
ASPIDE the Integrated Development Environment for ASP:
Progress Report

Onofrio Febbraro
DLVSystem s.r.l.

P.zza Vermicelli, Polo Tecnologico
87036 Rende, Italy

febbraro@dlvsystem.com

Nicola Leone and Kristian Reale
Dipartimento di Matematica

Università della Calabria
87036 Rende, Italy

{leone,reale}@mat.unical.it

Francesco Ricca
Dipartimento di Matematica

Università della Calabria
87036 Rende, Italy
{ricca}@mat.unical.it

Abstract

Answer Set Programming (ASP) is a truly-declarative pro-
gramming paradigm proposed in the area of non-monotonic
reasoning and logic programming; and ASPIDE is the most
comprehensive Integrated Development Environments (IDE)
for ASP. ASPIDE supports the entire life-cycle of the devel-
opment of ASP-based applications from (assisted) programs
editing to application deployment. We summarize the salient
features of the current version of ASPIDE, and describe the
ones that we have recently improved and/or newly introduced
for testing, database management, and extensibility via cus-
tom plug-ins.

Introduction
In the area of non-monotonic reasoning, according to (Baral
2003), one of the most prominent declarative programming
paradigms is Answer Set Programming (ASP) (Lifschitz
1999). A computational problem is represented in ASP by
a logic program (set of rules) whose answer sets (also called
stable models (Gelfond and Lifschitz 1991)) correspond to
problem’s solutions, which can be, thus, effectively com-
puted by an ASP solver (Lifschitz 1999). The language of
ASP is expressive (Eiter, Gottlob, and Mannila 1997): it can
deal with all problems in the second level of the polyno-
mial hierarchy; and the availability of efficient implemen-
tations (Leone et al. 2006; Simons, Niemelä, and Soininen
2002; Gebser et al. 2007; Janhunen et al. 2006; Lierler 2005;
Calimeri et al. 2011) made ASP an effective tool for devel-
oping advanced real-world applications of non-monotonic
reasoning. At the time of this writing, the applications of
ASP belong to several fields ranging from Artificial In-
telligence (Calimeri et al. 2011; Balduccini et al. 2001;
Baral and Gelfond 2000; Baral and Uyan 2001; Franconi
et al. 2001; Nogueira et al. 2001) to Information Integra-
tion (Leone et al. 2005), and Knowledge Management (Baral
2003; Bardadym 1996; Grasso et al. 2009). Moreover, in
the last few years, ASP has been employed for develop-
ing some industrial application (Ricca et al. 2010; 2011;
Grasso et al. 2011).

In order to facilitate the design of ASP applications,
some tools for ASP-program development were proposed

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that range from specialized editors (Perri et al. 2007; iGrom
2010; DLV!sual 2009; Oetsch et al. 2011; Ricca et al. 2009)
to debuggers (Brain et al. 2007b; Brain and De Vos 2005;
El-Khatib, Pontelli, and Son 2005; Oetsch et al. 2011; Brain
et al. 2007a). In the last few years, the first Integrated Devel-
opment Environments (IDE) (including several tools in the
same framework) were presented (Sureshkumar et al. 2007;
Oetsch, Pührer, and Tompits 2011a; Febbraro, Reale, and
Ricca 2011). Among them, one of the most comprehensive1

is ASPIDE (Febbraro, Reale, and Ricca 2011). ASPIDE sup-
ports the entire life-cycle of ASP development, from (as-
sisted) program editing to application deployment. ASPIDE
combines a cutting-edge editing tool with a collection of
user-friendly graphical tools for program composition, de-
bugging, testing, profiling, DBMS access, solver execution
configuration and output-handling.

This paper reports on the progress made since the first
system presentation of ASPIDE at LPNMR’11 (Febbraro,
Reale, and Ricca 2011), and describes the new features
available in the upcoming major release of March 2012.

System Features
In this section the functionalities provided by ASPIDE since
its inception (and their improvements) are described first,
then the new features are presented.

