Towards M odel-based Engineering:
Failure Analysiswith MDS

Jakob Mauss', Volker May*, Mugur Tatar*

Abstract: Model-based engineering supports different engineering tasks
using rich digital models of products. Such models should improve product-
related communication between engineers, should increase knowledge
sharing and the re-use of partial solutions among different products and
among different engineering tasks, and should offer new chances for
systematic product design and validation. In this paper we present MDS, a
tool that implements model-based engineering for various tasks related to the
analysis of the behavior of a product when failures are present. We describe
the modelling framework and the model analysis services provided by MDS,
some recent applications of MDS, and some lessons learned from our work
with applications.

1 INTRODUCTION

During the life span of an engineered product, such as a car, a
train, an airplane, or a satellite, engineers are faced with various
design and analysis tasks. conceptual and detailed design,
parameterization, development of control software, cost
estimation, safety and diagnosability analysis, production planing,
testing, and maintenance.

On the one hand, specific tasks are tackled at different time
pointsin a product’s life span. All these tasks require task-specific
expert knowledge. Therefore, typicaly, they are performed by
different engineers. However, al tasks target one and the same
product. Hence, to solve a task, an engineer requires knowledge
about the specific product, its functions, and its technica
realization. Today, this requirement establishes a communication
bottleneck: Tasks are delayed or processed after time consuming
knowledge acquisition and re-engineering of the product, often
based on incomplete or out-of-date information.

On the other hand, the same engineer is usualy solving the
same task for different, but similar products. This offers a
chance for partial re-use of previously derived solutions that is not
fully supported today.

Model-based engineering supports the different engineering
tasks by providing and maintaining a digital model of the product.
A model is passed along the engineering process chain and
accumulates task-relevant knowledge about the product, such as
its functional specification, bill of material (BOM), or geometry.
The digital model puts product-related communication between
engineers on a firm ground.

Product-data management (PDM) systems and infrastructure
(e.g. intranet) and standards for product data interchange (e.g.
xml-based exchange formats) needed to support model-based
engineering are partially available or under development, and

! DaimlerChryser AG, Research and Technology, FT3/EW,
Alt-Moabit 96a, D-10559 Berlin, Germany. Email:
{Jakob.Mauss, Volker.V.May, Mugur.Tatar} @DaimlerChryder.com

their integration into existing engineering processes is on the way.
Once models and standardized model exchange formats are going
to be available there will be a demand for tools that exploit the
available information to solve additional tasks.

ot

communication

product 1
product 2

Figure 1. Engineering tasks along a product’s life span

In this paper we describe MDS, a model-based tool that
supports several engineering tasks related to the analysis of a
system in case of failures, such as. on-board / off-board
diagnostics development, safety analysis, diagnosability analysis,
development of test procedures for end-of-line testing. MDS has
been developed at DaimlerChrysler research since 1994. In 1999,
MDS has been transferred to a professional software partner,
Genrad Ltd. (UK), and will be commercially available soon. After
the description of MDS in section 2, we present some applications
that have been developed using MDS. Findly, we report some
lessons learned during our work with MDS on applications. The
paper is written on a non-technical level and has the goal to
describe an existing model-based tool that has started to make its
way into real applications.

2 MDS

In this section, we give an overview of MDS. We first describe
how technical systems are modeled in MDS. Then we describe
the various analysis tasks supported by MDS.

The design of MDS has been guided by the quest for broad
applicability. For instance, rather then focussing on a restricted
domain for behavioral descriptions, such as finiteedomain
(qualitative) models, linear models, non-linear models, or finite-
state machines, we identified as a key reguirement of a model-
based tool in our industrial context its ability to deal with al of
these domains. Hence, MDS was built on a rich and expressive
modelling language - even to the price of incomplete model
processing, or, sometimes, limited declarativity of models.

