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Abstract: In this paper, an IT support for vendors of transportation
systems and their subsystems in the early phases of the product
design is presented: SDR, System Design for Reusability. Water
pumps for cooling combustion engines serve as a pilot
application, an editor for the water pump designer was
implemented. SDR supports a reusable and modular product
design by different modeling features: systems with ports, a
taxonomy with system types, interfaces with types, and modular
constraints between parameters of systems. SDR stresses the
principles of modular system design. This requires a thorough
and consistent segmentation of the system at all levels. Moreover,
awell-chosen set of interfaces between the modules is defined.

SDR serves as a design assistant. A block diagram editor
allows to describe systems, ports and interfaces. Constraint
propagation and constraint solving is seamlessly integrated in the
modeling of the system structure. SDR supports a least
commitment approach during the product design process in order
to capture uncertainty in early design phases adequately and to
support reusability. Future research will tackle specific issues of
reasoning, user interactions, and documentation.

1 INTRODUCTION

The vendors of transportation systems and their subsystems
(products like cars, engines, etc.) are faced with a dramatically
increasing pressure to reduce their costs and to accelerate their
product development and their innovation processes. In addition,
the market demands customer-adapted solutions. These solutions
often must include customer services like operating a technical
system, and contracts assuring the reliability, availability, and
life-cycle costs of the products. Vendors must master the entire
system and gain the system leadership. They design the technical
system and specify the interfaces; the suppliers have to design and
manufacture the subsystems of the entire system. In the following,
design is meant as the process of engineering technical systems.

Considering this situation, the vendors cannot focus on
improvements in detail. The only way to stand competition is to
optimize the entire system. These reduction efforts must cover
products as well as production processes.

Possible measures to tackle the costs are:
* To modularize the product and its design and to reuse

solutions for partial problems. By doing this, the variety of
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components necessary to cover al market segments

decreases and the costs for production can be reduced, but
enough flexibility to offer customer-oriented solutions
remains.

e To treat in paralel technical aspects and cost during the
design process (design-to-cost).
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Figurel. Defining and producing reusable systems

Different divisions of the DaimlerChrysler group have to organize
the process chain as sketched in Figure 1. An efficient IT support
is crucia for fulfilling this task. In the following we present a
pilot application from a subsystem vendor of the DaimlerChrysler

group.

2 APILOT APPLICATION

Water pumps are an integral part of many combustion engines in
automobiles. They effect the circulation of the cooling water
through the engine block in order to cool the engine. The water
pumps modeled during our pilot application are produced in the
automotive plant of the DaimlerChrysler Group in Berlin-
Marienfelde, Germany.

Designing water pumps is atypical routine task. For bidding, a
draft design and a cost estimation for the water pump which is to
be designed and manufactured is elaborated. To fullfill a
cusomer’s order, a detailed deagi of the water pump must be
worked out. This desgn of a water pump is partly basel on the
reuseof existing parts/ desgns of water punps. But typically for
each new desgn of a water pump, some nev parts hae o be
despgned or existig parts hae t be adaptedfor instarce
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geometrically. In addition to these tasks, design management and
retrieval are the main topics in this domain of designing water
pumps.

A typical water pump (cross-section view)

Figure 2.

2.1 Hydraulic Aspects

The characteristic figures of the water pump depend on the flow
speed, differential pressure, and pump rotation speed and have to
be determined. The shape of the impeller, the number and shape
of its blades, the interaction of the impeller with the spiral are the
set-screws to determine the hydraulic behavior. The relationships
between flow speed, differential pressure, rotational speed, and
the shapes of impeller and spiral are very complicated and are
described by estimating formulae in this phase. From a genera
overall problem-solving viewpoint, the main aspect is the
integration of this part of problem solving into the other design
activities (like the design of the shaft and the bearing, the driving
system).

2.2 Aspects of the Mechanical Drive

The mechanical forces of driving and driven components must fit.
For instance, if a belt-pulley system is chosen for driving the
pump, then the rotational and axial forces acting on the shaft and
the bearing are to be considered for their design. But if an
electrical system is chosen, then the specifications of the electrical
engineis decisive.

