
25

Towards Model-based Engineering:
Failure Analysis with MDS

Jakob Mauss1, Volker May1, Mugur Tatar1

Abstract: Model-based engineering supports different engineering tasks
using rich digital models of products. Such models should improve product-
related communication between engineers, should increase knowledge
sharing and the re-use of partial solutions among different products and
among different engineering tasks, and should offer new chances for
systematic product design and validation. In this paper we present MDS, a
tool that implements model-based engineering for various tasks related to the
analysis of the behavior of a product when failures are present. We describe
the modelling framework and the model analysis services provided by MDS,
some recent applications of MDS, and some lessons learned from our work
with applications.

1 INTRODUCTION

During the life span of an engineered product, such as a car, a
train, an airplane, or a satellite, engineers are faced with various
design and analysis tasks: conceptual and detailed design,
parameterization, development of control software, cost
estimation, safety and diagnosability analysis, production planing,
testing, and maintenance.

On the one hand, specific tasks are tackled at different time
points in a product’s life span. All these tasks require task-specific
expert knowledge. Therefore, typically, they are performed by
different engineers. However, all tasks target one and the same
product. Hence, to solve a task, an engineer requires knowledge
about the specific product, its functions, and its technical
realization. Today, this requirement establishes a communication
bottleneck: Tasks are delayed or processed after time consuming
knowledge acquisition and re-engineering of the product, often
based on incomplete or out-of-date information.

On the other hand, the same engineer is usually solving the
same task for different, but similar products. This offers a
chance for partial re-use of previously derived solutions that is not
fully supported today.

Model-based engineering supports the different engineering
tasks by providing and maintaining a digital model of the product.
A model is passed along the engineering process chain and
accumulates task-relevant knowledge about the product, such as
its functional specification, bill of material (BOM), or geometry.
The digital model puts product-related communication between
engineers on a firm ground.

Product-data management (PDM) systems and infrastructure
(e.g. intranet) and standards for product data interchange (e.g.
xml-based exchange formats) needed to support model-based
engineering are partially available or under development, and

 1 DaimlerChrysler AG, Research and Technology, FT3/EW,

 Alt-Moabit 96a, D-10559 Berlin, Germany. Email:
{Jakob.Mauss, Volker.V.May, Mugur.Tatar}@DaimlerChrysler.com

their integration into existing engineering processes is on the way.
Once models and standardized model exchange formats are going
to be available there will be a demand for tools that exploit the
available information to solve additional tasks.

Disposal
Re-cycling

Service
Sale

Manufacturing
Test

Detailed
Design

Design Draft
Concept

Requirements
Analysis

Disposal
Re-cycling

Service
Sale

Manufacturing
Test

Detailed
Design

Requirements
Analysis

product 1
product 2

communication

re-use?

Design Draft
Concept

Figure 1. Engineering tasks along a product’s life span

In this paper we describe MDS, a model-based tool that
supports several engineering tasks related to the analysis of a
system in case of failures, such as: on-board / off-board
diagnostics development, safety analysis, diagnosability analysis,
development of test procedures for end-of-line testing. MDS has
been developed at DaimlerChrysler research since 1994. In 1999,
MDS has been transferred to a professional software partner,
Genrad Ltd. (UK), and will be commercially available soon. After
the description of MDS in section 2, we present some applications
that have been developed using MDS. Finally, we report some
lessons learned during our work with MDS on applications. The
paper is written on a non-technical level and has the goal to
describe an existing model-based tool that has started to make its
way into real applications.

2 MDS

In this section, we give an overview of MDS. We first describe
how technical systems are modeled in MDS. Then we describe
the various analysis tasks supported by MDS.

The design of MDS has been guided by the quest for broad
applicability. For instance, rather then focussing on a restricted
domain for behavioral descriptions, such as finite-domain
(qualitative) models, linear models, non-linear models, or finite-
state machines, we identified as a key requirement of a model-
based tool in our industrial context its ability to deal with all of
these domains. Hence, MDS was built on a rich and expressive
modelling language - even to the price of incomplete model
processing, or, sometimes, limited declarativity of models.

