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1 Introduction

In Artificial Intelligence (Al), the area of argumentatio?]| [has become one of the central issues
during the last years. Argumentation provides a formalttneat for reasoning problems arising
in a number of interesting applications fields, includinglti4Agent Systems and Law Research.
In a nutshell, so-called abstract argumentation framesv¢pEs) formalize statements together
with a relation denoting rebuttals between them, such tiesémantics gives an abstract handle
to solve the inherent conflicts between statements by sajeamtimissible subsets of them. Several
such semantics have already been proposed by Dung in his@gmaper [6], but there are several
others which received significant interest lately.

One such approach is known as stage semantics and was irgrbldy Verheij [14] more than
ten years ago. With the work on semi-stable semantics by @adai[3], who revived Verheij's
basic concepts, stage semantics are nowadays mentionednagatant alternative (see, e.g. [1])
to Dung’s original semantics. The underlying idea of stagaantics is to maximize not only the
arguments included in an extension but also those attagkeddh an extension.

In this work, we give exact complexity bounds for typical d&mn problems assigned to ar-
gumentation frameworks. In particular, we prox€-hardness, and resply-hardness, for the
problems deciding of whether a given argument is containazhe, resp. in all, semi-stable ex-
tensions of a given argumentation framework (the respeatigmbership results have been shown
by Dunne and Caminada [8], but matching lower bounds have ledieas an open problem). We
also show that stage semantics (defined in terms of conféetdets) are of the same complexity
as semi-stable semantics. Our results therefore indibatetie considered semantics are as hard
as the preferred semantics [5, 7], and thus among the masdtet/semantics for argumentation
frameworks. In order to identify tractable subclasses, nayae fixed-parameter tractability for
the semantics under consideration in terms of tree-widthcsmle-rank.

2 Background

An argumentation frameworkAF, for short) is a paif A, R) where A is a set of arguments and
R C A x Arepresents the attack-relation. For an A (A, R), S C A, anda € A, we call

e S conflict-freein F, if there are nd, ¢ € S such thatb, c) € R,

e a defeatedby S'in F, if there is ab € S such thath, a) € R,

e o defendedy S in F, if for eachb € A such thatb, a) € R, bis defeated by in F,
e S admissiblan F, if S is conflict-free inf” and eachu € S is defended by in F.

To define the concepts of stage and resp. semi-stable estsnsive basically follow the
conventions used in [1]. Let for an AF = (A,R) and a setS C A, S} be defined as
SU{b|3a € S, suchthat(a,b) € R}. Moreover, let us say that <}, 7" holds if S}, C T5.



Definition 1. Let ' = (A, R) be an AF. A sef is astage(resp. asemi-stablgextensiorof F, if
S is maximal conflict-free (resp. admissible)Anwrt. <f.

The following example shows that stage and semi-stablensiias are in general incomparable.
Examplel. Let F' = ({a, b, c}, {{a,b), (b, c),(c,a)}). Then, the only semi-stable extension/of
is the empty set, whilé" possesses three stage extensiar}s {b}, and{c}.

We consider the following decision problems:

e StageCred: Given AFF' = (A, R) anda € A; isa contained in at least one stage extension
of F?

e StageSkept: Given AFF' = (A, R) anda € A; is a contained in every stage extension of
F?

e SemiCred: Given AFF' = (A, R) anda € A; is a contained in at least one semi-stable
extension off'?

e SemiSkept: Given AFF' = (A, R) anda € A; isa contained in every semi-stable extension
of F'?

For our forthcoming reductions, we require a particulasslaf quantified Boolean formulas
(QBFs) which we introduce next. &BF?2 formula is of the formvY 3ZC whereY and Z are
sets of propositional atoms from a countable donidjiandC' is a collection of clauses (which we
shall represent as sets) over literals built from atdmsZ. For a variable;, we usey to represent
its negation. Moreover; stands fory, etc. We say that a QBFY'3ZC is true iff, for eachly C Y
there exists arh; C Z, such that for each € C,

(IyUIzLJ{i"JIG(YUZ)\(IyUIz)})ﬁC%@. (1)
Example2. Consider the QBF

¢ = Vy17y2323724{{y1>y2723}7 {12, 73, 24) }, {3717?32724}}-

It can be checked that this QBF is true.

