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Abstract

Applications of answer set programming motivated various
extensions of the stable model semantics, for instance, to in-
corporate aggregates and abstract constraint atoms, to facili-
tate interface with external information sources, such as on-
tology descriptions, and to integrate with other computing
paradigms, such as constraint solving. This paper provides
a uniform view on some of these extensions by viewing them
as special cases of formulas with generalized quantifiers. The
stable models of such formulas are defined by extending the
first-order stable model semantics by Ferraris, Lee and Lifs-
chitz. The generality of the formalism introduced here enables
a systematic approach to study the individual extensions of the
stable model semantics, and allows them to be combined in a
single language. We show that important theorems in answer
set programming, such as the splitting theorem, the theorem
on completion, and the theorem on strong equivalence, can be
naturally extended to formulas with generalized quantifiers,
which in turn can be applied to the individual extensions of
the stable model semantics.

Introduction
Applications of answer set programming motivated various
recent extensions of the stable model semantics, for instance,
to incorporate aggregates (Faber, Pfeifer, and Leone 2011;
Ferraris 2005; Son and Pontelli 2007) and abstract constraint
atoms (Marek and Truszczynski 2004), and to facilitate in-
terface with external information sources, such as ontology
descriptions (Eiter et al. 2008). While the extensions were
driven by different motivations and applications, a common
underlying issue is to extend the stable model semantics to
incorporate “complex atoms,” such as aggregates, abstract
constraint atoms and dl-atoms.

HEX programs (Eiter et al. 2005) provide an elegant
solution to incorporate such different extensions in a uni-
form framework via “external atoms.” The idea is to de-
fine the meaning of external atoms in terms of external func-
tions. For example, aggregate COUNT〈x.p(x, a)〉 ≥ 3 is
associated with binary external function f#count such that,
for any Herbrand interpretation I , f#count(I, a, 3) = 1 iff
|{c | c ∈ |I|, I |= p(c, a)}| ≥ 3. Once the notion of satisfac-
tion is extended to cover external atoms, the stable models of
HEX programs are defined as minimal models of the “FLP-
reduct” (Faber, Pfeifer, and Leone 2011). The adoption of
the FLP reduct instead of the traditional Gelfond-Lifschitz

reduct was a key idea to incorporate external atoms in HEX
programs. HEX programs are well studied (Eiter et al. 2006;
Eiter et al. 2008; Eiter et al. 2011), and are implemented in
the system DLV-HEX.1

However, the FLP semantics diverges from the traditional
stable model semantics in some essential ways. For example,
consider a program

p(a)← not COUNT〈x.p(x)〉 < 1, (1)

and another program which rewrites the first program as

p(a)← not q
q ← COUNT〈x.p(x)〉 < 1,

(2)

where the second rule defines q in terms of the COUNT ag-
gregate. One may expect this transformation to modify the
collection of answer sets in a “conservative” way. That is,
each answer set of (2) is obtained from an answer set of (1)
in accordance with the definition of q.2 However, this is not
the case under the FLP semantics: the former has ∅ as the
only FLP answer set while the latter has both {p(a)} and
{q} as the FLP answer sets. 3

Related to this issue is the anti-chain property that is en-
sured by the FLP semantics: no FLP answer set is a proper
subset of another FLP answer set. Consequently, the se-
mantics does not allow choice rules (Niemelä and Simons
2000), which are useful in the “generate-and-test” organi-
zation of a program (Lifschitz 2002). Also, Bartholomew,
Lee, and Meng (2011) note that the extensions of the FLP
semantics to complex formulas as in (Truszczyński 2010;
Bartholomew, Lee, and Meng 2011) encounter some unin-
tuitive cases.

On the other hand, these issues do not arise with the sta-
ble model semantics from (Ferraris 2005; Lee, Lifschitz, and
Palla 2008). According to (Ferraris 2005), which defines the
semantics of aggregates by reduction to propositional formu-
las under the stable model semantics, program (1) has {p(a)}
and ∅ as the answer sets, and program (2) has {p(a)} and {q}

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/
2Indeed, this is what happens in expressing a rule with nested

expressions like p ← not not p into p ← not q, q ← not p by
defining q as not p.

3See the related discussion in
http://www.cs.utexas.edu/users/vl/tag/aggregates.



as the answer sets. According to (Lee, Lifschitz, and Palla
2008), choice rule {q(x)} ← p(x) is identified with

∀x(p(x)→ (q(x) ∨ ¬q(x)))

under the first-order stable model semantics from (Ferraris,
Lee, and Lifschitz 2007; Ferraris, Lee, and Lifschitz 2011).
In the same paper (Lee, Lifschitz, and Palla 2008), the re-
ductive approach to defining aggregates in (Ferraris 2005)
was extended to first-order formulas, but was limited to the
COUNT aggregate. Extensions to cover arbitrary aggregates
in the first-order case were done in (Lee and Meng 2009;
Ferraris and Lifschitz 2010). But even then they do not ac-
count for other complex atoms like dl-atoms and external
atoms.

