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Abstract

Argumentation is a process by means of which we reach ac-
ceptable conclusions through logical reasoning. To specify
accepted arguments, abstract argumentation frameworks use
only two notions - a set of abstract arguments and a defeat
relation between arguments. To instantiate an abstract argu-
mentation framework, further steps are needed to take.
We introduce abstract argumentation framework with struc-
tured arguments. Arguments are still abstract in the sense
that they are not constructed but they are partially ordered
with subargument relation. An attack represents direct con-
flict between two arguments. Defeat relation can be viewed
as a successful attack propagated upwards through superar-
guments.
There exist many ways how to define which attacks are suc-
cessful and under which conditions they propagate through
superarguments. In this paper, we study properties and con-
sequences of such design decisions. We analyze several exist-
ing approaches and show how they instantiate our framework.

Introduction
To describe the structure of a specific argumentation for-
malism, five steps are needed to take. Argumentation for-
malisms are based on underlying logical language, notion
of argument and attack between arguments, defeat relation
among arguments and a definition of the status of an argu-
ment (Prakken and Vreeswijk 2002). Each from these no-
tions can be expressed by means of the previous. Status of an
argument depends on the notions of argument and defeat re-
lation, defeat relation depends on the structure of arguments
and attack relation, attack relation depends on the notion of
argument and underlying logical language, and the structure
of arguments depends on underlying logical language.

Abstract argumentation frameworks (Dung 1995) are
used to define the status of an argument only in terms of ar-
guments and defeat relation. They neither consider the struc-
ture of arguments nor specify defeat relation. One of the
most accepted semantics of abstract argumentation frame-
works are preferred, stable, grounded, and complete exten-
sions (Dung 1995).

In the existing literature, it is usually distinguished be-
tween attack and defeat relation. An attack represents direct
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conflict between arguments. In general, not all attacks are
required to be successfull. For example, if two arguments
rebut each other but one of them is more preferred than the
other one, only one attack becomes successfull. (Prakken
and Sartor 1997; Prakken 2010; Garcı́a and Simari 2004)
A defeat can be viewed as a successfull attack propagated
upwards through superarguments. Similarly as attack does
not always become successfull, defeat does not always have
to propagate. For example, if an argument A rebuts an argu-
ment B, we may want to stop defeating a superargument of
B which attacks an assumption of A. (Prakken and Sartor
1997)

In this paper, we introduce structured argumentation
framework. We will use it to study various existing ap-
proaches how to define defeat relation in terms of structure
of arguments and attack relation (Prakken and Sartor 1997;
Garcı́a and Simari 2004; Amgoud et al. 2005; Caminada and
Amgoud 2007; Prakken 2010). We should clarify what we
mean by “structured argument”. Although one could require
to distinguish at least between premises and conclusions of
an argument, for our purposes in this paper, subargument re-
lation is the only necessary part of argument’s structure to
be considered. Therefore we neither consider any specific
structure on arguments nor specify attack relation. We only
assume that arguments are partially ordered by subargument
relation.

We also do not define specific defeat relation for a given
attack relation. The main result of this work is an analysis
of sufficient properties of structured argumentation frame-
works such that standard Dung’s extensions will be closed
under subargument relation and consistent with respect to
attack relation. An interesting result is that in the case of
standard Dung’s semantics, the propagation of the defeat re-
lation on the left side does not matter.

Preliminaries
An abstract argumentation framework is a pair (A,D)
where A is a set of arguments and D ⊆ A × A is a de-
feat relation. An argument A defeats an argument B if
(A,B) ∈ D. A set of arguments S defeats an argument
B if there exists an argument in S defeating B. A set of
arguments S is conflict-free if there are no arguments A and
B in S such that A defeats B. An argument A is accept-
able with respect to a set of arguments S if each argument



B defeating A is defeated by S.
A conflict-free set of arguments S is admissible if each

argument in S is acceptable with respect to S. A pre-
ferred extension is a maximal (with respect to set inclu-
sion) admissible set of arguments. A conflict-free set of
arguments S is called a stable extension if S defeats each
argument which does not belong to S. The characteristic
function F : 2A 7→ 2A is defined as F (S) = {A ∈ A |
A is acceptable with respect to S}. The grounded extension
is the least fixed point of F . An admissible set of arguments
S is called complete extension if S contains all arguments
acceptable with respect to S.

