition 10. Then, HT (PA,S,S′) ∩ S ′ = ∅.

Proof. Let P abbreviate PA,S,S′ , and, towards a contradiction, assume there is some (X,Z) ∈
HT (P ) ∩ S ′. Now, (X,Z) ∈ S ′ implies that R = nextS(X,Z) ⇐ (X,A \ Z) is a subset of PS
and R is non-empty, since (X,Z) /∈ S by the assumption that S ′ is complementary to S. First,
consider X = Z. By construction, R = {⊥ ← Z, not (A \ Z)}. But then, (Z,Z) /∈ HT (P ).
Hence, suppose X ⊂ Z. Take any rule r = {y1, . . . , yn} ← X, not A\Z from R. Clearly, we have
rZ = {{y1, . . . , yn} ← X}, and by definition of the set nextS(X,Z), no yi of this rule is contained
in X . Hence, X 6|= rZ , and consequently (X,Z) /∈ HT (PS). So, in both cases, we arrive at a
contradiction to (X,Z) ∈ HT (PS).

So far, we have shown that the program PA,S,S′ satisfies S ⊆ HT (P ) ⊆ (INTA \ S ′). Finally,
to define a canonical program with respect to a set S, i.e., with S = HT (P ), it is sufficient to
consider a set being “maximal” complementary to S.

Definition 11. Let A be the universe, let S be a complete set of HT -interpretations, and let

S̄A := {(X,Z) ∈ INTA \ S | (X = Z) ∨ (Z,Z) ∈ S}.

12



Whenever A is clear from the context, we leave it implicit in S̄A and use PS as a shorthand for
PA,S,S̄A , i.e., for the canonical DLP over A for S with respect to S̄A.

Theorem 1. For any complete set S of HT -interpretations, HT (PS) = S.

Proof. First note that S̄A is indeed complementary to S. Hence, by Lemma 3, we get S ⊆
HT (PS). We show HT (PS) ⊆ S. Towards a contradiction, suppose some (X, Y ) ∈ HT (PS)
exists such that (X, Y ) /∈ S. First, let X = Y , i.e., (Y, Y ) /∈ S. By definition, then (Y, Y ) ∈ S̄A,
and by Lemma 4, HT (PS) ∩ S̄A = ∅. Hence, (Y, Y ) /∈ HT (PS). Second, let X ⊂ Y , (X, Y ) /∈ S ,
and (Y, Y ) ∈ S. Again by definition of S̄A, we have (X, Y ) ∈ S̄A, and Lemma 4 gives us
that (X, Y ) /∈ HT (PS). Hence, in both cases, we derive a contradiction to the assumption
(X, Y ) ∈ HT (PS) which shows the claim.

Hence, we have shown the inverse of Lemma 1, i.e., that for any complete set S of HT -
interpretations, there exists a program P such that HT (P ) = S.

Example 1. Consider the complete set

S1 = {(ab, ab), (a, ab), (b, ab), (a, a), (b, b)}.

Setting the universe to A = {a, b}, we have

S̄1 = {(∅, ∅), (∅, a), (∅, b), (∅, ab)}.

We obtain for the elements in S̄1 the following successors:

nextS1(∅, ∅) = ∅;
nextS1(∅, a) = {{a}};
nextS1(∅, b) = {{b}};

nextS1(∅, ab) = {{a}, {b}}.

The four (in this case, singleton) rule sets according to Definition 10 are as follows:

∅ ⇐ (∅,A \ ∅) = {⊥ ← not a, not b};
{{a}} ⇐ (∅,A \ {a}) = {a← not b};
{{b}} ⇐ (∅,A \ {b}) = {b← not a};

{{a}, {b}} ⇐ (∅,A \ {a, b}) = {a ∨ b←}.

One can check that the composed program PS1 satisfies HT (PS1) = S1.

In the next example, we start from a slightly different set of HT -interpretations. Observe that
the outcome now is a non-disjunctive program.

Example 2. Consider

S2 = {(ab, ab), (a, ab), (b, ab), (a, a), (b, b), (∅, ab)}.
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In this case, we have
S̄2 = {(∅, ∅), (∅, a), (∅, b)},

and we obtain, for the three elements in S̄2,

nextS2(∅, ∅) = ∅,
nextS2(∅, a) = {{a}},
nextS2(∅, b) = {{b}},

and the corresponding rules

∅ ⇐ (∅,A \ ∅) = {⊥ ← not a, not b},
{{a}} ⇐ (∅,A \ {a}) = {a← not b},
{{b}} ⇐ (∅,A \ {b}) = {b← not a}.

Once again one can verify that HT (PS2) = S2.

One might have observed that a subset of the rules in the above programs would already be
sufficient to exactly capture the respective input sets S1 and S2. In particular, the last rule in PS1 ,
a∨ b←, subsumes the other three rules in terms of their HT -models. In other words, the other three
rules in PS1 are redundant. In PS2 , only the first rule is redundant, i.e., PS2 is strongly equivalent to
the program {a← not b; b← not a}.

We can obtain these more compact programs by selecting the complementary sets more suitably.

Example 3. Let us consider certain subsets of S̄1 and S̄2 that directly yield programs more compact
than those given Examples 1 and 2. For instance, we can select

PA,S1,{(∅,ab)} = {a ∨ b←},
PA,S2,{(∅,a),(∅,b)} = {a← not b; b← not a},

and derive programs without redundant rules.

It remains for further study how the complementary sets have to be chosen in general to provide
more compact or even irredundant canonical forms.

3.3 Applying the Canonical Program
We now make use of our canonical programs such that their UE -models match a given set of
HT -interpretations. To this end, we first introduce a function that generalises the selection of
UE -models from HT -models of a program to sets of HT -interpretations.

Definition 12. The uniform selection operator σu : INTA → INTA is given as

σu(S) = S \ {(X, Y ) | ∃ (X ′, Y ) ∈ S with X ⊂ X ′ ⊂ Y }.

The following relation is easy to check.
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Proposition 8. For any program P , UE (P ) = σu(HT (P )).

Quasi-complete sets turn out to be closed under uniform selection.

Lemma 5. For any quasi-complete set S of HT -interpretations, σu(S) = S.

Proof. Clearly, σu(S) ⊆ S holds by definition. To show S ⊆ σu(S), for any quasi-complete set
S, just observe that if (X, Y ) ∈ S then there is no X ′ such that X ⊂ X ′ ⊂ Y and (X ′, Y ) ∈ S
(due to condition (i) in Definition 3). But then (X, Y ) ∈ σu(S) by definition.

Next, we define certain operators on sets of HT -interpretations, in order to turn quasi-complete
into complete sets such that the result of the uniform selection operator σu remains unchanged.

Definition 13. A uniform mapping is any function U : INTA → INTA such that, for any quasi-
complete set S of HT -interpretations, (i) U(S) is complete, and (ii) σu(U(S)) = σu(S).

