
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at
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1 Introduction
Starting from the pioneering work of Gelfond and Lifschitz [16, 17], the declarative problem solv-
ing paradigm of answer set programming (short: ASP, see e.g. [2]) has become a central formal-
ism in artificial intelligence and knowledge representation. This is due to its simple, yet expressive
modelling language, which is implemented by systems showing a steadily increasing performance.
Such systems follow a two-step approach for evaluating a program: The so-called grounder instan-
tiates rules by replacing the various variables with applicable constants. This yields a propositional
logic program (consisting of propositional or “ground” rules) that is equivalent for the given do-
main. This program is then finally fed into the actual solver. In systems like lparse/smodels [22]
or gringo/clasp [12] this separation is quite strict whereas DLV [20] followed a more integrated
approach.

Although today’s ASP systems have reached an impressive state of sophistication, we believe
that there is still room for improvement, in particular on the level of grounding. In fact, since
checking whether a non-ground rule fires is already NP-complete [9] in general (as easily shown
by analogy to the conjunctive query evaluation problem, which is also NP-complete, cf. [1]),
grounders have to list all possibly applicable instantiations of non-ground rules which are, by the
NP-completeness of the aforementioned problem, exponentially many in the worst case. However,
often the rules exhibit a particular structure which, in theory, could be used to avoid or at least
reduce this blow-up. Several preprocessing and optimization techniques that work well in practice
have been developed in the past, see, e.g., [10, 13, 11], but to the best of our knowledge, in the
area of ASP, decomposition of rules via hypergraphs has not been implemented or systematically
investigated yet.

In this paper we present such a novel preprocessing strategy. It is based on ideas of Gottlob et.
al. in [19], who employed a similar mechanism to efficiently solve the boolean conjunctive query
evaluation problem. In our approach, each rule is represented as a hypergraph, where each variable
in the rule is represented by a vertex and each predicate in the rule is represented by a hyperedge
in the hypergraph. Using a hypertree decomposition of this hypergraph representation, the rule
can then be split up into an equivalent set of smaller rules, whose grounding is only exponential in
the size of the nodes in the hypertree decomposition (i.e., the number of variables in each node).
In cases where the size of the nodes is considered to be bound by a fixed constant, the grounding
thus remains linear in the size of the non-ground program when using current generation grounders.
First experiments with a prototype implementation and the benchmarks from the well-known Third
ASP Competition 2011 [7] show a significant decrease both in grounding time and grounding size
for certain problems.

2 Preliminaries
In this section we give a brief introduction to Answer Set Programming (ASP) as well as the to the
concepts of hypergraphs and hypertree decompositions.
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Logic Programs and Answer Set Semantics. We focus here only on the basic definitions; for a
comprehensive and recent introduction to answer set programming, see [6].

Disjunctive logic programs are programs that consist of rules of the form

H1 ∨ · · · ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm

where Hi, Pi and Ni are atoms. An atom A is a predicate with an arity and accordingly many
variables or constant symbols (also called domain elements). If the arity is 0, we simply write
A instead of A(). Variables are denoted by capital letters, constants by lower-case words. If an
atom does not contain variables it is said to be ground. For a rule r of above form, we denote
by H(r) the set of head atoms of r (i.e. H(r) = {H1, . . . , Hk}); the positive body we denote by
B+(r) = {P1, . . . , Pn} and the negative body by B−(r) = {N1, . . . , Nn}. H1, . . . , Hk are called
the head atoms, and P1, . . . , Pn (resp. N1, . . . , Nm) are called the positive body (resp. negative
body) atoms of the rule. Moreover, we use B(r) = {P1, . . . , Pn,¬N1, . . . ,¬Nn} to denote the set
of all literals in the body or r. The ¬ operator is a unary logical connective, called the negation as
failure operator or, alternatively, default negation. Given a logic program Π, we denote by BΠ its
Herbrand Base, i.e., the set of all ground atoms which can be constructed from the constants and
predicates in Π.

A rule is said to be safe if every variable occurring in the head or negative body of the rule also
occurs in the positive body of the rule. From this point onward, we only consider logic programs
whose rules are safe.