So one wonders if it is possible to combine the versatility
of HEX programs and the properties of the first-order sta-
ble model semantics. In this paper, we answer this question
positively by extending the first-order stable model seman-
tics to formulas with generalized quantifiers—a generaliza-
tion of the standard quantifiers ∀ and ∃ (Mostowski 1957).
The choice is natural as we show in the paper, those complex
atoms essentially represent relations among sets of individu-
als, which can be naturally represented by generalized quan-
tifiers. It was already hinted in (Ferraris and Lifschitz 2010)
that aggregates may be viewed in terms of generalized quan-
tifiers. Following up on that suggestion, we present an al-
ternative approach to HEX programs by understanding com-
plex atoms in terms of generalized quantifiers. Our seman-
tics avoids the above issues with the FLP semantics, and al-
lows natural extensions of several important theorems about
the first-order stable model semantics from (Ferraris, Lee,
and Lifschitz 2011), such as the splitting theorem, the theo-
rem on completion and the theorem on strong equivalence,
to formulas with generalized quantifiers. Those theorems in
turn apply to the individual extensions of the stable model se-
mantics, which saves efforts in re-proving the theorems for
the specific extensions. It also allows us to combine different
individual extensions in a single language as in the following
example.

Example 1 We consider an extension of nonmonotonic dl-
programs (T ,Π) that allows aggregates. For instance, a
knowledge base T specifies that every married man has a
spouse who is a woman and similarly for married woman:

Man uMarried v ∃Spouse.Woman
Woman uMarried v ∃Spouse.Man.

The following program Π counts the number of people who
are eligible for an insurance discount:

discount(x)← not accident(x),
#dl[Man ] mm,Married ] mm,Woman ] mw,

Married ] mw;∃Spouse.>](x).
discount(x)← discount(y), family(y, x),

not accident(x).
numOfDiscount(z)← COUNT〈x.discount(x)〉 = z.

The first rule describes that everybody who has a spouse and
has no accident is eligible for a discount. The second rule
describes that everybody who has no accident and has a fam-
ily member who has a discount is eligible for a discount.

The paper is organized as follows. We first review the syn-
tax and the classical semantics of formulas with generalized
quantifiers (GQ-formulas). Next we define stable models of
formulas with generalized quantifiers and then show the in-
dividual extensions of the stable model semantics, such as
logic programs with aggregates, abstract constraint atoms,
and nonmonotonic dl-atoms, can be viewed as special cases
of GQ-formulas. We extend important theorems in answer
set programming, such as the splitting theorem, the theorem
on completion, and the theorem on strong equivalence, to
formulas with generalized quantifiers.

Preliminaries
Syntax of Formulas with Generalized Quantifiers
We follow the definition of a formula with generalized quan-
tifiers from (Westerståhl 2008, Section 5) (that is to say, with
Lindström quantifiers (Lindström 1966) without the isomor-
phism closure condition).

As in first-order logic, a signature σ is a set of sym-
bols consisting of function constants and predicate con-
stants. Each symbol is assigned a nonnegative integer, called
the arity. Function constants with arity 0 are called object
constants, and predicate constants with arity 0 are called
propositional constants. A term is an object variable or
f(t1, . . . , tn), where f is a function constant in σ of arity
n, and ti are terms. An atomic formula is an expression of
the form p(t1, . . . , tn) or t1 = t2, where p is a predicate
constant in σ of arity n.

We assume a set Q of symbols for generalized quantifiers.
Each symbol in Q is associated with a tuple of nonnegative
integers 〈n1, . . . , nk〉 (k ≥ 0, and each ni is ≥ 0), called the
type. A GQ-formula (with the set Q of generalized quanti-
fiers) is defined in a recursive way.
• an atomic formula is a GQ-formula;
• if F1, . . . , Fk are GQ-formulas and Q is a generalized

quantifier of type 〈n1, . . . , nk〉 in Q, then

Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) (3)

is a GQ-formula, where each xi (1 ≤ i ≤ k) is a list of
distinct object variables whose length is ni.
We say that an occurrence of a variable x in a formula

F is bound if it belongs to a subformula of F that has the
form Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) such that x is in
some xi. Otherwise the occurrence is free. We say that x is
free in F if F contains a free occurrence of x. A sentence is
a formula with no free variables.

We assume that Q contains a type 〈〉 quantifierQ⊥, a type
〈0〉 quantifier Q¬, type 〈0, 0〉 quantifiers Q∧, Q∨, Q→, and
type 〈1〉 quantifiersQ∀, Q∃. Each of them corresponds to the
standard logical connectives and quantifiers, ⊥,¬,∧,∨,→
,∀,∃. These generalized quantifiers will often be written in
the familiar form. For example, we write F ∧ G in place of
Q∧[][](F,G), and write ∀xF (x) in place of Q∀[x](F (x)).

Semantics of Formulas with Generalized
Quantifiers
As in first-order logic, an interpretation I of a signature σ
consists of a nonempty set U , called the universe of I , and



a mapping cI for each constant c in σ. For each function
constant f of σ whose arity is n, f I is an element of U if
n is 0, and is a function from Un to U otherwise. For each
predicate constant p of σ whose arity is n, pI is an element of
{t, f} if n is 0, and is a function from Un to {t, f} otherwise.
For each generalized quantifier Q of type 〈n1, . . . , nk〉, QU

is a function from P(Un1)× · · · × P(Unk) to {t, f}, where
P(Uni) denotes the power set of Uni .

