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System Design for Reusability – Task, Current State, and
Future Research

Hauke Arndt1, Frank Feldkamp1, Michael Heinrich1 and Klaus Dieter Meyer-Gramann1

Abstract: In this paper, an IT support for vendors of transportation
systems and their subsystems in the early phases of the product
design is presented: SDR, System Design for Reusability. Water
pumps for cooling combustion engines serve as a pilot
application, an editor for the water pump designer was
implemented. SDR supports a reusable and modular product
design by different modeling features: systems with ports, a
taxonomy with system types, interfaces with types, and modular
constraints between parameters of systems. SDR stresses the
principles of modular system design. This requires a thorough
and consistent segmentation of the system at all levels. Moreover,
a well-chosen set of interfaces between the modules is defined.

SDR serves as a design assistant. A block diagram editor
allows to describe systems, ports and interfaces. Constraint
propagation and constraint solving is seamlessly integrated in the
modeling of the system structure. SDR supports a least
commitment approach during the product design process in order
to capture uncertainty in early design phases adequately and to
support reusability. Future research will tackle specific issues of
reasoning, user interactions, and documentation.

1 INTRODUCTION

The vendors of transportation systems and their subsystems
(products like cars, engines, etc.) are faced with a dramatically
increasing pressure to reduce their costs and to accelerate their
product development and their innovation processes. In addition,
the market demands customer-adapted solutions. These solutions
often must include customer services like operating a technical
system, and contracts assuring the reliability, availability, and
life-cycle costs of the products. Vendors must master the entire
system and gain the system leadership. They design the technical
system and specify the interfaces; the suppliers have to design and
manufacture the subsystems of the entire system. In the following,
design is meant as the process of engineering technical systems.

Considering this situation, the vendors cannot focus on
improvements in detail. The only way to stand competition is to
optimize the entire system. These reduction efforts must cover
products as well as production processes.

Possible measures to tackle the costs are:
• To modularize the product and its design and to reuse

solutions for partial problems. By doing this, the variety of
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components necessary to cover all market segments
decreases and the costs for production can be reduced, but
enough flexibility to offer customer-oriented solutions
remains.

• To treat in parallel technical aspects and cost during the
design process (design-to-cost).

Figure 1.     Defining and producing reusable systems

Different divisions of the DaimlerChrysler group have to organize
the process chain as sketched in Figure 1. An efficient IT support
is crucial for fulfilling this task. In the following we present a
pilot application from a subsystem vendor of the DaimlerChrysler
group.

2 A PILOT APPLICATION

Water pumps are an integral part of many combustion engines in
automobiles. They effect the circulation of the cooling water
through the engine block in order to cool the engine. The water
pumps modeled during our pilot application are produced in the
automotive plant of the DaimlerChrysler Group in Berlin-
Marienfelde, Germany.

Designing water pumps is a typical routine task. For bidding, a
draft design and a cost estimation for the water pump which is to
be designed and manufactured is elaborated. To fullfill a
customer’s order, a detailed design of the water pump must be
worked out. This design of a water pump is partly based on the
reuse of existing parts / designs of water pumps. But typically for
each new design of a water pump, some new parts have to be
designed or existing parts have to be adapted, for instance
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geometrically. In addition to these tasks, design management and
retrieval are the main topics in this domain of designing water
pumps.

Figure 2.     A typical water pump (cross-section view)

2.1 Hydraulic Aspects

The characteristic figures of the water pump depend on the flow
speed, differential pressure, and pump rotation speed and have to
be determined. The shape of the impeller, the number and shape
of its blades, the interaction of the impeller with the spiral are the
set-screws to determine the hydraulic behavior. The relationships
between flow speed, differential pressure, rotational speed, and
the shapes of impeller and spiral are very complicated and are
described by estimating formulae in this phase. From a general
overall problem-solving viewpoint, the main aspect is the
integration of this part of problem solving into the other design
activities (like the design of the shaft and the bearing, the driving
system).

