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Abstract

While past research in answer-set programming (ASP) mainly
focused on theory, ASP solver technology, and applications,
the present work situates itself in the context of a recent re-
search trend: development support for ASP. In particular, we
propose to augment answer-set programs with additional meta-
information formulated in a dedicated annotation language,
called LANA. This language allows to group rules into coher-
ent blocks and to specify language signatures, types, pre- and
postconditions, as well as unit tests for such blocks. While
these annotations are invisible to an ASP solver, as they take
the form of program comments, they can be interpreted by
tools for documentation, testing, and verification purposes, and
can help to eliminate sources of common programming errors
by realising syntax checking or code completion features. We
introduce two such tools, viz. (i) ASPDOC, for generating an
HTML documentation for a program based on the annotated
information, and (ii) ASPUNIT, for running and monitoring
unit tests on program blocks.

1 Introduction
Answer-set programming (ASP) (Gelfond and Lifschitz 1988;
1991; Baral 2003) is an established approach for declarative
problem solving and non-monotonic reasoning. So far, re-
search in ASP can be classified into basically three categories:
(i) theoretical foundations of ASP including language exten-
sions, (ii) work on ASP solver technology, and (iii) case stud-
ies and applications involving ASP. More recently, methods
and methodologies to support programmers during develop-
ment of answer-set programs are increasingly becoming a
focus of research interest (De Vos and Schaub 2007; 2009;
Oetsch, Pührer, and Tompits 2010).

In this paper, we propose to augment programs with ad-
ditional meta-information to facilitate the ASP development
process. To this end, we devised a dedicated annotation
language, LANA, standing for “Language for ANnotating
Answer-set programs”, that specifies specially marked pro-
gram comments. This meta-information is invisible to an ASP
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solver—therefore not altering the semantics of the program—
but different tools may interpret and use the annotated infor-
mation to various ends like documentation, testing, verifica-
tion, code completion, or other development support.

One particular and quite central feature of LANA is group-
ing rules that are related in meaning into coherent blocks.
Different notions of modularity have been proposed for ASP
in the literature already (Bugliesi, Lamma, and Mello 1994;
Eiter, Gottlob, and Veith 1997; Gelfond and Gabaldon 1999;
Balduccini 2007; Janhunen et al. 2009). However, a strict
concept of a program module can sometimes be a too tight
corset. In particular, notions of modularity in ASP often come
with their own semantics and different kinds of constraints
need to be satisfied. For example, DLP-functions (Janhunen
et al. 2009) require that their input and output signatures are
disjoint and two DLP-functions need to satisfy certain syntac-
tic constraints in order to be composable. On the other hand,
lp-functions are a modular approach to build a logic program
from its specification (Gelfond and Gabaldon 1999). That is,
an lp-function is used to realise some functional specification
that relates input and output relations for some domain by
means of a logic program. The kind of grouping that we are
proposing has, however, no semantical ramifications other
than documenting that some rules belong together in a certain
sense. Nevertheless, the benefit is that we add some extra
structure to a program which can improve the clarity and
coherence of the program parts and which can be used by
other tools for, e.g., unit testing (Beck 2003).

While unit testing is an integral element in software devel-
opment using common languages like Java or C, it has been
addressed in ASP only quite recently (Febbraro et al. 2011).
We provide means to formulate unit tests for single blocks
using LANA, allowing for easy regression testing. After rules
are grouped into blocks, we can use further annotations to
declare respective input and output signatures which are also
useful for testing and verification.

Furthermore, we can declare the names and arities of predi-
cates that are used within a block. This information can be ex-
ploited by, e.g., an integrated development environment (IDE)
for syntax checking and code completion features while a
user is writing a program. Besides names, description, and
arities of predicates, one can also specify the domains of



term arguments of a predicate using respective language fea-
tures for declaring types. This information can be used for
automatic detection of type violations. These declarations
have the potential to eliminate the source for quite common
programmer errors with only little extra cost. For verification
purposes, our annotation language can be used to specify pre-
and postconditions for blocks. Preconditions are expected to
hold for any input of a block, while postconditions have to
hold for any output. Together, they can be used to verify cor-
rectness of an ASP encoding with respect to such assertions.