Structured Argumentation Frameworks
Now we are going to introduce structure on arguments by
means of subargument relation. Superarguments are built
upon their subarguments. Each conflict between two argu-
ments has its origin. We will denote those sources of con-
flicts by attack relation. Each successful attack becomes de-
feat and under some conditions, it will propagate upwards
through superarguments of conflicting arguments.

First we will give an informal example for illustration of
subargument concept.
Example 1. A = “Tweety flies because it is a bird” is an
argument based on its subargument B = “Tweety is a bird”.
In such cases we will write B v A.
Definition 1. A structured argumentation framework is
a triple (A,v,R) where (A,v) is a partially ordered set
of arguments andR ⊆ A×A is an attack relation.

We say that an argument A is a subargument of an argu-
ment B if A v B. A subargument A of an argument B is
strict (denoted A < B) if A 6= B. A set of arguments S
is closed (under the subargument relation) if S contains all
subarguments of each argument in S. A set of arguments S
is consistent if there are no arguments A and B in S such
that A attacks B.

In (Martı́nez, Garcı́a, and Simari 2006), authors de-
fine similar concept as structured argumentation framework.
They use conflict between arguments and a preference rela-
tion on arguments instead of attack between arguments. At-
tack relation can be viewed as resolution of a conflict with
respect to preference relation. To keep definitions as simple
as possible, we assume that preference relation is already
contained in attack relation.

Although structured argumentation framework can be
viewed as an instantiation of Dung’s abstract argumentation
framework, they are still abstract. They do not specify how
to build arguments from their subarguments or how to define
an attack between two arguments.

There exist many different ways how to instantiate an ab-
stract argumentation framework (A,D) with a structured ar-
gumentation frameworks (A,v,R), or to define a defeat re-
lationD by means of a given set of arguments (A,v) and an
attack relationR. In the following example we show that, in
general, we can not simply let D = R.
Example 2. Let A = {A,B,C}, B v C and (A,B) ∈ R.
If D1 = R then E1 = {A,C} is the grounded extension
of AF1 = (A,D1). We can see (Figure 1) that C belongs

to the extension E1 but its subargument B does not. This is
very unintuitive, since the argument C is justified on the un-
grounded base B. On the other hand, if we take defeat rela-
tion D2 = R∪{(A,C)}, E2 = {A} is the grounded exten-
sion of AF2 = (A,D2) and it is closed under subargument
relation. Closure under subargument relation is in the lit-
erature known as a compositionality principle (Prakken and
Vreeswijk 2002).
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B

Figure 1: Visualization of the argumentation framework
from the Example 2.

In general, we do not require that a defeat relation al-
ways propagates upwards through superarguments on the
right side. But if it does not, backward defeat can be the
only reason.

Property 1. If an argument A defeats a subargument of an
argument B then A defeats B or B defeats A.

In the following figures, arguments are visualized as tri-
angles, defeats as solid and attacks as dashed arrows.
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Figure 2: Consequences of the Property 1

Similarly, we may propagate defeat relation upwards
through superarguments on the left side. As we have seen
in the Example 2, propagation on the right side is necessary.

Property 2. If a subargument of an argument A defeats
a subargument of an argument B then A defeats B or B
defeats A.
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Figure 3: Consequences of the Property 2



Observation 1. Let (A,v,R) be a structured argumenta-
tion framework and AF = (A,D) be an abstract argumen-
tation framework. If AF satisfies the Property 2 then AF
also satisfies the Property 1.

Proof. Let AF satisfies the Property 2. If we take A′ = A,
AF also satisfies the Property 1.

It can be easily seen from Figure 3 that converse implica-
tion does not hold: argument A′ defeats B′, B′ v B, but
neither A′ defeats B, nor B defeats A′.

Lemma 1. Let (A,v,R) be a structured argumentation
framework and AF = (A,D) be an abstract argumenta-
tion framework. Let S be a complete extension of AF . If
each subargument of an argument A is acceptable with re-
spect to S whenever A is acceptable with respect to S then
S is closed.