25

2.1 SYSTEM MODELS

In MDS a system consists of components and connections among
components. A component is either a system - systems can be
hierarchically composed - or an atomic constituent, such as a plug,
abulb, avalve, or atank. Each component has a type that defines
its generic properties and its behavior. These generic properties
include: the component internal variables, the component ports,
the behavior modes, the possible observation and control actions,
and a graphical icon associated with the component type. The
ports define the possible connection points of a component. The
ports hold one or several variables that may be shared between
components and connections. A connection represents a channel
through which two components may exchange energy, information
or matter. Typica examples are wires, pipes and shafts.
Conceptually, there is no distinction between a component and a
connection in MDS. A behavior mode of a component or a
connection classifies a certain kind of behavior, i.e. nominal or
faulty behavior. A valve model may have, for instance, 3 behavior
modes 'ok’, ’stuckOpen’ 'stuckClosed, representing nominal
behavior, and two different component faults. Every behavior
mode has a numerical weight representing the likelihood, or the
safety-criticality of the mode. A special internal variable of each
component holds the currently assumed or inferred behaviora
mode of the component. For every behavior mode, there may be a
behavior model, representing the behavior of the component in
the corresponding mode. A mode may & so have no model, in this
case representing unknown behavior.

A behavior model is described using a set of constraints
relating the local variables of a component. Basic variable
domains are numbers (integers, floating points, infinite precision
rationals, meta-numeric extensions for infinity and infinitesimal),
intervals, booleans, symbols and strings. Intervals are useful for
expressing imprecise knowledge about numeric parameters and
are processed by MDS using interval-arithmetic procedures. A
constraint is described using one or several propagation rules. A
rule has the form

C1(X) L co(X) ... Jcp(X) L x1:= f(X)

where p = 0, X = (Xy,... Xn) are local variables of the component,
i.e. internal or port variables, and f and ¢« can be arbitrary
executable procedures. The conditions ¢k have to return true or
false. The function f returns either one or several alternative
vaues from the domain of x;, or a predefined symbol
#contradi ction, indicating that X O dom(f). The ability to use
arbitrary executable code for representing component behavior is
a key feature of MDS and provides great flexibility for modeling.
This allows, for example, to easily integrate new application-
dependent variable domains. Variable values may then be
arbitrary objects (consider, for instance, a message with a
structured content). Certain basic properties of a new domain such
as equality, inconsistency or subsumption, have to be defined
using the native implementation language of MDS, i.e. Smalltalk.
This alows aso to define domains where multiple consistent
assgnmentsof values b avariable are atiwed —for instarce for
blackboard variables. Furtheronstricts allow to define generic
constrains or rule sets that exde speific relations (eg. Ohm's
law) and which can later be instantiated in the context of a
speific componentmodel.

Some of the internal paraetersof a componentcan be declared
to bestate variables. This allows © define acomponent model as
a deteministic or non-deteministic statemachine.For exanple, a
relay can be modeled as adeteministic finite-state machine
having a statevariables andcoil currenti using the rule

s=closed [7i > 0 [J nextState(s) := open

When analzing a g/sten model haiing state variables, MDS
performs forward simulation of the componentmodels (concurrent
finite-statemachines), until a steadstate is reehed,or acycle is
detected

MDS offers al® meansfor representig possibk interactions of
a systam or a componentwith a hunan useror an external gent.
For this purpse action models can be attehed b a component.
Actions are as®ciated with statedependentosts, i.e. a nunber
that rdlects how eay or expensie is b carry out an action, and
with preconditions, reflecting the siuations in which the
respetive action is allowed © be peformed. Because
preconditions usually ercode sdety conditions for carrying out an
action, they areconsidered to be fulfilled only if they are entailed
by the model irrespective of the currently assimed fault modes.
There are wo catgyaries of actions observation and control
actions.

A control action can be attehed b a port variableand definesa
persistent asghment of a speified value b the speified port
varidble. The asgjnment will hold after acertan delay in all the
following states until it ioverriddenby another contral action. A
control action may al® cause a sequee of internal state
transitons of the system model, eg. when svitching on the pwer
of a gstem that contains a relg (control action), the relay may
charge its svitch state (state trangiti).

An observation action can be attehed b arny variable. It
represerg the ability of a human useror of an external gent to
obsewre or measure theariable,provided that the spified ation
preconditions, defined in terms of the bcal variables of the
component, are satied. For exanple, measurig the oil level of
an ergine may require that the @me is rot runnirg.
Preconditions can be satfsed by appling appiopriate control
actions, i.e.by transitioning the g/stam into another state.