Using such mappings we are able to turn our canonical program to be defined with respect to
UE -models.

Theorem 2. For every quasi-complete set S of HT -interpretations and uniform mapping U ,
UE (PU(S)) = S.

Proof. By definition, U(S) is complete if S is quasi-complete. Hence, by Theorem 1,
HT (PU(S)) = U(S). We apply σu to both sets and derive by Proposition 8 UE (PU(S)) = σu(S).
Since S is quasi-complete, we get σu(S) = S from Lemma 5, which proves the result.

Note that different uniform mappings are possible and yield different programs. We define two
concrete uniform mappings:

Ucover(S) = S ∪ {(X,Z) | X ⊆ Y ⊂ Z, (Y, Z) ∈ S};
Ucompl(S) = S ∪ {(X, Y ) | (X,Z) ∈ S, (Y, Y ) ∈ S, Z ⊆ Y }.

Intuitively, Ucover(S) adds any HT -interpretation (X,Z) “below” a non-total UE -model (Y, Z),
while Ucompl(S) in turn just “repairs” the quasi-complete set to a complete one by adding exactly
those HT -interpretations which violate completeness for S. Both mappings satisfy the conditions
from Definition 13.

Lemma 6. The mappings Ucover and Ucompl are both uniform.

Proof. We show the result for Ucover . The proof for Ucompl is similar.
Let S be quasi-complete. We first show that condition (i) holds, i.e. U = Ucover(S) is complete.

Consider any (X,Z), (Y, Y ) ∈ U such that X ⊆ Z ⊆ Y . We have to show that (X, Y ) ∈ U .
For X = Y this is trivial, thus in the following let X ⊂ Y . First observe that (Y, Y ) ∈ S. Also
(Z,Z) ∈ S holds: this is clear in case X = Z by definition; otherwise some X ′ exists such that
X ⊆ X ′ ⊂ Z and (X ′, Z) ∈ S . Since S is there-total, it follows that (Z,Z) ∈ S , proving the claim.
Now, since S is quasi-complete, we know that there exists some X ′′ with X ′ ⊆ X ′′ ⊂ Y such that
(X ′′, Y ) ∈ S. Since X ⊆ X ′′, (X, Y ) ∈ U follows by definition of Ucover(S).

To show (ii), i.e., σu(Ucover(S)) = σu(S), observe that Ucover adds only non-total HT -
interpretations (X,Z) where X ⊂ Y with (Y, Z) ∈ S. Hence, all these additional elements
are removed by σu.

15



Example 4. Consider the set S1 from Example 1. We want to construct programs such that their
UE -models exactly match S1. To this end, we consider the two uniform mappings introduced above.
First observe that Ucover(S1) = S1 ∪ {(∅, ab)} = S2. Hence, we get PS2 as the canonical program
which, as discussed in Example 2, can be reduced to P = {a← not b; b← not a}. Observe that
UE (P ) = S1 since (∅, ab) is an HT -model but not a UE -model of P .

For our second mapping Ucompl , one can check that we get Ucompl(S1) = S1. Thus, we simply
take PS1 as already derived in Example 1, which can be simplified to Q = {a ∨ b ←}. Clearly,
UE (Q) = HT (Q) = S1 mirroring the fact that P ≡u Q.

We finally employ our method to derive canonical programs with respect to desired answer sets.

Definition 14. A stable mapping is any function I : INTA → INTA such that, for every set S
of HT -interpretations inducing a stable anti-chain, (i) I(S) is complete, and (ii) I(S) and S are
stably equivalent.

Theorem 3. For every set S of HT -interpretations inducing a stable anti-chain and every stable
mapping I , the set HT (PI(S)) is stably equivalent to S.

Proof. Since I is a stable mapping, (i) I(S) is complete yielding HT (PI(S)) = I(S); and (ii)
I(S) and S are stably equivalent.

Corollary 3. Let S be a set of HT -interpretations inducing a stable anti-chain and let I be any
stable mapping. Then, AS(PI(S)) = {Y | (Y, Y ) is stable in S}.

Hence, to obtain a program that has a set Y of interpretations as its answer sets, we just set
S = {(Y, Y ) | Y ∈ Y} and select a stable mapping I to provide PI(S) as such a program.

We introduce three mappings which can be shown to be stable.

Ilcover(S) = {(Y, Y ) | (Y, Y ) is stable in S} ∪
{(X,Z) | (Y, Y ) is stable in S, X ⊆ Z, Y ⊂ Z}.

Iucover(S) = {(Y, Z) | (X,X) is stable in S, X ⊆ Y, Y ⊆ Z}.
Inocover(S) = {(X,X) | (X,X) is stable in S}.

Note that in case S comes only with total HT -interpretations, the test for stability is not necessary.
We provide a final example to illustrate the different behaviours of the three mappings.

Example 5. Consider S = {(a, a), (b, b)} to generate programs which have a and b as their answer
sets. Obviously, S induces a stable anti-chain. Over universe A = {a, b}, we get

Ilcover(S) = {(a, a), (b, b), (∅, ab), (a, ab), (b, ab), (ab, ab)},
Iucover(S) = {(a, a), (b, b), (a, ab), (b, ab), (ab, ab)},
Inocover(S) = {(a, a), (b, b)}.

We already have partly shown in earlier examples how programs are obtained from these sets. In
particular, since Ilcover(S) = S2, we get {a ← not b; b ← not a} as resulting (and optimised)
program. Moreover, Iucover(S) = S1 yielding {a ∨ b←}.
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For S3 = Inocover(S) = {(a, a), (b, b)}, we have to compute PS3 = PA,S3,S̄3 . Observe that

S̄3 = {(∅, ∅), (∅, a), (∅, b), (ab, ab)}.

Hence, the resulting program is (only the first rule is redundant with respect to HT -models):

{⊥ ← not a, not b; a← not b; b← not a; ⊥ ← a, b}.

To summarise, we obtained three programs (in their reduced variants):

P1 = PIlcover(S)
= {a← not b; b← not a},

P2 = PIucover(S)
= {a ∨ b←},

P3 = PInocover(S)
= {a← not b; b← not a; ⊥ ← a, b}.

Each of these programs has two answer sets, {a} and {b}, as intended, although none of them is
strongly equivalent to another, since they are built from different sets of HT -interpretations.

4 Elimination of Disjunction
This section provides two approaches to eliminate disjunctions from a given program P such that
the resulting program Q satisfies P ≡e Q, for e ∈ {s, u, e}.

We start with global rewritings where the entire program is recomputed. Then, we provide a
local rewriting, which changes the program rule-by-rule, taking however the semantics of the entire
program into account. As we will show, the local approach subsumes previous results (Eiter, Fink,
Tompits, & Woltran, 2004a). We shall also address complexity issues in this section.