2.2 Aspects of the Mechanical Drive

The mechanical forces of driving and driven components must fit.
For instance, if a belt-pulley system is chosen for driving the
pump, then the rotational and axial forces acting on the shaft and
the bearing are to be considered for their design. But if an
electrical system is chosen, then the specifications of the electrical
engine is decisive.

2.3 Geometric Aspects

Examples of geometric aspects are the diameter values of the
shaft and the bearing depending on the chosen material; the shape
of the impeller and the spiral influencing the size of the pump
housing; the relationships between pulley diameter and housing
size determining the choice of the connection between the pulley
and the shaft. Another important geometric aspect is how the
water pump fits into the predefined packaging space without
unwanted interferences with other systems around the engine of
the automobile.

3 MODELING PRODUCTS WITH SDR

SDR is the abbreviation for “System Design for Reusability”  and
it is a software tool developed by DaimlerChrysler’s Division
Research and Technology. Modeling a product with SDR breaks
down into three tasks:

• modeling the properties of a product and its sub-systems,
• modeling the product structure and
• modeling the design logic behind the product.

Modeling the properties is usually achieved by defining attributes
for systems describing properties (parameters) like size, weight,
cost or material. The product structure can be presented by means
of a product tree (part-of-tree). Rules or constraints can describe
the dependencies and the reasoning behind the product, thus
defining its design logic.

Figure 3.     Parameters describing the required hydraulic
 and mechanical properties

The product structure can be analyzed from two perspectives:
vertical and horizontal. The vertical product structure is usually
modeled by means of a part-of-relationship. Each system is linked
to the sub-systems it consists of via such a part-of-relationship.
These systems again are linked to their constituent sub-systems,
etc. The transitive closure over the part-of-relationship –
beginning with the product root node – yields a product tree.

Beside the vertical structure, the horizontal product
structure plays an important role in the design of a product,
although many product structure models (e.g. those in EDM
systems) ignore it. It defines how systems are connected and
which relationships exist between the systems that belong
together building one assembled system. The horizontal structure
is modeled with the help of a connected-with-relationship, leading
to graphs which describe the part topology.

In order to distinguish between different connections from one
system to another, SDR offers the modeling construct of attaching
ports to systems. If for example a certain system A has a
mechanical connection to another system and an electrical
connection to a third system, you attach two ports, mechanics and
electrics, to the system A.

These are also the basic ideas behind the SDR product model.
This product model describes systems by listing their properties
and the constraints that hold on these properties. It also uses ports
to define the potential connectivity of systems. But, as we wil l see
in the following, it adds a few more features that enhance
reusability.
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Figure 4.     The application of the water pump design in SDR

3.1 The First Step to Reusability: Introducing
Types

Abstraction is the key to reusability. In order to get rid of the
context of a certain system description, the engineer would prefer
to reuse a more generalized and more abstract version of the
system to be designed that is not burdened with the specific
details of a particular design context. This generic system
definition can be provided by a system type where the actual
systems in the different design contexts are instances of this type.

The system type models have those properties and rules which
hold for all instances of this type. Types allow to reuse system
definitions in other design contexts by creating instances of this
type in the new design context.

In order to enable reuse of knowledge between types, an
inheritance hierarchy of the types (taxonomy) is implemented.
Properties as well as rules/constraints are inherited.

Besides increasing efficiency, type hierarchies also support a
least commitment approach to design. The engineer is not forced
to commit early to detailed design decisions he can not reasonably
justify. Instead, in early stages of design, he / she commits to
more abstract classes (e.g. to the type “motor“) than in later
stages (e.g. to an AC-motor with 360 V).

The inheritance hierarchy also helps to get an overview of the
available system types, which is important for the reuse of
systems. Usually, the reuse process is semi-automatic. The
engineer selects a certain abstract system type (e.g. AC motor)
and specifies a few desired properties. SDR now searches for
types which meet these requirements and propose them to the
engineer. An inheritance hierarchy helps the engineer
significantly to define a starting point for the search.

