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Abstract

Extended logic programming was introduced initially as an
epistemic logic for default and autoepistemic reasoning. With
time the reasons for interest in the language have shifted. In
1999 extended logic programming was proposed as the basis
of the answer-set programming (ASP) paradigm for modeling
and solving search problems and in that role the language is
primarily used now. However, in the new context the original
epistemic intuitions lose their explanatory relevance. How
answer-set programs are connected with the specifications of
problems they model and how they are built by following
the universally accepted generate-define-test (GDT) method-
ology is much more easily explained in a classical Tarskian
semantics, in which models correspond to possible worlds,
rather than to belief states of an epistemic agent. That point
seems to have been missed by the research community and
ASP has never been cast in a Tarskian setting. In this paper,
we fill that gap. The result is a radical departure from the tra-
ditional epistemic view on ASP, with important implications
for its relation to classical logic.

Introduction
Around 1975, the view of logic programs as classical Horn
theories broke down when the negation-as-failure (NAF)
operator was introduced. The question of a suitable se-
mantics stirred the logic programming community till late
1980s, when Gelfond and Lifschitz proposed to interpret
NAF as an autoepistemic or default operator “I do not be-
lieve that”. Inspired by autoepistemic logic of Moore (1985)
and default logic of Reiter (1980), they defined the stable-
model semantics for programs with negation (Gelfond 1987;
Gelfond and Lifschitz 1988). Shortly thereafter, motivated
by applications to commonsense reasoning, they generalized
the language and the semantics in the formalism called ex-
tended logic programming (Gelfond and Lifschitz 1991).

About a decade later researchers realized that (extended)
logic programs can be used to model combinatorial search
problems so that stable models, or answer sets as they are
now more commonly called, correspond to solutions of the
problems (Marek and Truszczynski 1999; Niemelä 1999).
This observation, combined with the growing availability of
fast software tools for answer set computation, led to the
declarative programming paradigm called answer-set pro-

gramming (ASP).1 Today, versions of extended logic pro-
gramming language are used in most implementations of the
ASP paradigm (vide an overview of ASP systems by Cal-
imeri et al. (2011)), and combinatorial search is their main
application. Nevertheless, this programming paradigm can
be implemented using arbitrary logics with a model seman-
tics, as noted already by Marek and Truszczynski (1999),
and stressed in the language independent framework MX(L)
for model expansion (that generalizes Herbrand model gen-
eration) (Mitchell and Ternovska 2005). Several solvers
were built for dialects based on first order logic (FO), some
early examples being psgrnd/aspps (East and Truszczynski
2001) and IDP (Mariën et al. 2005).

For the extended logic programming, or the ASP lan-
guage as it is currently called, the shift to computational
search problems prompted developments aimed at mak-
ing the language, programming methodology and software
tools better suited for that task. Most notable were lan-
guage extensions such as constraints, choice rules, aggre-
gate operators, and weight expressions (Simons, Niemelä,
and Soininen 2002), and splitting results that led to modular
forms of the ASP language (Oikarinen and Janhunen 2008;
Ferraris et al. 2009). Furthermore, practical experience with
the use of ASP solvers gave rise to what has become the de
facto standard methodology of ASP: Generate-Define-Test
(GDT) (Lifschitz 2002). In this methodology, a programmer
conceives an ASP program as consisting of groups of rules
to generate the search space, to define auxiliary concepts,
and to test (impose) constraints.

The shift in focus also meant that the original epistemic
intuitions behind the semantics of extended logic program-
ming were no longer useful and often obscured rather than
guided. For example, consider the constraint that a graph
coloring should color each node:

← Node(x), not Colored(x).

In the epistemic view, the rule reads “there is no x such that
it is believed that x is a node and it is not believed that x is
colored.” The informal reading is far from what the rule is
meant to represent. In contrast, the syntax and the informal
semantics of the first-order logic sentence:

∀x(Node(x)⇒ Colored(x))

1Marek et al. 2011 provide an account of the origins of ASP.



directly and literally corresponds to the intended meaning of
the constraint.

The mismatch between the epistemic view and the use of
programs to model search problems is related to the inter-
pretation of an answer set. In the epistemic view, it is a
representation of a state of belief of a rational agent. How-
ever, search problem statements are “objective” — they do
not make any explicit or implicit references to agent’s be-
liefs (vide the benchmark problems used in ASP program-
ming competitions (Gebser et al. 2007; Denecker et al. 2009;
Calimeri et al. 2011) and all major applications of ASP to
date). Introducing agents and their belief states as concep-
tual devices to help design and interpret programs is an un-
necessary overhead.

We claim that it is more natural to interpret an answer
set in the Tarskian tradition, as a possible world. Indeed,
when solving search problems we are concerned with find-
ing structures that satisfy constraints. This matches the
Tarskian view of a structure as a representation of a state
of affairs in the presence of constraints. Moreover, ASP lan-
guage extensions, such as choice rules, weight constraints,
aggregates and modules, do not have any epistemic content.
Explaining them from the epistemic view is hard and not
intuitive.2

Our goal is to show that looking at ASP from the Tarskian
perspective helps explain language extensions motivated by
ASP needs, affects our view on the informal semantics of
ASP formalisms, and offers a foundation for its program-
ming methodology. To this end, guided by the Tarskian per-
spective, we design a formalism called ASP-FO, which nat-
urally captures programs written in current dialects of ASP
according to the GDT methodology. Its semantics, based
on standard FO structures, in key aspects coincides with the
stable semantics developed by Pelov et al. 2007. We then
study the informal semantics for ASP-FO— a body of intu-
itions regarding the informal meaning of its syntactical ele-
ments that is coherent with the possible-world view on the
models of ASP-FO theories and that explains their formal
semantics. Our discussion offers a Tarskian view on ASP-
FO and, by extension, on current ASP languages.

Our analysis amounts to turning ASP from a subjective
epistemic logic into an objective one. As such it raises fun-
damental questions about ASP: its relation to FO and ex-
tensions of it, the role of the Closed World Assumption,
the nature of negation as failure and strong negation. Al-
though we introduce ASP-FO as a vehicle to study the GDT
methodology and the possible-world interpretation of ASP,
it is an expressive knowledge representation language in its
own right for which efficient ASP tools exist. The language
includes FO constraints and FO rule bodies and supports
several recent features of ASP languages. In particular, its
modular structure is reminiscent of ASP modules (Oikari-
nen and Janhunen 2008; Gelfond 2002), it provides ways
to specify open or closed domain assumptions (Gelfond and
Przymusinska 1993; Heymans, Nieuwenborgh, and Vermeir

2See, e.g., the Texas Action Group discussion on the mat-
ter (http://www.cs.utexas.edu/users/vl/tag/
choice_discussion).