Many of the appltations thatwe had ¢ address required the
ability to modd (discrete) dgmamic ag/nchronous components /
systams. In order © synchronize internal state transitions with
externalcontrol actions in agnchronous g/stems, MDS assmes
(a) that the internal state traneits arefag w.r.t the time span
betveen two contral actions, and (b) that theysten reaches a
steag-stae after appling a contral action. A systen satigying
these assunptions is called pseudo static in our framework.
Hence, contral actions areonly applied in steagstates in pseud
static systems.

Type definitions for varicbles, ports, connections, ations,
components and ystems areorganized inb a type libray. Due to
the locality of all constraint dénitions - only variablesfrom the
scope of the ype owning the constraint are aailable - the types
are reusable imary different appkation contexts.

MDS is delivered with standard librariesfor electrical,
hydraulic, andmechanical domains.Herce, for a technical system
from such a domain, modeling redwces mostly to drag-and dop
operatbns componenttypes are setited from the libray, placed
on a draving pane,connected usimg the connections available
from the libray, named, and pareeterized. Each component on

26

the drawing pane will aready be associated with possible
component faults, and default control and observation actions, as
specified by the corresponding component type.

2.2 SUPPORTED ENGINEERING TASKS

MDS provides an engineer with various services for analyzing a

given system model. In this section, we describe these services.

Each service is implemented by a service-specific engine. All

engines use a common set of core capabilities of MDS. The

separation of core technology (e.g. constraint solving, search
engines, dependency maintenance, etc) and service-specific
engines (e.g. diagnosis) helps us to quickly add new services to

MDS by reusing the already existing core. Another advantage of

that architecture is that all services can directly benefit from

future improvements of the core. The following description is
informal.

MDS implements the ideas of consistency-based diagnosis, as
presented in [1], [3], [4], [13]. For forma definitions of key
notions such as diagnosis, minimal diagnosis, candidate, or
minimal conflict, see there. To find out, how these definitions
have been refined and extended in order to deal with pseudo-
static systems, see [6], [7].

MDSiis currently offering four services to the engineer.

1. Interactive diagnosis and test proposal. Starting from
numerical or qualitative measurements or observations, MDS
detects non-nominal behavior (if any), and guides the user
through a sequence of further measurements and useful control
actions (such as opening or closing plugs), until the faulty
component is localized and its fault mode is identified, or no
more useful measurements are found. When proposing a
measurement or control action, MDS aims to minimize the costs
associated with the actions, and to maximize the expected
information gain of the measurement. A simplified information
entropy measure (cf. [16]) is used to assess the expected
information gain. MDS keeps track of possible side-effects of
control actions during diagnosis, e.g. if we switch on the power
of an electrical system that contains a short, a fuse may break.
Previously non-faulty components may transition into a fault
mode. MDS keeps track of these dynamically introduced
cascading faults.

2. Decision tree generation. Starting from a given set of relevant
faults, aninitial situation (e.g., which plugs or valves are open),
and an optional sequence of previous control actions and
measurements, MDS derives a decision tree that aims to
discriminate at best? among the given faults using the available
measurements. The resulting decision tree is a compiled
diagnostic solution. Such decision trees are useful for analyzing
the diagnosability / testability during the system design, for
developing on-/off-board diagnostic software, or for developing
test procedures for end-of-line testing.

3. Sensor placement. Starting from a set of faults, an initia
situation, a set of possible sensors (model variables) MDS

2 Prediction, consistency checking and test proposal are as during
interactive troubleshooting. At each tree node the best (i.e. minimal costs,
maximal benefit) sequence of control actions and measurement is selected
under a one-step-look-ahead search. All possble outcomes of the
measurement are followed then recursively by alternative tree branches.

computes the thinimal”® setof sensrs thatcan be usedor the

detection and identification of the given faults. MDS can
explain how to use the semss for diagnosis ly presentig a
decision tree thatusesonly the poposed senars for diagnosing
the system. As alove, MDS aims © minimize sener costs, and
to maximize the ifformation gain achieved by the senars.

4. Support for safety analysis. Some currently available sewnices
allow to visualize and compare faulty and rormal simulation
results, to generate ame reprts and explanats. These
sewviceswill be further extended ifuturein order to aubmate
the FMEA (failuremode and #ect anaysis) and the FTA (fault
tree anajsis) of a g/stan. See alg the setion on futurework.

