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1 Introduction

In Artificial Intelligence (AI), the area of argumentation [2] has become one of the central issues
during the last years. Argumentation provides a formal treatment for reasoning problems arising
in a number of interesting applications fields, including Multi-Agent Systems and Law Research.
In a nutshell, so-called abstract argumentation frameworks (AFs) formalize statements together
with a relation denoting rebuttals between them, such that the semantics gives an abstract handle
to solve the inherent conflicts between statements by selecting admissible subsets of them. Several
such semantics have already been proposed by Dung in his seminal paper [6], but there are several
others which received significant interest lately.

One such approach is known as stage semantics and was introduced by Verheij [14] more than
ten years ago. With the work on semi-stable semantics by Caminada [3], who revived Verheij’s
basic concepts, stage semantics are nowadays mentioned as an important alternative (see, e.g. [1])
to Dung’s original semantics. The underlying idea of stage semantics is to maximize not only the
arguments included in an extension but also those attacked by such an extension.

In this work, we give exact complexity bounds for typical decision problems assigned to ar-
gumentation frameworks. In particular, we proveΣP

2 -hardness, and resp.ΠP
2 -hardness, for the

problems deciding of whether a given argument is contained in one, resp. in all, semi-stable ex-
tensions of a given argumentation framework (the respective membership results have been shown
by Dunne and Caminada [8], but matching lower bounds have been left as an open problem). We
also show that stage semantics (defined in terms of conflict-free sets) are of the same complexity
as semi-stable semantics. Our results therefore indicate that the considered semantics are as hard
as the preferred semantics [5, 7], and thus among the most involved semantics for argumentation
frameworks. In order to identify tractable subclasses, we analyze fixed-parameter tractability for
the semantics under consideration in terms of tree-width and cycle-rank.

2 Background

An argumentation framework(AF, for short) is a pair(A, R) whereA is a set of arguments and
R ⊆ A × A represents the attack-relation. For an AFF = (A, R), S ⊆ A, anda ∈ A, we call

• S conflict-freein F , if there are nob, c ∈ S such that〈b, c〉 ∈ R,

• a defeatedby S in F , if there is ab ∈ S such that〈b, a〉 ∈ R,

• a defendedby S in F , if for eachb ∈ A such that〈b, a〉 ∈ R, b is defeated byS in F ,

• S admissiblein F , if S is conflict-free inF and eacha ∈ S is defended byS in F .

To define the concepts of stage and resp. semi-stable extensions, we basically follow the
conventions used in [1]. Let for an AFF = (A, R) and a setS ⊆ A, S+

R be defined as
S ∪ {b | ∃a ∈ S, such that〈a, b〉 ∈ R}. Moreover, let us say thatS ≤+

R T holds ifS+
R ⊆ T+

R .
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Definition 1. Let F = (A, R) be an AF. A setS is a stage(resp. asemi-stable) extensionof F , if
S is maximal conflict-free (resp. admissible) inF wrt. ≤+

R.

The following example shows that stage and semi-stable extensions are in general incomparable.

Example1. Let F = ({a, b, c}, {〈a, b〉 , 〈b, c〉 , 〈c, a〉}). Then, the only semi-stable extension ofF
is the empty set, whileF possesses three stage extensions{a}, {b}, and{c}.

We consider the following decision problems:

• StageCred: Given AFF = (A, R) anda ∈ A; is a contained in at least one stage extension
of F?

• StageSkept: Given AFF = (A, R) anda ∈ A; is a contained in every stage extension of
F?

• SemiCred: Given AFF = (A, R) anda ∈ A; is a contained in at least one semi-stable
extension ofF?

• SemiSkept: Given AFF = (A, R) anda ∈ A; isa contained in every semi-stable extension
of F?

For our forthcoming reductions, we require a particular class of quantified Boolean formulas
(QBFs) which we introduce next. AQBF 2

∀ formula is of the form∀Y ∃ZC whereY andZ are
sets of propositional atoms from a countable domainU , andC is a collection of clauses (which we
shall represent as sets) over literals built from atomsY ∪Z. For a variabley, we usēy to represent
its negation. Moreover,̄̄y stands fory, etc. We say that a QBF∀Y ∃ZC is true iff, for eachIY ⊆ Y
there exists anIZ ⊆ Z, such that for eachc ∈ C,

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c 6= ∅. (1)

Example2. Consider the QBF

Φ = ∀y1, y2∃z3, z4

{

{y1, y2, z3}, {ȳ2, z̄3, z̄4)}, {ȳ1, ȳ2, z4}
}

.

