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Abstract. Given the increasing use of digital control systems
in manufacturing plants, the theoretical potential for error moni-
toring and diagnosis has significantly increased. However, conven-
tional monitoring systems often still suffer from the problems of past
decades where automated error recognition is nonexistent and the
monitoring system restricts itself mainly to communications and sig-
nal processing. As a result, the diagnostic load in case of malfunc-
tions is left to the operator. We describe a model-based diagnosis
system that is integrated into the control of a manufacturing plant by
providing an additional layer atop the existing monitoring system.
The diagnosis system provides flexible, high-level and resilient diag-
nosis capability and can directly use the monitoring system’s reports
as observations for the diagnosis process. We also discuss general
principles of developing models for this domain and show a simple
model used in our current diagnosis/monitoring prototype system.

1 Introduction

Model-based and qualitative reasoning has been successfully applied
to different domains including the automotive domain [5, 1], mon-
itoring of industrial plants [2], and even software debugging [4, 7].
In this paper we describe the use of model-based diagnosis [6, 3]
for helping to assist supervision of manufacturing processes. In con-
trast to previous research, such as [2] we face a situation where the
manufacturing plant together with a control and monitoring system
had been completed and well defined interfaces to the systems are
available. Changing existing control and monitoring systems to in-
troduce model-based concepts is nearly impossible, because those
systems are in practical operation and changes are too expensive. On
the other hand, improving maintenance operations can result in de-
creased maintenance costs by reducing downtimes. In this paper we
will limit ourselves to a particular type of plant, namely, those deal-
ing with the handling and processing of discrete goods. This includes
packaging or assembly lines, but we will not consider dealing with
processes such as, e.g., chemical reactions.

The hardware/software architecture of a typical plant is depicted
in figure 1. At the bottom level, the plant comprises actuators, sen-
sors, wires for control and power supply, and other hardware, e.g.,
computers. Based on the hardware level a control level ensures the
intended operation. Nowadays, control of the manufacturing process
is shifting more and more from the hardware level to software for in-
creased flexibility. At the top level, a monitoring system presents the
current state of the plant to the operator. If the state leaves the normal
operations envelope, error messages are generated and the operator
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Figure 1. The HW/SW architecture of a plant

is informed. At this stage the operator has to schedule actions in or-
der to bring the plant back to the normal state. Although there are
manuals mapping error messages to repair actions, the source of the
faulty behavior is not always easily detectable, usually because er-
ror messages describe only local events, and the general view of the
plant and the connections between subsystems are not represented
in a traditional monitoring system. Another difficulty is that some-
times a burst of messages caused by a single fault can overwhelm the
operator.

Two examples should illustrate the problems with traditional mon-
itoring systems, both obtained from experience with a real plant in
the printing industry. First, assume a machine cut objects into pieces
to be further processed. Since a cutting device is dulled over time the
time, the edges of the pieces lose sharpness as well. This can cause
a fetching problem for other machines trying to grasp the piece. In
this case, the monitoring system will generate an error message re-
garding the grasping operation. This message in turn causes the op-
erator to look at a part of the plant not really responsible for the fault.
As another example, assume that a subgroup of the devices on the
manufacturing floor is connected to the same fuse in the power net-
work. If that fuse blows, the monitoring system will create a message
burst as mentioned above concerning the missing or incorrect effects
of all machines affected by the fuse. Directly deriving the source
of the fault is very difficult since the state of the fuse is not moni-
tored. To overcome these problems, deep knowledge about a factory
is obviously required and model-based reasoning provides an opti-
mal framework for representing and using such knowledge.