So far, we have treated product structure and system types
quite independently. To closely integrate them, it is necessary to
introduce a third kind of entity (besides types and instances) that
represents a system used to build another system. Being used in
the structural definition of another system type (which is in turn
supposed to be reused) is a new role that can not be captured by
means of types and instances which only deal with the reuse of
the system itself.

In SDR, this task leads to system refinements (describing
types), system applications (corresponding to the usage of a
system inside another system) and system instances. A simple

example: The SDR model of a streetcar with three vehicles, i.e.
three wagons each of them having two bogies, has 3 x 2 = 6
system instances of bogies. The system refinement of the vehicle
has two system applications of the type bogie.

Figure 5.     System application and system refinement

3.2 The Second Step to Reusability: Introducing
Interfaces

Reusing a system basically means to move it from one context to
another. This can only work properly if the system's relationships
to its environment (i.e., its dependencies with other systems) are
clearly defined and made explicit. A convenient way to model
these relationships of a system to the outside world (that means
with other systems) is to define interfaces to other systems.

SDR’s modeling language for interfaces is as rich as the one
used for systems. One can attach properties and constraints to
interfaces, interfaces are typed, and properties are inherited along
an interface taxonomy. Types and inheritance yield the same
benefit for interfaces as they do for systems. Interfaces offer a
number of advantages:
• Interfaces explicitl y describe which relationships exist

between a system and its environment (neighboring system
modules) and make clear under which terms this system can
be reused.

• Interfaces can model connecting parts between systems,
relationships and dependencies between systems (e.g.,
distances), or even background knowledge about laws of
physics etc. Therefore, interfaces are fundamental for
modularity.

• Interfaces tend to have a longer life-span than systems, and
thus provide a stable backbone for the design knowledge
base.

• Interfaces are important for modularity, as they describe the
dependencies between systems. Interfaces also help to model
the technical reasons for system relationships.

In our application studies for the SDR tool, we have used
interfaces for a variety of purposes:
• to model the data flow from the initial specification down to

the component parameters;
• to model the flow of force along mechanical components;
• to model the relationships between subway tracks and the

subway lines running on these tracks;
• to model the transportation line for bags in an airport luggage

system;
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• to model the electric connections and control systems in a
street-car;

• to model the geometric interrelations between parts of the
water pump.

Figure 6 shows the system refinement of a water pump with four
system applications (boxes), three external ports for describing
the required properties, and interfaces between these applications
and ports (lines).

Figure 6.     System refinement of a water pump

3.3 The Third Step to Reusability: Modular
Constraints

The last step in achieving as much modularity as possible is to
modularize not only the product, but also the design logic behind
it. This is a crucial factor for the maintenance of the knowledge
base behind a configuration design tool, which often suffers from
a lack of modularity in the knowledge base and therefore cannot
be maintained cost-efficiently. Often, local changes in a
knowledge base do not remain local, but lead to changes in other
parts of the knowledge base, which in their turn cause other
changes etc. In order to keep local changes local, the knowledge
base has to be modular, too.

SDR constraints attached to systems fall into one of three
classes, depending on how much the parameters/variables in the
constraint are spread:
• constraints over parameters at one single system,
• constraints over parameters at subsystems of one system,
• constraints over parameters which are distributed over

several systems.

Figure 7 shows a modular constraint between a system which is
attached to the interface between the casing and the other
subsystems of the water pump (driving, suspension, delivery).
Each subsystem must fit into the casing and therefore must have a
smaller overall-length than the casing. Notice that the constraint
does not need to be changed if another subsystem is added.

Constraints of the first kind are local and raise no problem in
terms of reusability, as they have no connection to other systems.
Constraints over parameters at subsystems occur frequently, e.g.
to compute the total weight of a system by summing up the
weights of its subsystems. If we restrict ourselves to constraints
connecting different subsystems of the same system refinement,
these constraints do not limit reusability. Therefore, the
subsystems of a certain system type are part of its definition and
thus available any time the system is used.