2008; Ferraris et al. 2009), and interpreted and uninterpreted
functions (Lin and Wang 2008; Alviano et al. 2011). Last
but not least, ASP-FO is supported by several efficient ASP
systems, for example, the IDP system that is one of the
best ASP solvers (Wittocx, Mariën, and Denecker 2008;
Calimeri et al. 2011).

Generate-Define-Test methodology
GDT is an effective methodology to encode search prob-
lems in ASP. In GDT, a programmer conceives the problem
as consisting of three parts: GENERATE, DEFINE and TEST
(Lifschitz 2002). The role of GENERATE is to generate the
search space. Nowadays this is often encoded by a set of
choice rules:

{A} ← B1, . . . , Bn, not C1, . . . , not Cm, (1)

whereA,Bi andCi are atoms. Such a rule states that atomA
can be arbitrarily true or false, if the condition expressed by
the rule’s body holds. The DEFINE part is a set of definitions
of some auxiliary predicates. Each definition is encoded by
a group of rules

A← B1, . . . , Bn, not C1, . . . , not Cm, (2)

where A,Bi, Cj are atoms and A is the auxiliary predicate
that is being defined. These rules describe how to derive
the auxiliary predicates often from the generated predicates,
typically in a deterministic way. Finally, the TEST part elim-
inates generated answer sets that do not satisfy desired con-
straints. They are represented by constraint rules:

← B1, . . . , Bn, not C1, . . . , not Cm, (3)

A set of these three types of rules will be called a GDT pro-
gram.

For instance, the GDT-program (4) below encodes the
Hamiltonian cycle problem. The example illustrates that an
ASP program conceived in the GDT way typically shows a
rich internal structure.

GENERATE {In(x, y)} ← Edge(x, y).
DEFINE Node(V ). . . . Node(W ).

Edge(V, V ′). . . . Edge(W,W ′).
T (x, y)← In(x, y).
T (x, y)← T (x, z), T (z, y).

TEST ← In(x, y), In(x, z), y 6= z.
← In(x, z), In(y, z), x 6= y.
← Node(x),Node(y), not T (x, y).

(4)

Each of the three parts may consist of independent com-
ponents. For instance, TEST in the example above consists
of three independent constraints; DEFINE contains separate
definitions for three predicates Node , Edge and T . This in-
ternal structure exists in the mind of programmers, but is not
explicit in ASP programs and often becomes apparent only
when we investigate the dependencies between predicates.
This motivates us to define a logic that does make the inter-
nal structure of a GDT-program explicit.



Concepts of Tarskian model semantics
A vocabulary Σ is a set of predicate and function symbols,
each with a non-negative integer arity. Terms, formulas and
sentences are defined as in FO.

An interpretation (or structure) A of a vocabulary Σ is
given by a non-empty set dom(A), the domain of A, and, for
each symbol τ of Σ, a value τA, the interpretation of τ . If
τ is an n-ary function symbol, τA is an n-ary total function
over dom(A). If τ is an n-ary predicate symbol, τA is an
n-ary relation over dom(A). If A is an interpretation of a
vocabulary Σ, we call Σ the vocabulary of A and write it as
ΣA. An interpretation of the empty vocabulary consists only
of its domain.

If Σ′ ⊆ ΣA, we define the projection of A on Σ′, written
A|Σ′ , to be the interpretation of Σ′ with the same domain
and the same interpretation of each symbol τ ∈ Σ′ as A. We
then also say that A is an extension (also called expansion)
of its projection A|Σ′ .

Let A and A′ be interpretations of the same vocabulary Σ,
having the same domain, and assigning the same values to
every function symbol in Σ. We say that A is a subinterpre-
tation of A′, written A ⊆ A′, if, for every predicate symbol
P of Σ, the relation PA interpreting this predicate symbol
in A is a subset of the corresponding relation PA′

.
A variable assignment θ for an interpretation A assigns to

each variable v an element θ(v) in dom(A). When x is a
variable and d an element of dom(A), we write θ[x : d] for
a variable assignment that assigns d to x but is otherwise the
same as θ. The interpretation tA,θ of a term in an interpre-
tation A under variable assignment θ is defined through the
standard induction. As usual, we assume that ∧,∀,⇒ are
defined in terms of ¬,∨ and ∃.
Definition 1 (Satisfiability relation A, θ |= ϕ) Let ϕ be an
FOL formula and A a structure over a vocabulary con-
taining all function and relation symbols in ϕ. We define
A, θ |= ϕ by induction on the structure of ϕ:

– A, θ |= P (t̄) if t̄ A,θ ∈ PA;
– A, θ |= ψ ∨ φ if A, θ |= ψ or A, θ |= φ;
– A, θ |= ¬ψ if A, θ 6|= ψ;
– A, θ |= ∃x ψ if for some d ∈ dom(I), A, θ[x : d] |= ψ.

When ϕ is a sentence (no free variables), then θ is irrelevant
and we write A |= ϕ.

In a Tarskian model semantics, a structure represents a
potential state of affairs. For a sentence ϕ and a structure
A, A |= ϕ formalizes that ϕ is true in the state of affairs as
given by A. If all we know about the state of affairs is that
ϕ is true in it, then a structure A is a possible state of the
world, or a possible world, if and only if A |= ϕ. 3

Part of our work is to integrate different logics, ASP and
FO in particular. When logics L1, . . . ,Ln have possible-
world semantics that are based on the same formal notion of
a structure, then there is a natural way to do so. A theory T

3Some associate the term possible world with Kripke semantics
of modal logic. We here associate it more generally with the view
of a model as a representation of a possible state of affairs, as in
Tarski’s view on FO model semantics and also in Kripke semantics.

of the multi-logic 〈L1, . . . ,Ln〉 is a set of expressions, each
from a logic Li in the collection. A structure A satisfies
such theory T , denoted A |= T , if it satisfies each ϕ ∈ T .
Thus, the meaning of a multi-logic theory is the monotone
conjunction of the meaning of its expressions.

The logic ASP-FO
We introduce a modular form of ASP to represent the dif-
ferent kind of modules in GDT programs. We define a G-
module, D-module and T-module.

