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Abstract
We present an implementation for nonmonotonic reasoning
about action domains. Its name draculasp stands for “default
reasoning about actions and change using logic and answer
set programming.” The system compiles action domain spec-
ifications from a logic-based input language into answer set
programs and invokes an ASP solver to answer queries about
the domain. Intelligent agents can use draculasp to predict
what normally holds in incompletely known action domains.

Introduction
Intelligent agents will virtually never have complete knowl-
edge about the domain they are situated in. Still, they con-
stantly have to decide on which course of action to take. This
problem of reasoning about incompletely known domains
can be tackled by making justified assumptions about the
world, which are retracted should the agent gain knowledge
to the contrary. The theoretical foundations of this solution
were introduced by (Baumann et al. 2010), that embed ac-
tion theories into default logic (Reiter 1980).

In this paper, we present a practical implementation of
their approach. Of course, we cannot expect to be able to
implement full-fledged reasoning in Reiter’s default logic:
after all, extension existence for closed normal first-order
default theories is not even semi-decidable (Reiter 1980).
A high computational complexity is retained even through
restriction to propositional logic: sceptical reasoning is ΠP

2-
complete for propositional normal default theories (Gottlob
1992). Thus, we will have to make some restricting assump-
tions on our input domains that make an implementation fea-
sible in principle (that is, make the relevant reasoning prob-
lems decidable) and in practice (that is, allow for efficient
implementations of reasoning procedures).

But even for a sufficiently expressive yet simple enough
input language, implementing a reasoner from scratch is
complicated and error-prone. Although it could be adapted
and tuned for efficiency, its range of applicability would
be rather limited. Fortunately, there exist efficient general-
purpose reasoners for default theories of a particular form:
answer set programming solvers.

(Marek and Truszczyński 1989) discovered a close con-
nection between default logic and answer set programming:
roughly, a normal logic program can be modularly trans-
lated into a default theory such that there is a one-to-one

correspondence between the answer sets of the logic pro-
gram and the extensions of the default theory. This connec-
tion will form the basis of our implementation. For finite
domains and a finite time horizon, current ASP technology
can then be used off the shelf to efficiently reason about ac-
tion domains. In the last decade, answer set programming
has made significant advancements in terms of efficiency,
and current solvers can now treat programs with millions
of variables despite the theoretical worst-case NP-hardness.
Still, if the polynomial hierarchy does not collapse there re-
mains an exponential gap between ΠP

2 (sceptical reasoning
in propositional normal default theories) and NP (answer set
existence for propositional normal logic programs).

When aiming for an approach that compiles action do-
main specifications into logic programs and reduces reason-
ing about the domains to reasoning in these programs, we
therefore have to expect a worst-case exponential blowup or
at least a worst-case exponential runtime for these transla-
tions. This is acceptable if we compile only once to ask mul-
tiple queries afterwards. But in the case of an agent situated
in a changing domain that constantly executes actions and
makes new observations, it may be too costly to recompile
its whole world knowledge after adding to it the observations
associated to each action. Consequently, we are looking for
a translation where the domain description is compiled once
and additional information about action executions and ob-
servations can be added in a modular way.1

Also, since we are dealing with a non-monotonic formal-
ism, another issue is getting into the way of a straightforward
implementation: for monotonic semantics, there exists the
possibility of an efficient implementation that is sound, but
not complete. With non-monotonic semantics, this possibil-
ity does not exist in general: for any conclusion that follows
semantically but is not made by the system due to incom-
pleteness, there may exist a default that relies on absence of
this conclusion and makes an unsound default inference.

The system we present in this paper is motivated by these
reflections and rests on an input language for which a sound
and complete modular translation from the resulting action
default theories into answer set programs exists.

1By modular, we mean the following: for two languages
L1, L2, a translation function f : 2L1 → 2L2 is modular iff for
all A ⊆ L1, the function satisfies f(A) =

⋃
a∈A f({a}), that is,

sets of language elements can be translated element-wise.



