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Abstract.We propose the formalism of “Monadic Second-Order Logic” as a unifying
framework for representing and reasoning with various semantics of abstract argumenta-
tion. We express a wide range of semantics within the proposed framework, including the
semantics proposed by Dung, semi-stable, stage, cf2, and resolution-based semantics. We
provide building blocks which make it easy and straight-forward to express further seman-
tics. Expressing reasoning problems in abstract argumentation within Monadic Second-
Order Logic not only shows that this logic can serve as a lingua franca for further investi-
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1 Introduction
Starting with the seminal work by Dung Dung (1995) the area of argumentation has evolved to
one of the most active research branches within Artificial Intelligence (see, e.g., Bench-Capon
and Dunne (2007)). Dung’s abstract argumentation frameworks, where arguments are seen as ab-
stract entities which are just investigated with respect to how they relate to each other, in terms
of “attacks”, are nowadays well understood and different semantics (i.e. the selection of sets of
arguments which are jointly acceptable) have been proposed. In fact, there seems to be no single
“one suits all” semantics, but it turned out that studying a particular setting within various seman-
tics and to compare the results is a central research issue within the field. Different semantics give
rise to different computational problems, such as deciding whether an argument is acceptable with
respect to the semantics under consideration, that require different approaches for solving these
problems.

This broad range of semantics for abstract argumentation demands for a unifying framework for
representing and reasoning with the various semantics. Such a unifying framework would allow
to see what the various semantics have in common, in what they differ, and ideally, it would offer
generic methods for solving the computational problems that arise within the various semantics.
Such a unifying framework should be general enough to accommodate most of the significant
semantics, but simple enough to be decidable and computationally feasible.

In this paper we propose such a unifying framework. We express several semantics within
the framework, and we study its properties. The proposed unifying framework is based on the
local formalism of “Monadic Second-Order Logic (MSO)”, which is a fragment of Second-Order
logic, with relational variables restricted to unary. MSO provides higher expressiveness than First-
Order Logic while it has more appealing algorithmic properties than full Second-Order Logic.
Furthermore, MSO plays an important role in various parts of Computer Science, to give two
examples: (i) by Büchi’s Theorem, a formal language is regular if and only if it can be expressed
by MSO (this also provides a link between MSO and finite automata); (ii) by Courcelle’s Theorem,
MSO expressible properties can be checked in linear time on structures of bounded treewidth.

Our main contributions can be summarized as follows:

• We express a wide range of semantics within our proposed framework, including the seman-
tics proposed by Dung Dung (1995), semi-stable, stage, cf2, and resolution-based semantics.

• We provide MSO-building blocks which make it easy and straight-forward to express other
semantics or to create new ones or variants. We also illustrate that any labeling-based se-
mantics can be canonically expressed within our framework.

• We show that the main computational problems can be solved in linear time for all seman-
tics expressible in our framework when restricted to argumentation frameworks of certain
structures. This includes decision problems such as skeptical and brave acceptance, but also
counting problems, for instance, determining how many extensions contain a given argu-
ment.

Our results show that MSO is indeed a suitable unifying framework for abstract argumentation
and can serve as a lingua franca for further investigations. Furthermore, recent systems Kneis,
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Langer, and Rossmanith (2011); Langer et al. (2012) showed quite impressive performance for
evaluating MSO formulas over graphs, thus the proposed framework can be exploited as a rapid-
prototyping approach to experiment with established and novel argumentation semantics.

Related Work. Using MSO as a tool to express AI formalisms has been advocated in Gottlob
and Szeider (2006); Gottlob, Pichler, and Wei (2010). In terms of abstract argumentation first MSO
encodings were given by Dunne Dunne (2007) and also discussed in Dvořák and Woltran (2010).
Implications in terms of parameterized complexity also appeared in Dvořák, Pichler, and Woltran
(2010); Dvořák, Szeider, and Woltran (2010).

Finding a uniform logical representation for abstract argumentation has been subject of several
papers. While Besnard and Doutre Besnard and Doutre (2004) used propositional logic for this
purpose, Egly and Woltran Egly and Woltran (2006) showed that quantified propositional logic
allows for complexity-adequate representations. Another branch of research focuses on logic pro-
gramming as common grounds for different argumentation semantics, see Toni and Sergot (2011)
for a survey. Finally also the use of CSP was suggested Amgoud and Devred (2011); Bistarelli,
Campli, and Santini (2011). All these works were mainly motivated by implementation issues and
lead to systems as ASPARTIX Egly, Gaggl, and Woltran (2010). As mentioned above also MSO
can serve this purpose, but in addition yields further results “for free”, in particular in terms of
computational complexity.