Definition 2 A choice rule is an expression of the form:
∀x̄ ({P (t̄)} ← ϕ), where ϕ is an FO formula, P (t̄) is an
atom and x̄ includes all free variables appearing in the rule.
A G-module is a set of choice rules with the same predicate
in their head.

Definition 3 A D-module D is a pair 〈Ext,Π〉 where Ext is
a set of predicates, called defined or output predicates, and
Π is a set of rules of the form

∀x̄ (P (t̄)← ϕ), (5)

where P (t̄) is an atom such that P ∈ Ext, and ϕ is an FO
formula with all its free variables amongst x̄.

For a D-module D, we denote the set of its defined predi-
cate symbols by Ext(D). We write Par(D) for the set of all
symbols in Π except the defined predicates. We call Par(D)
the set of parameter or input symbols. For a set of rules Π,
we denote by heads(Π), the set of all predicate symbols ap-
pearing in the head of a rule r ∈ Π. In the following we
identify a D-module 〈heads(Π),Π〉 with Π.

Definition 4 A T-module is an FO sentence.

Definition 5 An ASP-FO-theory is a set of G-modules, D-
modules and T-modules.

There is an obvious syntactical match between these lan-
guage constructs and those used in ASP to express GEN-
ERATE, DEFINE and TEST modules. For instance, an ASP
constraint (3) corresponds to the T-module– FO sentence:

∀x̄(¬(B1 ∧ · · · ∧Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm)),

where x̄ is the set of variables occurring in (3). We identify
normal rules (2) with the universal closure of

A← B1 ∧ · · · ∧Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm.

Note that an ASP-FO theory preserves the internal struc-
ture of the GENERATE, DEFINE and TEST parts. For in-
stance, we may write the Hamiltonian cycle theory as:

GENERATE {∀x∀y({In(x, y)} ← Edge(x, y))}
DEFINE {V ertex(V )← t, . . . , V ertex(W )← t}

{Edge(V, V ′)← t, . . . , Edge(W,W ′)← t}{
∀x∀y(T (x, y)← In(x, y))
∀x∀y(T (x, y)← In(x, z) ∧ In(z, y))

}
TEST ∀x∀y∀z¬(In(x, y) ∧ In(x, z) ∧ y 6= z)

∀x∀y∀z¬(In(x, z) ∧ In(y, z) ∧ x 6= y)
∀x∀y(V ertex(x) ∧ V ertex(y)⇒ T (x, y))

(6)
In defining the formal semantics of ASP-FO, we aim to

ensure that three conditions are satisfied. First of all, the



structures are to be viewed as possible-worlds so that they
represent possible states of affairs, not states of belief. We
do not restrict to Herbrand interpretations. Second, to re-
spect the modular structure of an ASP-FO theory, its seman-
tics should be modular, that is, defined in terms of the se-
mantics of its modules. We use the simple multi-logic se-
mantics of the previous section: a structure A is a model of
a ASP-FO theory T iff it is a model of each of its modules.
In other words, an ASP-FO theory can be understood as a
monotone conjunction of its modules. Third, as ASP-FO is
to reflect the GDT methodology, ASP-FO theories resulting
from GDT programs must have the same meaning.

The definition of satisfaction of a T-module, i.e., an FO
sentence, is standard (Definition 1). It follows that ASP-FO
is a conservative extension of FO.

The semantics for a D-module is a generalization of the
stable semantics to arbitrary structures and to FO rule bod-
ies. For reasons explained in the next section, we use the
semantics that was introduced by Pelov et al. (2007) and, in
the way we follow here, by Vennekens et al. (2007).

We recall that a Herbrand interpretation M is a stable
model of a normal program Π if it is the least Herbrand
model of the Gelfond-Lifschitz reduct ΠM. In that reduct,
negative literals in the bodies of rules are interpreted byM:
a literal not A evaluates to false ifM |= A, and to true if
M 6|= A. Positive body literals are not interpreted by M,
but by interpretations arising during the fixpoint construc-
tion of the least model. There is a way to simulate this for
arbitrary formulas using the following satisfaction relation.

Definition 6 (Satisfaction by pairs of interpretations)
Let ϕ be an FO formula, A and B interpretations of all
symbols in ϕ having the same domain and assigning the
same values to all function symbols, and let θ be a variable
assignment. We define the relation (A,B), θ |= ϕ by
induction on the structure of ϕ:

– (A,B), θ |= P (t̄) if A, θ |= P (t̄),
– (A,B), θ |= ¬ϕ if (B,A), θ 6|= ϕ,
– (A,B), θ |= ϕ ∨ ψ if (A,B), θ |= ϕ or (A,B), θ |= ψ

– (A,B), θ |= ∃xψ if for some d ∈ dom(A), (A,B), θ[x :
d] |= ψ.

This truth assignment interprets positive occurrences of
atoms in A, and negative occurrences in B. Indeed, (pos-
itive) atoms are interpreted in A, but every occurrence of ¬
switches the role of A and B. We note that if A,B are iden-
tical, then this satisfaction relation coincides with the one of
Definition 1. That is, (A,A), θ |= ϕ iff A, θ |= ϕ.

For two structures A and A′ that have the same domain
and interpret disjoint vocabularies, A ◦A′ denotes the struc-
ture that interprets the union of the vocabularies of A and A′,
has the same domain as A and A′, and coincides with A and
A′ on their respective vocabularies.

Definition 7 (Parameterized stable-model semantics)
For a D-module D, an interpretation M of Ext(D) is a
stable model ofD relative to an interpretation Ap of Par(D)
if M is the least4 of all interpretations A of Ext(D) that

4The term “least” is understood with respect to the notion of

have the same domain as Ap, interpret function symbols in
the same way as Ap and for each rule ∀x̄ (P (t̄)← ϕ) of D
and each variable assignment θ, if (Ap ◦A,Ap ◦M), θ |= ϕ
then A, θ |= P (t̄).

This parameterized stable-model semantics generalizes
the original one and extends it in three ways: it is param-
eterized, that is, it builds stable models on top of a given
interpretation of the parameter symbols; it handles FO bod-
ies; and it works for arbitrary (non-Herbrand, in general)
interpretations.

Example 1 Let us consider a D-module D:

D =

{
∀x(p(x)← ¬q(x))
∀x(q(x)← ∀y r(y, x)).