Example 2 Besides the standard connectives and quanti-
fiers, the following are other examples of generalized quan-
tifiers.

• type 〈1〉 quantifier Q≤2 such that QU
≤2(R) = t iff the car-

dinality of R is ≤ 2; 4

• type 〈1〉 quantifierQmajority such thatQU
majority(R) = t

iff the cardinality of R is greater than the cardinality of
U \R;

• type 〈2, 1, 1〉 reachability quantifier Qreach such that
QU

reach(R1, R2, R3) = t iff there are some u, v ∈ U such
that R2 = {u}, R3 = {v} and (u, v) belongs to the tran-
sitive closure of R1.

By σI we mean the signature obtained from σ by adding
new object constants ξ∗, called names, for every element ξ
in the universe of I . We identify an interpretation I of σ with
its extension to σI defined by I(ξ∗) = ξ. For any term t of
σI that does not contain variables, we define recursively the
element tI of the universe that is assigned to t by I . If t is an
object constant then tI is an element of U . For other terms,
tI is defined by the equation

f(t1, . . . , tn)I = f I(tI1, . . . , t
I
n)

for all function constants f of arity n > 0.
Given a sentence F of σI , F I is defined recursively as

follows:
• p(t1, . . . , tn)I = pI(tI1, . . . , t

I
n),

• (t1 = t2)I = (tI1 = tI2),
• For a generalized quantifier Q of type 〈n1, . . . , nk〉,

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))I

= QU ((x1.F1(x1))I , . . . , (xk.Fk(xk))I),

where (xi.Fi(xi))
I = {ξ ∈ Uni | (Fi(ξ

∗))I = t}.
We assume that, for the standard logical connectives and

quantifiers Q, functions QU have the standard meaning:
• QU

∀ (R) = t iff R = U ;

• QU
∃ (R) = t iff R ∩ U 6= ∅;

• QU
∧ (R1, R2) = t iff R1 = R2 = {ε};5

• QU
∨ (R1, R2) = t iff R1 = {ε} or R2 = {ε};

• QU
→(R1, R2) = t iff R1 = ∅ or R2 = {ε};

4It is clear from the type that R is any subset of U . We will skip
such explanation.

5ε denotes the empty tuple. For any interpretation I , U0 = {ε}.
For I to satisfy Q∧[][](F,G), both (ε.F )I and (ε.G)I have to be
{ε}, which means that F I = GI = t.

• QU
¬ (R) = t iff R = ∅;

• QU
⊥() = f.

We say that an interpretation I satisfies a sentence F , or is
a model of F , and write I |= F , if F I = t. A sentence F is
logically valid if every interpretation satisfies F .

Example 3 Let I1 be an interpretation whose universe is
{1, 2, 3, 4} and let p be a unary predicate constant such that
p(ξ∗)I1 = t iff ξ ∈ {1, 2, 3}. We check that I1 satisfies for-
mula F = ¬Q≤2[x] p(x) → Qmajority[y] p(y) (“if p does
not contain at most two elements in the universe, then p con-
tains a majority”). Let I2 be another interpretation with the
same universe such that p(ξ∗)I2 = t iff ξ ∈ {1}. It is clear
that I2 also satisfies F .

We say that a generalized quantifier Q is monotone in
the i-th argument position if the following holds for any in-
terpretation I: if QU (R1, . . . , Rk) = t and Ri ⊆ R′i ⊆
Uni , then QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. Sim-

ilarly, we say that Q is anti-monotone in the i-th argu-
ment position if the following holds for any interpretation I:
if QU (R1, . . . , Rk) = t and R′i ⊆ Ri ⊆ Uni , then
QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. We call an argu-

ment position of Q monotone (anti-monotone) if Q is mono-
tone (anti-monotone) in the argument position.

Let M be a subset of {1, . . . , k}. We say that Q is mono-
tone in M if Q is monotone in the i-th argument position
for all i in M . It is easy to check that both Q∧ and Q∨ are
monotone in {1, 2}. Q→ is anti-monotone in {1} and mono-
tone in {2};Q¬ is anti-monotone in {1}. In Example 2,Q≤2

is anti-monotone in {1} and Qmajority is monotone in {1}.
We will see later that monotonicity and anti-monotonicity
play important roles in the properties of stable models for
formulas with generalized quantifiers.

Stable Models of GQ-Formulas
We now define the stable model operator SM with a list of in-
tensional predicates. Let p be a list of distinct predicate con-
stants p1, . . . , pn, and let u be a list of distinct predicate vari-
ables u1, . . . , un. By u ≤ p we denote the conjunction of
the formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . , n, where
x is a list of distinct object variables of the same length as the
arity of pi, and by u < p we denote (u ≤ p) ∧ ¬(p ≤ u).
For instance, if p and q are unary predicate constants then
(u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x))
∧¬(∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))).

For any first-order formula F and any list of predicates
p = (p1, . . . , pn), formula SM[F ;p] is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (4)

where F ∗(u) is defined recursively:

• pi(t)∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F that does not contain
members of p;



•
(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ =

Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk))
∧ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)).

(5)

When F is a sentence, the models of SM[F ;p] are called
the p-stable models of F : they are the models of F that
are “stable” on p. We often simply write SM[F ] in place of
SM[F ;p] when p is the list of all predicate constants occur-
ring in F , and call p-stable models simply stable models.