3 APPLICATIONS

During the lag 6 years, parallel ¢ the MDS software
development, we have spent a ghificart modelling effort for a
large number of applications. Prototype applications were
developed for / with DaimlerChrysler business unitérom the
aubmoetive, train, assspace and enay suppy domains (last one
formerly part of Daimler-Benz):

* Automotive diisions

- Off-board troubleshoating of el ectric-el ectronic subsystems;

- Diagnosis and failure analsis of aubmatic trangnissions,
complex hydraulic andmechanical subgstems, see als [12];

* Aerospae diisions

- Integration testsfor satellite eletrical subgstams;

- Decision tree generaton for on-board diagnosis and sensr
placement support for spaecraft propulsion subgstem,
pneumatic-hydraulic subgstems, see als [8];

e Train and tran divisions

- Troublesloating of electric-electronic subystems;

- Troublesloating of a communication and control subgstem
(distributedcontrollers)

* Enegy supply neworks

- Generatdn of sée control sequenesfor reconfiguration

Many of the appl¢ations bought with them new requirenents
and raised ne problems from which we had ¢ leam and which
forced us to improve, etend or reconsider the representation
primitives, he model libraries, he modelling language, the
analsis algarithms and the povided sevices. The restof this
section illustrates wo of these appdiations.

3.1 Troubleshooting a car electrical circuit

One of the earliest pplications of MDS deal with automating the
workshop troublestoating of car electric-electronic subgstams.
Here partof an antiblocking system (ABS) model is shown in
Figure 2. Wires connect the ABS electronic control unit (ECU)
via 3 plugs o awarning lamp L and tvo relay boxes B1 and B2
containing relays K1, K2 and a dide D. Considered diects
include, for instarce, broken pliug-connectors, broken, shorted to
ground or to battey wires, stuck switches,etc. Only a limited set
of measurenents andcontrol actions with differing costs and
preconditions are pssible. For instarce, voltage or resistage
measurenents are at possible b perform at any point. Usually
this requiresd open a plg connector (structural charge) in order

3 A best-first (under one-step-look-ahead) and greedy algorithm for sensor
selection is used. Thisdoes not guarantee the global optimallity in general, but
seems to achieve an acceptabl e balance between optimality and complexity.

27

to access a pin and to connect a measuring device (expensive
action with additional safety preconditions).
The sample dialog given below shows how, starting from an
observed symptom, MDS proposes control-actions to transition
the system in useful states, and measurement actions to
discriminate among possible diagnoses. It also shows that MDS
tries to minimize costs for actions: Expensive actions are delayed
aslong as possible.

In the initial situation, K15 and K30 power the circuit with
12V, dl 4 plugs are closed, and the ECU is performing a self-
check. Normally, in this situation, the ABS warning lamp should
be lit.

Step 1: Observation: L is not lit. MDS computes the first n
leading diagnoses (e.g. n = 15) and proposes to perform a
cheap build-in ABS self test (control action) to check the lamp
L.

Step 2: We perform the ABS test. Now, L is lit. MDS recomputes
the set of most plausible diagnoses which rules out several
diagnosis related to the lamp circuit and plugs. MDS
recommends to cancel the ABS lamp test (control action) and
then to read out the voltage as measured by the ECU at one of
its pins (cheap measurement).

Step 3: On request, the ECU tellsus u = 11 V = 3V. Only 9
single faults are left now. MDS recommends to reactivate the
lamp test (control action) and to measure a certain voltage at
the ECU with the voltmeter (expensive measurement, no
other cheaper measurement would help).

Step 4: We measure OV which rules out more candidates. Only 6
left. MDS recommends to switch on relay K1 via an ECU
command (control action) and to measure a voltage.

Step 5: We measure 12 V. Only 5 diagnoses left. MDS proposes
to open the plug at relay box Bl (expensive control action)
and to measure the resistance of relay K1.

Step 6: We measure R = 8 Q, which is the expected value. There
are two diagnoses left - a corroded pin in the B1 plug or a
broken wire inside B1. MDS tells us that there are no more
measurements availabl e to discriminate these two cases.