}
This is a non-recursive module with a parameter r and

defined symbols p and q. It defines p as the complement
of q, and q as the set of x that have incoming edges in the
“graph” r from each domain element. The module deter-
mines for each interpretation Ap of the parameter r a set of
stable models relative to Ap, which are interpretations of the
defined symbols p and q. Due to absence of (negative) recur-
sion, this set is a singleton, i.e., each Ap determines a unique
stable model.

Let us consider an interpretation Ap with domainDom =
{1, 2} and rAp = {(1, 1), (2, 1), (2, 2)}. Here, 1 is the only
node that has an incoming edges from both 1 and 2. Hence
we expect that A with pA = {2}, qA = {1} is the unique sta-
ble model relative to Ap. Let us verify that A is indeed a sta-
ble model. It should hold that A is the least A′ such that for
each variable assignment θ, if (A′ ◦Ap,A ◦Ap), θ |= ¬q(x)
then A, θ |= p(x) and if (A′ ◦ Ap,A ◦ Ap), θ |= ∀y r(y, x)
then A, θ |= q(x).

First, we check that the property holds for A′ = A. The
pair (A◦Ap,A◦Ap) consists of identical interpretations, and
the condition boils down to checking that A◦Ap satisfies the
two rules in the standard FO sense. It does. For example, for
θ(x) = 1, it holds that A ◦ Ap, θ |= ∀y r(y, x) and also that
A |= q(x).

Second, we verify that A has no strict subinterpretation
A′ satisfying the property. Let is consider a strictly smaller
A′. Then either qA

′ ( qA or qA
′

= qA and pA
′ ( pA.

In both cases, at least one rule is violated. In the first case,
qA

′
is empty, and the rule defining q is violated for θ(x) =

1. Indeed, A′, θ 6|= q(x) while it holds that (A′ ◦ Ap,A ◦
Ap), θ |= ∀y r(y, x). To see that, the formula ∀y r(y, x)
is positive and is evaluated in A′ ◦ Ap, hence in Ap. In the
second case, pA

′
is empty and the rule defining p is violated

for θ(x) = 2. Indeed, we have A′, θ 6|= p(x) while (A′ ◦
Ap,A ◦ Ap), θ |= ¬q(x) (for the latter, we note that since q
occurs negatively, ¬q(x) is evaluated in A, θ). 2

The semantics of parameterized stable models turns a D-
module D into a non-deterministic function from interpre-
tations of Par(D) to interpretations of Ext(D). A structure
A satisfies D if it agrees with the functions defined by D:

subinterpretation defined earlier. One can show that such a least
interpretation always exists.



its interpretation of Ext(D) is one of possible images of its
interpretation of Par(D). A formal definition follows.
Definition 8 A structure A is a model of a D-moduleD (no-
tation A |= D) if A|Ext(D) is a stable model of D relative to
A|Par(D).

Building on the example above, the interpretation A ◦ Ap
is a model of the D-module D discussed there.

We now turn our attention to G-modules. We note that the
point of a choice rule is to “open up” certain atoms P (d̄) –
to allow them to be true without forcing them to be true.
Definition 9 A structure M is a model of a G-module G
if for each variable assignment θ such that M, θ |= P (x̄)
there is a choice rule ∀ȳ ({P (t̄)} ← ϕ) in G such that
t̄M,θ = x̄θ andM, θ |= ϕ.

A G-module can be translated to an equivalent singleton
G-module, using a process similar to predicate completion.
First, we note that any choice rule ∀x̄ ({P (t̄)} ← ϕ) can be
rewritten as ∀ȳ ({P (ȳ)} ← ∃x̄(ȳ = t̄∧ϕ)). Next, any finite
set of choice rules ∀x̄ ({P (x̄)} ← ϕi) can be combined
into a single choice rule ∀x̄ ({P (ȳ)} ← ϕ1 ∨ · · · ∨ ϕn)).
It is straightforward to show that these transformations are
equivalence-preserving.

Together with this result, the following theorem implies
that each (finite) G-module is equivalent to an FO sentence.
Theorem 1 An interpretation M satisfies a singleton G-
module {∀x̄ ({P (x̄)} ← ϕ)} if and only if M satisfies
∀x̄ (P (x̄)⇒ ϕ).

For instance, the singleton G-module of the GENERATE
part of (4) corresponds to the following FO sentence:

∀x∀y(In(x, y)⇒ Edge(x, y)). (7)

This theorem shows that G-modules are redundant in
ASP-FO, since they can be simulated by T-modules.

ASP-FO is an open domain logic with uninterpreted func-
tion symbols. Logic programming and ASP often restrict the
semantics to Herbrand interpretations only.
Definition 10 The Herbrand module over a set σ of function
symbols is the expression H(σ). We say thatM |= H(σ) if
dom(M) is the set of variable-free terms that can be built
from σ and for each such term t, tM = t.

From a knowledge representation perspective, a Herbrand
module is useful in applications with complete knowledge
of the domain. By adding H(σ) for the set σ of all func-
tion symbols of Σ to an ASP-FO theory, we limit its seman-
tics to Herbrand models of σ. By adding H(σ) for a strict
subset σ of function symbols, the remaining function sym-
bols behave as uninterpreted symbols and take arbitrary in-
terpretation in the Herbrand universe consisting of the terms
of σ. A Herbrand module H(σ) in ASP-FO can be seen
as a compact way of expressing the combination of the FO
unique name axioms UNA(σ), and the domain closure ax-
iom DCA(σ). The latter can be expressed in ASP-FO by
means of D- and T-modules5 in exactly the same way as in

5It is a well-known consequence of the compactness theorem
for FO that DCA(σ) cannot be represented in FO if σ contains a
non-constant function symbol.

the logic FO(ID) (Denecker 2000). As such, Herbrand mod-
ules are redundant in ASP-FO but we keep them for nota-
tional simplicity (cf. Theorem 3 below).

Proposition 2 If M is an ASP-FO module containing pre-
cisely the non-logical symbols Σ and A,B are two struc-
tures such that A|Σ = B|Σ, then A |= M if and only if
B |= M.

The essence of this result is that a module, like an FO
sentence but unlike an ASP program, does not impose con-
straints on symbols that do not appear in it. Thus, in ASP-FO
there is no default Closed World Assumption.

Our limitation to the above sorts of modules in the logic
ASP-FO is somewhat arbitrary. It is straightforward to ex-
tend it with additional types of modules as long as they each
have a possible world semantics for which Proposition 2
holds.
Relationship with FO and ASP. ASP-FO is not only a con-
servative extension of FO but also of the basic ASP language
of normal programs. Note that a set of normal rules can be
seen as a D-module defining all predicates.