Our main contributions are thus as follows:
• We introduce the annotation language LANA that offers

various ways to express meta-information for rules and
other language elements. This information can be used to
support and ease the development process and to eliminate
many sources for common programmer errors.

• We describe ASPDOC, a JAVADOC1 inspired tool, which
takes an answer-set program, interprets the meta-com-
ments, and automatically generates an HTML file doc-
umenting the program.

• We introduce ASPUNIT, a unit-testing framework in the
spirit of JUNIT2, based on the structural annotations found
in a program. This framework allows to formulate unit
tests for individual program blocks, to execute them, and
to monitor test runs.
The paper is organised as follows. In Section 2, we provide

some background on ASP. Then, in Section 3, we introduce
LANA, explain the basic language features, and illustrate
them using a running example. The tool to automatically
transform annotated comments into an HTML documentation
is described in Section 4, and a tool for running unit tests is
described in Section 5. Finally, we review related work in
Section 6 and conclude in Section 7.

2 Background
Answer-set programming (ASP) (Gelfond and Lifschitz 1988;
1991; Baral 2003) is a declarative programming paradigm in
which a logic program is used to describe the requirements
that must be fulfilled by the solutions of a certain problem.
The solutions of the problem can be obtained through the in-
terpretation of the answer sets of the program, usually defined
through a variant or extension of the stable-model semantics
(Gelfond and Lifschitz 1988). This technique has been suc-
cessfully applied in various domains such as planning (Eiter
et al. 2002; Lifschitz 2002), configuration and verification
(Soininen and Niemelä 1998), music composition (Boenn et
al. 2011), or reasoning about biological networks (Dworschak
et al. 2008) to name just a few. In this paper, we briefly cover
the essential concepts of ASP. For in-depth coverage, we
refer to the well-known textbook by Baral (2003).

The basic components of the language are atoms, elements
that can be assigned a truth value. An atom a can be negated
using negation as failure, not. A literal is an atom a or a
negated atom not a. We say that not a is true if we cannot

1http://www.oracle.com/technetwork/java/
javase/documentation/index-jsp-135444.html.

2http://www.junit.org.

find evidence supporting the truth of a. Atoms and literals
are used to create rules of the general form

a :- b1, . . . , bm,not c1, . . . ,not cn ,

where a, bi, and cj are atoms. Intuitively, this means if all
atoms bi are known/true and no atom ci is known/true, then
a must be known/true. We refer to a as the head and

b1, . . . , bm,not c1, . . . ,not cn

as the body of the rule. Rules with empty body are called
facts. Rules with empty head are referred to as constraints,
indicating that no solution should be able to satisfy the body.
A (normal) program is a set of rules. The semantics is defined
in terms of answer sets, i.e., assignments of truth values “true”
and “false” to all atoms in the program that satisfy the rules
in a minimal and consistent fashion, taking into account that
truth of an atom cannot be based on the absence of proof
(i.e., the truth of an atom cannot indirectly be inferred by its
own negation). A program has zero or more answer sets, each
corresponding to a solution.

Different extensions to the language have been proposed.
On the one hand, we have syntactic extensions, providing
mere, but very useful, syntax sugar. On the other hand, we
have semantic extensions that generalise the formalism itself.

From a programmer’s perspective, choice rules (Niemelä,
Simons, and Soininen 1999) are probably the most commonly
used extension. Many problems require choices between a
set of atoms to be made. Although this can be modelled in the
basic formalism, it tends to increase to the number of rules
and increases the possibility of errors. To avoid this, choices
are introduced. Choices, written

L{l1, . . . , ln}M,

are a convenient construct to indicate that at least L and at
most M literals from the set {l1, . . . , ln} must be true in
order to satisfy the construct. Bound L defaults to 0 while M
defaults to n. Choice rules are often used with a grounding
predicate:

L{A(X) : B(X)}M
represents the choice of a number of atoms where A(X) is
grounded with all values of X for which B(X) is true.

