
44

Using Search in Knowledge-Based Engineering
Andreas Junghanns1 and Rüdiger Klein 2

1 Freightliner Corporation, Enterprise Product Documentation,

Portland/Oregon, USA, AndreasJunghanns@freightliner.com
2 Daimler-Chrysler AG, Research and Technology Department,

Berlin, Germany, Ruediger.Klein@daimlerchrysler.com

Abstract. Search has been instrumental in many well known
successes of AI problem solving. These successes are currently
mostly restricted to well structured domains like games or
scheduling. The resulting search spaces can be searched using
special purpose search heuristics and strategies. In this position
paper we formulate the problems and challenges encountered
when these successes are to be extended to more complex
domains. Engineering provides a good test bed for these kinds
of efforts: though quite complex and diverse, engineering
applications have a clear structure and are (generally) well
understood. Many different problem solving methods are
typically used in combination. The resulting search spaces tend
to be huge, they are typically dynamic, and include continuous
as well as discrete dimensions. We analyze in which way
current search techniques can be extended and modified in
order to be applicable under these circumstances.

1 INTRODUCTION
Knowledge about real world domains and about problem
solving in such domains tends to be quite complex. Building up
knowledge bases and problem solvers in such domains will
easily result in huge efforts - especially if we want to overcome
the restricted scope and the isolation of current knowledge-
based engineering (KBS). Consequently, reusing domain
knowledge as well as problem solving methods is an essential
issue towards a broader and more efficient application of
knowledge-based technology. For this purpose, we have to find
ways allowing us to formulate the domain knowledge and to
describe problem solving methods and their relation to the
domain knowledge in an application-independent way.

Search, as one of the fundamental artificial intelligence (AI)
techniques, was instrumental in many, if not most, well known
successes of AI problem solving. These successes are currently
mostly restricted to well structured and easily comprehensible
domains like games or scheduling. They use special-purpose
solvers with “built-in” knowledge about the search space to
achieve high performance. This knowledge is available because
the search spaces are well structured, known beforehand and
analyzed by humans, and the objective of the problem solving
process is well defined and fixed (definitions of goals or
function to be optimized).

Knowledge-Based Engineering (KBE) offers new challenges
to AI, because its domain knowledge has a considerable
diversity, search spaces are huge, and search objectives are
changing constantly. In fact, KBE is most often iterating
through synthesis and analysis steps with the goal of modifying
the problem definition, and thus both, the search spaces and
objectives. Engineering applications tend to be relatively well
defined with more or less clear rules, constraints, and criteria -
at least if compared with domains like common sense reasoning
or natural language understanding.

This paper outlines the resulting challenges for adapting and
extending traditional AI search methods to the applications in
KBE. These challenges consist mainly in finding a general
enough framework for problem and knowledge descriptions
that still allows for efficient treatment by a generic problem
solving method, here search. These and other problems are
outlined in this paper and possible plans of attack are proposed.

This paper is organized as follows: In Chapter 2 we outline
how human problem solving can achieve its power and
efficiency. In Chapter 3, we circumscribe what this means to
knowledge-based technologies, with special emphasis on
reusability of domain knowledge and problem solving methods.
Chapter 4 discusses special properties of the knowledge in
engineering. Chapter 5 characterizes traditional problem
solving methods in the engineering domains. Chapter 6 surveys
knowledge modeling and reasoning for knowledge-based
engineering. Chapter 7 discusses strengths and weaknesses of
traditional search methods, and Chapter 8 describes the
consequences and challenges, as well as possible solutions
when traditional search methods are to be used for engineering
problems. Chapter 9 contains a real world example as an
illustration: a truck chassis design problem. We conclude in
Chapter 10.

2 HUMAN PROBLEM SOLVING IN
GENERAL

Where does human expertise come from (in any area)? What is
the secret of human intelligence, and what can it tell us about
how to improve current methods? A hypothetical answer
focussing on our topic “search in knowledge-based
engineering” may be described as follows:

45

Common sense and domain-specific knowledge allows us to
(re-)formulate a given problem in a way that it can be solved.
Problem descriptions are completed using “common sense” or
domain knowledge including assumptions and other kinds of
meta knowledge:
A) the relevant aspects are collected and analyzed in their

interdependencies,
B) the irrelevant points are dropped; and
C) disambiguities of any kind (anaphors, metaphors, or

homonyms in natural text, etc.) are resolved.
This kind of problem solving is done by humans quite often
unconsciously and apparently without any effort. Nevertheless,
it can be the result of a complex reasoning process. The
knowledge analysis process may include meta-knowledge and
meta-level reasoning. This allows us to have a view on our own
knowledge and on our problem solving process: how precisely
do we know what we belief to know; how important is it to
know this precisely; how are the dependencies between belief
A and belief B; etc.

