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Abstract

Logic programming under answer set semantics is a favourite
tool for knowledge representation. If a logic program con-
tains conflicting rules, we want to resolve the conflicts. Pref-
erences are usually used to encode additional principles for
conflict resolution. They state which of the conflicting rules
are applicable.
Different semantics for preferential reasoning have been pro-
posed. They usually have difficulties to ignore some unnatu-
ral preferences: (i) when the preferences are not compatible
with an order, in which rules have to be applied, (ii) when the
preferences are specified on rules that are not applicable un-
der answer set semantics, (iii) when the preferences are spec-
ified on non-conflicting rules. In such situations existing ap-
proaches lead to counter-intuitive conclusions. On the other
hand, approach of (Šefránek 2008) that is able to ignore pref-
erences on non-applicable rules is too restrictive, and ignores
some preferences between conflicting rules.
In this paper, we address this issue by proposing semantics for
preferential reasoning that is able to handle aforementioned
situations. Our approach is based on the following notions:
(i) comparison of generating rules, (ii) detection which rules
are conflicting, and (iii) splitting a program into components,
in which the comparisons are performed.

Introduction
Knowledge base encoded as an extended logic program un-
der answer set semantics (Gelfond and Lifschitz 1991) is
simply a set of ”if then” rules. It is quite natural that a
knowledge base contains conflicting rules (mutually exclu-
sive rules). In order to resolve conflicts between rules, ad-
ditional principles are used. In a law domain, for example,
a rule from a law with higher authority takes precedence.
Such additional principles are traditionally encoded using a
preference relation on rules.

Different semantics for logic programs with preferences
have been proposed. A common approach to preference
handling is to select some of the answer sets to be pre-
ferred ones. Otherwise, the approaches usually differ a lot.
(Brewka and Eiter 1999), (Delgrande, Schaub, and Tompits
2003) and (Wang, Zhou, and Lin 2000) understand prefer-
ences as an order, in which rules have to be applied. A rule
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is applied if all preferred rules have been applied or have
been defeated in a preference aware manner. (Zhang and
Foo 1997) uses different approach. Preference handling is
understood as a removal of defeated less preferred rules. At
each step we remove from a program a less preferred rule
that is defeated by the remainder of the program. (Sakama
and Inoue 2000) works with preferences on literals. It also
provides a way to transform preferences on rules to prefer-
ences on literals. Preferred answer set selection is then done
via comparison of answer sets. (Šefránek 2008) defines an
argumentation framework. The rules of a program are the
basic argumentation structures, and the preferences on rules
are used to form the basic attacks between argumentation
structures. The derivation rules are used to derive argumen-
tation structures and attacks. Special type of argumentation
structures, complete argumentation structures, correspond to
answer sets. Complete argumentation structures that are not
attacked represent preferred answer sets.

None of the approaches we are aware of is able to fully
handle the following situations:
• when the preferences are not compatible with an order, in

which rules have to be applied (Example 1, Example 2),
• when the preferences are specified on rules that are not

applicable under answer set semantics (Example 1, Ex-
ample 3),

• when the preferences are specified on non-conflicting
rules (Example 1, Example 3, Example 4),

• when preferences are specified on conflicting rules (Ex-
ample 5).
We illustrate these areas on the following examples.

Example 1. Consider the program from Example 5.5 from
(Brewka and Eiter 1999).
r1 : c← not b r1 is preferred over r2

r2 : b← not a

The program is stratified, and its semantics is well defined.
First, we need to know whether b holds to decide whether c
holds. Therefore the rule r1 can be used only after r2. More-
over, there is no conflict between r1 and r2 as they produce
the unique answer set {b}. Hence {b} should be the unique
preferred answer set. According to (Brewka and Eiter 1999),
(Delgrande, Schaub, and Tompits 2003) and (Wang, Zhou,
and Lin 2000) the program has no preferred answer set.



Example 2. Consider the program 5.1 from (Brewka and
Eiter 1999).
r1 : b← not ¬b, a r1 is preferred over r2

r2 : ¬b← not b r2 is preferred over r3

r3 : a← not ¬a
There is no way to derive ¬a, hence r3 can be applied. r1

and r2 depend on each other, and r1 depends on r3. Also
the only conflict is between rules r1 and r2. Therefore we
first apply rule r3 and then we decide whether we use rule
r1 or r2. Since r1 is preferred {b, a} should be the unique
preferred answer set.

(Delgrande, Schaub, and Tompits 2003) and (Wang,
Zhou, and Lin 2000) have no preferred answer sets. They
require that r1 is applied before r3 but that cannot be done,
as r3 is the only rule that derives the prerequisite a of r1.
Example 3. Consider the following program
r1 : a← not b r1 is preferred over r2

r2 : b← not a

r3 : inc← a,not inc

The rule r1 is preferred. However, it cannot be applied, as
the answer sets containing literal a are ruled out by the in-
tegrity constraint r3.

According to our view, the unique answer set {b} should
be the unique preferred answer set. (Brewka and Eiter
1999), (Wang, Zhou, and Lin 2000), and (Delgrande,
Schaub, and Tompits 2003) provide no preferred answer set,
since they require that r1 is applied.
Example 4. Consider the following program
r1 : a← not b r3 is preferred over r1

r2 : b← not a
r3 : c← b

The only conflict is between the rules r1 and r2. The rules
r1 and r3 are not in conflict. The head of the rule r3 is not
in the body of the rule r1, and vice versa. Moreover, not b is
the precondition of r1, and b is the precondition of r3. Hence
the rules are applicable in different “situations”. Hence the
preference should not be “effectual”. Both {a} and {b, c}
should be preferred answer sets.

