
An Environment and Language for Industrial Use of
Model-based Diagnosis

�

Gerhard Fleischanderl, Herwig Schreiner � and Thomas Havelka, Markus Stumptner, Franz Wotawa �

Abstract. Model-based diagnosis provides a well founded theory
and a set of algorithms for finding and fixing a misbehavior caused
by components. Actually applying model-based diagnosis effectively
requires a flexible implementation which is capable of handling the
differing requirements of multiple application domains. The diag-
nosis framework described in this paper has been developed for the
purpose of being used in an industrial setting. It derives a signifi-
cant part of its effectiveness from being integrated with a component
oriented language for describing diagnosis models. The framework
itself contains a class library comprising several different diagnosis
engines having a standardized interface and allows rapid prototyping
of diagnosis applications. The paper describes the framework, shows
application domains, where the framework was applied, and gives an
overview of the capability of the system description language AD2L.

1 Introduction

Model-based diagnosis [17, 3] has been successfully applied to dif-
ferent domains in the last years, including such diverse fields as au-
tomotive industry, space exploration, and software debugging. In this
paper we describe a diagnosis framework that was developed to pro-
vide a class library for diagnosis in industrial settings, and the lan-
guage AD2L which is the main interface to the primary users of
the framework (i.e., engineers working on diagnosis system descrip-
tions). Parts of the framework have been used in projects such as
the Design Diagnosis Project [8], and for implementing a number of
prototype systems.

The framework comprises classes implementing different diagno-
sis engines that provide core diagnosis functionality, i.e., diagnosis
and measurement selection, and the parser for the language AD2L,
which was designed as a general language for describing component
and system models. AD2L was designed to be easy understandable
and to allow for writing models that are independent from use of a
particular diagnosis engine or implementation platform.

The paper is organized as follows. In the next section we present
three different application areas where our framework has been suc-
cessfully applied. This is followed by sections describing the inter-
nals of the implemented diagnosis kernel and the language AD2L.

�
The work described in the paper has been partially supported by

Siemens Austria research grant DDV GR 21/96106/4, the Hochschulju-
biläumsstiftung der Stadt Wien grant H-00031/97 and the Austrian Science
Fund Project N Z29-INF.�
Siemens Austria, PSE PRO LMS, Erdbergerlände 26, A-1030 Wien, Aus-
tria, Email: � Gerhard.Fleischanderl,Herwig.Schreiner � @siemens.at, Au-
thors are listed in alphabetical order�

Technische Universität Wien, Institut für Information-
ssysteme, Favoritenstraße 9-11, A-1040 Wien, Austria,
Email: � havelka,mst,wotawa � @dbai.tuwien.ac.at, Authors are listed
in alphabetical order

2 Application areas for diagnosis

In this section we will describe three real-world application domains
that are used to design and test model-based diagnosis systems - at
the representation and implementation levels.

2.1 ASIC design specifications

Domain characteristics: During the design process for an ASIC,
specifications are written in VHDL. VHDL is an Ada-like program-
ming language developed for describing hardware components and
systems. An ASIC specification is developed as a sequence of VHDL
programs which describe the ASIC in more and more detail. At
each step the ASIC developer might introduce errors into the VHDL
program at the more detailed level. Typically, ASIC development
projects are carried out in teams of several engineers. The separately
developed parts of the circuit specification are then put together to be
tested and debugged [15, 20].

Diagnosis task: By analyzing a VHDL specification at level N+1
(produced by adding more structure and detail to level N) the diag-
nosis tool VHDLDIAG supports the developer by localizing the part
in the VHDL program where an error was introduced (see figure 1).

ASIC Specification
Level N in VHDL

ASIC Specification
Level N+1 in VHDL

WFCOMP

VHDLDIAG

Locate Bug in Level N+1Design Process
Refinement

Simulation of VHDL Code

Simulation of VHDL Code

Figure 1. VHDLDIAG: Diagnosis of ASIC Specifications

Diagnosis method: VHDLDIAG uses behavior descriptions to
represent individual elements of the VHDL language as diagnosis
components. The behavior models have to be in sync with the tools
and VHDL libraries used by the developers. By parsing the VHDL
specification, the structure of the program is determined. Outputs
from simulations are used as measurements.

