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Abstract. Belief revision has been extensively studied in the framework of propositional
logic, but just recently revision within fragments of propositional logic has gained attention.
Hereby it is not only the belief set and the revision formula which are given within a certain
language fragment, but also the result of the revision has to be located in the same fragment.
So far, research in this direction was mainly devoted to the Horn fragment of classical logic.
In this work, we present a general approach to define new revision operators derived from
standard operators (as for instance, Satoh’s and Dalal’s revision operators), such that the
result of the revision remains in the fragment under consideration. Our approach is not
limited to the Horn case but applicable to any fragment of propositional logic where the
models of the formulas are closed under a Boolean function. Thus we are able to uniformly
treat cases as dual-Horn, Krom and affine formulas, as well.
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1 Introduction
Belief revision is a central topic in knowledge representation and reasoning. Belief revision con-
sists in incorporating a new belief, changing as few as possible of the original beliefs while pre-
serving consistency. Within the symbolic frameworks, where the beliefs are represented by logical
formulas, the AGM paradigm [1] dedicated to the revision of theories, became a standard which
provides rational postulates any reasonable revision operator should satisfy. Katsuno and Mendel-
zon [12], when unifying semantic revision approaches, reformulated these postulates where a the-
ory is represented by a propositional formula. Moreover they proposed a representation theorem
that characterizes revision operations in terms of total pre-orders over interpretations.

Belief revision has been extensively studied within the framework of propositional logic and
numerous concrete belief revision operators have been proposed according to either semantic or
syntactic points of view, for example [3, 18, 17]. Moreover, complexity results have been obtained
[8, 17, 15]. However, as far as we know few works focused on belief revision within the framework
of fragments of propositional logic, except for the Horn case [6].

The study of belief change within language fragments is motivated by two central observations:

• In many applications, the language is restricted a priori. For instance, a rule-based formal-
ization of expert knowledge is much easier to handle for standard users. In case users want
to revise some rules, they indeed expect that the outcome is still in the easy-to-read format
they are used to.

• Many fragments of propositional logic allow for efficient reasoning methods. Suppose an
agent who frequently has to answer queries about his beliefs. This should be done efficiently
thus the beliefs are stored as a formula known to be in a tractable class. In case the beliefs
of the agent are undergoing a revision, it is desired that the result of such an operation yields
a formula in the same fragment. Hence, the agent still can use the dedicated solving method
he is equipped with for this fragment. In case such changes are performed rarely, we do not
bother whether the revision itself can be performed efficiently, but it is more important that
the outcome can still be evaluated efficiently.

It seems thus natural to investigate how known operators can be refined such that they work
properly within a language fragment. The main obstacle hereby is that for a language fragment
L′, given formulas1 ψ, µ ∈ L′ there is no guarantee that the outcome ψ ◦ µ remains in L′ as well.
Let, for example, ψ = a ∧ b and µ = ¬a ∨ ¬b, be formulas expressed in conjunctive normal
form (CNF) with Horn clauses (at most one positive literal), revising ψ by µ using Dalal’s revision
operator [3] does not remain in the Horn language fragment since (a ∨ b) ∧ (¬a ∨ ¬b) belongs to
the result of the revision. The natural questions arise whether there exists refinements ⋆ of ◦ such
that ψ ⋆ µ ∈ L′ always holds, but properties of ◦ are retained whenever possible. For instance, for
such a refined operator it seems reasonable that ψ ⋆µ is equivalent to ψ ◦µ whenever ψ ◦µ already
yields a result from the desired fragment L′. We introduce further natural criteria refined operators

1Here and throughout the paper, we will follow the Katsuno and Mendelzon’s view of revision, cf. [12].
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are expected to satisfy and we show general properties of these refined operators as well as their
limits in satisfying postulates.

In fact, our main contributions are the following:

• We propose to adapt known belief revision operators to make them applicable in fragments
of propositional logic. We provide natural criteria such operators should satisfy.

• Rather than restricting ourselves to the Horn fragment, we present a general framework
which includes all fragments captured via closure properties on sets of models. In particular,
(dual) Horn, Krom and affine formulas are thus covered.

• We characterize refined operators in a constructive way which allows us to study their prop-
erties in terms of the postulates by Katsuno and Mendelzon [12]. Most notably, we show that
in case the initial operator satisfies certain postulates, then so does any of its refinements.

• We give a preliminary complexity analysis of selected refined operators.

Previous works dedicated to belief revision within fragments of propositional logic only fo-
cused on Horn fragments. The first mention of the Horn case for belief revision appears in [8], an
analysis of belief revision complexity. In [14] a compact representation for revision in the Horn
case is proposed. In [13] the study of belief revision in the Horn case provides a characterization
of the existence of a complement of the Horn consequence which corresponds to a contraction
operator. Horn contraction has been addressed in [4, 2, 5, 20] however the results cannot help for
defining revision operators since applying the Levi identity2 produces a result which might not fit
into the fragment of consideration. More recently, [6] showed that classical AGM revision does not
immediately generalize to the Horn case. They overcame this difficulty by restricting the rankings
on interpretations, adding a closure under intersection condition on interpretations. Moreover, they
added a new postulate to the set of AGM postulates. However they did not exhibit any concrete
revision operator and they limited themselves to the Horn case.

2 Preliminaries
Propositional Logic. We consider L as the language of propositional logic over some fixed
alphabet U of propositional atoms. We use standard connectives →, ⊕, ∨, ∧, ¬, and constants ⊤,
⊥. A clause is a disjunction of literals. A clause is called (i) Horn if at most one of its literals
is positive; (ii) dual Horn if at most one of its literals is negative; (iii) Krom if it consists of at
most two literals. A ⊕-clause is defined like a clause but using exclusive- instead of standard-
disjunction. We identify the following subsets of L: LHorn as the set of all formulas in L being
conjunctions of Horn clauses; LDHorn as the set of all formulas in L being conjunctions of dual
Horn clauses; LKrom as the set of all formulas in L being conjunctions of Krom clauses; and LAffine

as the set of all formulas in L being conjunctions of ⊕-clauses. In what follows we sometimes just

2ψ ◦ µ = (ψ − ¬µ) + µ, where −, resp. + denotes the contraction, resp. the expansion operator.
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talk about arbitrary fragments L′ ⊆ L. Hereby, we tacitly assume that any such fragment L′ ⊆ L
contains at least the formula ⊤.

For any formula ϕ, let Var(ϕ) denote the set of variables occurring in ϕ. An interpretation is
represented either by a set I ⊆ U of atoms (corresponding to the variables set to true) or by its cor-
responding characteristic bit-vector of length |U|. For instance if we consider U = {x1, . . . , x6},
the interpretation x1 = x3 = x6 = 1 and x2 = x4 = x5 = 0 will be represented either by
{x1, x3, x6} or by (1, 0, 1, 0, 0, 1). As usual, if an interpretation I satisfies a formula ϕ, we call I
a model of ϕ. By Mod(ϕ) we denote the set of all models (over U) of ϕ. Moreover, ψ |= ϕ if
Mod(ψ) ⊆ Mod(ϕ) and ψ ≡ ϕ if Mod(ψ) = Mod(ϕ). For a set T of formulas, Cn(T ) denotes
the closure of T under the consequence relation |= . A theory T is a deductively closed set of
formulas such that T = Cn(T ). For fragments L′ ⊆ L, we also use TL′(ψ) = {ϕ ∈ L′ | ψ |= ϕ}.
Revision. In the AGM paradigm [1], the underlying logic is assumed to be classical logic and
the beliefs are modeled by a theory, called belief set. A revision operator ∗ is a function mapping
a belief set T and a formula A to a new belief set T ∗ A which satisfies the following properties3:
(K ∗ 1) T ∗ A = Cn(T ∗ A)
(K ∗ 2) A ∈ T ∗ A.
(K ∗ 3) T ∗ A ⊆ T + A.
(K ∗ 4) If ¬A ̸∈ T then T ∗ A = T + A.
(K ∗ 5) T ∗ A = L only if A is unsatisfiable.
(K ∗ 6) If A ≡ B then T ∗ A = T ∗B.
(K ∗ 7) T ∗ (A ∧B) ⊆ (T ∗ A) +B.
(K ∗ 8) If ¬B ̸∈ T ∗ A then (T ∗ A) + B = T ∗ (A ∧B).