We recall that the probler@SAT? (i.e. given aQBF? formula®, decide whethe® is true) is
I1¥-complete.

3 Complexity of Semi-Stable and Stage Semantics

As already mentioned, we consider a countablé’sef propositional atoms (in what follows, we
use atoms and arguments interchangeably). Moreover, veethavyollowing pairwise disjoint sets
of argumentd/ = {u | u € U}, U' = {u/ |u € U}, U = {u' | uw € U}. Forany sel/ C U,
we useV, V', V', also as renaming schemes in the usual way (for instdricdgnotes the set
{v" | v € V}). Finally, we use further new arguments, b and{ci, cs, .. .}.

We make use of the following reduction fro@BF? formulas to AFs.
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Figure 1: Argumentation framewoiK; for ® as given in Example 2.

Reductionl. Given aQBF? formula® =YY 3ZC, we defineFy = (A, R), where

A = {t,t,b}uCuYUYUY' UY'UZUZ
R = {{ct)|ceC}U
{{z,z) ,(Z,x) |lr€e Y UZ}U
(. v), @w.9) ., y) . (7. 9) lye YU
{(l,¢) | literal l occurs inc € C'} U
{

l
{(t,1), (&, 1), {t,b), (b, b)}.

As an example, consider Figure 1 which illustrates the spwading AFFs for & from Ex-
ample 2.

We start with a few basic properties, any such BAfsatisfies.

Lemma 1. For every stage (resp. semi-stable) extensioof an AF Fy = (A, R), the following
propositions hold:

1. b¢ S,aswellasy ¢ S andy’ ¢ S for eachy € Y.
2. x¢S < reSforeachr € {t}UY U Z.

Proof. Let® = VY3ZC andFy = (A, R) be the corresponding AF.

ad 1) Clear, since all these arguments are self-defeatishthanefore they cannot be in a set which
is conflict-free inf. Consequently, no such argument can occur in a stage orsabie extension

of Fs.

ad 2) Obviously, foreach € {t} UY U Z, {z, 2} C S cannot hold, sincé& has to be conflict-free

in Fp. It remains to showz, 2} N.S # (). Towards a contradiction, let us assume there exists such
anx, such thafz, z} N S = () holds for a stage (resp. semi-stable) extenslai F.
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Let us first assume the sét = S U {z} is conflict-free inFy (this is always the case for
x = t, but not necessarily far € Y U Z). We haveS <}, T, sinceS C T andz ¢ S} (since
{z,z} N S = ). This already shows thé then cannot be a stage extensionfgf We proceed
with the case where we assurfido be a semi-stable extension Bf. Thus,S is admissible in
Fs. Butthen,T remains admissible ify (z € T defends itself inFg; each other argument ifiis
already defended by in F). Hence, in this cases would not be a semi-stable extensionfQf.

Let us thus assume th&tu{z} is not conflict-free infy, we knowz € Y UZ, and thus there is
ac € C,suchthat € S and(z,c) € R. Consequently, ¢ S but since we assumgto be a stage
or semi-stable extension df;, we can assume € S (we already have showft,t} NS # ).
Further, as there isac C with ¢ € S and(z, ¢) € R, and since we have ¢ S, c is not defended
by S in Fs. But then,S cannot be a semi-stable extensionF@f(assS is not admissible irfy).

It remains to show tha$ is not a stage extension éf,. To this end, lefl’ = (S'\ {c € C' |
(z,c) € R})U{z}. One can check th&t is conflict-free inFy. Moreover, we again have <}, T'.
In fact, for the removed arguments= C, we haver € T (since for each such (z,c) € R and
z € T); moreover, the only argument defeated by suéht, butt € T, sincet € T (recall that
t € S and thug € T'). This shows thaf cannot be a stage (resp. semi-stable) extensidf aind
we arrive at the desired contradiction. O

Lemma 2. LetY* = YUY UY'UY’ and S, T be conflict-free sets iy = (A, R). Then
SNY* C TnY*iff (SNY*)} C (TNY )% and furtherSNY™* = TNY™* iff (SNY™*) L = (TNY™*)3.

