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Abstract

This paper provides a general semantic framework for
nonmonotonic reasoning, based on a minimal models
semantics on the top of KLM systems for nonmonotonic
reasoning. This general framework can be instantiated
in order to provide a semantic reconstruction within
modal logic of the notion of rational closure, introduced
by Lehmann and Magidor. We give two characteriza-
tions of rational closure: the first one in terms of min-
imal models where propositional interpretations asso-
ciated to worlds are fixed along minimization, the sec-
ond one where they are allowed to vary. In both cases a
knowledge base must be expanded with a suitable set of
consistency assumptions, represented by negated con-
ditionals. The correspondence between rational closure
and minimal model semantics suggests the possibility
of defining variants of rational closure by changing ei-
ther the underlying modal logic or the comparison rela-
tion on models.

Introduction
In a seminal work Kraus Lehmann and Magidor (Kraus,
Lehmann, and Magidor 1990) (henceforth KLM) proposed
an axiomatic approach to nonmonotonic reasoning. Plausi-
ble inferences are represented by nonmonotonic condition-
als of the formA |∼ B, to be read as “typically or normally
A entailsB”: for instancemonday |∼ go work, “normally
on Monday I go to work”. The conditional is nonmonotonic
since fromA |∼ B one cannot deriveA ∧ C |∼ B, in our
example, one cannot derivemonday ∧ ill |∼ go work.
KLM proposed a hierarchy of four systems, from the weak-
est to the strongest: cumulative logicC, loop-cumulative
logic CL , preferential logicP and rational logicR. Each
system is characterized by a set of postulates expressing
natural properties of nonmonotonic inference. We present
below an axiomatization of the two stronger logicsP and
R (C andCL being too weak to be taken as an axiomatic
base for nonmonotonic reasoning). But before presenting
the axiomatization, let us clarify one point: in the original
presentation of KLM systems, (Kraus, Lehmann, and Magi-
dor 1990) a conditionalA |∼ B is considered as a conse-
quence relation between a pair of formulasA andB, so that
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their systems provide a set of “postulates” (or closure condi-
tions) that the intended consequence relations must satisfy.
Alternatively, these postulates may be seen asrules to de-
rive new conditionals from given ones. We take a slightly
different viewpoint, shared among others by Halpern and
Friedman (Friedman and Halpern 2001) (see Section 8) and
Boutilier (Boutilier 1994) who proposed a modal interpreta-
tion of KLM systemsP andR: in our understanding these
systems are ordinary logical systems in which a conditional
A |∼ B is a propositional formula belonging to the object
language. Whenever we restrict our consideration, as done
by Kraus Lehmann and Magidor, to the entailment of a con-
ditional from a set of conditionals, the two viewpointsco-
incide: a conditional is a logical consequence in logicP/R
of a set of conditionals if and only if it belongs to all pref-
erential/rational consequence relations extending that set of
conditionals, or (in semantic terms), it is valid in all prefer-
ential/rational models (as defined by KLM) of that set.

Here is the axiomatization of logicsP andR, in our pre-
sentation KLM postulates/rules are justaxioms. We use⊢PC

(resp. |=PC ) to denote provability (resp. validity) in the
propositional calculus.

All axioms and rules of propositional logic
A |∼ A (REF)
if ⊢PC A ↔ B then(A |∼ C) → (B |∼ C), (LLE)
if ⊢PC A → B then(C |∼ A) → (C |∼ B) (RW)
((A |∼ B) ∧ (A |∼ C)) → (A ∧ B |∼ C) (CM)
((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C) (AND)
((A |∼ C) ∧ (B |∼ C)) → (A ∨ B |∼ C) (OR)
((A |∼ B) ∧ ¬(A |∼ ¬C)) → (A ∧ C) |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is
characteristic of all KLM logics, axiom (RM) is called ra-
tional monotony and it characterizes the logic of rational
entailmentR. The weaker logic of preferential entailment
P contains all axioms, but (RM).P andR seem to capture
the core properties of nonmonotonic reasoning, as shown in
(Friedman and Halpern 2001) they are quite ubiquitous be-
ing characterized by different semantics (all of them being
instances of so-called plausibility structures).

LogicsP andR enjoy a very simple modal semantics, ac-
tually it turns out that they are the flat fragment of some
well-known conditional logics. ForP the modal semantics
is defined by considering a set of worldsW equipped by



an accessibility (or preference) relation< assumed to be
transitive, irreflexive, and satisfying the so-called Smooth-
ness Condition. For the strongerR < is further assumed to
be modular. Intuitively the meaning ofx < y is thatx is
more typical/more normal/less exceptional thany. We say
thatA |∼ B is true in a model ifB holds in all most normal
worlds whereA is true, i.e. in all<-minimal worlds satisfy-
ing A.

KLM systems formalize desired properties of nonmono-
tonic inference. However, they are too weak to perform
useful nonmonotonic inferences. For instance KLM sys-
tems cannot handle irrelevant information in conditionals:
from monday |∼ go work, there is no way of concluding
monday ∧ shines |∼ go work in any one of KLM sys-
tems. Partially motivated by the weakness of the axiomatic
approach, Lehmann and Magidor have proposed a true non-
monotonic mechanism on the top of logicR calledrational
closure. Rational clsure on the one hand preserves the prop-
erties ofR, on the other hand allows one to perform some
truthful nonmonotonic inferences, like the one just men-
tioned (monday ∧ shines |∼ go work).1 The authors has
given a syntactic procedure to calculate the set of condition-
als entailed by the rational closure as well as a quite complex
semantic construction. It is worth noticing that a stronglyre-
lated construction has been proposed by Pearl (Pearl 1990)
with his notion of 1-entailment, motivated by a probabilistic
interpretation of conditionals.

In this work we tackle the problem of giving a purely
semantic characterization of rational closure, stemming di-
rectly from the modal semantics of logicR. Notice that we
restrict our attention to finite knowledge bases. More pre-
cisely, we try to answer to the following question: given the
fact that logicR is characterized by a specific class of Kripke
models, how can we characterize the Kripke models of the
rational closure of a set of positive conditionals?

The characterization we propose may be seen as an in-
stance of a general recipe for defining nonmonotonic infer-
ence: (i) fix an underlying modal semantics for conditionals
(such as the one ofP or R), (ii) obtain nonmonotonic infer-
ence by restricting semantic consequence to a class of “min-
imal” models according to some preference relation on mod-
els. The preference relation in itself is defined independently
from thelanguageand from theset of conditionals(knowl-
edge base) whose nonmonotonic consequences we want to
determine. In this respect our approach is similar in spiritto
“minimal models” approaches to nonmonotonic reasoning,
such as circumscription.

The general recipe for defining nonmonotonic inference
we have sketched may have a wider interest than that of cap-
turing Lehmnan and Magidor’s rational closure. First of all,

1Actually the main motivation of Lehmann and Magidor lead-
ing to the definition of rational closure wastechnical: it turns out
that the intersection of all rational consequence relations satisfying
a set of conditionals coincides with the leastpreferentialconse-
quence relation satisfying that set, so that (i) the axiom/rule (RM)
does not add anything and (ii) such relation in itselffails to satisfy
(RM). Their notion of rational closure provides a solution to both
problems and can be seen as the “minimal” (in some sense) rational
consequence completing a set of conditionals.

we may think of studying variants of rational closure based
on other modal logics and/or on other comparison relations
on models. Secondly, being a purely semantic approach (the
preference relation is independent from the language), our
semantics can cope with a larger language than the one con-
sidered in KLM framework. To this regard, already in this
paper, we consider a richer language allowing boolean com-
binations of conditionals2. In the future, we may think of
applying our semantics to Nonmonotonic Description Log-
ics, where an extension of rational closure has been recently
considered (Casini and Straccia 2010).