File Hierarchy Object Help

[

K15

Figure 2. ABSelectrical subsystem modeled with MDS

3.2 Supporting the design of a propulsion system

Figure 3 shows a hierarchical model of the propulsion system of
the Automated Transfer Vehicle (ATV), an unmanned shuttle
currently under development for supplying the International Space
Station (1SS)*. The propulsion energy results from the
spontaneous oxidation reaction (combustion) between fuel and
oxidizer taking place in the large main and smaller attitude and
orbit control thrusters. 8 membrane tanks, 4 for oxidizer, 4 for
fuel, are used for storage. Helium is used as a pressurant to apply
pressure to the membrane of the fuel and oxidizer tanks. This
provides the energy for transporting the fuel and the oxidizer from
the storage tanks to the thrusters. A fuel pump is not needed.
Pressurant, fuel and oxidizer supply are controlled using a large
number of valves that enable or disable the flow to different parts
of the system. To increase fault tolerance, the supply structure of
the system is highly redundant. The valves are controlled via an
electrical system, the Propulsion Drive Electronics (PDE), which
is not currently part of the model.
Among the considered component faults there are: valve stuck-
open or stuck-closed, clogged filters, faulty pressure regulators,
wrong sensor indications, internal leakage at valves, externa
leakage at welding points, etc. The model has been used to
* Generate decision trees to support the development of Fault
Detection Isolation and Recovery (FDIR) on-borad software.
e Optimize sensor placement for the propul sion subsystem.
A future application, based on an extended version of MDS, will
be the model-based failure-mode effect and criticality analysis
(FMECA), in order to verify the hard fault-tolerance requirements
of the propulsion system.

T~ Diagnosis Editor
File Hierarchy Object Help

I S U W I

pressurant
system

(He)
T

sensors ‘ ‘ ‘ ‘

|
@_{ pressure E

sensor

T " T T " T
! fuel system j

ath

valves
with
position

main

) o
Fo || o A b
I
control

“1r
i e

+ +

Debugging Mode: Disabled

Figure 3. A fragment of the ATV propulsion subsystem modeled with
MDS

thrusters

4 The model has been developed by our customers at DASA-RIO61 and is
presented here with their kind permission.

28

4 LESSONSLEARNED

Since 1994, we have been trying to transfer model-based
technology, as developed by academic research, into rea
applications. During this process, we gained three main insights

1. Application-driven tool development is key to success. The
applications helped us to identify requirements that had not
been addressed by academic research so far. In this process,
new concepts emerged, e.g. the pseudo-static framework, and
the impact of existing techniques had to be re-eval uated.

2. Support for model-engineering is essential. Modelling is a
complex and expensive task. The hardest requirement that
model-based engineering will have to face is that it has to be
cost-effective. This reguires, among others, powerful high-level
model ling languages, support for explanation, model debugging,
maintenance, customization, consistency checking, reusability,
import / export, etc. Additional demands for integration with
conventional engineering tools have to be considered.

3. Professional software partner. Since a research group can
usualy not provide the support required and expected by
industrial users, convincing a professional partner to do this job
is a crucia step towards successful transfer of a research
prototype into applications.

In the rest of this section, we report some insights or opinions that

we gained on the technical level.

Dynamic behavior and temporal reasoning. The pseudo-static
framework, as described in section 2.1, emerged as a result of our
applications related to the diagnosis of car electrical systems.
Since then, it has proven to be useful in many other application
domains. Its main advantage is that it alows us to handle time
without deviating too much from a static point of view. In some
cases, even when the correct system can be modeled as a pseudo-
static system, the system oscillates in the presence of failures (e.g.
a relay or valve is continuously opening and closing). Although
such cycles can be detected, further concepts for synchronization
and temporal abstraction are required in order to continue the
diagnosis when such behaviors are exhibited. For instance, since
instantaneous value measurements are hard to synchronize with
the model, a more appropriate solution seems to be to switch the
time-scale abstraction and to process temporally abstract
observations (cf. [15]) such as 'oscillating’, 'steady’, etc.

Measurement / test proposal. When applying existing model-
based agorithms ([3], [4], [16]) to off-board troubleshooting or
end-of-line test generation, we aso had to extend the
measurement proposer. Not only the current state is searched for
discriminating observable variables, but also states reachable by
applying segquences of contral actions to the current situation are
considered. Best-first iterative deepening search algorithms are
used for this purpose. However, the maximal effort spent for this
search is currently specified in advance by the user. Deep search
in large spacesis not tractable in practice. We believe that further
research (or adaptation of results from the planning community) is
needed here. The consideration of action costs and preconditions
was a requirement in many of the applications that we had to
consider.

