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Abstract

We define a nonmonotonic formalism that shares some
features with three other systems of nonmonotonic
reasoning—default logic, logic programming with strong
negation, and nonmonotonic causal logic—and study its
possibilities as a language for describing actions.

Introduction

This note is motivated by the desire to understand the
existing methodologies of answer set programming (ASP)
(Marek & Truszczyński 1999; Niemelä 1999; Baral 2003;
Gelfond 2008; Lifschitz 2008)—the approach to knowledge
representation based on the answer set semantics of logic
programs (Gelfond & Lifschitz 1991). An answer set is a
set of ground literals that is consistent but possibly incom-
plete. Thus an answer set can be thought of as a function
that assigns to each ground atom A one of three values:
true (A belongs to the set), false (¬A belongs to the set),
or unknown (the set contains neither A nor ¬A). Most
applications of ASP do not exploit the possibility of dis-
tinguishing between three truth values of an atom in an
answer set, but there are important exceptions. The non-
monotonic formalism introduced in this note is designed
to facilitate the discussion of differences between “three-
valued” and “two-valued” uses of ASP.

Two-valued logic programs are essentially a special case
of nondisjunctive logic programs with strong (classical)
negation under the answer set semantics. They also share
some features with default logic (Reiter 1980) and with
nonmonotonic causal logic in the sense of (McCain &
Turner 1997). As in the case of default logic, the nonmono-
tonicity of two-valued logic programs is determined by the
use of “justifications.” On the other hand, literals play a
special role in their syntax, as they do in the definition of
an answer set in (Gelfond & Lifschitz 1991), and this fact
allows us to make their semantics relatively simple: it does
not refer to deductive closure in the sense of classical logic.
Finally, as in nonmonotonic causal logic, their semantics
is defined in terms of two-valued truth assignments—or,
in other words, consistent and complete sets of literals—
rather than (possibly incomplete) extensions or (possibly
incomplete) answer sets.

Definitions
Syntax
In this note, formulas are propositional formulas formed
from a fixed set σ of atoms. A (two-valued) rule is an
expression of the form

L0 ← L1, . . . , Ln : F, (1)

where the head L0 and the premises L1, . . . , Ln (n ≥ 0) are
literals, and the justification F is a formula. Rule (1) reads:
derive L0 from L1, . . . , Ln if F is a consistent assumption.

A pair of rules of the form

A ← L1, . . . , Ln : F ∧A,
¬A ← L1, . . . , Ln : F ∧ ¬A,

where A is an atom, can be abbreviated as

{A} ← L1, . . . , Ln : F (2)

(“derive any of the literals A, ¬A from L1, . . . , Ln if that
literal is consistent with assumption F”). This abbrevia-
tion is similar to choice rules in the sense of (Niemelä &
Simons 2000). Both in (1) and in (2), if F is > (truth)
then we will drop the colon and F at the end of the rule.
If, in addition, n = 0 then ← can be dropped too.

A (two-valued) program is a set of rules.

Semantics
As in classical propositional logic, an interpretation is a
function from σ to {false, true}. We will identify an in-
terpretation I with the set of literals that are satisfied by I.

The reduct of a program Π relative to an interpretation I
is the set of rules

L0 ← L1, . . . , Ln (3)

corresponding to the rules (1) of Π for which I |= F . We
say that I is a model of Π if the smallest set of literals
closed under the rules (3) equals I. In other words, models
of Π are fixpoints of the operator αΠ from interpretations
to sets of literals defined as follows: αΠ(I) is the smallest
set of literals closed under the reduct of Π relative to I.

It is clear that the set of models of a program is not
affected by replacing the justification of a rule with an
equivalent formula. It is clear also that every literal that
belongs to a model of Π is the head of a rule of Π. It



follows that if some atom from σ does not occur in the
heads of rules then the program is inconsistent (that is, has
no models). This is a property that two-valued programs
share with causal theories in the sense of (McCain & Turner
1997).

Example
Let Π be the program

{a},
b← a,

(4)

or, written in full,

a ← : a,
¬a ← : ¬a,
b ← a : >,

with σ = {a, b}. Since Π has no rules with the head ¬b,
the only possible models are I1 = {a, b} and I2 = {¬a, b}.
The reduct of Π relative to I1 consists of the rules a and
b ← a, so that αΠ(I1) = {a, b} = I1; I1 is a model. The
reduct relative to I2 consists of the rules ¬a and b← a, so
that αΠ(I2) = {¬a} 6= I2; I2 is not a model.