In any case, the quest of a modal characterization of ra-
tional closure turns out to be harder than expected. Our se-
mantic account is based on the minimization of theheight
of worlds in models, where the height of a world is defined
in terms of length of the<-chains starting from the world.
Intuitively, the lower the height of a world, the more normal
(or less exceptional) is the world and our minimization cor-
responds intuitively to the idea of minimizing less-normalor
less-plausible worlds (or maximizing most plausible ones).

We begin by considering the nonmonotonic inference re-
lation determined by restricting considerations to models
which minimize theheight of worlds. In this first charac-
terization we keep fixed the propositional interpretation as-
sociated to worlds. The consequence relation makes sense
in its own, but as we show it isstrictly weakerthan rational
closure. We can obtain nonetheless a first characterization
of rational closure if we further restrict attention to minimal
canonical modelsthat is to say, to models that contain all
propositional interpretations compatible with the knowledge
baseK (i.e. all propositional interpretations except those
that satisfy some formulas inconsistent with the knowledge
baseK). Restricting attention to canonical models amounts
to expandingK by all formulas¬(A |∼ ⊥) (read as “A is
possible”, as it encodes S5♦A) for all formulasA such that
K 6|=R A |∼ ⊥. We thus obtain a very simple and neat char-
acterization of rational closure, but at the price of anexpo-
nentialincrease of theK.

We then propose a second characterization that does not
entail this exponential blow up. In analogy with circumscrip-
tion, we consider a stronger form of minimization where we
minimize the height of worlds, butwe allow to vary the
propositional interpretation associated to worlds. Againthe
resulting minimal consequence relation makes sense in its
own, but as we show it still does not correspond to rational
closure. In order to capture rational closure, we must basi-
cally add the assumption that there are “enough” worlds to
satisfy all conditionals consistent with the knowledge base
K. This amounts to adding asmall set of consistency as-
sumptions (represented by negative conditionals). In this
way we capture exactly rational closure, without an expo-
nential increase of the knowledge base.

2An extension of rational closure to knowledge bases compris-
ing both positive and negative conditionals has been proposed in
(Booth and Paris 1998).



General Semantics
In KLM framework the language of both logicsP and R
consists only of conditionalsA |∼ B. We consider here a
richer language allowing boolean combinations of condi-
tionals (and propositional formulas). Our languageL is de-
fined from a set of propositional variablesATM . We use
A, B, C, . . . to denote propositional formulas (not contain-
ing |∼), andF, G, . . . to denote arbitrary formulas. More pre-
cisely, the formulas ofL are defined as follows: ifA is a
propositional formula,A ∈ L; if A andB are propositional
formulas,A |∼ B ∈ L; if F is a boolean combination of
formulas ofL, F ∈ L. A knowledge baseK is any set of
formulas: as already mentioned in this work we restrict our
attention to finite knowledge bases.

The semantics ofP andR is defined respectively in terms
of preferential and rational3 models, that are possible world
structures equipped with a preference relation<, intuitively
x < y means that the world/individualx is more normal/
more typicalthan the world/individualy. The intuitive idea
is thatA |∼ B holds in a model if the most typical/normal
worlds/individuals satisfyingA satisfy alsoB. Preferential
models presented in (Kraus, Lehmann, and Magidor 1990)
characterize the systemP, whereas the more restricted class
of rational models characterizes the systemR (Lehmann and
Magidor 1992).

Definition 1 A preferentialmodel is a triple

M = 〈W , <, V 〉

where:

• W is a non-empty set of items
• < is an irreflexive, transitive relation onW satisfying the

Smoothness relation defined below;
• V is a functionV : W 7−→ 2ATM , which assigns to every

world w the set of atoms holding in that world.

If F is a boolean combination of formulas, its truth condi-
tions (M, w |= F ) are defined as for propositional logic.
Let A be a propositional formula; we defineMinM

< (A) =
{w ∈ W | M, w |= A and ∀w′, w′ < w implies
M, w′ 6|= A}. We also defineM, w |= A |∼ B if for all
w′, if w′ ∈ MinM

< (A) thenM, w′ |= B. Last we define the
Smoothness Condition: if M, w |= A, thenw ∈ MinM

< (A)
or there isw′ ∈ MinM

< (A) such thatw′ < w. Validity and
satisfiability of a formula are defined as usual. Given a set of
formulasK ofL and a modelM = 〈W , <, V 〉, we say that
M is a model ofK, writtenM |= K, if, for everyF ∈ K,
and everyw ∈ W , we have thatM, w |= F . K preferen-
tially entails a formulaF , writtenK |=P F if F is valid in
all preferential models ofK.

Since we limit our attention to finite knowledge bases, we
can restrict our attention to finite models, as the logic en-
joys the finite model property (observe that in this case the
smoothness condition is ensured trivially by the irreflexivity
of the preference relation). From Definition 1, we have that

3We use the expression “rational model” rather than “ranked
model” which is also used in the literature in order to avoid any
confusion with the notion of rank used in rational closure.

the truth condition ofA |∼ B is “global” in a modelM =
〈W , <, V 〉: given a worldw, we have thatM, w |= A |∼ B
if, for all w′, if w′ ∈ MinM

< (A) thenM, w′ |= B. It imme-
diately follows thatA |∼ B holds inw if only if A |∼ B is
valid in a model, i.e. it holds thatM, w′ |= A |∼ B for all
w′ in W ; for this reason we will often writeM |= A |∼ B.
Moreover, when the reference to the modelM is unambigu-
ous, we will simply writeMin<(A) instead ofMinM

< (A).

Definition 2 A rational model is a preferential model in
which< is further assumed to bemodular: for all x, y, z ∈
W , if x < y then eitherx < z or z < y. K rationally entails
a formulaF , written K |=R F if F is valid in all rational
models ofK.

When the logic is clear from the context we shall writeK |=
F instead ofK |=P F or K |=R F .

From now on, we restrict our attention torational models.

Definition 3 The heightkM of a worldw in M is the length
of any chainw0 < . . . < w fromw to aw0 such that for no
w′ it holds thatw′ < w0

4.

Notice that in a rational model〈W , V, <〉, kM is uniquely
determined. Moreover, finite Rational models can be equiv-
alently defined by postulating the existence of a function
k : W → N, and then lettingx < y iff k(x) < k(y).

Definition 4 The heightkM(F ) of a formula F is i =
min{kM(w) : M, w |= F}. If there is now : M, w |= F ,
F has no height.

It is immediate to verify that:

Proposition 1 For anyM = 〈W , V, <〉 and anyw ∈ W ,
we haveM |= A |∼ B iff kM(A ∧ B) < kM(A ∧ ¬B).

As already mentioned, although the operator|∼ j is non-
monotonic, the notion of logical entailment just defined is
itself monotonic: if K |=P F and K ⊆ K ′ then also
K ′ |=P F (the same holds for|=R). In order to define a non-
monotonic entailment we introduce our second ingredient of
minimal models. The underlying idea is to restrict attention
to models that minimizethe height of worlds. Informally,
given two models ofK, one in which a givenx has height
2 (because for instancez < y < x) , and another in which
it has height 1 (because onlyy < x), we would prefer the
latter, as in this modelx is “more normal” than in the former.