One of the major extensions to the language was the intro-
duction of disjunction (Gelfond and Lifschitz 1991) in the
head of rules. When the body of the rule is true, we need
to have at least one head atom that is true. Although it may
seem that disjunctive programs can easily be translated to
non-disjunctive programs, this is not the case. Both types of
programs are in different complexity classes (under the usual
complexity-theoretic proviso that the polynomial hierarchy
does not collapse).

Algorithms and implementations for obtaining answer sets
of logic programs are referred to as answer-set solvers. The
most popular and widely used solvers are DLV (Eiter et al.
1998), providing solver capabilities for disjunctive programs,
and the SAT inspired CLASP (Gebser et al. 2007). Alterna-
tives are SMODELS (Niemelä and Simons 1997) and CMOD-
ELS (Giunchiglia, Lierler, and Maratea 2004), a solver based
on translating the program to a SAT problem.



Table 1: Overview of LANA based on BNF.
Language Element Definition Informal Description

block element block | atom | term | input signature | The elements of LANA related to blocks.
output signature | precondition |
postcondition

block “@block” name “{” Groups ASP rules into coherent parts.
[description]
{block element}
[ASP code]
“}”

atom “@atom” name “(”termList“)” Defines a predicate used in a block where termList is the list
[description] of the predicate’s arguments.

term “@term” name Declares a term, the name comes from some atom term list,
[description] its meaning and type information.
[type]

type “@from” groundTerms | Type of a term is defined either by a list of ground terms, the
“@with” ruleBody | terms satisfying a specified rule body, or is equal to the type of
“@samerangeas” term an already declared term.

input signature “@input” inputPrds Declares input predicates of a block as a list of name/arity pairs.
output signature “@output” outputPrds Declares output predicates of a block as a list of name/arity pairs.

precondition “@precon” name “{” States a logical condition for the inputs of a block.
[description] An input is admissible if all the atoms after “@always” are true
{“@always” | “@never”, atomList} and the atoms next to “@never” are false in in all answer sets
[embedded ASP code] of the input joined with the embedded ASP code (i.e., ASP code
“}” within the annotation comment environment).

postcondition “@postcon” name “{” States a logical condition for the answer sets of a block.
[description] The postcondition is satisfied if the atoms after “@always” are
{“@always” | “@never”, atomList} true, and the atoms next to “@never” are false in all the answer
[embedded ASP code] sets of the rules of the block, the embedded ASP code, and any
“}” admissible input.

test case “@testcase” name Specifies a test case for the blocks mentioned in blockNames.
[description] The test case passes if the blocks joined with ASP code satisfy
“@scope” blockNames all specified test conditions.
test condition
[ASP code]

test condition “@testhasanswerset” | A test condition has one of the listed forms. It holds if at least
“@testnoanswerset” | one answer set is found, no answer set is found, or all ground
“@testatoms” atomList mode atoms mentioned in atomList are entailed according to mode.

mode “@trueinall” | Mode of entailment of a test condition, i.e., if test atoms are
“@trueinatleast” n | true, resp., false, in all, at most n, or at least n answer sets.
“@trueinatmost” n |
“@falseinall” |
“@falseinatleast” n |
“@falseinatmost” n

3 An Annotation Language for ASP
In this section, we describe our annotation language LANA in
more detail. A summary of the language elements of LANA
appears in Table 1. We make use of a simple answer-set pro-
gram to illustrate all the language features in a step-by-step
fashion. In particular, we use an encoding of the Battleship
puzzle. A solved instance of Battleship appears in Figure 1.

In Battleship, a group of ships is hidden on a grid and one
has to find the positions of each. The fleet consists of one
four-squares long battleship, two three-squares long cruisers,
three two-squares long destroyers, and four one-square long
submarines. Each ship is placed horizontally or vertically on
the grid such that no ship is touching any other ship (not even
diagonally). Initially, some squares may show parts of a ship
or water to provide hints. Moreover, a number besides each

row and each column is initially given and indicates how
many squares in that row or column are occupied by ship
parts. A solution of a puzzle is a configuration of all the ships
that is consistent with the initially given hints.