According to a semantic point of view, when a belief set is represented by a propositional formula
ψ such that T = {ϕ ∈ L | ψ |= ϕ}, revising ψ by µ amounts to finding the models of µ which are
“closest” to the models of µ. The closeness between models depends on the choice of the revision
operator. In order to characterize different proposed semantic operators, Katsuno and Mendelzon
[12] reformulated the AGM postulates as follows:

(R1) ψ ◦ µ |= µ.
(R2) If ψ ∧ µ is satisfiable, then ψ ◦ µ ≡ ψ ∧ µ.
(R3) If µ is satisfiable, then so is ψ ◦ µ.
(R4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ◦ µ1 ≡ ψ2 ◦ µ2.
(R5) (ψ ◦ µ) ∧ ϕ |= ψ ◦ (µ ∧ ϕ).
(R6) If (ψ ◦ µ) ∧ ϕ is satisfiable, then also ψ ◦ (µ ∧ ϕ) |= (ψ ◦ µ) ∧ ϕ.

The (R1) postulate specifies that the added formula belongs to the revised belief set, (R2)
gives the revised belief set when the added formula is consistent with the initial belief set, (R3)
ensures that no inconsistency is introduced in the revised belief set, (R4) expresses the principle
of irrelevance of the syntax, and (R5) and (R6) are the direct translation of both the (K ∗ 7) and
(K ∗ 8) postulates and are the most controversial ones, as mentioned in [7].

Katsuno and Mendelzon showed that a revision satisfying the AGM postulates is equivalent
to a total preorder on interpretations, which reflects a plausibility ordering on interpretations.

3T +A is the smallest deductively closed set of formulas containing both T and A.
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More formally they provided the following representation theorem, stating that a revision oper-
ation satisfies the postulates (R1)-(R6) if and only if there exists a total pre-order ≤ψ such that
Mod(ψ ◦ µ) =Min(Mod(µ),≤ψ).

We now recall some well-known semantic revision operators for L, the full version of propo-
sitional logic. Later we shall refine them towards revision operators for some fragments L′. In the
model-based revision operators recalled hereafter, the closeness between models rely on the sym-
metric difference between models, that is the set of propositional variables on which they differ.

[3] measures minimal change by the cardinality of model change, i.e., let α and β be two propo-
sitional formulas and M and M ′ be two interpretations, M∆M ′ denotes the symmetric difference
between M and M ′ and |∆|min(α, β) denotes the minimum number of propositional variables on
which the models of α and β differ4 and is defined as min{|M∆M ′| : M ∈ Mod(α),M ′ ∈
Mod(β)}. Dalal’s operator is now defined as: Mod(ψ ◦D µ) = {M ∈ Mod(µ) : ∃M ′ ∈
Mod(ψ) s. t. |M∆M ′| = |∆|min(ψ, µ)}. This operator satisfies (R1)− (R6).

[18] interprets the minimal change in terms of set inclusion instead of cardinality on model
difference. Thus let ∆min(α, β) = min⊆{M∆M ′ : M ∈ Mod(α), M ′ ∈ Mod(β)} and de-
fine Satoh’s operator as: Mod(ψ ◦S µ) = {M ∈ Mod(µ) : ∃M ′ ∈ Mod(ψ) s. t. M∆M ′ ∈
∆min(ψ, µ)}. Satoh’s operator satisfies (R1)− (R5).

Another less known revision operation is due to Hegner. While Dalal’s and Satoh’s approaches
deal with propositional variables possibly present in the models of ψ and µ, Hegner’s operator
focuses on variables occurring in µ and is defined as Mod(ψ ◦H µ) = {M ∈ Mod(µ) : ∃M ′ ∈
Mod(ψ) s. t. M∆M ′ ⊆ V ar(µ)}.

We are interested here in revision operators which are tailored for certain fragments. The
following definition is very general. We shall later consider revision operators which satisfy several
criteria and postulates.

Definition 1. A basic (revision) operator for L′ ⊆ L is any function ◦ : L′ × L′ → L′ satisfying
⊤◦µ ≡ µ for each µ ∈ L′. We say that ◦ satisfies a KM postulate (Ri) (i ∈ {1, . . . , 6}) in L′ if the
respective postulate holds when restricted to formulas from L′.

3 Refined Operators
The problem of standard operators when applied in a fragment of propositional logic is illustrated
by an example.

Example 1. Let ψ, µ ∈ LHorn (over U = {a, b}) with ψ = a ∧ b and µ = ¬a ∨ ¬b. We have
Mod(ψ) = {{a, b}} and Mod(µ) = {∅, {a}, {b}}. We obtain Mod(ψ ◦D µ) = Mod(ψ ◦S µ) =
{{a}, {b}}. Thus, for instance, we can give ϕ = (a ∨ b) ∧ (¬a ∨ ¬b) as a result of the revision.
However, ϕ /∈ LHorn . In fact, there is no ϕ ∈ LHorn with Mod(ϕ) = {{a}, {b}}, since each
ϕ ∈ LHorn satisfies the following closure-property in terms of its models: for each I, J ∈ Mod(ϕ),
also I ∩ J ∈ Mod(ϕ).

4This is also expressed with Hamming distance when the interpretations are encoded as characteristic bit-vectors.
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In Example 1, to adapt ◦D (or likewise, ◦S) such that the outcome of the revision is from LHorn

we have two options: (1) build the closure of the set of required models, in our case we have to
add ∅ = {a} ∩ {b}; (2) remove models from the outcome. The disadvantage of the latter option
is that there is no particular reason to prefer {a} over {b} or vice versa. However, removing both
would yield the empty set and thus our revision would become inconsistent which is not desirable.
The former approach looks also problematic since adding models reduces the number of formulas
derivable from the revised formula, which might be in conflict with some KM postulates. In fact,
one of the main goals of the paper is to understand the limits of such repairs in terms of the KM
postulates. Note that in Example 1, ψ, µ ∈ LKrom holds, and the revision ϕ is also in LKrom .

The considerations of the above example can be generalized to the following problem state-
ment. Given a known revision operator ◦ and a fragment L′ of propositional logic, how can we
adapt ◦ to a new revision operator ⋆ such that, for each ψ, µ ∈ L′, also ψ ⋆ µ ∈ L′? Let us define a
few natural desiderata for ⋆.

Definition 2. Let L′ be a fragment of classical logic and ◦ : L × L → L a revision operator. We
call an operator ⋆ : L′ × L′ → L′ a ◦-refinement for L′ if it satisfies the following properties, for
each ψ, ψ′, µ, µ′ ∈ L′.

• consistency: ψ ⋆ µ is satisfiable if and only if ψ ◦ µ is satisfiable

• equivalence: if ψ ◦ µ ≡ ψ′ ◦ µ′ then ψ ⋆ µ ≡ ψ′ ⋆ µ′

• containment: TL′(ψ ◦ µ) ⊆ TL′(ψ ⋆ µ)

• invariance: If ψ ◦ µ ∈ L′, then TL′(ψ ⋆ µ) ⊆ TL′(ψ ◦ µ).

Containment and invariance jointly imply that for each ψ, µ ∈ L′ such that ψ ◦ µ ∈ L′,
ψ ⋆ µ ≡ ψ ◦ µ holds.