Proof. Let S be a complete extension of AF and A be an
argument in S. Since S is complete, A is acceptable with
respect to S. Then each subargument of A is acceptable
with respect to S. Since S is complete, each subargument of
S belongs to S. Thus S is closed.

Proposition 1. Let (A,v,R) be a structured argumenta-
tion framework and AF = (A,D) be an abstract argumen-
tation framework. If AF satisfies the Property 1 then each
complete, preferred, stable, and grounded extension of AF
is closed.

Proof. Let S be a complete extension of AF , A be an argu-
ment acceptable with respect to S. Let A′ be a subargument
of A and B be an argument defeating A′. If B defeats A
then S defeats B since A is acceptable with respect to S.
Let B does not defeat A. According to the Property 1, A
defeatsB. BecauseA belongs to S, S defeatsB. ThenA′ is
acceptable with respect to S and according to the lemma 1,
S is closed. Since preferred, stable and grounded extensions
are complete extensions, they are also closed.

Now we need to relate attack and defeat. The following
two properties formalize the necessary condition for defeat
relation. These properties indeed say that each defeat has its
origin in attack.

Property 3. If an argument A defeats an argument B then
there exist subarguments A′ of A and B′ of B such that A′
attacks B′ and each argument between A′ and A defeats
each argument between B′ and B.
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Figure 4: Visualization of the Property 3.

Similarly as we extended propagation of the defeat rela-
tion on the left side, we can restrict existence of the attack
relation only to the right side.
Property 4. If an argument A defeats an argument B then
there exists a subargument B′ of B such that A attacks B′
and A defeats each argument between B′ and B.
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Figure 5: Visualization of the Property 4.

Observation 2. Let (A,v,R) be a structured argumenta-
tion framework and AF = (A,D) be an abstract argumen-
tation framework. If AF satisfies the Property 4 then AF
also satisfies the Property 3.

Proof. Let AF satisfies the Property 4. If we take A′ = A,
AF also satisfies the Property 3.

It can be easily seen from Figure 4 that converse impli-
cation does not hold, if A′ < A: argument A defeats B,
B′ v B, but A does not attack B′.

Now it is time to show that in the case of standard Dung’s
semantics, the propagation of the defeat relation on the left
side does not matter.
Definition 2. Let (A,v,R) be a structured argumentation
framework and AF = (A,D) be an abstract argumentation
framework. A left-restriction of the defeat relation D to the
attack relation R is a binary relation {(A,B) ∈ D | ∃B′ v
B: (A,B′) ∈ R}.

An attack is successful if it becomes defeat. Two ab-
stract argumentation frameworks are right-equivalent if the
propagation of successful attacks upwards through superar-
guments on the right side is the same in both frameworks.
Definition 3. Let (A,v,R) be a structured argumentation
framework, AF1 = (A,D1) and AF2 = (A,D2) be ab-
stract argumentation frameworks. We say thatAF1 andAF2

are right-equivalent if the left-restriction of D1 to R equals
to the left-restriction of D2 toR.
Example 3. Let A = {A,A′, B,B′}, A′ < A, B′ < B
and R = {(B′, A′)} (see Figure 6). Let D1 = R,
D2 = D1 ∪{(B′, A)} and D3 = D2 ∪{(B,A′), (B,A)}.
Then argumentation frameworks (A,D2) and (A,D3) are
right-equivalent, but (A,D1) and (A,D2) are not because
(B′, A) /∈ D1.

Lemma 2. Let (A,v,R) be a structured argumentation
framework, AF1 = (A,D1) and AF2 = (A,D2) be ab-
stract argumentation frameworks. Let S be a complete ex-
tension of AF1. If AF1 and AF2 are right-equivalent and
satisfy the Properties 1 and 3 then
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Figure 6: Visualization of argumentation frameworks form
the Example 3.

1. If S defeats an argument A in AF1 then S defeats A in
AF2.

2. S is conflict-free in AF2.
3. If an argument A is acceptable with respect to S in AF1

then A is acceptable with respect to S in AF2.
4. S is admissible in AF2.

Proof.

1. Since S defeats A in AF1, there exist an argument B in S
such that B defeats A in AF1. According to the Property
3, there exist subargumentsB′ ofB andA′ ofA such that
B′ attacks A′ and B′ defeats A in AF1. Since AF1 and
AF2 are right-equivalent, B′ defeats A in AF2. Accord-
ing to the Proposition 1, S is closed. Then B′ belongs to
S. Thus S defeats A in AF2.