(Zhang and Foo 1997) and (Sakama and Inoue 2000) are
unable to detect that r2 and r3 are not in conflict, and select
{b, c} as the unique preferred answer set of the program.
Example 5. Consider the program
r1 : a← not ¬a r1 is preferred over r2

r2 : b← not ¬b
r3 : ¬b← a
r4 : ¬a← b

The rules r1 and r2 are in conflict. This conflict is indirect
via r3 and r4. The rule r1 being preferred, {a,¬b} should
be the unique preferred answer set.

The only preference is ignored in (Šefránek 2008) as the
head of the rule r1 is not default negated in the body of the
rule r2.

The contribution of the paper is proposed semantics that
addresses aforementioned situations, i.e.:

• it ignores preferences between rules that are not in con-
flict,

• takes into account preferences between conflicting rules,

• it ignores preferences on rules that cannot be applied un-
der answer set semantics.

It also provides a preferred answer set when a standard an-
swer set of a program exists.

We want to note that these ideas are to some extent present
in existing approaches. (Brewka and Eiter 1999), (Wang,
Zhou, and Lin 2000), (Delgrande, Schaub, and Tompits
2003), (Zhang and Foo 1997) are able to ignore some unnat-
ural preferences. On the other hand (Šefránek 2008) is too
restrictive, and ignores preferences between conflicting rules
in some situations. (Šefránek 2008) is also able to ignore
preferences on rules that are not applicable under answer set
semantics. However, none of the approaches satisfactorily
handles all the mentioned situations.

Our approach is based on the following notions

• comparison of generating rules,

• detection which rules are conflicting, and

• splitting a program into components, in which the com-
parisons are performed.

The rest of the paper is organized as follows. First, we
give the preliminaries and notation. Second, we informally
present our approach on an example. Then, we give the for-
mal presentation of the approach, and we present the prop-
erties of the approach. After that we compare our approach
to other approaches and conclude the paper.

Preliminaries and Notation
We use extended logic programs. Let At be the set of atoms.
A literal is either a or ¬a where a is an atom. The set of all
literals is Lit.

A rule is an expression of the form L ←
L1, . . . , Lm,not Lm+1, . . . ,not Ln, where m,n ∈ N,
m ≤ n, L,Li ∈ Lit.

If r is a rule of the form as above, then L, the head of
the rule is denoted by head(r), {L1, . . . ,not Ln} is called
the body of the rule, and the literals in the body of the rule
{L1, . . . , Ln} are denoted by bodyL(r).

Also positive part of the rule {L1, . . . , Lm} is denoted by
body+(r), and negative part {Lm+1, . . . , Ln} is denoted by
body−(r).

If r1, r2 are rules, we say that r1 blocks r2 iff head(r1) ∈
body−(r2).

An extended logic program is a finite set of rules. For
simplicity, we will use the term logic program instead of
extended logic program.

If P is a logic program and X is a set of literal, we will
use P ∪X to denote the program P ∪ {x←: x ∈ X}.

Two literals a, b ∈ Lit are contradictory iff a = ¬b. A set
S ⊆ Lit of literals is inconsistent iff there are contradictory
literals a, b ∈ S. Otherwise it is consistent.

A set of literals S satisfies a rule r iff head(r) ∈ S when-
ever body+(r) ⊆ S and body−(r) ∩ S = ∅. A set of literals



S is a model of a logic program P iff: (i) S satisfies ev-
ery rule r ∈ P , and (ii) S is consistent or S = Lit. We
will denote the least model of a logic program P (under ⊂
ordering) byM0(P ).

Let r be a rule. Then r+ is head(r)← body+(r). If P is
a logic program then P+ = {r+ : r ∈ P}. A logic program
P is definite iff P = P+.

Let R be a set of rules and S be a set of literals. Then
Gelfond-Lifschitz transformation RS = {r+ : r ∈ R ∧
body−(r) ∩ S = ∅}.

A set of literals S is an answer set of a logic program P
iff S = M0(PS). We will denote the set of all answer sets
of a logic program P by AS(P ).

Let A be an answer set of P . Then the set of all generating
rules of A is the set AGRP (A) = {r ∈ P : body+(r) ⊆
A ∧ body−(r) ∩ A = ∅}. Set of all generating rules of a
program P is the set AGR(P ) =

⋃
A∈AS(P )AGRP (A).

Definition 1 (Preference relation on rules). Let R be a set of
rules. Relation <⊆ R × R is a preference relation on rules
iff it is (i) irreflexive, (ii) asymmetric, and (iii) transitive. If
r1 < r2 we say that r2 is preferred over r1.

Definition 2 (Program with preferences). Program with
preferences is a pair (P,<) where P is a logic program and
< is a preference relation on rules.

Informal Presentation
In this section we informally present our approach on the
following example.
Example 6. Consider the program

r1 : a← not b r2 < r1

r2 : b← not a r4 < r3

r3 : c← a,not d
r4 : d← a,not c

The program has three answer sets: A1 = {a, c} generated
by the rules R1 = {r1, r3}, A2 = {a, d} generated by the
rules R2 = {r1, r4}, and A3 = {b} generated by the rule
R3 = {r2}.

We consider the rules r1 and r2 to be conflicting as
head(r1) ∈ body−(r2), head(r2) ∈ body−(r1), and r1 ∈
R1 and r2 ∈ R3 are used to generate the answer sets. Also
the rules r3 and r4 are conflicting.