Let us briefly discuss these properties. The first two conditions are rather independent from
L′, but relate the refined operator ⋆ to the original revision ◦ in certain ways. To be more precise,
consistency states that the refined operator ⋆ should yield a consistent revision exactly if the original
operator ◦ does so. Equivalence means that the definition of the ⋆-operator should not be syntax-
dependent: revisions which are equivalent w.r.t ◦ are also equivalent w.r.t. ⋆. Note that this does not
necessarily mean that ψ ⋆µ ≡ ψ ◦µ holds for all formulas µ, ψ ∈ L′. The final two properties take
more care of the fragment L′. Containment ensures that ⋆ can be seen as a form of approximation
of ◦ when applied in the L′ fragment, while invariance states that in case ◦ behaves as expected
(i.e. the revision is contained in L′) there is no need for ⋆ to do something additional.5

4 Characterization of Refined Operators
In order to capture all ◦-refinements for a fragment L′ we need some formal machinery which we
introduce next.5This prevents us from defining a Dalal-refinement which always selects a single interpretation. Thus, an operator
as discussed in [6] does not fit into our concept.
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Formal Ingredients. We use k-ary Boolean functions β : {0, 1}k → {0, 1} like

• the binary AND function denoted by ∧;

• the binary OR function denoted by ∨;

• the ternary MAJORITY function, maj3(x, y, z) = 1 if at least two of the variables x, y, and
z are set to 1;

• the ternary XOR function ⊕3(x, y, z) = x⊕ y ⊕ z.

All of them satisfy the properties of symmetry, i.e., for all permutations σ, β(x1, . . . , xk) =
β(xσ(1), . . . , xσ(k)), and 0- and 1-reproduction, i.e., for every x ∈ {0, 1}, β(x, . . . , x) = x.

Recall that we consider interpretations also as bit-vectors. We thus extend Boolean functions
to interpretations by applying coordinate-wise the original function. So, if M1, . . .Mk ∈ {0, 1}n,
then β(M1, . . .Mk) is defined by (β(M1[1], . . .Mk[1]), . . . , β(M1[n], . . .Mk[n])), where M [i] is
the i-th coordinate of the interpretation M .

Definition 3. Let B denote the set of all Boolean functions over alphabet U applied to interpreta-
tions over U that satisfy symmetry as well as 0- and 1-reproduction.

Coming back to Example 1, recall that we mentioned that models of Horn formulas are closed
under intersection. In terms of Boolean functions, this means that for any models I, J of a Horn-
formula ϕ, also I ∧ J is a model of ϕ. The next definition gives a general formal definition of
closure.

Definition 4. Given a set M ⊆ 2U of interpretations and β ∈ B, we define Clβ(M), the closure
of M under β, as the smallest set of interpretations that contains M and that is closed under β,
i.e., if M1, . . .Mk ∈ Clβ(M), then also β(M1, . . .Mk) ∈ Clβ(M).

Closures satisfy monotonicity: if M ⊆ N , then Clβ(M) ⊆ Clβ(N ). Moreover, if |M| = 1,
then Clβ(M) = M (because by assumption β is 0- and 1-reproducing); finally, we have always
have Clβ(∅) = ∅.

Definition 5. Let β ∈ B. A set L′ ⊆ L of propositional formulas is a β-fragment if:

1. for all ψ ∈ L′, Mod(ψ) = Clβ(Mod(ψ))

2. for all M ⊆ 2U with M = Clβ(M) there exists a ψ ∈ L′ with Mod(ψ) = M

3. if ϕ, ψ ∈ L′ then ϕ ∧ ψ ∈ L′.

We call fragments L′ ⊆ L which are β-fragments for a β ∈ B also characterizable fragments (of
propositional logic).

Well-known fragments of propositional logic can be captured now as follows (see e.g., [10,
19]).
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Proposition 1. LHorn is an ∧-fragment, LDHorn is an ∨-fragment, LKrom is a maj3-fragment and
LAffine is a ⊕3-fragment.

As suggested by their names the Horn fragment and the dual Horn fragment are dual in the
following sense: a formula ϕ is Horn if and only if the formula dual(ϕ) obtained from ϕ in negating
each literal is dual Horn. Moreover the set of models of ϕ is in one-to-one correspondence with the
set of models of dual(ϕ). From now on we thus omit discussions about the dual Horn fragment.
All the results stated below for the Horn fragment also hold for the dual Horn fragment in replacing
the function ∧ by the function ∨.

First Examples of Refined Operators. First, let us consider Hegner’s revision operator that has
the interesting property to be well adapted to any characterizable fragment.

Proposition 2. Let L′ be a characterizable fragment of propositional logic. Then, Hegner’s revi-
sion operator, ◦H , restricted to formulas in L′ is a refinement of its own for L′.

Proof. The properties of Definition 2 are obviously satisfied. We only have to prove that if ψ and
µ are formulas in a β-fragment L′, so is ψ ◦H µ. Suppose that β is of arity k. Let N1, . . . , Nk

be models of ψ ◦H µ. By definition of Hegner’s revision operator there exist M1, . . . ,Mk models
of ψ such that for every i, Ni∆Mi ⊆ Var(µ). Since β applies to interpretations coordinate-wise
we have β(N1, . . . , Nk)∆β(M1, . . . ,Mk) ⊆ Var(µ). Moreover, β(N1, . . . , Nk) is a model of µ
(since µ ∈ L′ and L′ is a β-fragment), similarly β(M1, . . . ,Mk) is a model of ψ. Therefore
β(N1, . . . , Nk) is a model of ψ ◦H µ. Thus we have proved that the set Mod(ψ ◦H µ) is closed
under β for every β ∈ B. Hence, by definition of a β-fragment, there exists a formula ν ∈ L′ such
that Mod(ν) = Mod(ψ ◦H µ).

Even if we do not fix the revision operator, the ingredients defined above put us in a position to
define for any operator ◦, a certain refinement in terms of Definition 2.

Definition 6. Let ◦ : L×L → L be a revision operator, L′ ⊆ L a fragment of classical logic, such
that L′ is a β-fragment for some β ∈ B. We define the closure-based ◦-refined operator ◦Clβ as

Mod(ψ ◦Clβ µ) := Clβ(Mod(ψ ◦ µ)). (1)

Example 2. Recall Example 1, where we had ψ, µ ∈ LHorn with Mod(ψ ◦ µ) = {{a}, {b}}
(◦ ∈ {◦S, ◦D}). Our refined operator ◦Cl∧ is defined as Mod(ψ ◦Cl∧ µ) = Cl∧(Mod(ψ ◦ µ)) =
{{a}, {b}, ∅} and thus yields a revision in LHorn .

Operators ◦Clβ are refined in the sense of Definition 2.

Proposition 3. For any revision operator, ◦ : L×L → L and any β-fragment fragment L′ ⊆ L of
classical logic, ◦Clβ is a ◦-refinement for L′.

Proof. For each M such that M = Clβ(M), there exists a ϕ ∈ L′ with Mod(ϕ) = M. Thus
the above definition of ◦Clβ indeed yields a mapping L′ × L′ → L′. It remains to show that ◦Clβ
satisfies consistency, equivalence, containment and invariance.
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Consistency for ◦Clβ holds by the fact that, for all β ∈ B we have M ⊆ Clβ(M) and Clβ(∅) =
∅. Equivalence is clear by definition, since we operate on models. To show containment for ◦Clβ , let
ψ, µ, ϕ ∈ L′ such that ψ◦µ |= ϕ. We have Mod(ψ◦Clβ µ) = Clβ(Mod(ψ◦µ)) ⊆ Clβ(Mod(ϕ)) =
Mod(ϕ), i.e., ψ ◦Clβ µ |= ϕ. The first equality is by definition, the containment is implied by the
assumption Mod(ψ ◦ µ) ⊆ Mod(ϕ) and by monotonicity of Clβ . The second equality holds since
ϕ ∈ L′ and L′ is a β-fragment. Finally, invariance for ◦Clβ holds, since in case ψ ◦ϕ ∈ L′, we have
Mod(ψ ◦Clβ µ) = Clβ(Mod(ψ ◦ µ)) = Mod(ψ ◦ µ); the first equality is by definition; the second
one since L′ is a β-fragment.

We will later show how closure-based refined operators behave in terms of the KM postulates.
Before doing so, let us motivate the need for further refined operators.