Example 2.1. An example logic program is given below:

q ← E(X, Y ),¬E(X, a)

It has the intended meaning that the boolean predicate q is true, if there exists an edge from a
vertex X to a vertex Y in a graph, but not from the vertex X to a constant vertex a.

A logic program is said to be ground, if it does not contain any rules with variables. A non-
ground rule (i.e. one that contains variables) can be seen as an abbreviation for all possible instan-
tiations of the variables with domain elements. In answer set programming, this step is usually
explicitly performed by a grounder. Note that such a ground program can be exponential in the
size of the non-ground program. In what follows, we denote by Gr(Π) the grounding of a program
Π. Moreover, we denote by Gr(r,Π) the grounding of a single rule r with respect to the domain
elements occurring in Π. Clearly, Gr(Π) =

⋃
r∈Π Gr(r,Π).

The dependency graph of a ground logic program Π is a graph G = (V,E), where the vertices
V are all the ground atoms occurring in Π, and there is an edge from atom B to atom H if both
occur in the same rule r ∈ Π, and H ∈ H(r) and B ∈ (B+(r) ∪B−(r)).

A set S of ground atoms is a model of a disjunctive logic program Π if S satisfies each rule in
Gr(Π). A ground rule r is satisfied by S if H(r) ∩ S 6= ∅ holds, whenever B(r) is satisfied by
S (i.e., whenever B+(r) ⊆ S and B−(r) ∩ S = ∅). The reduct ΠS of a ground disjunctive logic
program Π with respect to a set S of ground atoms is defined as:

ΠS = {H(r)← B+(r) | r ∈ Π, B−(r) ∩ S = ∅}
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A set S of ground atoms is an answer set of a logic program Π if S is a minimal model of
(Gr(Π))S , the reduct of the grounding of Π with respect to S.

Hypergraphs and Hypertree Decompositions. Tree decompositions and treewidth, originally
defined in [23], are a well known tool to tackle computationally hard problems (see, e.g., [3, 4] for
an overview). Treewidth is a measure for the cyclicity of a graph and many NP-complete problems
become tractable in cases where the treewidth is bounded. However, many problems are even
better represented by hypergraphs. In [18] the concepts of hypertree decompositions and hypertree
width were introduced that extend the measurement of cyclicity to hypergraphs.

A hypergraph is a pair H = (V,E) with a set V of vertices and a set E of hyperedges. A
hyperedge e ∈ E is itself a set of vertices, with e ⊆ V . A hypergraph of a non-ground logic
program rule r is a pair HG(r) = (V,E) such that V consists of all the variables occurring in r
and E is a set of hyperedges, such that for each atom A ∈ B(r) there exists exactly one hyperedge
e ∈ E, which consists of all the variables occurring in A. Furthermore there exists exactly one
hyperedge e ∈ E that contains all the variables occurring in H(r).

The following definition is central for our purposes:
A (generalized) hypertree decomposition of a hypergraph H = (V,E) is a triplet HD =

〈T, χ, λ〉, where T = (N,F ) is a (rooted) tree and χ and λ are labelling functions such that for
each node n ∈ N , χ(n) ⊆ V and λ(n) ⊆ E and the following conditions hold:

1. for every e ∈ E there exists a node n ∈ N such that e ⊆ χ(n),

2. for every v ∈ V the set {n ∈ N | v ∈ χ(n)} induces a connected subtree of T ,

3. for every node n ∈ N , χ(n) ⊆
⋃
e∈λ(n) e.

A hypertree decomposition of a logic program rule r is therefore a hypertree decomposition of
the hypergraph of r . The width of a hypertree decomposition is the maximum λ-set size over all its
nodes. The minimum width over all possible hypertree decompositions is called the (generalized)
hypertree width. Similarly, the treewidth of a hypertree decomposition is defined by the maximum
χ-set size, minus one, of a hypretree decomposition of minimal width.