Background: Default Reasoning about Actions
The approach of (Baumann et al. 2010) embeds action theo-
ries formulated in the language of the unifying action cal-
culus (UAC) (Thielscher 2011) into default logic (Reiter
1980). The action theories are viewed as incomplete knowl-
edge bases that are completed by defaults. It takes as input
a description of an action domain containing (1) a domain
signature, that defines the vocabulary of the domain; (2) a
description of the preconditions and effects of actions; (3)
a set of state defaults Φ ψ, statements that specify con-
ditions (in form of a fluent formula Φ) under which a flu-
ent literal ψ normally holds in the domain. The state de-
faults from the domain description are translated into Re-
iter defaults, where the special predicates DefT(f, s, t) and
DefF(f, s, t) are used to express that a fluent f becomes nor-
mally true (false) from s to t. In this paper we are chiefly
concerned with the implementation of their approach, so we
refer the interested reader to the original paper and only il-
lustrate their approach with an example.

Example 1 (Swipe Card Domain). The objective of this do-
main is to open an electronically Locked door using a swipe
card. If the agent has a card (HasCard), it can Swipe the card
to unlock the door; if the door is unlocked and not Jammed, it
can be Pushed Open. Normally, the door is not jammed. The
default theory of the swipe card domain is (Σsc,∆sc) below.
In Σsc, action preconditions are expressed by the axioms
Poss(Swipe, s, t) ≡ (Holds(HasCard, s) ∧ Occurs(Swipe, s, t))
Poss(Push, s, t) ≡ (¬Holds(Locked, s) ∧ ¬Holds(Jammed, s) ∧

Occurs(Push, s, t))

The abstract predicate Occurs(a, s, t) denotes occurrence of
action a from s to t and enables us to use different time
structures. The effect axiom below now says that all that
holds at the resulting time point t of the action must have a
cause among direct effects, defaults or persistence.
Poss(a, s, t) ⊃
Holds(f, t) ≡ (FrameT(f, s, t) ∨ DirT(f, a, s, t) ∨ DefT(f, s, t)) ∧
¬Holds(f, t) ≡ (FrameF(f, s, t) ∨ DirF(f, a, s, t) ∨ DefF(f, s, t))

The formulas expressing direct effects are
DirT(Open,Push, s, t), DirF(Locked,Swipe, s, t) and
¬DirT(F,A, s, t) and ¬DirF(F,A, s, t) for all other fluents
F and actions A. The meaning of persistence itself is
catered for by the axioms
FrameT(f, s, t) ≡ (Holds(f, s) ∧ Holds(f, t))
FrameF(f, s, t) ≡ (¬Holds(f, s) ∧ ¬Holds(f, t))

and the default closure axioms
Holds(Jammed, s) ⊃ ¬DefF(Jammed, s, t) and
¬Def (F, s, t) for all other fluents F . Together, they
implement a solution to the notorious frame problem
(McCarthy 1977) in the presence of defaults. The Reiter
defaults ∆sc obtained from > ¬Jammed are given by
Init(t) : ¬Holds(Jammed, t)/¬Holds(Jammed, t)
¬Holds(Jammed, s) : DefF(Jammed, s, t)/DefF(Jammed, s, t).

The generality of the approach allows it to deal with dif-
ferent time structures using one and the same axiomatisation
technique. We will later see how this is instantiated by con-
crete time structures like situations or natural numbers.

From Action Domains to ASPs
For the purpose of this paper, we treat the formulas occur-
ring in the default theories of (Baumann et al. 2010) as
quantifier-free. This is possible because we will be dealing
with a class of domains whose default theories do not use
existential quantification. To simplify the definitions in the
sequel, we also assume that all predicate macros have been
replaced by respective predicate symbols and the formulas
in domain axiomatisations are in conjunctive normal form.

In addition to the general domain information in form of
a default theory (Σ,∆), the user can provide information
about a specific instance of the domain. An instance is first
characterised by a time structure, situations or linear time.
Technically, this extends the signature of the domain by the
appropriate function symbols into sort TIME. Second, the
instance information contains additional world knowledge
whose form depends on the chosen notion of time. For sit-
uations, the user can provide a characterisation of the ini-
tial situation via a conjunction of literals (¬)Holds(F, S0).
For linear time, they can specify a narrative consisting of
action occurrence statements and Holds literals. This user-
specified information is easily transformed into a set of for-
mulas Σinst, which is added to the theory about the domain
resulting in the default theory (Σ ∪ Σinst,∆).
Example 1 (Continued). For situations as time structure and
an initial time point where the agent has a card, we get Σsc

inst
containing the three axioms Init(S0), Holds(HasCard, S0)
and Occurs(a, s, t) ≡ t = Do(a, s).