Example 3. Consider the following example for ◦ ∈ {◦D, ◦S} with formulas ψ, µ ∈ LHorn , such
that Mod(ψ) = {{a, b, c, d}, {a, d}} and Mod(µ) = {{a, b}, {b, c}, {c, d}, {b}, {c}, ∅}. We have
Mod(ψ ◦ µ) = {{a, b}, {b, c}, {c, d}, ∅} =: M. Note that Cl∧ = M∪ {{b}, {c}}, thus we would
have to add two further interpretations when applying the revision operator ◦Cl∧ . On the other
hand, we can do a smaller change in order to end up with a closed set of interpretations, since
Cl∧(M\{{b, c}}) = M\{{b, c}}. Thus, as a result of the revision, also M\{{b, c}} should be
a candidate.

Next, we show how to capture not only a specific refined operator but characterize the class of
all refined operators.

Characterizing Refined Operators Towards a more general approach to define revision oper-
ators we want to reduce the size of generated models, i.e., looking at (1) in Definition 6, we are
interested in certain subsets of Clβ(Mod(ψ ◦ µ)) instead of the whole set. For such a selection we
formulate some basic properties in the next definition.

Definition 7. Given β ∈ B, we define a β-mapping, fβ , as an application from sets of models into
sets of models, fβ : 22

U −→ 22
U

, such that for every M ⊆ 2U :

1. Clβ(fβ(M)) = fβ(M), i.e., fβ(M) is closed under β

2. fβ(M) ⊆ Clβ(M)

3. if M = Clβ(M), then fβ(M) = M

4. If M ̸= ∅, then fβ(M) ̸= ∅.

The underlying idea of functions fβ is to replace Clβ by an arbitrary β-mapping fβ when
defining refined operators as in (1). Note that Clβ itself is a β-mapping for any β ∈ B. Below we
will provide three more β-mappings and the corresponding refined revision operators. In general,
the concept of mappings allows us to define a family of refined operators for fragments of classical
logic as follows.
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Definition 8. Let ◦ : L×L −→ L be a revision operator and L′ ⊆ L be a β-fragment of classical
logic with β ∈ B. For a β-mappingfβ we denote with ◦fβ : L′ × L′ −→ L′ the operator for L′

defined as Mod(ψ ◦fβ µ) := fβ(Mod(ψ ◦ µ)). The class [◦,L′] contains all operators ◦fβ where
fβ is a β-mapping and β ∈ B such that L′ is a β-fragment.

The next proposition is central in reflecting that the above class captures all refined operators
we had in mind.

Proposition 4. Let ◦ : L × L −→ L be a basic revision operator and L′ ⊆ L a characterizable
fragment of classical logic. Then, [◦,L′] is the set of all ◦-refinements for L′.

Proof. Since L′ is a characterizable fragment it is also a β-fragment for some β ∈ B.
Let ⋆ ∈ [◦,L′]. We show that ⋆ is a ◦-refinement for L′. Since ⋆ ∈ [◦,L′] there exists a β ∈ B

and a β-mapping fβ , such that Mod(ψ ⋆ µ) = fβ(Mod(ψ ◦ µ)) for all ψ, µ ∈ L′. Since fβ satisfies
property 1 in Definition 7 and L′ is a β-fragment, ⋆ is indeed a mapping L′ × L′ −→ L′.

Consistency for ⋆: Let ψ, µ ∈ L′. If Mod(ψ ◦µ) ̸= ∅ then Mod(ψ ⋆µ) = fβ(Mod(ψ ◦µ)) ̸= ∅
by property 4 in Definition 7. In case, Mod(ψ ◦ µ) = ∅, we make use of the fact that Clβ(∅) = ∅
holds for all β ∈ B. By property 2 in Definition 7, we get Mod(ψ ⋆ µ) = fβ(Mod(ψ ◦ µ)) ⊆
Clβ(Mod(ψ ◦ µ)) = ∅. Equivalence for ⋆ is clear by definition and since fβ is defined on sets of
models. To show containment for ⋆, let ϕ ∈ TL′(ψ◦µ), i.e., ϕ ∈ L′ and Mod(ψ◦µ) ⊆ Mod(ϕ). We
have Clβ(Mod(ψ ◦ µ)) ⊆ Clβ(Mod(ϕ)) by monotonicity of Clβ . By property 2 of Definition 7,
Mod(ψ ⋆ µ) ⊆ Clβ(Mod(ψ ◦ µ). Since ϕ ∈ L′ we have Clβ(Mod(ϕ)) = Mod(ϕ). Thus,
Mod(ψ⋆µ) ⊆ Mod(ϕ), i.e. ϕ ∈ TL′(ψ⋆µ). Finally, we require invariance for ⋆: In case ψ◦µ ∈ L′,
we have Clβ(Mod(ψ ◦ µ)) = Mod(ψ ◦ µ) since L′ is a β-fragment. By property 3 in Definition 7,
we have Mod(ψ⋆µ) = fβ(Mod(ψ ◦µ)) = Mod(ψ ◦µ). Thus TL′(ψ⋆µ) ⊆ TL′(ψ ◦µ) as required.

Let ⋆ be a ◦-refinement for L′. We show that ⋆ ∈ [◦,L′]. Let, for a set M of interpretations
such thatClβ(M) = M, (ψM, µM) be a pair of formulas from L′ such that Mod(ψM◦µM) = M.
Note that for any such M ⊆ 2U with Clβ(M) = M there exists such a pair. This is due to fact
that ◦ is a basic revision operator thus satisfying ⊤ ◦ µ ≡ µ and since L′ is a β-fragment—thus
for each such M there exists a µ ∈ L′ with Mod(µ) = M. We show that a mapping f on such
closed sets defined as f(M) := Mod(ψM ⋆ µM) with (ψM, µM) being a pair as discussed above
is a β-mapping. Note that since ⋆ is a β-refinement, it satisfies the property of equivalence, thus
the actual choice of the pair (ψM, µM) is not relevant and, given M, ψM ⋆µM is equivalent for all
(ψM, µM). Thus f is well-defined.

We continue to show that the four properties in Definition 7 hold for f . Property 1 is ensured
since ⋆ is defined as a mapping L′ × L′ −→ L′ and L′ is a β-fragment. Property 3 is ensured
jointly by containment and invariance of ⋆: Recall that in case ψ ◦ µ ∈ L′, we have Mod(ψ ◦ µ) =
Mod(ψ ⋆ µ). Since ψ ◦ µ ∈ L′ implies Mod(ψ ◦ µ) = fβ(Mod(ψ ◦ µ)) we get by definition
of f that this property holds. Property 4 is ensured by consistency of ⋆. It remains to show that
Property 2, i.e. f(M) ⊆ Clβ(M) for any M ⊆ 2U . Towards a contradiction suppose existence
of an M such that f(M) ̸⊆ Clβ(M). Then there exists an m ∈ Mod(ψM ⋆ µM) such that
m ̸∈ Clβ(Mod(ψM ◦ µM)). Let ϕ ∈ L′ such that Mod(ϕ) = Clβ(Mod(ψM ◦ µM)). We have
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ψM ◦ µM |= ϕ, while ψM ⋆ µM ̸|= ϕ, which provides a contradiction to the assumption that ⋆
satisfies containment.

Further Examples of Refined Operators. So far, we have considered the operator ◦Clβ as one
instantiation of a ◦-refined operator. Let us have a different operator next.

Definition 9. Let β ∈ B and suppose that ≤ is a fixed linear order on the set 2U of interpretations.
We define the function Minβ as Minβ(M) = M if Clβ(M) = M, and Minβ(M) = Min≤(M)
otherwise.

For L′ a β-fragment and ◦ a revision operator, the corresponding operators ◦Minβ are thus given
as Mod(ψ ◦Minβ µ) = Minβ(Mod(ψ ◦ µ)). Clearly, Minβ is a β-mapping. Thus, by Proposition 4,
◦Minβ is a ◦-refined operator for L′.

For the situation in Example 3, we so far have not found a satisfying instantiation of refined
operators. In fact, we require a slightly more complicated concept here, which is based on the
observation that, given a set M of interpretations with M ≠ Clβ(M), there might be elements
in M which are “more responsible” for this inequation than others. To this end we define, for
each element M in M, its “repairset” as the interpretations missing in the closure of applying the
operator β when M is involved. Then, the cost of M is the cardinality of its repairset.

