
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at
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1 Introduction
The field of abstract argumentation became increasingly popular within the last decades and is
nowadays identified as an important tool in various applications as inconsistency handling (see
e.g. [2]) and decision support (see e.g. [1]). One of the key features abstract argumentation pro-
vides is a clear separation between logical content and non-classical reasoning (which is solely
done over abstract entities, the arguments A, and a certain relationship R between those entities;
forming so-called argumentation frameworks of the form (A,R)). For abstract argumentation,
many semantics have been proposed to evaluate such frameworks including Dung’s famous origi-
nal semantics [9], but also alternative semantics like the stage semantics [13] or the cf2 semantics
[5] received attention lately. The aim of argumentation semantics is to select possible subsets of
acceptable arguments (the so-called extensions) from a given argumentation framework. Since the
relation in such frameworks indicates possible conflicts between adjacent arguments, one basic
requirement for an argumentation semantics is to yield sets which are conflict-free, i.e., arguments
which attack each other never appear jointly in an extension. To get more adequate semantics,
conflict-freeness is then augmented by further requirements. One such requirement is admissibil-
ity (a set S of arguments is admissible in some framework (A,R) if, S is conflict-free and, for each
(b, a) ∈ R with a ∈ S, there is a c ∈ S, such that (c, b) ∈ R) but also other requirements have
been used (maximality, or graph properties as covers or components). Properties of and relations
between these semantics are nowadays a central research issue, see e.g. [3].

One such property is the notion of strong equivalence [12]. In a nutshell, strong equivalence
between two argumentation frameworks (AFs) holds iff they behave the same under any further
addition of arguments and/or attacks. In particular, this allows for identifying redundant patterns
in AFs. As an example, consider the stable semantics (a set S of arguments is called stable in an
AF F if S is conflict-free in F and each argument from F not contained in S is attacked by some
argument from S). Here an attack (a, b) is redundant whenever a is self-attacking. This can be
seen as follows; in case b is in a stable extension, removing (a, b) cannot change the extension (a
cannot be in any stable extension due to (a, a), thus there is no change in terms of conflict-free
sets); in case b is not in some stable extension S, then it is attacked by some c ∈ S. However,
c 6= a since a is self-attacking; thus b remains attacked, even when the attack (a, b) is dropped.
In fact, the framework F = ({a, b}, {(a, a), (a, b)}) is strongly equivalent to the framework G =
({a, b}, {(a, a)}). More generally, two AFs are strongly equivalent wrt. stable semantics, if their
only syntactical difference is due to such redundant attacks as outlined above. More formally,
this concept can be captured via so-called kernels (as suggested in [12]): The stable kernel of
an AF F = (A,R) is given by the framework (A,R∗) where R∗ stems from R by removing all
(a, b) (a 6= b), where (a, a) is an attack in R. Then, F and G are strongly equivalent (wrt. stable
semantics) iff F and G have the same such kernel. If one now considers a different semantics,
the picture changes. As an example, add H = ({a, b, c}, {(c, a), (b, c)}) to F and G from above.
Then, for instance, {b} is a preferred extension1 in G ∪H but not in F ∪H .

In [12], such results have been given for several semantics, namely: stable, grounded, complete,
admissible, preferred (all these are due to Dung [9]), ideal [10], and semi-stable [6]. Four different

1A preferred extension is maximal wrt. subset inclusion admissible set.
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kernels were identified to characterize strong equivalence between these semantics. Interestingly,
it turned out that strong equivalence wrt. admissible, preferred, semi-stable and ideal semantics is
exactly the same concept, while stable, complete, and grounded semantics require distinct kernels.
We complement here the picture by analyzing strong equivalence in terms of naive, stage, and cf2
semantics. Compared to the seven semantics mentioned above, these are not admissible-based. In
other words, such extensions not necessarily defend themselves against attacks from outside (as
discussed for instance in [3], this might sometimes provide more intuitive results).

Strong equivalence not only gives an additional property to investigate the differences between
argumentation semantics but also has some interesting applications. First, suppose we have mod-
elled a negotiation between two agents via argumentation frameworks. Here, strong equivalence
allows to characterize situations where the two agents have an equivalent view of the world which
is moreover robust to additional information. Second, we believe that the identification of redun-
dant attacks is important in choosing an appropriate semantics. Caminada and Amgoud outlined
in [7] that the interplay between how a framework is built and which semantics is used to evaluate
the framework is crucial in order to obtain useful results when the (claims of the) arguments se-
lected by the chosen semantics are collected together. Knowledge about redundant attacks (wrt. a
particular semantics) might help to identify unsuitable such combinations.

The main contributions and organization of the paper are as follows. In Section 2, we give the
necessary background and discuss the concept of standard equivalence in terms of the semantics
we are interested in here. The main results are then contained in Section 3, where characterizations
for strong equivalence wrt. naive, stage, and cf2 semantics are provided. As our results show, cf2
semantics are the most sensitive ones in the sense that there are no redundant attacks at all (this
is not the case for the other semantics which have been considered so far). On the other hand,
naive semantics turns out to be the weakest. In Section 4, we relate our new results to known
results from [12] and draw a full picture how the different semantics behave in terms of strong
equivalence. Finally, we also provide some results concerning local equivalence, a relaxation of
strong equivalence proposed in [12], and symmetric frameworks [8].