Indeed, the most prominent rewriting for disjunctive programs is the head-to-body shift due
to Ben-Eliyahu and Dechter (1994). This simple syntactical rewriting is faithful for ordinary and,
as shown by Eiter, Fink, et al. (2004b), uniform equivalence. We show that for these notions of
equivalence, a generalised (semantics-based) version of this shift applies to all disjunctive programs.
For strong equivalence, a further semantic criterion has to be satisfied.

We first analyse this particular difference between disjunction-free and disjunctive programs
with respect to the properties of their HT -models. The forthcoming term “closed under here-
intersection” was coined by Eiter, Fink, et al. (2004a) and refers to a property characteristic for the
HT -models of normal logic programs. In particular, the here-worlds of the HT -models are closed
under intersection upon fixing the there-world.

Definition 15. A set S of HT -interpretations is closed under here-intersection iff, for any two
HT -interpretations (X, Y ), (X ′, Y ) ∈ S, also (X ∩X ′, Y ) ∈ S.

Lemma 7. Let P be an NLP. Then, HT (P ) is closed under here-intersection.

Proof. Since P is normal, P Y is Horn. Then, X |= P Y and X ′ |= P Y immediately implies
X ∩X ′ |= P Y , since, as well known (cf. McKinsey (1943)), each Horn program P ′ satisfies the
following intersection property: if X |= P ′ and X ′ |= P ′, then X ∩X ′ |= P ′.

Obviously, not every complete set of HT -interpretations is closed under here-intersection.
Hence,
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Corollary 4. There exist disjunctive programs which cannot be rewritten into strongly equivalent
normal programs.

Indeed, if the set HT (P ) for a disjunctive program P is not closed under here-intersection, no
strongly equivalent normal program exists.

4.1 Global Elimination of Disjunction
In what follows we first show that in the case where HT (P ) of a disjunctive program P is closed
under here-intersection, a normal program Q such that P ≡s Q is guaranteed to exist. To this end,
we employ our program generation PS . The following observation is central.

Lemma 8. For any set S of HT -interpretations closed under here-intersection, it holds that
|nextS(X,Z)| ≤ 1, for any (X,Z).

Proof. Consider some HT -interpretation (X,Z) such that |nextS(X,Z)| > 1. By definition of
nextS(X,Z), there exist (Y1, Z) ∈ S and (Y2, Z) ∈ S, with Y1 6= Y2, such that X ⊆ Yi ⊆ Z, for
i ∈ {1, 2}. Note thatX ⊆ Y1∩Y2 and from Y1 6= Y2 follows that either Y1∩Y2 ⊂ Y1 or Y1∩Y2 ⊂ Y2.
Without loss of generality assume the former. By the second condition for nextS(X,Z), i.e., that
for Y ′, if X ⊆ Y ′ ⊂ Y , then (Y ′, Z) /∈ S , as X ⊆ Y1 ∩ Y2 ⊂ Y1 we get (Y1 ∩ Y2, Z) /∈ S , which is
a contradiction to S being closed under here-intersection, because (Y1, Z) ∈ S and (Y2, Z) ∈ S.

Thus, by inspecting Definition 10, the following observation comes nearly for free.

Lemma 9. Let A be the universe and let S be a complete set of HT -interpretations closed under
here-intersection. Then, for every S ′ complementary to S, the program PA,S,S′ is normal.

As a corollary we thus get:

Corollary 5. For every complete set S of HT -interpretations that is closed under here-intersection,
the canonical program PS is normal.

This result together with Theorem 1 immediately provides us with the following observation:

Theorem 4. Let P be a DLP over A. Then, there exists a normal logic program Q over A such
that P ≡s Q are strongly equivalent iff HT (P ) is closed under here-intersection.

Indeed, the construction of the normal program relies on the canonical program. Hence, given
a DLP P , first one has to compute the HT -models HT (P ) of P , and then generate the canonical
program PUE(P ). By construction, the latter is the desired normal program, whenever HT (P ) is
closed under here-intersection.

The case of uniform equivalence is elegantly settled by considering the cover-mapping Ucover

from above. Recall that Ucover is a uniform mapping (see Lemma 6). Now we observe:

Lemma 10. For every set S of HT -interpretations, Ucover(S) is closed under here-intersection.

From Theorem 2 and Lemma 10, we thus obtain:
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Theorem 5. For every DLP P there exists some normal logic program Q overA such that P ≡u Q.

Again, the construction of the normal program relies on the canonical program. Given a DLP P ,
compute the UE -models UE (P ) of P , select a uniform mapping U , and then generate the canonical
program PU(HT (P )). By construction, the latter is the desired normal program whenever U(S) is a
set closed under here-intersection. As we have seen, Ucover(S) satisfies this property for arbitrary S .

As uniform equivalence implies ordinary equivalence, we immediately obtain:

Corollary 6. For every DLP P , there exists some normal logic program Q such that P ≡ Q.

In the case of ordinary equivalence, however, we can make use of stable mappings I(·) as in
Theorem 3, as long as their outcome satisfies here-intersection. This holds for two of the presented
mappings:

Lemma 11. For any set S of HT -interpretations, Ilcover(S) and Inocover(S) are closed under
here-intersection.

Proof. This is easy to see: as for each non-total (X, Y ) ∈ S ′, we have (Z, Y ) ∈ S ′ for any Z ⊆ X ,
closure of S ′ = Ilcover(S) under here-intersection cannot be violated. Furthermore, Inocover(S) only
contains total HT -models; again, this immediately shows that S is closed under here-intersection.

Hence, we can obtain a normal program PS as a faithful rewriting of an arbitrary DLP P by
using S = {(Y, Y ) | Y ∈ AS(P )} or S = Ilcover((Y, Y ) | Y ∈ AS(P )}.

Note that the “standard” rewriting⋃
Y ∈AS(P )

{{y} ← not (A \ Y ) | y ∈ Y }

can also be obtained via our canonical program PA,S,S′ , by setting S = {(Y, Y ) | Y ∈ AS(P )}
and S ′ = {(∅, Y ) | Y ∈ AS(P ), Y 6= ∅}. It is ordinarily equivalent to P in case AS(P ) 6= ∅. Note
that S ′ is complementary to S, Inocover(S) = S, and S is closed under here-intersection.

Computational Complexity. We finally provide complexity results.

Theorem 6. Given a DLP P , checking closure under here-intersection for HT (P ) is complete for
coNP. Hardness holds even for a constraint-free HCF program with a single disjunction.

Proof. Membership for the complementary problem is by guessing two HT -interpretations (X, Y )
and (X ′, Y ), and checking whether (X, Y ) ∈ HT (P ), (X ′, Y ) ∈ HT (P ), (X ∩X ′, Y ) /∈ HT (P ).
As HT -model-checking is feasible in polynomial time (Eiter, Fink, & Woltran, 2007), membership
in coNP follows.

