
70

Design as a Problem of Requirements Explication
Martin Dzbor §

§ Knowledge Media Institute, The Open University, Milton Keynes, MK7 6AA, UK; Email: M.Dzbor@open.ac.uk

Abstract. Engineering design is a human activity using different
knowledge sources. From the point of availability it is possible to
distinguish well-structured, explicit knowledge as opposed to tacit,
implicit and often experience-based knowledge. Each type plays a
particular role in engineering design, and thus in knowledge-based
design support systems (KBDSS). This paper addresses several
issues with KBDSS. It begins with a discussion of the processes
underlying engineering design. Further, it presents a theoretical
formalism for engineering design and shows the role of reflection in
design. Proposed framework is further illustrated on a simple exam-
ple, which is followed by some suggestions for further research.

1. INTRODUCTION

We look at the support systems for engineering design. The knowl-
edge-centred view is emphasised in three facets describing the pro-
posed approach: knowledge representation for design, design
process control, retrieval and presentation of relevant knowledge.

The design task occurs when an agent decides to change the
status of an artefact or surrounding world [1]. It is a goal-oriented
process leading from initial objectives towards an artefact realising
the change. In a real-world practice the task is ill-structured [2], i.e.
its solution may not be found until significant effort to understand
the problem has been made. Design can be thus considered as an
intellectual and knowledge-rich activity of an agent [3].

Engineering design uses scientific principles, technical informa-
tion, designers’ imagination and experience to develop systems that
perform desired functions [4]. In practice designers are rarely pre-
sented with a detailed specification of design problems [5]. Specifi-
cations must be built up from uncertain design situations. Real-
world design typically begins with initial requirements that are
vague and incomplete. Initial requirements must be transformed to
consistent and complete requirements, and a solution must be found
satisfying them. Experienced designers usually know how to con-
vert an uncertain situation into a soluble design problem; experience
acquired in the past helps them to tackle current problems [6].

Design consists of several activities: description of requirements,
finding a solution, its evaluation, simulation, etc. All of them can be
supported in one way or another. Traditional CAD focused on the
support for the solution phase with the description phase being un-
dervalued [3]. However, finding relevant requirements to a design
problem is as important as finding the solution. The discovery of
requirements and solutions must be seen as interactive in terms of
knowledge provided [7]. This knowledge includes experience from
past designs, theoretical knowledge, design guidelines etc.

In the following parts the engineering design is understood as an
iterative transformation of initial incomplete requirements to a con-
sistent formulation of design problem and its solution. Proposed
(partial) solutions may help to uncover new, relevant requirements
or otherwise influence the existing ones. Modified requirements
trigger solution refinement, thus revealing a principle of the co-
evolution of mutually complementary concepts [8]. In the paper we
look at the application of knowledge-level models containing dif-
ferent types of knowledge in the early phases of design with empha-
sis on the phenomenon of co-evolution. We understand the notion
‘model’ in Newell’s terms [9] as an entity that can explain certain
actions not on the computational level but rather on a higher level of
abstraction – knowledge level.

2. NATURE OF DESIGN

Before starting with knowledge-based support, let us mention some
key features of design problems, upon which we build the remain-
der of this paper. As mentioned above, engineering design is a
knowledge-rich activity and designers often draw on their previous
experience when they tackle initial design situations. Because of the
uncertainty of initial requirements, the design space is not well de-
fined but must be developed ‘on-the-fly’. Reflective processes
therefore play a significant role in the understanding and conse-
quently supporting design. A more detailed, comparative study of
some selected features of design can be found in [8].

Reflection is a term introduced by Schön [5] to explain the nature
of non-trivial problem solving. Design is seen as an iterative proc-
ess, where one may change the current perspective (frame) when
this does not suit the design situation satisfactorily. This change will
cause new objects to be identified within the situation, which may
further lead to another change in perspective. The need for changing
the current perspective (frame) is usually caused by an unexpected
result in the current perception of a problem. Schön refers to it as
‘a surprise’ and claims that in theory any result inconsistent with
designers’ theoretical and/or empirical knowledge may be perceived
as ‘a surprise’. When designers find something surprising (either
positively or negatively) in the design based on their current per-
spective, they reflect on the actions made so far.