2 Background

2.1 Argumentation
In this section we introduce (abstract) argumentation frameworks Dung (1995) and recall the se-
mantics we study in this paper (see also Baroni and Giacomin (2009)).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a set of argu-
ments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b. We say
that an argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R,
there exists a c ∈ S such that (c, b) ∈ R.

Semantics for argumentation frameworks are given via a function σ which assigns to each AF
F = (A,R) a set σ(F ) ⊆ 2A of extensions.

We first consider for σ the functions naive, stb, adm, com, prf , grd , stg , and sem which stand
for naive, stable, admissible, complete, preferred, grounded, stage, and semi-stable semantics,
respectively. Towards the definition of these semantics we introduce two more formal concepts.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A ⇒ 2A of F is defined
as FF (S) = {x ∈ A | x is defended by S}. For a set S ⊆ A and an argument a ∈ A, we write
S �R a (resp. a�R S) in case there is an argument b ∈ S, such that (b, a) ∈ R (resp. (a, b) ∈ R).
Moreover, for a set S ⊆ A, we denote the set of arguments attacked by S as S⊕R = {x | S �R x},
and resp. S	R = {x | x�R S}, and define the range of S as S+

R = S ∪ S⊕R .
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Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no a, b ∈ S,
such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of F . For a conflict-free set
S ∈ cf (F ), it holds that

• S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S;

• S ∈ stb(F ), if S+
R = A;

• S ∈ adm(F ), if S ⊆ FF (S);

• S ∈ com(F ), if S = FF (S);

• S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;

• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+
R ⊂ T+

R ;

• S ∈ stg(F ), if there is no T ∈ cf (F ), with S+
R ⊂ T+

R .

We recall that for each AF F , the grounded semantics yields a unique extension, the grounded
extension, which is the least fix-point of the characteristic function FF .

On the base of these semantics one can define the family of resolution-based semantics Baroni,
Dunne, and Giacomin (2011), with the resolution-based grounded semantics being its most popular
instance.

Definition 4. Given AF F = (A,R), a resolution β ⊂ R of F is a ⊆-minimal set of attacks such
that for each pair {(a, b), (b, a)} ⊆ R (a 6= b) either (a, b) ∈ β or (b, a) ∈ β. We denote the set
of all resolutions of an AF F by γ(F ). Given a semantics σ, the corresponding resolution-based
semantics σ∗ is given by σ∗(F ) = min

⊆

⋃
β∈γ(F )

{σ((A,R \ β))}.

Finally, let us consider the semantics cf2, which was introduced by Baroni, Giacomin, and
Guida Baroni, Giacomin, and Guida (2005) as part of a general schema for argumentation seman-
tics. cf2 semantics gained some interest as it handles even and odd length cycles of attacks in a
similar way. Towards a definition of cf2 semantics we need the following concepts.

Definition 5. Given AF F = (A,R) and a set S ⊆ A. By SCC(F ) we denote the set of all strongly
connected components of F . DF (S) denotes the set of arguments a ∈ A attacked by an argument
b ∈ S occurring in a different component. Finally, for F = (A,R) and a set S of arguments,
F |S := (A ∩ S,R ∩ (S × S)) and F − S := F |A\S .

Definition 6. Given AF F = (A,R). for S ⊆ A we have that S ∈ cf2 (F ) if one of the following
conditions holds:

• |SCC(F )| = 1 and S ∈ naive(F )

• ∀C ∈ SCC(F ) : C ∩ S ∈ cf2 (F |C −DF (S))
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Labeling-based semantics. So far we have considered so-called extension-based semantics.
However, there are several approaches defining argumentation semantics via certain kind of la-
belings instead of extensions. As an example we consider the approach by Caminada and Gab-
bay Caminada and Gabbay (2009) and their complete labelings.

Definition 7. Given an AF F = (A,R), a function L : A → {in, out, undec} is a complete
labeling iff the following conditions hold:

• L(a) = in iff for each b with (b, a) ∈ R, L(b) = out

• L(b) = out iff there exists b with (b, a) ∈ R, L(b) = in

There is a one-to-one mapping between complete extensions and complete labelings, such that
the set of arguments labeled with in corresponds to a complete extension.