In analogy with circumscription, there are mainly two
ways of comparing models with the same domain: 1) by
keeping the valuation function fixed (only comparingM
andM′ if V andV ′ in the two models respectively coin-
cide); 2) by also comparingM andM′ in caseV 6= V ′. We
consider the two possible semantics resulting from these al-
ternatives. The first semantics is afixed interpretations min-
imal semantics, for shortFIMS .

4In the literature the functionkM is usually calledranking, but
we call it height in order to avoid any confusion with the different
notion ofrankingas defined by Lehmann and Magidor and used in
this paper as well. Our notion of ranking is similar to the oneorigi-
nally introduced by Spohn (Spohn 1988) and to the one introduced
by Pearl (Pearl 1990). The definition of height can be adaptedto
preferential models by considering thelongestchain rather than
any chain in the definition.



Definition 5 (FIMS ) GivenM = 〈W , <, V 〉 andM′ =
〈W ′, <′, V ′〉 we say thatM is preferred toM′ with respect
to the fixed interpretations minimal semantics (M <FIMS

M′) if W = W ′, V = V ′, and for allx, kM(x) ≤ kM′(x)
whereas there existsx′ : kM(x′) < kM′(x′). We say that
M is minimal with respect to<FIMS in case there is no
M′ such thatM′ <FIMS M. We say thatK minimally
entails a formulaF with respect toFIMS , and we write
K |=FIMS F , if F is valid in all models ofK which are
minimal with respect to<FIMS .

The following theorem shows that we can characterize min-
imal models with fixed interpretations in terms of condition-
als that are falsified by a world. Intuitively minimal models
are those where the worlds of height0 satisfy all condition-
als, and the height (> 0) of a worldx is determined by the
heightkM(C) of the antecedentsC of conditionalsfalsified
by x. Given a modelM = 〈W , <, V 〉 andx ∈ W , we de-
fineSx = {C |∼ D ∈ K | M, x |= C ∧ ¬D}.

Proposition 2 LetK be a knowledge base andM a model,
thenM |= K if and only ifM satisfies the following, for
everyx ∈ W :

1. if kM(x) = 0 thenSx = ∅

2. if Sx 6= ∅, thenkM(x) > kM(C) for everyC |∼ D ∈ Sx.

Proof. (Only if part) We prove condition 2. LetC |∼ D ∈
Sx, suppose, we haveM, x |= C∧¬D, sinceM |= C |∼ D
we obtain thatx 6∈ Min<(C), which entails thatkM(x) >
kM(C). Condition1 is a consequence of condition2, since
by 2 if Sx 6= ∅ then triviallykM(x) > 0.

(If part) Let A |∼ B ∈ K, suppose thatM satisfies the
two conditions above, we show thatM |= A |∼ B. Let
x ∈ Min<(A), if kM(x) = 0, thenSx = ∅, thus we get
thatM, x |= A → B, whenceM, x |= B. Suppose now
thatkM(x) > 0, if M, x |= A ∧ ¬B, thenA |∼ B ∈ Sx,
but then by hypothesis we getkM(x) > kM(A) against the
fact thatx ∈ Min<(A). �

In the proof of Proposition 2, we have observed that condi-
tion 1 is a consequence of condition2; we have explicitly
mentioned it for clarity (see the subsequent proposition and
theorem).

Proposition 3 Let K be a knowledge base and letM be a
minimalmodel ofK with respect toFIMS ; thenM satisfies
for everyx ∈ W :

1. if Sx = ∅ thenkM(x) = 0.

2. if Sx 6= ∅, thenkM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx}.

Proof. Let M = 〈W , <, V 〉. Suppose thatSx = ∅, but
kM(x) > 0, define a modelM′ = 〈W , <′, V 〉 by letting
kM′(x) = 0 andkM′(y) = kM(y) for y 6= x. We show
thatM′ |= K, obtaining a contradiction with the hypoth-
esis thatM is minimal. LetA |∼ B ∈ K, suppose that
w ∈ MinM′

< (A). If w = x, sinceSx = ∅, we have that
M′, x |= B (the evaluation function ofM′ is the same as
the one inM). If w 6= x andw ∈ MinM′

< (A) we must have
that w ∈ MinM

< (A), otherwise there would be a worldy
with M, y |= A and withkM′(y) ≤ kM(y) < kM(w) =

kM′(w), against the fact thatw ∈ MinM′

< (A); we then con-
clude by the fact thatM |= A |∼ B so thatM, w |= B,
whenceM′, w |= B.

Suppose now thatSx 6= ∅, but kM(x) 6= 1 +
max{kM(C) | C |∼ D ∈ Sx}. By Proposition 2, it must
be kM(x) > 1 + max{kM(C) | C |∼ D ∈ Sx}. In this
case, we define a modelM′ = (W , <′, V ), by stipulat-
ing kM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx} and
kM′(y) = kM(y) for y 6= x. We show thatM′ |= K,
obtaining a contradiction with the hypothesis thatM is
minimal. Let A |∼ B ∈ K and letw ∈ MinM′

< (A). If
w 6= x we get as before thatw ∈ MinM

< (A) and we con-
clude by the fact thatM |= A |∼ B. Let now w = x,
if A |∼ B 6∈ Sx, we are done asM′, x |= A → B. If
A |∼ B ∈ Sx, then it must bex 6∈ MinM

< (A), thus there
is y s.t.M, y |= A, with kM(y) = kM(A) andkM(y) <
kM(x). SincekM′(y) = kM(y) (andkM′(A) = kM(A))
we get thatkM′(x) > kM′(A), against the hypothesis that
x ∈ MinM′

< (A). �

Theorem 1 Let K be a knowledge base and letM be any
model, thenM is a FIMS minimal model ofK if and only
if M satisfies for everyx ∈ W :
1. Sx = ∅ iff kM(x) = 0.

2. if Sx 6= ∅, thenkM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx}.

Proof. The only if direction immediately follows from
Proposition 3. For theif direction, letM = 〈W , <, V 〉 be a
model with associatedkM, if M satisfies the two conditions
by Proposition 2 it follows thatM |= K. LetM′ |= K with
M′ = 〈W , <′, V 〉, and associatedkM′ , thenM′ satisfies
the conditions of Proposition 2. By induction onkM′(x) we
show thatkM(x) ≤ kM′(x). If kM′(x) = 0 thenSx = ∅
so that by Lemma 3kM(x) = 0. Let kM′(x) > 0: if
Sx = ∅ then kM(x) = 0 < k′(x). If Sx 6= ∅, then:
(i) kM′(x) > kM′(C) for everyC |∼ D ∈ Sx and (ii)
kM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx}. By (i)
and induction hypothesis it followskM(C) ≤ kM′(C),
thus: k(x) = 1 + max{kM(C) | C |∼ D ∈ Sx} ≤
1 + max{kM′(C) | C |∼ D ∈ Sx} ≤ kM′(x). We
have shown that for allx ∈ W , kM(x) ≤ kM′(x), hence
M′ 6<FIMS M, andM is minimal. �

In our second semantics, we let the interpretations vary. The
semantics is called variable interpretations minimal seman-
tics, for shortVIMS .
Definition 6 (VIMS ) GivenM = 〈W , <, V 〉 andM′ =
〈W ′, <′, V ′〉 we say thatM is preferred toM′ with re-
spect to the variable interpretations minimal semantics, and
write M <VIMS M′, if W = W ′, and for allx, kM(x) ≤
kM′(x) whereas there existsx′ : kM(x′) < kM′(x′). We
say thatM is minimal with respect to<VIMS in case there
is noM′ such thatM′ <VIMS M. We say thatK minimally
entails (with respect toVIMS ) F , and writeK |=VIMS F , if
F is valid in all models ofK which are minimal with respect
to <VIMS .
It is easy to realize that the two semantics,FIMS and
VIMS , define different sets of minimal models. This is il-
lustrated by the following example.