2 Background
We first introduce the concept of abstract argumentation frameworks and the semantics we are
mainly interested here. We will also include stable semantics, since its definition is solely based on
conflict-freeness. Afterwards, we briefly compare the semantics in terms of (standard) equivalence.

Definition 2.1 An argumentation framework (AF ) is a pair F = (A,R), where A is a finite set of
arguments and R ⊆ A×A. The pair (a, b) ∈ R means that a attacks b. A set S ⊆ A of arguments
defeats b (in F ), if there is an a ∈ S, such that (a, b) ∈ R.

For an AF F = (B, S) we use A(F ) to refer to B and R(F ) to refer to S. When clear from the
context, we often write a ∈ F (instead of a ∈ A(F )) and (a, b) ∈ F (instead of (a, b) ∈ R(F )).
For two AFs F and G, we define the union F ∪ G = (A(F ) ∪ A(G), R(F ) ∪ R(G)) and F |S =
((A ∩ S), R ∩ (S × S)) as the sub-framework of F wrt S; and we also use F − S = F |A\S .
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A semantics σ assigns to each AF F a collection of sets of arguments. The following concepts
underly such semantics.

Definition 2.2 Let F = (A,R) be an AF. A set S of arguments is

• conflict-free (in F ), i.e. S ∈ cf (F ), if S ⊆ A and there are no a, b ∈ S, such that (a, b) ∈ R.

• maximal conflict-free (in F ), i.e. S ∈ mcf (F ), if S ∈ cf (F ) and for each T ∈ cf (F ),
S 6⊂ T . For the empty AF F0 = (∅, ∅), let mcf (F0) = {∅}.

• a stable extension (of F ), i.e. S ∈ stable(F ), if S ∈ cf (F ) and each a ∈ A \ S is defeated
by S in F .

• a stage extension (of F ), i.e. S ∈ stage(F ), if S ∈ cf (F ) and there is no T ∈ cf (F ) with
T+
R ⊃ S+

R , where S+
R = S ∪ {b | ∃a ∈ S, such that (a, b) ∈ R}.

When talking about semantics, one uses the terms stable, and respectively, stage semantics, as
expected. For maximal conflict-free sets, the name naive semantics is also common; we thus use
naive(F ) instead of mcf (F ).

We note that each stable extension is also a stage extension, and in case stable(F ) 6= ∅ then
stable(F ) = stage(F ). This is due to the fact that for a stable extension S of (A,R), S+

R = A
holds. In general, we have the following relations for each AF F :

stable(F ) ⊆ stage(F ) ⊆ naive(F ) ⊆ cf (F ) (1)

We continue with the cf2 semantics [5] and use the characterization from [11]. We need some
further terminology. By SCCs(F ), we denote the set of strongly connected components of an AF
F = (A,R) which identify the maximal strongly connected2 subgraphs of F ; SCCs(F ) is thus
a partition of A. Moreover, for an argument a ∈ A, we denote by CF (a) the component of F
where a occurs in, i.e. the (unique) set C ∈ SCCs(F ), such that a ∈ C. Moreover, we define
[[F ]] =

⋃
C∈SCCs(F ) F |C . Let B a set of arguments, and a, b ∈ A. We say that b is reachable in F

from a modulo B, in symbols a ⇒B
F b, if there exists a path from a to b in F |B, i.e. there exists a

sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b, and (ci, ci+1) ∈ R ∩ (B × B),
for all i with 1 ≤ i < n. Finally, for an AF F = (A,R), D ⊆ A, and a set S of arguments, let

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

and ∆F,S be the least-fixed-point of ∆F,S(∅).

Proposition 2.3 The cf2 extensions of an AF F are given as

cf2 (F ) = {S | S ∈ cf (F ) ∩mcf ([[F −∆F,S]])}.
2A directed graph is called strongly connected if there is a path from each vertex in the graph to every other vertex

of the graph.
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Similar to relation (1), we have the following picture in terms of cf2 extensions:

stable(F ) ⊆ cf2 (F ) ⊆ naive(F ) ⊆ cf (F ) (2)

However, there is no particular relation between stage and cf2 extensions as shown by the
following example.

Example 2.4 Consider the following AF F :

Here {a, c} is the only stage extension of F (it is also stable). Concerning the cf2 semantics, note
that F is built from a single SCC . Thus, the cf2 extensions are given by the maximal conflict-free
sets of F , which are {a, c} and {a, d}. Thus, we have stage(F ) ⊂ cf2 (F ).

As an example for a framework G such that cf2 (G) ⊂ stage(G), consider the following AF:

Then G consists of two SCCs namely C1 = {a} and C2 = {b, c}. The conflict-free sets of G are
E1 = {a} and E2 = {b}. Now it remains to check if E1 and E2 are also cf2 extensions of G. We
compute ∆G,E1 = {b} and indeedE1 ∈ mcf (G−{b}), whereas ∆G,E2 = ∅ andE2 6∈ mcf (G−∅).
Thus, cf2 (G) = {E1} but stage(G) = {E1, E2}. 3

In the next examples we show that there is no particular relation between naive, stage, stable,
and cf2 semantics in terms of standard equivalence which means that two frameworks possess the
same extensions under a given semantics.

At first, we consider AFs F and G such that σ(F ) = σ(G) 6=⇒ cf2 (F ) = cf2 (G), where
σ ∈ {naive, stage, stable}.