For hardness, we reduce the problem of validity of a DNF formula φ to a program P such
that HT (P ) is closed under here-intersection iff φ is valid. To this end, consider φ in 3-DNF, i.e.,
φ =

∨m
i=1 li,1 ∧ li,2 ∧ li,3, and let

P = {w ← li,1, li,2, li,3 | 1 ≤ i ≤ m} ∪
{a ∨ b← not w},
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where in P negative literals li,j = ¬v are written as not v and a, b, and w are new atoms. Obviously,
the program is head-cycle free, contains no constraints, and is obtained from φ in polynomial time.

We show that HT (P ) satisfies here-intersection iff φ is valid. Remember that (X, Y ) ∈ HT (P )
iff Y |= P and X |= P Y . Consider the case that φ is valid. Then, w ∈ Y holds for every
model Y of P . Hence, for each (Y, Y ) ∈ HT (P ), P Y is Horn. As models of Horn programs are
closed under intersection, HT (P ) is closed under here-intersection. On the other hand, if φ is
not valid we have some (Y, Y ) ∈ HT (P ) with w /∈ Y , and {a, b} ⊆ Y . One can check that then
(Y \ {a}, Y ) ∈ HT (P ), (Y \ {b}, Y ) ∈ HT (P ), but (Y \ {a, b}, Y ) /∈ HT (P ), i.e., HT (P ) is not
closed under here-intersection.

Corollary 7. Checking whether, for a given DLP P , there exists a normal program Q such that
P ≡s Q is coNP-complete. Hardness holds for the settings as in Theorem 6.

For uniform, and respectively, ordinary equivalence, we have seen that such a normal program
always exists and thus the decision problem is trivial.

4.2 Local Elimination of Disjunction
To employ disjunction elimination locally, i.e., rule per rule, we start from the concept of shifting
which is known to be faithful for a rule r with respect to uniform (and thus, ordinary) equivalence
in case r is head-cycle free in the given program P (Eiter, Fink, & Woltran, 2007). As we shall see,
this shift in general generates additional HT -models. In order to avoid this, we add further rules
whenever necessary by using our canonical program. This is done in such a way, that whenever the
given program’s HT -models are closed under here-intersection, these “repair” rules are normal.

We start with a formal definition of the well-known head-to-body shift.

Definition 16. Given a rule r, we define

r→ =

{
{h← B+(r), not B−(r), not (H(r) \ h) | h ∈ H(r)} if |H(r)| > 1;
{r} otherwise.

Moreover, P→r denotes the program (P \ {r}) ∪ r→ and P→ =
⋃
r∈P r

→.

Proposition 9 ((Eiter, Fink, & Woltran, 2007)). For every DLP P and rule r ∈ P that is HCF in P ,
P ≡u P→r . Moreover, for every HCF program P , P ≡u P→.

Shifting does not work in case of strong equivalence, even for head-cycle free programs, as the
prominent example P = {a ∨ b←} shows. Observe that P→ = {a← not b; b← not a}, and we
already have seen several times that the latter program has an additional HT -model (∅, ab). Indeed,
HT (P ) is not closed under here-intersection and thus, in view of Theorem 4, we know that no
normal program that is strongly equivalent to P exists.

Another program over atoms {a, b}which does not possess a strongly equivalent normal program
is {a ∨ b←; a← not a}; it has the same HT -models as {a ∨ b←} except for (b, b).

The next result characterises the exact difference between r and r→ in terms of HT -models.
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Lemma 12. For any rule r,

(i) HT (r) ⊆ HT (r→) and

(ii) HT (r→) \ HT (r) = S→r , with

S→r = {(X, Y ) | X ⊆ Y, |H(r) ∩ Y | ≥ 2, X 6|= rY }.

(iii) for every interpretation Y it holds that (Y, Y ) ∈ HT (r) iff (Y, Y ) ∈ HT (r→).

Proof. As for (iii), this is easily seen by the fact that total HT -models do not make a difference
between H(r) and B−(r).

In what follows, let rp denote the rule in r→ with H(rp) = p.
To show (i), suppose, towards a contradiction, that a non-total HT -interpretation (X, Y ) ∈

HT (r) exists such that (X, Y ) /∈ HT (r→). From the latter, we know that there exists a rule
rp ∈ r→ such that (X, Y ) /∈ HT (rp). Since (Y, Y ) ∈ HT (r), we get from item (iii) that also
(Y, Y ) ∈ HT (r→). Since (X, Y ) /∈ HT (r→), the following then must hold jointly: Y ∩B−(rp) = ∅,
B+(rp) ⊆ X , and X ∩H(rp) = ∅. Since H(r) ⊆ B−(rp) ∪H(rp) and B+(r) = B+(rp), we thus
would get (X, Y ) /∈ HT (r), a contradiction.

For (ii), note that S→r ∩ HT (r) = ∅. It remains to show that HT (r→) ⊆ HT (r) ∪ S→r .
Therefore, consider some (X, Y ) ∈ HT (r→), and suppose that (X, Y ) /∈ HT (r). We show that
(X, Y ) ∈ S→r . Towards a contradiction, suppose that (X, Y ) /∈ S→r . Since (X, Y ) /∈ HT (r),
X 6|= H(r), Y |= B(r), and either X |= B+(r) or Y 6|= H(r).

We consider two cases. First, if Y 6|= H(r), i.e., |Y ∩H(r)| = 0, then we have a contradiction
to the assumption that (X, Y ) ∈ HT (r→). Otherwise, if Y |= H(r), we have X |= B+(r), and
we get |Y ∩H(r)| = 1, otherwise (X, Y ) ∈ S→r . Let Y ∩H(r) = {p}, and consider the rule rp.
Obviously, Y ∩ B−(rp) = ∅. Moreover, we have X |= B+(rp) = B+(r). But then, X 6|= H(r)
yields p /∈ X , which in turn contradicts (X, Y ) ∈ HT (r→).

In other words S→r contains those HT -interpretations (X, Y ), such that (X, Y ) /∈ HT (r) and
|H(r) ∩ Y | ≥ 2. Note that the latter implies (Y, Y ) ∈ HT (r), and together with (X, Y ) /∈ HT (r)
this implies Y ∩ B−(r) = ∅, otherwise rY would be void. Also observe that S→r contains only
non-total HT -interpretations witnessing the fact that r and r→ are indeed classically equivalent.

We define now notions of extended shifting exploiting concepts from the previous section. In
fact, we just need to add the canonical program for HT (P ) with respect to S→r , since this program
rules out all additional HT -models.

Definition 17. Let P be a program over A and r ∈ P . We define

P⇒r = P→r ∪ PA,HT (P ),S→r .

Moreover, let P⇒ denote the program
⋃
r∈P
(
r→ ∪ PA,HT (P ),S→r

)
.