It can be checked that this QBF is true.

We recall that the problemQSAT 2
∀ (i.e. given aQBF 2

∀ formulaΦ, decide whetherΦ is true) is
ΠP

2 -complete.

3 Complexity of Semi-Stable and Stage Semantics

As already mentioned, we consider a countable setU of propositional atoms (in what follows, we
use atoms and arguments interchangeably). Moreover, we have the following pairwise disjoint sets
of arguments̄U = {ū | u ∈ U}, U ′ = {u′ | u ∈ U}, Ū ′ = {ū′ | u ∈ U}. For any setV ⊆ U ,
we useV̄ , V ′, V̄ ′, also as renaming schemes in the usual way (for instance,V ′ denotes the set
{v′ | v ∈ V }). Finally, we use further new argumentst, t̄, b and{c1, c2, . . .}.

We make use of the following reduction fromQBF 2
∀ formulas to AFs.
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Figure 1: Argumentation frameworkFΦ for Φ as given in Example 2.

Reduction1. Given aQBF 2
∀ formulaΦ = ∀Y ∃ZC, we defineFΦ = (A, R), where

A = {t, t̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄

R = {〈c, t〉 | c ∈ C} ∪

{〈x, x̄〉 , 〈x̄, x〉 | x ∈ Y ∪ Z} ∪

{〈y, y′〉 , 〈ȳ, ȳ′〉 , 〈y′, y′〉 , 〈ȳ′, ȳ′〉 | y ∈ Y } ∪

{〈l, c〉 | literal l occurs inc ∈ C} ∪

{〈t, t̄〉 , 〈t̄, t〉 , 〈t, b〉 , 〈b, b〉}.

As an example, consider Figure 1 which illustrates the corresponding AFFΦ for Φ from Ex-
ample 2.

We start with a few basic properties, any such AFFΦ satisfies.

Lemma 1. For every stage (resp. semi-stable) extensionS of an AFFΦ = (A, R), the following
propositions hold:

1. b 6∈ S, as well asy′ 6∈ S and ȳ′ 6∈ S for eachy ∈ Y .

2. x /∈ S ⇔ x̄ ∈ S for eachx ∈ {t} ∪ Y ∪ Z.

Proof. Let Φ = ∀Y ∃ZC andFΦ = (A, R) be the corresponding AF.

ad 1) Clear, since all these arguments are self-defeating and therefore they cannot be in a set which
is conflict-free inFΦ. Consequently, no such argument can occur in a stage or semi-stable extension
of FΦ.

ad 2) Obviously, for eachx ∈ {t}∪Y ∪Z, {x, x̄} ⊆ S cannot hold, sinceS has to be conflict-free
in FΦ. It remains to show{x, x̄}∩S 6= ∅. Towards a contradiction, let us assume there exists such
anx, such that{x, x̄} ∩ S = ∅ holds for a stage (resp. semi-stable) extensionS of FΦ.
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Let us first assume the setT = S ∪ {x̄} is conflict-free inFΦ (this is always the case for
x = t, but not necessarily forx ∈ Y ∪ Z). We haveS <+

R T , sinceS ⊂ T andx̄ /∈ S+
R (since

{x, x̄} ∩ S = ∅). This already shows thatS then cannot be a stage extension ofFΦ. We proceed
with the case where we assumeS to be a semi-stable extension ofFΦ. Thus,S is admissible in
FΦ. But then,T remains admissible inFΦ (x̄ ∈ T defends itself inFΦ; each other argument inT is
already defended byS in FΦ). Hence, in this case,S would not be a semi-stable extension ofFΦ.

Let us thus assume thatS∪{x̄} is not conflict-free inFΦ, we knowx ∈ Y ∪Z, and thus there is
a c ∈ C, such thatc ∈ S and〈x̄, c〉 ∈ R. Consequently,t /∈ S but since we assumeS to be a stage
or semi-stable extension ofFΦ, we can assumēt ∈ S (we already have shown{t, t̄} ∩ S 6= ∅).
Further, as there is ac ∈ C with c ∈ S and〈x̄, c〉 ∈ R, and since we havex 6∈ S, c is not defended
by S in FΦ. But then,S cannot be a semi-stable extension ofFΦ (asS is not admissible inFΦ).