26

2.1 SYSTEM MODELS

In MDS a system consists of components and connections among
components. A component is either a system - systems can be
hierarchically composed - or an atomic constituent, such as a plug,
a bulb, a valve, or a tank. Each component has a type that defines
its generic properties and its behavior. These generic properties
include: the component internal variables, the component ports,
the behavior modes, the possible observation and control actions,
and a graphical icon associated with the component type. The
ports define the possible connection points of a component. The
ports hold one or several variables that may be shared between
components and connections. A connection represents a channel
through which two components may exchange energy, information
or matter. Typical examples are wires, pipes and shafts.
Conceptually, there is no distinction between a component and a
connection in MDS. A behavior mode of a component or a
connection classifies a certain kind of behavior, i.e. nominal or
faulty behavior. A valve model may have, for instance, 3 behavior
modes ’ok’, ’stuckOpen’ ’stuckClosed’, representing nominal
behavior, and two different component faults. Every behavior
mode has a numerical weight representing the likelihood, or the
safety-criticality of the mode. A special internal variable of each
component holds the currently assumed or inferred behavioral
mode of the component. For every behavior mode, there may be a
behavior model, representing the behavior of the component in
the corresponding mode. A mode may also have no model, in this
case representing unknown behavior.

A behavior model is described using a set of constraints
relating the local variables of a component. Basic variable
domains are numbers (integers, floating points, infinite precision
rationals, meta-numeric extensions for infinity and infinitesimal),
intervals, booleans, symbols and strings. Intervals are useful for
expressing imprecise knowledge about numeric parameters and
are processed by MDS using interval-arithmetic procedures. A
constraint is described using one or several propagation rules. A
rule has the form

c1(X) ∧ c2(X) … ∧ cp(X) ⇒ x1 := f(X)

where p ≥ 0, X = (x1,… xn) are local variables of the component,
i.e. internal or port variables, and f and ck can be arbitrary
executable procedures. The conditions ck have to return true or
false. The function f returns either one or several alternative
values from the domain of x1, or a predefined symbol
#contradiction, indicating that X ∉ dom(f). The ability to use
arbitrary executable code for representing component behavior is
a key feature of MDS and provides great flexibility for modeling.
This allows, for example, to easily integrate new application-
dependent variable domains. Variable values may then be
arbitrary objects (consider, for instance, a message with a
structured content). Certain basic properties of a new domain such
as equality, inconsistency or subsumption, have to be defined
using the native implementation language of MDS, i.e. Smalltalk.
This allows also to define domains where multiple consistent
assignments of values to a variable are allowed – for instance for
blackboard variables. Further constructs allow to define generic
constraints or rule sets that encode specific relations (e.g. Ohm’s
law) and which can later be instantiated in the context of a
specific component model.

Some of the internal parameters of a component can be declared
to be state variables. This allows to define a component model as
a deterministic or non-deterministic state machine. For example, a
relay can be modeled as a deterministic finite-state machine
having a state variable s and coil current i using the rule

s = closed ∧ i > 0 ⇒ nextState(s) := open

When analyzing a system model having state variables, MDS
performs forward simulation of the component models (concurrent
finite-state machines), until a steady-state is reached, or a cycle is
detected

MDS offers also means for representing possible interactions of
a system or a component with a human user or an external agent.
For this purpose action models can be attached to a component.
Actions are associated with state-dependent costs, i.e. a number
that reflects how easy or expensive is to carry out an action, and
with preconditions, reflecting the situations in which the
respective action is allowed to be performed. Because
preconditions usually encode safety conditions for carrying out an
action, they are considered to be fulfilled only if they are entailed
by the model irrespective of the currently assumed fault modes.
There are two categories of actions: observation and control
actions.

A control action can be attached to a port variable and defines a
persistent assignment of a specified value to the specified port
variable. The assignment will hold after a certain delay in all the
following states until it is overridden by another control action. A
control action may also cause a sequence of internal state
transitions of the system model, e.g. when switching on the power
of a system that contains a relay (control action), the relay may
change its switch state (state transition).