Although the semantics defined in (Baumann et al. 2010)
can in principle deal with infinite domains, the same cannot
be expected in general from an implementation. In partic-
ular, answer set programming systems are based on propo-
sitional logic, which precludes the use of function symbols
of positive arity in any way that leads to infinite domains.
So for the implementation, we restrict our attention to do-
mains with a finite number of objects. This domain closure
is expressed in the translation as follows. Current answer set
solvers allow to specify normal logic programs with vari-
ables. In a preprocessing step, the grounder of an ASP
system then replaces rules with variables by their ground
instances (provided the rules are safe). Any formula with
(implicitly universally quantified) free variables is thereby
replaced by a conjunction of its ground instances, which is
semantically equivalent for finite domains. Due to the mod-
ularity of our translation, this also means that the general
characterisation of the domain and information about a spe-
cific instance can be compiled independently. For the rea-
soning agent this has the benefit that the general domain in-
formation only has to be compiled once, while subsequent
observations and queries can be translated separately.

Now let a finite action domain be given as a quantifier-free
default theory (Σ,∆) where Σ is a set of clauses. For each
clause L1 ∨ . . . ∨ Lm ∈ Σ (possibly containing free vari-
ables), we write the extended logic program rules

Li ← ¬L1, . . . ,¬Li−1,¬Li+1, . . . ,¬Lm (i = 1, . . . ,m)

They express that “Li must be true if all the other Lj are
false.” It can be proved that the ground instances of these



rules PΣ are sound with respect to logical consequences and
preserve the clause’s potential for unit resolution.

In a similar way, we translate the defaults in ∆ to extended
logic program rules. For example, the two defaults that arise
from > ¬Jammed are turned into
¬Holds(Jammed, t)← Init(t), not Holds(Jammed, t)
DefF(Jammed, s, t)← ¬Holds(Jammed, s), not ¬DefF(Jammed, s, t)

where not is negation as failure. As is usual in answer set
programming, we then replace negated predicates ¬Q by a
new predicate symbol Q′ standing for the (classical) nega-
tion of Q (Gelfond and Lifschitz 1991). The resulting rules
now form the corresponding answer set program PΣ,∆ of the
action domain given by default theory (Σ,∆).

It remains to make sure that the program can be grounded
in a well-sorted way. Recall that the user specifies an action
domain using a signature that may contain function symbols
of positive arity. Since this may however immediately lead
to an infinite ground instantiation, we restrict the term depth
to a certain natural number #maxDepth specified along with
the domain. That way, it is much easier for the user to write
elaboration-tolerant action domain specifications, while the
theory works as before. In the implementation, the creation
of the domains of the sorts is dynamically done by the solver
via meta-programming, using additional ASP rules. For ex-
ample, the sort SIT for situations is defined by the rules
SIT(0, S0)

SIT(i+ 1,Do(a, s))← ACTION(i, a), SIT(i, s), i < #maxDepth
SIT(s)← SIT(i, s)

This results in the program Psorts containing the rules for
all sorts of the underlying Situation Calculus signature. By
means of these newly introduced predicates S, it is straight-
forward to ensure safety of the rules in PΣ: for any unsafe
variable x of sort S in a rule, we add an atom S(x) to the rule
body. This way of creating the sort domains easily allows us
to reason about situations with a finite horizon. In this case,
the value of #maxDepth limits the program’s lookahead into
the situation tree, which can be dynamically increased by
simply adjusting the depth. The ASP solver then grounds
the domain and thereby produces the well-sorted grounding
with a built-in unique-names assumption.