Assume that a Battleship puzzle instance is defined in
terms of facts water/2 and ship/2 for specifying which
squares contain water or parts of a ship, respectively. The
facts rowHint/2 and colHint/2 respectively determine
the numbers associated with each row and each column. Solu-
tions are represented by facts ship(W,X,Y,Z), expressing
that a ship is occupying position (W,X) to (Y,Z).

In general, all keywords of our annotation language start
with the symbol @. A central feature of LANA is to group
rules together. This is done using the @block keyword. To
specify that we are going to define a couple of rules that
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Figure 1: Solved instance of a Battleship puzzle.

encode solutions to the Battleship puzzle, we declare a block
with the name Battleship as follows:
%** @block Battleship { *%

% encoding of the Battleship puzzle

%** } *%

The annotation @block is followed by an optional name
of the block and the opening bracket “{”. Everything be-
tween “{” and the closing bracket “}” now belongs to the
block Battleship. Blocks can be nested but they must
not overlap.

Note that every annotation has the form of an ASP com-
ment. ASP block comments can be used instead of starting
every single line with %, providing a solver supports this
feature. However, to distinguish annotations from ordinary
(block) comments, an additional star * is always placed after
%* at the beginning.

We proceed by declaring the predicate names as well as
the input and output signatures of our encoding as described
above. Within block Battleship, we add the following:
%** @atom water(X,Y)
there is no ship at position (X,Y)

@atom ship(X,Y)
a ship is occupying position (X,Y)

@atom rowHint(X,H)
in row X, H squares are occupied

@atom colHint(Y,H)
in column Y, H squares are occupied

@atom ship(X1,Y1,X2,Y2)
a ship is occupying the squares
from (X1,Y1) to (X2,Y2).

@input water/2, ship/2,
rowHint/2, colHint/2

@output ship/4 *%

We use @atom to introduce the name of a predicate along
with its arity and some information describing its intended

use, and we use @input and @output to determine which
predicates are used to represent the input for the block and
which ones correspond to the output. For input and output
signatures, we also have to explicitly provide the arity of
the involved predicates. This is needed to disambiguate be-
tween predicates with same names but a different number
of arguments, as ship in our running example. Note that
annotations are optional, declarations are not enforced. How-
ever, the more information is made explicit, the more it can
be used to the benefit of the developer by tools that interpret
such meta-information.

Regarding the declaration of predicates, we can even pro-
vide information about the types of its term arguments. As-
sume that row and column positions are specified by ascend-
ing integers starting from 1. To make this assumption explicit,
we add the following lines somewhere in the block:

%** @term X, Y
@from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
X (Y) is a row (column) index
ranging from 1 to 10 *%

Here, we use @term to declare variable names and @from
to specify the type of a variable by means of a non-empty
comma-separated list of admissible ground terms. As an
alternative to @from, we can use @with followed by a rule
body:

%** @with integer(#V), #V>1, #V<10 *%
integer(1..1000).

Intuitively, the type of X and Y is now determined by
the ground substitutions for the reserved symbol #V
that satisfy the rule body given after @with. Here,
“integer(1..1000).” is regular ASP code for defining
facts that encode the integer range that we are considering.
Furthermore, to express that variables are of the same type as
already known ones, we can use @samerangeas as illus-
trated next:

%** @term X1, Y1, X2, Y2
further row and column indices
@samerangeas X *%

Thus, any of X1, Y1, X2, and Y2 is of the same type as X. For
future work, we also plan to extend LANA so that predefined
names for at least basic types like strings or integers can be
directly used to specify the types of variables.

As mentioned already, blocks can be nested. To proceed
with our Battleship encoding, we add a block of rules within
block Battleship for guessing solution candidates ac-
cording to the usual guess-and-check paradigm:

%** @block Guess {
guess a configuration of battleships
on the grid *%

r(1..10). c(1..10).
{ship(X1,Y1,X2,Y2):r(X1):c(Y1):

r(X2):c(Y2):
X2>=X1:Y2>=Y1}.