2.3 Geometric Aspects

Examples of geometric aspects are the diameter values of the
shaft and the bearing depending on the chosen material; the shape
of the impeller and the spiral influencing the size of the pump
housing; the relationships between pulley diameter and housing
size determining the choice of the connection between the pulley
and the shaft. Another important geometric aspect is how the
water pump fits into the predefined packaging space without
unwanted interferences with other systems around the engine of
the automobile.

3 MODELING PRODUCTSWITH SDR

SDR is the abbreiation for “System Design for Reusabiliy” and
it is a software tod developed ly DaimlerChrysler’s Division
Reseath and Tehnology. Modeling a pioduct with SDR breaks
down into three tasks:

*  modeling the popertiesof a pioduct and its suksystams,
e modeling the poduct structure and
*  modeling the degjn logc behind the pduct.

Modeling the poperties is usuafl achieved by defining attributes
for systems desribing properties (parmeters) like sie, weight,
cost or material. The poduct structure can be presented/means
of a product tree (parof-tree). Rulesor constraintscan desribe
the dependedes and the reasning behind the pduct, thus
defining its desgn logc.

DretuichtungTyp {Rechts Links)

Maximale_Leistungsaufnahme | real

Antrigbsart AntrigbsartTyp { Riemenantrieb Direkster_Antrieb Elektroantriet}|

Riickenisuf Normall

Riemeniaul
-

Parameters degibing the required ydraulic
andmechanical properties

Figure 3.

The product structure can be anafzed from two perspetives:
vertical and lorizontal. The vertical product structure is usually
modelad by meansof a partof-relationship. Eah system is linked
to the subsystams it consistsof via swch a partof-relationship.
Thesesystems again are linked o their constituent suksystems,
etc. The transitve closure over the parbof-relationship —
beginning with the poduct roat node —yields a poduct tree.

Beside the vertical strwcture, the horizontal product
structure plays an mportant ole in the degin of a product,
although mary product structure models (eg. those in EDM
systems) ignore it. It defines low systems are connected and
which relatbnships exist beteen the systems that belong
togetherbuilding one assebled gsteam. The torizontal structure
is modeled with the help of a connected-with-relationship, leading
to graphswhich desribe the partdpol ogy.

In order b distinguish betveen diferentconnections from one
system to arother, SDR offers themodeling constrict of atteching
ports o systams. If for exanple a certan systen A has a
mechanical connection to arother gstem and an electrical
connection to a third system, you attah two ports, mechanics and
electrics, b the ysteam A.

These are atsthe bast ideas behind the[3R product model.
This product model desribes ystems by listing their poperties
ard the constrains thathold on these poperties.It al uses prts
to define the ptential connectivity of systems. But, aswe will see
in the following, it adds afew more features that enhem
reusabiliy.
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Figure4. The application of the water pump designin SDR
3.1 The First Step to Reusability: Introducing

Types

Abstraction is the key to reusability. In order to get rid of the
context of a certain system description, the engineer would prefer
to reuse a more generalized and more abstract version of the
system to be designed that is not burdened with the specific
details of a particular design context. This generic system
definition can be provided by a system type where the actua
systems in the different design contexts are instances of this type.

The system type models have those properties and rules which
hold for al instances of this type. Types alow to reuse system
definitions in other design contexts by creating instances of this
type in the new design context.

In order to enable reuse of knowledge between types, an
inheritance hierarchy of the types (taxonomy) is implemented.
Properties as well as rules/constraints are inherited.

Besides increasing efficiency, type hierarchies also support a
least commitment approach to design. The engineer is not forced
to commit early to detailed design decisions he can not reasonably
justify. Instead, in early stages of design, he / she commits to
more abstrat classes (@ to the ype “motor”) than in later
stages (eg. to anAC-motor with 360V).

The inheritarce hierarchy also helps b get anoverview of the
available system types, which is important for the reuseof
systems. Usuall, the reuse mcess is sei-aubmatic. The
ergineer selects a certain abstret systam type (eg. AC motor)
ard speifies a few desired poperties. ®R now seaches for
types which meet these requimneents and mpose then to the
ergineer. An inheritarce hierachy helps the egineer
significantly to define a startig point for the seath.