Theorem 3 For a normal program Π over vocabulary Σ, a
structure A is a stable model of Π if and only if A is a model
of the ASP-FO theory {(ΣP ,Π),H(ΣF )}, where ΣP ,ΣF is
the set of all predicate and function symbols of Σ, respec-
tively.

This theorem allows us to represent an entire normal logic
program as a single D-module (and an auxiliary Herbrand
module). However, as stated before, what we would like to
show is the equivalence of GDT-programs in ASP and the
corresponding ASP-FO theories.

Let us now consider a GDT-program Π consisting of a set
of choice rules of form (1), normal rules of form (2) and
constraints of form (3). We define the (positive) predicate
dependency graph of Π as the directed graph with all pred-
icate symbols of Π as its vertices and with an edge from P
to Q whenever P appears in the head of a rule and Q occurs
positively in the body of that rule (i.e., in the scope of an
even number of negations).

Without loss of generality we assume that each predicate
of Π appears in the head of at least one of its rules. By
heads(Π) we denote the set of all predicate symbols ap-
pearing in the heads of the rules of the form (1) or (2) in Π.
A partition Π0, . . . ,Πn of Π is a splitting6 of Π if:

– for each i, Πi is either a singleton containing a constraint,
the set of all choice rules for some predicate P , or a nor-
mal logic program;

– heads(Πi) ∩ heads(Πj) = ∅ for i 6= j;

– for any strongly connected component S of the predicate
dependency graph of Π, S ⊆ heads(Πi) for some i;

– for any predicate symbol P occurring in the head of some
choice rule in Π there is no edge from P to P in the pred-
icate dependency graph of Π.

6The conditions on splitting follow the requirements stated in
the Symmetric Splitting Theorem in (Ferraris et al. 2009).



We can identify each Πi in a splitting with an ASP-FO
module in the obvious way: a Πi that consists of a constraint
corresponds to a T-module, a Πi consisting of choice rules
corresponds to a G-module, and a Πi consisting of normal
rules corresponds to a D-module.

Theorem 4 For a GDT-program Π, if Π0, . . . ,Πn is a split-
ting of Π, then an interpretationM is answer set of Π if and
only ifM is a model of {M0, . . . ,Mn,H(Σ)}, where each
Mi is the ASP-FO module corresponding to Πi.

For instance, the horizontal lines within GENERATE, DE-
FINE, and TEST parts of the Hamiltonian cycle program (4)
identify a partition that satisfies the conditions of a splitting.
Theorem 4 states that the answer sets of (4) coincide with
models of the ASP-FO theory (6).

The practice of ASP demonstrates that the vast majority
of GDT programs admit a splitting. Theorem 4 shows that
ASP-FO (i) embeds this fragment of ASP in a direct way,
and (ii) interprets those ASP programs as the monotone con-
junction of their components.

One way in which ASP programs occasionally violate the
conditions for admitting a splitting is by containing both
choice rules and normal rules for the same predicate P . Such
cases can be eliminated in an equivalence preserving way:
we introduce an auxiliary predicate P ′, substitute in Π ev-
ery choice rule {P (t̄)} ← ϕ by {P ′(t̄)} ← ϕ, and add the
rule P (x̄)← P ′(x̄).

Theorem 4 fails to take into account three common exten-
sions of the ASP language: aggregates (or weight expres-
sions), disjunction in the head, and strong negation. Allow-
ing aggregates in T-modules is straightforward, and they can
also be allowed in the bodies of rules of D-modules, using
the semantics developed by Pelov et al. (2007). As for dis-
junction in the heads of rules, Definition 8 can be adjusted
to support it by requiring that a stable modelM be a mini-
mal rather than the least interpretation satisfying the condi-
tions given there. Finally, strong negation can be “translated
away” as in ASP by means of additional predicates. Strong
negation is discussed in the next section.
Relation to FO(ID). A theory in FO(ID) is a set of FO sen-
tences and inductive definitions.7 These definitions are syn-
tactically identical to D-modules of ASP-FO, but are inter-
preted under a two-valued parameterized variant of the well-
founded semantics, rather than the parameterized stable-
model semantics used in ASP-FO.

Definition 11 A Σ-interpretation A is a model of an FO(ID)
definition ∆ (notation A |= ∆) if A|Ext(D) is the well-
founded model of ∆ relative to A|Par(D), as defined in (De-
necker and Vennekens 2007).

Since the well-founded model is always unique, but not
necessarily two-valued, a definition ∆ expresses a deter-
ministic, but partial function from Par(∆)-interpretations
to Ext(∆)-interpretations; it is only defined when the well-
founded model in A|Par(∆) is two-valued. A structure A

satisfies D if A|Ext(D) is the map of A|Par(D).

7Some versions of FO(ID) allow also boolean combinations of
FO formulas and definitions (Denecker and Ternovska 2008).

Well-founded and stable-model semantics are related
(Van Gelder 1993; Fitting 2002; Denecker, Marek, and
Truszczynski 2000). This relationship generalizes to D-
modules.

Proposition 5 ((Pelov, Denecker, and Bruynooghe 2007))
If the well-founded model of D relative to APar(∆) is two-
valued, it is also the unique stable model of ∆ relative to
APar(∆).

Denecker and Ternovska 2008 introduced the notion of
a total definition. An FO(ID) definition is total if it has
only two-valued well-founded models and hence expresses a
total, deterministic function from Par(D)-interpretations to
Ext(D)-interpretations. They also identified conditions that
guarantee that definitions are total. These include the con-
dition of no negative occurrences of defined symbols in the
bodies of rules, which defines the class of positive defini-
tions; a more general condition of stratification at the predi-
cate level; and an even more general condition of local strat-
ification. Thus, many definitions occurring in practice are
total. For total definitions (D-modules), the logics ASP-FO
and FO(ID) coincide.

Looking back at the ASP-FO theory for the Hamiltonian
circuit program, we see that all three of its D-modules are
positive. Hence, it is equivalent to the FO(ID) theory of the
same syntactic form.
Relation to the equilibrium logic first-order ASP. Equi-
librium logic (Pearce 1997) is a formalism based on the logic
of here-and-there, a strengthening of the intuitionistic logic
that still, however, fails to satisfy the law of excluded mid-
dle (Heyting 1930). The equilibrium logic provided a way
to generalize the semantics of answer sets of programs to ar-
bitrary propositional theories (Pearce 1997) and to the full
FO case (Pearce and Valverde 2008; Ferraris, Lee, and Lifs-
chitz 2011). There is a formal connection between ASP-FO
D-modules and first order ASP programs based on equilib-
rium logic. Restricting the latter to formulas representing
rules of the form (5), one can prove that the semantics co-
incide if the bodies of rules (5) have no nested occurrences
of negation (Truszczynski 2012). However, the two general-
izations of ASP differ if nested occurrences are allowed. For
instance, the D-module {P ← ¬¬P} has only ∅ as a model,
while in the equilibrium semantics also {P} is a model.