Note that in case r is already normal, P→r = P , and moreover, S→r is empty, which yields that
PA,HT (P ),S→r is the empty program. Hence, in this case P⇒r = P .
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Theorem 7. For every program P and every rule r ∈ P , the following holds:

(i) P ≡s P⇒r ;

(ii) if HT (P ) satisfies here-intersection, then P⇒r \ P is normal, i.e., all new rules are normal.

Proof. The second part is an immediate consequence of Lemma 9.
The proof of the first part is as follows: First, from Lemma 12, we know HT (P ) ⊆ HT (P→r ) and

HT (P→r )\HT (P ) ⊆ S→r . Hence, S→r is complementary to HT (P ) in the sense of Definition 9. By
Lemma 3, HT (P ) ⊆ HT (PA,HT (P ),S→r ). Hence, since P⇒r = P→r ∪PA,HT (P ),S→r , we get HT (P ) ⊆
HT (P⇒r ) and HT (P⇒r )\HT (P ) ⊆ S→r . Now, by Lemma 4, we get that HT (PA,HT (P ),S→r )∩S→r =
∅, thus we end up with HT (P ) = HT (P⇒r ).

Therefore, given a program P , the rewriting P⇒ yields a strongly equivalent program which is
normal whenever HT (P ) is closed under here-intersection. Hence, we defined a “local variant” of
rewritings from DLPs to normal programs, however, taking the semantics of the entire program
with respect to its HT -models into account. This “local variant” might be preferable, if there is only
a small number of disjuntive rules to be rewritten and the structure of the remaining normal rules
should remain unchanged. This might also be beneficial if the non-disjunctive part of the program
to be recasted enjoys certain structural features that are typically lost by the global rewriting as used
in Theorem 4.

With a slightly different rewriting, viz. using PA,HT (P ),S→r ∩HT (P\{r}) instead of PA,HT (P ),S→r in
P⇒r from Definition 17, we obtain a simple head-to-body shift whenever it is faithful under strong
equivalence, i.e., we only add the “repair rules” if necessary. It can be checked that this modification
also satisfies Theorem 7.

Example 6. Consider the program {a ∨ b ←;⊥ ← a, b; }. Our result shows that shifting r =
a ∨ b← in P is faithful with respect to strong equivalence. This is seen by the fact that HT (P \
{r}) = {(a, a), (b, b), (∅, a), (∅, b), (∅, ∅)}. No such pair (X, Y ) satisfies |Y ∩ H(r)| ≥ 2, and
consequently S→r ∩ HT (P \ {r}) = ∅. But then, PA,HT (P ),S→r ∩HT (P\{r}) is the empty program and
we have P⇒r = P→r for this modified variant of P⇒r .

If we want to shift rules in such a way that uniform equivalence is retained, we just simply adapt
our concept as follows: First, we take for the “repair rule” the uniform cover mapping for HT (P ),
i.e., Ucover(HT (P )), into account instead of HT (P ). Second, we can now refrain from elements in
S→r which are contained in Ucover(HT (P )), since this repair is not necessary anymore.

Definition 18. Let P be a program over A, r ∈ P , S = Ucover(HT (P )), and S ′ = S→r \ S . Then,

P⇒U
r = P→r ∪ PA,S,S′ ,

and P⇒U =
⋃
r∈P
(
r→ ∪ PA,S,S′

)
.

Again, we have the property that P⇒U
r = P whenever r is normal.
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Example 7. Once more, we use our canonical example program P consisting of a single disjunctive
rule r given by a ∨ b←. We already have used HT (P ) = S1 in previous examples, in particular in
Example 1, and, moreover, we have seen that

S2 = Ucover(S1) = {(ab, ab), (a, ab), (b, ab), (a, a), (b, b), (∅, ab)}

and thus S→r \S2 is empty. We thus obtain the program P⇒r = {a← not b; b← not a} as expected.

The general relation is as follows.

Theorem 8. For any program P and any rule r ∈ P the following holds:

(i) P ≡u P⇒U
r and

(ii) P⇒U
r \ P is normal.

A certain optimisation of this rewriting is by taking programs PA,S,S′ 6= ∅ such that S ′ ⊆
HT (P \ {r}), otherwise we may add redundant rules in P⇒r . Thus, for instance, instead of
PA,HT (P ),S→r we could take PA,HT (P ),S→r ∩HT (P→

r ). With this optimisation one can show that our
method generalises the head-to-body shift for HCF program.

Having a local rewriting which retains uniform equivalence for any DLP, we thus have also
obtained such a rewriting for ordinary equivalence, as well.

We mention here that our presentation, although quite different, subsumes all the rewritings
that we have presented in preliminary work (Eiter, Faber, et al., 2004). In fact, one can check that
that the object P⇒r amounts to the rewriting Pr,s in Definition 5 from Eiter, Fink, et al. (2004a);
and P⇒U

r amounts to Pr,u in Definition 6 from that paper. The rewriting with respect to ordinary
equivalence introduced in Lemma 4 of Eiter, Fink, et al. (2004a) is obtained in our new framework
as as well by taking PA,S,S→r with S = {(Y, Y ) | Y ∈ AS(P )} into account.

Hence, we have shown that employing the new canonical notion of programs subsumes all
rewritings presented in earlier work, which have been defined in a rather ad-hoc manner. In other
words, our results here provide a more general access to program rewriting since we made precise
how canonical programs can be used for a local rewriting. Together with the choice of suitable
operators as uniform mappings, a broad range of several different rewriting approaches can be
obtained.

5 Eliminating Negation
Besides disjunction, the second connective in DLPs that may considerably affect the efficiency
of program evaluation, and thus has given rise to various syntactic program classes, is (default)
negation. In this section, we thus study the elimination of negation.

We start by considering the global elimination of negation from DLPs retaining strong, respec-
tively uniform, equivalence and then briefly draw some conclusions for NLPs. Throughout this
section we use Se(P ), where e ∈ {s, u}, to denote HT (P ) in case e = s, and UE (P ) otherwise.
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5.1 Elimination of Negation in DLPs
We start with introducing two further notions on sets of HT -interpretations in analogy to here-
intersection, viz. here-totality and there-intersection.

Definition 19. A set S of HT -interpretations is here-total iff (X, Y ) ∈ S implies (X,X) ∈ S , and S
is closed under there-intersection iff for every (X,X), (Y, Y ) ∈ S it holds that (X ∩Y,X ∩Y ) ∈ S .

Lemma 13. For every positive logic program P , HT (P ) is here-total.

Proof. If P is positive, then X |= P for every (X, Y ) ∈ HT (P ), which implies (X,X) ∈
HT (P ).

Since, for any program P , HT (P ) \ UE (P ) contains only non-total HT -interpretations, the
following result is an immediate consequence of Lemma 13.