In fact, there are several reflective loops occurring during the de-
sign. Some of them are mentioned in [8]. For instance, the simplest
form of reflection happens when trying to formulate design re-
quirements so as to conform to some given rules. Another form may
occur as ‘a reflection on action’ and represents an influence of the
proposed solution on the current set of requirements. Both forms are
definitely knowledge-intensive. The former type contains a strong
element of ‘ interpretative knowledge’ that helps to understand the
‘meaning’ of a particular rule. The latter one relies heavily on
‘analytical knowledge’ helping to clarify details of a proposed solu-
tion. Although analysis of a design solution plays a crucial role in
the reflection, it must not be confused with the much more compli-
cated process of reflection itself. Reflection, in addition to the
analysis of a solution, contains an important feature of appreciating
the process that led to a particular solution and knowledge that was
used in this process.

From the point argued in the paper, the latter form of reflection is
especially interesting because it involves the co-evolution of two
interacting ‘worlds’ – requirements and solutions. In addition to
these, we should not forget the ‘world of knowledge of and about
the design’ that also changes as the design problem evolves.

3. SUPPORT FOR REFLECTION IN DESIGN

Some definitions of design may imply that a successful innovative
design is often a matter of designers’ artistry when it comes to con-
verting the initial requirements into final requirements and solu-
tions. However, as shown e.g. in [6, 10], this ‘artistry’ highly
depends on knowledge that is available during the design, and is
affected by knowledge structure and designers’ ability to draw
analogies within and across different domains. Knowledge for and
about design may take various forms. Starting with rather tacit
knowledge [11] that is ‘stored’ inside designers’ heads and needs to
be uncovered before continuing the design process; and ending with

71

clearly articulated knowledge of scientific principles, structural
elements, design rules, norms and so on.

Knowledge-based design support system (KBDSS) may be seen
as a decision support system enabling designers to explore the
structure of design problems and their solutions by combining hu-
man design expertise with domain and design knowledge stored in a
computational system [4]. This paper uses this definition as a base,
because it involves both participants in complex design tasks – a
designer and a computer-based tool, where the role of a computer is
to support designers so that they can spend their efforts on innova-
tive rather then knowledge-maintaining tasks.

We suggest below that similarly as knowledge for design,
knowledge bases (KB) used in design may also take two principal
forms – explicit and hidden. Unlike other related research that pre-
fer one of these forms to another [4, 12-15], we see both types of
KB as equally important especially in the early phases of design
when the design task itself must be formulated before a solution to
it is sought. We distinguish these two types in the following way:
• Explicit knowledge in design is knowledge of elements that can

be used to formulate both design requirements and solutions. It
is also knowledge of relations among the elements. Elements
related in a particular way may be seen as knowledge models
describing artefacts that can be designed in a particular domain.

• The second type of knowledge in design is covered mainly by
designers’ experience from solving more or less similar design
tasks in the past. Experiential knowledge may be stored in the
form of design cases that contain (in addition to elements and
relations) various relevant assumptions, their justifications, and
various reasoning chains showing how the previous solution
was discovered.

3.1 Assumptions and basic definitions

We assume the following points in order to develop and ground our
theoretical framework; they will be discussed in-depth further:
(i) A problem can be specified in terms of a set of (possibly in-

complete) requirements that refer to functional and other ele-
ments known in a particular domain [16].

(ii) A solution to a problem is developed in terms of a set of struc-
tural elements and relations among them assuring the proposed
structure meets the desired functions and/or principles.

(iii) There exists ‘a domain theory’ by which knowledge about ele-
ments and relations can be derived [17].

(iv) During the design process assumptions are made that enable the
exploration of a space of possible design solutions [1].

(v) Assumptions may or may not be a part of current domain the-
ory; however, when proved useful together with their implica-
tions they may extend current domain theory [6].

As the assumptions above suggest, our proposal is mainly based
on the work of researchers studying different aspects of knowledge
suitable for design [12, 16-19]. All cited papers contain mutually
interacting concepts of functions and structures that may be used to
understand a problem and develop a solution. I would like to mod-
ify their understanding of these concepts in the following way.

Let us define
�

 = � F ∪ � P ∪ � S as a set of elements that can
be used for designing artefacts in a particular domain, where the
subsets stand for sets of function-oriented, principle-oriented and
structure-oriented elements, respectively. Examples of individual
types of elements include, e.g. ‘electricity supply’ as a functional
element, ‘ transformation of solar energy using photoelectric effect’
as a (physical) principle, and finally ‘solar panel cell’ or ‘battery’
as structural elements. Generally, elements may consist of simpler
elements; thus forming complex hierarchy. Whether we use higher-
or lower-level elements depends on how deeply we want to im-
merse in the design of an artefact. In other words, the level of speci-
ficity is influenced by designer’s aims and problem requirements.