It remains to show thatS is not a stage extension ofFΦ. To this end, letT = (S \ {c ∈ C |
〈x̄, c〉 ∈ R})∪{x̄}. One can check thatT is conflict-free inFΦ. Moreover, we again haveS <+

R T .
In fact, for the removed argumentsc ∈ C, we havec ∈ T+

R (since for each suchc, 〈x̄, c〉 ∈ R and
x̄ ∈ T ); moreover, the only argument defeated by suchc is t, but t ∈ T+

R , sincet̄ ∈ T (recall that
t̄ ∈ S and thus̄t ∈ T ). This shows thatS cannot be a stage (resp. semi-stable) extension ofFΦ and
we arrive at the desired contradiction.

Lemma 2. Let Y ∗ = Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ and S, T be conflict-free sets inFΦ = (A, R). Then
S∩Y ∗ ⊆ T∩Y ∗ iff (S∩Y ∗)+

R ⊆ (T∩Y ∗)+
R and furtherS∩Y ∗ = T∩Y ∗ iff (S∩Y ∗)+

R = (T∩Y ∗)+
R.

Proof. First, assumeS ∩ Y ∗ ⊆ T ∩ Y ∗. Let l ∈ (S ∩ Y ∗)+
R. If l ∈ S ∩ Y ∗, thenl ∈ T ∩ Y ∗ and

thusl ∈ (T ∩ Y ∗)+
R. Otherwise there exists ak ∈ S ∩ Y ∗, such that〈k, l〉 ∈ R andk ∈ S ∩ Y ∗.

By assumptionk ∈ T ∩ Y ∗ and since〈k, l〉 ∈ R, l ∈ (T ∩ Y ∗)+
R. So, assume now(S ∩ Y ∗)+

R ⊆
(T ∩ Y ∗)+

R and letl ∈ S ∩ Y ∗. By Lemma 1(1),l is either of formy or ȳ. If l ∈ S ∩ Y ∗, then
l, l̄, l′ ∈ (S ∩Y ∗)+

R. However, sinceS is conflict-free inFΦ, l̄ /∈ S ∩Y ∗, Thus,̄l′ /∈ (S ∩Y ∗)+
R. We

getl, l̄, l′ ∈ (T ∩ Y ∗)+
R andl̄′ /∈ (T ∩ Y ∗)+

R. The latter implies̄l /∈ (T ∩ Y ∗). But then,l ∈ T ∩ Y ∗

follows from l, l̄ ∈ (T ∩ Y ∗)+
R.

This showsS ∩ Y ∗ ⊆ T ∩ Y ∗ iff (S ∩ Y ∗)+
R ⊆ (T ∩ Y ∗)+

R. By symmetry,S ∩ Y ∗ = T ∩ Y ∗

iff (S ∩ Y ∗)+
R = (T ∩ Y ∗)+

R follows.

Lemma 3. Let Φ be aQBF 2
∀ formula. IfΦ is true, thent is contained in every stage and in every

semi-stable extension ofFΦ.

Proof. SupposeΦ = ∀Y ∃ZC is true and let, towards a contradiction,S be a stage or a semi-stable
extension ofFΦ = (A, R) with t /∈ S. By Lemma 1(2), we know that for eachy ∈ Y , eithery or ȳ
is in S. Let IY = Y ∩ S. SinceΦ is true we know there exists anIZ ⊆ Z, such that (1) holds, for
eachc ∈ C. Consider now the set

T = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)} ∪ {t}.

We show thatT is admissible inFΦ and thatS <+
R T holds. This will contradict our assumption

in both cases, i.e. thatS is a stage or a semi-stable extension ofFΦ. It is easily verified thatT is
conflict-free inFΦ. Next we show that eacha ∈ T is defended byT in FΦ. This is quite obvious
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for eacha ∈ T exceptt, since all those arguments defend themselves. To havet defended byT in
FΦ, each argumentc ∈ C has to be attacked by an element fromT . But this is the case since (1)
holds and by the construction ofFΦ, i.e. by the definition of attacks{〈l, c〉 | literal l occurs inc},
each such attackerc is attacked by an argumentx ∈ Y ∪ Ȳ ∪ Z ∪ Z̄. It remains to showS <+