Proof. First,assum& NY* C T NY* Letl € (SNY*)L. Ifle SNY* thenl € TNY* and
thus! € (T N Y™*)%. Otherwise there existslac S NY*, such thatk,l) € Randk € SNY™.
By assumptiork € T'NY* and sincelk,l) € R, € (T NY*)}. So, assume noWs NY*)L C
(T'NY*)L and letl € SNY*. By Lemma 1(1)/ is either of formy or . If [ € SN Y™, then
1,I,I' € (SNY™*)}. However, since is conflict-free inFy, [ ¢ SNY™*, Thus,/’ ¢ (SNY*)E. We
getl,l,l' e (TnY*)Landl’ ¢ (T NY*)L. The latter implies ¢ (T'NY*). Butthen]/ € TNY*
follows fromi,l € (T NY™*)}.

ThisshowsS N Y* C TNY*iff (SNY*); C(TNY*)}. By symmetrySNY*=TNY*
iff (SNY*)} = (TNY™*)% follows. O

Lemma 3. Let® be aQBF?2 formula. If @ is true, thert is contained in every stage and in every
semi-stable extension &%.

Proof. Supposeb = VY 3ZC is true and let, towards a contradictidhbe a stage or a semi-stable
extension ofFy = (A, R) witht ¢ S. By Lemma 1(2), we know that for eaghe Y, eithery or g
isinS. Letly =Y N.S. Sinced is true we know there exists dp C 7, such that (1) holds, for
eachc € C. Consider now the set

T=LUIl;u{z|ze(YUZ)\ (IyUlz)} Ut}

We show thafl" is admissible inf and thatS <}, T holds. This will contradict our assumption
in both cases, i.e. that is a stage or a semi-stable extensiorfpf It is easily verified thaf is
conflict-free inF. Next we show that each € T'is defended by in F. This is quite obvious
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for eacha € T exceptt, since all those arguments defend themselves. Tohdegended byl in
Fg, each argument € C' has to be attacked by an element frdmBut this is the case since (1)
holds and by the construction é%;, i.e. by the definition of attack§(/, c) | literal [ occurs inc},
each such attackeris attacked by an argumente Y UY U Z U Z. It remains to show$ <}, T'.
By Lemma 2,(SNY*) s = (TNnY"EL forY* =Y UY UY UY’. Moreover, by Lemma 1(2)
eitherz or z in S, for eachz € Z; the same holds fof’, by definition. We observe that}; N
(ZUZ)=TinN(ZUZ) = (ZU Z). Moreover, we already have argued that each C
is attacked by some argumentTh Let A~ = A\ {¢,¢,b}. So far, we thus have shown that
SENA-CTiNA =L, UL UXY\Ly)U({Y'\I)UZUZucC. We finally observe that
SEn{tt, b} = {t,t} C {t,t,b} = Tp N {t,t,b}, sincet ¢ S by assumption and € T by
definition. This showss' <}, T' as desired. O

We are now prepared to give our first main result.
Theorem 1. SemiSkept is IT}'-hard.

Proof. We use our reduction fron§ BFZ formulas to AFs and show that, for each such QBF
®, it holds thatt is contained in all semi-stable extensionsiaf iff ® is true. Sincely can be
constructed fron® in polynomial time (and even in logarithmic space), therolghen follows. Let
¢ =VY3ZC andFgs = (A, R) be the corresponding AF. The if direction is captured by Lemm
3. We prove the only-if direction by showing thatdf is false, then there exists a semi-stable
extensionS of F such that £ S.

In cased is false, there exists aly C Y, such that for eaclh, C Z, there exists a € C, such
that

(yUlu{z|ze (YUZ)\ (IyUlz)}) ne=0. (2)

Consider now a maximal (wrt %) admissible (inF) setsS, such that’y C S (note that such a
set exists, sincéy itself is admissible infy). Using Lemma 2, one can show thathen has to
be a semi-stable extension Bf. To wit, let 7" be an admissible (i) set such thafy ¢ T.
By Lemma 2 it holds thatS N Y*)} € (T'nY*)% and therefores}, & T . Putting this together
with the maximality ofS in the set{T" | T"is admissible infy andly C T'} we get that there is no
admissible (inF) setT’, such thatS}; C T, . Hence,S is a semi-stable extension 6%.