Constraints
Adding a pair of rules of the form

A ← : F,
¬A ← : F (5)

to a program Π eliminates the models of Π that satisfy F .
(Proof: adding these rules makes the reduct of the program
relative to I inconsistent if I satisfies F , and does not affect
the reduct otherwise.) We will call (5) a constraint and
write it as ← F .

Clausal Form
We say that a program Π is in clausal form if each of its
justifications is a conjunction of literals (possibly the empty
conjunction >). For instance, program (4) is in clausal
form.

Replacing a rule of the form

L0 ← L1, . . . , Ln : F ∨G

in any program with the pair of rules

L0 ← L1, . . . , Ln : F,
L0 ← L1, . . . , Ln : G

does not affect the set of models. (Proof: for any inter-
pretation I, the reduct relative to I remains the same.) It
follows that any program can be converted to clausal form
by rewriting the justifications in disjunctive normal form
and then breaking every rule into several rules correspond-
ing to the disjunctive terms of its justification.

Relation to Traditional ASP Programs
Reduction to Programs with Strong Negation
As mentioned in the introduction, two-valued programs are
essentially a special case of nondisjunctive programs with

strong negation. To make that claim precise, we will define
a simple translation that turns any two-valued program Π
in clausal form into a program with strong negation. That
program, tv2sn(Π), is the set of rules

L0 ← L1, . . . , Ln,not Ln+1, . . . ,not Lp

for all rules

L0 ← L1, . . . , Ln : Ln+1 ∧ · · · ∧ Lp

of Π. (By L we denote the literal complementary to L.)
For instance, tv2sn turns program (4) into

a ← not ¬a,
¬a ← not a,
b ← a.

(6)

An interpretation I is a model of Π iff I is an answer
set of tv2sn(Π). (Proof: the reduct of tv2sn(Π) relative
to I in the sense of (Gelfond & Lifschitz 1991) is identical
to the reduct of Π relative to I.) In other words, models
of Π are identical to complete answer sets of tv2sn(Π). For
instance, program (6) has two answer sets, {a, b} and {¬a}.
The first of them is the only model of (4); the second is
incomplete.

Incomplete answer sets of a program with strong nega-
tion can be eliminated by adding the rules

← not A,not ¬A (7)

for all atoms A. Consequently models of a program Π in
clausal form are identical to the answer sets of the pro-
gram obtained from tv2sn(Π) by adding rules (7) for all A
from σ.

Complete Answer Sets in Disguise
In many ASP programs, strong negation is not used at all.
Answer sets of such a program are sets of positive literals;
the intuition is that the falsity of an atom is indicated by
its absence in the answer set, rather than the presence of
its negation. In this situation, we can think of an answer
set consisting of positive literals as a “complete answer set
in disguise”—as a complete answer set X with all negative
literals removed (symbolically, X ∩ σ).

Similarly, a program without strong negation can be
viewed as a “two-valued program in disguise.” Let Π be a
set of rules of the form

A0 ← A1, . . . , An,not An+1, . . . ,not Ap, (8)

where each Ai is an atom. By lp2tv(Π) we denote the
two-valued program consisting of the rules

A0 ← A1, . . . , An : ¬An+1 ∧ · · · ∧ ¬Ap

for all rules (8) of Π, and the rules

¬A← : ¬A (9)

for all atoms A. Rule (9) makes the closed world assump-
tion for A explicit.

Answer sets of Π can be characterized as sets of the
form X ∩ σ, where X is a model of lp2tv(Π). (Proof:



tv2sn(lp2tv(Π)) is the closed world interpretation of Π in
the sense of (Gelfond & Lifschitz 1991, Section 6).) Thus
the map X 7→ X ∩ σ is a 1–1 correspondence between the
models of lp2tv(Π) and the models of Π.

Consider, for instance, the program Π consisting of one
rule a← not b. The corresponding two-valued program is

a ← : ¬b,
¬a ← : ¬a,
¬b ← : ¬b.

Its only model is {a,¬b}. By removing the negative lit-
eral ¬b from it, we get {a}, the only answer set of Π.