We adopt the view, that the preference handling is a selec-
tion between different generating sets. However, we do not
want to compare the whole sets R1, R2, R3. Structure of the
rules reveals that there are two decision points:

• whether we use r1 or r2, and
• whether we use r3 or r4 (if we choose r1).

These two decision points represent different concerns,
and as a good practice, we do not want to mix them. We
split the program into components Π1 = {r1, r2} and Π2 =
{r3, r4}. Π1 has two answer sets: B1 = {a} and B2 = {b},
generated by the rules RB1

= {r1}, and RB2
= {r2}, re-

spectively. Using the preference r2 < r1 we select B1 as a
preferred answer set of the component Π1 – RB1

contains
a preferred rule. Using B1, the component Π2 has two an-
swer sets C1 = {c} and C2 = {d} generated by the rules

RC1 = {r3} and RC2 = {r4} respectively. RC1 contains a
preferred rule, hence we select C1 as a preferred answer set
of the component Π2. Finally, A1 = B1 ∪ C1 is the unique
preferred answer set of the program.

In the next sections we formally define the approach. It is
defined in the three steps: 1. a program is split into compo-
nents in order to separate the rules, 2. we detect conflicting
rules, 3. we select the preferred answer sets of the compo-
nents via comparison between generating sets.

Splitting – summary
In order to split a program into components, we use the split-
ting developed by Lifschitz and Turner. In this section we
summarize the splitting presented in (Lifschitz and Turner
1994). However, for the technical reasons we use the mod-
ified definitions. The important difference between our and
the original version of splitting it that we require a sequence
of splitting sets to be total in a certain sense. It allow us to
split a program as much as possible. For the formal formu-
lation see Definition 4.

Definition 3 (Splitting set). A set S of literals is a splitting
set for a program P iff for every r ∈ P we have that if
head(r) ∈ S then bodyL(r) ⊆ S.

Definition 4 (Splitting). Let P be a logic program. Then a
finite sequence of rules 〈Π0, . . . ,Πn〉 is called a splitting of
P iff there is a sequence 〈S0, . . . , Sn〉 of splitting sets such
that:

• S0 = ∅,
• Si ⊂ Si+1 for 0 ≤ i < n,
• Sn = Lit, and
• for each 0 ≤ i < n there is no splitting set S such that
Si ⊂ S ⊂ Si+1,

• Π0 = ∅, and
• Πi = {r ∈ P : head(r) ∈ Si \ Si−1} for i > 0.

We call Πi a component of the program.

Definition 5 (Solution). Let P be a logic program, Π =
〈Π0, . . .Πn〉 be a splitting of P . A solution to Π is a se-
quence 〈X0, X1, . . . , Xn〉 of sets of literals such that:

• X0 = ∅,
• Xi is an answer set of Πi ∪Xi−1 for 0 < i ≤ n, and
• Xn is consistent.

We call Xi an answer set of the component Πi.

Note that in our formulation of a solution, Xi ⊆ Xi+1.

Theorem 1 (Splitting sequence theorem). Let Π =
〈Π0, . . . ,Πn〉 be a splitting of a logic program P . A set
A of literals is a consistent answer set of P iff A = Xn for
some solution 〈X0, . . . , Xn〉 to Π.

Restriction to generating rules
There are the two problems with straightforward use of split-
ting.

The first problem is that not every answer set of a com-
ponent is a subset of an answer set of the whole program.



Some candidates to an answer sets are rejected, e.g. by an
integrity constraint. If preference handling semantics is un-
aware of this, then all the preferred answer set candidates
can be rejected. Example 7 shows this situation.

Example 7. Consider the following program

r1 : a← not b r1 < r2

r2 : b← not a

r3 : inc← b,not inc

We split the program into two components: Π1 = {r1, r2}
and Π2 = {r3}. B = {b} is an answer set of Π1. However,
using B, Π2 ∪ B has no answer set as the constraint r3 is
not satisfied. Hence B is not an answer set of the whole
program.

If we choose B to be the only preferred answer set of Π1

the program has no preferred answer set.

We want to avoid this kind of behaviour. We want to en-
sure that there is a preferred answer set whenever a standard
one exists.

To fix the first problem we must select a preferred answer
set of a component only from the answer sets of the com-
ponent that are not rejected, i.e. they are subsets of some
answer sets of a program.

Example 8. In Example 7, we will choose a preferred an-
swer set of the component Π1 only from {a} since {b} is not
a subset of any answer set of the program.

The second problem is that one can always construct a bad
rule that causes a program to have the only one component.
In this way, independent rules can be forced to be in the
same component. This is caused by the fact that splitting
into components works on syntactic level. Example 9 shows
this.

Example 9. Consider the program from Example 6. We split
it into two components: Π1 = {r1, r2} and Π2 = {r3, r4}.

Consider we add the rule r5 : a← x, c. Now, the program
has the unique component Π′1 = {r1, r2, r3, r4, r5}.

We can fix this problem by restricting to generating rules.
It holds that AS(P ) ⊆ AS(AGR(P )), but there are pro-
grams where AS(AGR(P )) 6⊆ AS(P ). Therefore we need
to check that an answer set of a component of AGR(P ) is
not rejected in P , i.e. it has a superset in AS(P ). Note that
the same check is needed to fix the first problem.

Following definitions formally define aforementioned
check.

Definition 6 (Accepted set). Let X be a set of literals, and
O be a set of sets of literals. X is accepted with respect to
O iff there is B ∈ O such that X ⊆ B.

Definition 7 (Accepted solution). Let P be a logic program,
O ⊆ AS(P ), Π be a splitting of P , and X = 〈Xi, . . . , Xn〉
be a solution to Π.