Unfortunately, for a given hypergraph, it is NP-hard to compute a hypertree decomposition of
minimum width. However, efficient heuristics have been developed that offer good approxima-
tions (cf. [8, 5]). In practice it turns out that these approximations are often sufficient to obtain
good results with decomposition-based algorithms (i.e., algorithms that take the problem and its
hypertree decomposition as input).

3 Preprocessing of Non-ground Rules
In this section we describe our main contribution, a novel method for preprocessing complex logic
program rules in order to decrease the size of the grounding.

Current grounders for answer set programming do not consider the structure of a rule and
thus, when grounding, the number of ground rules produced can in the worst case be exponential
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in the number of variables occurring in the rule. However, given a hypertree decomposition of
such a rule, the exponentially of the grounding can be restricted to the maximum χ-set size of the
decomposition.

In order to describe our algorithm, we introduce the following notational aids: For a node n in a
hypertree decomposition, we represent by parent(n) and desc(n) the parent node of n and the set of
descendants (or child nodes) of n respectively. For a set (or sequence) B of literals and a set X of
variables, we denote withB∩X (with some abuse of notation) the literals inB that have at least one
of the variables in X occurring in them. E.g., if B(r) = E(X1, X2), E(X2, X3),¬E(X3, X4, c),
then the intersection B(r) ∩ {X1, X4} = E(X1, X2),¬E(X3, X4, c).

Given these shorthands, the rewriting of logic program rules according to our method works
by running the following algorithm Preprocess:

1. We compute a (generalized) hypertree decomposition HD(r) = HD(HG(r)) = 〈T =
(N,F ), χ, λ〉 of a given logic program rule r , trying to minimize the maximal χ-set size.
W.l.o.g. we assume that the edge representing H(r) occurs only in the root node of T .

2. We do a bottom-up traversal of the hypertree decomposition of r . For each node n ∈ N
(except the root) in the decomposition, let Yn = χ(n) ∩ χ(parent(n)) and Tn be a fresh
predicate to store the current result. At each node n ∈ N we generate a rule rn of the form:

Tn(Yn) ← (B(r) ∩ χ(n))
∪ {ΣX(X) | X ∈ B−(r) ∩ χ(n)}
∪ {Tm(Ym) | m ∈ desc(n)}

The additional temporary predicates ΣX(X) are necessary to guarantee safety of the gen-
erated rule. To this end, for each variable X occurring in B−(r) ∩ χ(n), we generate a
rule

ΣX(X)← b

where b ∈ B+(r) with X as one if its arguments1.

For the root node n, we generate a rule similar to rn but replace Tn(Yn) by H(r) and we
furthermore add all ground atoms of B(r) to this generated rule (since those atoms are not
represented in the tree decomposition). We refer to this generated rule as the head rule.
Generated rules stemming from a leaf node n ∈ N are referred to as leaf rules. Atoms of
the from Tn(Y) and ΣX(X) are subsequently called temporary atoms.

Definition 3.1. Given a rule r we denote by r ∗ the set of rules obtained by running Preprocess
on r . Moreover, for a logic program Π and r ∈ Π, we define Πr∗ = (Π \ {r}) ∪ r ∗.

The intuition underlying the Preprocess algorithm is the following: Grounders have to com-
pute all the groundings for every rule in a given logic program. When these rules involve multiple
joins, this can be inefficient, because the grounder has to compute all possible tuples satisfying the

1We select here such a b from B+(r) with minimal arity. Note that such a predicate exists since r is safe.
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first join, and then, for each of those, compute all possible tuples satisfying the next join, and so
forth.

However, the grounder actually only needs to store the values that are involved in the next join,
and perform the join operation on them, instead of the complete set of tuples. The Preprocess
algorithm makes this explicit: The hypertree decomposition takes care of splitting the rules into
multiple parts (i.e., the nodes in the decomposition). By construction of the decomposition, the
join operations performed inside a node cannot be split up any further, thus, for each of the nodes
we generate a rule performing these joins. However, in the temporary head predicate we then
only store the variables that are actually involved in a join in the next node, thereby allowing the
grounder to ignore the other variables for any subsequent joins.