Human pattern-matching capabilities allow us to deal with
very complex information very effectively and efficiently.
Heuristic knowledge results from problem analysis and is used
efficiently to control the problem solving process. Humans
seem to be able to detect the “natural fault-lines” in problems to
break them up into sub-problems. These are the “weak”
dependency links among clusters of objects and objectives and
their relations. Identifying clusters allows humans to try and
identify fatal conflicts early on where they are most likely,
without wasting valuable time.

If there are no patterns available human problem solving
“falls back” into a kind of puzzling and search. However, this
search is not just goal oriented, but remains alert to the possible
detection of any kind of (meta-)knowledge that might help to
solve the problem more efficiently (see A).

3 KNOWLEDGE MODELING AND
KNOWLEDGE-BASED PROBLEM
SOLVING

If we adopt this view on intelligent (human) problem solving,
what are the consequences for effective and efficient problem
solving by knowledge-based systems? In the following, we will
concentrate on three aspects: Knowledge modeling, problem
solving methods (i.e., search), and control.

3.1 Knowledge Modeling
Today, applications of knowledge-based technologies are based
on special purpose knowledge models. Typically, knowledge
engineers (in cooperation with domain experts) go through a
knowledge acquisition process. They analyze all relevant
aspects in the domain by hand and formulate a complete model
of the necessary generic and case-specific knowledge. Then, the
knowledge represented in this way will be “mapped” onto the
selected problem solving methods which can use it directly.
The necessary control information is coded quite often
implicitly (for instance, as sequence information), or explicitly
as probabilities, weights, etc. This approach works well in
relatively well structured domains with manageable (decision)

complexities [1]. Typical examples are game playing,
scheduling, symptom-based or model-based technical
diagnosis, and (some sub-areas of) configuration. Here, the
knowledge engineer can easily identify the relevant “pieces of
knowledge”, and represent them in a way which corresponds to
the problem solving techniques to be applied.

What are the limitations of this approach? The knowledge
modeling process itself as well as the usage of the problem
solving methods is based on assumptions. Normally, these
assumptions are left implicit - at best the knowledge engineer
will keep them in mind. The knowledge engineer is responsible
for that the knowledge modeling process and the usage of the
modeled knowledge in the problem solving methods will be
done in a way which respects these assumptions. Of course, this
provides limitations to the reusability of the modeled
knowledge as well as of the applied problem solving methods.

Another limiting point to be mentioned is the scope of the
modeled knowledge. If the knowledge is modeled with a
concrete application in mind one can focus the modeling on the
relevant aspects in this application. Much more complicated is
knowledge modeling in general - without a specific application.
Then one has to consider all possible aspects, all
interdependencies of this knowledge with other “pieces” of
knowledge, and all possible usage of this knowledge - including
the applied assumptions. The advantage of this approach is its
result: generic, application-independent knowledge. This
knowledge can be reused in many different applications, by
different problem solving methods. Currently, it is an open
research issue if this is even possible at all in its full extent
[11,6].

The price to pay for the improved generality of the modeled
knowledge is the need for additional knowledge processing.
Given a concrete problem description in terms of generic
knowledge, this problem description has to be “pre-processed”
using the generic knowledge. All relevant issues have to be
identified - and all irrelevant aspects have to stripped away.
What currently is done by a human knowledge engineer will
then be part of the automatic problem solving process: to re-
formulate the problem in a way that it can be solved more
efficiently by the selected problem solving method. This may
include complex reasoning activities: common sense, default,
context reasoning, etc.

3.2 Problem Solving Methods
As outlined in Chapter 2, the power of human problem solving
depends (among other things) on our capability to analyze and
to structure a problem into smaller, only weakly coupled sub-
problems. In knowledge modeling, tasks and task structures are
used to describe this process (a la CommonKADS [12]). The
resulting task structure reflects the main properties of the search
space.

In knowledge-based systems, problem solving is done (to a
large extent) by searching. From this viewpoint, a problem is
sufficiently defined when a description of the world is given
and the goal criteria are sufficiently well defined. Traditionally,
worlds are implicitly defined as states of the world and rules
about how to transform one state into another. Goals are states
of the world for which a certain condition is true. Such a

46

problem description is sufficient to find a solution, if one exists.
However, without further information, a solver (human or
machine) would have to resolve to simply and blindly
traversing the search space until a solution is encountered. Of
course, this is not very efficient, and in many real world
problems simply intractable. For a more “intelligent” approach
to finding a solution, more information, i.e., domain and control
knowledge and an algorithm that uses this knowledge is
required to find solutions more efficiently than blind traversal.