It remains to show ¢ S. We prove this by contradiction and assuime S. As S is admissible
in Fg, S defends and therefore it defeats alle C'. As all attacks against argumentsihcome
fromYUYUZUZ theset/ = (Iy U(SN(ZUZ))U{y|y €Y\ Iy}) defeats alt € C. By
Lemma 1(2), for each € Z, eitherz or z is contained in5. We get an equivalent characterization
forUbyU = (Iy Ul U{z |z € (YUZ)\ (Iy Nlz)}) with I, = SN Z. Thus, forallc € C,

(yUl;u{z|ze (YUZ)\ (IyUlz)}) Nne#0.
which contradicts assumption (2). O

Theorem 2. SemiCred is ¥4 -hard.



Proof. In the proof of Theorem 1, we have shown thaBRF?2 formula® is true iff ¢ is contained
in each semi-stable extension®&f. According to Lemma 1(2), this holds iffis not contained in
any semi-stable extension 6%. Thus, the complementary problemS$¥miCred is alsoll% -hard.
YI’-hardness ofemiCred follows immediately. O

We now turn our attention to the stage semantics.
Theorem 3. StageSkept is IT}'-hard.

Proof. We again use our reduction fro@BF; formulas to AFs and show that, for each such QBF
®, it holds thatt is contained in all stage extensionsiyf iff @ is true. Thus, leb = VY 3ZC and
Fg = (A, R) be the corresponding AF. The if direction is already cagtimglLemma 3. We prove
the only-if direction by showing that, i is false, then there exists a stage extensiai £ such
thatt ¢ S.

If ® isfalse, there exists aly C Y, such that for eaclh; C Z, we have a € C with

(YUl u{z |z e (YUZ)\(IyUlz)}) ne=0. (3)

Consider the collectiomV = {S | Iy C S, S is conflict-free inFy} of conflict-free sets inFy.
Using Lemma 2, we can show that for every conflict-freeKy) setT', S <}, T impliesly C T.
For verifying <j-maximality of a setS € W we thus can restrict ourselves to s€ts V.

It remains to show that there is a stage extensidn W with ¢ ¢ S. We prove that (i) for
every setS € W with ¢t € S, there exists @ € C, suchc ¢ S#; and (i) existence of a se&t € W
such that” C S7;. Note that (i)+(ii) imply existence of a stage extensionf Fy with ¢ & S.

We prove (i) by contradiction and assume tiiatC S7;. As S is conflict-free inFy and
t € S, wegetCnsS = 0. SinceC C S}, S defeats alle € C. As all attacks againsf’
come fromY UY UZ U Z, thesetU = (Iy U(SN(ZUZ))u{y |y e Y\ Iy}) defeats
all c € C. By Lemma 1(2), for eachh € Z, eitherz or Z is contained inS and so we get
U= (Iyul;u{z |z € (YUZ)\(IyUlz)}) with I, = SNZ. Thus, foreach € C, UnNc # 0,
which contradicts assumption (3).

To show (ii) we just construct such a set= U U V' using

U = LulgeY\L}UZ
V = {ceC|PucUwith (u,c) € R}.

It is easy to verify thafts is conflict-free inF. It remains to show that for alle C, ¢ € S}, holds.
Note that for eacla € C' we have that either is attacked by/ or contained in/. In both cases,
c € Shisclear. O

The following result is proven analogously to Theorem 2.
Theorem 4. StageCred is X1'-hard.

Our hardness results can be extended to AFs without sedatief) arguments. To this end, we
adapt our reduction by replacing all self-defeating argutsien the frameworlé by cycles of odd
length (for instance, of length 3). Figure 2 illustratestsadrameworkF;* for our example QBF.
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Figure 2: The modified frameworKg' for @ from Example 2.

In case of semi-stable extensions, we use the fact that thi@dmissible set of an odd length cycle
is the empty set. We thus get that a Seis a semi-stable extension &, iff S is a semi-stable
extension off .