After developing a VHDL specification at level N+1, the devel-
oper tests this new specification with a VHDL simulator. The outputs
(signal traces) may either be checked against the simulated outputs
of the specification at level N (the so-called ”golden model”) or may
be declared OK or NOT OK by the developer.

Critical application factors: The diagnosis system must be seam-
lessly integrated with the other tools used by the developers, e.g.
compiler and simulator. Error locations have to be localized quickly

1

and efficiently, i.e. with little intervention by the developer. In all,
VHDLDIAG offers the developers clear benefits which are not found
in other ASIC development tools.

2.2 Software parameters in a PBX

Domain characteristics: A PBX (private branch exchange) is a
switching system for phone and data connections. The features of
a PBX are mostly provided by its software which can be parameter-
ized very flexibly. These parameters include technical characteristics
of lines and subscribers, and functions enabled for certain lines (e.g.
callback). However, incorrect configurations (usually due to operator
error or slips in the customer’s specifications) can occur. See figure 2
for a component oriented view of a phone switching network.

#in

#out

#
f
e
a
s
u

#
w
a
b
e

#
f
r
e
e

#
s
c
s
u

#in

#out

#in

#out

#in

#out

#
v
k

#
r
r

#outTn

#inTn

#in

#out

#
v
k

#
r
r

#outTn

#inTn

Tn1

Tn2

Tn3

SW1

SW2

#
f
e
a
s
u

#
w
a
b
e

#
f
r
e
e

#
s
c
s
u

#
f
e
a
s
u

#
w
a
b
e

#
f
r
e
e

#
s
b
c
s
u

#call back

#call back

#call back

Figure 2. Configuration view of an example telephone network

Diagnosis task: If a feature is not available to a subscriber al-
though it should be, this means some of the system’s parameters
were incorrectly set and the parameters having false values have to
be found. If possible, the correct values for the parameters ought to
be proposed as well. The observations shall be carried out as cheaply
and efficiently as possible.

Diagnosis method: The behaviors of component types and feature
types are described in the diagnosis model. The behavior descriptions
map the parameter values to the functionality of the whole PBX.

The whole system structure cannot be represented completely be-
cause a single PBX may have several thousand subscriber lines,
which would create too many elements for the diagnosis task. In-
stead the elements are represented in a generic manner. For example,
one to three subscriber lines are typically involved in the diagnosis.
The properties of these lines and the connections between them are
established during diagnosis.

During diagnosis, the values of parameters are queried. Other mea-
surements are the effects observed at subscriber lines and terminals,
and the availability of features to the subscribers, e.g. ”callback-LED

is on or off.” The observations may come from online connections to
the PBX or from answers to user dialogs [19].

Critical application factors: The user interface for presenting
questions has to give clear guidance and instructions on what the
user should do next. The sequence of questions has to be reasonable,
i.e. the user must be able to understand why a question is posed and
why some question is posed before another.

If many parameter values are required to compute a diagnosis, ob-
taining the values via an online connection to the PBX is preferred,
especially when a network of PBXs is diagnosed because this greatly
increases the number of parameters and measurements.

2.3 Audio routing system

Domain characteristics: The routing system described here is a
switching system for high-quality audio signals and is used in broad-
casting stations. The main components of the routing system are in-
put amplifiers, output amplifiers, and a switching matrix. More than
one input-channel can be routed to one output-channel (dubbing). On
top of the physical structure, a logical structure is used for control
purposes.

Measurements can be carried out via a set of standard output plugs
that are connected to the main control room. Thus, tests of the sys-
tem state that use exclusively this set of plugs are easy and cheap.
To measure a signal at other plugs, an operator has to stand right in
front of the routing system, which is more time-consuming to do.
Automated test-equipment can be used in some cases.

Diagnosis task: If a defect occurs, the faulty component has to be
found quickly and reliably. There should be as few measurements as
possible, and these measurements should be cheap.

Diagnosis method: The structure of an audio routing system is
represented with its components and connections. To carry out mea-
surements at the standard output plugs, the logical structure (control
structure) has to be modeled, too.