Features since LPNMR’11
Workspace organization. The system allows for organizing
ASP programs in projects similar to Eclipse, which are col-
lected in a special directory (called workspace). Complex
applications can be organized in modules (or projects) col-
lecting either different parts of an encoding or several equiv-
alent encodings solving the same problem. ASPIDE man-
ages: (i) ASP programs (ii) TYP files specifying a map-
ping between program predicates and database tables in the
DLVDB syntax (Terracina et al. 2008); (iii) TEST files defin-
ing unit tests; (iv) TEXT files that are opened in a standard
text editor; (v) PLUGIN files associated to any file format
handled by a user defined plug-in. Note that, ASPIDE plug-

1For an exhaustive comparison among the available tools for
logic programming and ASP we refer the reader to (Febbraro,
Reale, and Ricca 2011).



ins are one of the major new extensions of the IDE that are
detailed in the next section.
Advanced text editor. ASPIDE features an editor tailored
for ASP programs that offers, besides the basic functional-
ities, such as code line numbering, find/replace, undo/redo,
copy/paste, also:

• Text coloring. The editor performs keyword outlining
(such as “ :− ”) and dynamic highlighting of predicate
names, variables, strings, and comments. Specific colors
are also exploited for indicating predicates mapped to ex-
ternal databases or properly defined by annotations (more
details about annotations are reported in the next section).

• Automatic completion. The system is able to complete (on
request) predicate names, as well as variable names. Pred-
icate names are both learned while writing, and extracted
from the files belonging to the same project; variables
are suggested by taking into account the rule we are cur-
rently writing. Suggestions exploit also program annota-
tions (more details follow).

• Refactoring. The refactoring tool guides programs modi-
fication. For instance, variable renaming in a rule is done
by considering bindings of variables, and predicate name
changes are done selectively so that common side ef-
fects of find/replace are avoided by ensuring that vari-
ables/predicates/strings occurring in other expressions re-
main unchanged. Now refactoring can be done by select-
ing rules and applying some rewriting (possibly imple-
mented in a user-defined plug-in, more details follow).

Outline navigation. ASPIDE creates a graphic outline of
both programs and TYP files, which represents language
statements. Each item in the outline can be used to quickly
access the corresponding line of code (a very useful feature
when dealing with long files), and also provides a graphical
support for building rules in the graphical editor. The schema
management of predicates was improved by adding support
for attribute names, datatypes, and external source handling.
An additional panel was added to shows the schema annota-
tions.
Dependency graph. The system provides a graphical repre-
sentation of several variants of the (non-ground) dependency
graphs associated to the project.
Dynamic code checking and errors highlighting. Programs
are parsed while writing, and arity and safety errors or pos-
sible warnings are immediately outlined without the need
of saving files. Note that, the checker considers the entire
project for errors and warnings, indicating e.g., that atoms
with the same predicate name have different arity in several
files. This global checking behavior in the current release is
applied to any error condition.
Quick fix. The system suggests quick fixes to reported errors
or warnings, and applies them (on request) by automatically
changing the affected part of code. A number of new quick
fixes were added, and several existing ones were improved.
Code template. ASPIDE provides support for assisted writ-
ing of rules (guessing patterns, aggregates, etc.), as well as
automated writing of entire subprograms (e.g., transitive clo-
sure rules) by exploding code templates.

Debugger and Profiler. The debugging interface calls the
tool spock (Brain et al. 2007b); whereas profiling is done
according to (Calimeri et al. 2009).
Configuration of the execution. The RunConfiguration Di-
alog allows one to set the solver/system executable, setup
invocation options and input files. We have improved the us-
ability of this dialog, and we have embedded a direct support
of IDPDraw (Wittocx since 2009) for graphical visualiza-
tion of the answer sets.
Presentation of the results. Execution results are presented
to the user in a comfortable view combining tabular repre-
sentation of predicates and a tree-like representation of an-
swer sets. The result of the execution can be also saved in
text files for subsequent analysis.
Visual editor. The users can draw logic programs by exploit-
ing a full graphical environment that offers a QBE-like tool
for building logic rules. The user can switch, every time
he needs, from the text editor to the visual one (and vice-
versa) thanks to a reverse-rengineering mechanism from text
to graphical format. An important improvement was the in-
troduction of quick fixes also in the graphical view.