Search in AI problem solving has two aspects:
First, the decomposition of a problem into (weakly coupled)

sub-problems implies that the overall solution is a composition
of the partial solutions. The sub-problems are only weakly
coupled - but they ARE coupled. Therefore, one has to arrange
the composed solution in a way that everything fits together.
Searching through the diverse alternatives accomplishes this,
because quite often it can not be seen in advance if the various
partial solutions are compatible.

The second search aspect comes into play as follows: Human
problem solving is done largely by a kind of pattern matching,
associative reasoning, and the like (take for example game
playing, natural language understanding, or vision). In AI, this
is currently “simulated” by search. In other words: human
problem solving can avoid search wherever the right pattern-
matching capabilities are available (or search is done here as
pattern matching).

Whereas the first point shows a striking similarity between
human intelligence and AI (what can be used in knowledge
modeling and search control), the second point results in an
essential difference between human problem solving and KBS.
E.g. computer chess uses rather different methods than human
chess players. It seems to be an interesting research issue
whether human-like pattern-matching capabilities can be gained
in KBS as kind of “compiled” results of search, possibly
somehow similar to the training phase of neural networks. But
with some of the successes that AI has produced recently we
are becoming increasingly aware of the fact that human
problem solving is often far from optimal, neither in methods,
nor in results achieved. Especially decomposition can lead to
globally sub-optimal solutions that are hard to recognize as
such. That leads to interesting problems.

3.3 Control of problem solving
The most well known successes in AI have heavily relied on
speed; fast traversal of the search space to compensate for poor
domain and control knowledge. Hard coding of the knowledge
into the search algorithm has produced application-dependent
programs with astonishing capabilities in many different
application domains such as games and scheduling. Some of
these programs, running on fast, even special-purpose,
hardware, are capable of visiting and evaluating billions of
states per second. An impressive array of general search
algorithms and search enhancements has been proposed that
boost the efficiency of these algorithms even further by many
orders of magnitude. The resulting overall performance is
surpassing even peak human performance convincingly in
domains generally admitted to require intelligence to solve.

However, hard coding knowledge into algorithms does not
allow for reuse of neither knowledge nor algorithms. And this
approach is only applicable in domains with well-defined and
clear structures and with fixed, well-defined objectives/goals. It
is not applicable to typical engineering problems.

4 KNOWLEDGE IN ENGINEERING

4.1 Diverse Knowledge Structures
One of the most fundamental obstacles to algorithmic treatment
of knowledge-based engineering applications is the vast
variability of the knowledge. The following list is by no means
exhaustive but serves to illustrate the diversity we have to deal
with:
1) Objects are grouped in classes, taxonomies and

instances to describe relationships of various kinds;
2) Relations among objects are given and attributes

describe properties of objects;
3) Different kinds of constraints have to be considered:

arithmetic and geometric ones – dealing with real
number domains, finite discrete domain constraints, and
various logical expressions;

4) Inheritance via class hierarchies and taxonomies can
supply default values; knowledge can be given for
different abstractions where the different levels of
abstractions are connected with relationships (part-of
etc.);

5) Different (static) knowledge categories have to be dealt
with: functions, structures, behaviors, states, constraints,
statistics etc. and their relationships;

6) Various dynamic (problem solving related) knowledge
categories exist: requirements, design descriptions,
unsolved sub-goals, conflicting decisions, ...

4.2 Engineering Problem Solving Is Highly
Dynamic

Whereas other application domains can rely on the problem
being fixed, engineering problem solving exhibits many
variables, constraints and values that are generated and changed
during problem solving. Not all relations and constraints are
known in advance: they are the result of intermediate analysis
steps during the problem solving process. Conflicts may occur
for which no solution can be found because there is no solution
(or because the incomplete problem solving method can’t find
any) and therefore those constraints involved in this conflict
will have to be withdrawn or relaxed (depending on their nature
and other aspects).

There are mainly two types of (engineering) problems w.r.t.
constraints:
1) The under-constrained ones: there is a lot of freedom

which has to be used in order to find a good or near-
optimal solution. Some of these optimality criteria can be
formulated as constraints; others as global parameters
(costs etc.) of the total solution which results in a
comparability of different solutions.

47

2) The over-constrained ones: there is no simple solution, and
one has to find those constraints which can best (with a
minimum of costs) be withdrawn or relaxed.