Proposition 1 Let M be a subset of {1, . . . , k} and
let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) be a formula such
that no predicate constant from p occurs in Fj for all
j ∈ {1, . . . , k} \M .

(a) If Q is monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗

↔ Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk)))

is logically valid.
(b) If Q is anti-monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗

↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

is logically valid.

Proposition 1 allows us to simplify the formula F ∗(u) in
(4) without affecting the models of (4). In formula (5), ifQ is
monotone in all argument positions, we can drop the second
conjunctive term in view of Proposition 1 (a). If Q is anti-
monotone in all argument positions, we can drop the first
conjunctive term in view of Proposition 1 (b). For instance,
recall that each of Q∧, Q∨, Q∀, Q∃ is monotone in all its
argument positions, and Q¬ is anti-monotone in {1}. If F
is a standard first-order formula, then (5) can be equivalently
rewritten as
• (¬F )∗ = ¬F ;
• (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
• (∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.
This is almost the same as the definition of F ∗ given in (Fer-
raris, Lee, and Lifschitz 2011), except for (¬F )∗.6 The only
propositional connective which is neither monotone nor anti-
monotone in all argument positions is Q→, for which the
simplification does not apply. Comparing the two defini-
tions, we note that even in the case when F is a standard
first-order formula, our definition of SM[F ;p] is a bit more
concise.

Example 3 continued For formula F considered earlier,
SM[F ] is

F ∧ ¬∃u(u < p ∧ F ∗(u)) , (6)

6¬F is understood as F → ⊥ in (Ferraris, Lee, and Lifschitz
2011), but this difference does not affect stable models. When ¬ is
a primitive propositional connective as above,

u ≤ p→ ((F → ⊥)∗(u)↔ (¬F )∗(u))

is logically valid.

where F ∗(u) is equivalent to the conjunction of F and

¬Q≤2[x] p(x)→ Qmajority[y] u(y). (7)

I1 considered earlier satisfies (6): it satisfies F and for any
proper subset u of p, it satisfies the antecedent of (7) but not
the consequent. Thus it is a stable model of F . On the other
hand, we can check that I2 does not satisfy (6).

Aggregates as GQ-Formulas
Formulas with Aggregates
The following definition of a formula with aggregates is
from (Ferraris and Lifschitz 2010), which extends (Lee
and Meng 2009). By a number we understand an ele-
ment of some fixed set Num. For example, Num is
Z ∪ {+∞,−∞}, where Z is the set of integers. A multiset
is usually defined as a set of elements along with a function
assigning a positive integer, called multiplicity, to each of its
elements. An aggregate function is a partial function from
the class of multisets to Num. We assume that the signature
σ is a superset of the background signature σbg that contains
symbols for all numbers. We assume that the interpretation
of symbols in the background signature is fixed. That is, each
number is interpreted as itself. An expansion I of Ibg to σ is
an interpretation of σ such that

• the universe of I is the same as the universe of Ibg , and

• I agrees with Ibg on the constants in σbg .

An aggregate formula is defined as an extension of a first-
order formula by adding the following clause:

•
OP〈x1.F1, . . . ,xn.Fn〉 � b (8)

is a first-order formula with aggregates, where

– OP is a symbol for an aggregate function (not from σ);
– x1, . . . ,xn are nonempty lists of distinct object vari-

ables;
– F1, . . . , Fn are arbitrary first-order formulas with ag-

gregates of signature σ;
– � is a symbol for a comparison operator (may not nec-

essarily be from σ);
– b is a term of σ.

Aggregates as GQ-Formulas
Due to the space limit, we refer the reader to (Ferraris and
Lifschitz 2010) for the stable model semantics of formulas
with aggregates. We can explain their semantics by view-
ing it as a special case of stable model semantics presented
here. Following (Ferraris and Lifschitz 2010), for any set
X of n-tuples (n ≥ 1), let msp(X) (“the multiset projec-
tion of X”) be the multiset consisting of all ξ1 such that
(ξ1, . . . , ξn) ∈ X for at least one (n−1)-tuple (ξ2, . . . , ξn),
with the multiplicity equal to the number of such (n − 1)-
tuples (and to +∞ if there are infinitely many of them). For
example, msp({(a, a), (a, b), (b, a)}) = {{a, a, b}}.

We identify expression (8) with the GQ-formula

Q(OP,�)[x1] . . . [xn][y](F1(x1), . . . , Fn(xn), y = b) , (9)



where, for any interpretation I , QU
(OP,�) is a function that

maps P(U |x1|)× · · · ×P(U |xn|)×P(U) to {t, f} such that
QU

(OP,�)(R1, . . . , Rn, Rn+1) = t iff

• OP(α) is defined, where α is the join of the multisets
msp(R1), . . . ,msp(Rn),

• Rn+1 = {bI}, where bI ∈ Num, and

• OP(α) � bI .

Example 4 {discount(alice), discount(carol),
numOfDiscounts(2)} is a Herbrand stable model of the for-
mula

discount(alice) ∧ discount(carol)∧
∀z(COUNT〈x.discount(x)〉 = z → numOfDiscounts(z)).

The following proposition states that this definition is
equivalent to the definition from (Ferraris and Lifschitz
2010).