So far, we have treated pduct structure and gstem types
quite independenyl. To closely integrate then, it is neessay to
introduce a third kindof entity (besidestypes andinstarces that
represents aystan used o build arother gstem. Being used in
the structural ddinition of arother gstem type (which is in turn
suppsel to be reused) is a merole thatcan rot be captured by
meansof types and instaes which only dealwith the reuseof
the gstam itseff.

In SDR, this task leadsot system refinements (desribing
types) system applications (correspnding to the usge of a
systam inside awther systam) and system instances. A simple

exanple: The PR model of a streetar with three vehicles, i.e.
three wagons eah of than having two boges, has 3 x 2= 6
system instances of boges. The system refinement of the vehicle
has tvo system applications of the type boge.
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Figure5. System application and system refinement

3.2 The Second Step to Reusability: Introducing
I nterfaces

Reusirg a system bastally mears to move it from one context to
arother. This can only work properly if the systeam's relationships
to its ervironment (i.e., its dependeies with other gstems) are
clearly defined and made expliit. A convenientway to model
these relatinshipsof a g/steam to the outsideworld (tha means
with other gstams) is b define intefaces b other ystems.

SDR's modeling language for interfaces is as ch as theone
usedfor systams. One can attah properties andconstraintsto
interfaces, intefaces areyped,and properties are inherited along
an inteface taonomy. Types and inheritaie yield the same
bendit for interfaces as thg do for systams. Interfaces offer a
number of advantages:

e Inteffaces explicitly degribe which relatbnships exist
between a gstem and itservironment (neighboring system
modules) andmake clear undemwhich tems thissysteam can
be reused.

e Intefaces can model connecting parts beween gstems,
relationships and dependedes betveen gstems (eg,
distarces), or even bakground krowledge atwut laws of
physics etc. Therdore, intefaces are fundanental for
modularity.

e Interfaces tend @ have a bnger life-span tha systems, and
thus povide a stable bbone for the desgn knowledge
base.

* Interfaces are mportant for modularity, as they de<ribe the
dependedes betveen gstams. Inteffaces al® helpto model
the teshnical reasnsfor system relationships.

In our applcation studiesfor the PR tod, we hae used

interfacesfor avariety of purposes:

e tomodel the dataflow from the initial specification down to
the component paraneters;

* tomodel theflow of force abng mechanical components;

e to model the relatnships beteen sulway tracks and the
sulway lines runnimg on these treks;

* tomodel the transportation line for bags in an airport luggage
system;
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e to model the electric connections and control systems in a
street-car;

e to model the geometric interrelations between parts of the
water pump.

Figure 6 shows the system refinement of a water pump with four
system applications (boxes), three external ports for describing
the required properties, and interfaces between these applications
and ports (lines).
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Figure6. System refinement of awater pump

3.3 The Third Step to Reusability: Modular
Constraints

The last step in achieving as much modularity as possible is to
modularize not only the product, but also the design logic behind
it. Thisis a crucial factor for the maintenance of the knowledge
base behind a configuration design tool, which often suffers from
alack of modularity in the knowledge base and therefore cannot
be maintained cost-efficiently. Often, local changes in a
knowledge base do not remain local, but lead to changes in other
parts of the knowledge base, which in their turn cause other
changes etc. In order to keep local changes local, the knowledge
base has to be modular, too.

SDR constraints attached to systems fall into one of three
classes, depending on how much the parameters/variables in the
constraint are spread:

e constraints over parameters at one single system,

e constraints over parameters at subsystems of one system,

e constraints over parameters which are distributed over
several systems.

Figure 7 shows a modular constraint between a system which is
attached to the interface between the casing and the other
subsystems of the water pump (driving, suspension, delivery).
Each subsystem must fit into the casing and therefore must have a
smaller overall-length than the casing. Notice that the constraint
does not need to be changed if another subsystem is added.

Constraints of the first kind are local and raise no problem in
terms of reusability, as they have no connection to other systems.
Constraints over parameters at subsystems occur frequently, e.g.
to compute the total weight of a system by summing up the
weights of its subsystems. If we restrict ourselves to constraints
connecting different subsystems of the same system refinement,
these constraints do not limit reusability. Therefore, the
subsystems of a certain system type are part of its definition and
thus available any time the system is used.