Example 2.5 Let F be as in Example 2.4 and G be as follows:
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We have stable(F ) = stable(G) = {{a, c}}, and thus also stage(F ) = stage(G). Moreover,
naive(F ) = naive(G) = {{a, c}, {a, d}}. However, we have cf2 (F ) = {{a, c}, {a, d}} as al-
ready observed in Example 2.4 and cf2 (G) = {{a, c}}. Note that the only difference between F
and G is the attack (b, a) ∈ R(F ) \ R(G) which has the effect that the framework F consists of a
single SCC ; and thus cf2 (F ) = naive(F ). On the other hand, S = {a, d} is not a cf2 extension
of G, since ∆G,S = {b}, [[G−∆G,S]] = ({a, c, d}, ∅), and thus mcf ([[G−∆G,S]]) = {{a, c, d}}.
Thus, σ(F ) = σ(G) 6=⇒ cf2 (F ) = cf2 (G) for σ ∈ {naive, stage, stable}, as desired. 3

The next example shows that σ(F ) = σ(G) 6=⇒ θ(F ) = θ(G), where σ ∈ {naive, cf2} and
θ ∈ {stage, stable}.

Example 2.6 Let the AF G be as in Example 2.4 and H be as follows:

Then, we obtain naive(G) = naive(H) = {{a}, {b}} and cf2 (G) = cf2 (H) = {{a}} but
stable(G) = ∅ 6= stable(H) = {{a}} and stage(G) = {{a}, {b}} 6= stage(H) = {{a}}. 3

Now, we provide frameworks F and G such that σ(F ) = σ(G) 6=⇒ naive(F ) = naive(G),
where σ ∈ {stable, stage, cf2}.

Example 2.7 Let the AFs F and G be as follows:

Then, we have σ(F ) = σ(G) = {{c}}, where σ ∈ {stable, stage, cf2} but naive(F ) =
{{a, b}, {c}} and naive(G) = {{a}, {b}, {c}}. 3

Finally, we look at some AFs such that stable(F ) = stable(G) 6=⇒ stage(F ) = stage(G) and
stage(F ) = stage(G) 6=⇒ stable(F ) = stable(G).

Example 2.8 Let the AFs F , G and H be as follows: F = ({a, b}, {(a, a), (b, b)}), G =
({a, b}, {(b, b)}), H = ({a, b}, {(a, b), (b, b)}). Then, stable(F ) = stable(G) = ∅ but stage(F ) =
{∅} 6= {{a}} = stage(G); and stage(G) = stage(H) = {{a}} but stable(G) = ∅ 6= {{a}} =
stable(H). 3
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3 Characterizations for Strong Equivalence
In this section, we will provide characterizations for strong equivalence wrt. naive, stage, and cf2
semantics. The definition is as follows.

Definition 3.1 Two AFs F and G are strongly equivalent to each other wrt. a semantics σ, in
symbols F ≡σs G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition we have that F ≡σs G implies σ(F ) = σ(G), but the other direction is not true in
general. This indeed reflects the nonmonotonic nature of most of the argumentation semantics.

Example 3.2 Consider the following AFs F and G.

Then, we obtain for all semantics σ ∈ {stable, stage, cf2}, σ(F ) = σ(G) = {{a, b}}.
Whereas, if we add the AF H = ({a, b}, {(a, b)}), we get the following results: stable(F ∪H) =
stage(F ∪ H) = cf2 (F ∪ H) = {{a}} but stable(G ∪ H) = ∅ and stage(G ∪ H) =
cf2 (G ∪ H) = {{a}, {b}}. As an example for the naive semantics let us have a look at the
frameworks T = ({a}, ∅) and U = ({a, b}, {(b, b)}) with naive(T ) = naive(U) = {{a}}. By
adding the AF V = ({b}, ∅) we get naive(T ∪ V ) = {{a, b}} 6= {{a}} = naive(U ∪ V ). 3

We next provide a few technical lemmas which will be useful later.

Lemma 3.3 Let F and H be AFs and S be a set of arguments. Then, S ∈ cf (F ∪H) if and only
if, jointly (S ∩ A(F )) ∈ cf (F ) and (S ∩ A(H)) ∈ cf (H).

Proof. The only-if direction is clear. Thus suppose S /∈ cf (F ∪ H). Then, there exist a, b ∈ S,
such that (a, b) ∈ F ∪ H . By our definition of “∪”, then (a, b) ∈ F or (a, b) ∈ H . But then
(S ∩ A(F )) /∈ cf (F ) or (S ∩ A(H)) /∈ cf (H) follows. 2

Lemma 3.4 For any AFs F and G with A(F ) 6= A(G), there exists an AF H such that A(H) ⊆
A(F ) ∪ A(G) and σ(F ∪H) 6= σ(G ∪H), for σ ∈ {naive, stage, cf2}.