:- ship(X1,Y1,X2,Y2), X1!=X2, Y1!=Y2.
%** } *%



Note that in block Guess all declarations for predicates and
terms are inherited from the enclosing block Battleship.
One can proceed in a similar way to define blocks for con-
straints (along with auxiliary definitions) to prune away un-
wanted solution candidates to complete the encoding.

Towards testing and verification of the program, LANA al-
lows the formulation of pre- and postconditions for blocks. A
precondition is a logical condition that is assumed to hold for
any input while a postcondition has to hold on any output of
a block. Together, pre- and postconditions can be regarded as
a contract: it is the responsibility of any input provider that a
block’s preconditions are satisfied, and it is the responsibility
of the rules in the respective block that its postconditions are
satisfied. Both pre- and postconditions are formulated in ASP
itself; they are placed within the block they belong to. For
illustration, we formulate the precondition of our Battleship
encoding that no square contains both water and parts of a
ship jointly as follows:
%** @precon Excl {
no square contains both water and
a part of a ship
@never clash
clash :- water(X,Y), ship(X,Y).
} *%

In general, a precondition is introduced with the keyword
@precon followed by a name for the condition. The actual
content is then written enclosed between “{” and “}”, similar
to the definition of blocks. An optional description follows.
Then, we have to specify a non-empty list of ground atoms
after the keyword @never or @always. After that, we add
some ASP rules that define the mentioned ground atoms. The
intended semantics is as follows. Some input, i.e., a set of
facts over a block’s input signature, passes a precondition
if that input combined with the rules of the precondition
cautiously entails all the ground atoms after @always and
the negation of the atoms after @never.

Postconditions are expressed analogously to preconditions.
To say that battleships must not be longer than four squares
in any solution, we add the following code to our Battleship
block:
%** @postcon Overlength {
battleships are never longer than
four squares
@never ov
ov :- ship(X1,Y1,X2,Y2),L=X2-X1,L>4.
ov :- ship(X1,Y1,X2,Y2),L=Y2-Y1,L>4.
} *%

A block and an input for a block satisfy a postcondition if the
block joined with the input and the rules of the postcondition
cautiously entails all the ground atoms after @always and
the negation of the atoms after @never.

Having pre- and postconditions explicitly formalised
offers various ways to support the development process.
For one thing, they can be used to automatically gener-
ate input instances for testing purposes. This can be auto-
mated for systematic testing of a block, including random
testing and structure-based testing (Janhunen et al. 2010;
2011). Towards program verification, one can check if a block

passed its postconditions for any admissible input, at least
from some fixed small scope, i.e., involving only a bounded
number of constant symbols. Exhaustive testing with respect
to a small scope showed to be quite effective in ASP (Oetsch
et al. 2012). Though they are formulated in ASP itself and
thus tend to duplicate some code from within a block, pre-
and postconditions are especially valuable if the rules in a
block are changed, e.g., to optimise an encoding, and one
wants to be sure that the changes did not render the program
incorrect. This can be done, e.g., by searching for inputs
within some small scope that violate some postcondition of
the optimised program, provided respective tool support is
available.

Though pre- and postconditions allow to partially verify
program correctness, LANA also supports a light-weight form
of program validation that is inspired by unit testing. A unit
test in procedural languages is commonly a test for an indi-
vidual function or procedure. While in a related approach for
unit testing answer set programs (Febbraro et al. 2011), the
scope of a test is defined in terms of sets of rules, unit tests
are formulated for blocks or sets of blocks in our setting. To
check if the guessing part of our running example generates
solution candidates where one ship occupies precisely the
first four horizontal squares of the field, we could formulate
a unit test as follows:

%** @testcase ShipTopLeftCorner
a four cells long ship is horizontally
placed at the top-left corner
@scope Guess
@testatoms goalShip @trueinatleast 1

*%
goalShip :- ship(1,1,1,4).

A unit test starts with the reserved word @testcase
followed by a name. Then, a short description of the pur-
pose of the unit test may be given as a comment. Af-
ter @scope, a list of block names is expected. In the
above example, we used @testatoms to declare that
goalShip is an atom that has to be true in a least one
answer set (@trueinatleast 1) of block Guess joined
with the subsequent rule that defines goalShip. Instead,
or additional to @trueinatleast n, a tester might use
@trueinatmost m, trueinall, falseinatleast
p, falseinatmost q, and falseinall, where m,
n, p, and q are positive integers. Also, instead of
@testatoms, one may use @testhasanswerset or
@testnoanswerset to express that at least one or no
answer sets is expected, respectively.