Just as documented in so many other domains, the hard
problems are in the middle of the two main types. In this region
it is hard to proof that no solution exists and also hard to find a
solution that can be found. Especially when engineers are trying
to push the limits of current technology, this is the kind of
problem they will attempt to find solutions for.

5 HUMAN PROBLEM SOLVING IN
ENGINEERING

These aspects are also relevant for human problem solving in
engineering. They are not easy to solve. Engineers developed
sophisticated techniques to deal with such complex tasks:

5.1 Human Engineers Structure the Entire
Problem Solving Process

From conceptual to detailed problem solving: A rough problem
description is iteratively developed into a more detailed
solution. This method tries to analyze the problem space to
understand in which way a sub-problem or its
solutions/conflicts are related to other sub-problems and their
solutions/conflicts. Only the main characteristics of the problem
and the main acting principles are considered. The restriction of
human problem solving capabilities to relatively simple
situations is an important reason for this approach. In detailed
design the principled solution obtained in the earlier design
phases are fully elaborated: more and more of the detailed
constraints are taken into account.

Hierarchical refinements: This approach attempts to first
solve the design problem on an abstract level, possibly with
some approximations. This will result in some boundary
conditions or requirements to the next lower abstraction level
(example: total car design -> power train design -> gear design
-> ...).

5.2 Humans Use Generic Knowledge as well as
Knowledge from Former Cases

Problems like similarity and retrieval still pose considerable
challenges to main-stream AI.

5.3 Priorities
Humans are able to discriminate (prioritize) between relevant
and less relevant (sub-) problems (sometimes with dramatic
mistakes!), and between problems which are easy and more
complicated to solve. A “feeling” for which (sub-) problems
might adversely interact is also helping to guide the problem
solver in her task. These forms of experience allow engineers to
develop problem solving strategies, such as “prove to be
impossible” or the opposite “prove to be possible”.

5.4 Analysis and Synthesis
Engineering problem solving switches between analysis phases
(or steps) and synthesis (real) problem solving steps. The latter
modifies the solution by adding new information to it. Analysis
results in new requirements (new sub-problems) and in control
knowledge about how to proceed with problem solving (which
sub-problem to attack next and in which way to attack it).
Especially analysis steps may rely again on domain and
common sense knowledge - thus providing an interaction
between problem solving (search) and knowledge modeling [9].

6 KNOWLEDGE MODELING AND
REASONING IN KNOWLEDGE-BASED
ENGINEERING

In Chapter 2 we outlined three typical aspects of human
intelligence. This scheme is also applicable to engineering
problem solving:
A) Engineering knowledge has to be used to (re-)formulate a

problem in such a way that it can be solved. Due to the
well-defined meaning of engineering knowledge this
seems to be simpler than in many other domains. The
problem will be formulated in a unique, consistent, and
complete manner.

B) Meta-knowledge is especially needed in order to analyze
the correlations between sub-problems, partial solutions,
alternatives, conflicts, etc. (as discussed above and in the
MOKA framework paper [9]). This seems to be less
demanding than in many common sense areas where
modal aspects like beliefs and probabilities have to be
taken into account.

C) Patterns as used by humans seem to be a problem in KBS
technology up to now. Pattern matching is an intrinsically
parallel process that does not lend itself well to our
sequential computing architectures and leads to high
computational costs. This is complicated by the fact that
exact matching is rarely called for, but similar patterns are
needed Å yet another problem that is not well understood.

The whole process may run in iterations on different abstraction
levels, due to inconsistencies between partial solutions, etc. The
interplay between synthesis and analysis which is typical for
engineering problem solving will also result in multiple
iterations between these three problem solving activities. Given
a (sub-) problem, human experts will typically only generate
one or a couple of solutions. Quite often, these solutions are
those which correspond best to their past experience (also
related to the famous problem of professional blindness). Only
if there is an explicit need or demand they will generate more
solutions. In many cases, there is no guarantee that all existing
solutions will be found.

In order to circumvent these and other problems and in their
own right, search techniques are applied in engineering
problem solving. With the right problem formulation (A) and
the meta-level capabilities (B) their usage has a realistic chance
of being successful (as outlined in Chapter 3).