The normal behavior of components is to route the audio signal
without jamming or interference. In addition, failure models are used
to describe particular behavior for defects that are frequently found.

Critical application factors: The most frequent test is whether
an output signal is identical to its respective input signal. This test
requires two measurements and one comparison which ought to be
carried out without user intervention via an online connection to the
routing system. The structure of the routing system has to be derived
automatically from its configuration data.

3 Diagnosis Kernel

The diagnosis kernel implements all classes and methods necessary
for building a diagnosis application. It was designed for flexibility
and ease of use. The diagnosis kernel framework comprises generic
classes for representing general interfaces and specific classes imple-
menting the functionality. Figure 3 gives an overview of the currently
implemented parts. The diagnosis engine on the right is divided into
a diagnosis system and a theorem prover. The diagnosis system im-
plements a diagnosis algorithm and stores knowledge about observa-
tions, connections, and components of a specific system. The theo-
rem prover stores the behavior of the component to allow checking
whether a system together with the observations and assumptions
about the correctness of components is consistent or not. In cases
where a consistency check is not necessary, a theorem prover is not
used, e.g., the implementation of the TREE algorithm [18] requires

2

Diagnosis Engine

Compiler

Graphical User Interface

Diagnosis System

Theorem Prover

AD2L Compiler

DTALK Compiler

Diagnosis Engine 1

HS-Dag Algorithm

Propositional TP

Diagnosis Engine 2

HS-Dag Algorithm

Value Propagation TP

Diagnosis Engine 3

TREE Algorithm

Figure 3. The Diagnosis Kernel (DiKe)

no explicit theorem prover. The implementation of Reiter’s hitting
set algorithm [17, 11] on the other hand needs a theorem prover.

Currently, our framework provides three different diagnosis en-
gines. Two engines use Reiter’s algorithm while the other imple-
ments the TREE algorithm. Although the diagnosis algorithm is the
same for the first two implementations, they use different theorem
provers. One uses a propositional theorem prover and the other a
constraint systems and value propagation. All concrete implementa-
tions have the same generic superclass. The generic diagnosis system
class provides the interface, e.g., names of methods for executing di-
agnosis, requesting the next optimal measurement point, adding and
removing observations, and others. The user writing an application
using our diagnosis framework should choose the most appropriate
diagnosis engine. If the model contains operations on numbers, the
user should choose the value propagation algorithm. If the model is
tree structured as defined in [18] the user should take the TREE al-
gorithm. In all other cases the algorithm using the propositional the-
orem prover ensures best runtime performance that is almost equal
and sometimes better than the performance published for other algo-
rithms [9, 21].

The diagnosis kernel provides two languages for describing spe-
cific diagnosis systems, e.g., a digital full-adder. The first language,
DTalk is closely related to Smalltalk syntax and semantics. For ev-
ery kind of diagnosis engine there are specific language constructs
representing the distinct behavior descriptions. While the knowledge
about structural properties of a diagnosis systems are almost the same
for every engine, this is not the case for the component models of
DTalk. Therefore, we have developed a more general language AD2L
to overcome this problem. Models written in AD2L are not restricted
to one diagnosis engine, although currently only the transformation
of AD2L programs into the constraint based diagnosis engine is sup-
ported.

Apart from classes for representing diagnosis knowledge, we have
added classes for building user interfaces to the diagnosis kernel, to
enable rapid prototyping of complete diagnosis applications. Using
the demo applications and the diagnosis kernel classes as starting
point, a first prototype of a diagnosis system implementing most of
the required diagnosis functionality can be developed quickly. One
of the demo interfaces uses a text-based user interface allowing to
load systems and handle observations and other diagnosis knowl-

hairdrier

fuse

socket1

socket2

external power supply

HTM / power system light

220 V

~

M

Figure 4. Parts of a home power network

edge, e.g., fault probabilities. The second variant uses a graphical
approach for representing components and connections, similar to
a schematics editor. Both applications provide messaging interfaces
for starting the diagnosis and measurement selection process.