More importantly though, they differ at the conceptual
level. The logic ASP-FO directly extends FO, and its se-
mantics interprets all classical connectives (that is, all con-
nectives apart from the rule operator used in D-modules) in
the classical way. It has a clear modular structure and uses
classical monotone conjunction to combine the meaning of
modules. The equilibrium logic version of first-order ASP
is based on the quantified logic HT that in many respects
differs from classical FO and, arguably, lacks its direct con-
nection to everyday linguistic patterns.
Multiple D-modules for the same concepts. An ASP-
FO theory may have multiple D-modules defining the same
predicate, as in the example below.

{ ∀x (Human(x)←Male(x) ∨ Female(x)) }
{ ∀x (Human(x)← Adult(x) ∨ Child(x)) }



This theory states that the class of humans is the union of the
classes of males and females, and that it is also the union of
the classes of adults and children. Taking the union of these
two singleton modules produces a single, weaker module,
which neither entails that humans are male or female, nor
that they are adults or children. Such distinctions cannot be
made in a direct way within the non-modular language of
ASP.

Informal semantics of ASP-FO and the
Generate-Define-Test methodology

A formal semantics is a mathematical definition. Therefore,
it does not explain by itself what expressions in a logic mean
in the real world. The logic’s informal semantics provide
a general (even if informal) account of what logic expres-
sions state about the world by giving a system of coherent
interpretations of the logic’s syntactic and semantic objects.
A logic’s formal semantics strongly constrains its informal
semantics by establishing a mathematical relation between
connectives and semantical objects. Nevertheless, it does
not entirely fix it. At the very least, we have to be clear
how the semantical objects relate to the world that is being
modelled (Denecker 2004). For instance, the formal seman-
tics of ASP defines that not P holds in an answer setM iff
P 6∈ M. Traditionally, an answer setM is interpreted as the
set of believed literals in a belief state of the rational agent.
Thus, not P , which formally holds in case of absence of P
in the answer set, informally means that the agent does not
believe P , which is a standard view on negation as failure.
In the same way, the constraint from the introduction

← vertex(x), not colored(x).

formally eliminates answer sets that contain vertex(c) and
not colored(c), for some c, and hence, it’s informal seman-
tics is that there is no x such that the agent believes that x is
a vertex and does not believe that x is colored. In this paper,
we interpret an answer set as a Tarskian representation of a
possible state of the world. Since nowM does not reflect a
state of belief, we need to revise our intuitions regarding the
logic connectives and rules.

It is a common adage in knowledge representation that
humans are only able to comprehend a large theory if its
meaning is composed from the meaning of its components
through a simple and natural semantic composition operator.
The most basic composition operator is simple conjunction.
It is the use of this operator that causes FO to be mono-
tonic. The meaning of an ASP-FO theory is constructed
from the meaning of its individual modules by precisely the
same form of conjunction. Thus, ASP-FO’s nonmonotonic-
ity is derived from its modules, not from the general com-
position law. This is in perfect agreement with our intuition
of modules as imposing constraints on possible worlds, in-
dependently from each other. Whatever analysis remains to
be done has then to be concerned with individual modules.
Informal semantics of T-modules/FO sentences. FO sen-
tences express propositions about an objective world, not
about beliefs, intentions, or other propositional attitudes. In
Tarskian model semantics, a structure A serves as a math-
ematical abstraction of an objective world. The recursive

rules of the definition of truth of a sentence in A (Defini-
tion 1) specify the formal semantics of FO simply by trans-
lating each formal connective into an informal one: ∧ into
the natural language “and”, ∨ into “or”, etc. Iterated appli-
cation of these rules translates an FO sentence into a natural
language sentence that accurately captures its meaning.

The existence of this informal semantics does not mean
that each FO sentence has a self-evident meaning. Sentences
with three or more nestings of quantifiers are hard to under-
stand. The material implication ψ ⇒ ϕ also may cause diffi-
culties. Nevertheless, for a core fragment of FO, sentences
have an accurate and reliable informal semantics. For exam-
ple, given the informal meaning of the symbols Node and T
in the Hamiltonian circuit example, the informal semantics
of

∀x∀y(Node(x) ∧Node(y)⇒ T (x, y))

is the proposition that each node can be reached from every
other one. This accurately reflects the intended proposition,
more than the epistemic reading of the corresponding ASP
constraint:

← Node(x),Node(y), not T (x, y).

which would be: “it is not the case that for some x and y,
it is believed that x and y are vertices and it is not believed
that x can reach y”.
Informal semantics of choice rules. Choice rules in ASP
are often explained in a computational way, as generators of
the search space. Here we propose a declarative interpreta-
tion. The set of ASP choice rules for predicate P

{P (t̄1)} ← ϕ1. . . . {P (t̄n)} ← ϕn.

constitutes a G-module in ASP-FO which can be further
translated in

∀x(P (x̄) ⇒ (x̄ = t̄1 ∧ ϕ1) ∨ · · · ∨ (x̄ = t̄n ∧ ϕn))

In the Tarskian possible-world perspective, this sentence
says that P is universally false with exceptions explic-
itly listed in the consequent of the implication. In other
words, a G-module expresses the local closed world as-
sumption (LCWA) on P , together with an exception mech-
anism to relax this LCWA and reinstall the open world as-
sumption (OWA) on certain parts of the domain. For in-
stance, ∀x∀y(In(x, y) ⇒ Edge(x, y)), an ASP-FO image
of the ASP choice rule {In(x, y)} ← Edge(x, y), states
that In(x, y) is false except when Edge(x, y) is true, in
which case In(x, y) might be either true or false.

This analysis of ASP choice rule modules as FO sentences
shows that logical connectives in choice rule bodies, includ-
ing negation, have their standard FO meaning. However, the
meaning of a choice module as a whole is not composed
from the meaning of its individual rules by monotone con-
junction. Instead, adding a rule to a module corresponds
to adding a disjunct to its FO axiom. Hence, the underly-
ing composition operator of this sort of module is actually
anti-monotonic: the module becomes weaker with each rule
added. This agrees with the role of a choice rule as express-
ing an exception to the LCWA imposed by the module. The
more exceptions there are, the weaker this LCWA.