R T .
By Lemma 2,(S ∩ Y ∗)+

R = (T ∩ Y ∗)+
R, for Y ∗ = Y ∪ Ȳ ∪ Y ∪ Ȳ ′. Moreover, by Lemma 1(2)

eitherz or z̄ in S, for eachz ∈ Z; the same holds forT , by definition. We observe thatS+
R ∩

(Z ∪ Z̄) = T+
R ∩ (Z ∪ Z̄) = (Z ∪ Z̄). Moreover, we already have argued that eachc ∈ C

is attacked by some argument inT . Let A− = A \ {t, t̄, b}. So far, we thus have shown that
S+

R ∩ A− ⊆ T+
R ∩ A− = IY ∪ I ′

Y ∪ (Ȳ \ ĪY ) ∪ (Ȳ ′ \ Ī ′
Y ) ∪ Z ∪ Z̄ ∪ C. We finally observe that

S+
R ∩ {t, t̄, b} = {t, t̄} ⊂ {t, t̄, b} = T+

R ∩ {t, t̄, b}, sincet /∈ S by assumption andt ∈ T by
definition. This showsS <+

R T as desired.

We are now prepared to give our first main result.

Theorem 1. SemiSkept is ΠP
2 -hard.

Proof. We use our reduction fromQBF 2
∀ formulas to AFs and show that, for each such QBF

Φ, it holds thatt is contained in all semi-stable extensions ofFΦ iff Φ is true. SinceFΦ can be
constructed fromΦ in polynomial time (and even in logarithmic space), the claim then follows. Let
Φ = ∀Y ∃ZC andFΦ = (A, R) be the corresponding AF. The if direction is captured by Lemma
3. We prove the only-if direction by showing that ifΦ is false, then there exists a semi-stable
extensionS of FΦ such thatt 6∈ S.

In caseΦ is false, there exists anIY ⊆ Y , such that for eachIZ ⊆ Z, there exists ac ∈ C, such
that

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c = ∅. (2)

Consider now a maximal (wrt.≤+
R) admissible (inFΦ) setS, such thatIY ⊆ S (note that such a

set exists, sinceIY itself is admissible inFΦ). Using Lemma 2, one can show thatS then has to
be a semi-stable extension ofFΦ. To wit, let T be an admissible (inFΦ) set such thatIY 6⊆ T .
By Lemma 2 it holds that(S ∩ Y ∗)+

R 6⊆ (T ∩ Y ∗)+
R and thereforeS+

R 6⊆ T+
R . Putting this together

with the maximality ofS in the set{T | T is admissible inFΦ andIY ⊆ T} we get that there is no
admissible (inFΦ) setT , such thatS+

R ⊂ T+
R . Hence,S is a semi-stable extension ofFΦ.

It remains to showt 6∈ S. We prove this by contradiction and assumet ∈ S. AsS is admissible
in FΦ, S defendst and therefore it defeats allc ∈ C. As all attacks against arguments inC come
from Y ∪ Ȳ ∪Z ∪ Z̄, the setU =

(

IY ∪ (S ∩ (Z ∪ Z̄)) ∪ {ȳ | y ∈ Y \ IY }
)

defeats allc ∈ C. By
Lemma 1(2), for eachz ∈ Z, eitherz or z̄ is contained inS. We get an equivalent characterization
for U by U =

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∩ IZ)}
)

with IZ = S ∩ Z. Thus, for allc ∈ C,

(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c 6= ∅.

which contradicts assumption (2).

Theorem 2. SemiCred is ΣP
2 -hard.
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Proof. In the proof of Theorem 1, we have shown that aQBF 2
∀ formulaΦ is true iff t is contained

in each semi-stable extension ofFΦ. According to Lemma 1(2), this holds iff̄t is not contained in
any semi-stable extension ofFΦ. Thus, the complementary problem ofSemiCred is alsoΠP

2 -hard.
ΣP

2 -hardness ofSemiCred follows immediately.

We now turn our attention to the stage semantics.

Theorem 3. StageSkept is ΠP
2 -hard.

Proof. We again use our reduction fromQBF 2
∀ formulas to AFs and show that, for each such QBF

Φ, it holds thatt is contained in all stage extensions ofFΦ iff Φ is true. Thus, letΦ = ∀Y ∃ZC and
FΦ = (A, R) be the corresponding AF. The if direction is already captured by Lemma 3. We prove
the only-if direction by showing that, ifΦ is false, then there exists a stage extensionS of FΦ such
thatt 6∈ S.