An observation action can be attached to any variable. It
represents the ability of a human user or of an external agent to
observe or measure the variable, provided that the specified action
preconditions, defined in terms of the local variables of the
component, are satisfied. For example, measuring the oil level of
an engine may require that the engine is not running.
Preconditions can be satisfied by applying appropriate control
actions, i.e. by transitioning the system into another state.

Many of the applications that we had to address required the
ability to model (discrete) dynamic asynchronous components /
systems. In order to synchronize internal state transitions with
external control actions in asynchronous systems, MDS assumes
(a) that the internal state transitions are fast w.r.t the time span
between two control actions, and (b) that the system reaches a
steady-state after applying a control action. A system satisfying
these assumptions is called pseudo static in our framework.
Hence, control actions are only applied in steady states in pseudo-
static systems.

Type definiti ons for variables, ports, connections, actions,
components and systems are organized into a type library. Due to
the locality of all constraint definitions - only variables from the
scope of the type owning the constraint are available - the types
are reusable in many different application contexts.

MDS is delivered with standard libraries for electrical,
hydraulic, and mechanical domains. Hence, for a technical system
from such a domain, modeling reduces mostly to drag-and drop
operations: component types are selected from the library, placed
on a drawing pane, connected using the connections available
from the library, named, and parameterized. Each component on

27

the drawing pane will already be associated with possible
component faults, and default control and observation actions, as
specified by the corresponding component type.

2.2 SUPPORTED ENGINEERING TASKS

MDS provides an engineer with various services for analyzing a
given system model. In this section, we describe these services.
Each service is implemented by a service-specific engine. All
engines use a common set of core capabilities of MDS. The
separation of core technology (e.g. constraint solving, search
engines, dependency maintenance, etc) and service-specific
engines (e.g. diagnosis) helps us to quickly add new services to
MDS by reusing the already existing core. Another advantage of
that architecture is that all services can directly benefit from
future improvements of the core. The following description is
informal.

MDS implements the ideas of consistency-based diagnosis, as
presented in [1], [3], [4], [13]. For formal definitions of key
notions such as diagnosis, minimal diagnosis, candidate, or
minimal conflict, see there. To find out, how these definitions
have been refined and extended in order to deal with pseudo-
static systems, see [6], [7].

MDS is currently offering four services to the engineer.
1. Interactive diagnosis and test proposal. Starting from

numerical or qualitative measurements or observations, MDS
detects non-nominal behavior (if any), and guides the user
through a sequence of further measurements and useful control
actions (such as opening or closing plugs), until the faulty
component is localized and its fault mode is identified, or no
more useful measurements are found. When proposing a
measurement or control action, MDS aims to minimize the costs
associated with the actions, and to maximize the expected
information gain of the measurement. A simplified information
entropy measure (cf. [16]) is used to assess the expected
information gain. MDS keeps track of possible side-effects of
control actions during diagnosis, e.g. if we switch on the power
of an electrical system that contains a short, a fuse may break.
Previously non-faulty components may transition into a fault
mode. MDS keeps track of these dynamically introduced
cascading faults.

2. Decision tree generation. Starting from a given set of relevant
faults, an initial situation (e.g., which plugs or valves are open),
and an optional sequence of previous control actions and
measurements, MDS derives a decision tree that aims to
discriminate at best2 among the given faults using the available
measurements. The resulting decision tree is a compiled
diagnostic solution. Such decision trees are useful for analyzing
the diagnosability / testability during the system design, for
developing on-/off-board diagnostic software, or for developing
test procedures for end-of-line testing.

3. Sensor placement. Starting from a set of faults, an initial
situation, a set of possible sensors (model variables) MDS

2 Prediction, consistency checking and test proposal are as during

interactive troubleshooting. At each tree node the best (i.e. minimal costs,
maximal benefit) sequence of control actions and measurement is selected
under a one-step-look-ahead search. All possible outcomes of the
measurement are followed then recursively by alternative tree branches.

computes the “minimal”3 set of sensors that can be used for the
detection and identification of the given faults. MDS can
explain how to use the sensors for diagnosis by presenting a
decision tree that uses only the proposed sensors for diagnosing
the system. As above, MDS aims to minimize sensor costs, and
to maximize the information gain achieved by the sensors.