Further, let us introduce � = { � i} as a set of possible relations
(connections) among the elements, where � i may be a constructional
relation (� i ⊂ � S × 	 S [×…]), an elementary function directly asso-
ciated with a particular structure (
 i ⊂ � S × � F), a domain principle
(
 i ⊂ � P × � F), or most usually a combination of all three.�

 = { � i} = � X ∪ � H will be a set of requirements that are set on
the artefact to be designed. As mentioned at the beginning, require-
ments may be possibly incomplete, therefore we will talk formally
about explicitly given requirements (� X) and hidden requirements
that must be first uncovered to assess their satisfaction (� H). How
the hidden requirements may be uncovered and made explicit is a
topic of a separate section.

Let us also define � = � M ∪ � C as a domain theory comprising
of two subsets – a set of ‘theoretically achievable’ models and a set
of previously solved cases, respectively. The difference between
these two subsets will be highlighted in the following sections.

3.2 Model-based design knowledge

In this section I discuss the roles of knowledge models for design,
which must be distinguished from a model of design process as
shown in Conclusion. Many researchers see model for design as a
kind of ‘prototypic models of design solutions’ [14, 20] that need to
be ‘ filled in’ in order to derive solution to a specific problem. I
would like to present the term ‘model’ purely as an abstract repre-
sentation of various elements and relations among them on multiple
knowledge levels that together form rather complex ‘meshes’ con-
necting functions, principles and structures. Unlike other ap-
proaches, this understanding does not demand existence of ‘rules’
prescribing when a particular model can be applied. The proposed
approach is opportunistic rather than prescriptive.

To understand the difference of such an interpretation from other
similar works, I will refer back to the set of explicitly articulated
requirements (� X) that are typically expressed in terms of desired
functions the artefact should deliver [16]. Since there are no rules
for the activation of a particular model, the relevance of certain part
of domain theory depends on the current context in design. ‘Con-
text’ � = � X ∪ � = { � i

X, � } is determined by all explicitly set re-
quirements (� X) and current assumptions () that needs to be
confirmed or rejected in course of design (see also section 4.2).

In other words, a set of relevant models and potential solutions
(! G ⊂ " M) is retrieved from the domain theory # M = { $ iM ⊂ % S ×
× & P × ' F} so that available functional elements from (M are com-
pared against and associated with those that are desired for a final
artefact ()) . If retrieval yields a non-empty set * G, we say that + G is
an interpretation of context , in domain theory - M.

3.3 Case-based design knowledge

Knowledge of theoretical models as defined in the previous section
is unfortunately, not suff icient if our aim is to support design in a
way that would be similar to what experienced designers do. As
several studies of design [5, 6, 10] point out, designers in practice
often re-use their previous experience when they attempt to see a
new problem in a familiar framework. Previous experience may
take form of ‘design cases’ that can be indexed according to multi-
ple criteria [12, 20], retrieved and adapted to the current ‘case’. A
set of known cases is defined as . C = { / iC ⊂ 0 i

S
 × 1 i

P × 2 i
F

 × 3 i |4
i
F ⇔ 5 i}, where 6 i is a refined set of requirements on the arte-

fact designed in scope of case 7 iC.
A case differs from a model in several conceptual facets. First, a

single case 8 iC may contain one or more models 9 iM that were already
interpreted in the context of requirements associated with case : iC.
In other words, ‘models’ are interpretation-free and elements from a

72

domain theory can be combined in any way that is allowed by do-
main theory through the introduction of new assumptions. On the
contrary, elements and relations making up a ‘case’ are bound by a
set of requirements that specifies the design task for that particular
case, and no further assumptions are needed to be uncovered in that
task. However, the task and its requirements may be re-formulated
to suit the needs of the current problem and new assumptions may
be added to extend the context of the current problem.

Adaptation of a retrieved case for the current problem is a critical
operation in all case-based approaches [15]. We believe that a prop-
erly structured and indexed domain theory may be helpful in this
effort. As mentioned above, domain theory is hierarchically struc-
tured; therefore it seems to be beneficial to use it (in addition to the
description of different elements) also for the discovery and appre-
ciation of similarities between conceptually different elements.
Eventually we should be able to map elements and relations from a
previous case onto the current (only partially described) problem.