2.2 Monadic Second Order Logic
Informally Monadic Second Order Logic (MSO) is an extension of first order logic (FO) that allows
for quantification over sets.

FO is build from variables x, y, z, . . . referring to elements of the universe, atomic formulas
R(t1, . . . , tk), t1 = t2, with ti being variables or constants, the usual Boolean connectives, and
quantification ∃x, ∀x. MSO1 extends the language of FO by set variables X, Y, Z, . . . , atomic
formulas t ∈ X with t a variable or constant, and quantification over set variables. We further
consider MSO2 an extension of MSO1 which is only defined on graphs (which is perfectly fine for
our purposes). MSO2 adds variables XE, Y E, ZE, . . . ranging over sets of edges of the graph and
quantification over such variables. In the following when talking about MSO we refer to MSO2.

For an MSO formula φ We usually write φ(x1, . . . , xi, X1, . . . Xj) to denote that the free vari-
ables of φ are x1, . . . , xi, X1, . . . Xj . For a graph G = (V,E) and vk ∈ V and Ak ⊆ V we write
G |= φ(v1, . . . , vi, A1, . . . Aj) to denote that G models φ if xi is assigned with vi andXi is assigned
with Ai.
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3 Encoding Argumentation Semantics in MSO
Building Blocks. We first introduce some shorthands simplifying notation when dealing with
subset relations and the range of extensions.

x /∈ X = ¬(x ∈ X)

X ⊆ Y = ∀x (x ∈ X → x ∈ Y )

X ⊂ Y = X ⊆ Y ∧ ¬(Y ⊆ X)

X 6⊆ Y = ¬(X ⊆ Y )

X 6⊂ Y = ¬(X ⊂ Y )

x ∈ X+
R = x ∈ X ∨ ∃y(y ∈ X ∧ (y, x) ∈ R)

X ⊆+
R Y = ∀x (x ∈ X+

R → x ∈ Y +
R )

X ⊂+
R Y = X ⊆+

R Y ∧ ¬(Y ⊆+
R X)

Another important notion that underlies argumentation semantics is the notion of a set being
conflict-free. The following MSO formula encodes that a set X is conflict-free w.r.t. the attack
relation R:

cf R(X) = ∀x, y ((x, y) ∈ R→ (¬x ∈ X ∨ ¬y ∈ X))

Next we give a building block for maximizing extension using an (MSO expressible) order v:

max A,P (.),v(X) = P (X) ∧ ¬∃Y
(
Y⊆A ∧ P (Y ) ∧X<Y

)
Clearly we can also implement minimization by inverting the order, i.e. min A,P (.),v(X) =
max A,P (.),w(X).

Standard Encodings. In the following we provide MSO-characterizations for the different ar-
gumentation semantics. The characterizations for adm, stb, prf are borrowed from Dunne (2007)
while those for sem, stg are borrowed from Dvořák and Woltran (2010).

naiveA,R(X) = max A,cf R(.),⊆(X)

admR(X) = cf R(X) ∧ ∀x, y
(
((x, y) ∈ R ∧ y ∈ X)→

∃z(z ∈ X ∧ (z, x) ∈ R)
)

comA,R(X) = admR(X) ∧ ∀x((x ∈ A ∧ x /∈ X)→
∃y((y, x) ∈ R ∧ ¬∃z(z ∈ X ∧ (z, y) ∈ R)))

grdA,R(X) = min A,comA,R(.),⊆(X)

stbA,R(X) = cf R(X) ∧ ∀x(x ∈ A→ x ∈ X+
R )

prf A,R(X) = max A,admR(.),⊆(X)

semA,R(X) = max A,admR(.),⊆+
R

(X)

stgA,R(X) = max A,cf R(.),⊆+
R

(X)
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These characterisations are straight-forward translations of the definitions and thus can be easily
checked to be correct.

Based on the above encodings we build up encodings for the resolution-based semantics as
follows. Via resR(XE), given as

∀x, y
(
XE ⊆ R ∧ (x, x) ∈ R→ (x, x) ∈ XE∧

(x 6= y ∧ (x, y) ∈ R)→ ((x, y) ∈ XE ↔ (y, x) 6∈ XE)
)
,

we express modified frameworks (A,R\β) where β is a resolution according to Definition 4. Now
resolution-based semantics are characterised by

σ∗A,R(X) = ∃XE(resR(XE) ∧ σA,XE(X) ∧ (1)

∀Y ∀Y E(resR(Y E) ∧ σA,Y E(Y )→ Y 6⊂X)).