Prediction based on local propagation. In MDS, model
analysis is currently implemented by local propagation of value
restrictions through a constraint network. It is well known that
this kind of inference is incomplete. Due aso to the (usua)
limited observability, in typica domains such as electrical or
hydraulic networks this incompleteness of the predictor has to be

compensated by more sophisticated modeling (e.g. additional
model variables, information exchange about surrounding
constraint topol ogy, etc). As a consequence, modeling can become
an expensive time-consuming process requiring skilled modelers.
Hence, we are convinced that for a wide spread of the model-
based technology prediction should be based on more complete
inference methods, possibly including computer algebra
techniques.

Dependency recording using a TMS. When we started
implementing MDS in 1994 we used an ATMS [2] to cache
predictions, record dependencies, provide explanations and derive
minimal conflicts. However, this turned out to be far too
expensive for our applications. In most of our applications we use
real-valued variables and intervals (see aso the following
discussion about qualitative/quantitative modeling) and large
value domains. Depending also on the constraint topology this can
lead to reduced reusability across contexts and high memory and
bookkeeping effort demands. We had to go through severa
improvements of the TMS (see e.g. [5], [7]; currently we use a
JTMS-set [7]) and of the techniques for focusing and controlling
the propagation of intervals - for instance, we extended the
concept of interval shadowing cf. [14] to handle aso
approximately equal values, we perform specia cycle anaysis to
avoid to create hundreds of intervals, etc.

The pseudo-static framework (cf. [6]) was specially designed to
“work well” with aTMS and b reuse predtions rot only across
diagnostic contexts, but als across time. The TMS reords only
atemporal infererces (dependedes anong asswmned inputs and
states ard entailel predctions, including the next state).
Temporal reasning requires metalevel reasning w.r.t. the
atemporal TMS propositional reasning. This feature was
essentialfor making the temporal anaysis feasible Prediction
reusabiliy across input vectors was a kg factor in achieving
acceptable tmesfor the testpattern seah.

However, more sophisticated tenporal anaysis and tenporal
abstration seans to be more complicated © implement in this
framework.. Because we are continuously facing more andmore
complex and larger goplications we will have to reconsider again
the dependecy recording and the caching tasks povided hy the
TMS.

Qualitative / quantitative models. Most of the past reseetn
work in the modeklbas@ diagnosis community focussel on
gualitative modeling and propositional reasning. Initially we
believed thatwe will be able b work in most of the cases with
models using small (qualitatve) domains. During the time,
egecially due o the demands o build reusaeble model libraries
for different gstem topologies and arowing spetrum of analsis
tasks,we had © make themodels more detailedand we shifted
more and more towards quantitatie inteval-basedmodels. The
current stateof-the-art in qualitatve modeling involves
detemining a setof relevant qualitatve valuesfor each variable,
where relgance dependson the taskwe want b solve, the
structure of the system and on the contexts that hee t be
considered. Hence, © find the gpropriate sa of qualitative
values the user hasd analize themodel and the taskyhich puts
additional burden on the user ad introduces context-
dependedes inb the models.Both points contradict the spirt of
the modelbased enterpriseOne could hide the abstoh,
gualitative level from the userby using qualitative astractions as
an intemal, compiled represantation only. However, compilation

29

methods for such an approach are still missing, although academic
research started some investigations in this direction [11].

We believe that purely qualitative or purely quantitative models
are not going to provide the key for the wide-spread application of
the model-based techniques in engineering and that we need the
flexibility to use both of them and even to automate the switch of
the abstretion level — but the last @nt is stil a challerging
reseachtopic.

5 FUTURE WORK

Our current andfuture work with MDS is focussedon the

following issues:

 Sdety analsis We are extendm the representain
primitives inorder b allow to define component andsystem
functions, ie. knowledge atout the intendel behavior / use of
a pioduct. On-gang work addresse®lso the generaton of
high-level (qualitative) concise explanatins for the fault-
effects propagation. This will i mprove the abiliy of MDS to
support the emineer in thefailuremode and Hect anaysis
(FMEA) andother s#ety anaysis related serces.