3.4 Representation of design knowledge

Support for design process in its early phases needs a mechanism
for knowledge clarification. A mechanism that is flexible, describes
design elements on conceptually different levels, suggests possible
relations and associations between elements, and finally, suits both
parties involved in the design (humans and computers). One such
mechanism has the form of knowledge models [9] (KM) that are
built using entities known as common ontologies [21, 22]. Ontology
is an explicit specification of conceptualisation; also it is a repre-
sentation vocabulary specialised to a domain or subject matter. On-
tologies help to clarify structure of domain knowledge and provide
means for knowledge communication, sharing, re-use, and transfer
among agents using different internal representations and methods.
Ontology is inherently hierarchical entity, which makes it a very
useful means for the representation of complex knowledge; such as
characterises e.g. design.

To sum up, ontologies can be used to represent different types of
design knowledge. These may be understood as multiple dimen-
sions according to which knowledge may be classified so as to as-
sist in the exploration of complex design-related KB:
(1) Ontology for domain knowledge consists of common and basic

terms used for the representation of requirements and solutions
in a particular domain; it includes theoretical foundations of a
domain and relations among elements that can be used in that
domain. It is more static compared to other dimensions, i.e. it
changes less frequently than design knowledge.

(2) Ontology for knowledge indexing maintains an unambiguous
structure in KB and relates domain elements through generic
reference ontologies. It is crucial for the efficient retrieval of
cases related to current design problem, as well as for the rea-
soning by analogy with retrieved cases. Our approach assumes
that initial requirements on a designed artefact are functional
and uses knowledge about functional elements in a particular
domain as index to explore the principles and structures through
which the desired functions may be attained.

(3) Ontology describing design tasks and cases reflects good prac-
tices and experience gained when solving problems in the past.
It describes ways how similar problems were approached in the
past and includes design guidelines, successful designs from the
past, various justifications and explanations. This knowledge is
used to manipulate domain knowledge and is subject to frequent
changes and extensions, as new methods are proved useful.

4. CO-EVOLUTION IN DESIGN

In this section I will present some implications of the theoretical
proposal made in the previous sections with an emphasis on uncov-
ering or explication of hidden requirements. This hidden subset of

all requirements set on the artefact plays an important role in the
exploratory design. To some extent it is even possible to say that
hidden requirements discovered during design is what makes all the
difference between routine and innovative designs. Further sections
attempt to formulate an operational framework that supporting the
co-evolution and discovery of hidden requirements and solutions.

4.1 Discovery and development of a solution

As mentioned in section 3.1, a solution to a design problem is a
combination of structural elements, which is able to deliver desired
functions through identified domain principles. We may formally
define solution as a relation between two entities – a combination of
elements and current formulation of a problem. However, before
doing this, we have to formally introduce problem formulation ; i

as a union of the set of all requirements and the set of all assump-
tions; i.e. < i = = i ∪ > i. Combination ? i ∈ @ satisfying problem
formulation A i is a solution when together with knowledge from
domain theory B satisfies all current requirements and assumptions:

solution(C i, D i) ↔ (E i ∪ F G i) ∧ (H i ∪ I J i) Eq. 1

In other words, certain combination of domain elements may be
considered as a solution in a particular iterative step only if it can be
meaningfully interpreted in the current context of a given problem.
Such a definition of the solution may seem straightforward at first.
However when we take into account that K = L X ∪ M H, we see
that to be able to decide whether a combination N is an actual solu-
tion we must uncover yet hidden requirements O H.

Next, the process of solution discovery using domain theory will
be formally introduced. Let us begin with the identification of ‘ab-
solutely relevant’ functional elements, i.e. those that are directly
mentioned as explicit requirements and denote this subset as P 0.Q

 0 = R X ∩ S F = { T F | U F∈ V F ∧ used_in(W F, X X)} Eq. 2

Set Y 0 can be extended so that it would contain also other func-
tional elements that may be somehow related to those explicitly
mentioned. Such a set Z may be named a set of ‘not absolutely
irrelevant’ elements. It is this particular extension that plays signifi-
cant role in design in a sense that it makes designers aware of other
‘similar’ elements that may have been forgotten but have some
relationship with the current problem. Formally:

[
 = { \ F |] F∈ ^ F ∧ _ F∈ ` ∨ is_assumption(a F) ∨

(∃ b p
F∈ c | used_in(d p

F, e X) ∧ similar(f F, g p
F)}

Eq. 3

similar(h F, i p
F) ← ∃ 〈 j F, k p

F〉 ⊂ l P × m F | n F≠ o p
F

∧ (used_in(p F, q) ∧ used_in(r p
F, s)

∨ subclass(t F, u p
F) ∨ superclass(v F, w p

F))
Eq. 4

Now, let us call the elements contained in set x as ‘pattern’ to
appreciate the fact that they may be used for the retrieval of relevant
models from y M or relevant cases from z C. Case solutions or mod-
els that are applicable to the current problem can be retrieved from
the available knowledge repository using a technique, in which a
pattern will be sought among the requirements and functional ele-
ments of a particular case (or model). Once the pattern is found, it is
possible to retrieve also principles and structures realising that par-
ticular functionality – either from theory { M or case repository | C.

When a retrieved case is to be used as a ‘mould’ for the current
problem, it must re-formulated using ‘ the vocabulary’ of the current
problem. Case adaptation is often a complex task and a lot of work
is devoted to this single operation. It is not my intention to discuss
this more in-depth here; only briefly – to find possible mappings
between elements already known in the current problem and ele-
ments known in a retrieved case can be found using hierarchical
(ontological) knowledge of domain elements and relations.

73

Anyway, the result of such retrieval is a set of relevant solutions,
or rather relevant combinations of elements that satisfy explicit
requirements of the current problem. Whether these combinations
will keep their feature of a problem solution in a long run, depends
on what new requirements and assumptions will be added to the
current problem formulation. A new assumption may render cur-
rently sound combinations of elements invalid and trigger the proc-
ess of perspective shift and consequently refine both, the
formulation of and solution to the problem.

4.2 Discovery of hidden requirements

It seems appropriate to assume that there exist several conceptually
different types of hidden requirements, such as for instance:
(i) ‘deducible domain requirements’… these can be derived using

knowledge of known elements within a particular domain, espe-
cially knowledge of domain principles (e.g. if law of conserva-
tion of energy holds and electricity or sunlight are different
forms of energies, it follows that energy of sunlight must be
preserved and possibly transformed into different kind of en-
ergy – electricity);

(ii) ‘common truths’… these cover commonly accepted facts that
are usually not proved or derivable from domain knowledge
(e.g. unless specified otherwise we design artefacts for condi-
tions valid on the Earth);

(iii) ‘statistical requirements’… these can be derived through in-
ductive reasoning and generalisation from previous cases, when
a requirement is accepted and justified by reference to an exist-
ing case without further proofs (e.g. a typical requirement on a
satellite is to make its weight as low as possible);

(iv) ‘ reflective requirements’… initially expressed as assumptions
that must be ‘proved’ through development of a solution before
it can be ‘promoted’ among uncovered requirements relevant to
the current problem (e.g. suppose, we want to use solar panel as
a power supply for a satellite, then according to domain knowl-
edge we must first ensure there is enough sunlight available; we
are also aware that we arrived at this additional requirement
through backward causal reasoning)

The following formulae describe the mentioned conceptual dif-
ferences formally using the same notation as in previous sections:

(i) } X ∪ ~ M ∪ � � H Eq. 5

(ii) (� X ∪) � M ∪ � C � H Eq. 6

(iii) � X ∪ � C � H Eq. 7

(iv)

�
X ∪ � M ∪ � ∪ � � H�

 ∪ �
� Eq. 8

As already mentioned above, the last type describes formally the
interplay between and co-evolution of explicit and hidden require-
ments on one side and solutions satisfying these requirements. As a
new requirement is uncovered or an assumption is proved, they can
be included in the set � X, which may have some impact on the
retrieval of related cases or models from domain knowledge. A new
case, model or mapping may have impact on the identification of
some new assumptions, which in their turn may uncover another
hidden requirement. Thus we are provided with an abstract recur-
sive description of processes that may be observed in design and
that are often referred to as ‘solution talkback’ [5, 11].

5. ILLUSTRATIVE EXAMPLE

Let us assume that the ‘supported stage’ of design begins with a
non-empty set of initial design requirements (e.g. find a device sup-
plying electricity to a satellite). How the theoretical framework may
be applied is shown below using an OCML-like notation.