Labeling-based semantics. There are several approaches to define argument semantics via dif-
ferent kind of argumentation labelings and almost all argumentation semantics allow for a char-
acterization via argument labelings. The general concept behind labelings is to use a fixed set of
labels and assign to each argument a subset of them, or just a single label. Such labelings are
valid if for each argument the assigned labels satisfy certain (qualitative) conditions concerning
the labels of attacking arguments and the labels of the attacked arguments. Additionally one might
demand that the set of arguments labeled by a specific label is maximal or minimal. All these
things can be easily expressed in MSO, which we illustrate for complete labelings. We encode a
in, out, undec labeling L as a triple (Lin,Lout,Lundec) where Ll := {a ∈ A | L(a) = l}. To have
these three sets disjoint, one uses the formula ϕ = ∀x ∈ A((x 6∈ Lin ∨x 6∈ Lout)∧ (x 6∈ Lin ∨x 6∈
Lundec)∧ (x 6∈ Lundec ∨ x 6∈ Lout)). Now we can give an MSO formula comA,R(Lin,Lout,Lundec)
expressing whether such a triple (Lin,Lout,Lundec) is a complete labeling:

ϕ ∧ ∀x ∈ X(x ∈ Lin ↔ (∀y ∈ X((y, x) ∈ R→ Lout)))
∧∀x ∈ X(x ∈ Lout ↔ (∃y ∈ X((y, x) ∈ R ∧ Lin)))

Further, one can directly encode preferred labelings, which are defined as complete labelings
with maximal Lin.
prf A,R(Lin,Lout,Lundec) = comA,R(Lin,Lout,Lundec) ∧ ¬∃L′in,L′out,L′und(Lin ⊂ L′in ∧
comA,R(L′in,L′out,L′und))

MSO-characterization for cf2 . The original definition of cf2 semantics is of recursive nature
and thus not well suitable for a direct MSO characterisation. Hence we use an alternative char-
acterisation of cf2 Gaggl and Woltran (2010). For this characterisation we need the following
definitions.

Definition 8. Given an AF F = (A,R), B ⊆ A, and a, b ∈ A, a ⇒B
F b if there exists a sequence

(ci)1≤i≤n with ci ∈ B, c1 = a, cn = b and (ci, ci+1) ∈ R.
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The relation ⇒B
F can be encoded in MSO by first defining a relation R̂R,B(u, v) = (u, v) ∈

R ∧ u ∈ B ∧ v ∈ B capturing the allowed attacks and borrowing the following MSO encoding
for reachability Courcelle and Engelfriet (2011): reachR(x, y) = ∀X(x ∈ X ∧ [∀u, v(u ∈ X ∧
R(u, v)→ v ∈ X)]→ y ∈ X). Finally we obtain⇒B

R (x, y) = reachR̂R,B
(x, y).

Definition 9. For AF F = (A,R) and sets D,S ⊆ A we define: ∆F,S(D) = {a ∈ A | ∃b ∈ S :

b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}. ∆F,S denotes the least fixed-point of ∆F,S(.).

One can directly encode whether an argument x is in the operator ∆F,S(D) by ∆A,R,S,D(x) =

x ∈ A ∧ ∃b ∈ S(b 6= x ∧ (b, x) ∈ R ∧ ¬ ⇒A\D
F (x, b))} and thus also whether x is in the least

fixed-point ∆F,S , by ∆A,R,S(x) = ∃X ⊆ A(x ∈ X ∧ ∀a(a ∈ X ↔ ∆A,R,S,X(a)) ∧ ¬∃Y ⊂
X(∀b(b ∈ Y ↔ ∆A,R,S,Y (b)))).

Definition 10. For AF F we define the separation of F as [[F ]] =
⋃
C∈SCCs(F ) F |C .

The attack relation of the separation of an AF (A,R) is given byR[[(A,R)]](x, y) = x ∈ A ∧ y ∈
A ∧ (x, y) ∈ R∧ ⇒A

R (y, x).
The following result provides an alternative characterization for cf2 semantics that can be

encoded in MSO1.