* Supprting desgn: We arecurrently extendirg the MDS core,
suwch that it can also be used ¥ SDR (Systen Design for
Reusabiliy), a modelbased degh support tod desribed in
[10]. The long-tem goal is D integrate the degn supprt
(synthetic) and the degn anaysis (anajtic) activities.

» Constraint pocessimy: We are startig to exterd the constraint
propagation with more complete analsis methods, basedon
the aggregation of relations [9]. This will also lead b more
declarative and realable models, i.e. sinplify modeling and
model reuse.

* Temporal representatin and reasning: Demanddriven time
scale abstretion for systems violating the pseud-static
behaior ard appopriate techniquesfor dealirg with systems
exhibiting hybrid (discrete andcontinuos) dynamic behaior
are ale future reseah topics.

* Encapsulaton: We intend to ercapsulate edn MDS ergine in
a software cormponent, based on protocds such as COM or
CORBA. This will ease intgration of MDS into existing and
future sftware ewironments.

 Model compilation, demanddriven abstration and
simplification: These techniques are pobably gang to be
essential inorder b analze laige and complex systams.
Solutions with respet to these dpics are stillmissing and
they arechallenging future reseash topics.

REFERENCES

[1] Raymond Reiter: A theory of diagnoss from first principles, Artificial
Intelligence, 32(1), pp. 57-95, 1987

[2] Johan de Kleer: An Assumption-based TMS. Artificial Intelligence,
28, pp. 127-162, 1986.

[3] Johan de Kleer, Brian C. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32, pp. 97-130, 1987.

[4] Peter Struss, Oskar Dresder: The consistency-based approach to
Automated Diagnosis of Devices. Brewka (Ed.): Principles of
Knowiedge Representation. CSLI Publications, pp. 267-311, 1996.

[5] Mugur Tatar: Combining the Lazy Label Evaluation with Focusing
Techniquesin an ATMS. ECAI 94, Amsterdam, 1994,

[6] Mugur Tatar: Diagnosis with Cascading Defects, ECAI 96, Budapest,
Hungary, 1996.

[71 Mugur Tatar: Dependent Defects and Aspects of Efficiency in Model-
Based Diagnosis, Dissertation Universitat Hamburg1997.

[8] Mugur Tatar, Peter Dannenmann: Integrating Simulation and model-
based Diagnosis into the Life Cycle of Aerospace Systems. An
Ongoing Project. In: 10th Internaiond Workshop onPrinciples of
Diagnoss (DX-99), Loch Awe, Scotland, pp. 273-280, 1999.

[9] Jakob Mauss, Martin Sachenbacher: Conflict-Driven Diagnosis using

Relational Aggregations. In: 10th Internationd Workshop on

Principles d Diagnoss (DX-99), Loch Awe, pp. 174-183, 1999.

Frank Feldkamp, Michad Heinrich, Klaus-Dieter Meyer-Gramann:

SyDeR - System Design for Reusability, Al-EDAM, Specal Issue on

Configuration Desgn, September 1998.

Peter Struss, Martin Sachenbacher: Significant Digtinctions Only:
Context-dependent Automated Qualitative Modeing. 13th Int.
Workshop on Qualitative Reasoning (QR-99), pp. 203-211, 1999.
Bidian, P., Tatar, M., Cascio, F., Thesedier Dupre, D., Sachenbacher,
M., Weber, R., Carlen, C.. Powertrain Diagnoss. A model-based
approach, Proceedings of 1999 Vehicle Electronic Systems (ERA99),
Coventry, UK, 1999.

Hamscher, W., de Kleer, J., Console, L.: Readngsin Modd-Based
Diagnoss. Morgan Kaufmann, 1992.

Hamscher, W.: ACP: reason maintenance and inference control for
constraint propagation over intervals. Proc. 9" Nat. Conf. On Al,
Anaheim USA, 1991. Alsoin[13].

Hamscher, W.: Modeling digital circuits for troubleshooting. Artificial
Intelli gence, 51(1-3). Alsoin[13].

Johan de Kleer, Brian Williams. Diagnoss with behavioral modes.
Proc. IJCAI'89. Alsoin[13].

(10]

(11]

[12]

(13]

[14]

[15]

(16]

30