5.1 Not-irrelevant functional elements

The input is a set of initial requirements; particularly important are
those about functionality of the artefact. Their formulation may
consist of the function identifier, substance identifiers and concepts
delivering that functionality. Assume that domain knowledge base
contains information about (not irrelevant) functions and other ele-
ments as shown below:

(Substance-Concept Energy ())

(Substance-Concept Electrical-energy (Energy)
(applicable-to-parameters

:has-domain ‘(electrical electromagnetic)
:equals-to ‘(electricity)))

…

(Function-Concept Energy-supply ()
(applicable-to-parameters

:has-function ‘(supply-energy)
:has-substances ‘(energy)
:relates-to-concepts ‘(generator load))))

…

Computer-based KBDSS may take the initial requirement for-
mulated by the designer and apply it to the available indexing KB
containing known substances and functions. Further, let us assume
that in our example there is no direct association in KB containing
the facts mentioned in our requirement. However, a simple reason-
ing in the ontology reveals that terms not irrelevant to ‘electric-

ity ’ include ‘electrical-energy ’ and its parent concept
‘energy ’. Consequently, the KBDSS can associate concepts ‘en-

ergy ’ and ‘electrical-energy ’, and suggest two functions as
possibly relevant: ‘supply-energy ’ and ‘supply-electrical-

energy ’. Once the designer accepts this suggestion, KBDSS may
retrieves other related elements (e.g. structural element ‘genera-

tor ’ or domain principle ‘supply-electrical-energy ’).

5.2 Development of potential ‘m odels’ of a solution

Obviously, the list of retrieved elements is not exhaustive because it
contains only those elements that are known as theoretical domain
knowledge or were used in the previous design cases. Anyway, the
list of relevant simpler elements may later trigger the introduction
of new elements as design progresses. The next step is to investigate
how the desired functions may be realised. Assume, there are fol-
lowing facts in the domain KB:

(Model-Concept Electrical-model ()
(applicable-to-parameters

:has-structure
(:connections ‘()
 :container ‘(electrical))

:has-substance ‘(electricity)
:described-by-quantities

‘(power voltage current)))

(Model-Concept Battery (Electrical-model)
(applicable-to-parameters

:has-structure (:connections ‘(term-A term-B))
:has-primary-functions

‘(supply-electrical-energy)
:has-secondary-functions ‘(charge discharge)
:described-by-quantities ‘(capacity)))

Similarly as substances, these structural elements are ordered in
an ontological hierarchy. For instance, there is a concept of ‘bat-

tery ’ derived from a generic ‘electrical-model ’. Simple rea-
soning through these elements reveals other related elements; such
as two connections called ‘ term-A ’ and ‘ term-B ’, an ‘electri-

cal ’ container containing the substance ‘electricity ’, and pos-
sibly physical quantities typically used in this context. What is their
possible role in the current problem? That can be shown when an

74

explanation of desired functions is retrieved from the stored domain
knowledge; e.g. in a form of domain principle:

(Principle-Concept Supply-electrical-energy
(applicable-to-parameters

:has-structure
(:connections ‘(term-A term-B)
 :container ‘(electrical))

:has-substance ‘(electricity)
:described-by-quantities

‘(power voltage current capacity)
:defined-as

((pump ‘electricity (BETWEEN ‘term-A ‘term-
B) (THROUGH ‘electrical))
(allow ‘electricity (BETWEEN ‘term-A ‘term-
B) (THROUGH ‘electrical) :voltage (propor-
tional ‘capacity)))))

…

5.3 Explication of hidden requirements

Device ‘battery ’ as identified in section 5.2 satisfies the desired
requirement through the application of domain principle ‘supply-

electrical-energy ’. Let us suppose that the designer decides to
pursue this alternative further. Other relevant elements, concepts
and descriptions may be retrieved from the domain knowledge base
that are connected with already identified elements. This corre-
sponds to the extension of set � 0 with other not irrelevant elements
to make up set � . For instance, we may learn about physical quan-
tities and functional elements like ‘capacity ’, their typical features
and principles governing their behaviours, such as ‘electricity-

charge-discharge ’ or ‘ time-dependence ’, etc.
The discovery of these elements and their relations may be a

trigger that makes the designer aware of possible shortcomings of
the current combination of elements. It may give also some hints
how to overcome the deficiency, or the fix may be spotted and in-
troduced directly by the designer. Anyway, the last example shows
the form how current combination of elements may look like and
how it may be used to show possible implications and eventually
extend the set of initial design requirements (see section 5.1).