Definition 10. For a k-ary Boolean function β ∈ B and M ⊆ 2U , we define repairsetMβ (M) =
{β(M,M1, . . . ,Mk−1) ̸∈ M | Mi ∈ M, 1 ≤ i < k}, and define the cost of M (in M in terms of
β), costMβ (M), as the cardinality of repairsetMβ (M). Moreover, we define MaxM

β = {M ∈ M |
∀N ∈ M, costMβ (M)≥costMβ (N)} as the set of elements in M with the highest cost.

Example 4. Let M = {{a, b}, {b, c}, {c, d}, ∅} and consider the Boolean function ∧. Then,
repairsetM∧ ({a, b}) = {{b}}, repairsetM∧ ({b, c}) = {{b}, {c}}, repairsetM∧ ({c, d}) = {{c}},
and repairsetM∧ (∅) = ∅. Thus, we have costM∧ ({b, c}) = 2, costM∧ ({a, b}) = costM∧ ({c, d}) = 1,
and costM∧ (∅) = 0.

The following definition defines a β-mapping based on the idea to get rid off the most costly
interpretations.

Definition 11. Let β ∈ B. We define the mapping t1β as

t1β(M)=

{
Clβ(M) if MaxM

β = M
t1β(M\MaxM

β )otherwise

Informally, this operator functions along the lines of the following algorithm. We start with a
set M of interpretations. In case M is already closed under β all elements have cost 0 and we
return M; in case all M ∈ M have the same cost, we cannot objectively do better than build
Clβ(M) and return that set; otherwise we remove the most costly elements from M and restart
with this reduced set. It can be shown that, for L′ a β-fragment and ◦ a revision operator, the
operator ◦t1β , given as Mod(ψ ◦t1β µ) = t1β(Mod(ψ ◦ µ)), is a ◦-refined operator for L′, basically
since t1β is a β-mapping in sense of Definition 7.
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Example 5. Recall the setting from Example 3. There we had the situation that, for ◦ ∈ {◦D, ◦S},
Mod(ψ ◦µ) = {{a, b}, {b, c}, {c, d}, ∅} = M with M as analyzed in Example 4. Thus, MaxM

∧ =
{{b, c}}. We obtain t1∧(M) = M\ {{b, c}} (since M\ {{b, c}} is already closed under ∧) and
hence ◦t1∧ behaves as suggested in Example 3.

Let us have a final example to motivate one further instantiation of refined operators.

Example 6. Consider ψ, µ ∈ LHorn with Mod(ψ) = {{a, b, c}, {b, c, d}, {b, c}} and
Mod(µ) = {{a, b, c, d}, {a, b}, {c, d}, ∅} For ◦ ∈ {◦S, ◦D}, we obtain Mod(ψ ◦ µ) =
{{a, b, c, d}, {a, b}, {c, d}}, which is not closed under ∧. The simplest “repair” would be to add
interpretation ∅ (as is done by ◦Cl∧), but ◦t1∧ here removes both {a, b} and {c, d} (since these two
have the highest cost) and we end up with Mod(ψ ◦t1∧ µ) = {{a, b, c, d}}.

Definition 12. Let β ∈ B, we define a mapping t2β as

t2β(M) =

{
t2β(M\MaxM

β ) if |MaxM
β | = 1 < |M|

Clβ(M) otherwise

where MaxM
β is as in Definition 11.

For L′ a β-fragment and ◦ a revision operator, it holds that the operator ◦t2β , given as Mod(ψ◦t2β
µ) = t2β(Mod(ψ ◦ µ)), is a ◦-refined operator for L′.

It can be seen that ◦t2∧ behaves as expected in all cases we have discussed in the previous
examples. More precisely, in the case of Example 6, we now obtain for Mod(ψ ◦t2∧ µ) the simplest
repair Cl∧({{a, b, c, d}, {a, b}, {c, d}}) = Mod(µ). For the other examples we had, it can be
checked that t2∧ and t1∧ behave analogously. This, however, does not mean that t2β is the “best”
refinement we can get. In fact, it is up to the user to define a refined operator which is best
suited for her purposes. Nonetheless, our generic results provide already basic properties for such
operators. In the next section, we analyse the KM postulates for refined operators.

5 KM Postulates
In this section, we first show a positive result concerning the first four KM postulates. In fact,
we prove that any operator refined for a fragment L′ has good properties as long as the original
operator has good properties. We then show that particular refined operators even satisfy (R5). As
a negative result, we show that for the four fragments we consider here, i.e. LHorn , LDHorn , LKrom

and LAffine , there is no Dalal- or Satoh-refined operator that satisfies (R6). Finally, we also prove an
impossibility result for (R5) when particular materializations of refined operators are considered.

Proposition 5. Let ◦ be a revision operator satisfying KM postulates R1-R4, and L′ ⊆ L a char-
acterizable fragment. Then each ⋆ ∈ [◦,L′] satisfies R1-R4 in L′ as well.
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Proof. Since L′ is characterizable there exists a β ∈ B, such that L′ is a β-fragment. We thus
can assume that ⋆ ∈ [◦,L′] is an operator of form ◦fβ where fβ is a suitable β-mapping. In what
follows, note that we can restrict ourselves to ψ, µ ∈ L′, since we have to show that ◦fβ satisfies
R1–R4 in L′.
(R1): Since ◦ satisfies (R1), Mod(ψ ◦ µ) ⊆ Mod(µ). Thus, Clβ(Mod(ψ ◦ µ)) ⊆ Clβ(Mod(µ))
by monotonicity of the closure. Hence, Clβ(Mod(ψ ◦ µ)) ⊆ Mod(µ), since µ ∈ L′ and L′ is a
β-fragment. According to property 2 in Definition 7 we have fβ(Mod(ψ◦µ)) ⊆ Clβ(Mod(ψ◦µ)),
and therefore by definition of ⋆Mod(ψ ⋆ µ) ⊆ Mod(µ), which proves that ψ ⋆ µ |= µ.
(R2): Suppose that ψ∧µ is satisfiable. We have Mod(ψ⋆µ) = fβ(Mod(ψ◦µ)) = fβ(Mod(ψ∧µ)),
since ◦ satisfies (R2). Since ψ ∧ µ ∈ L′ (by definition of fragment) we have Mod(ψ ⋆ µ) =
Mod(ψ ∧ µ) thanks to condition (3) in Definition 7.
(R3): Suppose µ satisfiable. Since ◦ satisfies (R3), (ψ ◦ µ) is satisfiable. Since ⋆ is a ◦-refinement
(Proposition 4), (ψ ⋆ µ) is also satisfiable by the property of consistency (see Definition 2).
(R4): Let ψ1, ψ2, µ1, µ2 ∈ L′ with ψ1 ≡ ψ2 and µ1 ≡ µ2. Since ◦ satisfies (R4), ψ1 ◦µ1 ≡ ψ2 ◦µ2.
Since ⋆ is a ◦-refinement, ψ1 ⋆ µ1 ≡ ψ2 ⋆ µ2 by the property of equivalence (Definition 2).

A natural question is whether one can find refined operators for characterizable fragments that
satisfy all postulates. Our next result answers negatively to this question in the sense that it shows
that no matter which operator we choose from [◦,L′] in case of ◦ ∈ {◦D, ◦S} and L′ ∈ {LHorn ,
LDHorn ,LKrom ,LAffine}, it will not satisfy (R6).

Proposition 6. Let ◦ ∈ {◦D, ◦S} and L′ ∈ {LHorn ,LDHorn ,LKrom ,LAffine}. Then any refined
operator ⋆ ∈ [◦,L′] violates postulate (R6) in L′.