If Φ is false, there exists anIY ⊆ Y , such that for eachIZ ⊆ Z, we have ac ∈ C with
(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)

∩ c = ∅. (3)

Consider the collectionW = {S | IY ⊆ S, S is conflict-free inFΦ} of conflict-free sets inFΦ.
Using Lemma 2, we can show that for every conflict-free (inFΦ) setT , S ≤+

R T impliesIY ⊆ T .
For verifying≤+

R-maximality of a setS ∈ W we thus can restrict ourselves to setsT ∈ W .
It remains to show that there is a stage extensionS in W with t 6∈ S. We prove that (i) for

every setS ∈ W with t ∈ S, there exists ac ∈ C, suchc 6∈ S+
R ; and (ii) existence of a setS ∈ W

such thatC ⊆ S+
R . Note that (i)+(ii) imply existence of a stage extensionS of FΦ with t 6∈ S.

We prove (i) by contradiction and assume thatC ⊆ S+
R . As S is conflict-free inFΦ and

t ∈ S, we getC ∩ S = ∅. SinceC ⊆ S+
R , S defeats allc ∈ C. As all attacks againstC

come fromY ∪ Ȳ ∪ Z ∪ Z̄, the setU =
(

IY ∪ (S ∩ (Z ∪ Z ′)) ∪ {ȳ | y ∈ Y \ IY }
)

defeats
all c ∈ C. By Lemma 1(2), for eachz ∈ Z, eitherz or z̄ is contained inS and so we get
U =

(

IY ∪IZ ∪{x̄ | x ∈ (Y ∪Z)\ (IY ∪IZ)}
)

with IZ = S∩Z. Thus, for eachc ∈ C, U ∩c 6= ∅,
which contradicts assumption (3).

To show (ii) we just construct such a setS = U ∪ V using

U = IY ∪ {ȳ ∈ Y \ IY } ∪ Z

V = {c ∈ C | ∄u ∈ U with 〈u, c〉 ∈ R}.

It is easy to verify thatS is conflict-free inFΦ. It remains to show that for allc ∈ C, c ∈ S+
R holds.

Note that for eachc ∈ C we have that eitherc is attacked byU or contained inV . In both cases,
c ∈ S+

R is clear.

The following result is proven analogously to Theorem 2.

Theorem 4. StageCred is ΣP
2 -hard.

Our hardness results can be extended to AFs without self-defeating arguments. To this end, we
adapt our reduction by replacing all self-defeating arguments in the frameworkFΦ by cycles of odd
length (for instance, of length 3). Figure 2 illustrates such a frameworkF m

Φ for our example QBF.
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b3 b2 b1

t̄ t

C1 C2 C3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′
11

ȳ′
11

y′
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ȳ′
21

y′
12

ȳ′
12

y′
22

ȳ′
22

y′
13

ȳ′
13

y′
23

ȳ′
23

Figure 2: The modified frameworkF m
Φ for Φ from Example 2.

In case of semi-stable extensions, we use the fact that the only admissible set of an odd length cycle
is the empty set. We thus get that a setS is a semi-stable extension ofFΦ iff S is a semi-stable
extension ofF m

Φ .
The same construction can be used for stage semantics, although the argumentation is slightly

different: As stage extensions only require conflict-freeness and not admissibility, the arguments
of the introduced cycles may now be part of stage extensions.However, to repair the correctness
proofs for the modified reduction, we use the observation that for each cycle of length 3 at most one
argument can be in a stage extensionS (see also Example 1) and at least one argument in the cycle
is not defeated byS. Thus each such cycle contributes in three different but incomparable ways to
stage extensions. More formally, let letAm be the set of arguments inF m

Φ , X = {b} ∪ Y ′ ∪ Ȳ ′

and denote byx− be the (unique) attacker of an argumentx ∈ X in the original framework
FΦ = (A, R). Then, we get that (i) ifS is a stage extension ofFΦ, then eachS ′ ⊆ Am, such that
S ′ ∩ A = S and for eachx ∈ X,

card(S ′ ∩ {x1, x2, x3}) =

{

1 if x− /∈ S
0 otherwise

is a stage extension ofF m
Φ ; and (ii) if S is a stage extension ofF m

Φ , thenS ∩A is a stage extension
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of FΦ (whereA is the set of arguments inFΦ). This correspondence between stage extensions
suffices to show that our hardness results carry over to self-defeat free AFs.