The following brief example shows this behaviour:

Example 3.2. Given the rule

r = H(A,D)← E(A,B), E(B,C),¬E(C,D), E(D,A)

we compute a (simple) decomposition HD(r), for instance the following:

H(A,D), E(A,B), E(D,A)

E(B,C),¬E(C,D)

This decomposition then yields the following set of rules r ∗, when applying the steps discussed
above:

ΣD(D)← E(D,A)

T1(B,D)← E(B,C),¬E(C,D),ΣD(D)

H(A,D)← E(A,B), E(D,A), T1(B,D)

The resulting set of rules is equivalent to the rule r in the sense of Theorem 3.3 below, however
the number of possible ground rules is now only in O(2maxn∈N |χ(n)|) instead of O(2|X|), with X
the variables in r .

Once we have preprocessed a rule (or, every rule in a logic program), it is easy to recreate the
answer sets of the original program, as the following theorem states:

Theorem 3.3. Let Π be a logic program. Then for every answer set A of Π there exists exactly one
answer set Ar∗ ⊇ A of Πr∗ and for every answer set Ar∗ of Πr∗ there exists exactly one answer set
A ⊆ Ar∗ of Π, such that in both cases it holds that BΠ ∩ Ar∗ = A.

In order to proof this theorem, we first need to establish the following two technical lemmas:

Lemma 3.4. Let Π be a logic program, S ⊆ BΠ and r ∈ Π. Then, there exists a uniquely deter-
mined set T ⊆ Br∗ \ BΠ of ground temporary atoms from r ∗, such that the following conditions
hold:
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(a) For every t ∈ T there exists a rule s ∈ Gr(r ∗,Πr∗) such that H(s) = {t} and B(s) is satisfied
by S ∪ T .

(b) For every rule s ∈ Gr(r ∗,Πr∗) it holds that if B(s) is satisfied by S ∪ T and its head atom t
is a temporary atom (i.e. s is instantiated from a rule in r ∗ different from the head rule), then
t ∈ T .

Proof. Let V be the set of variables occurring in r . For every ground instance of r we define a
function g : V 7→ ∆ that maps the variables in r to the appropriate constant of ∆ (i.e., the ground
instance can be obtained by applying g to r ).

We set Tg = ∅ and apply the following step exhaustively (i.e., until a fixpoint is reached):

• Add to Tg all temporary atoms from r ∗ grounded by g, where S∪Tg satisfies the correspond-
ing rule body.

Note that by construction every rule with the exception of the head rule in r ∗ is identified by
its unique temporary head atom, therefore, for a specific grounding g there can only be exactly one
corresponding rule body per (grounded) temporary head atom.

We now set
T =

⋃
g

Tg

for all possible groundings g. T indeed satisfies conditions (a) and (b): From the construction of T
it is clear that a temporary ground atom is only added to T if a corresponding rule body is satisfied.
Therefore condition (a) is clearly satisfied. Also, whenever a rule body is satisfied, by construction
the corresponding head atom (if temporary) is added to T . This clearly satisfies condition (b).

It remains to show that T is indeed the only set that satisfies conditions (a) and (b). The atoms
contained in T must occur in any set that satisfies conditions (a) and (b), as the absence of just one
atom from T would lead to a violation of at least one of those conditions: By construction of r ∗,
temporary atoms never occur negated and we could always run the fixpoint operation above, which
would add them. We therefore only have to show that there exists no set of ground temporary atoms
T ′ disjoint from T , such that T ∪ T ′ still satisfies conditions (a) and (b).

Suppose to the contrary that there exists such a set T ′. Then by condition (a), for every t ∈
T ′ there is at least one (ground) rule r with t as its head and its body satisfied by S ∪ T ∪ T ′.
However if the body of r consisted only of non-temporary atoms, or atoms from T , then the
fixpoint construction of T would already have added them.

Therefore, the only possibility is that there is another ground temporary atom t′ ∈ T ′, causing
the body of r to get satisfied (i.e., there is an edge from t′ to t in the dependency graph of r). The
same holds for t′ itself, thus the only way to construct T ′ is by having one or more sequences of
atoms t1, . . . , tn, such that t1 is needed to satisfy a rule with head t2 and so forth, and finally tn is
needed to satisfy a rule with head t1.