Proof. In case σ(F ) 6= σ(G), we just consider H = (∅, ∅) and get σ(F ∪ H) 6= σ(G ∪ H).
Thus assume σ(F ) = σ(G) and let wlog. a ∈ A(F ) \ A(G). By assumption it follows that
(a, a) ∈ R(F ), thus for all E ∈ σ(F ), a 6∈ E. Consider the framework H = ({a}, ∅). Then, for
all E ′ ∈ σ(G ∪H), we have a ∈ E ′. On the other hand, F ∪H = F and also σ(F ∪H) = σ(F ).
Hence, a is not contained in any E ∈ σ(F ∪H), and we obtain F 6≡σs G. 2

Lemma 3.5 For any AFs F and G such that (a, a) ∈ R(F ) \ R(G) or (a, a) ∈ R(G) \ R(F ),
there exists an AF H such that A(H) ⊆ A(F ) ∪ A(G) and σ(F ∪ H) 6= σ(G ∪ H), for σ ∈
{naive, stage, cf2}.
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Proof. Let (a, a) ∈ R(F ) \ R(G) and consider the AF H = (A, {(a, b), (b, b) | a 6= b ∈ A}) with
A = A(F ) ∪ A(G). Then σ(G ∪ H) = {a} while σ(F ∪ H) = ∅ for all considered semantics
σ ∈ {naive, stage, cf2}. For example, in case σ = cf2 we obtain ∆G∪H,E = {b | b ∈ A \ {a}}.
Moreover, {a} is conflict-free in G ∪H and {a} ∈ mcf (G′), where G′ = (G ∪H) −∆G∪H,E =
({a}, ∅). On the other hand, cf2 (F ∪H) = {∅} since all arguments in F ∪H are self-attacking.
The case for (a, a) ∈ R(G) \R(F ) is similar. 2

3.1 Strong Equivalence wrt. Naive Semantics
We start with the naive semantics. As we will see, strong equivalence is only a marginally
more restricted concept than standard equivalence, namely in case the two compared AFs are not
given over the same arguments. A simple example, which basically follows the argumentation of
Lemma 3.4, illustrates this case.

Example 3.6 Let F = ({a, b}, {(a, b), (b, b)}) and G = ({a, c}, {(a, c), (c, c)}) be two AFs. Ob-
viously, we have naive(F ) = naive(G) = {{a}}. However, if we add now the AF H = ({b}, ∅)
which is just the argument b, we get F ∪ H = F and thus {a} remains the naive extension of
F ∪H . However, G ∪H = ({a, b, c}, {(a, c), (c, c)}) now has {a, b} as its naive extension. Thus
F ≡naive

s G does not hold. 3

As we will show next, this particular case is the only aspect which separates standard from
strong equivalence in the case of naive semantics. As we also show, it is sufficient to compare
just the conflict-free sets of the considered AFs in order to decide strong equivalence for naive
semantics.

Theorem 3.7 The following statements are equivalent: (1) F ≡naive
s G; (2) naive(F ) = naive(G)

and A(F ) = A(G); (3) cf (F ) = cf (G) and A(F ) = A(G).

Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 3.4.
(2) implies (3): Assume naive(F ) = naive(G) but cf (F ) 6= cf (G). Wlog. let S ∈ cf (F )\cf (G).
Then, there exists a set S ′ ⊇ S such that S ′ ∈ naive(F ) and by assumption then S ′ ∈ naive(G).
However, as S 6∈ cf (G) there exist an attack (a, b) ∈ R(G), such that a, b ∈ S. But as S ⊆ S ′, we
have S ′ 6∈ cf (G) as well; a contradiction to S ′ ∈ naive(G).
(3) implies (1): Suppose F 6≡naive

s G, i.e. there exists a framework H such that naive(F ∪ H) 6=
naive(G∪H). Wlog. let now S ∈ naive(F ∪H)\naive(G∪H). From Lemma 3.3 one can show
that (S ∩ A(F )) ∈ naive(F ) and (S ∩ A(H)) ∈ naive(H), as well as (S ∩ A(G) 6∈ naive(G).
Let us assume S ′ = S ∩ A(F ) = S ∩ A(G), otherwise we are done yielding A(F ) 6= A(G). If
S ′ /∈ cf (G) we are also done (since S ′ ∈ cf (F ) follows from S ′ ∈ naive(F )); otherwise, there
exists an S ′′ ⊃ S ′, such that S ′′ ∈ cf (G). But S ′′ /∈ cf (F ), since S ′ ∈ naive(F ). Again we obtain
cf (F ) 6= cf (G) which concludes the proof. 2
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3.2 Strong Equivalence wrt. Stage Semantics
In order to characterize strong equivalence wrt. stage semantics, we define a certain kernel which
removes attacks being redundant for the stage semantics.3

Example 3.8 Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking and yield the
same single stage extension, namely {c}, for both frameworks. We can now add, for instance,
H = ({a, c}, {(c, a)}) and the stage extensions for F ∪ H and G ∪ H still remain the same. In
fact, no matter how H looks like, stage(F ∪H) = stage(G ∪H) will hold. 3

The following kernel reflects the intuition given in the previous example.

Definition 3.9 For an AF F = (A,R), define F sk = (A,Rsk) where

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}.

Theorem 3.10 For any AFs F and G, F ≡stage
s G iff F sk = Gsk .

Proof. Only-if: Suppose F sk 6= Gsk , we show F 6≡stage
s G. From Lemma 3.4 and Lemma 3.5 we

know that in case the arguments or the self-loops are not equal in both frameworks, F ≡stage
s G

does not hold. We thus assume that A = A(F ) = A(G) and (a, a) ∈ F iff (a, a) ∈ G, for each
a ∈ A. Let thus wlog. (a, b) ∈ F sk \ Gsk . We can conclude (a, b) ∈ F and (a, a) /∈ F , thus
(a, a) /∈ G and (a, b) /∈ G. Let c be a fresh argument and take

H = {A ∪ {c}, {(b, b)} ∪ {(c, d) | d ∈ A} ∪ {(a, d) | d ∈ A ∪ {c} \ {b}}).