Proposition 1. Gaggl and Woltran (2010) For any AF F , cf2 (F ) = cf (F )∩ naive([[F −∆F,S]]).

We obtain an MSO1 characterisation of cf2 .

Â(x) = x ∈ A ∧ ¬∆A,R,S(x)

cf2 (X) = cf R(X) ∧ naiveÂ,R[[(Â,R)]]
(X)

4 Algorithmic Implications
Most computational problems studied for AFs are computationally intractable (see, e.g. Dunne
(2007)), while the importance of efficient algorithms is evident. An approach to deal with in-
tractable problems comes from parameterized complexity theory and is based on the fact, that
many hard problems become polynomial-time tractable if some problem parameter is bounded by
a fixed constant. In case the order of the polynomial bound is independent of the parameter one
speaks of fixed-parameter tractability (FPT).

One popular parameter for graph based problems is the parameter of tree-width Bodlaender
(1993) which intuitively measures how tree-like a graph is. One weakness of tree-width is that
it only captures sparse graphs. The parameter clique-width Courcelle, Engelfriet, and Rozenberg
(1991) generalizes tree-width, in the sense that each graph class of bounded tree-width has also
bounded clique-width, and also captures a wide range of dense graphs.1

1As we do not make direct use of them, we omit the formal definitions of tree-width and clique-width here; the
interested reader is referred to Dunne (2007); Dvořák, Szeider, and Woltran (2010). We just note that these parameters
are originally defined for undirected graphs, but can directly be used for directed graphs, and thus for AFs, as well.
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Both parameters have already been considered for abstract argumentation Dunne (2007);
Dvořák, Pichler, and Woltran (2010); Dvořák, Szeider, and Woltran (2010) and are closely related
to MSO by means of meta-theorems. One such meta-theorem is due to Courcelle, Makowsky, and
Rotics Courcelle, Makowsky, and Rotics (2000) and shows that one can solve any graph problem
that can be expressed in MSO1 in linear time for graphs of clique-width bounded by some fixed
constant k, when given together with a certain algebraic representation of the graph, a so called
k-expression. A similar result is Courcelle’s seminal meta-theorem Courcelle (1987, 1990) for
MSO2 and tree-width (which is also based on a certain structural decomposition of the graph, a
so called tree-decomposition). Together with results from Bodlaender (1996); Oum and Seymour
(2006) stating that also k-expressions and tree-decompositions can be computed in linear time if k
is bounded by a constant we get the following meta-theorem.

Theorem 1. Given an integer k and a MSO formula φ(x1, . . . , xi, X1, . . . Xj, X
E
1 , . . . X

E
l ), there

is a linear time algorithm, given a graph (V,E) of tree-width ≤ c, vk ∈ V , Ak ⊆ V,Bk ⊆ E
deciding whether (V,E) |= φ(v1, . . . , vi, A1, . . . Aj, B1, . . . Bl). If φ is in MSO1 this also holds for
graphs of clique-width ≤ c.

The theorem can be extended to capture counting and enumeration problems Arnborg, Lager-
gren, and Seese (1991); Courcelle, Makowsky, and Rotics (2001).

In the next theorem we give fixed-parameter tractability results w.r.t. the parameters tree-width
and clique-width for the main reasoning problems in abstract argumentation.

Theorem 2. Given an argumentation semantics σ that is expressible in MSO, the following tasks
are fixed-parameter tractable w.r.t. the tree-width of the given AF:

• Deciding whether an argument a ∈ A is in at least one σ-extension (Credulous acceptance).

• Deciding whether an argument a ∈ A is in each σ-extension (Skeptical acceptance).

• Verifying that a set E ⊆ A is a σ-extension (Verification).

• Deciding whether there exists a σ-extension (Existence).

• Deciding whether there exists a non-empty σ-extension (Nonempty).

• Deciding whether there is a unique σ-extension (Unique).

If σ is expressible in MSO1 the above tasks are also fixed-parameter tractable w.r.t. the clique-width
of the AF.