2. Since S is a complete extension of AF1, it is conflict-
free in AF1. Let B and A be arguments in S such that B
defeatsA inAF2. According to the Property 3, there exist
subarguments B′ of B and A′ of A such that B′ attacks
A′ and B′ defeats A in AF2. Since AF1 and AF2 are
right-equivalent, B′ defeats A in AF1. According to the
Proposition 1, S is closed. Then B′ belongs to S. We
have a contradiction since S is conflict-free in AF1.

3. Let B be an argument such that B defeats A in AF2. Ac-
cording to the Property 3, there exist subarguments B′ of
B and A′ of A such that B′ attacks A′ and B′ defeats A
in AF2. Since AF1 and AF2 are right-equivalent, B′ de-
feats A in AF1. Since A is acceptable with respect to S
in AF1, S defeats B′ in AF1. Then S defeats B′ in AF2.
Thus A is acceptable with respect to S in AF2.

4. Since S is a complete extension ofAF1, S is admissible in
AF1. Then S is conflict-free inAF1 each argument in S is
acceptable with respect to S in AF1. Then S is conflict-
free in AF2 and each argument in S is acceptable with
respect to S in AF2. Thus S is admissible in AF2.

Proposition 2. Let (A,v,R) be a structured argumenta-
tion framework, AF1 = (A,D1) and AF2 = (A,D2) be
abstract argumentation frameworks. If AF1 and AF2 are
right-equivalent and satisfy the Properties 1 and 3 then com-
plete (resp. preferred, stable, or grounded) extensions of
AF1 and AF2 coincide.

Proof. Let S be a complete extension of AF1. Then S is
admissible in AF1 and S contains all arguments acceptable
with respect to S in AF1. According to the lemma 2, S is
admissible in AF2 and S contains all arguments acceptable
with respect to S in AF2. Thus S is a complete extension of
AF2. Similarly the opposite direction.

Preferred extension is a maximal (with respect to set in-
clusion) complete extension. Since complete extensions of
AF1 and AF2 coincide, so do preferred extensions.

Stable extension is a complete extension S which defeat
each argument A which does not belong to S. According to
the lemma 2, S defeats A in AF1 iff S defeats A in AF2.
Therefore stable extensions of AF1 and AF2 coincide.

Grounded extension is the least (with respect to set in-
clusion) complete extension. Since complete extensions of
AF1 and AF2 coincide, so does grounded extension.

Corollary 1. Let (A,v,R) be a structured argumentation
framework, AF1 = (A,D1) and AF2 = (A,D2) be ab-
stract argumentation frameworks. If AF1 and AF2 are
right-equivalent, AF1 satisfies the properties 2 and 3, and
AF2 satisfies the properties 1 and 4 then complete (resp.
preferred, stable, or grounded) extensions of AF1 and AF2

coincide.

Proof. Since the property 2 implies the property 1 and the
property 4 implies the property 3, complete (resp. preferred,
stable, or grounded) extensions of AF1 and AF2 coincide
according to the previous proposition.

We do not require that all attacks are successful. Similarly
as in the case of propagation of defeat relation, the only rea-
son for an unsuccessful attack is backward defeat.

Property 5. If an argument A attacks an argument B then
A defeats B or B defeats A.

A B

⇑

A B

⇑

Figure 7: Consequences of the Property 5

Proposition 3. Let (A,v,R) be a structured argumenta-
tion framework and AF = (A,D) be an abstract argumen-
tation framework. If AF satisfies the Property 5 then each
complete extension of AF is consistent.

Proof. Let S be a complete extension. Then S is conflict-
free. Let A and B be arguments in S such that A attacks B.
Then A defeats B or B defeats A. We have a contradiction
since S is conflict-free.



Instantiations
There exist many instantiations of abstract argumentation
frameworks. We focus on two of them (Amgoud et al. 2005;
Prakken and Sartor 1997), because they are well-known and
both use some of the Dung’s semantics. Since our analy-
sis is based upon Dung’s semantics (Dung 1995), approach
by Garcı́a and Simari (Garcı́a and Simari 2004) cannot be
directly investigated in this paper.