The same construction can be used for stage semantics,giithloe argumentation is slightly
different: As stage extensions only require conflict-freesrand not admissibility, the arguments
of the introduced cycles may now be part of stage extensidosiever, to repair the correctness
proofs for the modified reduction, we use the observatiotftna@ach cycle of length 3 at most one
argument can be in a stage extensiofsee also Example 1) and at least one argument in the cycle
is not defeated by. Thus each such cycle contributes in three different budnmgarable ways to
stage extensions. More formally, let lét* be the set of arguments Fy*, X = {p} UY' U Y’
and denote by:~ be the (unique) attacker of an argumente X in the original framework
Fs = (A, R). Then, we get that (i) i is a stage extension @, then eacht” C A™, such that
S’"N A= Sandforeach € X,

1 ifz= ¢S

, _
card(S N {$1,$2,$3}) - { 0 otherwise

is a stage extension @f7’; and (i) if S is a stage extension @f;’, thenS N A is a stage extension
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of Fp (Wwhere A is the set of arguments ifRy). This correspondence between stage extensions
suffices to show that our hardness results carry over taleddfat free AFs.

We summarize our results in terms of completeness resulis.nfatching upper bounds for
semi-stable semantics have been reported in [8]; for tlgeet@amantics we give them in the proof
of the following theorem.

Theorem 5. ProblemsStageCred andSemiCred are ¥.2'-complete StageSkept andSemiSkept are
I11Y-complete. For all problems, hardness holds even for AFsawit self-defeating arguments.

Proof. Hardness is by Theorems 1-4 and by the observations in thepsegaragraphs.

For the matching upper bounds, we first consider the follgyaroblem which we show to be
in coNP: Given an AR = (A, R) and a sefS C A, is S a stage (resp. a semi-stable) extension
of F. Let ¢f(F') denote the collection of conflict-free sefsC A of F' and adm(F') denote the
collection of set$s C A, admissible inF'. By definition,S is a stage (resp. a semi-stable) extension
of Fiff(i) Seo(F)and (i)VT C A, T € o(F)onlyif S}, ¢ Tx, foro = ¢f (resp.c = adm).
Given S, we can decid& € o(F) in polynomial time, foroc € {¢f, adm}. For the complement
of (ii), we guess a sét’ and then we verify (again, in polynomial time), whetliérc o(F), for
o € {cf, adm}. This yields membership in NP for the complement of (ii),2hgiven sefS, (ii) is
in coNP, and thus the entire problem is in coNP.

We now can give algorithms fdtageCred and SemiCred as follows. We have given an AF
F = (A, R) and an argument € A. We guess a sét C A with a € S and then use an NP-oracle
(we recall that oracle calls are closed under complementgheck whethefS is a stage (resp.
semi-stable) extension @f. Obviously this algorithm correctly decides the considgueoblems.
Hence, these problems areXy’.

For StageSkept and SemiSkept we argue as follows: Given an AF = (A, R), to decide
if an argumentz € A is contained in each stage (resp. semi-stable) extensién ofe have to
prove that every sef with a ¢ S is nota stage (resp. semi-stable) extensioofThus, for the
complementary problem, we can guess a%etith « ¢ S and check whethe$ is a stage (resp.
semi-stable) extension df. Again, this check can be done with a single call to an NP{erac
and thus the complementary problems ar&jh I12-membership obtageSkept andSemiSkept
follows immediately. O

4 Fixed Parameter Tractability

As we have shown in the previous section, all consideredl@nab are highly intractable. A
natural task is now to identify tractable subclasses of teblpms. We focus on particular graph
parameters and check whether bounding such parametessttetie desired tractable fragments.

4.1 Tree-Width

One such parameter for graph problems is tree-width [13Litimely, the tree-width of a graph
measures the tree-likeness of the graph.

1For semi-stable semantics, this problem is also coNP-cei@pdf. [8].
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Definition 2. LetG = (V, E)) be an undirected graph. tkee decompositioof G is a pair (7, X')
where7T = (Vr, E7) is atree and¥ = (X;).cy, such that:

1. UtGVT X, =V,l.e.X is acoverofl/,
2. for eachv € V the subgraph of induced by{¢ | v € X;} is connected,
3. for each edggv;,v;} € E there exists atk,; with {v;,v;} C X,.

Thewidth of a decompositiol7, X) is given bymax{|X;| : ¢t € Vz} — 1. Thetree-widthof a
graphG is the minimum width over all tree decompositiong;of

Many graph properties can be defined by formulas of monadiorgkorder logic (MSOL)
and by Courcelle’s Theorem [4] such graph properties carffieently decided on graphs with
bounded tree-width.