Proof. By Theorem 1 and the MSO - encodings below:
Credulous acceptance: φσCred(x) = ∃X (x ∈ X ∧ σR(X))
Skeptical acceptance: φσSkept(x) = ∀X (σR(X)→ x ∈ X)
Verification: φσVer(X) = σR(X)
Existence: φσExists = ∃XσR(X)
Nonempty: φσ

Exists¬∅
= ∃X∃x(σR(X) ∧ x ∈ X)
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Unique: φσU = ∃XσR(X)) ∧ ¬∃Y (Y 6= X ∧ σR(Y ))
Note that these encodings do not use quantification over edge sets whenever σ is free of such a
quantification.

Moreover MSO is also a gentle tool to study the relation between different semantics, as illus-
trated by Theorem 3.

Theorem 3. Given argumentation semantics σ, σ′ expressible in MSO, the following tasks are
fixed-parameter tractable w.r.t. the tree-width of the AF.

• Deciding whether σ(F ) = σ′(F ) (Coincidence).

• Deciding whether arguments skeptically accepted w.r.t. σ are also skeptically accepted w.r.t.
σ′ (Skepticism 1).

• Deciding whether arguments credulously accepted w.r.t. σ are also credulously accepted
w.r.t. σ′ (Skepticism 2).

• Deciding whether σ(F ) ⊆ σ′(F ) (Skepticism 3).

If σ is expressible in MSO1 the above tasks are also fixed-parameter tractable w.r.t. the clique-width
of the AF.

Proof. By Theorem 1 and the MSO - encodings below:
Coincidence: φσCoin(x) = ∀X (σR(X)↔ σ′R(X))
Skepticism 1: φσsk1(x) = ∀x(φσSkept(x)→ φσ

′

Skept(x))

Skepticism 2: φσsk1(x) = ∀x(φσCred(x)→ φσ
′

Cred(x))
Skepticism 3: φσsk1(x) = ∀X(σA,R(X)→ σ′A,R(X))

One prominent instantiation of the first problem mentioned in Theorem 3 is deciding whether
an AF is coherent, i.e. whether stable and preferred extensions coincide.

Most of the characterizations we have provided so far are actually in MSO1 and by the above
results we obtain fixed-parameter tractability for tree-width and clique-width. The notable excep-
tion is the schema (1) we provided for the resolution-based semantics. Obviously, it is not straight
forward to reduce this MSO2 formula into MSO1 (and thus providing complexity results in terms
of clique-width). Next we address this question for the resolution-based grounded semantics and
present a corresponding MSO1 encoding.

5 MSO1-characterization for grd∗

We provide a novel characterisation of resolution-based grounded semantics which eliminates the
quantification over sets of attacks in schema (1), exploiting results from Baroni, Dunne, and Gia-
comin (2011).

To this end we first restrict the class of resolutions we have to consider when showing that a set
of arguments is a complete extension of some resolved AF.
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Lemma 1. Given AF F = (A,R) and E ∈ grd∗(F ), then there exists a resolution β with {(b, a) |
a ∈ E, b 6∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β such that E ∈ com(A,R \ β).

Proof. As E ∈ grd∗(F ) we have that there exists a resolution β′ such that E ∈ grd(A,R \ β′).
Now let us define β as {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ∪ (β′ ∩ (A \ E ×A \ E)). Clearly E
is conflict-free in (A,R \ β). Next we show that (i) E⊕R\β′ = E⊕R\β and (ii) E	R\β′ ⊇ E	R\β .

For (i), let us first consider b ∈ E⊕R\β′ . Then there exists (a, b) ∈ R \ β′ with a ∈ E and by
construction also (a, b) ∈ R \ β and thus b ∈ E⊕R\β . Now let us consider b ∈ E⊕R\β . Then there
exists (a, b) ∈ R \ β with a ∈ E and by construction either (a, b) ∈ R \ β′ or (b, a) ∈ R \ β′. In
the first case clearly b ∈ E⊕R\β′ . In the latter case b attacks E and as E is admissible in (A,R \ β′)
there exists c ∈ E such that (c, b) ∈ R \ β′, hence b ∈ E⊕R\β′ . For (ii) consider b ∈ E	R\β , i.e. exists
a ∈ E such that (b, a) ∈ R \ β. By the construction of β we have that (a, b) 6∈ R and therefore
(b, a) ∈ R \ β′. Hence also b ∈ E	R\β′ .