Corollary 8. For every positive logic program P , UE (P ) is here-total.

Next, we restate (in terms of the above notion of here-totality) and slightly generalise (also
considering strong equivalence) a result (more precisely Theorem 5) from Eiter and Fink (2003).

Lemma 14. Let P be a DLP. Then the following conditions are equivalent, for e ∈ {s, u}:

(i) P |=e r iff P |= r, for every rule r.

(ii) Se(P ) is here-total.

Proof. First, observe that Se(P ) is here-total iff X |= P holds for every (X, Y ) ∈ Se(P ): Indeed,
by definition here-totality implies (X,X) ∈ Se(P ), for every (X, Y ) ∈ Se(P ), and thus X |= P .
On the other hand, if X |= P holds for every (X, Y ) ∈ Se(P ), then (X,X) ∈ HT (P ) holds, and
since HT (P ) and UE (P ) coincide on total models, (X,X) ∈ Se(P ) follows, proving here-totality
of Se(P ).

Given the above, for uniform equivalence, the lemma coincides with Theorem 5 from Eiter
and Fink (2003). Moreover, the proof of this result (ibidem) also works for the case of strong
equivalence, i.e., when HT (P ) and |=s are considered instead of UE (P ) and |=u. To wit, we
proceed by essentially repeating the argument (generalising it) for Se(P ) and |=e.
(i) ⇒ (ii) Suppose P |=e r iff P |= r, for every rule r, but there exists an HT -model (X, Y )
of P such that X 6|= P . Hence X 6|= r for some rule r ∈ P . Let r′ be the rule which results
from r by shifting the negative literals to the head, i.e., H(r′) = H(r) ∪B−(r), B+(r′) = B+(r),
and B−(r′) = ∅. Since r and r′ are classically equivalent, i.e., I |= r iff I |= r′ holds for every
interpretation I , and because P |= r, we conclude that P |= r′ and by (i) that P |=e r

′. The latter
implies that (X, Y ) |= r′. Moreover, B−(r′) = ∅ implies that X |= r′, and thus X |= r. This is a
contradiction. Therefore, X |= P holds for every (X, Y ) in Se(P ), proving (ii).
(ii)⇒ (i) Suppose that Se(P ) is here-total, i.e., X |= P holds for every (X, Y ) in Se(P ). Then,
P |=e r implies P |= r, for every rule r, because X |= P iff (X,X) ∈ Se(P ), i.e., classical models
of P coincide with the total HT -models in Se(P ). It is left to show that P |= r implies P |=e r, for
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every rule r. Towards a contradiction assume P |= r′ but P 6|=e r
′, for some r′. Then, (X, Y ) 6|= r′

for some (X, Y ) ∈ Se(P ). However, since Se(P ) is here-total, both X and Y are models of P , and
thus P |= r′ implies X |= r′ and Y |= r′. This implies (X, Y ) |= r′, a contradiction. Consequently,
P |=e r iff P |= r, i.e. (i), holds for every rule r.

Turning to the question whether we can globally eliminate negation from a DLP under strong
(respectively uniform) equivalence—that is we ask for the existence of a positive program that
is strongly (respectively uniformly) equivalent to the given program—the above lemma gives a
necessary criterion in terms of a property of the HT -models for the existence of an equivalent
positive program, namely here-totality. It can be shown that this necessary condition is also sufficient.
More precisely, we prove:

Theorem 9. Let P be a DLP. Then, there exists a positive program Q such that P ≡e Q iff Se(P )
is here-total, where e ∈ {s, u}.

Proof. (⇐) Suppose Se(P ) is here-total. Then, by Lemma 14, it holds that P |=e Q iff P |= Q,
for any program Q. Now let Q be any set of positive rules such that the models of P and Q coincide
(such a Q clearly exists). Then, P |= Q, and hence P |=e Q. Since Q is positive and Q |= P , by a
simple corollary to Lemma 14, it follows that Q |=e P . This proves P ≡e Q.
(⇒) P ≡e Q implies Q |= P and Se(P ) = Se(Q). It follows for all (X, Y ) ∈ Se(P ) that X |= P
and thus (X,X) ∈ Se(P ), i.e., that Se(P ) is here-total.

Note that Theorem 9 implies that if P is e-equivalent to some positive program Q, then we can
obtain Q by shifting not -literals to the head. Let, for any rule r, rls be the rule such that

• H(rls) = H(r) ∪B−(r),

• B+(rls) = B+(r), and

• B−(rls) = ∅

(i.e., the “left shift” of r). Furthermore, let P ls = {rls | r ∈ P}.

Theorem 10. Let P be any DLP and e ∈ {s, u}. Then, the following statements are equivalent:

(i) There exists a positive program Q such that P ≡e Q.

(ii) P ≡e P ls .

(iii) P |=e r
ls , for every r ∈ P such that B−(r) 6= ∅.

Proof. Note that for any positive program Q and any rule r, Q |=e r iff Q |= rls . Furthermore,
P ≡e Q implies Q |=e r, for all r ∈ P . Thus, P ≡e Q, where Q is positive, implies Q |= rls , for
all r ∈ P . Hence, Q ≡ P ls , in this case.

This means that there exists a positive program Q such that P ≡e Q iff P ≡e P ls , i.e., iff
P |=e P

ls . Since rls = r if B−(r) = ∅ (and then trivially P |=e r), we get P |=e P
ls iff P |=e r

ls ,
for all r ∈ P such that B−(r) 6= ∅.

Before turning to an example, let us briefly recall, regarding ordinary equivalence, that for any
P there always exists a positive program Q such that P ≡ Q.
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Example 8. Consider P = {a ∨ b ← not a}. Then, P ls = {a ∨ b ←} and observe that neither
P ≡e P ls holds nor that Se(P ) is here-total (e.g., (∅, ab) ∈ Se(P ) but ∅ 6|= P ), for e ∈ {s, u}.
Hence, it is impossible to remove negation while retaining strong or uniform equivalence in this
case.

As for computational complexity, the following result holds:

Theorem 11. Checking here-totality, for a given DLP P , is coNP-complete for HT (P ) and ΠP
2 -

complete for UE (P ).

Proof. For proving the membership part of the theorem, observe that the complementary problems
are in NP and ΣP

2 , respectively. To wit, subsets X and Y over the language A ⊆ A of P can be
chosen nondeterministically, and the subsequent tests for (X, Y ) ∈ Se(P ) and (X,X) 6∈ Se(P ) can
be carried out in polynomial time, the former with an additional NP-oracle call in case e = u. This
proves coNP-membership of here-totality checking for HT (P ), respectively ΠP

2 -membership for
UE (P ).