Theorem 6. Let be K a class of graphs for which the tree-width is bounded by soonstantk
and Il be a MSOL-definable property. For each suehe K, G € Il is decidable in linear time
wrt. the size of5.

With Courcelle’s theorem at hand, we have a powerful toolassify graph problems as fixed-
parameter tractable. In order to apply the concept of trieihwto argumentation frameworks,
we define the decision problerismiSkept;”, SemiCred}", StageSkept;” andStageCred.” in the
same way aSemiSkept, SemiCred, StageSkept andStageCred, but restricted to AFs, which, when
interpreted as undirected graphs, have tree-width

Theorem 7. For fixedk, the problemsemiSkept;”, SemiCred}”, StageSkept;” and StageCred;"
are decidable in linear time.

Proof. Let us consider the following building blocks in MSOL.:
UchLv = Vx((x €UV Iy eUA (y,z) € R)) —

(xEV\/EIy(yEV/\(y,x)GR)))
UctV = UCLV AV CLU)
fr(U) = Va,y({z,y) e R— (rz €UV -yel))
admpg(U) = ch(U)/\‘v’x,y<(<x,y)ER/\yGU)—>E|z(z€U/\(z,x)GR))

semi(q p)(U) = admp(U) A-3IV(V C AAadmp(V)AU CL V)
stage 4 gy (U) = cfp(U)A-3V(V CANCAR(V)AU CL V)
One can show thatmir(U) characterizes the semi-stable extensions of air Akhile stage - (U)

characterizes the stage extensiong'of he required checks for the considered problems are easily
added to these formulas. Theorem 6 then yields the desisett.re O
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4.2 Directed Graph Measures

As argumentation frameworks are directed graphs it seetmsahto consider directed graph mea-
sures to get larger tractable fragments than those we eapitir bounded (undirected) tree-width.
Unfortunately, it turns out that the considered problenmai@ hard when bounding typical di-

rected graph measures. We illustrate this fact by usingeayoik [9] as a parameter.

Definition 3. Let G = (V, E) be a directed graph. The cycle rank 6f cr(G), is defined
as follows: An acyclic graph hasr(G) = 0. If G is strongly connected thenr(G) =

1 4+ minyey, cr(G \ v). Otherwise,cr(G) is the maximum cycle rank among all strongly con-
nected components of G.

Theorem 8. The problem$emiSkept, StageSkept (resp.SemiCred, StageCred) remainII}’-hard
(resp.X’-hard), even if restricted to AFs which have a cycle-rank.of

Proof. Its easy to see that every framework of the fafinhas cycle-rank and therefore we have
an reduction fromQBF formulas to an AF with cycle-rank. In fact, the strongly connected
components of are

SCC(F<I>) = {{yi7 gi}v {Zi7 Zi}, {tv ﬂ, {yz{}7 {gz/}v {Zz/}v {2;}7 {b}}

As each of these components can be made acyclic by removengentex, the cycle-rank dfy is
thus1. O

By resultsin[12, 11, 10] it follows that a problem which istidor bounded cycle-rank remains
hard for bounding other directed graph measures, i.e. tédepath-width, Kelly-width, DAG-
width and directed tree-width.

5 Conclusion

In this note, we provided novel complexity results for abstargumentation frameworks in terms
of sceptical and resp. credulous acceptance under sebhe-stad stage semantics (as defined
in [1]). In case of the semi-stable semantics, we improvedetkisting " -lower bound [8] to
hardness for classés, (resp.Xl). Together with existing upper bounds, we thus obtained-com
pleteness for complexity classes on the second level of dhenpmial hierarchy, answering an
open question raised by Caminada and Dunne [8]. Furtherm@&showed that stage semantics
leads to the same complexity. To the best of our knowledgepntplexity results for this seman-
tics have been obtained so far. Finally, we gave some rasui¢sms of bounding some problem
parameter. As a positive result, we could show that bourr@edwidth leads to tractable subclasses
of the problems under consideration. As a negative reselgave evidence that more natural pa-
rameters for argumentation frameworks, as e.g. cycle;rargknot applicable to fixed-parameter
tractability results.
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