In this paper we present the work we have done to introduce
model-based diagnosis into the monitoring system of a real-world
manufacturing plant. The basic idea is to introduce an additional di-
agnostic system layer on top of the monitoring system (see figure 2).
The diagnostic system possesses knowledge about the hardware (and
maybe the software) and is intended for filtering unnecessary error
messages and guiding the operator in locating the fault. Currently,
we have implemented the model-based engine and its interface to the
monitoring system, with the full model of the plant being in develop-
ment. The basic concepts for creating the model from the available
data, the design of the diagnosis engine and of the interface are de-
scribed in the following sections. We demonstrate the modeling pro-
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Figure 2. The improved HW/SW architecture

cess using a typical part of a plant. Central to the modeling is the
idea of formalizing not just the knowledge itself, but to formulate
and eventually formalize modeling principles using available design
knowledge. This will enable even inexperienced users to write mod-
els for model-based diagnosis, and to provide a sound basis for mod-
eling discipline. Because the modeling principles only require typi-
cally available types of knowledge, we expect that they are generally
useful.

The paper is organized as follows. In section 2 the typical available
design knowledge is described together with the modeling principles
that can be derived from it. Section 3 shows the application of the
principles using a typical example, followed by a section describing
the current implementation and interface to the monitoring system.

2 Available Knowledge and Requirements

Writing a model for a system requires knowledge about the system’s
structure and behavior, the expected task of the model, e.g., diag-
nosis, plus possibly other requirements such as minimum expected
results. In our domain, device drawings, schematics and board lay-
outs, program listings, lists of error messages, maintenance guide-
lines, and user documentation of almost all parts of a manufacturing
plant are available. Additional knowledge, i.e., informal knowledge,
might be obtained from engineers and operators. In the past, knowl-
edge about the electrical and mechanical properties of devices was
sufficient to built a model of the correct behavior of the device. Since
control functions are no longer implemented in hardware but more
and more represented as programs running on a micro-controller or
PC, this is no longer true. Therefore, we expect that a flowchart or
state diagram representing the (time dependent) behavior of a device
is available. In summary, we assume that the following information
is available for modeling:

Drawings, Schematics Drawings representing the assembly of me-
chanical and electrical parts can help to identify diagnosis compo-
nents and connections, i.e., the structural part of the model.

Flowcharts Documents containing flowcharts or verbal descrip-
tions of the expected behavior are used for specifying the behav-
ioral part of the model. Figure 3 shows a flowchart for the cutting
example from the Introduction.

Error messages The error messages and maintenance guidelines
are written for the benefit of the operators who, supported by the
monitoring system, try to identify possible observations for the di-
agnosis system. Usually, each entry in the error message list has a
unique error number, describes the surroundings of the fault, the
involved sensors and their values, and lists posssible causes of the

BEGIN

Insert Object

ixCfmCutLayerPb
Object available?

Do cut
qxCfmStartCut

Wait for message
ixCfmCutEnd_ActionOK

Object available?
ixCfmInputConv_Pp

Start grip

Object fetched?
ixCfmHand_GriplHold_Bp
ixCfmHand_GriprHold_Bp

Put object on Carrier

Object available?
ixCfmCycleInputPp1
ixCfmCycleInputPp2

END

ixCfmCutEnd_ActionOK
Timeout for wait?

ERROR

ERROR

ERROR

ERROR

Figure 3. A flowchart for a monitoring system

error together with repair actions. See Figure 4 for an example
item in such a list.

In comparing the error message from figure 4 with the flowchart
from figure 3, we see that the sensor ixCfmHand GriplHold Bp
is used in both. Since the value of the sensor is observed by the mon-
itoring system, it should be used as observable connection in the di-
agnosis system. Other connections (interchange or transport of in-
formation, energy, or objects) may not be directly observable by the
monitoring system. In order to tightly couple the monitoring system
with the diagnosis system, there should be a direct correspondence
between the descriptions of both, i.e., diagnosis components should
be those components mentioned by the repair manuals or represented
by the user interface. This relation need not be one-to-one. For exam-
ple, the error message from figure 4 indicates a distinction between
sensors, valves, and cylinders. If we use only two components, i.e., a
sensor and a grip, the valve and the cylinder are assumed to be part
of the grip. Hence, a diagnosis containing the grip means that the
valve or cylinder or an obstacle causes the faulty behavior. It should
be noted that is not necessarily a drawback of the representation that
a distinction between all different components is not possible in the
example as this may be a property of the actual system. The opera-
tor may be unable to identify the real fault using only the monitor-

2



ERR6.2 exCfmHand GriplHold Wp -- Left Grip
Location

Carrier. A mechanical finger has to ensure that the objects
are fixed before lifting and moving them.