(delivers-func ‘Battery ‘Supply-electrical-energy
(applicable-to-parameters

(:I (has-quantity ‘Battery ‘capacity)
 :J (by-domain-theory ‘reference-1)
(:I (has-property ‘capacity ‘time-dependent)

 :J (by-domain-theory ‘reference-2)
(:I (has-behaviour ‘capacity ‘decrease-in-time)

 :J (by-domain-theory ‘reference-3) …))

Implications (denoted by :I) introduce new facts that are related
to known elements; implications are justified (:J) by referring to
available domain theory (� M or � C). This is one way how implica-
tions uncover hidden knowledge, which may eventually lead to the
formulation of new requirements or modification of existing ones.

6. FURTHER RESEARCH
The aim of this paper was to present a theoretical framework that
can be eventually used to talk about and perhaps better understand
processes underlying such complex and typically human activity as
design. The framework represents a work in progress that was done
mainly by analysing several existing approaches in the research
community. Therefore, the next major step in my research is to
perform several pilot studies, in which the claims formalised in this
paper will be rigorously validated.

The setting of our experiments will involve two designers from
practice and one or two ‘advisers’ providing support for the partici-
pants. These advisers take the role of a knowledge-based system in
the testing phase. However, to restrict the undesired interactions

between designers and support articulation of knowledge-intensive
processes, all participants will use a tailored user interface that was
built to accommodate the proposed framework, except the actual
presence of computer-based knowledge base.

Design tasks given to the designers will be from the domain of
design of controllers for complex technological processes, and be-
long to the category of non-routine tasks. However, it is possible
that approaches the designers undertake in their work will be even-
tually perceived by the designers as (personally) innovative. The
articipants will be asked to record all their decisions, assumptions
and justifications of various decision steps they make during design.
Expert advisers are allowed to give some basic hints that must be
always justified by a reference to shared domain knowledge; advis-
ers may also require similar justifications from the designers ‘to
prove’ that a particular decision was not entirely accidental though
it may be difficult to articulate. Features to be observed include
among others:
• designers working on two parallel levels (refining problem

requirements and developing a solution);
• designers’ attention being shifted between these two concep-

tual levels of design problem;
• discovery and inclusion of new knowledge thus extending their

knowledge about the current problem as well as knowledge
about design and domain.

The ultimate question to be answered by the experiment is whether
the reflective framework is a feasible approximation of design and
what are major (dis-)advantages.

7. CONCLUDING REMARKS

This paper presented a theoretical framework for the description of
design processes that may be used for the construction of KBDSS.
The framework may be perceived as a formal model of design with
respect to some typical processes underlying otherwise complex act
of designing an artefact. Design is seen as a problem of require-
ments explication through simultaneous development of design
solutions and reflection on them and also on processes through
which these solutions were attained. The reflection from the space
of solutions to the space of requirements may be eventually sup-
ported by a computer-based tool, which reasons about the models
and cases from the domain knowledge based on incomplete initial
requirements. Figure 1 describes the entire framework in a graphical
form, showing possible operations how knowledge may be ma-
nipulated at various stages of design process.

Figure 1. Formal ‘model’ of reflective design.

The proposed framework is able to address several important
features of design process [23]. It is inherently iterative and recur-
sive. Due to recursion it is possible to observe certain degree of
reflection directly in the formulae describing design activities. As
shown in Figure 1, reflection in design may include both, reflection

75

on the problem formulation and corresponding solution, and reflec-
tion on knowledge applied to derive a particular solution. Conse-
quently, both problem formulation and domain knowledge are
subject to change as a result of ‘reflection’.

Further, the initial ambiguity of design problems is appreciated
and addressed in a way, where suitable models and cases are not
determined by a strict prescriptive rule. Contrary the approach is
rather opportunistic; i.e. that relevance of domain knowledge de-
pends on the current context of design problem formulation. Also, it
means that the same element may acquire different interpretation
based on the context of requirements in which it is used. Contextual
dependence should allow much larger flexibility compared to those
approaches where an element is interpreted equally in all different
situations. This dependence is also related to the exploratory nature
[1] and ill structure [2] of design, because the design space is not
completely known before the design process begins. As mentioned
at the beginning it is built up ‘on-the-fly’.