Proposition 2 Let F be a first-order sentence with aggre-
gates whose signature is σ, and let p be a list of predicate
constants. For any expansion I of σbg to σ, I is a p-stable
model of F in the sense of (Ferraris and Lifschitz 2010) iff I
is a p-stable model of F in our sense.

Abstract Constraint Atoms as GQ-Formulas
Marek and Truszczynski (2004) viewed propositional aggre-
gates as a special case of abstract constraint atoms. Son, Pon-
telli, and Tu (2007) generalized this semantics to account for
arbitrary abstract constraint atoms. In this section we present
an alternative semantics of programs with abstract constraint
atoms by reduction to formulas with generalized quantifiers.
This tells us that GQ-atoms serve as a first-order counterpart
of abstract constraint atoms.

Let σ be a propositional signature, D be a finite list of
atoms of σ and C be a subset of the power set P(D).7 An
abstract constraint atom (or c-atom) (Son, Pontelli, and Tu
2007) is of the form 〈D,C〉. We say that an interpretation of
σ satisfies a c-atom 〈D,C〉 if I ∩D ∈ C.

We view c-atoms as a special case of generalized quan-
tifiers containing no variables, and this provides an alterna-
tive semantics of c-atoms that is distinct from (Son, Pontelli,
and Tu 2007). An abstract constraint 〈D,C〉, where D is
(p1, . . . , pn), can be viewed as a generalized quantified for-
mula

QC [ ] . . . [ ] D , (10)

where, for any interpretation I of σ, QU
C is a function

that maps P({ε}) × · · · × P({ε}) to {t, f} such that
QU

C(R1, . . . , Rn) = t iff {pi | 1 ≤ i ≤ n, Ri = {ε}} ∈ C.

Lemma 1 For any c-atom 〈D,C〉 of σ, let I be an interpre-
tation of σ. I satisfies 〈D,C〉 in the sense of (Son, Pontelli,
and Tu 2007) iff I |= (10).

The syntax of a propositional formula with c-atoms ex-
tends the standard syntax of a propositional formula by treat-
ing c-atoms as a base case in addition to standard atoms.
Obviously, logic programs with c-atoms in the literature can

7We will often identify a list with a set if there is no confusion.

be viewed as a special case of propositional formulas with
c-atoms. The stable model semantics of such a formula is
defined by understanding the formula as shorthand for the
corresponding GQ-formula as described in Lemma 1.

Example 5 The following is Example 4 from (Liu et al.
2010). Let F be the formula

a ∧ b ∧
(
〈(a, b, c), {{a}, {a, c}, {a, b, c}〉 → c

)
.

For new atoms d,e,f , formula F ∗(d, e, f) is

d ∧ e ∧
((
〈(d, e, f), {{d}, {d, f}, {d, e, f}}〉
∧ 〈(a, b, c), {{a}, {a, c}, {a, b, c}}〉 → f

)
∧
(
〈(a, b, c), {{a}, {a, c}, {a, b, c}}〉 → c

))
.

Any subsetX of {a, b, c} is a stable model of F iffX satisfies
F and for any proper subset Y of X , X ∪ Y abc

def does not
satisfy F ∗(d, e, f). (Here Y abc

def is the set obtained from Y by
replacing a, b, c with d, e, f .)

We can check that {a, b} is the only Herbrand stable
model of F . Indeed, {a, b} satisfies F and each of {a, b},
{a, b, d}, {a, b, e} does not satisfy F ∗(d, e, f).

A c-atom can be viewed as an abbreviation of a proposi-
tional formula. Given a c-atom (10), we define its proposi-
tional formula representation as

∧
C ∈ P(D)\C

( ∧
p∈C

p→
∨

p∈D\C

p

)
(11)

as defined by Ferraris (2005).
For any propositional formula F with c-atoms, by Fer(F ),

we denote the usual propositional formula obtained from F
by replacing every c-atom (10) with (11).

The following proposition tells us that c-atoms in a for-
mula can be rewritten as propositional formulas under the
stable model semantics from (Ferraris 2005).

Proposition 3 For any propositional formula F with c-
atoms and any propositional interpretation X , X is a stable
model of F iff X is a stable model of Fer(F ).

Example 5 continued For the formula F above, Fer(F ) is

a ∧ b ∧
((

(a ∨ b ∨ c) ∧ (b→ a ∨ c) ∧ (c→ a ∨ b)

∧ (a ∧ b→ c) ∧ (b ∧ c→ a)
)
→ c

)
.

We check that {a, b} is the only Herbrand stable model of
Fer(F ) in accordance with Proposition 3.

Note that our semantics of logic programs with c-atoms is
not equivalent to the one from (Son, Pontelli, and Tu 2007).
Lee and Meng (2009) present a propositional formula rep-
resentation of abstract constraint atoms under the seman-
tics from (Son, Pontelli, and Tu 2007), which is classically
equivalent, but not strongly equivalent to (11).