Sensors
ixCfmHand GriplHoldBp

Causes
1. Faulty sensor
2. Faulty valve/cylinder
3. Obstacle prevents from reaching the final position

Repair
1. Check sensor and replace
2. Check valve/cylinder and replace
3. Remove obstacle to ensure that the final position

can be reached

Figure 4. An example error message

ing/diagnosis system and may still need to inspect the device. The
following rules are designed to be used for creating a model out of
the available information of a manufacturing plant.

� From the line drawings and schematics try to identify diagnosis
components, e.g., sensors, actuators. Reduce the number of diag-
nosis components using the error messages and suggested repair
actions. Try to pack components into a single (hierarchical) com-
ponent.

� Variables, e.g., sensor values, used in the monitoring system are
mapped to connections. Additional connections are given by con-
sidering objects moved from one device to another, information
flow, and power supplies.

� Identify connectivity between components using the suggested
connections. Additional components or connections may be nec-
essary.

� Use the flowcharts and additional domain knowledge for creating
the behavior part of the model. This may again require additional
connections and components.

� After building the structural and behavioral part of the model, at-
tempt to streamline it by considering the following checklist:

– Do previously designed component models (from other or re-
lated domains) exist that can be reused?

– Can different components be subsumed by one component?

– Is all relevant knowledge represented by the model?

– Are additional components/connections necessary in order to
get better results, e.g., reduce the number of diagnosis candi-
dates to feasible size?

In the next section we highlight the modeling process using a small
real-world example.

3 Modeling

The following model represents a small part of a manufacturing plant
(see figure 5). This part comprises a cut, a grip, and a carrier. The
cutter cuts up an object into equal pieces. The pieces are grasped
by the grip, lifted up and placed on a carrier for further processing.
The flowchart of this process is depicted in figure 3. An example of a
message created by the monitoring system in case of an error is given

Figure 5. Transport/grip/machine feed combination in a manufacturing
plant

in figure 4. In this example, several sensors for detecting the product
and states of the actor are involved. Note that the cut operation it-
self involves several components including a belt for transporting the
object to the cutting knife.

Following our rules for creating a model, we first have to iden-
tify components. From the technical drawings, flowcharts, and error
messages, we can identify several sensors, the cutter, the grip, and
the carrier.

In the second step we have to introduce connections. The connec-
tions represent sensor values, as well as product, control, and energy
flows. The control flow is given by the flowchart. For example the
action qxCfmStartCut can be mapped to a connection and repre-
sents control information.

In the third step we have to build the structural part of the model
by formalizing the interconnectivity. In our case we see that we have
connections, e.g., qxCfmStartCut, which should be driven by a
control component. Therefore, we introduce such a component that
is connected with the cutter. Note that the control component need
not be the representation of a device. Instead it may represent a con-
glomerate of hardware as well as some parts of the control software.
The structural part of the final model (ignoring the power supply) is
given in figure 6.

Next we have to build the behavioral part of the model. For the
model in this paper we make the assumption that time is not impor-
tant and therefore can be ignored. Faults caused by temporally in-
correct behavior are not considered. Note that this assumption is not
too strong for our purposes. Timing errors such as transport timeouts
are directly detected by the monitoring system and lead to a ”predi-
gested” observation for diagnosis, e.g., no product at the output of
the cutter.

Sensors All considered sensors are designed for directly or indi-
rectly observing whether a product is on the desired position or
not.