X is accepted with respect to O iff Xi is accepted with
respect to O for all 0 ≤ i ≤ n.

The following propositions formally state that we will get
the answer sets of P by using splitting to AGR(P ) and

checking whether the answer sets of the components are ac-
cepted with respect to AS(P ). This manifests how to focus
to the generating rules of a program.
Proposition 1. Let P be a logic program, O ⊆ AS(P ), Π
be a splitting of P , and X = 〈X0, . . . , Xn〉 be a solution to
Π.
X is accepted with respect to O iff Xn ∈ O.

Proof. ⇒ Xi is accepted with respect to O. Hence A =
Xn ⊆ B for some B ∈ O. From splitting sequence theorem
we have that A ∈ AS(P ). Also B ∈ AS(P ). Therefore
A ⊆ B implies A = B.
⇐We have Xn = B for some B ∈ O. Therefore Xi ⊆ B

as Xi ⊆ Xn. Xi is accepted with respect to O. Hence X is
accepted with respect to O.

Proposition 2. Let P be a logic program, Π be a splitting of
the program AGR(P ), and A be a consistent set of literals.
A is an answer set of P iff there is a solution X =

〈X0, . . . , Xn〉 to Π such that Xn = A, and X is accepted
with respect to AS(P ).

Proof. ⇒ A ∈ AS(P ). Therefore A ∈ AS(AGR(P )).
From splitting sequence theorem we have that there is a so-
lution X = 〈X0, . . . , Xn〉 to Π such that Xn = A. Since
A ∈ AS(P ) we have that X is accepted with respect to
AS(P ).
⇐ X is accepted with respect to AS(P ). From Propo-

sition 1 follows that Xn ∈ AS(P ). Hence we have that
A ∈ AS(P ).

Whenever there is an answer set of a component that is
accepted with respect to a subset of AS(P ), then there is
also an answer set of the next component that is accepted
with respect to the subset. In other words, an already se-
lected answer set of a component is not rejected in any later
component.
Proposition 3. Let P be a consistent logic program, O ⊆
AS(P ). Let Π = 〈Π0, . . . ,Πn〉 be a splitting of P .

If there are X0, X1, . . . , Xk, for 0 ≤ k < n such that
• X0 = ∅,
• Xi is an answer set of Πi ∪Xi−1, for 0 < i ≤ k, and
• Xk ⊆ A for some answer set A ∈ O

then there is Xk+1 such that
• Xk+1 is an answer set of Πk+1 ∪Xk, and
• Xk+1 ⊆ B for some answer set B ∈ O.

Proof. Since A is a consistent answer set of P , there is a
solution Y = 〈Y0, . . . , Yn〉 to Π. Let 〈S0, . . . , Sn〉 be a
sequence of splitting sets associated with Π.

Since Xk ⊆ A, then Xk ∩Sj ⊆ A∩Sj for all 0 ≤ j ≤ k.
A ∩ Sj = Yj , and Xk ∩ Sj = Xj . Then Xj ⊆ Yj .

Now we prove by induction that Xi = Yi for all 0 ≤ i ≤
k.

We have that X0 = ∅ = Y0. Assume Xi = Yi for all
0 ≤ i < j where 0 < j ≤ k. We have that both Xj and
Yj are answer sets of Πj ∪ Xj−1. Since one answer set
cannot be a proper subset of a second answer set of the same
program, Xj = Yj .



Now we simply take Xk+1 = Yk+1, and B = A. The
second condition for Xk+1 is satisfied because Yi ⊆ A.

Selection of Preferred Answer Sets
After splitting a program into components, we select the pre-
ferred answer sets of the components.

Recall Definition 5. In each step of the construction of
a solution to a splitting we have to compute an answer set
of the component Πi. If Πi has the multiple answer sets
we understand this as a decision point in which we select
an answer set from all acceptable answer sets of Πi. We
understand the answer set selection as the comparison of the
answer sets. Moreover, since the answer sets are generated
by rules, we understand the comparison of answer sets as a
comparison between generating rules.

Comparison of Generating Rules
In the first step, we transfer a preference relation on rules to
a preference relation on sets of rules (generating sets). We
start by defining a generating set of an answer set of a com-
ponent. Every rule in a generating set must be applicable
in an answer set it generates, and the generating set must
generate the whole answer set.
Definition 8 (Generating set of an answer set of a compo-
nent). Let Π be a component of a program P , X a set of
literals, and A be an answer set of Π ∪X .

A generating set of A with respect to (Π, X) is a set R ⊆
Π of rules such that:

• for every r ∈ R it holds that body+(r) ⊆ A and
body−(r) ∩A = ∅,

• A is an answer set of R ∪X .

The set of all generating sets of an answer set A with re-
spect to (Π, X) is denoted by GSΠ,X(A).

When comparing two generating sets, we do not use all
preferences. Only preferences between the conflicting rules
are used. Our intuition is that preferences are used in order
to help to resolve conflicts between rules, and therefore the
preferences on non-conflicting rules should have no effect
on the program.

We consider two rules to be conflicting if they are part
of the sequences of rules that block each other. The next
example illustrates the intuition behind this notion, and the
next definition formalizes it.
Example 10. Consider the program (a simplified version of
a program from (Brewka and Eiter 1999))
r1 : buy(a)← safe(a),not ¬buy(a)
r2 : buy(b)← nice(b),not ¬buy(b)
r3 : ¬buy(a)← buy(b)
r4 : ¬buy(b)← buy(a)
r5 : buy(c)← buy(a)

It has two answer sets, one generated by the rules R1 =
{r1, r4, r5}, and the second by the rules R2 = {r2, r3}. The
rule r4 depends on the rule r1 and blocks the rule r2. The
rule r3 depends on r2 and blocks r1. The rule r5 blocks no
rule. Hence there are only four conflicts, between the rules
(i) r1, r2, (ii) r1, r3, (iii) r4, r2, (iv) r4, r3.