4. Support for safety analysis. Some currently available services
allow to visualize and compare faulty and normal simulation
results, to generate some reports and explanations. These
services will be further extended in future in order to automate
the FMEA (failure-mode and effect analysis) and the FTA (fault
tree analysis) of a system. See also the section on future work.

3 APPLICATIONS

During the last 6 years, parallel to the MDS software
development, we have spent a significant modelling effort for a
large number of appli cations. Prototype appli cations were
developed for / with DaimlerChrysler business units from the
automotive, train, aerospace and energy supply domains (last one
formerly part of Daimler-Benz):
• Automotive divisions

- Off-board troubleshooting of electric-electronic subsystems;
- Diagnosis and failure analysis of automatic transmissions,

complex hydraulic and mechanical subsystems, see also [12];
• Aerospace divisions

- Integration tests for satellite electrical subsystems;
- Decision tree generation for on-board diagnosis and sensor

placement support for spacecraft propulsion subsystem,
pneumatic-hydraulic subsystems, see also [8];

• Train and tram divisions
- Troubleshooting of electric-electronic subsystems;
- Troubleshooting of a communication and control subsystem

(distributed controllers)
• Energy supply networks

- Generation of safe control sequences for reconfiguration
Many of the applications brought with them new requirements

and raised new problems from which we had to learn and which
forced us to improve, extend or reconsider the representation
primiti ves, the model libraries, the modelling language, the
analysis algorithms and the provided services. The rest of this
section illustrates two of these applications.

3.1 Troubleshooting a car electrical circuit
One of the earliest appli cations of MDS dealt with automating the
workshop troubleshooting of car electric-electronic subsystems.
Here part of an anti-blocking system (ABS) model is shown in
Figure 2. Wires connect the ABS electronic control unit (ECU)
via 3 plugs to a warning lamp L and two relay boxes B1 and B2
containing relays K1, K2 and a diode D. Considered defects
include, for instance, broken plug-connectors, broken, shorted to
ground or to battery wires, stuck switches, etc. Only a limited set
of measurements and control actions with differing costs and
preconditions are possible. For instance, voltage or resistance
measurements are not possible to perform at any point. Usually
this requires to open a plug connector (structural change) in order

3
 A best-first (under one-step-look-ahead) and greedy algorithm for sensor

selection is used. This does not guarantee the global optimallity in general, but
seems to achieve an acceptable balance between optimality and complexity.

28

to access a pin and to connect a measuring device (expensive
action with additional safety preconditions).
The sample dialog given below shows how, starting from an
observed symptom, MDS proposes control-actions to transition
the system in useful states, and measurement actions to
discriminate among possible diagnoses. It also shows that MDS
tries to minimize costs for actions: Expensive actions are delayed
as long as possible.

In the initial situation, K15 and K30 power the circuit with
12V, all 4 plugs are closed, and the ECU is performing a self-
check. Normally, in this situation, the ABS warning lamp should
be lit.
Step 1: Observation: L is not lit. MDS computes the first n

leading diagnoses (e.g. n = 15) and proposes to perform a
cheap build-in ABS self test (control action) to check the lamp
L.

Step 2: We perform the ABS test. Now, L is lit. MDS recomputes
the set of most plausible diagnoses which rules out several
diagnosis related to the lamp circuit and plugs. MDS
recommends to cancel the ABS lamp test (control action) and
then to read out the voltage as measured by the ECU at one of
its pins (cheap measurement).

Step 3: On request, the ECU tells us u = 11 V ± 3V. Only 9
single faults are left now. MDS recommends to reactivate the
lamp test (control action) and to measure a certain voltage at
the ECU with the voltmeter (expensive measurement, no
other cheaper measurement would help).

Step 4: We measure 0V which rules out more candidates. Only 6
left. MDS recommends to switch on relay K1 via an ECU
command (control action) and to measure a voltage.

Step 5: We measure 12 V. Only 5 diagnoses left. MDS proposes
to open the plug at relay box B1 (expensive control action)
and to measure the resistance of relay K1.

Step 6: We measure R = 8 Ω, which is the expected value. There
are two diagnoses left - a corroded pin in the B1 plug or a
broken wire inside B1. MDS tells us that there are no more
measurements available to discriminate these two cases.