�������	��
���	����	��
�������������� ��!"���#�$�	��
�%�&����'�


Cut The cutter communicates with a control component. A work-
piece is cut after the startCut message has been received. In this
case the actionOK message is sent.
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[product, sharp] [product, sharp] [product, sharp][product]

qxCfmStartCut

ixCfmCutEnd_ActionOK

ixCfmCutLayerPp ixCfmInputConv_Pp

ixCfmHand_GriplHoldBp

ixCfmHand_GriprHoldBp ixCfmCycleInputPp2

ixCfmCycleInputPp1

Cut

Control

Sensor1

Grip Carrier

Sensor2 Sensor3

Sensor4

Sensor5

Sensor6

prod_in prod_cut prod_grip prod_carrier

Figure 6. A model for the cut-grip system
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Control The control component checks whether a product is de-
tected or not. If the product is detected, the startCut message is
sent.

��� � �	��
�
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Grip The grip takes the product and puts it on the carrier.
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Carrier The carrier takes the product.
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Note that this is only a partial model of the actual system. Fault
models and additional connections, e.g., for power supply, are omit-
ted here for brevity.

We now show how the model is applied when the error message
ERR6.2 from figure 4 is produced by the monitoring system. In this
case we get the following observations:

ixCfmCutLayerPp � � ��� '
ixCfmInputConv Pp � � ��� '

ixCfmHand GriplHoldBp � � ��� '

From the first two facts and the model, we derive prod in �
����������� � and prod cut � ����������� � . Assuming that Grip is cor-
rect leads to the conclusion prod grip � ����������� � and only the
assumption that Sensor3 is faulty ensures consistency. Hence, one
diagnosis is that the sensor may be faulty. The second diagnosis, i.e.,
that Grip is faulty, can be derived by assuming that the sensor is
correct. A model-based diagnosis engine as described in [6] would

return these two single diagnoses. What we see is that the model al-
lows to derive the same information as given by the error message
description in the repair manual.

The difference of the model-based approach to repair manuals is
that it is neither restricted to single faults nor potentially incomplete.
Instead, the model can be used in unexpected situations where multi-
ple faults are possible, and the results will be complete with regard to
the model. In addition, model fragments can be reused in other mod-
els, and model changes for specific components do not have an effect
on other component models. Finally, while repair manuals mostly
describe local cause-and-effect relationships, the model-based ap-
proach does not suffer from this limitation. In reality, it is quite pos-
sible that faults occurring at a previous stage of plant operation are
detected in a later stage of the process. Therefore, for diagnosis it is
necessary not only to see a part of a process but the whole. This is
ensured by the model-based approach.

4 Implementation

The implementation of the prototype comprises several layers. The
structured Layers are depicted in figure 7.

Java VM: The underlying implementation platform.
Diagnosis System Kernel: The monitoring and diagnosis algo-

rithm.
JDBC Interface: The database interface. Actually the system is

designed to work as an open system, therefore file system and
database operations are supported. This layer is used to load model
and system definitions as well, as well as store history data for
evaluation purposes.

Native Interface: To allow integration with existing systems or
software packages (e.g. visualization programs), this layer is re-
sponsible for low level data exchange, possible programming lan-
guage specific (e.g. C++ interface).

Definition Interface: The JDBC interface is the low-level access to
the database. This is encapsulated via the definition interface, so
that it is possible to implement e.g. file-access for low-cost ver-
sions.
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Online Interface: This interface is responsible for receiving data
from foreign systems and to add those values as observations to
the diagnosis system. A parser is integrated to translate data from
the process to the internal representation.

Processes: All foreign systems which are to be integrated with the
diagnosis system are described with this layer. As described in
the native interface, it is possible to communicate with Java-based
systems and with systems in general that have C and C++ inter-
faces.

Online
Interface

Definition
Interface

VM
JAVA

JD
B

C
 In

te
rf

ac
e

Native Interface

Processes

Expertensystem Kernel

Figure 7. The structured layers of the prototype

4.1 Software Structure

The monitoring system, which interfaces between user and process,
is responsible for the communication between the automation part
and the diagnosis kernel, so this is one of the set of processes as
described above.