Then, {a} is a stage extension of F ∪H (it attacks all other arguments) but not of G ∪H (b is not
attacked by {a}); see also Figures 1 and 2 for illustration.

Figure 1: F ∪H Figure 2: G ∪H

For the if-direction, suppose F sk = Gsk . Let us first show that F sk = Gsk implies cf (F ∪ H) =

3As it turns out, we require here exactly the same concept of a kernel as already used in [12] to characterize strong
equivalence wrt. stable semantics. We will come back to this point in Section 4.
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cf (G ∪ H), for each AF H . Towards a contradiction, suppose such an H exists and wlog. let
T ∈ cf (F ∪ H) \ cf (G ∪ H). Since F sk = Gsk , we know A(F ) = A(G). Thus there exist
a, b ∈ T (not necessarily a 6= b) such that (a, b) ∈ G ∪ H or (b, a) ∈ G ∪ H . On the other hand
(a, b) /∈ F ∪H and (b, a) /∈ F ∪H hold since a, b ∈ T and T ∈ cf (F ∪H)). Thus, in particular,
(a, b) /∈ F and (b, a) /∈ F as well as (a, b) /∈ H and (b, a) /∈ H; the latter implies (a, b) ∈ G or
(b, a) ∈ G. Suppose (a, b) ∈ G (the other case is symmetric). If (a, a) ∈ G then (a, a) ∈ Gsk , but
(a, a) /∈ F sk (since a ∈ T and thus (a, a) /∈ F ). If (a, a) /∈ G, (a, b) ∈ Gsk but (a, b) /∈ F sk (since
(a, b) /∈ F ). In either case F sk 6= Gsk , a contradiction.

We next show that F sk = Gsk implies (F ∪ H)sk = (G ∪ H)sk for any AF H . Thus, let
(a, b) ∈ (F ∪H)sk , and assume F sk = Gsk ; we show (a, b) ∈ (G∪H)sk . Since, (a, b) ∈ (F ∪H)sk

we know that (a, a) 6∈ F ∪H and therefore, (a, a) 6∈ F sk , (a, a) 6∈ Gsk and (a, a) 6∈ Hsk . Hence,
we have either (a, b) ∈ F sk or (a, b) ∈ Hsk . In the later case, (a, b) ∈ (G ∪H)sk follows because
(a, a) 6∈ Gsk and (a, a) 6∈ Hsk . In case (a, b) ∈ F sk , we get by the assumption F sk = Gsk , that
(a, b) ∈ Gsk and since (a, a) 6∈ Hsk it follows that (a, b) ∈ (G ∪H)sk .

Finally we show that for any frameworks K and L such that Ksk = Lsk , and any S ∈ cf (K)∩
cf (L), S+

R (K) = S+
R (L). This follows from the fact that for each s ∈ S, (s, s) is neither contained

in K nor in L. But then each attack (s, b) ∈ K is also in Ksk , and likewise, each attack (s, b) ∈ L
is also in Lsk . Now since Ksk = Lsk , S+

R (K) = S+
R (L) is obvious.

We thus have shown that, given F sk = Gsk , the following relations hold for each AF H:
cf (F ∪H) = cf (G∪H); (F ∪H)sk = (G∪H)sk ; and S+

R (F ∪H) = S+
R (G∪H) holds for each

S ∈ cf (F ∪ H) = cf (G ∪ H) (taking K = F ∪ H and L = G ∪ H). Thus, stage(F ∪ H) =
stage(G ∪H), for each AF H . Consequently, F ≡stage

s G. 2

3.3 Strong Equivalence wrt. cf2 Semantics
Finally, we turn our attention to cf2 semantics. Interestingly, it turns out that for this semantics
there are no redundant attacks at all. In fact, even in the case where an attack links two self-
attacking arguments, this attack might play a role by glueing two components together. Having no
redundant attacks means that strong equivalence has to coincide with syntactic equality. We now
show this result formally.

Theorem 3.11 For any AFs F and G, F ≡cf2
s G iff F = G.

Proof. We only have to show the only-if direction, since F = G obviously implies F ≡cf2
s G.

Thus, suppose F 6= G, we show that F 6≡cf2
s G.

From Lemma 3.4 and Lemma 3.5 we know that in case the arguments or the self-loops are not
equal in both frameworks, F ≡cf2

s G does not hold. We thus assume that A = A(F ) = A(G)
and (a, a) ∈ R(F ) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus suppose wlog. an attack
(a, b) ∈ R(F ) \R(G) and consider the AF

H = (A ∪ {d, x, y, z},
{(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a), (d, c) | c ∈ A \ {a, b}}).

10



Figure 3: F ∪H Figure 4: G ∪H

Then, there exists a set E = {d, x, z}, such that E ∈ cf2 (F ∪H) but E 6∈ cf2 (G ∪H); see also
Figures 3 and 4 for illustration.
To show that E ∈ cf2 (F ∪ H), we first compute ∆F∪H,E = {c | c ∈ A \ {a, b}}. Thus, in the
instance [[(F ∪H)−∆F∪H,E]] we have two SCCs left, namely C1 = {d} and C2 = {a, b, x, y, z}.
Furthermore, all attacks between the arguments of C2 are preserved, and we obtain that E ∈
mcf ([[(F ∪ H) − ∆F∪H,E]]), and as it is also conflict-free we have that E ∈ cf2 (F ∪ H) as
well. On the other hand, we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the instance
G′ = [[(G ∪ H) − ∆G∪H,E]] consists of five SCCs , namely C1 = {d}, C2 = {b}, C3 = {x},
C4 = {y} and C5 = {z}, with b being self-attacking. Thus, the set E ′ = {d, x, y, z} ⊃ E is
conflict-free in G′. Therefore, we obtain E 6∈ mcf (G′), and hence, E 6∈ cf2 (G ∪ H). F 6≡cf2

s G
follows. 2

In other words, the proof of Theorem 3.11 shows that no matter which AFs F 6= G are given,
we can always construct a frameworkH such that cf2 (F ∪H) 6= cf2 (G∪H). In particular, we can
always add new arguments and attacks such that the missing attack in one of the original frame-
works leeds to different SCCs(F ) in the modified ones and therefore to different cf2 extensions,
when suitably augmenting the two AFs under comparison.