The diagnosis kernel, i.e., the class library for the user interface,
the diagnosis engine, and the compiler, was implemented in Visu-
alworks Smalltalk. Diagnosis and measurement selection runtimes
are competitive with other implementations [9, 21, 5]. Parts of our
VHDL debugger [8, 20, 22] were implemented using the diagnosis
kernel.

4 The AD2L Language

The purpose of designing a dedicated system description language
for model-based diagnosis is to support the user in writing the actual
models. He should not be required to engage in applications pro-
gramming, and the language should provide constructs to directly
express the basic primitives that are generally used in system de-
scriptions for model-based diagnosis. In other words, the language
is supposed to provide a vocabulary that corresponds to the structure
generally present in system descriptions for various domains, such as
those described in Section 2.

We assume a diagnosis model to be composed out of smaller
model fragments. Such a model fragment describes the behavior of
a single component, e.g., a � -input AND gate, whereas a complete
model describes the structure and behavior of a whole system in a
logical way. The art of writing model fragments is that of describing
the behavior in a context independent way, i.e., the behavior descrip-
tion of a component should not determine its use. In practice context
independence cannot always be achieved, nor is it possible to define
a language that guarantees context independence.

In this section we introduce the basic concepts of the AD2L lan-
guage [16] designed for the purpose of communicating diagnosis
knowledge. Instead of formally describing the language we show its
capabilities using an example from the electrical domain. Consider
a home power network, which typically involves a connection to the
local power supplier, fuses, sockets, and devices attached to sockets:
lights, washers, and other power consumers. Figure 4 shows a small
part of such a net.

In order to write a model for a power network we (1) define types
for connections, (2) declare a model fragment for every component,
and (3) connect the fragments to receive the final model.

3

4.1 Defining types

Types are used for representing the domain of connections and com-
ponent ports. In AD2L there are 5 predefined types: boolean, charac-
ter, string, integer, and real, with some predefined functions, e.g. +,*,
and others for integer and real values. In addition, the programmer
can declare enumeration types. For example, in the power network
domain we want to describe a qualitative model for currents and volt-
ages, only using the information about whether a current or voltage
flows or not. In this case we define the following type:

type electrDomain :
�

“on“ , “off“ � .

Apart from such simple enumeration types, AD2L allows the use
of predicates and the specification of tolerances and equivalences.

type quantDomain : real tolerance [-5% , 10%].
type myLogic :

�
’0’ , ’L’ , ’1’ , ’H’ , ’X’ , ’Z’ �

equivalence
�

’0’ = ’L’ , ’1’ = ’H’ � .

The tolerances and equivalences are used for determining a contra-
diction during computation. For example, if we can derive the value
’1’ for a connection � and we have an observation ’H’ for the same
connection, then no contradiction arises for myLogic connection. If
no equivalence relations are defined a contradiction occurs because
it is assumed that a connection can only have one value.

The use of predicates in type declarations is another feature of
AD2L. Consider the case where a connection can have several val-
ues, e.g., a radio link that broadcasts the signal of several channels at
the same time. The type for this connection is defined as:

type channel :
�

“nbc“ , “cnn“ , “abc“ � .
type radioLink :

�
predicate online (channel) � .

The channel type enumerates all possible channels that can be
broadcasted. A contradiction only occurs in this case if a connec-
tion of type radioLink has a predicate and its negation as its value at
the same time, e.g., online(“abc“) and -online(“abc“).

Using types for connections has two advantages. The first advan-
tage is that type checking can be performed at compile time. The
second is that the list of domain values can be employed at the user
interface level to present a list of possible values, or for checking the
validity of user input after data entry.

4.2 Writing behavior models

The component declaration statement is the basic tool in AD2L for
describing the interface and behavior of components. AD2L distin-
guishes between two different component declarations, base com-
ponents and hierarchical components. Atomic components have a
fixed, declared behavior and cannot be further subdivided. Hierar-
chical components derive their behavior from their set of internal
subcomponents which are separately described. The subcomponents
themselves may either be hierarchical components or atomic compo-
nents.