Proof. (R6) states that in case (ψ ⋆ µ) ∧ ϕ is satisfiable, then ψ ⋆ (µ ∧ ϕ) |= (ψ ⋆ µ) ∧ ϕ. We
show in detail only the case L′ = LHorn . By definition, there is an ∧-mapping f such that ⋆ = ◦f
and we have f(M) ⊆ Cl∧(M) with Cl∧(f(M)) = f(M). Let Mod(ψ) = {{a, b, c, d, e}, ∅}
and Mod(µ) = {{a, b, c, d}, {a, b, c, e}, {a, b, c}, {a, b}, {a}}. Note that such ψ, µ ∈ LHorn exist.
For ◦ ∈ {◦D, ◦S}, we have M = Mod(ψ ◦ µ) = {{a, b, c, d}, {a, b, c, e}, {a}}. Let us consider
the possibilities for Mod(ψ ⋆ µ) = f(M). By the definition of refined operators, we know that
{a, b} /∈ f(M) since {a, b} /∈ Cl∧(M). We consider two cases:

First, assume {a, b, c} ∈ f(M): let ϕ be such that Mod(ϕ) = {{a, b}, {a, b, c}} = N . Clearly,
such a ϕ exists in LHorn . Also note that Mod(ϕ) ⊆ Mod(µ). We get Mod(ψ ⋆ (µ ∧ ϕ)) =
Mod(ψ ⋆ ϕ) = f(Mod(ψ ◦ ϕ)) = N (N is closed under ∧, f(N ) = N holds by definition of
refined operators) but Mod((ψ ⋆ µ) ∧ ϕ) = f(M) ∩N ⊂ N .

Otherwise, we have ∅ ⊂ f(M) ⊆ {{a, b, c, d}, {a}} or ∅ ⊂ f(M) ⊆ {{a, b, c, e}, {a}}
(note that {{a, b, c, d}, {a, b, c, e}} ⊆ f(M) would imply {a, b, c} ∈ f(M)). For the cases with
|f(M)| = 1, we select ϕ ∈ LHorn where Mod(ϕ) is {{a, b, c, d}, {a}} or {{a, b, c, e}, {a}} such
that f(M) ⊆ Mod(ϕ) holds. Then, Mod(ψ⋆(µ∧ϕ)) = Mod(ψ⋆ϕ) = f(Mod(ψ◦ϕ)) = Mod(ϕ)
(again since Mod(ϕ) is closed under ∧) but Mod((ψ⋆µ)∧ϕ) = f(M)∩Mod(ϕ) ⊂ Mod(ϕ). Two
cases remain. Let us suppose f(M) = {{a, b, c, d}, {a}}; the final case is then symmetric. We
now use ϕ ∈ LHorn with Mod(ϕ) = {{a, b, c, e}, {a}}. Again, Mod(ψ⋆ (µ∧ϕ)) = Mod(ψ⋆ϕ) =
f(Mod(ψ◦ϕ)) = Mod(ϕ) (since Mod(ϕ) is closed under ∧) but Mod((ψ⋆µ)∧ϕ) = {{a}}. Thus,
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Mod((ψ⋆µ)∧ϕ) ̸= ∅ and Mod(ψ⋆(µ∧ϕ)) ̸⊆ Mod((ψ⋆µ)∧ϕ). Hence, ψ⋆(µ∧ϕ) ̸|= (ψ⋆µ)∧ϕ.

The case L′ = LDHorn is dual. For L′ = LKrom , we can use formulas ψ, µ ∈ LKrom with the
same set of models as for the case L′ = LHorn and proceed similarly as above. Finally, for
L′ = LAffine . formulas ψ, µ ∈ LAffine having as models Mod(ψ) = {{a, b, c}, {b, c, d}} and
Mod(µ) = {{a, b, c, d, e, f}, {a, b, c, d}, {a, b, e, f}, {c, d, e, f}, {a, b}, {c, d}, {e, f}, ∅} can be
used to show the assertion.

The status of the 5th KM postulate, R5, is less clear. Indeed, on the one hand the next proposi-
tion shows that the β-mapping Minβ defined above allows to refine Dalal’s operator for any char-
acterizable fragment in satisfying the fifth postulate, whereas it is not the case for Satoh’s operator.
Moreover, we will show afterwards that the refinements of both Dalal’s and Satoh’s operators by
any of the other mappings we have considered so far fail at satisfying R5.

Proposition 7. (1) The refined operator ◦Minβ
D satisfies the KM postulate R5 in any β-fragment L′.

(2) The refined operator ◦Minβ
S violate postulate (R5) in any L′ ∈ {LHorn ,LDHorn ,LKrom ,LAffine}.

Proof. Let us first consider Dalal’s operator. Let ψ, µ and ϕ be formulas in L′. If (ψ ◦Minβ
D µ)∧ϕ is

unsatisfiable, then obviously (ψ ◦Minβ
D µ)∧ϕ |= ψ ◦Minβ

D (µ∧ϕ). Suppose now that (ψ ◦Minβ
D µ)∧ϕ

is satisfiable. There are two cases to distinguish. First, if Clβ(Mod(ψ ◦D µ)) = Mod(ψ ◦D µ).
Observe that in this case Mod((ψ ◦D µ)∧ϕ) is also closed under β. Thus, Mod((ψ ◦Minβ

D µ)∧ϕ) =
Minβ(Mod((ψ◦Dµ)∧ϕ) = Minβ(Mod(ψ◦D(µ∧ϕ))) for Dalal’s operator satisfies both R5 and R6.
Hence, Mod((ψ◦Minβ

D µ)∧ϕ) = Mod((ψ◦Minβ
D (µ∧ϕ)). Second, suppose thatClβ(Mod(ψ◦Dµ)) ̸=

Mod(ψ ◦D µ). In this case Mod((ψ ◦Minβ
D µ)∧ϕ) = Min≤(Mod(ψ ◦D µ))∩Mod(ϕ) (for (ψ ◦Minβ

D

µ) ∧ ϕ is satisfiable), and we have Min≤(Mod(ψ ◦D µ)) ∩Mod(ϕ) ⊆ Min≤(Mod((ψ ◦D µ) ∧ ϕ))
. Since (ψ ◦D µ) ∧ ϕ ≡ ψ ◦D (µ ∧ ϕ) (for Dalal’s operator satisfies both R5 and R6), we obtain
Mod((ψ ◦Minβ

D µ) ∧ ϕ) ⊆ Min≤(Mod(ψ ◦D (µ ∧ ϕ)) = Mod(ψ ◦Minβ
D (µ ∧ ϕ)), thus proving that

(ψ ◦Minβ
D µ) ∧ ϕ |= ψ ◦Minβ

D (µ ∧ ϕ).
Let us now consider Satoh’s operator. Without loss of generality suppose that the linear order

≤ on interpretations on which the operator Minβ is based verifies {a, b} < {d, e} < {c, d, e} <
{a, b, c}.

We give a full proof only for L′ = LHorn . Let Mod(ψ) = {{a, b, c, d, e}}, Mod(µ) =
{{a, b, c}, {a, b}, {d, e}, ∅}, and Mod(ϕ) = {{a, b}, {d, e}, ∅}. Indeed such ψ, µ, ϕ ∈ LHorn exist.
We have Mod(ψ ◦S µ) = {{a, b, c}, {d, e}} -which is not closed under ∧- thus Mod(ψ ⋆ µ) =
Min≤({{a, b, c}, {d, e}}) = {{d, e}}. (where ⋆ denotes ◦Min∧

D ). Hence, on the one hand,
Mod((ψ⋆µ)∧ϕ) = Min≤({{a, b, c}, {d, e}}) = {{d, e}}. On the other hand, Mod(ψ⋆(µ∧ϕ)) =
Min∧({{a, b}, {d, e}}) = {{a, b}}.

The same proof works for the case L′ = LKrom . The proof for L′ = LDHorn is dual.
For L′ = LAffine , formulas ψ, µ, ϕ such that Mod(ψ) = {{a, b, c, d, e}}, Mod(µ) =
{{a, b, c}, {a, b}, {d, e}, {c, d, e}}, and Mod(ϕ) = {{a, b}, {c, d, e}} can be used.