The third kind of constraints is more tricky and the one that
usually hinders reuse. One cannot assume that several systems are
always used and reused together just because there is a constraint
that touches all of them. Moreover, it is not quite clear which
system the constraint should be attached to. The SDR solution is
to attach it to none of the systems, but to an interface that
connects the systems. This has the advantage that it does not
arbitrarily place chunks of knowledge at one system where others
are also affected. It also stresses that interface modeling is very
helpful in reducing the maintenance cost for a knowledge-based
configuration design tool.

Figure 7.     A constraint between systems attached to an interface

4 SDR AS A DESIGN ASSISTANT

SDR is an assisting tool which relieves the designer from routine
work steps and focuses on the early design stages (see Figure 1).
By getting rid of boring and time-consuming tasks he / she can
concentrate on problems which demands the engineer’s creativity
and experience. As a formalized description of all significant
relationships between subsystems belongs to a SDR model, SDR
is able to find automatically all consequences of the engineer’s
decisions and can keep track of the design process. A SDR user
can explicitly describe a solution for a specific customer as well
as a generic solution which offers the freedom of being adapted to
different requirements.

The most simple way to use SDR is to regard it as a
comfortable editor for system design tasks that captures design
information and allows to easily navigate through a large system
design space. Design information is structured according to the
product structure. The model structure underlying SDR can model
the vertical product structure (the classical product tree) as well
as the horizontal structure between subsystems. The user
(designer) mainly works with an editor where he / she can plot the
internal structure of a system by drawing a graph where nodes
represent subsystems and links between the nodes represent
interfaces between subsystems. He / she can pick a node to refine
it, which means that a new editor window pop up where the user
can enter the internal structure of this system. Parallel to this
editor, SDR shows the resulting product tree in a second window.
The user can also define parameters for each system and interface
and attach comments to systems, interfaces and parameters.
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SDR also performs computations and checks on the current
system design, based on constraints attached to system and
interface types defined by the user or reused from the taxonomy.
Selecting a type forces the system to load the knowledge
expressed in the constraints into the current design. This way,
SDR does not only support the reuse of systems and components,
but also serves as a corporate memory for engineering knowledge.
Integrating constraint techniques into SDR brings two challenges.
The first is to integrate them seamlessly with the structure
modeling and taxonomy techniques without losing the reusability
of systems and interfaces. The second is to make the constraint
machine flexible enough so that SDR can be an interactive
assistant instead of a tool that forces the engineer to solve system
design problems in a predefined way and hinder the engineer’s
creativity.

Figure 8.     SDR showing an inconsistency using a conflict sheet

SDR supports a least commitment approach which is essential
in system design for two reasons. First, it allows the engineer to
express the uncertainty in both design specification and design
decisions by assigning intervals or sets instead of crisp values to
parameters. Second, it improves reusability. A motor designed to
run at a range of 200 V to 230 V should be modeled with this
interval instead of the crisp value of 220 V the motor runs within
a certain design. The least commitment approach is supported by
a system taxonomy and by reasoning on intervals, e.g.

5 CONSTRAINT SOLVING

The SDR inference engine enables SDR to be an interactive
design assistant. It consists of two parts: a constraint machine that
is based on the DeltaBlue algorithm [9] and was extended to
handle value domains, and a JTMS (justification-based truth
maintenance system, [5]). The inference engine performs the
following tasks:
• handle numerical as well as symboli c parameter values,
• propagate value ranges (intervals for numerical parameters)

and value sets (for symboli c parameters) to support a least-
commitment approach to the definiti on of parameter values,

• check parameter value ranges and sets for consistency with
constraints (an empty interval or set means an inconsistency),

• help the user to resolve inconsistencies by computing the
minimal confli ct set of value assignment to parameters that
caused the inconsistency,

• continue the design process even when the design state is
inconsistent.