Nonmonotonic dl-Programs as GQ-Formulas
Review of Nonmonotonic dl-Programs
Let C be a set of object constants, and let PT and PΠ be
disjoint sets of predicate constants. A nonmonotonic dl-
program (Eiter et al. 2008) is a pair (T ,Π), where T is a
theory in description logic (DL) of signature 〈C,PT 〉 and Π
is a generalized normal logic program of signature 〈C,PΠ〉
such that PT ∩ PΠ = ∅. We assume that Π contains no vari-
ables by applying grounding w.r.t. C. A generalized normal
logic program is a set of nondisjunctive rules that can con-
tain queries to T in the form of “dl-atoms.” A dl-atom is of
the form

DL[S1op1p1, . . . , Skopkpk; Query](t) (k ≥ 0), (12)

where Si ∈ PT , pi ∈ PΠ, and opi ∈ {], −∪, −∩}. Query(t)
is a dl-query as defined in (Eiter et al. 2008). A dl-rule is of
the form

a← b1, . . . , bm, not bm+1, . . . , not bn , (13)

where a is an atom and each bi is either an atom or a dl-atom.
We identify rule (13) with

a← B,N , (14)

where B is b1, . . . , bm and N is not bm+1, . . . , not bn. An
Herbrand interpretation I satisfies a ground atom A relative
to T if I satisfies A. An Herbrand interpretation I satisfies a
ground dl-atom (12) relative to T if T ∪

⋃k
i=1Ai(I) entails

Query(t), where Ai(I) is

• {Si(e) | pi(e) ∈ I} if opi is ],

• {¬Si(e) | pi(e) ∈ I} if opi is −∪,

• {¬Si(e) | pi(e) 6∈ I} if opi is −∩.

A ground dl-atom A is monotonic relative to T if, for any
two Herbrand interpretations I and I ′ such that I ⊆ I ′,
I |=T A implies I ′ |=T A. Similarly, a ground dl-atom
A is anti-monotonic relative to T if, for any two Herbrand
interpretations I and I ′ such that I ⊆ I ′, I ′ |=T A implies
I |=T A.

Given a dl-program (T ,Π) and an Herbrand interpreta-
tion I of 〈C,PΠ〉, the weak dl-transform of Π relative to T ,
denoted by wΠI

T , is the set of rules

a← B′ (15)

where a ← B,N is in Π, I |=T B ∧N , and B′ is obtained
from B by removing all dl-atoms in it. Similarly, the strong
dl-transform of Π relative to T , denoted by sΠI

T , is the set
of rules (15), where a← B,N is in Π, I |=T B∧N andB′
is obtained from B by removing all nonmonotonic dl-atoms
in it. The only difference between these two definitions is
whether monotonic dl-atoms in the positive body remain in
the reduct or not.

An Herbrand interpretation I is a weak (strong, respec-
tively) answer set of (T ,Π) if I is minimal among the sets
of atoms that satisfy wΠI

T (sΠI
T , respectively).

Nonmonotonic dl-program as GQ-Formulas
Here we understand dl-programs as a special case of GQ-
formulas. Consider a dl-program (T ,Π) such that Π is
ground. Under the strong answer set semantics, we identify
every dl-atom (12) in Π with

Q(12)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (16)

if it is monotonic relative to (T ,Π), and

¬¬Q(12)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (17)

otherwise.
Given an interpretation I , QU

(12) is a function that
maps P(U |x1|) × · · · × P(U |xk|) to {t, f} such that,
QU

(12)(R1, . . . , Rk) = t iff T ∪
⋃k

i=1Ai(Ri) entails
Query(t), where Ai(Ri) is

• {Si(ξi) | ξi ∈ Ri} if opi is ],

• {¬Si(ξi) | ξi ∈ Ri} if opi is −∪,

• {¬Si(ξi) | ξi ∈ U |xi| \Ri} if opi is −∩.

We say that I is a strong answer set of (T ,Π) if I satisfies
SM[Π;PΠ].

Similarly a weak answer set of (T ,Π) is defined by iden-
tifying every dl-atom (12) in Π with (17) regardless of A
being monotonic or not.

Example 1 continued The dl-atom

#dl[Man ] mm,Married ] mm,Woman ] mw,
Married ] mw;∃Spouse.>](alice)

(18)

is identified with the generalized quantified formula

Q(18)[x1][x2][x3][x4](mm(x1),mm(x2),mw(x3),mw(x4))
(19)

where, for any interpretation I , QU
(18) is a function that

maps P(U) × P(U) × P(U) × P(U) to {t, f} such that
QU

(18)(R1, R2, R3, R4) = t iff T ∪ {Man(c) | c ∈ R1} ∪
{Woman(c) | c ∈ R3}∪ {Married(c) | c ∈ R2 ∪R4} entails
∃xSpouse(alice, x).

Consider an Herbrand interpretation I =
{mw(alice)}, which satisfies (18). I also sat-
isfies (19) since (x.mw(x))I = {alice} and
T ∪ {Woman(alice),Married(alice)} entails
∃xSpouse(alice, x).

The following proposition tells us that the definitions of
a strong answer set and a weak answer set given here are
equivalent to the definitions from (Eiter et al. 2008).

Proposition 4 For any dl-program (T ,Π), an Herbrand in-
terpretation is a strong (weak, respectively) answer set of
(T ,Π) in the sense of (Eiter et al. 2008) iff it is a strong
(weak, respectively) answer set of (T ,Π) in our sense.

Another Semantics of Nonmonotonic dl-programs
Shen (2011) notes that both strong and weak answer set se-
mantics suffer from circular justifications.