Note that this is the case if and only if there is a directed circle t1 → t2 → · · · → tn → t1 in the
dependency graph of the grounding of r ∗. However, when running Preprocess, all leaf rules have
only non-temporary atoms in their bodies. As the hypertree decomposition is a tree, any circle in
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the dependency graph of the grounding of r ∗ must have an edge from a head atom of r to such a
non-temporary body atom, making a circle consisting only of temporary atoms impossible, which
yields a contradiction. Therefore no set T ′ can exist and T is indeed unique.

Lemma 3.5. Let Π be a logic program, r ∈ Π a rule and S ⊆ BΠ a set of atoms. Then S is a
model of Π if and only if S ∪ T is a model of Πr∗ , with T being the set defined in Lemma 3.4 with
respect to the set S.

Proof. First observe that for any rule s ∈ Π \ {r}, Gr(s,Π) = Gr(s,Πr∗) holds, since Π and Πr∗

have the same domain. It thus is sufficient to show that S satisfies r if and only if S ∪ T satisfies
r ∗. For every ground instance of r, let g be the function mapping the variables in r to appropriate
domain elements. We show that S satisfies g(r) if and only if S satisfies g(r ∗).

(⇐): Assume that all the rules in g(r ∗) are satisfied by S ∪ T . By construction, the bodies of
the rules in r ∗ togehter consist of all the body atoms from rule r , and temporary atoms. Therefore,
if all the rules in g(r ∗) are satisfied by S ∪ T , either one or more of their bodies are not satisfied,
which immediately implies (by the properties of T established in Lemma 3.4) that the body of g(r)
is not satisfied either; or all the rule-heads of g(r ∗) occur in S ∪ T , immediately implying that the
head of g(r) occurs in S.

(⇒): Assume that g(r) is satisfied by S. The properties of T guarantee that in any case, every
rule with a temporary head atom is satisfied. Therefore, we only have to show that also the head
rule or g(r) is satisfied. In case that H(g(r)) ⊆ S (i.e., S satisfies the head of g(r), this is trivially
the case.

In the other case, S does not satisfy the body B(g(r)) of r . In this case, at least one rule
body in g(r ∗) must be unsatisfied as well. Either this is the rule body of the head rule of g(r ∗),
or it is the body of one of the other rules in g(r ∗) (say s′). In the former case, the head rule is
trivially satisfied. In the latter case, by the properties of T , we know that the temporary head atom
(t = H(s′)) /∈ T . Therefore, all rule bodies in g(r ∗) that contain t are also unsatisfied. By a simple
inductive argument, it can now be shown that then at least one temporary atom in the body of the
head rule of g(r ∗) does not occur in T , as the body of the head rule can only be satisfied, if all the
temporary atoms of g(r ∗) are contained in T . This completes the proof.

We can now prove Theorem 3.3:

Proof. We first show that an answer set for Πr∗ can be constructed from an answer set for Π: Given
an answer set S of Π, we obtain the desired answer set S∗ of Πr∗ by setting S∗ = S ∪ T , with T
being the set defined in Lemma 3.4 with respect to S. We need to show that S∗ is indeed an answer
set of Πr∗ . From Lemma 3.5, we already know that S∗ is a model of Πr∗ and thus we need to
show that S∗ is a minimal model of (Gr(Πr∗))

S∗ . Observe that (Gr(Πr∗))
S∗ = (Gr(Πr∗))

S since
temporary atoms occur only positively in Πr∗ . Moreover, recall that Gr(Πr∗ \ r∗) = Gr(Π \ {r}).
Towards a contradiction, let U ⊂ S∗ be a model of (Gr(Πr∗))

S∗ . From Lemma 3.4, we can
conclude that U ∩ BΠ ⊂ S∗ ∩ BΠ = S has to hold (otherwise U only misses some temporary
atoms compared to S). By the observation that Gr(Πr∗ \ r∗) = Gr(Π \ {r}), we get that U ∩BΠ

cannot satisfy {r}S (since S is an answer set of Π). Hence there is a ground instance of r such that
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B+(r) is satisfied by U , B−(r) is satisfied by S andH(r)∩U = ∅. By the construction of r ∗ it can
be seen that then U cannot satisfy the correspondingly grounded head rule of r ∗; a contradiction to
our assumption that U is a model of (Gr(Πr∗))