The third kind of constraints is more tricky and the one that
usually hinders reuse. One cannot assume that several systems are
always used and reused together just because there is a constraint
that touches all of them. Moreover, it is not quite clear which
system the constraint should be attached to. The SDR solution is
to attach it to none of the systems, but to an interface that
connects the systems. This has the advantage that it does not
arbitrarily place chunks of knowledge at one system where others
are also affected. It also stresses that interface modeling is very
helpful in reducing the maintenance cost for a knowledge-based
configuration design tool.

[T ] o
Figure7. A congraint between systems attached to an interface

4 SDR AS A DESIGN ASSISTANT

SDR is an assisting tool which relieves the designer from routine
work steps and focuses on the early design stages (see Figure 1).
By getting rid of boring and time-consuming tasks he / she can
concentrate on problems which demands the engineer’s creativity
and experience. As a formalized description of al significant
relationships between subsystems belongs to a SDR model, SDR
is able to find automatically all consequences of the engineer’s
decisions and can keep track of the design process. A SDR user
can explicitly describe a solution for a specific customer as well
as a generic solution which offers the freedom of being adapted to
different requirements.

The most simple way to use SDR is to regard it as a
comfortable editor for system design tasks that captures design
information and allows to easily navigate through a large system
design space. Design information is structured according to the
product structure. The model structure underlying SDR can model
the vertical product structure (the classical product tree) as well
as the horizontal structure between subsystems. The user
(designer) mainly works with an editor where he / she can plot the
internal structure of a system by drawing a graph where nodes
represent subsystems and links between the nodes represent
interfaces between subsystems. He / she can pick a node to refine
it, which means that a new editor window pop up where the user
can enter the interna structure of this system. Parallel to this
editor, SDR shows the resulting product tree in a second window.
The user can also define parameters for each system and interface
and attach comments to systems, interfaces and parameters.
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SDR also performs computations and checks on the current
system design, based on constraints attached to system and
interface types defined by the user or reused from the taxonomy.
Selecting a type forces the system to load the knowledge
expressed in the constraints into the current design. This way,
SDR does not only support the reuse of systems and components,
but also serves as a corporate memory for engineering knowledge.
Integrating constraint techniques into SDR brings two challenges.
The first is to integrate them seamlessly with the structure
modeling and taxonomy techniques without losing the reusability
of systems and interfaces. The second is to make the constraint
machine flexible enough so that SDR can be an interactive
assistant instead of a tool that forces the engineer to solve system
despn problems in a prediéned way and hinder the gmneer’s
creatiity.
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Figure8. SDR showing an inconsstency using a conflict sheet

SDR supprts a leastommitment appoach which is essential
in systam desgn for two rea®ns. First, it allows the ergineerto
express the wertainy in both desgn speification and desgn
decisions ty assgning intewvals or sets insteadf crisp valuesto
paraneters Second, it improves reusabilit. A motor desgned to
run at a rage of 200V to 230V should be modeled with this
interval insteal of the crisp value of 220V the motor runswithin
a certan despn. The leastcommitment appoach is supprted by
a g/stem taxonomy and ly reasning on intewals, eg.

5 CONSTRAINT SOLVING

The SDR infererce emine enablesSDR to be an interetive
desin assistantlt consistsof two parts a constraintmachine that
is basedon the DeltaBlue afjorithm [9] and was extended to
hande value domains, and a JTMS (ju$ication-based truth
maintenae system, [5]). The infererce ermgine peforms the
following tasks:

e handle numerical aswell as gmbolic paranetervalues,

*  propagate value ranges (intervals for numerical paraneters)
andvalue setsffr symbolic paraneters) o supprt a least-
commitment approach to the definiti on of paranetervalues,

*  check paranetervalue rages and setfor consistery with
constraints (anmpty interval or setmeans an iconsistemy),

* help the user b reslve inconsistemmies by computing the
minimal conflict se of value asginment b paraneters that
caused the inconsistancy,

e continue the degn process gen when the degn state is
inconsistent.

Figure 8 shows how SDR presents &onflict. The deginer has
speified thatthe new water pump has a tramsission rateof 0.8
(ratio of the dianetersof the pump’s and themotor’s belt pulley).