ASPIC
In (Amgoud et al. 2005), the underlying logical language is
unspecified, but it is closed under negation.

Definition 4 (Defeasible Theory). Let L be a language.
A strict rule is an expression

φ1, . . . , φn → φ0

where 0 ≤ n and each φi, 0 ≤ i ≤ n, belongs to L. A de-
feasible rule is an expression

φ1, . . . , φn ⇒ φ0

where 0 ≤ n and each φi, 0 ≤ i ≤ n, belongs to L. A de-
feasible theory is a pair (S,D) where S is a set of strict rules
and D is a set of defeasible rules.

A transposition of a strict rule φ1, . . . , φn → φ0 is a strict
rule of the form φ1, . . . , φi−1,¬φ0, φi+1, . . . , φn → ¬φi
for some 1 ≤ i ≤ n.

Definition 5 (Closure). Let S be a set of strict rules. The
closure of S under transposition is a minimal set of strict
rules Cl tp(S) satisfying

• S ⊆ Cl tp(S)
• if r ∈ Cl tp(S) and r′ is a transposition of r then r′ ∈
Cl tp(S)
In the following, d.e is objectification function introduced

by Pollock (Prakken and Vreeswijk 2002) that transforms
meta-language expressions into object-language.

Definition 6 (Argument). Let (S,D) be a defeasible theory
such that Cl tp(S) = S. An argument is an expression A of
the form

• [A1, . . . , An → ψ] if 0 ≤ n and A1, . . . , An are argu-
ments such that CONC(A1), . . . ,CONC(An) → ψ be-
longs to S

CONC(A) = ψ

SUB(A) = SUB(A1) ∪ . . . ∪ SUB(An) ∪ {A}
TOP(A) = CONC(A1), . . . ,CONC(An)→ ψ

• [A1, . . . , An ⇒ ψ] if 0 ≤ n and A1, . . . , An are argu-
ments such that CONC(A1), . . . ,CONC(An) ⇒ ψ be-
longs to D

CONC(A) = ψ

SUB(A) = SUB(A1) ∪ . . . ∪ SUB(An) ∪ {A}
TOP(A) = CONC(A1), . . . ,CONC(An)⇒ ψ

An argument A is a subargument of an argument B if
A ∈ SUB(B). An argument A undercuts an argument B
if CONC(A) = ¬dTOP(B)e and TOP(B) ∈ D. An argu-
ment A rebuts an argument B if CONC(A) = ¬CONC(B)
or CONC(B) = ¬CONC(A). An argument A restrictively
rebuts an argument B if A rebuts B and TOP(B) ∈ D.

Definition 7 (Attack). An argument A attacks an argument
B if A undercuts B or A restrictively rebuts B and A 6≺ B.

Definition 8 (Defeat). An argument A defeats an argument
B if there exist subarguments A′ of A and B′ of B such that
A′ attacks B′.

In ASPIC, each attack is successful. Defeats always prop-
agate upwards on the both sides.
Example 4. Tweety is a penguin. All penguins are birds.
Birds usually fly. Penguins usually do not fly. It is not true
that penguins usually fly because they are birds.

• φ1:→ penguin(tweety)

• φ2: penguin(X)→ bird(X)

• φ3: bird(X)⇒ flies(X)

• φ4: penguin(X)⇒ ¬ flies(X)

• φ5: penguin(X)⇒ ¬dbird(X)⇒ flies(X)e
Five arguments can be constructed

• A1 = [→ penguin(tweety)]

• A2 = [A1 → bird(tweety)]

• A3 = [A2 ⇒ flies(tweety)]

• A4 = [A1 ⇒ ¬ flies(tweety)]
• A5 = [A1 ⇒ ¬dbird(tweety)⇒ flies(tweety)e]

We can see that the argument A5 undercuts the argument
A3 and thus A5 also defeats A3. Similarly, the argument
A4 rebuts the argument A3. If we prefer the more specific
argument A4 over the more general argument A3, A4 also
defeats A3.

Proposition 4. A structured argumentation framework in-
stantiated according to (Amgoud et al. 2005) satisfies the
Property 2.