Definition 9. Let R,P be finite sets of rules. Let
〈r0, r1, . . . , rn〉, 〈p0, p1, . . . , pm〉 be sequences of rules such
that:

• ri ∈ R,
• pi ∈ P ,
• head(ri) ∈ body+(ri+1) for 0 ≤ i < n,
• head(pi) ∈ body+(pi+1) for 0 ≤ i < m,
• head(rn) ∈ body−(p0), and
• head(pm) ∈ body−(r0).

Then ri and pi are conflicting in (R,P ).

The next definition transfers preferences on rules to pref-
erences on set of rules. Only preferences on conflicting rules
are used. We also allow preferences to defeat each other. We
motivate the definition with the following example.

Example 11. Consider the rules of a simple ski recom-
mender

r1 : ¬rec(slope)← no snow(slope),not rec(slope)
r2 : rec(slope)← user likes(slope),not ¬rec(slope)
r3 : ¬rec(slope)← difficult(slope),not rec(slope)
r4 : no show(slope)←
r5 : user likes(slope)←
r6 : difficult(slope)← r3 < r2 < r1

The rule r3 represents a general requirement of a user.
He/she does not like difficult slopes. However, the rule r2

express that the system should recommend a slope when a
user likes it. Since information in the rule r2 is more specific
than in the rule r3, r2 is preferred over r3. The rule r1 on the
other hand operates with the most important information. It
makes no sense to recommend a slope with no snow even if
a user likes the slope. Hence the rule r1 is preferred over r2.

The program has two answer sets A1, A2 such that
rec(slope) ∈ A1, and ¬rec(slope) ∈ A2. A1 is gener-
ated by the rules R1 = R∪{r2} and A2 is generated by the
rules R2 = ∪{r1, r3} where R = {r4, r5, r6}. We prefer
R2 over R1 even though r2 ∈ R1 is preferred over r3 ∈ R2.
The reason is that r1 ∈ R2 is even more preferred than r2.

Definition 10 (Preference relation on sets of rules). Let P
be a logic program and < be a preference relation on rules.
Preference relation ≤⊆ 2P × 2P on sets of rules is defined
as follows. A ≤ B iff

• there are rA ∈ A, rB ∈ B such that rA and rB are
conflicting in (A,B) and rA < rB , and

• there is no rC ∈ B such that rB and rC are conflicting in
(B,A) and rB < rC .

Preferred Answer Sets of a Component
Now, we are ready to define the selection of the preferred
answer sets of a component. A preference relation on the
answer sets of a component is constructed via comparison
of the generating rules. Then, the “maximal” answer sets
are selected as preferred.

Our definition is based on the view that one can choose
one particular generating set to generate an answer set and



view the others generating sets as inactive. If there is a gen-
erating set of an answer set that can be selected without vi-
olating any preferences then also an answer set can be se-
lected without violating any preferences (by using exactly
the rules from that generating set).
Definition 11 (Preference relation on answer sets of a com-
ponent). Let P be a logic program, and < be a preference
relation on P . Let Π be a component of the program P . Let
X be a set of literals. Let Q be the set of all answer sets of
Π ∪X .

Then preference relation on the answer sets of the compo-
nent Π for <, denoted ≤Π,X⊆ Q×Q is defined as follows:
• A ≤Π,X A,
• A ≤Π,X B if for each RA ∈ GSΠ,X(A) there is RB ∈
GSΠ,X(B) such that RA ≤ RB , and

• if A ≤Π,X B and B ≤Π,X C, then A ≤Π,X C.
Definition 12 (Preferred answer set of a component). Let
P a logic program , and < be a preference relation on P .
Let Π be a component of the program P . Let X be a set of
literals. Let Q be the set of all answer sets of Π ∪ X , and
O ⊆ Q.
A ∈ O is preferred among O with respect to < iff for

every B ∈ O if A ≤Π,X B then B ≤Π,X A.
Proposition 4. Let P be a logic program, and < be a pref-
erence relation on P . Let Π be a component of the program
P . Let X be a set of literals. Let Q be the set of all answer
sets of Π ∪X , and ∅ ⊂ O ⊆ Q.

Then there is a preferred answer set A among O with re-
spect to <.

Proof. Assume there is no preferred answer set among O
with respect to <.

We can create sequence A1, A2, . . . , An+1 where:

• n = |O|,
• Ai ≤Π,X Ai+1 for 1 ≤ i < n,
• Ai+1 6≤Π,X Ai for 1 ≤ i < n.

Since there is a finite number of elements in O we have
that An+1 = Ai for some i < n+1. Hence An+1 ≤Π,X An.
A contradiction.

Preferred Answer Sets
Preferred answer sets of a whole program are defined via
preferred solutions. A solution to a program is preferred iff
an answer set of each component is preferred.
Definition 13 (Preferred solution). Let P be a logic pro-
gram, < be a preference relation on P , O ⊆ AS(P ), Π be
a splitting of P , and X = 〈X0, . . . , Xn〉 be a solution to Π.
X is preferred with respect to < and O iff in Definition 5

for all i > 0 Xi ∈ Qi, and Xi is preferred among Qi with
respect to <, where Qi is the set of all those answer sets of
Πi ∪Xi−1, which are accepted with respect to O.