Major Additions
We now present the most remarkable additions, including
both novel and completely reengineered tools.
Unit Testing for ASP. In software engineering, the task of
testing and validating programs is a crucial part of the life-
cycle of software development process and a test conceived
for verifying the behavior of a specific part of a program is
called unit testing. In ASPIDE we have improved the test-
ing feature by introducing a unit testing framework in the
style of JUnit. Our testing language allows the developer to
specify the rules by composing one or several units, spec-
ify one or more inputs and assert a number of conditions
on both expected outputs and the expected behavior of sub-
programs. The sub-program is expected to compose a cor-
rect module (Splitting Set (Lifschitz and Turner 1994) or
DLP-function (Janhunen et al. 2009)) on the entire program.
The obtained test case specification can be run by exploiting
an ASP solver, and the assertions are automatically verified
by analyzing the output of the execution. A graphical tool
helps the programmer in composing test cases and analyz-
ing the execution results. For an exhaustive description the
testing language and the graphical tool we refer the reader
to (Febbraro et al. 2011).
Annotation management for ASP programs. Meta informa-
tion are used in many programming languages to give more
expressiveness to them for both programmers and compilers.
For example, Java uses annotations to add meta-information
to classes, methods, functions and so on. In ASPIDE we
have introduced also annotations for ASP programs for in-
dicating rule names, specify predicate schemas (name, ar-
ity, optional data-type), handle database connectivity and so
on. Each annotation in ASPIDE is included within a com-
ment (so that the solvers can ignore it) and starts by “@”.
Meta-information given trough annotations is exploited by
the IDE for enriching the information displayed in the out-
lines and providing the user with smarter editing facilities



(such as auto-completion, test case composition, etc.).
Schema management and Interaction with databases. Inter-
action with external databases is useful in real-world appli-
cations, see e.g., (Leone et al. 2005; Grasso et al. 2011).
The database management feature of ASPIDE has been
redesigned to: (i) deal with a more sofisticated schema
management; (ii) improve outline views; (iii) add support
for #import/#export directives of DLV; (iv) support fully-
graphical composition of TYP files (Terracina et al. 2008);
and (v) extend support for DBMS types. Database oriented
applications can be run by setting DLVDB as solver in a
run configuration. A data integration scenario (Leone et al.
2005) can be implemented by exploiting these features.
User-defined Plug-ins. In real-world applications input data
is usually not encoded in ASP, and the results of a reasoning
task specified by an ASP program is expected to be saved in
an application-specific format. An important feature intro-
duced in ASPIDE is the possibility to extend it with user de-
fined plug-ins. Developers can create libraries for extending
ASPIDE with: (i) new input formats, (ii) program rewrit-
ings, and even (iii) customizing the format of solver results.
A rewriting plug-in may encode a procedure that can be ap-
plied to rules in the editor (e.g., disjunctive rule shifting can
be applied on the fly by selecting rules in the editor and ap-
plying the mentioned rewriting).

Now consider a scenario where: input data is generated
from a spreadsheet; some complex reasoning task has to be
performed on it, and the output has to be loaded back on
the spreadsheet for further processing. Thus, data has to be
first transformed in a database of facts by applying a suitable
knowledge representation. One might export data in CSV
and apply a transformation script to obtain this; in turn, the
programmer develops an ASP program for reasoning on the
input data; finally, the results printed by an ASP solver might
be converted back in CSV. An input plug-in can take care of
the CSV input files that appear in ASPIDE as a logic pro-
gram, and an output plug-in can handle the external conver-
sion of the computed answer sets in CSV. An entire ASP-
based application can, in this way, be developed and tested
in ASPIDE with minimal (or no) need for external conver-
sion tools.

An SDK distributed under LGPL allows to develop new
plug-ins for extending ASPIDE with custom program rewrit-
ings, new input/output formats and application-specific fea-
tures.

Implementation and Availability
ASPIDE is written in Java by following the Model View
Controller (MVC) pattern. A core module manages, by
means of suitable data structures, projects, files content, sys-
tem status (e.g., error lists, active connections to DBMSs
etc.), and external component management (e.g., interac-
tion with solver/debugger/profiler and custom plug-ins). AS-
PIDE exploits: (i) the JGraph (http://www.jgraph.
com/) library for the visual editor; (ii) the DLV Wrap-
per (Ricca 2003) for interacting with the solver; and, (iii)
JDBC libraries for database connectivity. Currently, AS-
PIDE is able to load and store ASP programs in the syntax

of the ASP system DLV (Leone et al. 2006), and supports
the ASPCore language profile employed in the ASP System
Competition 2011(Calimeri et al. 2011). ASPIDE is avail-
able for all the major operating systems, including Linux,
Mac OS and Windows, and can be downloaded from the sys-
tem website http://www.mat.unical.it/ricca/
aspide.