B2B1

L

D

ECUK30 K15

Figure 2. ABS electrical subsystem modeled with MDS

3.2 Supporting the design of a propulsion system

Figure 3 shows a hierarchical model of the propulsion system of
the Automated Transfer Vehicle (ATV), an unmanned shuttle
currently under development for supplying the International Space
Station (ISS)4. The propulsion energy results from the
spontaneous oxidation reaction (combustion) between fuel and
oxidizer taking place in the large main and smaller attitude and
orbit control thrusters. 8 membrane tanks, 4 for oxidizer, 4 for
fuel, are used for storage. Helium is used as a pressurant to apply
pressure to the membrane of the fuel and oxidizer tanks. This
provides the energy for transporting the fuel and the oxidizer from
the storage tanks to the thrusters. A fuel pump is not needed.
Pressurant, fuel and oxidizer supply are controlled using a large
number of valves that enable or disable the flow to different parts
of the system. To increase fault tolerance, the supply structure of
the system is highly redundant. The valves are controlled via an
electrical system, the Propulsion Drive Electronics (PDE), which
is not currently part of the model.
Among the considered component faults there are: valve stuck-
open or stuck-closed, clogged filters, faulty pressure regulators,
wrong sensor indications, internal leakage at valves, external
leakage at welding points, etc. The model has been used to
• Generate decision trees to support the development of Fault

Detection Isolation and Recovery (FDIR) on-borad software.
• Optimize sensor placement for the propulsion subsystem.
A future application, based on an extended version of MDS, will
be the model-based failure-mode effect and criticality analysis
(FMECA), in order to verify the hard fault-tolerance requirements
of the propulsion system.

main
thrusters

control
thrusters

pressurant
system

(He)

pressure
sensors

valves
with
position
sensors

fuel system

Figure 3. A fragment of the ATV propulsion subsystem modeled with
MDS

4 The model has been developed by our customers at DASA-RIO61 and is
presented here with their kind permission.

29

4 LESSONS LEARNED

Since 1994, we have been trying to transfer model-based
technology, as developed by academic research, into real
applications. During this process, we gained three main insights
1. Application-driven tool development is key to success. The

applications helped us to identify requirements that had not
been addressed by academic research so far. In this process,
new concepts emerged, e.g. the pseudo-static framework, and
the impact of existing techniques had to be re-evaluated.

2. Support for model-engineering is essential. Modelling is a
complex and expensive task. The hardest requirement that
model-based engineering will have to face is that it has to be
cost-effective. This requires, among others, powerful high-level
modelling languages, support for explanation, model debugging,
maintenance, customization, consistency checking, reusability,
import / export, etc. Additional demands for integration with
conventional engineering tools have to be considered.

3. Professional software partner. Since a research group can
usually not provide the support required and expected by
industrial users, convincing a professional partner to do this job
is a crucial step towards successful transfer of a research
prototype into applications.

In the rest of this section, we report some insights or opinions that
we gained on the technical level.

Dynamic behavior and temporal reasoning. The pseudo-static
framework, as described in section 2.1, emerged as a result of our
applications related to the diagnosis of car electrical systems.
Since then, it has proven to be useful in many other application
domains. Its main advantage is that it allows us to handle time
without deviating too much from a static point of view. In some
cases, even when the correct system can be modeled as a pseudo-
static system, the system oscillates in the presence of failures (e.g.
a relay or valve is continuously opening and closing). Although
such cycles can be detected, further concepts for synchronization
and temporal abstraction are required in order to continue the
diagnosis when such behaviors are exhibited. For instance, since
instantaneous value measurements are hard to synchronize with
the model, a more appropriate solution seems to be to switch the
time-scale abstraction and to process temporally abstract
observations (cf. [15]) such as ’oscillating’, ’steady’, etc.