Example 1 Let

K = {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}.

We derive that

K 6|=FIMS penguin∧ black |∼ ¬fly.

Indeed inFIMS there can be a modelM in which W =
{x, y, z}, V (x) = {penguin, bird, f ly, black}, V (y) =
{penguin, bird}, V (z) = {bird, f ly}, andz < y < x.
M is a model ofK, and it is minimal with respect toFIMS

(indeed once fixedV (x), V (y), V (z) as above, it is not pos-
sible to lower the height ofx nor of y nor of z unless we
falsify K). Furthermore, inM x is a typical black penguin
(since there is no other black penguin preferred to it) that
flies. Therefore,K 6|=FIMS penguin∧ black |∼ ¬fly.

On the other hand,M is not minimal with respect to
VIMS . Indeed, consider the modelM′ = 〈W , <′, V ′〉 ob-
tained fromM by lettingV ′(x) = {penguin, bird, black},
V ′(y) = V (y), V ′(z) = V (z) and by defining<′ as:z <′ y
andz <′ x. ClearlyM′ |= K, andM′ <V IMS M, since
kM′(x) < kM(x), while kM′ = kM for all other worlds.

The example above shows thatFIMS andVIMS lead to
different sets of minimal models for a givenK. Notice how-
ever that the modelM′ we have used to illustrate this fact is
not a minimal model forK in VIMS . A minimal model in
VIMS for K that can be defined on the domainW is given
by V (x) = V (y) = V (z) = {bird, f ly}, and the empty
relation<. This is quite a degenerate model ofK in which
there are no penguins. This illustrates the strength ofVIMS :
in case of knowledge bases that only contain positive condi-
tionals, logical entailment inVIMS collapses into classical
logic entailment. This feature corresponds to a similar fea-
ture of the non-monotonic logicPmin in (Giordano et al.
2010), and can be proven in the same way.

Proposition 4 Let K be a set of positive conditionals. Let
us replace all formulas of the formA |∼ B in K with A →
B, and callK ′ the resulting set of formulas. We have that
K |=VIMS A |∼ B if and only ifK ′ |=PC A → B.

As for Pmin this strong feature ofVIMS can be avoided
when considering knowledge bases that include existence
assertions: these are negated conditionals, in the examplefor
instance we could add¬(penguin |∼⊥) to force us to con-
sider non trivial models in which penguins exist. In the next
section, we will useVIMS in this kind of way, by always
considering knowledge bases that include existence asser-
tions (expressed by negated conditionals).

A Semantical Reconstruction
of Rational Closure

We provide a semantic characterization of the well known
rational closure, described in (Lehmann and Magidor 1992)
within the two semantics described in the previous section.
More precisely, we can give two semantic characterizations
of rational closure, the first based onFIMS , the second
based onVIMS . Since in rational closure no boolean com-
binations of conditionals are allowed, in the following, the

knowledge baseK is just a finite set of positive conditional
assertions. We recall the notion rational closure, giving its
syntactical definition in terms ofrank of a formula.

Definition 7 Let K be a knowledge base (i.e. a finite set of
positive conditional assertions) andA a propositional for-
mula.A is said to beexceptionalfor K iff K |=R ⊤ |∼ ¬A5.

A conditional formulaA |∼ B is exceptional forK if its
antecedentA is exceptional forK. The set of conditional
formulas which are exceptional forK will be denoted as
E(K). It is possible to define a non-decreasing sequence of
subsets ofK C0 ⊇ C1, . . . by letting C0 = K and, for
i > 0, Ci = E(Ci−1). Observe that, beingK finite, there is
an ≥ 0 such that for allm > n, Cm = Cn or Cm = ∅.

Definition 8 A propositional formulaA hasranki for K iff
i is the least natural number for whichA is not exceptional
for Ci. If A is exceptional for allCi thenA has no rank.

The notion of rank of a formula allows to define the rational
closure of a knowledge baseK.

Definition 9 Let K be a conditional knowledge base. The
rational closureK̄ of K is the set of allA |∼ B such that
either (1) the rank ofA is strictly less than the rank ofA ∧
¬B (this includes the caseA has a rank andA ∧ ¬B has
none), or (2)A has no rank.

The rational closure of a knowledge baseK seemingly con-
tains all conditional assertions that, in the analysis of non-
monotonic reasoning provided in (Lehmann and Magidor
1992), one rationally wants to derive fromK. For a full dis-
cussion, see (Lehmann and Magidor 1992).

Can we capture rational closure within our semantics?
A first conjecture might be that theFIMS of Definition 5
could capture rational closure. However, we are soon forced
to recognize that this is not the case. For instance, Exam-
ple 1 above illustrates that{penguin |∼ bird, penguin |∼

¬fly, bird |∼ fly} 6|=FIMS penguin ∧ black |∼ ¬fly.
On the contrary, it can be easily verified thatpenguin ∧
black |∼ ¬fly is in the rational closure of{penguin |∼

bird, penguin |∼ ¬fly, bird |∼ fly}. Therefore,FIMS as
it is does not allow us to define a semantics corresponding
to rational closure. Things change if we considerFIMS ap-
plied to models that containall possible valuations “com-
patible” with a given knowledge baseK. We call these mod-
elscanonical models.

Example 2 Consider Example 1 above. If we restrict our
attention to models that also contain aw with V (w) =
{penguin, bird, black} which is a black penguin that does
not fly and can therefore be assumed to be a typical penguin,
we are able to conclude that typically black penguins do not
fly, as in rational closure. Indeed, in all minimal models ofK
that also containw with V (w) = {penguin, bird, black}, it
holds thatpenguin ∧ black |∼ ¬fly.

5In (Lehmann and Magidor 1992),|=P is used instead of|=R.
However when K contains only positive conditionals the two no-
tions coincide (see footnote 1) and we prefer to use|=R here since
we consider rational models.



We are led to the conjecture thatFIMS restricted to canoni-
cal models could be the right semantics for rational closure.
Fix a propositional languageLProp comprising a finite set
of propositional variablesATM , a propositional interpreta-
tion v : ATM −→ {true, false} is compatiblewith K, if
there is no formulaA ∈ LProp such thatv(A) = true and
K |=R A |∼ ⊥.

Definition 10 A modelM = 〈W , <, V 〉 satisfying a knowl-
edge baseK is said to becanonicalif it contains (at least) a
world associated to each propositional interpretation com-
patible withK, that is to say: ifv is compatible withK, then
there exists a worldw in W , such that for all propositional
formulasB M, w |= B iff v(B) = true.

It can be easily shown that:

Theorem 2 For a given domainW , there exists a unique
canonical modelM for K overW such that, for all other
canonical modelsM′ overW , we haveM <FIMS M′.