Conclusion
Since its first presentation at LPNMR’11 in Vancouver, AS-
PIDE has improved in several respects. Many existing com-
ponents were made more usable and stable; and new remark-
able additions were developed: (i) the testing environment
was completely reengineered to support a new unit testing
language (Febbraro et al. 2011); (ii) the database manage-
ment tool has been completely restructured to seamlessly
integrate/generate TYP files and import directives; (iii) pro-
gram annotations for ASP were introduced; and, finally, (iv)
the support for extending ASPIDE by user-defined plug-ins
has been integrated into the system.

We are constantly following suggestions and implement-
ing the requests of the system’s users, as well as the needs
of the developers of DLVSYSTEM s.r.l. (a spin-off com-
pany of the University of Calabria developing ASP-based
commercial products). Some of the future additions will in-
clude: (semi)automatic test case generation based on (Jan-
hunen et al. 2010); a new graphical debugging tool sup-
porting the methodology of (Oetsch, Pührer, and Tompits
2011b); and a library of optional plug-ins for supporting var-
ious input/output formats and program rewritings (including
a plug-in for source-to-source transformation for seamless
conversions from multiple ASP dialects handling all the ma-
jor ASP systems).

Acknowledgments. This work has been partially supported
by the Calabrian Region under PIA (Pacchetti Integrati
di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del
15/05/2009 - DR n. 7373 del 06/05/2009.

References
Balduccini, M.; Gelfond, M.; Watson, R.; and Nogeira, M.
2001. The USA-Advisor: A Case Study in Answer Set Plan-
ning. In LPNMR-01, LNCS 2173, 439–442.
Baral, C., and Gelfond, M. 2000. Reasoning Agents in
Dynamic Domains. In Logic-Based Artificial Intelligence.
Kluwer. 257–279.
Baral, C., and Uyan, C. 2001. Declarative Specification and
Solution of Combinatorial Auctions Using Logic Program-
ming. In LPNMR-01, LNCS 2173, 186–199.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. CUP.
Bardadym, V. A. 1996. Computer-Aided School and Uni-
versity Timetabling: The New Wave. In PTAT’95, LNCS
1153, 22–45.
Brain, M., and De Vos, M. 2005. Debugging Logic Pro-
grams under the Answer Set Semantics. In ASP’05.



Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007a. Debugging asp programs by means
of asp. In LPNMR’07, LNCS 4483, 31–43. Tempe, Arizona:
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007b. That is Illogical Captain! The De-
bugging Support Tool spock for Answer-Set Programs: Sys-
tem Description. In SEA 07, 71–85.
Calimeri, F.; Leone, N.; Ricca, F.; and Veltri, P. 2009. A
Visual Tracer for DLV. In Proc. of SEA’09.
Calimeri, F.; Ianni, G.; Ricca, F.; Alviano, M.; Bria, A.;
Catalano, G.; Cozza, S.; Faber, W.; Febbraro, O.; Leone, N.;
Manna, M.; Martello, A.; Panetta, C.; Perri, S.; Reale, K.;
Santoro, M. C.; Sirianni, M.; Terracina, G.; and Veltri, P.
2011. The third answer set programming competition: Pre-
liminary report of the system competition track. In LPNMR,
LNCS 6645, 388–403.
DLV!sual. 2009. DLV!sual homepage. http://thp.
io/2009/dlvisual.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
Datalog. ACM TODS 22(3):364–418.
El-Khatib, O.; Pontelli, E.; and Son, T. C. 2005. Justification
and debugging of answer set programs in ASP. In Proc. of
Automated Debugging. California, USA: ACM.
Febbraro, O.; Leone, N.; Reale, K.; and Ricca, F. 2011. Unit
testing in aspide. CoRR abs/1108.5434.
Febbraro, O.; Reale, K.; and Ricca, F. 2011. ASPIDE: Inte-
grated Development Environment for Answer Set Program-
ming. In LPNMR 2011, LNCS 6645, 317–330.
Franconi, E.; Palma, A. L.; Leone, N.; Perri, S.; and Scar-
cello, F. 2001. Census Data Repair: a Challenging Appli-
cation of Disjunctive Logic Programming. In LPAR 2001,
LNCS 2250, 561–578.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In IJCAI 2007,
386–392.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. NGC 9:365–
385.
Grasso, G.; Iiritano, S.; Leone, N.; and Ricca, F. 2009. Some
DLV Applications for Knowledge Management. In LPNMR
2009, LNCS 5753, 591–597.
Grasso, G.; Leone, N.; Manna, M.; and Ricca, F. 2011. Logic
Programming, Knowledge Representation, and Nonmono-
tonic Reasoning: Essays in Honor of M. Gelfond, LNCS
6565
iGrom. 2010. iGrom on sourceforge. http://igrom.
sourceforge.net/.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding Partiality and Disjunctions in Stable
Model Semantics. ACM TOCL 7(1):1–37.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. J.
Artif. Intell. Res. (JAIR) 35:813–857.
Janhunen, T.; Niemelä, I.; Oetsch, J.; Pührer, J.; and Tom-