S∗ .
It remains to show the other direction: Given an answer set S∗ of Πr∗ we obtain as the desired

answer set S = S∗∩BΠ of Π. By Lemma 3.5, S is a model of Π. To show that S is an answer set of
P assume towards a contradiction that there exists an U ⊂ S being a model of Gr(Π)S . As such,
by Lemma 3.5, there exists a set T of temporary atoms, such that U ∪T is a model of (Gr(Πr∗))

S∗ .
However, Lemma 3.4 clearly implies that the set T with respect to U must be a subset of T with
respect to S. Therefore we obtain a model (U ∪ T ) ⊂ S∗ of (Gr(Πr∗))

S∗; a contradiction to the
assumption that S∗ is an answer set of Πr∗ .

Note that Theorem 3.3 also shows that we can replace in a program Π step-by-step each rule r
by the corresponding replacement r ∗ and obtain a program equivalent to Π in the sense of Theo-
rem 3.3 where each rule has been decomposed.

This leads to a decrease in grounding size, depending on the treewidth of the rules in the
program. We define the size of a rule to be the size of its hypergraph representation. Then we can
state the following theorem:

Theorem 3.6. Let Π be a logic program and r ∈ Π a rule of size n. If r has bounded treewidth,
then the size of Gr(r ∗,Πr∗) is linear in the size of the rule; and, in fact, is bounded by the function
O(2k·n), where k is the treewidth of r.

Proof. For every node m in HD(r), a rule with at most k variables is generated. The number
of groundings for this rule is bounded by O(2k), the number of all size-k subsets of the domain
of Π. As the size of a hypertree decomposition is linear in the size of the input graph, we have
that there are at most O(2k·n) groundings for these rules. In the worst case, for every variable
X , a domain closure rule Σ(X) is generated. For bounded treewidths, the maximum number
of instantiations of such a rule is in O(2k), as the body predicate may have k variables at most.
Therefore we have that the maximum number of groundings of r ∗, with respect to Πr∗ , is bounded
by O(2k·n+ 2k·n) = O(2k·n).

Corollary 3.7. Let Π be a logic program. If every rule in Π has bounded treewidth, then the size
of Gr(Π) is linear in the size of Π.

The implications of the above theorem, as we will show in Section 4, can lead to serious
speedups in the time it takes current-generation grounders to ground a logic program.

4 Experimental Evaluation
In order to empirically test our projected runtime behaviour, we have implemented a prototypical
rule-preprocessing system available at

http://www.dbai.tuwien.ac.at/research/project/dynasp/dynasp/#additional
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This tools makes use of the SHARP framework for hypertree decomposition-based algo-
rithms2. Our system handles all basic ASP rules, including inequality as well as comparisons.
However, arithmetical operations are currently not implemented.

Using our prototype, we performed a series of tests on a set of benchmarks from the third ASP
competition3 (see also [7]). We selected the following four problems from the competition

• Sokoban Decision
• Stable Marriage
• Minimal Diagnosis
• Partner Units Polynomial

This particular selection is motivated by the fact that these encodings do not use any arithmeti-
cal operations, choice rules or other ASP extensions, thus our first prototype is able to process
them. Currently, this prototype is only able to handle the core ASP syntax, excluding arithmetical
operations.

We chose problems from the ASP competition to show that, even though the encodings have
been extensively hand-tuned, by intelligently splitting rules according to our algorithms, it is still
possible to obtain improved grounding results. This also signifies the usefulness of our algorithm,
because employing it would eliminate the need for extensive, time-consuming and notoriously
imperfect hand-tuning.