An answer set is preferred if there is a preferred solution
that generates it. A solution is always bound to a splitting.
In Definition 14 we do not require a preferred solution to be
bound to any particular splitting. We motivate the definition
on the following example.

Example 12. Consider the program
r1 : a← not b r3 : c← not d r1 < r2

r2 : b← not a r4 : d← not c r4 < r3

r5 : inc← b, c,not inc

It has three components Π1 = {r1, r2}, Π2 = {r3, r4}, and
Π3 = {r5}. There is no dependency between Π1 and Π2 so
we can consider them in arbitrary order.

When we consider Π1 first, we select {b} as a preferred
answer set of Π1. In the next step, we cannot select {b, c}
even though r3 is preferred. Thus {b, d} is preferred answer
set.

Considering Π2 first, yields dual situation. {c, a} is a
preferred answer set.
Definition 14 (Preferred answer set). Let P = (P,<) be a
logic program with preferences.

A consistent set A of literals is a preferred answer set of P
iff there is a solution X = 〈X0, . . . , Xn〉 to some splitting
Π of the program AGR(P ) such that Xn = A, and X is
preferred with respect to < and AS(P ).
Lit is a preferred answer set of P iff Lit is an answer set

of P .
Set of all preferred answer sets of P is denoted PAS(P).

Proposition 5. Let P be a consistent logic program, < be
a preference relation on P , ∅ ⊂ O ⊆ AS(P ), and Π be a
splitting of P .

There exists a preferred solution to Π with respect to <
and O.

Proof. Recall Definition 13. From Proposition 3 we have
that Qi+1 6= ∅ for all i ≥ 0 whatever Xi we choose. From
Proposition 4 we have that there is a preferred answer set
of the component Πi among Qi with respect to < for all
i > 0.

Properties
In this section we present properties of preferred answer
sets.

The presented approach to preference handling is selec-
tive, i.e. every preferred answer set is an answer set.
Theorem 2. Let (P,<) be a logic program with preferences.

If A is an preferred answer set of (P,<) then it is an an-
swer set of P .

Proof. Follows from Definition 14 using Proposition 2.

Brewka and Eiter have presented in their paper (Brewka
and Eiter 1999) principles for preference handling, which
try to characterize reasonable preference handling seman-
tics. Neither Principle I nor Principle II is satisfied in our ap-
proach. Reasons are discussed below each principle. How-
ever our semantics does not satisfy principles I and II, it is
able to correctly solve problematic programs from literature.
Principle I. Let (P,<) be a logic program with preferences,
A1, A2 be two answer sets of P . Let R ⊂ P be a set of rules
and d1, d2 6∈ R are rules. Let AGR(A1) = R ∪ {d1} and
AGR(A2) = R ∪ {d2}. If d1 is preferred over d2 then A2

is not a preferred answer set of (P,<).



Theorem 3. Preferred answer sets defined in Definition 14
do not satisfy Principle I.

Proof. Consider the following program:

r1 : a← x, y,not b,not z r2 < r1

r2 : b← x, y,not a,not z r5 < r3

r3 : x← not z,not w r4 < r6

r4 : y ← not z,not w
r5 : z ← not x,not y,not a,not b
r6 : w ← not x,not y,not a,not b

Whole program forms the only component. It has three an-
swer sets: A1 = {x, y, a} generated by R1 = {r3, r4, r1},
A2 = {x, y, b} generated by R2 = {r3, r4, r2}, and A3 =
{z, w} generated by R3 = {r5, r6}. We have A2 ≤ A1,
A1 ≤ A3, and A3 ≤ A2. Thus A1, A2, and A3 are preferred
answer sets.
AGR(A1) = ∅∪{r1}, andAGR(A2) = ∅∪{r2}. Since

r2 < r1, Principle I requires that A2 is not preferred. Prin-
ciple I is thus violated.

Principle I uses a local view. It is only concerned how the
answer sets A1 and A2 are generated. However, a logic pro-
gram can have more answer sets with contrary preferences.
Such preferences cause an existence of a cycle in a prefer-
ence relation on answer sets in our approach. The answer
sets that form a cycle are equally preferred. Our view is that
we should either select all answer sets in a cycle as preferred
or do not select any of them. Since we want to always select
a preferred answer set when a standard one exists, we select
all the answer sets in a cycle.

Principle II. Let A be a preferred answer set of a logic
program (P,<) with preferences and r be a rule such that
body+(r) 6⊆ A. Then A is a preferred answer set of a logic
program (P ∪{r}, <′) with preferences such that <′ ∩(P ×
P ) =<.

Theorem 4. Preferred answer sets defined in Definition 14
do not satisfy Principle II.

Proof. Consider the situation from (Brewka and Eiter 1999).
Consider the following program:

r1 : c← not b r2 < r1

r2 : b← not a

It has the only answer set B = {b}, which is also the only
preferred answer set.

Let extend the program with the rule r3 : a ← c and
the preference r1 < r3. Now, it has the two answer sets
A = {c, a} and B = {b}. body+(r3) 6⊆ B, but B is not a
preferred answer set in our approach. A is the only preferred
answer set. Principle II is thus violated.

As Brewka and Eiter showed in (Brewka and Eiter 1999),
Principle II and III are incompatible (under the condition
that semantics handles program from previous proof as de-
scribed). We favour Principle III under these circumstances.

Principle III. LetP = (P,<) be a logic program with pref-
erences. If AS(P ) 6= ∅ then PAS(P) 6= ∅.