pits, H. 2010. On testing answer-set programs. In ECAI
2010, 951–956. IOS Press.
Leone, N.; Gottlob, G.; Rosati, R.; Eiter, T.; Faber, W.; Fink,
M.; Greco, G.; Ianni, G.; Kałka, E.; Lembo, D.; Lenzerini,
M.; Lio, V.; Nowicki, B.; Ruzzi, M.; Staniszkis, W.; and Ter-
racina, G. 2005. The INFOMIX System for Advanced In-
tegration of Incomplete and Inconsistent Data. In SIGMOD
2005, 915–917. : ACM Press.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM TOCL 7(3):499–562.
Lierler, Y. 2005. Disjunctive Answer Set Programming via
Satisfiability. In LPNMR’05, LNCS 3662, 447–451.
Lifschitz, V., and Turner, H. 1994. Splitting a Logic Pro-
gram. In ICLP’94, 23–37. : MIT Press.
Lifschitz, V. 1999. Answer Set Planning. In ICLP’99, 23–
37. Las Cruces, New Mexico, USA:
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog Decision Support System for
the Space Shuttle. In PADL 2001, LNCS 1990, 169–183.
Oetsch, J.; Pührer, J.; Seidl, M.; Tompits, H.; and Zwickl, P.
2011. Videas: A development tool for answer-set programs
based on model-driven engineering technology. In LPNMR,
382–387.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011a. The
sealion has landed: An ide for answer-set programming—
preliminary report. In INAP2011/WLP2011, volume
abs/1109.3989.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011b. Stepping
through an answer-set program. In LPNMR, 134–147.
Perri, S.; Ricca, F.; Terracina, G.; Cianni, D.; and Veltri, P.
2007. An integrated graphic tool for developing and testing
DLV programs. In SEA 07, 86–100.
Ricca, F.; Gallucci, L.; Schindlauer, R.; Dell’Armi, T.;
Grasso, G.; and Leone, N. 2009. OntoDLV: an ASP-based
system for enterprise ontologies. JLC.
Ricca, F.; Dimasi, A.; Grasso, G.; Ielpa, S. M.; Iiritano, S.;
Manna, M.; and Leone, N. 2010. A Logic-Based System for
e-Tourism. FI 105((1–2)):35–55.
Ricca, F.; Grasso, G.; Alviano, M.; Manna, M.; Lio, V.; Iir-
itano, S.; and Leone, N. 2011. Team-building with Answer
Set Programming in the Gioia-Tauro Seaport. TPLP.
Ricca, F. 2003. The DLV Java Wrapper. In ASP’03, 305–
316. Online at http://CEUR-WS.org/Vol-78/.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. AI 138:181–
234.
Sureshkumar, A.; Vos, M. D.; Brain, M.; and Fitch, J. 2007.
APE: An AnsProlog* Environment. In SEA 07, 101–115.
Terracina, G.; Leone, N.; Lio, V.; and Panetta, C. 2008.
Experimenting with recursive queries in database and logic
programming systems. TPLP 8:129–165.
Wittocx, J. since 2009. IDPDraw, a tool used for visualizing
answer sets. http://dtai.cs.kuleuven.be/krr/
software/visualisation.