As E ∈ adm(A,R \ β′) we have that E	R\β′ ⊆ E⊕R\β′ and by the above observations then also
E	R\β ⊆ E⊕R\β . Thus E is an admissible set. Finally let us consider an argument a ∈ A \ E⊕R\β . In
the construction of β the incident attacks of a are not effected and hence {a}	R\β′ = {a}	R\β . That
is E defends a in (A,R \ β) iff E defends a in (A,R \ β′). Now as E ∈ com(A,R \ β′) we have
that a is not defended and hence E ∈ com(A,R \ β).

With this result at hand, we can give an alternative characterization for resolution-based
grounded semantics.

Lemma 2. Given AF F = (A,R) and E ⊆ A, Then E ∈ grd∗(F ) iff the following conditions hold

1. there exists a resolution β with {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β and E ∈
com(A,R \ β)

2. E is ⊆-minimal w.r.t. (1).

Proof. Let us first recall that by definition the grounded extension is the ⊆-minimal complete
extension and hence grd∗ = com∗.
⇒: Let E ∈ grd∗(F ). Then by Lemma 1, E fulfills condition (1). Further we have that each

set E satisfying (1) is a complete extension of a resolved AF. As by definition E is ⊆-minimal in
the set of all complete extensions of all resolved AFs it is also minimal for those satisfying (1).
⇐: As E satisfies (1) it is a complete extension of a resolved AF. Now towards a contradiction

let us assume it is not a resolution-based grounded extension. Then there exists G ∈ grd∗(F ) with
G ⊂ E. But by Lemma 1 G fulfills condition (1) and thus G ⊂ E contradicts (2).

In the next step we look for an easier characterization of condition (1) in the above lemma.

Lemma 3. For an AF F = (A,R) and E ⊆ A the following statements are equivalent

1. There exists a resolution β with {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β and E ∈
com(A,R \ β)
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2. E ∈ com(A,R \ {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R}) and grd∗(A \E+
R , R ∩ ((A \E+

R )×
(A \ E+

R ))) = {∅}.

Proof. In the following we will use the following shorthands, R∗ = R \ {(b, a) | a ∈
E, {(a, b), (b, a)} ⊆ R} and (A′, R′) = (A \ E+

R , R ∩ ((A \ E+
R )× (A \ E+

R ))).
(1)⇒ (2): Consider a resolution β such that E ∈ com(A,R \ β). We first show that then also

E ∈ com(A,R∗). By construction we have that for arbitrary b ∈ A that (a) E �R b iff E �R\β b
iff E �R∗ b, and (b) b�R\β E iff b�R∗ E. Hence we have that (i) E ∈ adm(A,R \ β) iff E ∈
adm(A,R∗) and (ii)E+

R = E+
R\β = E+

R∗ . By definition of complete semantics, E ∈ com(A,R\β)

is equivalent to for each argument b ∈ A \ E there exists an argument c ∈ A such that c �R\β b
and E 6�R\β c. As R∗ ⊇ R \ β we obtain that (c, b) ∈ R \ β implies (c, b) ∈ R∗. Using (a) we
obtain that E ∈ com(A,R \ β) implies for each argument b ∈ A \ E there exists an argument
c ∈ A such that (c, b) ∈ R∗ and E 6�R∗ c, i.e. E ∈ com(A,R∗).

Now addressing grd∗(A′, R′) = {∅} we again use the assumption E ∈ com(A,R\β), i.e. each
argument which is defended by E is already contained in E, we have that grd(A \ E+

R\β, R \ β ∩
((A \E+

R )× (A \E+
R ))) = grd(A′, R′ \β) = {∅}. Note that β′ = β ∩R′ is a resolution of (A′, R′)

and that grd(A′, R′ \ β) = grd(A′, R′ \ β′) = {∅}. We can conclude that grd∗(A′, R′) = {∅}.
(1) ⇐ (2): Let β′ be a resolution such that grd(A′, R′ \ β′) = {∅}; such a β′ exists since

grd∗(A′, R′) = {∅}. Now consider the resolution β = {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ∪ β′.
Again, by construction of β we have that for arbitrary b ∈ A: (a) E �R b iff E �R\β b iff
E �R∗ b, and (b) b �R\β E iff b �R∗ E. Hence we obtain that E ∈ adm(A,R \ β). Using
R = E+

R\β = E+
R∗ we have grd(A\E+

R\β, (R\β)∩((A\E+
R )×(A\E+

R ))) = grd(A′, R′\β′) = {∅}.
Thus, E ∈ com(A,R \ β).