48

7 TRADITIONAL SEARCH METHODS
AI text books traditionally depict search as a question of search
strategy: Given a certain problem, what is the best algorithm to
traverse the search space, e.g. depth vs. breadth first vs. A* vs.
Minimax/Alpha-Beta. However, this choice is often very easy
given a fixed search space (what do problem states look like
and how to change from one to the other) and its semantics
(what each state means and what a goal state is). For example,
it is trivial to chose between Minimax-like algorithms and say
depth/breadth-first-type algorithms knowing that the semantics
of the search space is an AND/OR graph. The availability of
domain knowledge allows the use A*-like algorithms, without
such knowledge blind searches have to be used. The goal
distribution and search-space size will lead to a simple decision
between depth-first and breadth-first algorithms. Of course, the
multitude of sub-variants makes that choice somewhat more
complicated than described here, but the important point is that
given a fixed search space, these choices are relatively easy.

What makes high-performance hard to accomplish is the
difficulty to find and exploit more than the initially obvious
search-space properties. These properties follow from domain
knowledge because they are only applicable to specific
problems, trees, or subtrees or even just individual nodes. Most
of the effort in developing high-performance AI-search
applications is devoted to exactly this part of the problem
solving process: gathering domain knowledge. This effort is
well spent because the search-space properties and objective
remain relatively constant from execution to execution of the
problem solver.

During the last 2 decades domain-independent enhancements
to generic search algorithms have been proposed in the
literature that can boost performance by several orders of
magnitude [5,8,10,…]. Recently, some efforts have been made
to describe these enhancements in terms of search-space
properties required to allow a specific search enhancement to
result in a significant performance gain. For example,
transposition tables are beneficial if the search space is
represented as a graph, but the search algorithm assumes a tree.
Transposition tables as a generic search enhancement, can be
used in any of these cases and often result in speedups of
several orders of magnitude because the search avoids
revisiting large parts of the search space.

Understanding the value of a search enhancement as a
function of search-space properties and search algorithm leads
eventually to the definition of enabler functions. The enabler
function of an enhancement contains the meta-knowledge about
the search-space properties required for the enhancement to
work, possibly even adjusting it by supplying it with
performance-critical parameters, and a way to determine, if
these properties are present. However, this is still a relatively
new approach that has to prove its value beyond isolated
application domains.

Domain knowledge can have two distinct, but related uses in
search: state (or solution) evaluation and search strategy (often
called “search control”). State evaluation is often used to derive
search strategy. When doing so, assumptions are made about
the search space. A classic example are direct search methods
[7]: by evaluating the “neighbors” of a current state in the

search space, the search “moves” the new state towards a local
optimum.

Two underlying assumptions about the search space are
made:

First, that there is a monotonic increase of the values between
the previous current state and the new current state. In discrete
domains this can often be guaranteed by visiting every state, at
the expense of many states being visited. In continuous
domains, a maximum step size should be chosen that minimizes
the risk of violating this assumption, to improve efficiency.
Second, moving in the direction indicated by any measure
assumes that this measure is an overall trustworthy indicator as
to where in the search space a global optimum can be found.
Methods like simulated annealing are due to the fact that this
assumption is not generally true because of the existence of
local optima.

Usually, search spaces are too large to be traversed
exhaustively. The overall performance of search depends on
simply visiting the most relevant parts of the search space
within the allotted time. In many domains, such as computer
chess, hundreds of thousands of nodes are visited every second
to ensure that nothing relevant has been missed. Often certain
pieces of knowledge are consciously removed from the
programs because the cost of computing it slows the program
down by too much resulting in an overall performance loss.
This tradeoff shows that quality and cost of knowledge are two
important factors when considering the overall performance of
a program using mainly search. Most importantly, it shows that
search can substitute knowledge, or put more accurately: search
is knowledge - even though only containing it implicitly in its
results. The last leads to an even more surprising conclusion:
The poor quality of the knowledge used by our programs makes
search necessary and successful.

8 SEARCH IN ENGINEERING PROBLEM
SOLVING

8.1 The Problem
Typically search-space descriptions in engineering domains are
given in an implicit manner, usually with states and state
transition rules. Engineers will setup such “generic” search
spaces for application domains and dynamically add constraints
to restrict the search or solution space or the objective function
(in case of optimizations).

Often, searches are only sub-solvers, driven by a master-
solver (possibly a human) that is continuously refining the
problem definition and/or the objective function. For example,
a problem description might be over-constrained and the solver
fails to produce a solution. By relaxing certain constraints, the
search space changes and the solver can be called again.

Once a solution is found, it is often subjected to an analysis
that might produce new objective functions and/or search-space
constraints. Several such iterations between synthesis and
analysis are common. This dynamic adjustment of the search
space and objective (function) is a major challenge for
traditional search methods. With the search space changing, its
properties are changing as well. Without fixed, or at least

49

reasonably stable, search-space properties, it is impossible to
use specific, hard-coded search enhancements or knowledge in
the search.