In the following plots, red dots represent the value measured for the original benchmark in-
stance and blue triangles represent the value measured for the preprocessed benchmark instance.
Only the non-ground encoding was preprocessed, afterwards it was passed to gringo [15], together
with the actual problem instance from the third ASP competition website, and the output was fed
into claspd4 [14]. For each problem a sample of 50 problem instances was selected. The time for
preprocessing was not recorded in our plots, as for our benchmark instances it was not measurable
(i.e. always below 0.1 seconds). The time limit for both gringo and claspd was 600 seconds each.
If a timeout occurred, then no point was plotted for the respective instance. The “size” of the
grounded program was measured by recording the number of variables, as determined by running
claspd. As claspd introduces variables not only for atoms but also for rule bodies, this gives a
useful impression of the actual problem size.

Figure 1(a) shows the size of the preprocessed grounded Sokoban Decision program that was
output by gringo in relation to the size of the grounding of the original. As can be seen the
grounding size can be reduced dramatically. On average, the size of the ground program was
reduced by 78%.

Figure 1(b) shows the number of atoms in the grounded Sokoban Decision problem. Given
that our preprocessing strategy introduces a number of temporary predicates in the non-ground
encoding, the number of actual atoms in the ground program increases by a linear factor, as each
hypertree decomposition itself is linear in the size of the respective rule, and at each node, a

2http://www.dbai.tuwien.ac.at/research/project/sharp
3http://aspcomp2011.mat.unical.it
4In short test-runs we obtained similar results for the well-known DLV solver [20]
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Figure 1: Grounding size and number of ground atoms for the Sokoban Decision problem.

single new temporary predicate is introduced. However, because of the nature of our preprocessing
method, the number of rules decreases, and the decrease in the number of rules corresponds well
with the decrease in size of the grounding.

Figure 2 shows the time in seconds needed by claspd for solving the whole grounded problem,
as well as the number of conflicts it encountered while doing so. Except for a few cases, the
solving time of claspd, when combined with our preprocessing algorithm, is slightly increased,
despite the much smaller size of the ground program. In rare cases however, there is a substantial
slowdown of claspd. However we also noticed that for a number of instances, the smaller size
of the ground program enabled claspd to solve the problem without hitting the time limit (see
the topmost few instances in Figure 2(b)). The number of conflicts, shown in Figure 2(a) exhibit a
similar behaviour. In most cases, an increased number of conflicts also entails an increased number
of restarts of claspd.

Note that this increase in solving time could be easily eliminated if the solver (clasdp or oth-
erwise) would be aware of the nature our the temporary atoms. The increase is mainly due to the
solver making lots of unnecessary guesses about which temporary atoms should be in the answer
set and which ones shouldn’t. However, by Lemma 3.4, given a set of non-temporary atoms, the
temporary atoms for this set can always be deterministically calculated with minimal overhead.
Therefore the solver could (a) ignore all rules with temporary head atoms, as by Lemma 3.4 those
are always satisfied, (b) for a guessed (partial) answer set, compute the corresponding temporary
atoms as per the proof of Lemma 3.4 and (c) check, whether the head rule is satisfied.

The Sokoban Decision problem is the only problem in our benchmark selection that involves a
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Figure 2: The number of conflicts encountered and the time in seconds needed by claspd for
solving the grounded Sokoban Decision problem.

solving phase. The other three problems that we discuss in the following are in fact solved by the
grounder itself, therefore only the grounding size and grounding time plots are relevant for these
problems.

Figure 3 shows the size of the grounding of the Minimal Diagnosis and Partner Units Poly-
nomial problems. In the latter, only a single rule is split up, which is a rule with an all-positive
body (i.e. no default negation). In this case our approach works best, because no domain closure
predicates (Σ) are needed. This simple split-up rule already decreases the grounding size by an
average of 4%, as seen in Figure 3(b).