The system was designed either to use existing visualization
software that sends and receives the necessary data (e.g. ob-
ject values from the automation plant) or to implement a driver
that directly communicates with the plant. Therefore an special
interface CForeignLowLevelInterface is responsible
for getting and setting values [functions: readForeign-
SystemValue(CForeignSystemObject CFObject),
setForeignSystemValue(CForeignSystemObject
CFObject)]. Each object that represents values from a so called
Foreign System has to correspond to the interface specification to
allow automatic translation of values into the internal diagnosis
system representation.

A Foreign-Object-Definition looks like this:

CFObject(NAME, OBJECT TYPE,OBJECT ID,
FORMULA, DESCRIPTION)

NAME: Object name that is known from the Ex-
pert system-Kernel.

OBJECT TYPE: Type of the object:

� Connection: To receive values from
the foreign system.

� Component: An object type that is just
used to inform this object when an ab-
normal state was found.

OBJECT ID: This is the ID that identifies a foreign sys-
tem object.

FORMULA: Formula to filter a value from the foreign
system to get the value of an object, e.g.
bit masking.

DESCRIPTION: Used to give a textual description of the
object.

The monitoring system has the possibility to work either in polling
mode or in a call-back mode, depending on the foreign system. If the
polling mode is active, the monitoring system cyclically checks a
well defined object from the foreign system, whose states is the trig-
ger in case an error occurs. In call-back mode, the foreign system is
responsible for actively triggering the monitoring system. Indepen-
dent of the mode in which the system is triggered, it will read all
object values from the foreign system that are related to the error and
therefore have to be retained for analysis (”frozen”). These so-called
observations are then translated to the diagnosis system representa-
tion. Foreign-System-Values are passed on to the diagnosis kernel
via the function addObservation as described above. The return
value is a vector of diagnoses (currently restricted to single errors).

5 Conclusion

Traditionally, error diagnosis in monitoring systems for industrial
plants is based on examining abnormal system states in terms of lo-
cal cause and effect relationships. As a result, much of the interpre-
tative task of expressing faults in plant operation is left to operators
who will be presented with low-level error messages describing state
deviations noted by individual sensors. Ironically, this means, espe-
cially when serious faults occur, operators can be overwhelmed by
the amounts of unprocessed information they are presented with, as
their displays are flooded with sudden bursts of messages. In addi-
tion, although manuals may point out possible and likely types of
faults that can produce particular messages, it is left to the operator
to integrate the proposals for multiple messages, as well as the ac-
tions required to identify, compensate, or repair the fault. The basic
properties of model-based diagnosis methods provide an excellent
fit to enhance the capabilities of monitoring systems by providing
higher-level analysis. Model-based reasoning is founded on the idea
of using high-level descriptions of plant operations as a basis for di-
agnosis. This enables us to combine local knowledge to globally de-
termine sources of faults, describe plants as combinations of compo-
nents taken from a basic model library, and using generic diagnosis
algorithms to diagnose multiple faults for a given plant, based on the
component-oriented diagnosis model.

This paper has described the basics of using model-based diag-
nosis as a support tool for plant monitoring so as to reap the bene-
fits described above. First, we have examined the typically available
information from which model-based descriptions of a plant’s func-
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tioning can be derived. A central issue here is to make as much use
as possible of the existing documentation that was written to support
conventional monitoring operations. Based on this description, we
have mapped a simple set of principles that describe how the com-
ponents and connections can be derived from different aspects of the
descriptions. We consider this the beginnings of an examination not
simply of the model itself, but of analysis of the modeling process.

Next, we showed a simple example model, covering a small part
of an actual plant. Despite its abstraction and limited expressiveness
(e.g., absence of complex temporal reasoning), this model is able to
provide meaningful diagnosis output when applied to actual faults in
that part of the plant. Finally, we have described the architecture of
the monitoring system prototype, which will allow straightforward
integration of the model-based system with the existing monitoring
system implementation, allowing for direct access to the monitoring
system’s results and their use by the diagnosis system.
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