Relation to Causal Logic
Recall that a causal theory in the sense of (McCain &
Turner 1997) is a set of rules of the form F ← G, where F
and G are propositional formulas. The reduct of a causal
theory T relative to an interpretation I is the set of the
heads F of all rules F ← G of T for which I satisfies G.
An interpretation I is a model of a causal theory T if the
reduct of T relative to I is satisfied by I and is not satisfied
by any other interpretation. This semantics formalizes the
philosophical principle that McCain & Turner call the law
of universal causation.

A causal theory is definite if the head of each of its rules
is a literal. For any definite causal theory T , we define
the corresponding two-valued program ct2tv(T ) as the set
of rules F ← : G for all rules F ← G of T . Models of
any definite causal theory T are identical to models of pro-
gram ct2tv(T ). (Proof: consider the reduct X of a def-
inite causal theory T relative to an interpetation I; I is
the only interpretation satisfying X iff X = I.) In other
words, definite causal theories are essentially two-valued
programs whose rules have no premises. We can say also
that two-valued programs generalize definite causal theo-
ries by allowing “logic programming style premises” in the
bodies of rules.

If the bodies of rules of a definite causal theory T are con-
junctions of literals then ct2tv(T ) is a program in clausal
form, and the transformation tv2sn defined above can be
used to turn that program into a program with strong nega-
tion. By composing ct2tv with tv2sn we get the translation
from the language of causal theories into logic program-
ming with strong negation familiar from (McCain 1997,
Section 6.3.3).

Representing Action Descriptions by
Two-Valued Programs

Consider a finite set σ of propositional atoms divided into
two groups, fluents and elementary actions. An action is a
function from elementary actions to truth values. A tran-
sition system T is determined by a set of functions from
fluents to truth values, called the states of T , and a set of
triples 〈s0, a, s1〉, where s0 and s1 are states of T , and a
is an action. These triples are called the transitions of T .
A transition system can be visualized as a directed graph
that has states as its vertices, with an edge from s0 to s1 la-
beled a for every transition 〈s0, a, s1〉. Informally speaking,

a transition 〈s0, a, s1〉 expresses the possibility of the sys-
tem changing its state from s0 to s1 when the elementary
actions to which a assigns the value true are concurrently
executed.

Action description languages B and C, defined in (Gel-
fond & Lifschitz 1998, Section 5, 6) and (Giunchiglia & Lif-
schitz 1998), and reviewed in (Gelfond & Lifschitz 2012),
serve for describing action domains by specifying transition
systems. They are closely related to logic programs un-
der the answer set semantics (Balduccini & Gelfond 2003;
Lifschitz & Turner 1999). In this section we show how the
semantics of B and of a large (“definite”) fragment of C
can be characterized in terms of two-valued programs.

Translating B-Descriptions
This review of the syntax of B follows (Gelfond & Lifschitz
2012). A fluent literal is a literal containing a fluent. A
condition is a set of fluent literals. An action description in
the language B, or a B-description, is a set of expressions
of two forms: static laws

L if C,

where L is a fluent literal, and C is a condition, and dy-
namic laws

e causes L if C,

where e is an elementary action, L is a fluent literal, and
C is a condition. The semantics of the language (see, for
instance, (Gelfond & Lifschitz 2012)) defines, for every B-
description D, which transition system it represents.

The set of transitions of that system can be described by
the program b2tv(D), defined as follows. Its signature σ1

consists of the symbols of the forms

f(0), e(0), f(1), (10)

where f is a fluent and e is an elementary action. Its rules
are

(i) L(t) ← L1(t), . . . , Ln(t), where t = 0, 1, for each static
law

L if L1, . . . , Ln

from D;

(ii) L(1)← e(0), L1(0), . . . , Ln(0) for each dynamic law

e causes L if L1, . . . , Ln

from D;

(iii) L(1)← L(0) : L(1) for every fluent literal L,

(iv) {A(0)} for every atom A of σ.

Rules (iii) solve the frame problem by formalizing the com-
monsense law of inertia (Shanahan 1997); they are similar
to the “frame default” from (Reiter 1980). Rules (iv) ex-
press that both the initial values of fluents and the elemen-
tary actions to be executed can be chosen arbitrarily.