To show the coNP-hardness part of the theorem, we reduce UNSAT to the problem as follows.
Let F =

∧n
i=1 Ci be a Boolean formula in CNF over atoms X . Let a and c̄, where c ∈ X , be fresh

atoms, and consider
P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪ {← Ci | 1 ≤ i ≤ n} ∪ {a← not a},

where Ci is the conjunction obtained from ¬Ci after applying DeMorgan’s law and replacing
negative literals ¬x by x̄. This program has a classical model, and thus HT (P ) is non-empty, iff
F is satisfiable. However, whenever HT (P ) 6= ∅, then it is also not here-total due to the rule
a ← not a. Therefore, HT (P ) is here-total iff F is satisfiable (note that HT (P ) = ∅ trivially is
here-total). This proves coNP-hardness of deciding whether HT (P ) is here-total.

To prove ΠP
2 -hardness of deciding here-totality for UE (Q) of a given DLPQ, consider a QBF of

the form F = ∀X∃Y φ with φ =
∧m
i=1Ci, where each Ci is a disjunction of literals over the Boolean

variables in X ∪ Y . Deciding whether a given such F is true is well-known to be ΠP
2 -complete.

Let a, b, and c̄, where c ∈ X ∪ Y , be fresh atoms and define

Q = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪
{y ∨ ȳ ← z | y ∈ Y ; z ∈ Y ∪ Ȳ ∪ {a}} ∪
{b← y, ȳ; y ← b; ȳ ← b | y ∈ Y } ∪
{b← Ci | 1 ≤ i ≤ m} ∪
{a← b; a← not b; a← not a}.

The set of all HT -models of Q is

{(σX∪Y (I) ∪ {a}, σX∪Y (I) ∪ {a}) | I ∈Mφ} ∪
{(σX∪Y (I) ∪ {a}, σX(I) ∪ A) | I ∈Mφ} ∪
{(σX(J) ∪ A, σX(J) ∪ A) | J ⊆ X} ∪
{(σX(J), σX(J) ∪ A) | J ⊆ X},
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where σA(I) denotes the set of atoms from A that are true under a given interpretation I of φ, and
Mφ denotes the set of all models of φ.

It thus holds that UE (Q) is here-total iff none of the HT -models of the form {(σX(J), σX(J)∪
A)} is an UE -model of Q. This is the case iff, for each J ⊆ X , there exists a value assignment to
Y that makes φ true, i.e., iff the QBF ∀X∃Y φ evaluates to true.

5.2 Elimination of Negation in NLPs
When restricting our attention to NLPs and eliminate (under strong or uniform equivalence) negation
from a program, there are two different cases to consider.

The first is that the resulting program should be normal; that is, the outcome should be an
equivalent Horn program. The resulting problem turns out to be a specific case (P is normal) of
the more general problem of jointly eliminating disjunction and negation from a DLP, which we
consider in the next subsection. (For an illustrative instance where P is a NLP, simply consider P ls

instead of P in the subsequent Example 9.)
The second case is that one is allowed to introduce disjunction in rule heads; that is, the outcome

should be an equivalent positive DLP. This setting is a special case (P is normal) of the more
general case (P is any DLP) considered above, and the same characterisations apply. Also, the
problem does not trivialise for NLPs (consider, for instance, the shift program P→ of the DLP P
in Example 8), not even simplify (in the hardness reductions of Theorem 11 one can use default
negation instead of disjunction).

5.3 Joint Elimination of Disjunction and Negation
It is tempting to combine the sufficient and necessary criteria for eliminating negation (here-totality)
and for eliminating disjunction (here-intersection) to obtain a criterion for eliminating both negation
and disjunction. However, this does not work as shown by the following example.

Example 9. Let P = {a ∨ b←; ← a, b} and observe that Se(P ) = {(a, a), (b, b)} is both closed
under here-intersection and here-total for e ∈ {s, u}. Nevertheless, we cannot avoid disjunction
and negation simultaneously, i.e., we cannot remove the disjunction without introducing negation
and vice versa. In other words, there exists no Horn program Q such that P ≡e Q.

However, we can establish such a criterion by means of there-intersection:

Theorem 12. For every DLP P and e ∈ {s, u}, there exists some Horn program Q such that
P ≡e Q iff Se(P ) is here-total and closed under there-intersection.

Proof. Note that Se(P ) contains all classical models of P . For the if direction, suppose that
Se(P ) is here-total and closed under there-intersection. The latter implies the existence of a Horn
program Q such that the classical models of P and Q coincide (and equal Se(P )). By Lemma 14, it
follows that P |=e Q iff P |= Q, and Q |=e P iff Q |= P , i.e., P ≡e Q iff their classical models
coincide. This is the case.
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For the only-if direction, let Q be a Horn program such that Se(P ) = Se(Q). Since Q is positive,
for every (X, Y ) ∈ Se(Q), X and Y are models of Q and thus (as a consequence of Lemma 14)
models of P as well. Thus, (X,X) ∈ Se(P ), i.e., Se(P ) is here-total. Furthermore, as Q is Horn,
(X,X) ∈ Se(Q) and (Y, Y ) ∈ Se(Q) implies that (X ∩ Y,X ∩ Y ) ∈ Se(P ). Hence, Se(Q), and
therefore also Se(P ), is closed under there-intersection.

Note, however, that the canonical program in general is not Horn in this case, and we leave
corresponding (local) rewriting rules for recasting as a subject for further work. Under ordinary
equivalence though, the task is trivial (by encoding the unique answer set as a set of facts).

Concerning computational complexity, we eventually remark that the upper bounds established
in Theorem 11 are readily extended to the corresponding joint decision problems. However,
matching lower bounds are not evident and intuitively may not always exist. A more precise
characterisation of the computational complexity is also left for future work.

6 Generalisations
In this section, we review some notions of equivalence between nonmonotonic logic programs, in the
light of semantic properties that guarantee the existence of equivalent programs from some specific
class of programs. We then discuss how some of the results (including ones in the previous sections)
can be obtained using a general approach at an abstract level. Finally, we discuss generalisations
towards non-ground programs.

There is a huge gap between the notions of strong equivalence (equivalence for substitution)
and ordinary equivalence (the compared programs only have to possess the same answer sets; no
addition of programs is considered). Uniform equivalence indeed is a notion between strong and
ordinary equivalence by restricting the syntactic structure of the possibly added programs (i.e.,
restricting them to facts); however, it was shown by Pearce and Valverde (2004) that rule-wise
restrictions of the syntax necessarily results in either strong, uniform, or ordinary equivalence.

Another option is to restrict the language of the the added programs. The latter approach has been
introduced as relativised strong equivalence and has been investigated for ground programs (Eiter,
Fink, & Woltran, 2007; Inoue & Sakama, 2004; Woltran, 2004). Similarly, a notion of relativised
uniform equivalence was investigated in these papers.