4 Relation between Different Semantics in terms of Strong
Equivalence

In this section, we first compare our new results to the known results from [12] in order to get
a complete picture about the difference between the most important semantics in terms of strong
equivalence and redundant attacks. Afterwards, we restrict ourselves to symmetric AFs [8]. This
is motivated by the fact that naive semantics do not take the orientation of attacks into account.
Finally, we provide some preliminary results about local equivalence [12], a relaxation of strong
equivalence, where no new arguments are allowed to be raised.
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4.1 Comparing Semantics wrt. Strong Equivalence
Together with the results from [12], we now know how to characterize strong equivalence for the
following semantics of abstract argumentation: admissible, preferred, complete, grounded, stable,
semi-stable, ideal, stage, naive, and cf2 . The first five semantics (which are due to Dung [9]) as
well as semi-stable [6] and ideal [10] semantics4 yield as extensions admissible sets. The later three
semantics — which we have considered in this paper — do not yield admissible sets in general.
Nonetheless, thanks to our characterizations we get now a clear picture which kind of attacks are
redundant wrt. a certain semantics. Thus let us briefly, rephrase the results from [12].

First of all, it turns out the concept of the kernel we used for stage semantics (see Definition 3.9)
exactly matches the kernel for stable semantics in [12]. We thus get:

Corollary 4.1 For any AFs F and G, F ≡stable
s G holds iff F ≡stage

s G holds.

Three more kernels for AFs F = (A,R) have been found in [12]:

• F ck = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, (b, b) ∈ R});

• F ak = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R 6= ∅});

• F gk = (A,R \ {(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩R 6= ∅}).

As in Theorem 3.10, these kernels characterize strong equivalence in the sense that, for in-
stance, F and G are strongly equivalent wrt. complete semantics, in symbols F ≡comp

s G, if F ck =
Gck . Similarly, strong equivalence between F andGwrt. grounded semantics (F ≡ground

s G) holds,
if F gk = Ggk . Moreover, F ak = Gak characterizes not only strong equivalence wrt. admissible
sets (F ≡adm

s G), but also wrt. preferred, semi-stable, and ideal semantics.
Inspecting the respective kernels provides the following picture, for any AFs F , G:

F = G⇒ F ck = Gck ⇒ F ak = Gak ⇒ F sk = Gsk ; F ck = Gck ⇒ F gk = Ggk

and thus strong equivalence wrt. cf2 semantics implies strong equivalence wrt. complete semantics,
etc.

To complete the picture, we also note the following observation:

Lemma 4.2 If F sk = Gsk (resp. F gk = Ggk ), then cf (F ) = cf (G).

Proof. If F sk = Gsk then A = A(F ) = A(G) and for each a ∈ A, (a, a) ∈ R(F ) iff (a, a) ∈
R(G). Let S ∈ cf (F ), i.e. for each a, b ∈ S, we have (a, b) /∈ R(F ). Then, (a, b) /∈ R(F sk)
and by assumption (a, b) /∈ R(Gsk). Now since a ∈ S, we know that (a, a) /∈ R(F ) and thus
(a, a) /∈ R(G). Then, (a, b) /∈ R(Gsk) implies (a, b) /∈ R(G). Since this is the case for any
a, b ∈ S, S ∈ cf (G) follows. The converse direction is analogous.

As well, showing that F gk = Ggk implies cf (F ) = cf (G) can be done by similar arguments.
2

4We do not introduce here all these semantics formally, but refer to e.g. [4].
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Figure 5: Full picture of implication in terms of strong equivalence.

As an immediate consequence of the above lemma, we obtain

Corollary 4.3 For any AFs F and G, we have that F ≡σs G ⇒ F ≡naive
s G (for σ ∈

{stable, stage, ground}).

Together with our previous observation we thus obtain a complete picture of implications in
terms of strong equivalence wrt. to the different semantics as depicted in Figure 5.

Inspecting the notions of kernels, we also observe that in the case when self-loop free AFs are
compared, all notions of strong equivalence except the one of naive semantics coincide.

Corollary 4.4 Strong equivalence between self-loop free AFs F and G wrt. admissible, preferred,
complete, grounded, stable, semi-stable, ideal, stage, and cf2 semantics holds, if and only if F =
G.

For naive semantics, we might have situations where F ≡naive
s G holds although F and G

are different self-loop free AFs. As a simple example consider F = ({a, b}, {(a, b)}) and G =
({a, b}, {(b, a)}). As already mentioned earlier, this is due to the fact that naive semantics do
not take the orientation of attacks into account. This motivates to compare semantics wrt. strong
equivalence for symmetric frameworks.