Measurement / test proposal. When applying existing model-
based algorithms ([3], [4], [16]) to off-board troubleshooting or
end-of-line test generation, we also had to extend the
measurement proposer. Not only the current state is searched for
discriminating observable variables, but also states reachable by
applying sequences of control actions to the current situation are
considered. Best-first iterative deepening search algorithms are
used for this purpose. However, the maximal effort spent for this
search is currently specified in advance by the user. Deep search
in large spaces is not tractable in practice. We believe that further
research (or adaptation of results from the planning community) is
needed here. The consideration of action costs and preconditions
was a requirement in many of the applications that we had to
consider.

Prediction based on local propagation. In MDS, model
analysis is currently implemented by local propagation of value
restrictions through a constraint network. It is well known that
this kind of inference is incomplete. Due also to the (usual)
limited observability, in typical domains such as electrical or
hydraulic networks this incompleteness of the predictor has to be

compensated by more sophisticated modeling (e.g. additional
model variables, information exchange about surrounding
constraint topology, etc). As a consequence, modeling can become
an expensive time-consuming process requiring skilled modelers.
Hence, we are convinced that for a wide spread of the model-
based technology prediction should be based on more complete
inference methods, possibly including computer algebra
techniques.

Dependency recording using a TMS. When we started
implementing MDS in 1994 we used an ATMS [2] to cache
predictions, record dependencies, provide explanations and derive
minimal conflicts. However, this turned out to be far too
expensive for our applications. In most of our applications we use
real-valued variables and intervals (see also the following
discussion about qualitative/quantitative modeling) and large
value domains. Depending also on the constraint topology this can
lead to reduced reusability across contexts and high memory and
bookkeeping effort demands. We had to go through several
improvements of the TMS (see e.g. [5], [7]; currently we use a
JTMS-set [7]) and of the techniques for focusing and controlling
the propagation of intervals - for instance, we extended the
concept of interval shadowing cf. [14] to handle also
approximately equal values, we perform special cycle analysis to
avoid to create hundreds of intervals, etc.

The pseudo-static framework (cf. [6]) was specially designed to
“work well” with a TMS and to reuse predictions not only across
diagnostic contexts, but also across time. The TMS records only
atemporal inferences (dependencies among assumed inputs and
states and entailed predictions, including the next state).
Temporal reasoning requires meta-level reasoning w.r.t. the
atemporal TMS propositional reasoning. This feature was
essential for making the temporal analysis feasible. Prediction
reusability across input vectors was a key factor in achieving
acceptable times for the test-pattern search.

However, more sophisticated temporal analysis and temporal
abstraction seems to be more complicated to implement in this
framework.. Because we are continuously facing more and more
complex and larger appli cations we wil l have to reconsider again
the dependency recording and the caching tasks provided by the
TMS.

Qualitative / quantitative models. Most of the past research
work in the model-based diagnosis community focussed on
qualitative modeling and propositional reasoning. Initiall y we
believed that we will be able to work in most of the cases with
models using small (qualitative) domains. During the time,
especially due to the demands to build reusable model li braries
for different system topologies and a growing spectrum of analysis
tasks, we had to make the models more detailed and we shifted
more and more towards quantitative interval-based models. The
current state-of-the-art in qualitative modeling involves
determining a set of relevant qualitative values for each variable,
where relevance depends on the task we want to solve, the
structure of the system and on the contexts that have to be
considered. Hence, to find the appropriate set of qualitative
values, the user has to analyze the model and the task, which puts
additional burden on the user and introduces context-
dependencies into the models. Both points contradict the spirit of
the model-based enterprise. One could hide the abstract,
qualitative level from the user by using qualitative abstractions as
an internal, compiled representation only. However, compilation

30

methods for such an approach are still missing, although academic
research started some investigations in this direction [11].

We believe that purely qualitative or purely quantitative models
are not going to provide the key for the wide-spread application of
the model-based techniques in engineering and that we need the
flexibility to use both of them and even to automate the switch of
the abstraction level – but the last point is still a challenging
research topic.

5 FUTURE WORK

Our current and future work with MDS is focussed on the
following issues:
• Safety analysis: We are extending the representation

primiti ves in order to allow to define component and system
functions, i.e. knowledge about the intended behavior / use of
a product. On-going work addresses also the generation of
high-level (qualitative) concise explanations for the fault-
effects propagation. This will i mprove the ability of MDS to
support the engineer in the failure-mode and effect analysis
(FMEA) and other safety analysis related services.