Proposition 8. Let ◦ ∈ {◦D, ◦S} and L′ ∈ {LHorn ,LDHorn ,LKrom ,LAffine}. Then the refined
operators ◦Clβ , ◦t1β and ◦t2β violate postulate (R5) in L′.
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Proof. We provide formulas ψ, µ, ϕ ∈ L′ such that Mod((ψ ⋆ µ) ∧ ϕ) ̸⊆ Mod(ψ ⋆ (µ ∧ ϕ)), i.e.,
such that (ψ ⋆ µ) ∧ ϕ ̸|= ψ ⋆ (µ ∧ ϕ) for any ⋆ ∈ [◦,L′].

In detail we only show that case L′ = LHorn : Let ⋆ = ◦f for f = Cl∧, t1∧ or t2∧. Let
Mod(ψ) = {{a, b, c}}, Mod(µ) = {{a, b}, {a, c}, {a}}, and Mod(ϕ) = {{a, b}, {a}}. Note
that such ψ, µ, ϕ ∈ LHorn exist. We have Mod(ψ ⋆ µ) = f(Mod(ψ ◦ µ)) = f({{a, b}, {a, c}})
for ◦ ∈ {◦D, ◦S}. Hence, Mod(ψ ⋆ µ) = {{a, b}, {a, c}, {a}} since f({{a, b}, {a, c}}) =
{{a, b}, {a, c}, {a}} for all f under consideration. Therefore, Mod((ψ ⋆ µ) ∧ ϕ) = {{a, b}, {a}}.
On the other hand Mod(ψ ⋆ (µ ∧ ϕ)) = Mod(ψ ⋆ ϕ) = f(Mod(ψ ◦ ϕ)) = {{a, b}} (since
Mod(ψ ◦ ϕ) = {{a, b}} is already closed under ∧ and ⋆ is a ◦-refinement for L′, a ∧-fragment).

The case L′ = LDHorn is dual. For L′ = LKrom , we use ψ, µ, ϕ ∈ LKrom with Mod(ψ) =
{{a, b, c}}, Mod(µ) = {{a}, {b}, {c}, ∅}, Mod(ϕ) = {{c}, ∅}. For L′ = LAffine , formulas
ψ, µ, ϕ ∈ LAffine with Mod(ψ) = {{a, b, c}, {b, c, d}}, Mod(µ) = {{a, b, c, d}, {a, b}, {c, d}, ∅},
and Mod(ϕ) = {{a, b, c, d}, ∅}} can be employed.

6 Complexity Issues
Our goal in this section is to initiate a study of the computational complexity for refined operators
tailored for characterizable fragments of propositional logic. We focus on the complexity of model
checking (see [15]) which is the most basic computational problem in the belief revision context
and which is defined as follows. Let ◦ be a revision operator, L′ a β-fragment of classical logic
and fβ a β-mapping. We consider the following problem:

Problem: MODEL-CHECKING(◦,L′, fβ)

Input: Two formulas ψ, µ ∈ L′, a model M
Question: M ∈ Mod(ψ ◦fop µ)?

While the complexity of revision in the propositional case has been largely investigated [8,
16, 9, 17, 14, 15] there are very few results on propositional sublanguages. As far as we know
only the Horn fragment has been investigated. We first examine the complexity of model checking
for Hegner’s revision operator on any characterizable fragment. Then we focus on the Horn (and
dual Horn) fragments to pinpoint the complexity of model checking for refined Dalal’s and Satoh’s
operators.

Refined Hegner operator on characterizable fragments. Recall that for any characteriz-
able fragment L′, if ψ and µ are two formulas in L′, then so is ψ ◦H µ. As a consequence
[◦H ,L′] = {◦H}. Therefore, in order to study the complexity of the model checking for Hegner’s
refined operators it is enough to consider MODEL-CHECKING(◦H ,L′, Id). Let SAT(L′) denote the
satisfiability problem for formulas in L′.

Proposition 9. Let L′ be a characterizable fragment, then MODEL-CHECKING(◦H ,L′, Id) ≡
SAT(L′) under log-space reductions.
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Proof. First, let X be the set of variables of ψ, Y the set of variables in µ, and Z = X ∪ Y . As in
[15], we construct the new formula ψ′ = ψ ∧

∧
{zi|zi ∈ (M \ Y )} ∧

∧
{¬zi|zi ∈ (Z \ Y ) \M}.

This proves MODEL-CHECKING(◦H ,L′, Id) ≤ SAT(L′).
Conversely, let ψ be a formula in L′. Construct µ ∈ L′ having the same set of variables as ψ

and the empty set as unique model. Hence, ψ is satisfiable if and only if the empty set is a model
of ψ ◦H µ.

By the above proposition we immediately have that MODEL-CHECKING(◦H ,L′, Id) is in P
(respectively, NP-complete). whenever deciding the satisfiability of a formula in L′ is in P (re-
spectively is NP-complete).

Refined Dalal operator for (dual) Horn. The complexity of model checking for the Dalal oper-
ator in the propositional case (resp. in the Horn case) is given by Liberatore and Schaerf [15, Thm
7 and Thm 15]. It is PNP [O(logn)]-complete. We extend this hardness result to all refinements of
Dalal’s operator on LHorn and, by duality, on LDHorn .

Proposition 10. MODEL-CHECKING(◦D,LHorn, f) is PNP[O(logn)]-hard for any ∧-mapping f .

Proof. In [15], PNP[O(logn)]-hardness of Dalal-revision with arbitrary formulas is proved by reduc-
tion from the co-problem of UOCSAT [11], that is: given a set of clauses C = {C1, · · · , Cp},
decide whether its (cardinality) maximal consistent subset is unique. The PNP[O(logn)]-hardness of
Dalal-revision with Horn formulas is then proved by reduction from the model checking problem
of ◦D in the general case. Neither reduction is applicable in our case: the reduction in the general
case clearly does not use Horn formulas and the reduction for Horn formulas yields a set of models
with ψ ◦fD µ ̸= ψ ◦D µ in general. Therefore, we present a new reduction from co-UOCSAT to
MODEL-CHECKING(◦D,LHorn, f).

Consider an arbitrary instance of co-UOCSAT, i.e., clause set C = {C1, · · · , Cp} over alphabet
X = {x1, . . . , xn}. Each clause Ci can be written as Ci = (

∧
Ai −→

∨
Bi), where Ai and Bi are

subsets of X . We need a new variable d and new alphabets that are in one-to-one correspondence
with X: X1, . . . Xm, X̃ , X̃1, . . . X̃m, X ′, X ′

1, . . . , X
′
m, X̃ ′, X̃ ′

1, . . . , X̃
′
m where we set m = 2p+ 1.

Likewise, we need new alphabets Y, Y1, . . . Ym, Ỹ , Ỹ1, . . . Ỹm, Y ′, Y ′, Y ′
1 , . . . , Y

′
m, Ỹ ′, Ỹ ′

1 , . . . , Ỹ
′
m,

W , W ′, Z,Z1, . . . Zm, Z̃, Z̃1, . . . Z̃m, which are in one-to-one correspondence with C. Let us use U
to denote the union of all these sets. Intuitively X ′ (likewise Y ′) will serve to rename the variables
of X (resp. Y ) while X̃ (likewise Ỹ and Z̃) is meant to represent the variables of X (resp. Y and
Z) negated. Below we use e.g. X ≡ X1 as a shorthand for