The semantics of a unit test is as follows. A test case
passes iff the answer sets of the rules of the test case com-
bined with all the blocks specified after @scope satisfy the
testing conditions expressed using any of @testatoms,
@testhasanswerset, and @testhasnoanswerset.
For example, to additionally test that a ship is never placed
diagonally on the field, one could formulate a further test
case:

%** @testcase NoDiagonalShips
ships are never placed diagonally
on the field



Figure 2: HTML documentation of the Battleship program.

@scope Guess
@testatoms forbiddenShip @falseinall

*%
forbiddenShip :- ship(1,1,3,3).

Of course, this test case can only guarantee that one partic-
ular ship is not placed diagonally at some particular position.
However, this distinguishes test cases from more general
assertions like postconditions. To generalise the above test
case to arbitrary ships, we would rather use a postcondition.
Typically, test cases represent concrete situations by means
of facts that can be easily verified by a user and document
individual situations that are allowed or forbidden. They can-
not, however, guarantee correctness of an encoding but only
increase our confidence regarding its functionality.

Unit testing is a convenient way to test properties of in-
dividual blocks of an ASP encoding. Furthermore, they can
be used to iteratively develop programs in a test-driven fash-
ion. In test-driven development, unit tests are formulated
before the code is written. First, a unit test for a single
property of the block that we want to develop is specified.
Then, it is checked whether the test case fails for the pro-
gram under development. If this is the case, the block is
extended by the necessary rules to make the failed test case
pass. After the code is refactored towards efficiency, read-
ability, etc., and after it is verified that all test cases still
pass, the next property is addressed by formulating a respec-
tive unit test. This continues until the program is complete.
For illustration, the unit tests ShipTopLeftCorner and
NoDiagonalShips will pass for the current state of the
Battleship program. However, if we want to implement the
property that ships must not touch each other, we could spec-

ify the following test case (which will currently fail):
%** @testcase TouchingShips
two ships must not touch each other
@scope Guess,Touch
@testatoms forbiddenShip @falseinall

*%
forbiddenShip :- ship(1,1,1,2),

ship(1,2,1,4).

Then, we would proceed to implement a block Touch with a
constraint that forbids answer sets with ships that are touching
each other and check if the new test case and the old ones
pass.

4 ASPDOC
ASPDOC is a command-line tool which interprets meta-
information given in an answer-set program and generates
a corresponding HTML documentation file similar to, e.g.,
JAVADOC for Java programs. Information regarding block
structure, input and output signatures, atoms, etc. is well-
arranged so that the answer-set program can easily be under-
stood, used, or extended by other developers. Such documen-
tation features are especially useful to make ASP problem-
solving libraries, i.e., collections of ASP encodings that can
be used as building blocks for larger programs, accessible to
developers.

The tool is developed in Java; an executable JAR file is
available on the web.3 Assume that the source code of our
running example is stored in a file, say battleship.gr.

3http://students.sabanciuniv.edu/dgkisa/
aspdoc-aspunit.



A corresponding HTML documentation can be created as
follows:

java -jar aspdoc.jar -p battleship.gr

Different HTML documents are created with index.html
as the usual entry point. Here, option -p, or -potassco, is
used to tell ASPDOC that the answer-set program is written
using GRINGO syntax. For DLV, option -d or -dlv can
be used instead. Furthermore, an output directory d can be
specified with option -o=d. Help on available options can
be obtained with the option -h.