Example 6 (Shen 2011) Consider (T ,Π), where T = ∅ and
Π is the program

p(a)← #dl[c ] p, b −∩ q; c u ¬b](a) , (20)

in which the dl-atom is neither monotonic nor anti-
monotonic. The dl-program has two strong (weak, respec-
tively) answer sets: ∅ and {p(a)}. According to (Shen 2011),
the second answer set is circularly justified:

p(a)⇐ #dl[c ] p, b −∩ q; c u ¬b](a)⇐ p(a) ∧ ¬q(a).

Indeed, sΠ{p(a)}
T (wΠ

{p(a)}
T , respectively) is p(a) ←, and

{p(a)} is its minimal model.

The example suggests that the issue is related to the fact
that both strong and weak answer set semantics do not dis-
tinguish between two kinds of nonmonotonic dl-atoms: anti-
monotonic and non-anti-monotonic ones. The former does
not contribute to loops, but the latter does, so that they should
participate in enforcing minimality of answer sets (See the
later section on loops). This suggests the following alter-
native definition of the semantics of dl-programs. Instead
of removing every nonmonotonic dl-atoms in forming the
reduct under strong answer set semantics, we remove only
anti-monotonic dl-atoms from the bodies, but leave non-anti-
monotonic dl-atoms. In other words, the dl-transform of Π
relative to T and an Herbrand interpretation I of 〈C,PΠ〉,
denoted by ΠI

T , is the set of rules (15), where a ← B,N is
in Π, I |=T B ∧N and B′ is obtained from B by removing
all anti-monotonic dl-atoms in it. We say that an Herbrand
interpretation I is an answer set of (T ,Π) if I is minimal
among the sets of atoms that satisfy ΠI

T .

Example 6 continued {p(a)} is not an answer set of (T ,Π)

according to the new definition. Π
{p(a)}
T is (20) itself, and ∅,

a proper subset of {p(a)} satisfies it.

This new definition can be also characterized in terms of
generalized quantifiers. In fact, the characterization is sim-
pler than those for the other two semantics. We simply iden-
tify (12) with (16) regardless of the (anti-)monotonicity of
the dl-atom.

Proposition 5 For any dl-program (T ,Π), and any Her-
brand interpretation X of 〈C,PΠ〉, X is an answer set of
(T ,Π) as defined here iff X satisfies SM[Π;p] when we
identify every dl-atom (12) in Π with (16).

The new definition is closely related to another variant of
FLP-reduct based semantics of nonmonotonic dl-programs
from (Fink and Pearce 2010). The following proposition
states that the relationship between the two semantics.

Proposition 6 For any dl-program (T ,Π), and any Her-
brand interpretation X of 〈C,PΠ〉, if every occurrence of
nonmonotonic dl-atoms is in the positive body of a rule, then
X is an answer set of (T ,Π) in the sense of (Fink and Pearce
2010) iff X is an answer set of (T ,Π) in our sense.

The following example shows why the condition in the
statement is essential.

Example 7 Consider the dl-program (T ,Π) such that T is
empty, and Π is the following single rule program containing
a nonmonotonic dl-atom:

p(a)← not #dl[C −∩ p; ¬C](a).

While ∅ and {p(a)} are answer sets according to us, only ∅
is the answer set according to (Fink and Pearce 2010).

Strong Equivalence
Strong equivalence (Lifschitz, Pearce, and Valverde 2001)
is an important notion that allows us to substitute one sub-
formula for another subformula without affecting the stable
models. The theorem on strong equivalence from (Ferraris,
Lee, and Lifschitz 2011) can be extended to GQ-formulas as
follows.

About GQ-formulas F and G we say that F is strongly
equivalent to G if, for any formula H , any occurrence of F
in H , and any list p of distinct predicate and function con-
stants, SM[H;p] is equivalent to SM[H ′;p], where H ′ is
obtained from H by replacing the occurrence of F by G. In
this definition, H is allowed to contain object, function and
predicate constants that do not occur in F , G; Theorem 1
below shows, however, that this is not essential.

Theorem 1 Let F andG be GQ-formulas, let p be the list of
all predicate constants occurring in F orG and let u be a list
of distinct predicate variables corresponding to p. Formulas
F andG are strongly equivalent to each other iff the formula

(u ≤ p)→ (F ∗(u)↔ G∗(u))

is logically valid.

Example 8 The program (2) in the introduction can be iden-
tified with the formula F

(¬COUNT〈x.p(x)〉 < 1→ p(a))
∧ (COUNT〈x.p(x)〉 < 1→ q),

and is strongly equivalent to the following formula G:

(¬q → p(a))
∧ (COUNT〈x.p(x)〉 < 1→ q).

One can check that F ∗(u, v) and G∗(u, v) are equivalent to
each other.

Splitting Theorem
We extend the splitting theorem from (Ferraris et al. 2009)
to GQ-formulas.

Let F be a GQ-formula. We say that an occurrence of
p in F is mixed if there is some generalized quantifier Q
that contains the occurrence in its argument position which
is neither monotone nor anti-monotone. Let l be the number
of generalized quantifiers Q in F such that the occurrence
of p belongs to an anti-monotone argument position of Q. If
the occurrence is not mixed then we call it positive in F if
l is even, and negative otherwise. The occurrence is strictly
positive in F if l = 0. We call an occurrence of a predicate
constant semi-positive if it is positive or mixed. Similarly, it
is semi-negative if it is negative or mixed.