Theorem 5. Preferred answer sets defined in Definition 14
satisfy Principle III.

Proof. For a inconsistent program it follows directly from
Definition 14. For a consistent program it follows from
Proposition 5.

We add the following principle. It says that preferences
on non-generating rules are irrelevant.

Principle IV. Let P1 = (P,<) and P2 = (P,<′) be logic
programs with preferences such that < ∩D =<′ ∩D where
D = AGR(P )×AGR(P ).

Then PAS(P1) = PAS(P2).

Theorem 6. Preferred answer sets defined in Definition 14
satisfy Principle IV.

Proof. Follows directly from Definition 14. Only the rules
from AGR(P ) are used in the definition.

When there are no preferences on the generating rules of
a program, all the answer sets are preferred.

Theorem 7. Let Q = (P,<) be a logic program with pref-
erences such that < ∩(AGR(P )×AGR(P )) = ∅.

Then PAS(Q) = AS(P ).

Proof. For the inconsistent program it follows directly from
Definition 14. Assume P is consistent. Consider Definition
12 of a preferred answer set of a component. We have that
<Π,X= ∅. Then every answer set of a component is pre-
ferred. Hence each solution to AGR(P ) accepted with re-
spect to AS(P ) is preferred with respect to < and AS(P ).
Finally, each answer set of P is a preferred answer set of
P .

Adding the additional preferences to a logic program does
not necessary restrict the set of all preferred answer sets.
The reason is that the additional preferences can introduce
a cycle to a preference relation on the answer sets, and a
former non-preferred answer set becomes preferred one.

Theorem 8. Let P1 = (P,<) and P2 = (P,<′) be a logic
programs such that <⊆<′. Then PAS(P1) 6⊇ PAS(P2).

Proof. Consider the program P1 = (P,<):

r1 : x← not b r3 : y ← not a r3 < r1

r2 : a← x r4 : b← y

It has two answer sets: A1 = {x, a} generated by R1 =
{r1, r2}, and A2 = {y, b} generated by R2 = {r3, r4}.
PAS(P1) = {A1}. Now, consider the program P2 =
(P,<′) with preferences r3 <′ r1, r2 <′ r4. We have that
<⊆<′ and PAS(P2) = {A1, A2} 6⊆ PAS(P1).

Related Work
In this section we compare proposed semantics to existing
semantics. There are other semantics for preference han-
dling besides those considered here, e.g. (Brewka 2002),
(Van Nieuwenborgh and Vermeir 2006), (Gabaldon 2011).
Since the exhaustive comparison is beyond the scope of this
paper, we focus on the most related approaches.



Brewka and Eiter; Delgrande, Schaub, and
Tompits; Wang, Zhou, and Lin
Semantics (Brewka and Eiter 1999), (Delgrande, Schaub,
and Tompits 2003), and (Wang, Zhou, and Lin 2000) are de-
fined for the same underlying language as we do: extended
logic programs with preferences on rules encoded as a strict
order on rules.

Schaub and Wang have shown in (Schaub and Wang
2003) that the three semantics can be characterized in a uni-
form way. One of the characterization is via order preserving
enumeration of generating rules. To illustrate the characteri-
zation we recapitulate the definition of preferred answer sets
according to (Delgrande, Schaub, and Tompits 2003).
Definition 15. Let P = (P,<) be a logic program with
preferences and let X be an answer set of P .

Then X is a preferred answer set of P , if there exists an
enumeration 〈ri〉i∈I ofAGRP (X) such that for every i, j ∈
I we have that:
1. body+(ri) ⊆ {head(rj) : j < i};
2. if ri < rj , then j < i; and
3. if ri < r′ and r′ ∈ P \ AGRP (X), then

(a) body+(r′) ⊆ X or
(b) body−(r′) ∩ {head(rj) : j < i} 6= ∅.
Definitions of preferred answer sets according to (Brewka

and Eiter 1999) and (Wang, Zhou, and Lin 2000) differ in the
condition 1 and 3(b). All the approaches use the conditions
2 and 3(a).

The second condition expresses the prescriptive (Del-
grande et al. 2004) nature of the approaches. They under-
stand the preferences as an order, in which the rules must
be used. If the rules that generate an answer set of a pro-
gram cannot be used in this order then the answer set is not
preferred (e.g. Example 2). This is the main difference be-
tween our approaches. We apply the rules of a program in
a natural order. Dependencies between rules and answer set
semantics induce this natural order. We use preferences only
to select between the rules that are responsible for multiple
answer sets of a program.

The second difference is how broad view an approach
uses. (Brewka and Eiter 1999), (Delgrande, Schaub, and
Tompits 2003), and (Wang, Zhou, and Lin 2000) use a local
view. When testing whether an answer set is preferred, other
answer sets are not used. However, we use a global view.
We compare the answer sets, and therefore we need all the
answer sets to decide whether an answer set is preferred.

The approaches of preferred answer sets defined in
(Brewka and Eiter 1999) and (Delgrande, Schaub, and Tom-
pits 2003) satisfy Principle I and II. However, Principles III
and IV are not satisfied in any of the three approaches.

Brewka and Eiter – Weakly Preferred Answer Sets
Approach of weakly preferred answer sets (Brewka and
Eiter 1999) is a relaxation of the approach of preferred an-
swer sets from (Brewka and Eiter 1999). The preferred an-
swer sets of a program are used whenever they exist. If the
program has no preferred answer set, the weakly preferred
answer sets are used. An answer set is weakly preferred if

the minimal number of changes to a preference relation is
needed in order for the answer set to pass the preferred an-
swer set test. The approach adopts a technical point of view.
Consequently, it is less concerned with the properties of de-
fined semantics. It satisfies only Principle III. It also does
not consider preferences to be immutable. It changes pref-
erence information in order to ensure existence of a weakly
preferred answer set. All preferences are treated alike, and
have the same importance; both relevant and irrelevant ones.
On the other hand, we detect which preferences are irrele-
vant in our approach.