• Supporting design: We are currently extending the MDS core,
such that it can also be used by SDR (System Design for
Reusability), a model-based design support tool described in
[10]. The long-term goal is to integrate the design support
(synthetic) and the design analysis (analytic) activities.

• Constraint processing: We are starting to extend the constraint
propagation with more complete analysis methods, based on
the aggregation of relations [9]. This will also lead to more
declarative and readable models, i.e. simpli fy modeling and
model reuse.

• Temporal representation and reasoning: Demand-driven time
scale abstraction for systems violating the pseudo-static
behavior and appropriate techniques for dealing with systems
exhibiting hybrid (discrete and continuos) dynamic behavior
are also future research topics.

• Encapsulation: We intend to encapsulate each MDS engine in
a software component, based on protocols such as COM or
CORBA. This will ease integration of MDS into existing and
future software environments.

• Model compilation, demand-driven abstraction and
simplification: These techniques are probably going to be
essential in order to analyze large and complex systems.
Solutions with respect to these topics are still missing and
they are challenging future research topics.

REFERENCES
[1] Raymond Reiter: A theory of diagnosis from first principles, Artificial

Intelligence, 32(1), pp. 57-95, 1987

[2] Johan de Kleer: An Assumption-based TMS. Artificial Intelligence,
28, pp. 127-162, 1986.

[3] Johan de Kleer, Brian C. Williams: Diagnosing Multiple Faults.
Artificial Intelligence, 32, pp. 97-130, 1987.

[4] Peter Struss, Oskar Dressler: The consistency-based approach to
Automated Diagnosis of Devices. Brewka (Ed.): Principles of
Knowledge Representation. CSLI Publications, pp. 267-311, 1996.

[5] Mugur Tatar: Combining the Lazy Label Evaluation with Focusing
Techniques in an ATMS. ECAI 94, Amsterdam, 1994.

[6] Mugur Tatar: Diagnosis with Cascading Defects, ECAI 96, Budapest,
Hungary, 1996.

[7] Mugur Tatar: Dependent Defects and Aspects of Efficiency in Model-
Based Diagnosis, Dissertation, Universität Hamburg, 1997.

[8] Mugur Tatar, Peter Dannenmann: Integrating Simulation and model-
based Diagnosis into the Life Cycle of Aerospace Systems: An
Ongoing Project. In: 10th International Workshop on Principles of
Diagnosis (DX-99), Loch Awe, Scotland, pp. 273-280, 1999.

[9] Jakob Mauss, Martin Sachenbacher: Conflict-Driven Diagnosis using
Relational Aggregations. In: 10th International Workshop on
Principles of Diagnosis (DX-99), Loch Awe, pp. 174-183, 1999.

[10] Frank Feldkamp, Michael Heinrich, Klaus-Dieter Meyer-Gramann:
SyDeR - System Design for Reusability, AI-EDAM, Special Issue on
Configuration Design, September 1998.

[11] Peter Struss, Martin Sachenbacher: Significant Distinctions Only:
Context-dependent Automated Qualitative Modeling. 13th Int.
Workshop on Qualitative Reasoning (QR-99), pp. 203-211, 1999.

[12] Bidian, P., Tatar, M., Cascio, F., Thesedier Dupre, D., Sachenbacher,
M., Weber, R., Carlen, C.: Powertrain Diagnosis: A model-based
approach, Proceedings of 1999 Vehicle Electronic Systems (ERA99),
Coventry, UK, 1999.

[13] Hamscher, W., de Kleer, J., Console, L.: Readings in Model-Based
Diagnosis. Morgan Kaufmann, 1992.

[14] Hamscher, W.: ACP: reason maintenance and inference control for
constraint propagation over intervals. Proc. 9th Nat. Conf. On AI,
Anaheim USA, 1991. Also in [13].

[15] Hamscher, W.: Modeling digital circuits for troubleshooting. Artificial
Intelli gence, 51(1-3). Also in [13].

[16] Johan de Kleer, Brian Williams: Diagnosis with behavioral modes.
Proc. IJCAI’89. Also in [13].