ACKNOWLEDGEMENTS

I acknowledge the contribution of Zdenek Zdrahal, John Domingue
as well as all reviewers who helped to clarify some interesting
points in my PhD. research and/or participated in numerous discus-
sions about possible formalisations of design. The paper was also
supported by the Esprit research project Enrich (No. 29015).

REFERENCES
[1] T. Smithers, et al., Design as intelligent behaviour: an AI in design

research programme. AI in Engineering, 5(2): p.78-109, (1990).
[2] H.A. Simon, The structure of ill-structured problems. Artificial Intel-

ligence, 4: p.181-201, (1973).
[3] K.J. MacCallum, Does Intelligent CAD exist? Artifi cial Intelligence

in Engineering, 5(2): p.55-64, (1990).
[4] M. Tang, A knowledge-based architecture for intelligent design sup-

port. Knowledge Engineering Review, 12(4): p.387-406, (1997).
[5] D.A. Schön, Reflective Practitioner – How professionals think in

action. 1983, USA: Basic Books, Inc.
[6] L. Candy and E. Edmonds, Creative design of the Lotus bicycle:

implications for knowledge support systems research. Design Studies,
17: p.71-90, (1996).

[7] S. Nidamarthi, A. Chakrabarti & T.P. Bligh. The significance of co-
evolving requirements and solutions in the design process. in 11th
ICED. Finland. (1997).

[8] M. Dzbor. Intelligent Support to Problem Formalisation in Design. in
3rd IEEE Conf. on Intelligent Engineering Systems (INES'99). Slova-
kia. p.279-284, (1999).

[9] A. Newell, The knowledge level. Artificial Intelligence, 18(1):
p.87-127, (1982).

[10] N. Cross, Descriptive models of creative design: application to an
example. Design Studies, 18: p.427-440, (1997).

[11] K. Nakakoji, et al., From critiquing to representational talkback:
Computer support for revealing features in design. Knowledge-Based
Systems, 11: p.457-468, (1998).

[12] S. Bhatta, A. Goel & S. Prabhakar. Innovation in analogical design:
A model-based approach. in 3rd Intl. Conference on AI in Design
(AID'94). Switzerland. p.55-74, (1994).

[13] F.M.T. Brazier, et al., Modelling an elevator design task in DESIRE:
the VT example. Int. Journal of Human-Computer Studies, 44(3):
p.469-520, (1996).

[14] J.S. Gero, Design prototypes: A knowledge representation schema for
design. AI Magazine, 11(4): p.26-36, (1990).

[15] I. Watson & S. Perera, Case-based design: A review and analysis of
building design applications. Artifi cial Intelligence for Engineering,
Design, Analysis and Manufacturing, 11: p.59-87, (1997).

[16] B. Chandrasekaran, A. Goel & Y. Iwasaki, Functional Representation
as Design Rationale. IEEE Computer, 26(1): p.48-56, (1993).

[17] T. Bylander & B. Chandrasekaran. Understanding Behavior Using
Consolidation. in 9th IJCAI, California. p.450-454, (1985).

[18] Y. Iwasaki, et al. How Things Are Intended to Work: Capturing
Functional Knowledge in Device Design. IJCAI. (1993).

[19] L. Qian & J.S. Gero, Function-Behaviour-Structure Paths and Their
Role in Analogy-Based Design. Artifi cial Intelligence for Engineer-
ing, Design, Analysis and Manufacturing, 10: 289-312, (1996).

[20] A. Gomez de Silva Garza & M.L. Maher, Design by Interactive Ex-
ploration Using Memory-Based Techniques. Knowledge-Based Sys-
tems, 9(1), (1996).

[21] B. Chandrasekaran, J.R. Josephson & V.R. Benjamins, What Are
Ontologies, and Why Do We Need Them. IEEE Intelligent Systems &
their applications, 14(1): p.20-26, (1999).

[22] T.R. Gruber, A Translation approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2): p.199-221, (1993).

[23] N. Cross, Natural intelligence in design. Design Studies, 20(1):
p.25-39, (1999).

[24] B.J. Wielinga, J.M. Akkermans & A.T. Schreiber, A Formal Analysis
of Parametric Design Problem Solving. In 9th Banff Knowledge Ac-
quisition Workshop, Canada, (1995).

[25] M.E. Balazs, Design Simplifi cation by Analogical Reasoning. PhD.
dissertation, Worcester Polytechnic Institute, USA. (1999).