∧n
j=1(xj ≡ x1j) and we write ¬W to

denote
∧p
j=1 ¬wi. Consider the instance with

ψ as given in Figure 1,
µ =

∧
u∈U\(W∪W ′∪{d}) u ∧ ¬W ∧ ¬W ′, and

M = U \ (W ∪W ′ ∪ {d}}).
All clauses are Horn. Moreover Mod(µ) = {M,M ∪{d}}. Every subset of Mod(µ) is thus closed
under any 0- and 1-reproducing Boolean function f . Hence, ψ ◦fD µ = ψ ◦D µ. We claim that
C has a unique cardinality maximal consistent set if and only if M ̸∈ Mod(ψ ◦ µ). Indeed, let I
and J be models of ψ and µ realizing the minimal distance. The copies of X , X ′, X̃ , X̃ ′, Y , Y ′,
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(X ≡ X1 ≡ . . . ≡ Xm) ∧ (X ′ ≡ X ′
1 ≡ . . . ≡ X ′

m)∧
(X̃ ≡ X̃1 ≡ . . . ≡ X̃m) ∧ (X̃ ′ ≡ X̃ ′

1 ≡ . . . ≡ X̃ ′
m)∧

(Y ≡ Y1 ≡ . . . ≡ Ym) ∧ (Y ′ ≡ Y ′
1 ≡ . . . ≡ Y ′

m)∧
(Ỹ ≡ Ỹ1 ≡ . . . ≡ Ỹm) ∧ (Ỹ ′ ≡ Ỹ ′

1 ≡ . . . ≡ Ỹ ′
m)∧

(Z ≡ Z1 ≡ . . . ≡ Zm) ∧ (Z̃ ≡ Z̃1 ≡ . . . ≡ Z̃m)∧
(Y ≡W ) ∧ (Y ′ ≡ W ′) ∧

[(∧p
i=1 zi

)
−→ d

]
∧∧n

j=1

[
(¬xj ∨ ¬x̃j) ∧ (¬x′j ∨ ¬x̃′j)

]
∧∧p

i=1

[
(¬yi ∨ ¬ỹi) ∧ (¬y′i ∨ ¬ỹ′i) ∧ (¬zi ∨ ¬z̃i)

]
∧∧p

i=1

[
(yi ∧ y′i −→ zi) ∧ (ỹi ∧ ỹ′i −→ zi)

]
∧∧p

i=1

[
(yi ∧ ỹ′i −→ z̃i) ∧ (ỹi ∧ y′i −→ z̃i)

]
∧∧p

i=1

[
(
∧
Ai ∧

∧
B̃i −→ yi) ∧ (

∧
A′
i ∧

∧
B̃′
i −→ y′i)

]
Figure 1: Formula ψ as used in proof of Proposition 10.

. . . have been introduced, s.t. I(x̃) = 1 − I(x), I(x̃′) = 1 − I(x′), etc. holds. Hence, the distance
between I and J becomes minimal if the number of clauses that are falsified in the interpretations
represented by X and X ′ is minimized. If this minimum can only be achieved in a single way then
I(d) = 1 holds and only M ∪ {d} has minimal distance to the models of ψ.

The Horn fragment – which is an ∧-fragment – has the following property, which will be
important to extend the above hardness result to a completeness result.

Proposition 11. Let M ⊆ 2U and M an interpretation over variables {x1, . . . , xn}. Then M ∈
Cl∧(M) iff there exists M1, . . . ,Mk in M (k ≤ n) such that M =M1 ∧ · · · ∧Mk.

Proof. This follows from the associativity of the ∧ function e.g., (M1 ∧ M2) ∧ (M3 ∧ M4) =
(M1 ∧M2 ∧M3 ∧M4), and in observing that if M1 ̸⊆M2 then |M1 ∧M2| < |M1|, thus justifying
that k ≤ n.

Proposition 12. MODEL-CHECKING(◦D,LHorn, f) is PNP[O(logn)]-complete, for f ∈
{Cl∧,Min∧}.

Proof. According to Proposition 10 only membership has to be proved. Let us sketch a polynomial
time algorithm with a logarithmic number of calls to an NP-oracle.

We check whether ψ or µ is unsatisfiable with the oracle. If not, then we proceed in two steps.
First we compute d the distance between ψ and µ by binary search with O(log n) calls to the
NP-oracle “is d(ψ, µ) ≤ k?”.

In the case of MODEL-CHECKING(◦D,LHorn, Cl∧) we make then one call to the oracle “does
M belong to Cl∧(Mod(ψ ◦ µ)?”. This oracle is in NP. Indeed, according to Proposition 11
in order to decide whether M belongs to Clβ(Mod(ψ ◦ µ)) we have to guess k pairs of mod-
els (M1, N1), . . . , (Mk, Nk), for every i check that Mi is a model of ψ, Ni is a model of µ and
d(Mi, Ni) = d, and finally check that M =M1 ∧ . . . ∧Mk.
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In the case of MODEL-CHECKING(◦D,LHorn,Min∧) we need more calls to oracles: “Is
Mod(ψ ◦ µ) closed under ∧?”. If yes, call to the oracle “does M belong to Mod(ψ ◦ µ)?”. Other-
wise call to the oracle “ M = Min≤(Mod(ψ ◦ µ)?”. Since the distance between ψ and µ is known
all these oracles are in NP (thanks to Proposition 11 for the first two ones).

Refined Satoh operator for (dual) Horn. We have similar results for Satoh’s operator in the
Horn fragment.

Proposition 13. MODEL-CHECKING(◦S,LHorn, f) is NP-hard for any ∧-mapping f .

Proof. We can use the reduction in [15, Thm 20]. From a CNF-formula Π, the authors construct
two Horn formulas ψ and µ, and a model M , s.t. Π is satisfiable iff M |= ψ ◦S µ. Formula µ has
only two models M1 and M2 with M1 ⊂ M2. Any subset of {M1,M2} is thus closed under any
Boolean function f . Therefore, Mod(ψ ◦S µ) is closed under any such f , and ψ ◦fS µ = ψ ◦S µ.
The same proof thus also shows the NP-hardness of MODEL-CHECKING(◦S,LHorn, f).

Proposition 14. MODEL-CHECKING(◦S,LHorn, Cl∧) is NP-complete.

Proof. By Proposition 13 only membership has to be proved. According to Proposition 11 in
order to decide whether M belongs to Clβ(Mod(ψ ◦ µ)) we have to guess k pairs of models
(M1, N1), . . . , (Mk, Nk) such that for every i, Ni certifies that Mi is indeed a model of ψ ◦S µ
and finally check that M = M1 ∧ . . . ∧Mk. Verifying that Ni is a witness of the fact that Mi ∈
Mod(ψ ◦S µ) comes down to verifying that Mi is indeed a model of µ, Ni is a model of ψ and there
exist no pairs (M ′

i , N
′
i) with N ′

i∆M
′
i ⊂ Ni∆Mi. This last step can be performed in polynomial

time if ψ and µ are Horn formulas. Indeed, this test is equivalent to verifying that the formula
ϕ = ψ[X/Y ]∧µ∧

∧
xj /∈N∆M(xj ≡ yj) has no other solution than NY ∪M , where NY denotes the

interpretation on the set Y defined byNY (yj) = I(xj). This verification can be done in polynomial
time. The correctness of checking the minimality of Ni∆Mi via the formula ϕ crucially depends
on the closure under intersection that is fulfilled by the set of models of a Horn formula. This
property is needed to show that if ϕ has yet another model, then Ni∆Mi is not minimal.

7 Conclusion
This paper contributes to the current line of research in belief change where particular fragments
of propositional logic are considered as source and target language. In contrast to previous work
which mainly was devoted to the case of Horn logic, we provided here a more general view which
takes semantic properties of the language fragments into account. Our main goal was to understand
to which extent established revision operators can be “refined” to work in particular fragments. As
we have shown, this works well for the basic postulates while the more involved postulates (R5
and R6) are more problematic. We have illustrated that our generic framework captures many
natural approaches of refinements of operators (we provided four concrete such operators) and
thus can be used to analyze further proposals for concrete operator refinements. Finally, we have
complemented our work with a preliminary complexity analysis.
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Future work includes a more thorough investigation of the complexity of revision, in particular
for the Krom case. Furthermore a full picture under which circumstances R5 can be satisfied is on
our agenda. Another direction is to weaken the properties which we suggested for refined operators
in Definition 2; indeed, giving up the property of invariance would allow us to define refinements
which satisfy all postulates, but it is questionable whether those instances can still be understood
as refinements of a given operator. Finally, we plan to apply the methodology presented here for
revision to other major operations in the area of belief change, in particular to contraction and
merging.
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