Informal semantics of D-modules. In the GDT methodol-
ogy, D-modules serve to define a set of auxiliary predicates
(Lifschitz 2002) and do so using a rule-based, potentially
recursive syntax. Even though current ASP practice tacitly
assumes that the stable-model semantics is a correct seman-
tics for such modules, this is actually far from trivial. As far
as we know, this issue has not yet been addressed in the liter-
ature. Our results allow us to present the following argument
to fill this gap.

Informal rule-based definitions (such as Definition 1)
abound in mathematics. They express a precise, objective
form of informal knowledge. A formal rule-based defini-
tion construct should match with the informal one. The
three most common forms of definitions in formal sciences
are non-inductive definitions, monotone inductive defini-
tions (e.g., transitive closure) and definitions by induction
over a well-founded order (e.g., the definition of |= in FO,
cf. Definition 1). Denecker 1998; 2000 was first to argue
that rules under the well-founded semantics provide a uni-
form and correct formalization of these. Later, Denecker et
al. 2008 and Denecker and Ternovska 2008 extended the
original arguments. A full discussion of the arguments is
beyond the scope of this paper but the essence is that an in-
formal inductive definition describes how to construct the
defined relation by iterated application of rules and that the
well-founded semantics correctly “simulates” this construc-
tion for the three aforementioned forms of definitions.

Not every formal rule set can be understood as a “good”
informal inductive definition (i.e., one that a formal scientist
would accept). In particular, a “good” definition should de-
fine for each object whether it is an element of the defined
set or not. In formal terms, this means that a “good” for-
mal rule set should have a total, i.e., 2-valued, well-founded
model. Accordingly, such definitions are called total (De-
necker 2000; Denecker and Ternovska 2008). By Proposi-
tion 5, parameterized stable and well-founded semantics co-
incide for total definitions. Thus, the above arguments apply
immediately also to total D-modules. In other words, for
such modules, the stable model semantics defined here is an
equally correct formalization of these forms of definitions.
To the best of our knowledge, this is the first detailed expla-
nation of why the stable model semantics is correct in this
case.

It does not apply to all of ASP, though. First, the analy-
sis by Denecker and co-authors consistently interprets struc-
tures as possible worlds; therefore, our argument does not
apply to the epistemic interpretation of stable models. Sec-
ond, when we go beyond total D-modules, the correspon-
dence to FO(ID) breaks down. In FO(ID), such rule sets
are unsatisfiable, whereas in ASP-FO, they may have 0, 1
or more models. How such rule sets can be interpreted is
an open question, but in practice there seems little need for
non-total D-modules. Indeed, D-modules are non-total only
in case of cycles over negation. In early applications of ASP,
such cycles over negation were used to encode the gener-
ate and test parts of the search problem. However, more
recently, these roles have been taken over by choice rules
and constraints. Consequently, cycles over negation in D-
modules have become very rare. In fact, in the current prac-

tice of ASP, D-modules almost always seem to be either pos-
itive or to contain only locally stratified negation. (but see
below for an exception).
Comparison with the epistemic view. As observed earlier
in (Denecker 2004), it is most interesting that the same math-
ematical principle can play a very different role depending
on whether we take an epistemic or a possible world view on
ASP. Under the stable model semantics, no atom belongs to
an answer set unless it is derived by some rule (in an appro-
priate cycle-free manner). Under the epistemic view of an
answer set, the informal explanation is that a rational agent
should only believe an atom (or literal) if he has a justifica-
tion for doing so. In the Tarskian setting, this explanation
does not work, simply because the presence of an atom in
an answer set does not reflect that it is believed but rather
that it is true in the possible world. Thus, what the stable se-
mantics expresses in the Tarskian view is that atoms cannot
be true unless there is a reason for them to be so, which is a
form of Closed World Assumption (CWA). In particular, it
is a global CWA on all predicates. Of course, this is a strong
assumption that often needs to be relaxed and this is where
choice rules naturally step in. In epistemic ASP, on the other
hand, no implicit CWA is imposed; if CWA is desired it must
be stated explicitly, e.g., by rules −P (x̄) ← not P (x̄) in-
volving strong negation (Gelfond and Lifschitz 1991). Since
there is, therefore, no implicit global CWA to “open,”, the
role of choice rules is difficult to explain in this context. A
remarkable conclusion is that the mathematical principle to
formalize rationality in the epistemic view of stable models
actually expresses a form of CWA in the possible world view
of stable models.

The form of CWA implemented by the parameterized
stable-model semantics in ASP-FO differs from other in-
stances of CWA. It is local, i.e., applied only to the defined
predicates Ext(D), and it is also parameterized, in the sense
that it is applied given the parameter AP . For instance, the
D-module ({P}, {P ← Q}) imposes CWA on P , it does
not entail P and yet, in contrast to other forms of CWA, it
neither entails ¬P . This is due to the parameter Q, which
causes the ASP-FO semantics to admit two models: if the
parameter Q is true, then P can be derived, so {Q,P} is
a model; if the parameter Q is false, then P cannot be de-
rived and, by the CWA, must be false, so ∅ is also a model.
Strikingly, this particular form of CWA, which deviates from
standard forms of CWA, coincides for the important frag-
ment of total D-modules with the precise and well-known
mathematical principle of definition by induction. Whether
the form of CWA underlying D-modules has natural KR ap-
plications beyond total definitions is an intriguing question.
Such applications might be found in ASP programs that uti-
lize cycles over negation for purposes other than to express
choices or constraints, e.g., to express causal rules as in (Lif-
schitz and Turner 1999).
On the nature of negation and rule operator. Taking a
possible world view also forces us to modify our interpre-
tation of negation as failure. The embedding of ASP con-
straints and choice rules in FO shows that ASP’s unary rule
operator ← for constraints as well as negation as failure
not in such rules are the same as classical negation. As



for negation in D-modules, we started this section by not-
ing that in a Tarskian view, negation cannot be epistemic,
since there is no epistemic agent around. To understand its
meaning, let us look at what negation means in informal def-
initions, for instance, in the condition of the following (in-
formal) rule from our (informal) Definition 1: A, θ |= ¬ψ if
A, θ 6|= ψ. The definition is by structural induction, hence
this rule should not be applied before rules deriving subfor-
mulas of ¬ψ. Once this condition is met, the rule derives
I, θ |= ¬ϕ when it is not the case that A, θ |= ψ. This is
standard objective negation as formalized by classical nega-
tion in FO.