A screenshot of the documentation document for the Bat-
tleship encoding interpreted by some standard web browser
is given in Figure 2. The document contains descriptions of
all the blocks of the answer-set program, where sub-blocks
are indented relative to their parent blocks. Also, to provide
an overview, a summary of the block structure of the en-
tire answer-set program is presented at the beginning of the
documentation. We note that programmers are not forced
to declare blocks at all. If no block is specified in a file, all
rules in that file belong to a dedicated default block. For each
block, descriptions of the used predicates and types of in-
volved terms, as well as pre- and postconditions are given.
By default, hidden atoms, i.e., atoms with predicates men-
tioned neither in a block’s input nor in its output signature,
are displayed as well in a dedicated section. To hide them,
option -ha can be used. The document also contains a link to
the actual rules inside a block, unless this is suppressed using
option -s. These rules are, by default, displayed together
with the meta-comments of LANA. If option -a is used, such
comments are not shown. Likewise, the rules for defining
pre- and postconditions can be inspected by using the respec-
tive links. To enhance navigability between different parts
of the document, predicates used in the source code view
or in signature declarations are, if available, linked to their
respective descriptions. For instance, to find out the range of
a variable in the output atoms section, say X1, the user can
simply follow the link and thereby navigate to the description
of X1 in the term description section.

5 ASPUNIT
ASPUNIT is a tool to execute test cases that are formulated
in LANA. Like ASPDOC, ASPUNIT is a command-line tool.
An executable JAR file can be downloaded from the same
web page as ASPDOC. For ASPUNIT, each unit test has to
be stored in a separate file. Though test cases are required to
have a name, we allow that a user may omit an explicit name,
in which case the file name is used by default. The tool takes
as input a test-suite specification file, i.e., a file that contains
the relevant information regarding locations of the answer-set
program, the files containing individual test cases, and the
ASP solvers that are needed to execute them. The syntax of a
test-suite specification file is closely related to our annotation
language itself. In particular, the specification of a test suite
has the following form:

@testsuite name
description

@program ASPfiles

@programdir pathToASPfile
@test testCaseFile1
@test testCaseFile2
...

@testdir pathToTestFiles
@solvertype ASPsolver
@solver solverFile
@grounder grounderFile

That is, a test-suite specification starts with @testsuite
followed by a name. Then, a short description may be given.
A list of file names that together contain the answer-set pro-
gram under test is expected after @program. These file
names are relative to a path specified after @programdir.
For each test case that we want to execute, we have to pro-
vide the file name that contains that test case specified by
@test. The path to these files appears after @testdir.
Then, information regarding the ASP solver has to be given.
For this, @solvertype is used; the solver type is one of
DLV, CLASP, or CLINGO. After @solver, an absolute file
name of the ASP solver is expected. This file name may
include additional parameters for that solver. If a separate
grounder is needed, like for CLASP, an absolute file name
including command-line parameters has to be specified after
@grounder.

Now, to run a bunch of test cases specified within a test-
suite file, say testsuite, ASPUNIT is invoked as follows:

java -jar aspunit.jar testsuite

The tool will then run all the unit tests on the answer-set pro-
gram using the solver settings according to specifications in
testsuite. A test report is printed to the standard-output
device. This report contains information regarding success
or failure for each test case. If a test case fails, a counter
example may be included, depending whether option -CE is
set when ASPUNIT is executed. Furthermore, if option -D is
used, the test report will contain a short description of each
test case that fails, obtained from the specification of the test
cases themselves.

For illustration, assume we run the test cases presented in
Section 3 on the partial encoding of Battleship. Recall that
the first and second test case pass while the third one fails.
The resulting test report, including a description of each test
case and counterexamples for the failing test case, is given in
Figure 3.

6 Related Work
With larger programs for real-world applications being writ-
ten using ASP, it is vital to support the programmer with
the right tools. In recent years, some work has been done
to provide the ASP programmer with dedicated tools. The
integrated development environments APE (Sureshkumar et
al. 2007) and SEALION (Oetsch, Pührer, and Tompits 2011)
provide, among other features, syntax colouring and syntax
checking for ASP programs and run as an Eclipse front-end
to solvers. IDEs for the DLV solver and its extensions are
discussed by Perri et al. (2007) and Febbraro, Reale, and
Ricca (2011). Debugging in ASP is supported by SPOCK
(Gebser et al. 2009). It makes use of ASP to explain and



Test Case ShipTopLeftCorner: Successful

Test Case NoDiagonalShips : Successful

Test Case TouchingShips : Failed
two ships must not touch each other

Failed Test : @falseinall forbiddenShip
Counter example:

Answer set:
c(1).c(10).c(2).c(3).c(4).c(5).
c(6).c(7).c(8).c(9).forbiddenShip.
r(1).r(10).r(2).r(3).r(4).
r(5).r(6).r(7).r(8).r(9).
ship(1, 1, 1, 2).ship(1, 2, 1, 4).

