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Abstract

We explore the range of propositional logics suitable for rea-
soning about logic programs under the stable semantics, start-
ing with the logic of here-and-there as a primary representa-
tive. It will be shown, however, that there are other potential
logics in the range. Still, all such logics are based on es-
sentially the same semantics, so their differences are largely
due to choice of the underlying language. Our representation
suggests a more tolerant answer to the question ‘What is the
Logic of Logic Programming?’, as well as some further ex-
pressive opportunities in using logic programs as a general
knowledge representation formalism.

Introduction
Logic programming has been born with an idea that the lan-
guage of classical logic can be used directly as a program-
ming language preserving at the same time the declarative
meaning of the usual logical connectives. Thus, the rules
of positive (Horn) programs can also be seen as ordinary
logical formulas with the usual interpretation of conjunction
and implication. Moreover, this classical declarative mean-
ing can be safely extended to positive disjunctive programs,
with an additional and quite desirable effect that any classi-
cal formula becomes reducible to a logic program.

It is well known, however, that the correspondence be-
tween program rules and classical logic breaks down in the
presence of negation as failure. The latter cannot be inter-
preted as a classical negation, and hence relevant program
rules cannot be viewed as classical logical formulas. More-
over, the resulting logic programming formalism acquires
some novel, nonmonotonic features which make it distinct
from any traditional logical formalism. As a matter of fact,
it is these nonmonotonic features that make logic program-
ming a successful competitor of classical logic for problems
of artificial intelligence requiring knowledge representation
and reasoning.

Facing the discrepancy between logic programming and
classical logic, one possible approach that has been pur-
sued amounted to viewing the formalism of logic programs
as an independent and self-subsistent knowledge represen-
tation formalism that is completely determined by the (re-
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stricted) syntax of logic programs, coupled with their (non-
monotonic) semantics. Actually, we will see later that such
a view can be given a firm logical justification. How-
ever, as we have argued in more details elsewhere (see,
e.g., (Bochman 2011)), a more fruitful approach to a non-
monotonic formalism emerges from representing it as a two-
layered system composed of some underlying (monotonic)
logic coupled with a nonmonotonic mechanism of choosing
intended models. This idea is applicable to logic program-
ming as well. In fact, a first successful realization of this
view has been developed by David Pearce (see (Pearce 1997;
2006)) who has represented logic programming rules as
plain logical formulas in a certain extension of intuition-
istic logic called the logic of here-and-there. The logic
of here-and-there (HT) is a full-fledged propositional logic
with counterparts of all the usual classical connectives, and it
can be used for representing and analyzing logic programs of
a most general kind (see (Lifschitz, Tang, and Turner 1999;
Cabalar and Ferraris 2007)). Moreover, it has been shown
in (Lifschitz, Pearce, and Valverde 2001) that two logic pro-
grams are strongly equivalent (that is, interchangeable in any
larger program without changing the stable semantics) if and
only if they are equivalent as formulas in HT. This result has
shown, in effect, that HT is a fully adequate logic for rea-
soning with logic programs under the stable semantics.

Granted the above results, the main question we are go-
ing to deal with in this study is whether HT is the only logic
adequate for logic programs under the stable semantics, or
there are other possibilities? Our answer to this question
will be two-fold. On the one hand, it will be shown that
there are other logics that are equally suitable for this task.
On the other hand, however, we will see that all these logics
are based on the same sematic framework as the models of
HT, so the differences between them amount to the choice
of logical connectives allowed for representing available in-
formation. In particular, it will be shown that there exists a
unique maximal logic that subsumes both HT and its possi-
ble alternatives, a logic that is expressively complete for the
underlying semantic models.