We summarize our results in terms of completeness results. The matching upper bounds for
semi-stable semantics have been reported in [8]; for the stage semantics we give them in the proof
of the following theorem.

Theorem 5. ProblemsStageCred andSemiCred areΣP
2 -complete;StageSkept andSemiSkept are

ΠP
2 -complete. For all problems, hardness holds even for AFs without self-defeating arguments.

Proof. Hardness is by Theorems 1–4 and by the observations in the previous paragraphs.
For the matching upper bounds, we first consider the following problem which we show to be

in coNP: Given an AFF = (A, R) and a setS ⊆ A, is S a stage (resp. a semi-stable) extension
of F . Let cf (F ) denote the collection of conflict-free setsS ⊆ A of F andadm(F ) denote the
collection of setsS ⊆ A, admissible inF . By definition,S is a stage (resp. a semi-stable) extension
of F iff (i) S ∈ σ(F ) and (ii)∀ T ⊆ A, T ∈ σ(F ) only if S+

R 6⊂ T+
R , for σ = cf (resp.σ = adm).

GivenS, we can decideS ∈ σ(F ) in polynomial time, forσ ∈ {cf , adm}. For the complement
of (ii), we guess a setT and then we verify (again, in polynomial time), whetherT ∈ σ(F ), for
σ ∈ {cf , adm}. This yields membership in NP for the complement of (ii), thus, given setS, (ii) is
in coNP, and thus the entire problem is in coNP.1

We now can give algorithms forStageCred andSemiCred as follows. We have given an AF
F = (A, R) and an argumenta ∈ A. We guess a setS ⊆ A with a ∈ S and then use an NP-oracle
(we recall that oracle calls are closed under complement), to check whetherS is a stage (resp.
semi-stable) extension ofF . Obviously this algorithm correctly decides the considered problems.
Hence, these problems are inΣP

2 .
For StageSkept andSemiSkept we argue as follows: Given an AFF = (A, R), to decide

if an argumenta ∈ A is contained in each stage (resp. semi-stable) extension ofF , we have to
prove that every setS with a 6∈ S is not a stage (resp. semi-stable) extension ofF . Thus, for the
complementary problem, we can guess a setS with a /∈ S and check whetherS is a stage (resp.
semi-stable) extension ofF . Again, this check can be done with a single call to an NP-oracle,
and thus the complementary problems are inΣP

2 . ΠP
2 -membership ofStageSkept andSemiSkept

follows immediately.

4 Fixed Parameter Tractability

As we have shown in the previous section, all considered problems are highly intractable. A
natural task is now to identify tractable subclasses of the problems. We focus on particular graph
parameters and check whether bounding such parameters leads to the desired tractable fragments.

4.1 Tree-Width

One such parameter for graph problems is tree-width [13]. Intuitively, the tree-width of a graph
measures the tree-likeness of the graph.

1For semi-stable semantics, this problem is also coNP-complete, cf. [8].
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Definition 2. LetG = (V, E) be an undirected graph. Atree decompositionof G is a pair 〈T ,X〉
whereT = 〈VT , ET 〉 is a tree andX = (Xt)t∈VT

such that:

1.
⋃

t∈VT
Xt = V , i.e.X is a cover ofV ,

2. for eachv ∈ V the subgraph ofT induced by{t | v ∈ Xt} is connected,

3. for each edge{vi, vj} ∈ E there exists anXt with {vi, vj} ⊆ Xt.

Thewidth of a decomposition〈T ,X〉 is given bymax{|Xt| : t ∈ VT } − 1. Thetree-widthof a
graphG is the minimum width over all tree decompositions ofG.

Many graph properties can be defined by formulas of monadic second-order logic (MSOL)
and by Courcelle’s Theorem [4] such graph properties can be efficiently decided on graphs with
bounded tree-width.

Theorem 6. Let beK a class of graphs for which the tree-width is bounded by some constantk
andΠ be a MSOL-definable property. For each suchG ∈ K, G ∈ Π is decidable in linear time
wrt. the size ofG.