Recall that we agreed to identify truth-valued functions
with sets of literals. Using this convention, we can charac-
terize the set of transitions of an arbitrary B-description D
in terms of models of b2tv(D) as follows:



Proposition. For any sets s0, s1 of fluent literals, and
any action a, 〈s0, a, s1〉 is a transition of T (D) iff the set

{L(0) : L ∈ s0 ∪ a} ∪ {L(1) : L ∈ s1}

is a model of b2tv(D).

This fact is a reformulation of Lemma 2 from (Gelfond
& Lifschitz 2012), in view of the property of the trans-
formation tv2sn noted earlier. It establishes a 1–1 corre-
spondence between the transitions of D and the models
of b2tv(D).

Translating Definite C-Descriptions
This review of the syntax of C follows (Gelfond & Lifschitz
2012). An action description in the language C, or C-
description, is a set of expressions of the two forms: static
laws

caused F if G, (11)
where F andG are formulas that do not contain elementary
actions, and dynamic laws

caused F if G after H, (12)

where F and G are formulas that do not contain elemen-
tary actions, and H is a formula. The semantics of the
language (see, for instance, (Gelfond & Lifschitz 2012))
defines, for every C-description D, which transition system
it represents.

A C-description is definite if, in each of its laws (11), (12),
the head F is a literal. For any definite C-description D,
the set of transitions of the corresponding system can be
described by the program c2tv(D), defined as follows. Its
signature σ1 consists of the same symbols (10) as in the case
of B-descriptions. For any formula F of the signature σ,
by F (0) we will denote the formula of the signature σ1 ob-
tained from F by appending the string ′(0)′ to each atom.
For any formula F of the signature σ that does not contain
elementary actions, by F (1) we will denote the formula of
the signature σ1 obtained from F by appending the string
′(1)′ to each atom. The rules of c2tv(D) are

(i) F (t) ← : G(t), where t = 0, 1, for each static law (11)
from D;

(ii) F (1) ← : G(1) ∧ H(0) for each dynamic law (12) from
D;

(iii) {A(0)} for every atom A of σ.
The characterization of transitions given by the propo-

sition above, with b2tv replaced by c2tv , holds for any
definite C-description D. This fact is a corollary to Propo-
sition 2 from (Giunchiglia & Lifschitz 1998), in view of
the property of the transformation ct2tv noted in the sec-
tion on causal logic. It establishes a 1–1 correspondence
between the transitions of D and the models of c2tv(D).

If H in a dynamic law (12) is a conjunction of literals
L1 ∧ · · · ∧ Ln then the rule in clause (ii) of the definition
of c2tv can be rewritten as

F (1)← L1(0), . . . , Ln(0) : G(1),

and the models of the theory will remain the same.

Conclusion
We have seen that the language of two-valued programs
is sufficiently rich for expressing the ASP solution to the
frame problem that exploits the distinction between strong
negation and negation as failure, and that it can model the
uses of ASP that avoid strong negation altogether. There
are also “mixed” representations, which express the falsity
of some atoms explicitly, in terms of strong negation, and
treat the falsity of other atoms in the spirit of an implicit
closed world assumption. Such representations can be of-
ten expressed by two-valued programs as well.

Uses of ASP for which the language of two-valued pro-
grams is inadequate are relatively rare, but they do ex-
ist. Incomplete answer sets are essential for representing
“weak exceptions” to defaults, as in (Baral & Gelfond 1994,
Example 3.2): birds normally fly; wounded birds may or
may not fly. Another example is given by the approach
to conformant planning presented in (Tu et al. 2011).
The planner described in that paper operates with “par-
tial states”—incomplete sets of literals that approximate
states of a transition system. The difference between the
applications of ASP that can be naturally represented by
two-valued programs and the applications for which it is
not the case is an important distinction between two kinds
of answer set programs.

Two-valued programs can be viewed as a special case of
multi-valued propositional formulas under the stable model
semantics introduced in (Bartholomew & Lee 2012).1 A
preprocessor converting such formulas (perhaps from a sub-
set that includes two-valued programs) into input accepted
by answer set solvers would be a useful knowledge repre-
sentation tool.
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Niemelä, I., and Simons, P. 2000. Extending the
Smodels system with cardinality and weight constraints.
In Minker, J., ed., Logic-Based Artificial Intelligence.
Kluwer. 491–521.
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