Proposition 2. Baroni, Dunne, and Giacomin (2011) For an AF F = (A,R), grd∗(F ) = {∅} iff
for each minimal SCC S of F one of the following conditions holds: S contains a self-attacking
argument; S contains a non-symmetric attack; or S contains an undirected cycle

Based on the above observations we obtain the following characterization of resolution-based
grounded semantics

Theorem 4. Given AF F = (A,R), the grd∗-extensions are the ⊆-minimal sets E ⊆ A such that:

• E ∈ com(A,R′) with R′ = R \ {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R})

• Each minimal SCC S of F̂ = (A \E+
R , R ∩A \E

+
R ×A \E

+
R ) satisfies one of the following

conditions: S contains a self-attacking argument; S contains a non-symmetric attack; or S
contains an undirected cycle

Having Theorem 4 at hand we can build an MSO1 encoding as follows. First we encode the
attack relation R′ as R′E(x, y) = (x, y) ∈ R∧¬(x ∈ E ∧ y 6∈ E ∧ (x, y) ∈ R∧ (y, x) ∈ R). Then
the AF F̂ = (Â, R̂) is given by:

ÂA,R,E(x) = x ∈ A ∧ x 6∈ E ∧ ¬∃y ∈ E : R′E(y, x)

R̂E,R(x, y) = (x, y) ∈ R ∧ A∗A,R,E(x) ∧ A∗A,R,E(y)
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Based on reachability we can easily specify whether arguments are strongly connected
SCR(x, y) = reachR(x, y) ∧ reachR(y, x), and a predicate that captures all arguments in mini-
mal SCCs minSCCA,R(x) = A(x) ∧ ¬∃y (A(y) ∧ reachR(y, x) ∧ ¬reachR(x, y)). It remains to
encode the check for each SCC.

C1R(x) = ∃y(SCR(x, y) ∧ (y, y) ∈ R)

C2R(x) = ∃y, z(SCR(x, y) ∧ SCR(x, z)

∧ (y, z) ∈ R ∧ (z, y) 6∈ R)

C3R(x) = ∃X(∃y ∈ X ∧ ∀y ∈ X[SCR(x, y)∧
∃u, v ∈ X : u 6= v ∧ (u, y) ∈ R ∧ (y, v) ∈ R])

CR(x) = C1R(x) ∨ C2R(x) ∨ C3R(x)

Finally using Theorem 4 we obtain an MSO1 encoding for resolution-based grounded semantics:

grd∗A,R(X) = candA,R(X) ∧ ¬∃Y (candA,R(Y ) ∧ Y ⊂ X)

where candA,R(X) stands for comA,R′X
(X) ∧ ∀x(minSCC ÂA,R,E ,R̂E,R

(x)→ CR̂E,R
(x)).

6 Conclusion
In this paper we have shown that the language of monadic second order logic (MSO) is a suitable
unifying framework for abstract argumentation. We encoded the most popular semantics within
MSO and gave building blocks illustrating that MSO can naturally capture several semantics con-
cepts. This is vital for new semantics where MSO can be used as rapid prototyping tool.

Based on the work of Baroni, Dunne, and Giacomin Baroni, Dunne, and Giacomin (2011), we
presented a new characterisation of resolution-based grounded semantics allowing for an MSO1

encoding. This shows that reasoning in this semantics is tractable for frameworks of bounded
clique-width. In fact, the collection of encodings we provided here shows that acceptance as well
as other reasoning tasks are fixed parameter tractable for several semantics w.r.t. the clique-width
(hence also for tree-width).

For future work we suggest to study whether also other instantiations of the resolution-based
semantics can be expressed in MSO1 (recall that we provided already a schema for MSO2 encod-
ings). Moreover, we will compare the performance of MSO tools with dedicated argumentation
systems. Finally, we want to advocate the use of MSO for automated theorem discovery Tang and
Lin (2011). In fact, our encodings allow to express meta-statements like “does it hold for AFs F
that each σ-extension is also a σ′-extension”. Although we have to face undecidability for such
formulas, there is the possibility that MSO-theorem provers come up with a counter-model. Thus,
MSO can be used to support the argumentation researcher in obtaining new insights concerning
the wide range of different argumentation semantics.2

2In recent work related to this issue, Weydert Weydert (2011) used an first-order encoding of complete semantics
to show certain properties for semi-stable semantics of infinite AFs.
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