Figure 3: A test report for the Battleship program.

handle unexpected outcomes like missing atoms in an answer
set or the absence of an answer set. Cliffe et al. (2008) and
Kloimüllner et al. (2011) provide mechanisms to visualise
answer sets of a given program to provide a mechanism for
debugging code.

To support the development of large applications, tra-
ditional languages offer programming tools that automati-
cally generate searchable documentation, like e.g., JAVADOC.
Methodologies like test-driven development provide devel-
opers mechanisms to incrementally unit test their code and
support regression testing. JUNIT is an example of this for
Java. LANA provides support for both, incorporating the anno-
tation of tests directly into the documentation of the program.
The use of assertions in LANA is inspired by the Java Mod-
elling Language (Leavens and Cheon 2006) and annotations
used in Prolog (Kulas 2000).

Similar to our unit testing approach, Prolog offers unit-
testing functionality called PLUNIT.4 As in our approach,
where tests are expressed using ASP itself and only a Java
wrapper is used to call all tests within a given testsuite, tests in
PLUNIT are written in Prolog. Febbraro et al. (2011) provide
a mechanism for unit testing in ASP which is incorporated
in their IDE ASPIDE. They base their unit tests on clusters
on the dependency graphs or rule labelling, while we allow
the programmer to decide which rules belong to a test by
defining blocks.

Related to our approach for annotating type information
is RSIG (Balduccini 2007). While RSIG really is an lan-
guage extension for specifying simple type information for
programs and modules and thus requires its own parser, pro-
grams that contain LANA code can be used with any ASP
solver since annotations take the form of program comments.

7 Conclusion and Future Work
In this paper, we presented LANA, an annotation language for
ASP. This language can be used to structure a program into
blocks and to declare language elements like predicates with
type information, input and output signatures, pre- and post-

4http://www.swi-prolog.org/pldoc/package/
plunit.html.

conditions, test cases, etc. Annotations do not interfere with
the languages of answer-set solvers as they have the form of
program comments. The main advantage of such annotations
is that they can be interpreted by tools to support the develop-
ment process, to automatically test and verify programs, and
to increase maintainability by enhancing program documen-
tation. In fact, we implemented and described two such tools,
namely ASPDOC for generating an HTML documentation
for a program, and ASPUNIT for running and monitoring
unit tests. The former tool is especially useful for maintaining
and using larger collections of program modules, the latter
tool is used for managing a test corpus when a program is
developed and to enable test-driven development methods as
they are quite popular in, e.g., extreme programming.

While lots of interesting features of LANA for development
support can be realised by stand-alone tools like ASPDOC
and ASPUNIT, things become more interesting when the
respective functionality is available within an IDE for ASP.
The two most actively developed IDEs for ASP at present
are SEALION (Oetsch, Pührer, and Tompits 2011) and ASP-
IDE (Febbraro, Reale, and Ricca 2011). Then, the proposed
language can be used as a basis to realise intelligent syntax
highlighting, static or dynamic type checking, code comple-
tion, and so on. LANA is currently integrated into SEALION,
and the features of ASPDOC are already available from
within the IDE. Furthermore, we want to empirically evaluate
to what extent additional meta-information is beneficial for
program development within courses on declarative problem
solving at our universities.

In general, program annotations provide a wealth of in-
formation. One of the main issues with debugging answer-
set programs is the difficulty of working out the program’s
interpretation of the problem (resp., solution) and the pro-
grammer’s view of the problem (resp., solution). Using the
meta-data, it would be possible to automatically generate a
semi-natural language reading of the program, allowing pro-
grammers to cross-check their interpretation of the program
with that of the program itself.
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