Using the power net example, we now show the use of AD2L for
writing atomic components. Verbally speaking, a light is on if its
switch is on and it is connected to a current source. Formally, this
behavior can be described in AD2L as follows:

component light
comment ”This is a qualitative model of a light”
input current, voltage : electrDomain.
input switch on : bool.
output light on : bool.
default behavior nab

Val(switch on,true), Val(voltage,on) =:= Val(current,on).

Val(current,on) =:= Val(light on,true).
Val(light on,false) =:= Val(current,off).
Val(light on,false) =:= Val(switch on,false).

end behavior
behavior ab

=: Val(current,off).
=: Val(light on,false).

end behavior
end component

In the first line of the AD2L declaration of the component light, a
comment is given. It is followed by the declaration of the interface,
i.e., the ports which are used for connecting different components
via connections. The AD2L compiler checks the types of connected
ports and reports an error if they are not equivalent. In our case we
define 4 ports: current, voltage, switch on, light on. The declaration
of interfaces allows to specify whether a port is an input or output
port or both (inout). Note that this information is not used to restrict
the behavior description. It is intended to be used by diagnosis en-
gines to determine a focus set or to optimize questions to the user
about values. In addition, in AD2L the programmer can specify pa-
rameterizable generic ports. A generic port can be used to configure
the component for different systems. For example, writing

generic Width : integer = 2.

defines a component with a generic number of inputs. The input
definition in this case is

input i[1-Width] : bool.

After the interface, the behavior of the component can be defined.
It is possible to define several behaviors. Each of them has a name
(also called a mode), e.g., nab standing for not abnormal. In the ex-
ample we distinguish between two modes. One defines the expected
and the other the faulty behavior of light. AD2L requires one mode
to be designated as default mode. The default behavior is used by the
diagnosis engine as a starting point for diagnosis.

A behavior itself is described using rules. A rule consists out of
two parts (the left and the right side) separated by an operator =:
or =:=. For rules of the form L =: R the semantics are easy: If L
evaluates to true, then all predicates in R must be true. Rules of the
form L =:= R are a shortcut for L =: R and L =: R. For rules of the
form L =: R the left side is called condition and the right side action
part.

The left and the right side of rules are conjunctions of predi-
cates. Disjunctive sentences have no direct representation in AD2L
for complexity reasons. Predicates are predefined. The use of quan-
tifiers is possible. The most important predicate is the Val predicate.
The first argument is the port and the second the value of the port.
It evaluates to true if the port has the given value. Another important
predicate is Cond with a condition as the only argument. If the con-
dition is true, the predicate evaluates to true. For example, the rule

Val(anInput,X), Cond(X � 20) =: Val(anOutput,true).

specifies that if the value of anInput is greater than 20 the port
anOutput must contain the value true. Note that Cond can only be
used in the condition part of a rule. (Thus, in rules containing Cond
the use of =:= is not allowed.) Another predicate is Fail raising a
contradiction. This predicate has no arguments and can only be used
in the action part of a rule. Again, its use in =:= rules is not allowed.

The use of quantifiers in rules is defined in AD2L. The intention
is to use quantifiers for making the model as concise as possible. For
example a quantifier can be used in the case we have to set all input
ports to a specific value.

4

=: forall INPUTS : Val(INPUTS,on).

Note, that the existential quantifier (exists) can only be used in
the condition part. In this case only the =: rule operator is allowed.
The forall can be used in both parts of the rule. The quantification
operator only influences the part of the rule where it is used. All
of this restrictions are necessary to avoid complexity problems. The
variable INPUTS is a built-in variable storing all inputs of the current
component. There are several other built-in variables predefined in
AD2L, e.g., OUTPUT and others. The user can also define variables
using the variable declaration that must be located in the interface
part of the component declaration. All variables are restricted to a
finite domain.

We define the semantics of quantifiers based on the semantics of
rules and predicates.

Forall Conjunctive sentences of the form forall X: P(X) op A are
transformed into a single sentence P(v �), . . . , P(v �) op A, where��� is an element of

�
and ��� is either =: or =:=.

Exists Conjunctive sentences of the form exists X: P(X) =: A are
transformed into several sentences P(v �) =: A, . . . , P(v �) =: A,
where ��� is an element of

�
.