Correctness for a class of domains Although the transla-
tion presented here is in principle defined for any quantifier-
free default theory, it does not always preserve logical con-
sequences. Fortunately the translation is sound and com-
plete for a certain class of domains which we call admis-
sible. For an action domain, this requires that all state de-
faults are prerequisite-free and all action preconditions are
disjunction-free. The instance information Σinst is admissi-
ble if (1) there is a unique ground atom Init(τ0) ∈ Σinst and
(2) all state formulas in Σinst are ground literals in τ0. (E.g.,
the swipe card domain from Example 1 is admissible.)

The structure of the ground clauses can be used to
argue that the Horn translation preserves their meaning
with respect to entailment of Holds literals. Due to
the restricted form of the defaults Init(t) : ψ[t]/ψ[t] and
ψ[s] : Def (ψ, s, t)/Def (ψ, s, t), this correspondence can be
generalised to extensions of consistent action default theo-
ries. For inconsistent Σ, the extensions of (Σ,∆) and an-

swer sets of PΣ,∆ differ: while the original default theory
has a single inconsistent extension, its translation has no an-
swer set due to the integrity constraints. In any case, an
inconsistent domain axiomatisation must be considered er-
roneous and makes determining consequences unnecessary.

The Implemented System draculasp
The name draculasp alludes to the system’s usage for non-
monotonic reasoning about action domains, the semantics of
the input language being defined in terms of (default) logic
and the actual reasoning being done via ASP.

The draculasp system is written in ECLiPSe Prolog2 and
implements the translation of the previous section. It takes
as input an action domain specification and instance infor-
mation for that domain and transforms it into an answer set
program P with variables. This program can then be queried
by invoking an external solver. Technically, a query ϕ is
added to the program P as an integrity constraint, that is,
we create the new program P ′ def= P ∪ {⊥ ← ϕ}. Now P ′

admits no answer set if and only if the query ϕ is contained
in each answer set of P . The system and some example do-
mains can be downloaded from the author’s web page.3

Usage Information about the vocabulary and other general
domain properties is stored in text files with a special syntax,
action domain specifications. Below we can see the repre-
sentation of the swipe card domain from Example 1.
sort action: swipe, push.
sort fluent: hasCard, locked, open, jammed.
precondition swipe: hasCard.
precondition push: and(not(locked),
not(jammed)).
effects swipe: not(locked).
effects push: open.
normally not(jammed).

The first two statements define the domain signature. Next,
action preconditions, action effects and state defaults are
specified, where action effects are grouped by actions. Since
the translation implemented by draculasp is modular, this
part of the description can be processed in isolation, leading
to a program Psc that contains general domain knowledge.

Information about a specific domain configuration is
given in an action domain instance file. Each such file refers
to an action domain specification, defines a time structure
and additionally states an initial situation or a narrative (de-
pending on the chosen time structure). Here is a branching-
time instance of the swipe card domain:
instance of "swipecard.ads".
time structure: situations. term depth: 3.
initially hasCard.

The first line refers to the domain of which the file defines
an instance. The next lines declare time structure and term
depth, and the last line characterises the initial situation.
Translating this action domain instance file yields an answer
set program P 1

inst. Together with Psc from above, it allows to
reason about what normally holds in the swipe card domain.
Below is another example, that uses a linear time structure:

2
http://eclipseclp.org

3
http://informatik.uni-leipzig.de/˜strass/draculasp/

http://eclipseclp.org
http://informatik.uni-leipzig.de/~strass/draculasp/


instance of "swipecard.ads".
time structure:linear time 0..3. term depth:2.
narrative: holds(hasCard, 0),

occurs(swipe, 0, 1), occurs(push, 1, 2).

The second line expresses that the TIME domain is the set
{0, . . . , 3} ⊆ N and defines the term depth. The block at
the end specifies a narrative in which the initial time point is
as in the branching time instance and the door is unlocked
from 0 to 1 before being pushed from 1 to 2. Our sys-
tem translates this action domain instance file into a pro-
gram P 2

inst. Reusing the separately transformed Psc from
above, we obtain the answer set program Psc ∪ P 2

inst about
this linear-time instance of the swipe card domain, which
can be used for logical default reasoning. We exemplify
this in the following by writing the respective successful
queries in typewriter font. So, for instance, in the domain
above, the agent initially has a card, holds(hasCard,0)

(hence can swipe it, poss(swipe,0,1)), and the door is not
jammed, -holds(jammed,0). This persists through swiping
the card from 0 to 1, whence -holds(jammed,1). As an ef-
fect of swiping, we get -holds(locked,1), which enables
the agent to push the door, poss(push,1,2). After pushing
it, the door is indeed open, holds(open,2).