Figure 8 shows how SDR presents a confli ct. The designer has
specified that the new water pump has a transmission rate of 0.8
(ratio of the diameters of the pump’s and the motor’s belt pulley).
He / she has selected the water pump M160, an existing type. The
diameter equals 150 (motor’s belt pulley) and 105 (pump’s belt
pulley), resp. These three statements are inconsistent.

6 RELATED WORK

The idea of types is not a new one, of course. Their integration
with a recursive product structure has been solved in a similar
way by [4], [16]. Object-oriented product models and constraints
can, for example, also be found in [18], [19]. Extensive interface
modeling and the strict modular use of constraints are ideas that
we have not seen published anywhere else. Our approach was
influenced by the idea of resource-based configuring [12]: A
technical system is automatically configured by assembling a set
of given components, and the interdependencies between these
components are described by means of resources. Configuration is
mostly based on the closed world assumption. Working with SDR
is not only about using a library of parts / objects but about
designing new parts. So SDR is not just a configuration tool [11]
but a design assistant as it supports the early phases of design.

Taxonomies are well known from object-oriented programming
languages like C++ or Smalltalk [10] and from 'description logic'
[3], [9].

Typically block diagrams are used for describing the internal
structure of a system. Most simulation systems offer hierarchical
structure modeling, often based on DEVS [19]. Dedicated
software object-oriented engineering methods are presented in [2].

Constraint techniques are still an expanding field of research.
[13] gives an overview for finite domain constraint techniques,
[14] presents a description for arithmetic constraints. [1] defines a
constraint logic programming language over intervals. [15] gives
an overview over constraint logic programming.

[6] describes a first approach on combining these basic
techniques, used in simulation models to determine a consistent
set of initial state variables. There are some differences between
this work and ours, however. We understood from [6] that their
approach does not use typed interfaces organized in a taxonomy,
although they model connections between components. Other
differences concern the inference engine: their work is based on
the SkyBlue algorithm, the non-incremental version of DeltaBlue
[9]; they do not use an equation solver but have to enter all
functions belonging to a constraint expli citl y; there is no means of
handling sets and value intervals. They also do not tackle
problems of modularity.

Our work does not primarily aim at improving these basic
technologies. Instead, we combine these technologies to create
applications that can tackle complex, business-relevant
application problems. Our field of research is the interaction
between basic technologies in order to make them work together.
We regard the improvement and integration of all these ideas and
their implementation in the tool SDR as the major contribution of
SDR to the scientific community.
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7 FUTURE RESEARCH

Our future research will tackle the following issues.

7.1 Reasoning

• SDR will perform reasoning on sets. Example: each part has
a set of different legal permissions. The permission of the
entire product is calculated as the intersection of all part
permissions.

• We think about connecting SDR to a commercial constraint
solver or an equation solver. We are searching for suitable
tools.

• SDR should reason on qualities of system parameter. An
example: a device consumes electrical energy with a standard
voltage of 230V which is required to be within a range of
±10V and a frequency of 50 Hz ± 1Hz.

• SDR should be able to select automatically some system
types which best fit to a given system application or system
instance. Either the user selects a type among some pre-
selected types or the tool automatically selects a type.
Possible techniques: similarity assessment as known from
case-based reasoning or graph grammars.

7.2 User Interaction

• A user should enter the input parameter via Intranet.
• How to present the user the results of reasoning efficiently?

How to filter the important data and constraints and to omit
the other ones?

• The reasons of an inconsistency should be presented as
shortly as possible. The final cause of a conflict should be
discovered.

• The ability of SDR to check the constraint network on
completeness and consistency will be improved. An example
is a check whether some constraints contradict each other,
i. e. they can ,in principle, not be fulfilled. An example: x = y
AND y = z AND z = x + 1 can never be fulfilled.

7.3 Additional Features

• A documentation should be generated automatically. We
have implemented a prototypical solution. A good way seems
to connect SDR to a commercial report generating tool.

7.4 Conclusion

We do not have complete and sufficient solutions but we want to
encourage a discussion about the topics.
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