4.2 Strong Equivalence and Symmetric Frameworks
Symmetric frameworks have been studied in [8] and are defined as AFs (A,R) where R is sym-
metric, non-empty, and irreflexive. Let us start with a more relaxed such notion. We call an AF
(A,R) weakly symmetric if R is symmetric (but not necessarily non-empty or irreflexive).

Strong equivalence between weakly symmetric AFs is defined analogously as in Definition 3.1,
i.e. weakly symmetric AFs F and G are strongly equivalent wrt. a semantics σ iff σ(F ∪ H) =
σ(G ∪ H), for any AF H . Note that we do not restrict here that H is symmetric as well. We
will come back to this issue later. When dealing with weakly symmetric AFs, we have two main
observations.

First, one can show that for any weakly symmetric AF F , it holds that F sk = F ak . This leads
to the following result.

Corollary 4.5 Strong equivalence between weakly symmetric AFs F and G wrt. admissible, pre-
ferred, semi-stable, ideal, stable, and stage semantics coincides.
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Second, we can now give a suitable realization for the concept of a kernel also in terms of naive
semantics.

Definition 4.6 For an AF F = (A,R), define F nk = (A,Rnk) where

Rnk = R \ {(a, b) | a 6= b, (a, a) ∈ R or (b, b) ∈ R}.

Theorem 4.7 For any weakly symmetric AFs F and G, F ≡naive
s G iff F nk = Gnk .

Proof. By Theorem 3.7, it is sufficient to show that F nk = Gnk holds iff jointly A(F ) = A(G)
and cf (F ) = cf (G). Obviously, F nk = Gnk implies A(F ) = A(G). Thus, let S ∈ cf (F ).
Then, for each a, b ∈ S, neither (a, a) nor (b, b) is contained in R(F ). Furthermore, we have
{(a, b), (b, a} ∩ R(F ) = ∅. Thus, we obtain {(a, a), (b, b), (a, b), (b, a)} ∩ R(F nk) = ∅. By the
assumption F nk = Gnk , we know {(a, a), (b, b), (a, b), (b, a)} ∩ R(Gnk) = ∅, and thus neither
(a, a) nor (b, b) is contained in R(G). But then, {(a, b), (b, a} ∩ R(G) = ∅; hence there is no
conflict between a and b in G as well. Since this holds for all pairs a, b ∈ S, we get S ∈ cf (G).
The other direction is analogous.

Thus, suppose F nk 6= Gnk . In case, A(F nk) 6= A(Gnk) (i.e. A(F ) 6= A(G)) we can employ
Lemma 3.4. In case, there exists an a such that (a, a) is contained in exactly one,R(F ) orR(G), we
employ Lemma 3.5. In both cases we obtain F 6≡naive

s G. Thus, assume F and G possess the same
self-loops. Since F nk 6= Gnk , there exist distinct arguments a, b such that wlog. (a, b) ∈ R(F nk) \
R(Gnk). Since, (a, b) ∈ R(F nk), {(a, a), (b, b)} ∩ R(F ) = ∅ and by our assumption above, also
{(a, a), (b, b)} ∩ R(G) = ∅, thus (a, b) /∈ R(G). Moreover, since G is weakly symmetric, also
(b, a) /∈ R(G). It follows, {a, b} ∈ cf (G) but {a, b} /∈ cf (F ). By Theorem 3.7, F 6≡naive

s G. 2

This leads to four different kernels which characterize strong equivalence between weakly
symmetric AFs (below, we simplified the kernel F gk , which is possible in this case).

• F ck = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, (b, b) ∈ R});

• F sk = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R});

• F gk = (A,R \ {(a, b) | a 6= b, (b, b) ∈ R});

• F nk = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R or (b, b) ∈ R}).

We note that for the cf2 semantics, strong equivalence between weakly symmetric AFs still
requires F = G (basically, this follows from the fact that all steps in the proof of Theorem 3.11
can be restricted to such frameworks).

Finally, let us consider the case where the test for strong equivalence requires that also the
augmented AF is symmetric.

Definition 4.8 Two AFs F and G are symmetric (strong) equivalent to each other wrt. a seman-
tics σ, iff for each symmetric AF H , σ(F ∪H) = σ(G ∪H).
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For symmetric AFs, we now can show that all considered semantics coincide in terms of sym-
metric strong equivalence.

Theorem 4.9 Symmetric strong equivalence between symmetric AFs F and G wrt. admissible
(resp., preferred, complete, grounded, stable, semi-stable, ideal, stage, naive, and cf2 ) semantics
holds, if and only if F nk = Gnk .

For the proof one requires a few results from [8]; in particular, since for symmetric AFs,
conflict-free and admissible sets coincide, many semantics coincide as well.

4.3 Local Equivalence
In [12], the following relaxation of strong equivalence has also been proposed and investigated.

Definition 4.10 Two AFs F and G are locally (strong) equivalent to each other wrt. a semantics
σ, in symbols F ≡σl G, iff for each AFH , such thatA(H) ⊆ A(F )∪A(G), σ(F ∪H) = σ(G∪H).

In words, the considered augmentations of the compared frameworks must not introduce new
arguments. Obviously, for any AFs F and G, we have that F ≡σs G implies F ≡σl G for all
semantics σ. The other direction does not hold in general. However, for the naive semantics, it
is clear by Theorem 3.7 that F ≡naive

s G holds, if and only if, F ≡naive
l G holds. In view of

Theorem 4.9, such a collapse is also the case for all considered semantics when restricting all
involved frameworks to symmetric AFs.