Example 13. Consider the program from the proof of
Proposition 6.6 from (Brewka and Eiter 1999):

r1 : a← not ¬a r5 : ¬a← not b, a
r2 : ¬a← not a r4 : c← not c
r3 : ¬a← not c, a r6 : b← not ¬b

r6 < r5 < r4 < r3 < r2 < r1

The program has two answer sets, A1 = {a, b, c} gener-
ated by R1 = {r1, r4, r6}, and A2 = {¬a, b, c} generated
by R2 = {r2, r4, r6}. From Principle I it follows that A2

should not be preferred.
However, after changing preference r2 < r1 to r1 < r2,

answer set A2 becomes preferred one. Hence A2 is weakly
preferred answer set (Brewka and Eiter 1999).

In other worlds, Principle I states that preference r2 < r1

is important, and other preferences are irrelevant when
checking whether A2 is preferred. However, approach of
weakly preferred answer sets changes the only important
preference r2 < r1 and leaves all irrelevant preferences in-
tact.

Now we show how the program is solved in our approach.
The program has three components Π1 = {r4}, Π2 = {r6},
and Π3 = {r1, r2, r3, r5}. {c} is the only answer set of Π1,
and {b, c} is the only answer set of Π2∪{c}. Π3∪{b, c} has
two answer sets: B1 = {b, c, a} generated by R1 = {r1}
and B2 = {b, c,¬a} generated by R2 = {r2}. We have that
R2 ≤ R1 and hence B1 is the only preferred answer set of
the component Π3. Finally A1 is the only preferred answer
set of the program according to our approach.

Zhang and Foo
Approach presented in (Zhang and Foo 1997) defines se-
mantics for extended logic programs with preference rela-
tion which is strict order. Semantics is defined via sequence
of the program reducts. Roughly speaking, having a pro-
gram P , a rule r ∈ P is removed from the program if r < r′

for some r′ ∈ P and it is defeated by P ′ = P \ {r}, i.e.
every answer set of P ′ defeats r. The answer sets of a re-
duced program are the preferred answer sets of the original
program. The approach satisfies Principle III (Brewka and
Eiter 1999). There are situations in which the approach fails
to detect that the rules with preferences are not in conflict.

Example 14. Consider the program from Example 4
According to semantics of (Zhang and Foo 1997) r1 is less

preferred that r3 and is defeated by {r2, r3}:
• {r2, r3} has the unique answer set {b, c}, and



• body−(r1) ∩ {b, c} 6= ∅.
Hence the preferred answer sets of the original program are
exactly the answer sets of {r2, r3}, i.e. {b, c} is the only
preferred answer set of the program. The approach is unable
to detect that r3 is preferred over r1 but the rule r2 defeats
r1.

In our approach the program is split into two components
Π1 = {r1, r2}, and Π2 = {r3}. Since there are no prefer-
ences between the rules in Π1, both {a} and {b, c} are the
preferred answer sets of the program.

Sakama and Inoue
(Sakama and Inoue 2000) defines semantics for general ex-
tended disjunctive programs with preferences on literals. It
is defined via comparison of answer sets. However (Sakama
and Inoue 2000) also gives the recipe how to transform pref-
erences on rules to preferences on literals. Information about
structure of rules and dependencies between rules is lost dur-
ing the transformation. Consequently all preferences, in-
cluding irrelevant ones, are used to select the preferred an-
swer sets of a program. For example, in Example 4 the trans-
formation is unable to ignore the preference r1 < r3.

Šefránek and Šimko
We want to note that the approach presented in (Šefránek
and Šimko 2011) and the one presented in this paper are
two different approaches to preference handling. The for-
mer represents a refinement of (Šefránek 2008). Preference
handling is viewed as a kind of argumentation.

Both the approach from (Šefránek and Šimko 2011) and
the one presented in this paper were designed with the Prin-
ciple III in mind. Otherwise, they have different designs. For
now, we can say that some of the preferred stable models ac-
cording to (Šefránek and Šimko 2011) are not preferred in
this approach. However, we have not studied the connection
between the two approaches in depth. It is one of the goals
for our future research.

Conclusion
In this paper we have proposed semantics for extended logic
programs with preferences on rules. Different semantics
have been already proposed in the literature. However, they
are not always able to ignore certain unnatural preferences,
and lead to counter-intuitive conclusions. Approaches of
(Brewka and Eiter 1999; Delgrande, Schaub, and Tompits
2003; Wang, Zhou, and Lin 2000; Zhang and Foo 1997;
Sakama and Inoue 2000) have difficulties in the situations:
(i) when the preferences are not compatible with natural or-
der, in which rules have to be applied, (ii) when the pref-
erences are specified on rules that are not applicable under
answer set semantics, (iii) when the preferences are speci-
fied on non-conflicting rules.

On the other hand, approach of (Šefránek 2008) is able to
ignore preferences on non-applicable rules. However, it is
too restrictive, and ignores some preferences between con-
flicting rules.

The main contribution of the paper is proposed seman-
tics that addresses aforementioned situations. The approach
is based on the following notions: (i) comparison of gen-
erating rules, (ii) detection which rules are conflicting, and
(iii) splitting a program into components, in which the com-
parisons are performed.
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