Proof. Let A′ be a subargument of A, B′ be a subargument
ofB, andA′ defeatsB′. According to the Definition 8, there
exist subarguments A′′ of A′ and B′′ of B′ such that A′
attacks B′. Then A defeats B because A′′ is a subargument
of A and B′′ is a subargument of B.

Proposition 5. A structured argumentation framework in-
stantiated according to (Amgoud et al. 2005) satisfies the
Property 3.

Proof. Let argument A defeats an argument B. According
to the Definition 8, there exist subarguments A′ of A and B′
of B such that A′ attacks B′. Then A′ also defeats B′.

However a structured argumentation framework instanti-
ated according to (Amgoud et al. 2005) does not satisfy the
Property 4.
Example 5. Following arguments can be constructed from
defeasible theory (∅, {⇒ p.⇒ ¬ p.p⇒ a.¬ p⇒ b.})



• A1 = [⇒ p]

• A2 = [⇒ ¬ p]
• A3 = [p⇒ a]

• A4 = [¬ p⇒ b]

Argument A3 defeats A4, but there is no subargument B of
A4, such that A3 attacks B.
Proposition 6. A structured argumentation framework in-
stantiated according to (Amgoud et al. 2005) satisfies the
Property 5.

Proof. Let argument A attacks an argument B. According
to the Definition 8, A also defeats B.

Prakken and Sartor
In (Prakken and Sartor 1997), argumentation system is based
on the language of logic programs. Arguments are se-
quences of rules. They are not minimal in the sense that
one argument may have many conclusions.

An atom is a propositional symbol. An classical literal is
an atom or an atom preceded by classical negation ¬. A set
of classical literals S is incoherent if S contains an atom A
and a classical literal ¬A. An default literal is a classical
literal preceded by default negation ∼. A set of classical
literals S is inconsistent if S contains a classical literal L
and a default literal ∼L.
Definition 9 (Defeasible Logic Program). A strict rule is an
expression of the form

L1, . . . , Ln → L0

where 0 ≤ n and each Li, 0 ≤ i ≤ n, is a classical literal.
We will denote

head(r) = L0

body+(r) = {L1, . . . , Ln}
body−(r) = ∅
body(r) = body+(r) ∪ body−(r)

A defeasible rule is an expression of the form

L1, . . . , Lm,∼Lm+1, . . . ,∼Ln ⇒ L0

where 0 ≤ m ≤ n and each Li, 0 ≤ i ≤ n, is a classical
literal. We will denote

head(r) = L0

body+(r) = {L1, . . . , Lm}
body−(r) = {∼Lm+1, . . . ,∼Ln}
body(r) = body+(r) ∪ body−(r)

A defeasible logic program is a pair (S,D) where S is a set
of strict rules and D is a set of defeasible rules.
Definition 10 (Closure). Let S be a set of classical literals
and S be a set of strict rules. The closure of S under S is
a minimal set of literals ClS(S) satisfying
• S ⊆ ClS(S)

• if body(r) ⊆ ClS(S) then head(r) ∈ ClS(S) for each
r ∈ S

Definition 11 (Argument). Let (S,D) be a defeasible logic
program. An argument is a sequence of rules A =
[r0, . . . , rn], 0 ≤ n, such that for each 0 ≤ i ≤ n
• body+(ri) ⊆ {head(rj) | 0 ≤ j < i}
• head(ri) 6∈ {head(rj) | 0 ≤ j < i}
We will denote

CONCS(A) = ClS({head(ri) | 0 ≤ i ≤ n})
ASS(A) =

⋃
0≤i≤n

body−(ri)

An argument A is a subargument of an argument B if A
is a subsequence of B. An argument A rebuts an argument
B if ¬CONCS(A) ∩ CONCS(B) 6= ∅. An argument A un-
dercuts an argument B if ∼CONCS(A) ∩ ASS(B) 6= ∅. An
argument A is incoherent if A rebuts A or A undercuts A.
Definition 12 (Attack). An argumentA attacks an argument
B if
• A undercuts B, or
• A rebuts B and A 6≺ B, or
• B is incoherent.
Definition 13 (Defeat). An argumentA defeats an argument
B if
• A undercuts B, or
• A rebuts B, A 6≺ B, and B does not undercut A, or
• B is incoherent.
Example 6. Let P be the following defeasible logic program