The user can extend the core behavior definition by additional
properties, i.e., repair costs, actions, and probabilities.

component light
. . .

default behavior nab
prob 0.999
cost 2
action ”Replace the bulb”
Val(switch on,true), Val(voltage,on) =:= Val(current,on).

. . .

As stated above, hierarchical components can also be defined in
AD2L. Their declaration is discussed in the next section. We decided
not to distinguish between hierarchical components and systems be-
cause there is no conceptual difference between them - both contain
components and connections.

4.3 Writing system models

Systems and hierarchical components consist of components and
connections. Components can be either atomic components or again
hierarchical components. The behavior of a system and a hierarchical
component is given by the behaviors of the subcomponents. A hierar-
chical component can only have two behaviors. If it works correctly,
all subcomponents are assumed to work correctly as well. The sub-
component behavior is given by their default behavior. In the other
case, where the hierarchical component is assumed to fail, nothing
can be derived. The probability of a hierarchical component � is
computed using the probabilities of the default modes of the sub-
components 	�� ��
����
 � ���

��� ����� ���������
��
��� �

���! �"$# ��%'&�() �$ �"���� � ��� �

From the rules of probability theory follows

��� ��� ���������+*-,.��� ����� ������� �
The user can define systems and hierarchical components by (1)

declaring the used subcomponents, and (2) defining the connections
between them. In our example the power net can be described at the
system level as follows:

voltage_outvoltage_in

switch_oncurrent_in

voltage_in
voltage

current

voltage_out

light_on

current_in current_outcurrent_out

light_1socket_1fuse_1
ext_voltage

ext_current

power_network

Figure 5. The graphical representation of power network

component power network
input ext voltage, ext current : electrDomain.

subcomponents
fuse 1 : fuse.
socket 1 : socket.
light 1 : light

end subcomponents
connections

ext voltage - � fuse 1(voltage in).
ext current - � fuse 1(current in).
fuse 1(voltage out) - � socket 1(voltage in).
fuse 1(current out) - � socket 1(current in).
socket 1(voltage out) - � light 1(voltage).
socket 1(current out) - � light 1(current).

end connections
end component

The graphical representation of the �/�$01"32 � " (01�$2�4 system is
given in figure 5.

4.4 Discussion

AD2L has been developed as a system description language for
model-based diagnosis. Although it is not as expressive as full first
order logic, AD2L provides enough expressive power for formulat-
ing models used in a variety of industrial domains or for education
purposes. In addition, the various syntactical and semantical restric-
tions of AD2L guarantee that it can be used effectively. Time com-
plexity is reduced to a minimum and the program size for typical ex-
ample knowledge bases is quite small. Models written in AD2L can
be used by different diagnosis engines and the behavior is described
declaratively. Currently, AD2L is not yet a fully generic language,
but it is not domain specific.

Another property of AD2L is that a subset of AD2L can be trans-
formed into a propositional horn clause sentence, thus allowing use
of fast consistency check algorithms [14]. Such algorithms provide a
consistency check in linear time depending on the number of literals
in the propositional sentence, providing high performance to system
descriptions of this form. This AD2L subset is specified by all pro-
grams using finite domains, e.g., not using integer or real.

We have previously commented on the fact that AD2L directly
supports the modeling task by providing the basic concepts required
for diagnosis modeling as language primitives: components, con-
nections, and various advanced structural properties such as generic
ports and hierarchical components. However, the language also pro-
vides capabilities for structuring models at a larger granularity, analo-
gous to features that promote modularity in programming languages.
Components are grouped into types, which makes it possible to check
and guarantee basic properties of components. In addition, compo-
nents and types can be organized in packages which encompass a
certain set of definitions. Any desired subset of these can be exported
from the package and is then visible from the outside. Conversely,
packages can be imported into other packages or into models, mak-
ing their exported definitions usable at that point. This provides a

5

much better basis for organizing a model than having it presented as
a flat set of horn clauses for some theorem prover, for whose syn-
tactic and semantic correctness (in terms of appropriate use of types,
connections, and complete description of components) the modeler
is responsible alone, without having domain-oriented language sup-
port. What is more, packages provide a convenient mechanism for
defining and combining model fragments into full domain models.