Later, a more fine-grained parametrised notion of equivalence was investigated where the rules
which might be added can be specified in terms of two alphabetsH,B ⊆ A, one for their heads and
one for their bodies (Woltran, 2008). This concept, also termed hyperequivalence (Truszczyński &
Woltran, 2009), allows for a common characterisation of strong and uniform equivalence and thus
to understand the difference between these notions on model-theoretic grounds. More specifically,
two programs P and Q over A are hyperequivalent relative to H and B, if, for each DLP R such
that

⋃
r∈P H(r) ⊆ H and

⋃
r∈P (B+(r) ∪B−(r)) ⊆ B, it holds that AS(P ∪R) = AS(Q ∪R).

Another line of research considered equivalence notions where the comparison is restricted to
projected answer sets (Eiter, Tompits, & Woltran, 2005). One such notion is relativised strong
equivalence with projection: Given sets A,O ⊆ A, two programs P and Q over A are strongly
equivalent relative to A under projection to O, if, for any program R over A, it holds that {I ∩O |
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I ∈ AS(P ∪R)} = {I ∩O | I ∈ AS(Q ∪R)}.
Based on the results presented in this article, we generalised the semantic properties for the

existence of equivalent programs of a lower syntactic class to hyperequivalence (Pührer, Tompits, &
Woltran, 2008) and relativised strong equivalence with projection (Pührer & Tompits, 2009). For
all instances e of these parametrised equivalence relations, there is a semantic characterisation in
terms of sets Me(·) of HT -interpretations, analogous to HT -models for strong equivalence and
UE -models for uniform equivalence, such that Me(P ) = Me(Q) for two programs P and Q iff
P ≡e Q. In what follows, we will describe the general approach to obtain the extended results on
an abstract level. The concrete properties and translations are detailed in the respective papers.

Let NLP , PLP , and HP be the classes of normal, positive, and Horn programs. For every
C ∈ {NLP ,PLP ,HP}, a property φCe (S) can be defined that intuitively holds on the particular
set S = Me(P ) if a casting and a completion function τCe (S) exist such that:

(i) whenever φCe (S) holds for a set S of HT -interpretations, then τCe (S) is complete and closed
under here-intersection for C = NLP , here-total for C = NLP , and here-total and closed
under there-intersection for C = HP;

(ii) if, for a set S of HT -interpretations, φCe (S) holds and some program Q ∈ C exists such that
τCe (S) = HT (Q), then Me(Q) = S;

(iii) for every program Q ∈ C, φCe (Me(Q)) holds.

From these properties, we obtain the following result.

Proposition 10. Let ≡e denote an instance of hyper-equivalence or relativised strong equivalence
with projection and let C ∈ {NLP ,PLP ,HP}. Then, for every set S of HT -interpretations,
φCe (S) holds iff there exists a program Q ∈ C with S = Me(Q).

Proof. Assume that φCe (S) holds. Then, by (i) and Theorems 1, 4, 9, and 12, it follows that there
is a program Q ∈ C with HT (Q) = τCe (S). Hence, by (ii), Me(Q) = S . Conversely, let Q ∈ C be a
program such that Me(Q) = S. By (iii), φCe (Me(Q)) holds. Since Me(Q) = S, we get that φCe (S)
holds.

It follows that, for a given DLP P , φCe (Me(P )) holds iff there exists a program Q ∈ C such that
Me(P ) = Me(Q). We thus obtain:

Corollary 9. Let ≡e denote an instance of hyperequivalence or relativised strong equivalence with
projection and let C ∈ {NLP ,PLP ,HP}. Then, for a given DLP P , there exists a program
Q ∈ C with P ≡e Q iff φCe (Me(P )) holds.

Note that Pührer et al. (2008) and Pührer and Tompits (2009) also reported concrete means to
construct such a Q whenever φCe (Me(P )) holds, based on the canonical program as defined in this
article.

So far, the study of recasting has focused on propositional programs; however, notions of
equivalence have also been introduced for non-ground programs. More precisely, the research on
notions of equivalence (akin to and) as considered in this article started out in the standard datalog
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setting with the seminal undecidability result by Shmueli (1987) on query equivalence from 1987.
After that, research focused on the one hand on identifying the exact frontier between decidable and
undecidable language fragments (see, e.g., the work of Halevy, Mumick, Sagiv, and Shmueli (2001)),
and, on the other hand, on sound approximations to query equivalence. Uniform equivalence was
introduced by Sagiv (1988) as one such approach. Equivalence of program segments (which is the
pendant to strong equivalence introduced above) was introduced by Maher (1988) but coincides with
uniform equivalence for datalog queries. Lin (2002) was the first to discuss the non-ground variant
of strong equivalence and gave a translation into the Bernays-Schönfinkel fragment of first-order
logic as a decision procedure. The model-theoretic characterisation in terms of HT -models was
finally lifted to the non-ground case by Eiter, Fink, Tompits, and Woltran (2005), who also presented
first complexity and undecidability results which were subsequently complemented by Eiter, Fink,
Tompits, and Woltran (2007). Using first-order variants of the logic of here-and-there to decide
strong equivalence was later discussed by Lifschitz, Pearce, and Valverde (2007). Relativised notions
of strong and uniform equivalence have been introduced to non-ground programs as well (Oetsch
& Tompits, 2008). The most recent and general account of non-ground versions of equivalence,
providing model-theoretic characterisations in terms of counter-models in HT , including relativised
notions and hyper-equivalence, is the work by Fink (2011).

7 Conclusion
In this article, we dealt with the question whether for a given logic program P another logic program
Q from a specific class of logic programs exists such that P and Q are equivalent with respect to
different notions of equivalence on top of answer sets for nonmonotonic logic programs (Gelfond
& Lifschitz, 1991). To this end, we exploited the seminal result by Lifschitz et al. (2001) on the
relation between the logic of here-and-there and strong equivalence in answer-set programming,
for developing semantic characterisations of different program classes (normal, positive, and Horn
programs) in terms of the HT -models of the programs. Indeed, whenever the HT -models of a
program P satisfy one of these properties, we are able to construct a corresponding program Q of
the respective class that is equivalent to P under the considered notion of equivalence, using our
notion of a canonical program.

As regards possible directions for future work, one issue is to consider recasting to further
classes of programs, such as stratified (Apt et al., 1988) or tight logic programs (Erdem & Lifschitz,
2003), i.e., programs without loops in the positive dependency graphs. Work on the latter could
profit from previous results on the relation of loops and HT -models (Gebser, Schaub, Tompits,
& Woltran, 2008). Strong equivalence has also been studied under other semantics, including
well-founded semantics (Cabalar, Odintsov, & Pearce, 2006; Nomikos, Rondogiannis, & Wadge,
2005) and supported model semantics (Truszczyński & Woltran, 2008). It could also be worthwhile
to study program recasting in these settings. Further topics of interest include recasting for further
notions of equivalence and for non-ground programs.
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