For the general case of local equivalence, we focus on stage semantics. Here, strong and local
equivalence are different concepts.

Example 4.11 Consider the frameworks F and G:

By Theorem 3.10, F 6≡stage
s G since adding H = ({a, c}, {(a, c), (c, a)}), yields stage(F ∪H) =

{{a}} and stage(G ∪H) = {{a}, {c}}. However, one can show F ≡stage
l G still holds. Observe

that no matter which AF H over arguments {a, b} we add to F and G, F ∪H and G∪H will have
the same stage extensions, viz. {a} in case (a, a) /∈ R(H) or ∅ in case (a, a) ∈ R(H). 3

As the example shows, in order to get a counterexample for strong equivalence we require a
new argument, in case all existing arguments except a (in the example, this is argument b) are
self-attacking. We generalize this observation as follows.

Definition 4.12 An AF F = (A,R) is called a-spoiled (a ∈ A) if for each b ∈ A different to a,
(b, b) ∈ R.

Our characterization theorem for local equivalence is thus as follows.
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Theorem 4.13 For any AFs F and G, F ≡stage
l G iff F ≡stage

s G or both F and G are a-spoiled
and A(F ) = A(G).

Proof. For the if-direction, we have that F ≡stage
s G implies F ≡stage

l G by definition. Thus,
let F and G be a-spoiled AFs with A = A(F ) = A(G). Then, for any H with A(H) ⊆ A we
have stage(F ∪ H) = stage(G ∪ H) = {{a}} in case (a, a) /∈ R(H), and stage(F ∪ H) =
stage(G ∪H) = {∅}, otherwise.

For the only-if direction, suppose first that A(F ) 6= A(G). We get F 6≡stage
l G by Lemma 3.4.

So suppose A = A(F ) = A(G), F 6≡stage
s G, and F and G are not both a-spoiled for some

argument a ∈ A. Since F 6≡stage
s G, we know that F sk 6= Gsk . Thus, let (a, b) be contained in

either R(F sk) or R(Gsk), but not in both. In case a = b, we make use of Lemma 3.5 and obtain
F 6≡stage

l G. Thus in what follows, we can assume that (e, e) ∈ R(F ) iff (e, e) ∈ R(G). Suppose
now a 6= b and wlog. let (a, b) ∈ R(F sk) \ R(Gsk). By definition (a, a) /∈ R(F ) and by above
assumption (a, a) /∈ R(G). Thus (a, b) /∈ R(G), by definition of the stable kernel. Since F and G
are not both a-spoiled there exists a c ∈ A (a 6= c) such that (c, c) /∈ R(F ) ∩ R(G). Since we can
assume that F and G possess the same self loops, we even know that (c, c) /∈ R(F )∪R(G). Now,
take

H = {A, {(b, b)} ∪ {(c, d) | d ∈ A \ {a}} ∪ {(a, d) | d ∈ A \ {b}}).

This AF is similar as the one as used in the proof of Theorem 3.10, but now c is not a new argument.
However, we again obtain that {a} is a stage extension of F ∪H (since a attacks all arguments in
F ∪H) but {a} /∈ stage(G ∪H) (instead {c} is conflict-free in G ∪H and attacks all arguments,
while a does not attack b in G ∪H). 2

Interestingly, this characterization differs from the one given in [12] for local equivalence wrt.
stable semantics (recall that for strong equivalence, stable and stage semantics yield the same
characterization). As an example, consider F = ({a, b}, {(b, b), (b, a)}) and G = ({b}, {(b, b)}).
Here, stable(F ) = stable(G) = ∅ and F ∪ H and G ∪ H have no stable extension also for each
H (with A(H) ⊆ {a, b}) where (a, b) /∈ R(H). Otherwise, i.e. (a, b) ∈ R(H), stable(F ∪H) =
stable(G ∪ H) = {{a}}. Thus, F ≡stable

l G. However, F ≡stage
l G does not hold, in particular

since already F and G possess different stage extensions ({a} vs. ∅).
Local equivalence wrt. cf2 semantics is more cumbersome, and we leave a full characterization

for further work. However, we note that in case the compared AFs are given by a single SCC ,
F ≡cf2

l G obviously reduces to F ≡naive
l G, while on the the other hand, there are certain cases

where F ≡cf2
l G holds, only if F = G.

5 Conclusion
In this work, we provided characterizations for strong equivalence wrt. stage, naive, and cf2 se-
mantics, completing the analyses initiated in [12]. Strong equivalence gives a handle to identify
redundant attacks. For instance, our results show that an attack (a, b) can be removed from an AF,
whenever (a, a) is present in that AF, without changing the stage extensions (no matter how the
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entire AF looks like). Such redundant attacks exist for all semantics (at least when self-loops are
present), except for cf2 semantics, which follows from our main result, that F ≡cf2

s G holds, if and
only if, F = G. In other words, each attack plays a role for the cf2 semantics (at least, an attack
closes a cycle and thus is crucial for the actual partition into SCCs of the AF). Our result also
strengthens the observations from Baroni et al. [5], who claim that cf2 semantics treats self-loops
in a more sensitive way than other semantics. Besides our characterization for strong equivalence,
we also analyzed some variants of that problem, namely local and symmetric strong equivalence.
Future work includes the investigation of other notions of strong equivalence, which are based, for
instance on the set of credulously resp. skeptically accepted arguments, see [12].
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