In the following, we show that the canonical models that
are minimal with respect toFIMS are an adequate semantic
counterpart of rational closure.

To prove the correspondence between the rational closure
of a knowledge baseK and the fixed interpretation minimal
model semantics ofK, we need to prove some propositions.
The next one is a restatement for rational models of Lemma
5.18 in (Lehmann and Magidor 1992), and it can be proved
in a similar way. Note that, as a difference, point 2 in Lemma
5.18 is an “if and only if” rather than an “if” statement.

Proposition 5 Let M = 〈W , <, V 〉 be a rational model
of K. Let M0 = M and, for all i, let Mi = 〈Wi, <i

, Vi〉 be the rational model obtained fromM by remov-
ing all the worldsw with kM(w) < i, i.e.,Wi = {w ∈
W : kM(w) ≥ i}. For any propositional formulaA, if
rank(A) ≥ i, then: (1)kM(A) ≥ i; (2) If Ci |=R A |∼ B
thenMi |= A |∼ B.

Proof. The proof is by induction oni. For i = 0, item (1)
holds trivially. For item (2), observe thatM0 = M and
C0 = K. From the hypothesis,M is a rational model ofK,
and hence a preferential model ofK. Thus, ifK ⊢R A |∼ B,
thenM satisfiesA |∼ B.

For i > 0, let us prove item (1). Asrank(A) ≥ i, then,
for all r < i, Cr ⊢R ⊤ |∼ ¬A. By inductive hypothesis
(item 2),Mr satisfies⊤ |∼ ¬B. Hence, there is noA world
w with kM(w) = r < i. Therefore,kM(A) ≥ i.

To prove item (2), observe that, asrank(A) ≥ i, then, by
Lemma 2.21 in (Lehmann and Magidor 1992),C0 ⊢R A |∼

B if and only ifCi ⊢R A |∼ B. SupposeCi ⊢R A |∼ B, then
C0 ⊢R A |∼ B and hence, by inductive hypothesis (case (2),
i=0) M satisfiesA |∼ B. As we have shown in the proof of
item (1) that inM there is noA world w with kM(w) < i,
then it must be thatMi satisfiesA |∼ B. �

We need the next fact in order to prove the following propo-
sition.

Fact 1 If {A1 → B1, . . . , An → Bn} |=PC ¬C then
{A1 |∼ B1, . . . , An |∼ Bn} ⊢R ⊤ |∼ ¬C.

Proposition 6 Let M = 〈W , <, V 〉 be a canonical model
of K, minimal with respect to<FIMS . For all w ∈ W it
holds that: ifM, w |= A → B for all A |∼ B in Ci, then
kM(w) ≤ i.

Proof. The proof is by induction oni. If i = 0, it immedi-
ately follows by Lemma 3 (1).

For i > 0, let us considerw ∈ W such that for allA |∼ B
in Ci, M, w |= A → B butkM(w) > i. LetM′ be a model
obtained fromM by changing< in order to havekM′(w) =
i.M′ is preferred toM and it is a model ofK, as it satisfies
all the conditionals inK. Let A |∼ B ∈ K. It is clear that,
for all the worldsw′ ∈ W with w′ 6= w, w′ satisfiesA |∼

B in M′, as it satisfies it inM. To show thatw satisfies
A |∼ B, let w ∈ MinM′

< (A). If A |∼ B in Ci, we know
from the hypothesis thatw satisfiesA → B, and hence,w
satisfiesB. If A |∼ B in K − Ci, there is aj < i such that
A |∼ B ∈ Cj , Cj 6⊢R ⊤ |∼ ¬A while Cj−1 ⊢R ⊤ |∼ ¬A.
Form Cj 6⊢R ⊤ |∼ ¬A, by Fact 1, we have that{A′ →
B′ : A′

|∼ B′ in Ci−1} 6|= ¬A. Hence, there is a world
w′ ∈ W such thatw′ satisfies all the implicationsA′ →
B′ s.t. A′

|∼ B′ in Ci−1 andw′ satisfiesA. By inductive
hypothesis,kM(w′) < i, and thereforekM(A) < i. By
construction ofM′, kM′(w′) < i, and thereforekM′(A) <

i which contradicts the hypothesis thatw ∈ MinM′

< (A).
Hence,M′ satisfies all the conditionals inK. The fact that
kM(w) > i andkM′(w) = i contradicts the minimality of
M. hence, it must bekM(w) ≤ i, and the proof is over.�

Proposition 7 Let M be a canonical model ofK minimal
with respect to<FIMS . Then,rank(A) = i iff kM(A) = i.

Proof. (Only if part)Let us assume thatrank(A) = i. We
know thatCi 6⊢R ⊤ |∼ ¬A. Hence, by Fact 1,{A → B :
A |∼ B ∈ Ci} 6|=PC ¬A Then, there is a worldw ∈ W such
that, for allA |∼ B ∈ Ci, w satisfiesA → B andw satis-
fies A. By Proposition 6,kM(w) ≤ i. Thus,kM(A) ≤ i.
As by Proposition 5 we know thatkM(A) ≥ i, we can con-
clude thatkM(A) = i. (If part) This direction is obvious: if
kM(A) = i thenrank(A) = i. Indeed ifrank(A) = j 6= i,
kM(A) = j 6= i, against the hypothesis. �

We can now prove the following theorem:

Theorem 3 LetK be a knowledge base andM be a canon-
ical model ofK minimal with respect to<FIMS . For all con-
ditionalsA |∼ B we have:

M |= A |∼ B if and only ifA |∼ B ∈ K,

whereK is the rational closure ofK.

Proof. (Only if part)Let us assume thatM = 〈W , <, V 〉
satisfiesA |∼ B. Then, for each worldw ∈ Min<(A),
w satisfiesB. If Min<(A) = ∅, then there is now s.t.
M, w |= A, henceA has no height inM and by Propo-
sition 7 A has no rank. In this case by Definition 9A |∼

B ∈ K. Let us assume thatkM(A) = i. As kM(A ∧ B) <
kM(A ∧ ¬B), thenkM(A ∧ ¬B) > i. By Proposition 7,
rank(A) = i andrank(A∧¬B) > i. Hence, by Definition
9, A |∼ B ∈ K, the rational closure ofK.

(If part) A |∼ B belong toK, the rational closure ofK,
then, by Definition 9, either (a)rank(A) < rank(A∧¬B),



or (b) A has no rank. In the first case (a), letrank(A ∧
¬B) = i, andrank(A) < i. Suppose for a contradiction
thatM does not satisfyA |∼ B, i.e., thatkM(A ∧ ¬B) ≤
kM(A∧B). Hence,kM(A∧¬B) = i andkM(A∧B) > i,
which contradicts the fact thatrank(A) < i.

In case (b), Suppose for a contradiction thatM does not
satisfyA |∼ B, i.e., thatkM(A ∧ ¬B) ≤ kM(A ∧ B). Let
kM(A ∧ ¬B) = i. Then, it must be thatkM(A) = i, which
contradicts the fact thatA has no rank. �

In Theorem 3 we have shown a correspondence between
rational closure and minimal models with fixed interpreta-
tions, on the proviso thatwe restrict our attention to min-
imal canonicalmodels. We can obtain the same effect by
extendingK into K ′ by adding negated conditionals:K ′ =
K ∪ {¬(C |∼⊥) | K 6|=R (C |∼⊥)}. Indeed it can be easily
verified that all models ofK ′ are canonical, hence restricting
FIMS to canonical models on the one hand and considering
the extension ofK asK ′ on the other hand amounts to the
same effect. We can therefore restate Theorem 3 above as
follows:

Theorem 4 LetK be a knowledge base and letK ′ = K ∪
{¬(C |∼⊥) | K 6|=R (C |∼⊥)}. For all conditionalsA |∼ B
we have:

K ′ |=FIMS A |∼ B if and only ifA |∼ B ∈ K

whereK is the rational closure ofK.