5 Related Research and Conclusion
Since the beginnings of model-based reasoning several techniques
for representing models have been proposed. They mainly have in
common that they are qualitative in nature, i.e., they do not use quan-
titative values. Such models are not only used in MBD but also in
other fields. For example hardware designers speak about ”low” and
”high” or ”true” and ”false” instead of the exact voltage levels. In [2]
an overview of qualitative modeling is given. Although, the basic
modeling principles seem to be established, there is almost no ac-
cepted and widely used model description language available. Every
reasoning system based on specific models use its own languages. In
addition, apart from [13] almost no work in the direction of providing
tools for handling models and model libraries has been done. In [13]
a WWW-based modeling system for sharing knowledge about phys-
ical systems is described. They use CML (Compositional Modeling
Language) for describing models that can be translated to the Knowl-
edge Interchange Format (KIF) [10]. CML combines languages used
for describing systems using Qualitative Process Theory [7] and the
Qualitative Physics Compiler [1]. Other approaches for sharing di-
agnosis knowledge include [12] where KQML [6] is used as com-
munication language. Recent approaches for model interchange are
mostly based on XML. We did not take this approach, because we
consider XML to be primarily a language for information exchange,
which does provide support for defining semantics specific to model-
ing for diagnosis. On the other hand, it is straightforward to convert
AD2L to an XML-based format.

All previous approaches that rely on a logical description of the
model are well suited for presentation purposes. However, they are
not so good, when modeling is to be done by not so experienced
users. We face this problem in industry, where people are not famil-
iar with the concepts of MBD and logic description languages (in-
cluding Prolog). Although they see advantages of MBD compared
with other approaches, they are sceptical concerning the realization
of the advantages, e.g., reuse of models. While teaching students (es-
pecially from the electrical and mechanical engineering fields) the
fundamentals of model-based diagnosis might alleviate the problem
in the long term. A major step forward on the road to more general
acceptance could be to uncouple the representation issue from the
theoretical roots of the field and provide a dedicated representation
that is more in line with the background of practitioners who might be
”put off” by the appearance of pure logic. Advantages of a widely ac-
cepted language would include the possibility to interchange models
between researchers and companies, or between companies directly,
the increase of reuse, and the certainty for companies that the model
description can be used for a long time, thus saving the investments
for modeling and providing an argument for using MBD.

The language AD2L described in this paper is a proposal for such
a modeling language. AD2L [16] has been developed as part of a
project with the goal of interchanging system descriptions over the
Internet, and has been extended and adapted for industrial needs
afterwards. The language definition is independent of the underly-
ing diagnosis engine and provides language constructs directly rep-

resenting model-based concepts, e.g., components and connections.
Additional other concepts from programming language design have
been incorporated such as packages and strong typing. This allows
for building model-libraries and avoids errors at runtime, that are
central requirements of industry.

Similar approaches have been considered in the past, such as the
language COMODEL [4], but have not found general use in indus-
trial applications. AD2L on the other hand was developed in collab-
oration with industry.

The development of AD2L is not yet complete. Possible exten-
sions (currently in development) of AD2L include the use of dis-
junctions, providing language constructs for expressing relations be-
tween models and meta-knowledge, allowing specification of con-
nection as observable/non observable, and finally, allowing to declare
axioms and rules for filtering diagnoses (e.g., physical impossibili-
ties). However, the use of AD2L system descriptions for the domains
described in this paper has both shown the applicability of the lan-
guage in a variety of domains, the possibility of mapping it to effi-
cient implementations, and above all the clarity and brevity of the
resulting descriptions. It thus provides a convenient keystone for the
model-based diagnosis framework on which the actual diagnosis sys-
tem implementations are based. The combination of both provides an
effective and stable platform for using model-based diagnosis in an
industrial setting.

REFERENCES

[1] James Crawford, Adam Farquhar, and Benjamin Kuipers, ‘QPC: A
compiler from physical models into qualitative differential equations’,
in Proceedings of the National Conference on Artificial Intelligence
(AAAI), pp. 365–372, Boston, (August 1990). Morgan Kaufmann.