With Courcelle’s theorem at hand, we have a powerful tool to classify graph problems as fixed-
parameter tractable. In order to apply the concept of tree-width to argumentation frameworks,
we define the decision problemsSemiSkepttwk , SemiCredtw

k , StageSkepttwk andStageCredtw

k in the
same way asSemiSkept, SemiCred, StageSkept andStageCred, but restricted to AFs, which, when
interpreted as undirected graphs, have tree-width≤ k.

Theorem 7. For fixedk, the problemsSemiSkepttwk , SemiCredtw

k , StageSkepttwk andStageCredtw

k

are decidable in linear time.

Proof. Let us consider the following building blocks in MSOL:

U ⊆+
R V = ∀x

(

(

x ∈ U ∨ ∃y(y ∈ U ∧ 〈y, x〉 ∈ R)
)

→

(

x ∈ V ∨ ∃y(y ∈ V ∧ 〈y, x〉 ∈ R)
)

)

U ⊂+
R V = U ⊆+

R V ∧ ¬(V ⊆+
R U)

cfR(U) = ∀x, y
(

〈x, y〉 ∈ R → (¬x ∈ U ∨ ¬y ∈ U)
)

admR(U) = cfR(U) ∧ ∀x, y
(

(〈x, y〉 ∈ R ∧ y ∈ U) → ∃z(z ∈ U ∧ 〈z, x〉 ∈ R)
)

semi(A,R)(U) = admR(U) ∧ ¬∃V (V ⊆ A ∧ admR(V ) ∧ U ⊂+
R V )

stage(A,R)(U) = cfR(U) ∧ ¬∃V (V ⊆ A ∧ cfR(V ) ∧ U ⊂+
R V )

One can show thatsemiF (U) characterizes the semi-stable extensions of an AFF , whilestageF (U)
characterizes the stage extensions ofF . The required checks for the considered problems are easily
added to these formulas. Theorem 6 then yields the desired result.
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4.2 Directed Graph Measures

As argumentation frameworks are directed graphs it seems natural to consider directed graph mea-
sures to get larger tractable fragments than those we capture with bounded (undirected) tree-width.
Unfortunately, it turns out that the considered problems remain hard when bounding typical di-
rected graph measures. We illustrate this fact by using cycle rank [9] as a parameter.

Definition 3. Let G = 〈V, E〉 be a directed graph. The cycle rank ofG, cr(G), is defined
as follows: An acyclic graph hascr(G) = 0. If G is strongly connected thencr(G) =
1 + minv∈VG

cr(G \ v). Otherwise,cr(G) is the maximum cycle rank among all strongly con-
nected components of G.

Theorem 8. The problemsSemiSkept, StageSkept (resp.SemiCred, StageCred) remainΠP
2 -hard

(resp.ΣP
2 -hard), even if restricted to AFs which have a cycle-rank of1.

Proof. Its easy to see that every framework of the formFΦ has cycle-rank1 and therefore we have
an reduction fromQBF 2

∀ formulas to an AF with cycle-rank1. In fact, the strongly connected
components ofFΦ are

SCC(FΦ) = {{yi, ȳi}, {zi, z̄i}, {t, t̄}, {y
′
i}, {ȳ

′
i}, {z

′
i}, {z̄

′
i}, {b}}.

As each of these components can be made acyclic by removing one vertex, the cycle-rank ofFΦ is
thus1.

By results in [12, 11, 10] it follows that a problem which is hard for bounded cycle-rank remains
hard for bounding other directed graph measures, i.e. directed path-width, Kelly-width, DAG-
width and directed tree-width.

5 Conclusion

In this note, we provided novel complexity results for abstract argumentation frameworks in terms
of sceptical and resp. credulous acceptance under semi-stable and stage semantics (as defined
in [1]). In case of the semi-stable semantics, we improved the existingPNP

|| -lower bound [8] to
hardness for classesΠP

2 (resp.ΣP
2 ). Together with existing upper bounds, we thus obtained com-

pleteness for complexity classes on the second level of the polynomial hierarchy, answering an
open question raised by Caminada and Dunne [8]. Furthermore, we showed that stage semantics
leads to the same complexity. To the best of our knowledge, nocomplexity results for this seman-
tics have been obtained so far. Finally, we gave some resultsin terms of bounding some problem
parameter. As a positive result, we could show that bounded tree-width leads to tractable subclasses
of the problems under consideration. As a negative result, we gave evidence that more natural pa-
rameters for argumentation frameworks, as e.g. cycle-rank, are not applicable to fixed-parameter
tractability results.
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