Notice that the size ofK ′ is exponential in that ofK.
Can we lift the restriction to canonical models by adopt-

ing a semantics based on variable valuations? In the gen-
eral case, the answer is negative. We have already mentioned
that if we consider knowledge bases consisting only positive
conditionals logical entailment inVIMS collapses into clas-
sical logic entailment. To avoid this collapse, we can require
that, when we are checking for entailment of a conditional
A |∼ B from aK, at least anA ∧ B world and anA ∧ ¬B
world are present inK. This can be obtained by adding to
K the conditionals¬(A ∧ B |∼ ⊥) and¬(A ∧ ¬B |∼ ⊥).
Also in this case, however, we cannot give a positive answer
to the above question. In fact, it is possible to build a model
of K, minimal with respect toVIMS , which falsifies a con-
ditional A |∼ B which on the contrary is satisfied in all the
canonical minimal models ofK underFIMS . This is shown
by the following example.

Example 3 Let K be the following:

{T |∼ S,
S |∼ ¬D,
L |∼ P ,
R |∼ Q,
E |∼ F ,
H |∼ G,
D |∼ ¬P ∧ ¬Q ∧ ¬F ∧ ¬G,
S |∼ ¬(L ∧ R),
S |∼ ¬(L ∧ E),
S |∼ ¬(L ∧ H),
S |∼ ¬(R ∧ E),

S |∼ ¬(R ∧ H),
S |∼ ¬(E ∧ H)}.

Let

A = D ∧ S ∧ R ∧ L ∧ E ∧ H,
B = ¬Q ∧ ¬P ∧ ¬F ∧ ¬G

and let

K ′ = K ∪ {¬(A ∧ B |∼ ⊥), ¬(A ∧ ¬B |∼ ⊥)}.

We define a modelM = (W , <, V ) of K ′, which
is minimal with respect toVIMS , as follows: W =
{x, w, y1.y2, y3}, where:

V (y1) = {S,¬D,¬R,¬L,¬E,¬H, P, Q, F, G}
V (y2) = {¬S,¬D, R, L, E, H, P, Q, F, G}
V (y3) = {¬S,¬D, R, L, E, H, P, Q, F, G}
V (x) = {D, S, R, L, E, H,¬Q,¬P,¬F,¬G}
V (w) = {D, S, R, L, E, H, Q,¬P,¬F,¬G}

with kM(y1) = 0, kM(y2) = 1, kM(y3) = 1, kM(x) = 2
andkM(w) = 2. Observe that:x is anA∧B minimal world;
w is anA ∧ ¬B minimal world;y1 is anS minimal world;
y2 is a minimal world forR, L, E and H ; and y3 is a D
minimal world.
M is a model ofK which is minimal with respect to

VIMS . Also, A |∼ B is falsified inM, while, on the con-
trary, A |∼ B holds in all the canonical models minimal
with respect toFIMS . Indeed, in all such models the height
of k(A ∧ B) = 2 while k(A ∧ ¬B) = 3. However, it
is not possible to construct a modelM′ with 5 worlds so
that M′ <V IMS M. In particular, assigning tox or w
height 1 would require the introduction of minimal worlds
for R, L, E andH with height 0. But worldy2 cannot be
given height 0, as it does not satisfy the conditionals with
antecedentS. In canonical models there are distinct mini-
mal R worlds,L worlds,E worlds andH worlds height 0
(which are also minimalS worlds).

As suggested by this example, in order to characterize ratio-
nal closure in terms ofVIMS , we should restrict our con-
sideration to models which contain “enough” worlds. In the
following, as in Theorem 4, we enrichK with negated con-
ditionals but, as a difference withK ′ of Theorem 4, we only
need to add toK a polynomial number of negated condition-
als (instead of an exponential number). The purpose of the
addition is that of restricting our attention to models mini-
mal with respect to<VIMS that have a domain large enough
to have, in principle, a distinct most-preferred world for each
antecedent of conditional inK. For this reason, we add for
each antecedentC of K a new corresponding atomφC .
If the problem to be addressed is that of knowing whether
A |∼ B is logically entailed byK, we also introduceφA∧B

andφA∧¬B, and we defineK ′ as follows.

Definition 11 We define:

• AK,A|∼B = {C | either for someD, C |∼ D ∈ K or
C = A ∧ B or C = A ∧ ¬B, andK 6⊢R C |∼⊥};

• K ′ = K ∪ {¬(C ∧ φC |∼⊥) | C ∈ AK,A|∼B} ∪ {(φCi
∧

φCj
|∼⊥) | Ci, Cj ∈ AK,A|∼B}.



We here establish a correspondence betweenFIMS and
VIMS . By virtue of Theorem 3, this allows us to establish
a correspondence between rational closure andVIMS , as
stated by Theorem 6.

Theorem 5 Let M be a canonical model ofK, minimal
with respect toFIMS , and letK ′ be the extension ofK
defined as in Definition 11. We have that:

M |= A |∼ B iff K ′ |=VIMS A |∼ B.

Proof. We show the contrapositive of the two directions.
First supposeK ′ 6|=VIMS A |∼ B. LetM′ = 〈W ′, <′, V ′〉
be a model ofK ′ minimal with respect to<VIMS that
does not satisfyA |∼ B, i.e., such thatkM′(A ∧ ¬B) ≤
kM′(A ∧ B). We want to show that alsoM 6|= A |∼ B, i.e.,
kM(A∧¬B) ≤ kM(A∧B). For a contradiction, suppose in
the canonicalM, kM(A∧¬B) = j > kM(A∧B) = i. By
Propositions 7 and 5,kM′(A∧¬B) ≥ j andkM′(A∧B) ≥
i, and since by hypothesiskM′(A ∧¬B) ≤ kM′(A∧B), it
follows thatkM′(A ∧ B) ≥ j > i. We show that this goes
against the minimality ofM′. ConsiderM∗ = 〈W∗, <∗

, V ∗〉 built from M by cutting out a portion containing:x
in MinM

< (A ∧ B), x′ ∈ MinM
< (A ∧ ¬B) and an element

y ∈ MinM
< (C) for each antecedentC of conditional inK

s.t. K 6⊢R A |∼⊥. For these worlds, we defineV ∗ = V
andkM∗ = kM. If the same elementy is associated to two
different formulas it must be duplicated intoy andy′ (and
V ∗(y′) = V ∗(y) andkM∗(y′) = kM∗(y)). Furthermore,
for each worldy associated to a formulaC, V ∗(y) is ex-
tended in order to includeφC . <∗ is straightly defined from
kM∗ in the obvious way. The construction is almost finished.
Notice that up to this point we have introduced inW∗ no
more elements than those inW ′. To conclude we have to re-
name the elements ofW∗ with the names as the elements of
W ′ that satisfy the sameφC , and we have to add toW∗ the
elements ofW ′ that are eventually missing (we let for these
casesV ∗ = V ′ andkM∗ = kM′ ).
It can be shown thatM∗ is a model ofK ′, andM∗ <VIMS