He / she has sefed thewater pump M160, an existing type. The
diameter equals150 (motor’s belt pulley) and 105 (pmp’s belt
pulley), resp. These three statents are ioonsistent.

6 RELATED WORK

Theideaof types is ot a nav one, of course. Their integration
with a recursive product structure has been dved in a ginilar
way by [4], [16]. Object-oriented poduct models andconstraints
can, for example, also befound in[18], [19]. Extensie inteface
modeling ard the strict modular useof constraints are ideas that
we have rot seen published swhere elseOur appoach was
influenced ty the ideaof resurce-basedconfiguring [12]: A
technical systeam is aubmatically configured ly assenbling a set
of given components, and the interdependi®s betveen these
componentsare desribed by meansof resurces. @nfiguration is
mostly basedn theclosedworld assunption. Working with SDR
is not only about using a library of parts /objects but albut
desgning new patts.  SDR is rot justa configuraion tod [11]
but a degin assistant as it supps the east phase®f desgn.

Taxonomies arewell known from object-oriented pogramming
languages like ¢t or Smalltalk [10] and from ‘description logic
(31, [9]-

Typically block diagrams are usedor degribing the internal
structure of a ystem. Most simulation systems offer hierarchical
structure modeling, often basedon DEVS [19]. Dedicated
softwareobject-oriented egineerirg methods are presented [&].

Constraint tehniques are still an expandijiiield of reseath.
[13] gives anoverview for finite domain constraint techniques,
[14] presentsadeription for arithmetic constraints[1] defines a
constraint bgc programming language over intewals. [15] gives
an overview over constraint logc programming.

[6] degribes a first apppach on combining thes basic
techniques used in ginulation models b detemine aconsistent
setof initial statevariables.There aresome differerces between
this work ard ours, however. We undersiod from [6] that their
appoach doesnot use yped intefaces organized in a tagnomy,
although they model connections between components. Other
differerces concem the infererce engine: their work is basedon
the SkyBlue algorithm, the non-incremental version of DeltaBlue
[9]; they do not use an equain lver but hae t enter all
functions belonging to a constraint explicitly; there isno means of
handlirg ses and value intervals. They also do not tackle
problems of modularity.

Our work does rot primarily aim at improving thes basic
technologies. Instead,we combine these whnologies D create
applications that can takle complex, businesselevant
application problems. Our field of reseath is the interaction
betveen bagi technologes inorder b make then work together.
We regard the improvement and integration of all theseideasand
their implementation in the ool SDR as he major contribution of
SDR to the tientific community.
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7 FUTURE RESEARCH

Our future research will tackle the following issues.

7.1 Reasoning

*  SDR will perform reasoning on sets. Example: each part has
a set of different legal permissions. The permission of the
entire product is calculated as the intersection of al part
permissions.

e We think about connecting SDR to a commercial constraint
solver or an equation solver. We are searching for suitable
tools.

e SDR should reason on qualities of system parameter. An
example: a device consumes electrical energy with a standard
voltage of 230V which is required to be within a range of
+10V and a frequency of 50 Hz + 1Hz.

* SDR should be able to select automatically some system
types which best fit to a given system application or system
instance. Either the user selects a type among some pre-
selected types or the tool automatically selects a type.
Possible techniques: similarity assessment as known from
case-based reasoning or graph grammars.

7.2 User Interaction

e A user should enter the input parameter via Intranet.

e How to present the user the results of reasoning efficiently?
How to filter the important data and constraints and to omit
the other ones?

e The reasons of an inconsistency should be presented as
shortly as possible. The final cause of a conflict should be
discovered.

e The ahility of SDR to check the constraint network on
completeness and consistency will be improved. An example
is a check whether some constraints contradict each other,
i. e they can ,in principle, not be fulfilled. An example: x =y
AND y =z AND z =x + 1 can never be fulfilled.

7.3 Additional Features

e A documentation should be generated automatically. We
have implemented a prototypical solution. A good way seems
to connect SDR to a commercia report generating tool.

7.4 Conclusion

We do not have complete and sufficient solutions but we want to
encourage a discussion about the topics.
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