The result is a substantial loss in speed: fewer nodes of the
search space can be visited within a given time limit. To make
up for this loss, the quality of the knowledge has to improve.
However, since strategic knowledge depends on the problems
and these are changing, this knowledge has to be found,
generated or at least adapted every time. Compromising in
using only knowledge general enough to be applicable to the
entire problem class is restricting the knowledge and thus will
lead to substantial loss in performance. Generating the
knowledge on the fly costs time as well and the tradeoff
between knowledge gathering and knowledge use have to be
considered to optimize the overall performance.

Traditionally, search domains, such as games, are discrete or
at least easily discretisable domains. None of the problem
parameters are inherently continuous. In engineering domains,
this is not quite that simple. Often one can restrict certain
values to a finite subset of then discrete values, but this
“technicality” can prove to be a tricky problem. We will return
to this problem below.

In engineering domains one more difficulty has to be faced:
the cost of evaluating a state (or configuration). For example, to
evaluate a vehicle layout, it might be necessary to include
vibration analysis, a crash test analysis using FE methods, 3D
geometric overlap testing, accessibility analysis, drag
coefficient calculations and/or many other possible calculations
of complex performance metrics. The cost and complexity of
such an optimization function results in at least two major
challenges:
1) Instead of visiting thousands or even millions of states in

the search space only few can be analyzed. This is not only
true for optimizations, but also for complicated
consistency checks in CSP-like formulations. Note that
this problem refers to the speed with which the domain
knowledge can be analyzed. We call this the “SPEED
PROBLEM”.

2) In such complex search spaces, search strategy is hard to
come by, even humans are often at a loss in such cases.
We call this the “STRATEGY LACK”.

Of course, these two problems in combination seriously inhibit
the performance of the traditional approaches that rely on speed
(fast evaluation) and good search control knowledge (for the
search enhancements).

8.2 The Tackle

8.2.1 Overcoming the Speed Problem

A) To speed up the evaluation of one of the data points,
approximations hold the most promise for dramatically
reducing the computational cost. Starting with a rough but
cheap initial value, the search can, with increased need for
precision, increase the computational cost. One could
increase the number of elements in a FE analysis, or the
depth of the octree for geometrical overlap calculations.
This requires algorithms that can be controlled in their

computational cost. Such algorithms are known from 3D
geometric interference testing [4], but many other
engineering calculations can be executed with varying
degree of accuracy/speed, such as FE analysis and
vibration calculations.

B) A slightly different approximation approach by surrogate
functions was proposed by [3]. Instead of decreasing the
cost of each of the function calls, only few calls are made
and results are used to construct a surrogate function that
predicts where good exploration points can be found. At
these carefully chosen points the expensive evaluation
function is used, albeit hopefully less often.

C) It will be a matter of intelligently controlling the tradeoff
between speed and accuracy that will ultimately decide
how much system performance can be boosted without
loosing solution quality. Especially comparing tradeoffs
among different (sub-) calculations will be complicated,
since every calculation should return results of similar
accuracy, otherwise valuable cycles are wasted. The
different sub-calculations are combined to form a total
score of a state. This combination is usually a weighted
sum, where a human expert gives the weights. If these
weights allow for a subset of dominant features, then a
technique called “lazy evaluation” can be used:
Instead of executing all sub-calculations, first only the
most dominant are called. With this preliminary value a
test is performed to verify if the score is already so bad
that adding the rest of the minor features, even under the
most favorable conditions, cannot beat the currently best
design (giving an upper or lower bounds to the solution
quality).

8.2.2 Overcoming the Strategy Lack

As mentioned before, search strategy is knowledge about where
good solutions are expected. Assuming we have only domain
knowledge, meaning we can only evaluate states in the search
space, we will have to use them to infer where good solutions
lie. Information theoretically this is impossible without certain
assumptions. The approach of surrogate function makes these
assumptions obvious.

The most important assumption we will make is about the
“smoothness” of the search space. We understand smoothness
of the search space as the property that the gradient of the
evaluations changes only “slowly”. That is, the second (partial)
“derivatives” of the evaluations are “small”. This is not a
rigorous definition, simply because engineering domains use
non-derivable functions, such as discrete parameters or output
values (such as thresholds). The assumption of derivability
would violate the basic idea of this paper, to be true to the
practical circumstances of engineering problems - and these are
inherently non-derivable. Here is where we pay for discretising
certain variables, as discussed above.