M′, against the minimality ofM′. First of all, we show that
M∗ is a model ofK ′. Indeed, by construction we have in-
troduced a new element ofM for eachC antecedent of con-
ditional inK or equal toA∧B or A∧¬B, and this element
is still in MinM∗

< (C) (otherwise,kM∗(C) < kM∗(y) =
kM(y) = kM(C), against Propositions 7 and 5). Hence,
M∗ satisfies all negated conditionals inK ′. Consider now
the positive conditionalsC |∼ D in K ′. Consider anyy that
inserted inM∗ from M. Let y ∈ MinM∗

< (C). Then also
y ∈ MinM

< (C) (otherwise anothery′ ∈ MinM
< (C) would

have been taken in the construction withM∗, y′ |= C and
kM∗(y′) < kM∗(y), againsty ∈ MinM∗

< (C)). SinceM
is a model ofK, andC |∼ D ∈ K, M, y |= D hence
alsoM∗, y |= D. Consider nowy introduced inM∗ from
M′. If y ∈ MinM∗

< (C), then we reason as follows to show
thaty ∈ MinM′

< (C). First of all, we know thatkM∗(y) =
kM(C). Indeed inM∗ we have inserted ay′ that was in
MinM

< (C). As shown above,y′ ∈ MinM∗

< (C). Hence
kM∗(y) = kM∗(y′) (otherwisey 6∈ MinM∗

< (C)), and
kM∗(y) = kM(C). But by constructionkM∗(y) = kM′(y)

and ify 6∈ MinM′

< (C), there would be ay′ s.t.M′, y′ |= C
andkM′(y′) < kM′(y), hencekM′(C) < kM(C), against
Propositions 7 and 5. Hence, sinceC |∼ D holds inM′,
M′, y |= D and by constructionM, y |= D.
For the conditionals with formφCi

∧ φCj
|∼⊥: they hold in

M∗ since we have suitably extendedV ∗ in order to include
at most oneφC at a time.

Last, it holds thatM∗ <VIMS M′. Indeed the domain
of the two models coincide, and for ally taken fromM′,
kM∗(y) = kM′(y), and for ally taken fromM, they were
introduced as representatives of a givenC antecedent of con-
ditional or equal toA ∧ B, A ∧ ¬B. For all these formulas
by Propositions 7 and 5, it holds thatkM∗(C) = kM(C) ≤
kM′(C), hencekM∗(y) ≤ kM′(C). Furthermore, forA∧B
we have shown above thatkM∗(A∧B) = kM(A∧B) = i <
kM′(A∧B), henceM∗ <VIMS M′, which contradicts the
minimality of M′. We conclude that ifK ′ 6|=VIMS A |∼ B,
then alsoK 6|=FIMS A |∼ B.
For the other direction, supposeM 6|= A |∼ B, i.e. in a mini-
mal canonical model ofK,M, kM(A∧¬B) ≤ kM(A∧B).
Let kM(A ∧ ¬B) = i andkM(A ∧ B) = j. Consider the
modelM∗ built as in the first part of the construction used
above. More preciselyM∗ = 〈W ∗, <∗, V ∗〉 is built from
M by cutting out its portion containing:x in MinM

< (A∧B),
x′ ∈ MinM

< (A ∧ ¬B) and an elementy ∈ MinM
< (C)

for each antecedentC of conditional inK (i.e. we intro-
duce an elementy for each element ofAK,A|∼B). V ∗ = V
andkM∗ = kM. If the same elementy is associated to two
different formulas, it must be duplicated intoy andy′ (and
V ∗(y′) = V ∗(y) andkM∗(y′) = kM∗(y)). Furthermore,
for each worldy associated to a formulaC, V ∗(y) is ex-
tended in order to includeφC . Last,<∗ is obviously defined
from kM∗ . By reasoning similarly to what we have done
above, we can show thatM∗ is a model ofK ′. Furthermore,
there cannot be aM∗′

<VIMS M∗. Indeed, any model of
K ′ must have a distinct elementx satisfyingC∧φC for each
C in AK,A|∼B. Now suppose there was a modelM∗′

of K ′

with M∗′

<VIMS M∗. Suppose the same elements of the
domains ofM andM∗′

satisfy the sameC ∧ φC for C in
AK,A|∼B (henceM∗, x |= C ∧ φC iff M∗′

, x |= C ∧ φC ,

otherwise consider the model equivalent toM∗′

that re-
spects this constraint). IfM∗′

<VIMS M∗, then for some
x, kM∗

′ (x) < kM∗(x). Suppose inM∗, x |= C ∧ φC

(and hence alsoM∗′

, x |= C ∧ φC ). By construction of
M∗, kM∗(x) = kM(C). If kM∗

′ (x) < kM∗(x), then
kM∗

′ (C) < kM∗(C), against Propositions 5 and 7. Then,
it cannot beM∗′

<VIMS M∗, henceM∗ is a minimal
model ofK ′. Furthermore by constructionkM∗(A∧¬B) ≤
kM∗(A ∧ B). We conclude thatK ′ 6|=VIMS A |∼ B. �

From Theorem 3 and Theorem 5 just shown, it follows that:

Theorem 6 A |∼ B ∈ K̄ iff K ′ |=VIMS A |∼ B for K ′ of
Definition 11.

Relation with Pmin and Pearl’s System Z
In (Giordano et al. 2010) an alternative nonmonotonic ex-
tension of preferential logicP called Pmin is proposed.



Similarly to the semantics presented in this work,Pmin is
based on a minimal modal semantics. However the prefer-
ence relation among models is defined in a different way.
Intuitively, in Pmin the fact that a worldx is a minimalA-
world is expressed by the fact thatx satisfiesA ∧ �¬A,
where� is defined with respect to the inverse of the pref-
erence relation (i.e. with respect to the accessibility relation
given byRuv iff v < u). The idea is that preferred mod-
els are those that minimize the set of worlds where¬�¬A
holds, that isA-worlds which are not minimal. As a differ-
ence from the approach presented in this work, the seman-
tics ofPmin is defined starting from preferential models of
Definition 1, in which the relation< is irreflexive and tran-
sitive (thus, no longer modular).Pmin is a nonmonotonic
logic considering onlyP models that, intuitively, minimize
the non-typical worlds. More precisely, given a set of formu-
lasK, a modelM = 〈WM, <M, VM〉 of K and a model
N = 〈WN , <N , VN 〉 of K, we say thatM is preferred to
N if WM = WN , and the set of pairs(w,¬�¬A) such that
M, w |= ¬�¬A is strictly included in the corresponding set
for N . A modelM is aminimal modelfor K if it is a model
of K and there is no a modelM′ of K which is preferred
to M. Entailment inPmin is restricted to minimal models
of a given set of formulasK. In Section 3 of (Giordano et
al. 2010) it is observed that the logicPmin turns out to be
quite strong. In general, if we only consider knowledge
bases containing only positive conditionals, we get the same
trivialization result (part of Proposition 1 in (Giordano et al.
2010)) as the one contained in Proposition 4 forVIMS .

This does not hold for rational closure. This is the rea-
son why we have introduced the additional assumptions of
Definition 11 in order to obtain an equivalence with ratio-
nal closure. Similarly, in order to tackle this trivialization
in Pmin , Section 3 in (Giordano et al. 2010) is focused on
the so calledwell-behaved knowledge bases, that explicitly
include thatA is possible (¬(A |∼ ⊥)) for all conditional
assertionsA |∼ B in the knowledge base.