We say that F is negative on p if there is no strictly pos-
itive occurrence of a predicate constant from p in F . An



Figure 1: Dependency Graph of the Formula in Example 1

occurrence of a predicate constant or a subformula of F is
p-negated in F if it is contained in a subformula of F that is
negative on p.

The dependency graph of F relative to a list p of inten-
sional predicates (denoted by DGp[F ]) is a directed graph
such that
• the vertices are the members of p, and
• there is an edge from p to q if there is a strictly positive oc-

currence of a subformula G = Q[x1] . . . [xk](F1, . . . , Fk)
such that
– p has a strictly positive occurrence in G, and
– q has a semi-positive, non-p-negated occurrence in a

non-monotone argument position of Q.
Figure 1 shows the dependency graph of F relative to

{discount, family,mm,mw, accident, numOfDiscount}.
A loop of F (relative to a list p of intensional predi-

cates) is a nonempty subset l of p such that the subgraph
of DGp[F ] induced by l is strongly connected. It is clear
that the strongly connected components of DGp[F ] are the
maximal loops of F .
Theorem 2 (Splitting Lemma) Let F be a GQ-sentence,
and let p be a tuple of distinct predicate constants. If
l1, . . . , ln are all the loops of F relative to p then

SM[F ;p] is equivalent to SM[F ; l1] ∧ · · · ∧ SM[F ; ln].

The following theorem extends the splitting theorem
from (Ferraris et al. 2009) to GQ-sentences. The proof uses
Theorem 2.
Theorem 3 (Splitting Theorem) Let F , G be GQ-
sentences, and let p, q be disjoint tuples of distinct
predicate constants. If
• each strongly connected component of DGpq[F ∧G] is a

subset of p or a subset of q,
• F is negative on q, and
• G is negative on p

then

SM[F ∧G;pq] is equivalent to SM[F ;p] ∧ SM[G;q].

Example 1 continued SM[F ; discount, numOfDiscount] is
equivalent to SM[G1; discount] ∧ SM[G2; numOfDiscount],
where G1 is the conjunction of the universal closures of the
first two implications in F and G2 is the universal closure of
the last implication.

Completion
A GQ-formula F is in Clark normal form if it is a conjunc-
tion of sentences of the form

∀x(G→ p(x)), (21)
one for each intensional predicate p, where x is a list of
distinct object variables, and G has no free variables other
than x. The completion (relative to p) of a GQ-formula F
in Clark normal form, denoted by COMP[F ], is obtained by
replacing each conjunctive term (21) with

∀x(p(x)↔ G).

We say that a GQ-formula is tight on p if its dependency
graph relative to p is acyclic.
Theorem 4 For any GQ-formula F in Clark normal form
that is tight on p, SM[F ;p] is equivalent to the completion
of F relative to p.

Example 1 continued Let F ′ be the formula obtained
from F by dropping the second implication. The Clark nor-
mal form of F ′ is tight on {discount, numOfDiscount}. So
SM[F3; discount, numOfDiscount] equivalent to
∀x(discount(x)↔ ¬accident(x)∧

#dl[Man ] mm,Married ] mm,Woman ] mw,
Married ] mw;∃Spouse.>](x))∧

∀y(numOfDiscount(y)↔ COUNT〈x.discount(x)〉 = y).

Related Work
We refer the reader to (Eiter et al. 2005) for the semantics
of HEX programs. It is not difficult to see that an external
atom in a HEX program can be represented in terms of a
generalized quantifier. Eiter et al. show how dl-atoms can be
simulated by external atoms #dl[](x). The treatment is sim-
ilar to ours in terms of generalized quantifiers. For another
example, rule

reached(x)← #reach[edge, a](x)

defines all the vertices that are reachable from the vertex a in
the graph with edge. The external atom #reach[edge, a](x)
can be represented by a generalized quantified formula
Qreach[x1x2][x3][x4](edge(x1, x2), x3 = a, x4 = x),

where Qreach is as defined in Example 2.
In fact, the incorporation of generalized quantifiers in

logic programming was considered earlier in (Eiter, Gott-
lob, and Veith 1997), but the treatment there was to simply
view them like negative literals. This approach does not al-
low recursion through generalized quantified formulas, and
often yields an unintuitive result even when we limit atten-
tion to standard quantifiers. For instance, according to (Eiter,
Gottlob, and Veith 1997), program

p(a)← ∀x p(x) (22)
has two answer sets, ∅ and {p(a)}. The latter is “unfounded.”
This is not the case in the first-order stable model seman-
tics (Ferraris, Lee, and Lifschitz 2011; Lin and Zhou 2011),
which allows the standard quantifiers, but no other general-
ized quantifiers. According to our semantics, which prop-
erly extends the semantics from (Ferraris, Lee, and Lifschitz
2011) does not have the unintuitive answer set {p(a)}.



Conclusion
We presented the stable model semantics for formulas con-
taining generalized quantifiers, and showed that several re-
cent extensions of the stable model semantics can be viewed
as special cases of this language. We expect that the general-
ity of the formalism is useful in providing a principled way
to study and compare the different extensions of the stable
model semantics.
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