While it was necessary to keep the number of possible
variable values to a manageable number, it also means that it is
now difficult to find reliable gradient information, if needed.
The absence of this information usually favors direct search
methods.

50

A search strategy similar to hill climbing can be applied only
if an assumption of smoothness is made. The smoother the
search space is believed to be, the larger the step size to the
neighbors can be chosen. If no knowledge about such
smoothness is supplied, the algorithm has to gather information
from which such knowledge can be derived.

Such a search algorithm could start out at random locations
with small steps into each “direction” (variable changes) of the
search space and gather statistics about the changes of the
evaluation for each variable or combinations of variables. More
sophisticated approaches might consider arbitrary change
vectors (to be added to the current variable setting). It is
important to avoid “overshooting”, that is, step sizes too large
for the smoothness of the search space that would lead to
missing “topological” features in the search space, such as local
extrema.

By maximizing the step size of the algorithm when traversing
the search space, large numbers of evaluations can be saved.
However crude this approach might appear to be, it is robust
and can be applied to any domain with a minimum amount of
prior knowledge.

9 EXAMPLE
As an example to briefly illustrate some of the problems
discussed here, we introduce the truck chassis layout problem.
For a given problem specification (wheel base, engine and
transmission characteristics and a list of parts to be mounted to
the frame) a legal, inexpensive and reliable design/layout with
good vibration characteristics has to be found.

The quality of a chassis layout is a combination of a
multitude of performance measures. These are: vibration
analysis of the driveline and potentially the frame, physical
interference of parts according to their location on the frame,
adherence to legally enforced distances between parts with
safety concerns, costs of auxiliary structures to connect parts,
accessibility and serviceability of the individual components
and rules of thumb representing best practices derived and used
by engineers over the years.

The current solution is a static, modular rule-based system
that is a nightmare to maintain, because of the complex
interactions between the modules and the (redundant)
distribution of the knowledge in the many different parts of the
calculations. To derive legal and geometrically (physically)
possible positions of parts, 2D layout approximations and a
crude interval arithmetic are used. The reduction to 2D forces a
conservative treatment, potentially eliminating some legal
placements of parts from considerations. Also, the modular
treatment cannot generally achieve global optima, since
subsystems are considered pseudo independently. The current
production system routinely fails to produce valid layouts and a
human has to work out (part of) the solution by hand.

This optimization problem can be treated as a search problem
where an optimal design is the goal. There are continuous
parameters (location/lengths of parts), discrete parameters
(parts with certain mount points and/or restricted lengths
selection) and enumerated parameters (part selection from
different venders or materials) that describe a design. The
evaluation function is not differentiable, thus only direct search

methods are of interest. No search strategy is available. Part
geometries and characteristics change and thus cannot be hard
coded. The vibration analysis of the driveline can be
accomplished with different methods (simple 2D calculation or
a complex 3D vector-mechanical analysis). The interference
tests can be accomplished with different levels of
accuracy/cost.

The problem is translated into an objective function
representing the design objectives (or soft constraints) and
physical laws (or hard constraints). The objective function is
(currently) a (linearly) weighted sum of sub-terms which
represent individual considerations:

)()(

)()(

ostComponentCostComponentCBatteryBattery

DrivelineDrivelineOverlapOverlap

PWPW

PWPWF

++

++=

L

The weight-functions iW represent the relative importance of

the individual terms and the adherence of those performance

parameters iP to engineering thresholds. OverlapP represents

the volume of physical overlap of components. OverlapW
induces a large, super-linearly increasing penalty to force this
term to 0 to achieve a (physically) feasible design. Currently, it
is the most expensive of our sub-functions, using roughly 55%

of the total runtime of the system. DrivelineP represents the

overall penalty of the current driveline layout. It is internally
composed of a weighted combination of different driveline-
specific performance parameters (torsional resultant
acceleration, inertial acceleration (coast and drive) and dynamic
bearing loads), length-restriction penalties, inter-segment angle
limits and relative driveline-segment length guidelines:

∑

∑∑

∑

−

=

−

==

−

=

++

++

++

+=

1

1

1

11

1

1

))1(),((

))(())((

))(()(

)()(

n

i
LenRatio

n

i
Angle

n

i
Length

n

i
DBLDBLInertiaDInertiaD

InertiaCInertiaCTorsionTorsionDriveline

iSegmentiSegmentW

iAngleWiSegmentW

iPWPW

PWPWP

Since the engineers impose limits on all these driveline

performance numbers, the functions iW represent these

restrictions. As an example, TorsionW could be implemented as

follows:
2

_
*)(




=
uppertors

t
wtW torsionTorsion

, where torsionw is a

weight giving the relative importance of the torsional resultant
acceleration penalty with respect to the other driveline
performance parameters, and tors_upper is the maximal
allowed torsional resultant acceleration. Similar functions can
be created for lower and upper bound restrictions, or even more
complex constraints.