We can now wonder whetherPmin is equivalent to
VIMS , which is the semantics to which it resembles the
most. Or whetherVIMS is equivalent to a stronger version
of Pmin obtained by replacingP with R as the underlying
logic. We callRmin this stronger version ofPmin .

Example 4 Let K = {PhD |∼ ¬worker ,PhD |∼

adult , adult |∼ worker ,italian |∼ house owner ,PhD |∼

¬house owner}.

What do we derive inPmin and Rmin, and what in
VIMS? By what said above, sinceK only contains pos-
itive conditionals, both inPmin and Rmin, on the one
side, and inVIMS , on the other side, we derive that
italian ∧ PhD |∼⊥. So let’s add toK the constraint
that people who are italian and have a PhD do exist by
introducing in K a conditional¬(italian ∧ PhD |∼⊥
), thus obtaining:K ′ = {PhD |∼ ¬worker ,PhD |∼

adult , adult |∼ worker ,italian |∼ house owner ,PhD |∼

¬house owner ,¬(italian ∧ PhD |∼⊥)}.

Notice that since¬(italian ∧ PhD |∼⊥) entails both that
¬(italian |∼⊥) and that¬(PhD |∼⊥), and that this in turn
entails¬(adult |∼⊥), K ′ is also well-behaved.

It can be easily verified that the logical consequences of
K ′ in Pmin , Rmin, andVIMS differ. In both Pmin and
Rmin, for instance, we derive neither thatitalian ∧PhD |∼

house owner nor thatitalian ∧ PhD |∼ ¬house owner:
the two alternatives are equivalent. On the other hand, in
VIMS we derive thatitalian ∧ PhD |∼ ¬house owner .
The previous example shows that in some casesVIMS

is stronger than bothPmin andRmin. The following one
shows that the two approaches are incomparable, since there
are also logical consequences that hold for bothPmin and
Rmin but not forVIMS .

Example 5 Let K = {PhD |∼ adult , adult |∼

work ,PhD |∼ ¬work , italian |∼ house owner}.

What do we derive about typicalitalian ∧PhD ∧work , for
instance? Do they inherit the property of typical italians of
beinghouse owner? Again, in order to prevent the entail-
ment ofitalian ∧ PhD ∧ work |∼⊥ from K both inVIMS

and inPmin andRmin, we add toK the constraint that ital-
ians with a PhD who work exist, henceforth they also have
typical instances. Therefore we expandK into:

K ′ = {PhD |∼ adult , adult |∼ work ,PhD |∼ ¬work ,
italian |∼ house owner ,¬(italian ∧ PhD ∧ work |∼⊥)}.

By reasoning as in Example 4 we can show thatK ′ is a well-
behaved knowledge base. Now it can be shown that

italian ∧ PhD ∧ work |∼ house owner

is entailed inPmin andRmin, whereas nothing is entailed
in VIMS . This difference can be explained intuitively as fol-
lows. The set of properties for which an individual is atypical
matters inPmin andRmin where one has to minimize the
set of distinct¬�¬C: even if anitalian ∧PhD ∧work is an
atypical PhD,Pmin andRmin still maximize its typicality
as an italian, and therefore entail that it is a houseowner, as
all typical italians. As a difference, inVIMS , what matters
is the set of individuals which are more typicalthan a given
x, rather thanthe set of propertieswith respect to which
they are more typical. As a consequence, since anx which
is italian ∧PhD ∧work is an atypical PhD, there is no need
to maximize its typicality as an italian, as long as this does
not increase the set of individuals more typical thanx.

In (Pearl 1990) Pearl has introduced two notions of 0-
entailment and 1-entailment to perform nonmonotonic rea-
soning. We recall here the semantic definition of both and
then we remark upon their relation with our semantics and
rational closure. A modelM for a finite knowledge base
K has the formM = ({true, false}ATM , kM) where
{true, false}ATM is the set of propositional interpretations
for, say, a fixed finite propositional language, andkM is our
height function mapping propositional interpretations toN ,
the definition of heightkM(A) of a formula is the same as
in our semantic. A conditionalA |∼ B is true in a modelM
if kM(A ∧ B) < kM(A ∧ ¬B). Then the two entailments
relations are defined as follows:

K |=0−ent A |∼ B if A |∼ B is true in all models ofK
K |=1−ent A |∼ B if A |∼ B is true in the (unique)
modelM of K which isminimalwith respect tokM.



(minimal with respect tokM means that no other model
M′ assigns a lower valuekM′ to any propositional inter-
pretation). First, observe that Pearl’s semantics (both 0 and
1 entailment) cannot cope with conditionals having an in-
consistent antecedent. This limitation is deliberate and is
motivated by a probabilistic interpretation of conditionals:
in assertingA |∼ B, A must not be impossible, no matter
how it is unlikely. For this reason, a knowledge base such
asK = {A |∼ P, A |∼ ¬P, B |∼ Q} is out of the scope of
Pearl’s semantics, and nothing can be said about its conse-
quences. As a difference with respect to Pearl’s approach we
are able to consider suchK, we just derive thatA is impos-
sible, without concluding thatK is inconsistent or trivial,
in the sense that everything follows from it. Moreover both
0-entailment and 1-entailment fail to validate:

∅ |=0−ent/1−ent A |∼ ⊤ whenever⊢PC ¬A

which is valid in any KLM logic, whence in rational clo-
sure (as well as in our semantics). However two definitions
should make apparent the relations with our semantics and
rational closure. If we consider aK such that∀A |∼ B ∈
K, K 6|=R A |∼ ⊥, we get an obvious correspondence
between ourcanonicalmodels (which will contain worlds
for very possible propositional interpretation) and models
of Pearl’s semantics. The correspondence preservesFIMS

minimality, so that we get immediately:

Proposition 8 K |=1−ent A |∼ B iff A |∼ B holds in any
FIMS -minimalcanonicalmodel ofK.

By Theorem 3, we therefore obtainK |=1−ent A |∼ B iff
A |∼ B ∈ K̄. This is not a surprise, the correspondence
between 1-entailment and rational closure was already ob-
served by Pearl in (Pearl 1990; Pearl and Goldszmidt 1990).
However, it only works for knowledge bases with the strong
consistency assumption as above.

Conclusions and Future Works
We have provided a semantic reconstruction of the known
rational closure within modal logic. We have provided two
minimal model semantics, based on the idea that preferred
rational models are those one in which the height of the
worlds is minimized. We have then shown that adding suit-
able possibility assumptions to a knowledge base, these two
minimal model semantics correspond to rational closure.

The correspondence between the proposed minimal
model semantics and rational closure suggests the possibil-
ity of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) the
properties of the preference relation<: for instance just
preorder, or multi-linear (Giordano et al. 2010), or weakly-
connected (observe thatP is complete with respect to any of
the three classes); (ii) the comparison relation on models:for
instance based on the heights of the worlds or on the inclu-
sion between the relations<, or on negated boxed formulas
satisfied by a world, as in the logicPmin ; (iii) the choice be-
tween fixed or variable interpretations. The systems obtained
by various combinations of the three ingredients are largely
unexplored and may give rise to useful nonmonotonic log-
ics. We finally intend to extend our approach to richer lan-

guages, notably in the context of nonmonotonic description
logics.
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