[2] Philippe Dague, ‘Qualitative Reasoning: A Survey of Techniques and
Applications’, AI Communications, 8(3/4), (1995).

[3] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,
Artificial Intelligence, 32(1), 97–130, (1987).

[4] Werner Dilger and Jörg Kippe, ‘COMODEL: A language for the rep-
resentation of technical knowledge’, in Proceedings

�����
International

Joint Conf. on Artificial Intelligence, pp. 353–358, Los Angeles, CA,
(August 1985). Morgan Kaufmann.

[5] Yousri El Fattah and Rina Dechter, ‘Diagnosing tree-decomposable cir-
cuits’, in Proceedings ��� ��� International Joint Conf. on Artificial In-
telligence, pp. 1742 – 1748, (1995).

[6] Tim Finin, Yannis Labrou, and James Mayfield, ‘KQML as an Agent
Communication Language’, in Software Agents, ed., Jeffrey M. Brad-
shaw, 291–317, AAAI Press / The MIT Press, (1997).

[7] Kenneth D. Forbus, ‘Qualitative process theory’, Artificial Intelligence,
24, 85–168, (1984).

[8] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa, ‘Model-
based diagnosis of hardware designs’, Artificial Intelligence, 111(2),
3–39, (July 1999).

[9] Peter Fröhlich and Wolfgang Nejdl, ‘A Static Model-Based Engine for
Model-Based Reasoning’, in Proc. �
	 ��� IJCAI, Nagoya, Japan, (Au-
gust 1997).

[10] M.R. Genesereth and R.E. Fikes, ‘Knowledge Interchange Format, Ver-
sion 3.0, Reference Manual’, Technical report, Technical report Logic-
92-1, Stanford University Logic Group, (1992).

[11] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson, ‘A correc-
tion to the algorithm in Reiter’s theory of diagnosis’, Artificial Intelli-
gence, 41(1), 79–88, (1989).

[12] Florentin Heck, Thomas Laengle, and Heinz Woern, ‘A Multi-Agent
Based Monitoring and Diagnosis System for Industrial Components’,
in Proceedings of the Ninth International Workshop on Principles of
Diagnosis, pp. 63–69, Cape Cod, Massachusetts, USA, (May 1998).

[13] Yumi Iwasaki, Adam Farquhar, Richard Fikes, and James Rice, ‘A
Web-Based Compositional Modeling System for Sharing of Pysical
Knowledge’, in Proceedings �
	 ��� International Joint Conf. on Arti-
ficial Intelligence, (1997).

6

[14] Michel Minoux, ‘LTUR: A Simplified Linear-time Unit Resolution Al-
gorithm for Horn Formulae and Computer Implementation’, Informa-
tion Processing Letters, 29, 1–12, (1988).

[15] Zainalabedin Navabi, VHDL Analysis and Modeling of Digital Systems,
McGraw-Hill, 1993.

[16] Christian Piccardi, AD
�
L An Abstract Modelling Language for Diag-

nosis Systems, Master’s thesis, TU Vienna, 1998.
[17] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial

Intelligence, 32(1), 57–95, (1987).
[18] Markus Stumptner and Franz Wotawa, ‘Diagnosing Tree-Structured

Systems’, in Proc. �
	
���

IJCAI, Nagoya, Japan, (1997).
[19] Markus Stumptner and Franz Wotawa, ‘Model-based reconfiguration’,

in Proceedings Artificial Intelligence in Design, Lisbon, Portugal,
(1998).

[20] Markus Stumptner and Franz Wotawa, ‘VHDLDIAG+:Value-level Di-
agnosis of VHDL Programs’, in Proc. DX’98 Workshop, Cape Cod,
(May 1998).

[21] Brian C. Williams and P. Pandurang Nayak, ‘A Model-based Approach
to Reactive Self-Configuring Systems’, in Proceedings of the Sev-
enth International Workshop on Principles of Diagnosis, pp. 267–274,
(1996).

[22] Franz Wotawa, ‘Debugging synthesizeable VHDL Programs’, in Proc.
DX’99 Workshop, (1999).

7