Currently there exists an implementation to a simplified
version of the problem using pattern search and a different
objective function [16,19]. It is still too slow to solve the
problem under reasonable assumptions for time resources: it

51

takes about 2 to 3 minutes to produce a good design. We are
currently working on a solution where the engineering
knowledge used is strictly separated from the optimization
routine and the optimization routine can use different search
strategies to find optima. A meta-optimizer is observing the
behavior and performance of the optimization routine and
changes it’s input to improve its performance and ensure
adherence to hard constraints (which is not guaranteed for the
optimization alone). This is ongoing research.

10 CONCLUSIONS
Search can be used as a fundamental problem solving technique
in Knowledge-Based Engineering. Generic search engines can
be developed that use domain-specific knowledge to find
solutions to complex engineering problems. The current
challenge is to achieve efficiency close to the performance
achieved in domain-dependent search applications where hand-
tuned objective functions, search strategies and enhancements
can be used. This performance gap can only be narrowed when
search algorithms are empowered to derive search strategies
automatically.

ACKNOWLEDGMENT
We would like to thank our colleagues in the DaimlerChrysler
KBE Research Group in Berlin and the Freightliner Enterprise
Product Documentation Department in Portland for their
interest and stimulating discussion. One of us (RK) was
partially funded by the European Commission within the
MOKA Esprit project (No. 25 418).

REFERENCES
[1] V. Allis, 1988, “A knowledge-based Approach to

Connect-Four. The Game is Solved: White Wins.”,
Master’s thesis, Free University, Amsterdam, The
Netherlands

[2] V. Allis, 1994, “Searching for Solutions in Games and
Artificial Intelligence”, PhD thesis, University of
Limburg, The Netherlands

[3] A.J. Brooker, J.E. Dennis, Jr, P.D. Frank, D.B. Serafini, V.
Torczon, M. W. Trosset, 1998, “A Rigorous Framework
for Optimization of Expensive Functions by Surrogates”,
To appear

[4] J. Cagan, D. Degentesh and S. Yin, 1998, “A Simulated
Annealing-Based Algorithm Using Hierarchical Models
for General Three-Dimensional Component Layout”,
Computer Aided Design, 30(10), 781-790

[5] J. Culbertson and J. Schaeffer, 1998, “Pattern Databases”,
in Computational Intelligence, 14(4):318-334

[6] N. Guarino (ed.), 1998, Formal Ontology in information
systems, IOS Press.

[7] R. Hooke and T.A.Jeeves, 1961, “Direct Search Solution
of Numerical and Statistical Problems”, Journal of the
Association for Computing Machinery, 8(2):212-229

[8] A. Junghanns, 1999, “Pushing the Limits: New
Developments in Single-Agent Search”, PhD thesis,
University of Alberta, Edmonton, Canada

[9] R. Klein, 2000, Knowledge modelling in design – the
MOKA framework, in J.S. Gero (ed.), proceedings of the
International AI in Design conference, Kluwer, to appear.

[10] R. Korf, 1985, “Macro-Operators: A Weak Method for
Learning”, Artificial Intelligence, 26(1):33-77

[11] D.B.Lenat and R.V. Guha, 1990, Building large
knowledge-based systems, Representation and inference in
the CYC project, Addison Wesley, 1990.

[12] G. Schreiber et al., 1999, Knowledge engineering and
management – the CommonKADS methodology, MIT
Press, Boston.

[13] V. Torczon, 1997, “On the Convergence of Pattern Search
Algorithms”, SIAM J. Optimization, 7(1), 1 - 25

[14] V. Torczon and M.W. Trosset, 1997, "From Evolutionary
Operation to Parallel Direct Search: Pattern Search
Algorithms for Numerical Optimization", In Computing
Science and Statistics, Vol. 29

[15] V. Torczon and M.W. Trosset, 1998, “Using
Approximations to Accelerate Engineering Design
Optimizations”, Proceedings of the 7th AIAA

[16] S. Yin, P. Hodges, J. Cagan and X. Li, 1999, “Layout of
an Automobile Transmission Using Three-Dimensional
Shapeable Components”, Proceedings of DETC 99

[17] S. Yin and J. Cagan, 1997, “A Pattern Search-based
Algorithm for Three-Dimensional Component Layout”,
Proceedings of DETC 98