The difference between a rule ∀x (P (t̄) ← ϕ) in an
FO(ID) definition or a D-module and a material implication
∀x (P (t̄) ⇐ ϕ) therefore does not lie in the interpretation
of the connectives of ϕ. Instead, it lies in the rule opera-
tor←, which differs from material implication⇐. Previous
studies of inductive definitions called this operator also the
production operator, reflecting its role of producing new el-
ements of the defined relation. As discussed in (Denecker
and Vennekens 2007), part of its meaning is the restriction
that such elements should be produced in accordance with
the well-founded order over which the induction is happen-
ing. This makes a rule indeed quite different from a material
implication.
Strong negation. In the epistemic view, strong negation−P
is used to express explicit negative information. How should
it be interpreted in the Tarskian view? It cannot be inter-
preted as classical objective negation since, as we argued
above, ASP’s negation as failure not occupies that role.
A simple solution is suggested by considering the standard
elimination procedure for strong negation. It operates by in-
troducing, for each predicate P/n a new predicate P−/n,
substituting P−(t̄) for each occurrence of strong negation
literal −P (t̄) in the ASP program, and adding the explicit
constraint:

← P (x̄), P−(x̄).

Interpreted in the Tarskian view, this translation gives an
accurate picture of what strong negation means: it is a
predicate constructor connective that, applied to a predicate
symbol, yields another predicate symbol of the same arity,
loosely connected to the first one by a semantic condition:
that P and −P are disjoint relations. A developer using
strong negation −P is free to chose his interpretation and to
axiomatize −P as long as this condition is satisfied. Some-
times P− is axiomatized to be the complement of P , in other
words, the classical negation of P . For instance, this is the
case when −P is defined by the ASP rule:

−P (x̄)← not P (x̄).

Note that, in the epistemic view, this rule implements a
closed world assumption for P . As a concluding example,
let us apply the above ideas to the following ASP solution
for the graph coloring problem:

{Color(x, c)} ← Node(x),Color(c).
← Color(x, c1),Color(x, c2), c1 6= c2.
← Node(x),−Colored(x).
Colored(x)← Color(x, c),Node(x),Color(c).
−Colored(x)← Node(x), not Colored(x).
. . .% definitions for Node and Color .

In the Tarskian interpretation, Colored is defined to be the
set of nodes that have a color. Here, the predicate−Colored
is not defined as the complement of Colored but as the sub-
set of nodes in the complement. The ASP-FO translation of
the program above follows:

∀x∀c(Color(x, c)⇒ Node(x) ∧ Color(c))
¬∃x∃c1∃c2(Color(x, c1) ∧ Color(x, c2) ∧ c1 6= c2)
¬∃x(Node(x) ∧ Colored−(x)){
∀x∀c(Colored(x)← Color(x, c) ∧Node(x) ∧ Color(c))

}{
∀x(Colored−(x)← Node(x) ∧ ¬Colored(x))

}
. . .% definitions for Node and Color .

We note that the definition of Colored− entails that this
predicate is disjoint from Colored .

Discussion
Interpreting the answer-set semantics as a Tarskian possible-
world semantics is a major mental leap which radically af-
fects our interpretation of the ASP formalism, its compo-
sition laws, and the meaning of its connectives. While
many ASP researchers may have already made this leap in
their day-to-day programming under the Generate-Define-
Test methodology, this paper offers the first detailed discus-
sion of its consequences. To conduct our analysis, we pre-
sented the formalism ASP-FO, whose modular structure is
geared specifically towards the GDT paradigm. This logic
formally differs from FO(ID) only by the use of the pa-
rameterized stable instead of well-founded semantics for D-
modules, semantics that differ only in case of loops over
negation. By studying our possible-world perspective on
ASP-FO, we obtained an informal semantics for the GDT
fragment of ASP, which combines modules by means of
the standard conjunction, and captures the roles of different
modules in GDT-based programs. In particular, the close
connection between ASP-FO and FO(ID) allowed us to pro-
vide, to the best of our knowledge, the first argument for the
correctness of the stable model semantics as a formalization
of the concept of an (inductive) definition.

We proposed ASP-FO as a theoretical mechanism to study
GDT and ASP from a Tarskian perspective. However, ASP-
FO is also a viable language for knowledge representation
and ASP problem solving. Similarly to FO(ID), ASP-FO
includes FO constraints, FO rule bodies, modules and non-
interpreted functions. It is an open domain logic and its
models can be infinite. In general, the satisfiability problem
is undecidable (and not just co-semidecidable) — the result
can be obtained by adapting the corresponding result con-
cerning the logic FO(ID) (Denecker and Ternovska 2008).
In many search problems, however, a finite domain is given.
That opens a way to practical problem solving. One can
apply finite Herbrand model generation or model expansion
(Mitchell and Ternovska 2005). At present, all ASP tools
use languages based either on extended logic programming
or classical logic and as such support various fragments of
ASP-FO: answer set solvers (Calimeri et al. 2011), and FO-
based systems psgrnd/aspps (East and Truszczynski 2001),
the Enfragmo system (Aavani et al. 2012), and the IDP sys-
tem (Wittocx, Mariën, and Denecker 2008). Most of these
systems, including the latter three, also support versions of



inductive definitions, aggregates, arithmetic, as well as other
language extensions. The IDP system — one of the most ef-
ficient ASP systems (Calimeri et al. 2011) — is the first and,
at present, the only system that supports full FO(ID) as well
as ASP-FO.

Finally, let us put the goals of this paper in a broader
historical perspective. First, both logic programming and
nonmonotonic reasoning were anti-theses to classical logic
(FO), motivated by respectively computational and repre-
sentational issues with the latter. The work on ASP-FO and
earlier on FO(ID) effectively presents a synthesis of these
paradigms with FO. Second, the view of logic programs as
definitions was already present in Clark’s view, albeit im-
plicitly, and his completion semantics is not fully adequate
to formalize this idea. Later, Gelfond and Lifschitz proposed
to interpret logic programs as epistemic theories. The view
on D-modules presented in this paper is a proposal to “back-
track” to Clark’s original view.
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2007. Predicate introduction for logics with a fixpoint se-
mantics. part i: Logic programming. Fundamenta Informat-
icae 79(1-2):187–208.
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