r1: ∼ a ⇒ ¬ b
r2: ⇒ b
r3: b ⇒ a

and r2 ≺ r1. Consider these three arguments A1 = [r1],
A2 = [r2], A3 = [r2, r3], where A2 is a subargument of
A3. A1 attacks both A2 and A3 and A3 attacks A1. Also A1

defeats A2 and A3 defeats A1, but A1 does not defeat A3

since it is undercutted.
Example 7. Let P be the following defeasible logic program

r1: ⇒ a
r2: ∼ b, a ⇒ c
r3: ⇒ ¬ a
r4: ¬ a ⇒ b

Consider following arguments A1 = [r1], A2 = [r1, r2],
A3 = [r3, r4]. We can see thatA1 defeatsA3 with rebutting,
but A2 does not, because it is undercutted by A3.

The previous examples showed us that in formalism
(Prakken and Sartor 1997) defeat relation does not propa-
gate upwards through superarguments on the right or left
side: if an argumentA defeats an argumentB then neitherA
defeats all superarguments of B (Example 6), nor all super-
arguments of A defeats B (Example 7). However (Prakken
and Sartor 1997) still satisfies the Property 2.
Proposition 7. A structured argumentation framework in-
stantiated according to (Prakken and Sartor 1997) satisfies
the Property 2.



Proof. Let A′ be a subargument of an argument A and B′
be a subargument of an argument B such that A′ defeats
B′. According to the Definition 13, A′ undercuts B′, or A′
rebuts B′, A′ 6≺ B′, and B′ does not undercut A′, or B′
is incoherent. Let A′ undercut B′. Then A undercuts B
and thus A defeats B. Let A′ rebut B′, A′ 6≺ B′, and B′
do not undercut A′. Then A rebuts B and B rebuts A. If
B undercuts A then B defeats A. If A undercuts B then
A defeats B. Let B does not undercut A and A does not
undercut B. If A ≺ B then B defeats A. If A 6≺ B then A
defeats B. Let B′ be incoherent. Then B is incoherent and
thus A defeats B.

Proposition 8. A structured argumentation framework in-
stantiated according to (Prakken and Sartor 1997) satisfies
the Property 3.

Proof. Let an argumentA defeat an argumentB. According
to the Definition 13, A undercuts B, or A rebuts B, A 6≺ B,
and B does not undercut A, or B is incoherent. According
to the Definition 12, A attacks B in all cases.

Proposition 9. A structured argumentation framework in-
stantiated according to (Prakken and Sartor 1997) satisfies
the Property 5.

Proof. Let an argument A attacks an argument B. Accord-
ing to the Definition 12, A undercuts B, or A rebuts B and
A 6≺ B, orB is incoherent. IfB undercutsA thenB defeats
A. Let B do not undercut A. According to the Definition
13, A defeats B in all cases.

Conclusion
In this paper we introduced a structured argumentation
framework, where only a set of abstract arguments partially
ordered by a subargument relation, and an attack relation
among arguments is considered. We have studied on the ab-
stract level consequences of some design decisions how to
define defeat relation in terms of structured arguments and
attack relation.

Compositionality principle (Prakken and Vreeswijk 2002)
saying that an argument cannot be justified unless all its sub-
arguments are justified, is one of the most accepted one and
also satisfied by existing well known approaches (Prakken
and Sartor 1997; Amgoud et al. 2005; Garcı́a and Simari
2004). We have shown that compositionality principle can
be guaranteed under all traditional Dung’s semantics, no
matter what are the definitions of argument and attack, it
is sufficient that defeat relation satisfies some abstract prop-
erty.

We have also shown sufficient condition for consistency
with respect to attack relation. We have seen that propa-
gation of the defeat relation on the left side does not affect
standard Dung’s semantics.

We believe that there are two different viewpoints on for-
mal systems: the first one is interesting for theoretical analy-
sis, where ones prefers definitions as much general as possi-
ble. The second one is an implementation viewpoint, where
a programmer prefers the most specific definitions, which
are usually easier to implement and may be more efficient.

Thus, this paper successfully confirmed the relevance of
studying various design decisions of formal argumentation
systems within the structured argumentation framework.
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