On the other hand, for the Minimal Diagnosis problem in Figure 3(a), all the rules that are split
up are of the form

a(U, V )← b(U, S), b(V, T ), S != T

and therefore get split up into the following three rules:

T1(V, S)← b(V, T ), S != T,ΣS(S)

a(U, V )← b(U, S), T1(V, S)

ΣS(S)← b(U, S)

In this case, with our approach there is a chance that the actual grounding size increases, es-
pecially if many valid groundings for the fact b(U, S) exist. Note that the grounding size with our
preprocessing algorithm is always upper-bounded by O(2maxn∈N |χ(n)|), as opposed to exponential
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Figure 3: The plots above show the grounding size of the Minimal Diagnosis and the Partner Units
Polynomial problems.

in the number of variables of the whole rule. However these worst-case bounds are seldom ex-
hausted. Whether a rule that gets split up as described above is actually beneficial to the overall
grounding size, heavily depends on the configuration of the ground facts that are supplied to the
grounder.

Note also that if our preprocessing approach would be integrated directly into the grounder, it
would eliminate the need for domain closure predicates as the grounder already knows about the
domain anyway. In this case it would be impossible for the grounding size to increase when em-
ploying our preprocessing approach and thus the only potential disadvantage could be eliminated.

Lastly, the Stable Marriage problem in Figure 4 shows the strength of our preprocessing al-
gorithm. Here the non-ground rules contain many free variables and many predicates are joined
together which forms the ideal basis for our algorithm. The non-ground rules force gringo to output
almost exponentially many groundings for each rule. Figure 4(a) shows that a significant speedup
in all cases can here be gained, for the worst-case instances, cutting the grounding time from over
300 seconds to about 5 seconds. Also the grounding size decreases dramatically. In Figure 4(b) it
can also be seen, that for the topmost 15 instances, clasp could not even finish parsing the gringo
output within the timeout limit of 600 seconds. In case of our significantly reduced grounding size,
this was however easily possible.
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Figure 4: The plots above show the grounding time and grounding sizes for the Stable Marriage
problem.

5 Conclusion
In this paper, we have presented a novel preprocessing strategy for non-ground rules in answer
set programming. The preprocessing intelligently splits up non-ground rules into smaller ones
by means of a hypertree decomposition in order to decrease the maximum number of variables
per rule (and thus to reduce the size of the entire grounding). This technique follows the rule of
thumb experienced ASP users will apply when encoding their problems. However, for complex
rules, manual splitting becomes increasingly difficult and the readability of the encoding may
suffer considerably. Also, programs may be automatically generated or specified for the purpose
of presentation rather than for optimization (for instance, specifications in general game playing,
see, e.g., [21]).

Benchmarks performed on problems used in the well-established answer set programming
competition show significant potential of our strategy and thus warrant inclusion of such a method
into existing grounders. The speedup of the grounding process is due to two factors:

Firstly, if the number of rule instantiations is reduced significantly, also the time it takes to
compute and output each of these instantiations is reduced by the same amount. This effect can
clearly be seen for the Stable Marriage problem in the previous section.

Secondly, by splitting up rules into smaller, equivalent ones, the number of joins between
non-ground predicates is reduced. Therefore the grounder does not have to perform as many join
operations as before, which also leads to a speedup of the grounding process.
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Future Work. In order to use the demonstrated positive effects of our algorithm in state-of-the-
art ASP grounders and solvers, there are two approaches worth investigating.

Firstly, if this preprocessing approach is directly incorporated to a grounder, the grounder may
use the information about temporary predicates in order to speed up the grounding process further.
Also, the domain closure predicates (Σ) are currently only a workaround, as currently our prepro-
cessing algorithm has no information about the domain of specific variables in a non-ground rule.
However, if included directly into the grounder, the domain closure predicates would become ob-
solete, as the grounder can immediately fill the respective variables with their now known domain,
as the grounder has full information about the ground facts and domains of the various predicates
and variables. This would not only lead to a speedup, but also would further decrease the size of
the grounding, as the domain predicates do no longer exist, eliminating also the increase in size of
the Minimal Diagnosis grounding.

Secondly, even though the size of the ground program decreases in all our benchmark cases ex-
cept the Minimal Diagnosis problem, the solving time actually increases. This means that claspd is
currently not aware of the tree-like structure of the split-up rules in the preprocessed and grounded
instance. If the grounder could pass information about the temporary predicates to the solver, this
could significantly speed up the solving process, as the temporary predicates could be automati-
cally dismissed from the computation and the answer sets.
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