Conclusion
We have presented the draculasp System for reasoning about
actions in domains with state defaults. The system imple-
ments a compilation from action domain specifications into
answer set programs with variables and then invokes an an-
swer set solver to answer queries.

Using the theoretical relationship between default logic
and answer set programming to implement one via the other
is not new. (Junker and Konolige 1990) provided a trans-
lation from propositional default theories into normal logic
programs4 which has recently been rediscovered by (Chen
et al. 2010). However, their translation is not modular –
after adding new information about the domain, the whole
theory has to be recompiled. In particular, the theory has
to be recompiled for each query that is asked, since queries
are modelled by defaults. More significantly, their approach
only works for propositional default theories, which neces-
sitates a first-ground-then-translate approach, which we dis-
missed based on performance considerations.

The causal calculator (CCALC)5 was developed by Nor-
man McCain as part of his PhD thesis and since then main-
tained by the Texas Action Group at the University of
Austin. It implements the action language C+ (Giunchiglia
et al. 2004). Like draculasp, the causal calculator offers the
specification of action domains and answers queries about
these domains by translation into a logical language. Indeed,
the functionality of CCALC was an inspiration for draculasp.
Similarly, the system dlvK implements the action language
K (Eiter et al. 2000) on top of the dlv answer set solver

4In fact, they translated default theories and theories of au-
toepistemic logic into truth maintenance systems, which can how-
ever equivalently be seen as normal logic programs under the stable
model semantics (Reinfrank, Dressler, and Brewka 1989).

5
http://www.cs.utexas.edu/users/tag/cc/

(Eiter et al. 1997). However, the default semantics of C+
and K have an underlying intuition that greatly differs from
ours. We consider state defaults as saying that something
normally holds, but may be exceptionally untrue, where this
exception persists. C+ and K regard default statements as
causes on a par with all others, fluents that have a default
truth value may become true (or false) by default without an
obvious immediate cause. This view allows them to use de-
faults to model causes that are not known, not observable or
too cumbersome to axiomatise.

References
[Baumann et al. 2010] Baumann, R.; Brewka, G.; Strass,
H.; Thielscher, M.; and Zaslawski, V. 2010. State De-
faults and Ramifications in the Unifying Action Calculus.
In KR, 435–444.

[Chen et al. 2010] Chen, Y.; Wan, H.; Zhang, Y.; and Zhou,
Y. 2010. dl2asp: Implementing Default Logic via Answer
Set Programming. JELIA, vol. 6341 of LNCS, 104–116.
Springer.

[Eiter et al. 1997] Eiter, T.; Leone, N.; Mateis, C.; Pfeifer,
G.; and Scarcello, F. 1997. A deductive system for non-
monotonic reasoning. LPNMR, vol. 1265 of LNCS, 364–
375. Dagstuhl Castle, Germany: Springer.

[Eiter et al. 2000] Eiter, T.; Faber, W.; Leone, N.; Pfeifer,
G.; and Polleres, A. 2000. Planning under Incomplete
Knowledge. CL, vol. 1861 of LNCS, 807–821. Springer.

[Gelfond and Lifschitz 1991] Gelfond, M., and Lifschitz,
V. 1991. Classical Negation in Logic Programs and Dis-
junctive Databases. New Gen. Comp. 9:365–385.

[Giunchiglia et al. 2004] Giunchiglia, E.; Lee, J.; Lifschitz,
V.; McCain, N.; and Turner, H. 2004. Nonmonotonic
Causal Theories. AIJ 153(1-2):49–104.

[Gottlob 1992] Gottlob, G. 1992. Complexity Results for
Nonmonotonic Logics. J. Log. Comp. 2(3):397–425.

[Junker and Konolige 1990] Junker, U., and Konolige, K.
1990. Computing the Extensions of Autoepistemic and De-
fault Logics with a Truth Maintenance System. In AAAI,
278–283. AAAI Press / The MIT Press.
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