The Structural Logic of Logic Programs
Though the logic of here-and-there is a certain extension of
intuitionistic logic, it is also, and most importantly, a par-
ticular three-valued logic (also called Gödel’s three-valued



logic). In fact, its three-valued character is determined al-
ready by the very choice of the models of HT as pairs (H,T )
of interpretations (= sets of atoms) such that H ⊆ T (see
(Pearce 2006) for details). In order to see this, we can invoke
a general interpretation of four-valued reasoning suggested
long ago by Nuel Belnap in (Belnap 1977). According to the
latter, any four-valued interpretation can be represented as
a pair of independent ordinary interpretations assigning, re-
spectively, truth and falsity to propositions, allowing thereby
propositions to be not only true or false, but also neither true
nor false, or both true and false. In this setting the four truth-
values >, t, f ,⊥ can be identified with the four subsets of
the set of classical truth-values {t, f}, namely with {t, f},
{t}, {f} and ∅, respectively. Thus, > means that a proposi-
tion is both true and false (i.e., contradictory), t means that
it is ‘classically’ true (that is, true without being false), f
means that it is classically false, while⊥means that it is nei-
ther true nor false (undetermined). Accordingly, any four-
valued interpretation ν is uniquely determined by a pair of
ordinary classical assignments, corresponding, respectively,
to assignments of truth and falsity to propositions:
ν � A iff t ∈ ν(A) ν=|A iff f ∈ ν(A)

By the above representation, a four-valued reasoning in
general can be seen as reasoning about truth and falsity of
propositions, the only distinction from classical reasoning
being that the assignments of truth and falsity are indepen-
dent of each other. Moreover, a three-valued setting appro-
priate for our subject of stable logic programming can be
obtained just by restricting the set of four-valued interpre-
tations to consistent interpretations that do not assign the
value > to propositions. In this setting, propositions cannot
be both true and false, though they still can be undetermined.
From the point of view of the truth and falsity assignments,
the restriction amounts to the requirement that truth (ν � A)
implies non-falsity (ν 6=|A), and it can be easily seen that the
pairs of assignments (�, 6=|) under this restriction correspond
precisely to HT-models (H,T ).

A general syntactic counterpart of the above binary rep-
resentation of four-valued reasoning can be given in terms
of biconsequence relations suggested in (Bochman 1998a).
Biconsequence relations are sets of bisequents - rules of the
form a : b  c : d, where a, b, c, d are finite sets of proposi-
tions. The intended interpretation of such rules is

“If all propositions from a are true and all propositions
from b are false, then one of the propositions from c is
true, or one of the propositions from d is false”.
Bisequents are required to satisfy the following structural

rules:
a : b  c : d

a′ : b′  c′ : d′
, if a ⊆ a′, b ⊆ b′, c ⊆ c′, d ⊆ d′.

(Monotonicity)
A :  A : (Positive Reflexivity)
: A  : A (Negative Reflexivity)

a : b  A, c : d A, a : b  c : d

a : b  c : d
(Positive Cut)

a : b  c : A, d a : A, b  c : d

a : b  c : d
(Negative Cut)

A biconsequence relation can be seen as a ‘doubled’ ver-
sion of an ordinary sequent calculus reflecting the indepen-
dence of the truth and falsity assignments. As in the latter,
we can extend the notion of a bisequent to arbitrary (infinite)
sets of propositions by accepting the following compactness
condition:

u : v  w : z iff a : b  c : d, (Compactness)

for some finite sets a, b, c, d such that a ⊆ u, b ⊆ v, c ⊆ w
and d ⊆ z.

In what follows, u will denote the complement of the set
u of propositions. Then the following definition describes
‘canonical models’ of biconsequence relations.
Definition. A pair of sets of propositions (u, v) is a bimodel
of a biconsequence relation  if

u : v 1 u : v.

The above condition is equivalent to the following re-
quirement stating that bimodels are closed with respect to
the rules of a biconsequence relation.

If a : b  c : d and a ⊆ u, b ⊆ v, then either c ∩ u 6= ∅
or d ∩ v 6= ∅.
Now, any bimodel (u, v) can be identified with a four-

valued interpretation by taking u to be the set of true propo-
sitions and v the set of propositions that are not false. Then
the following Representation Theorem can be used to show
that biconsequence relations are adequate for their intended
four-valued interpretation.
Theorem 1 ((Representation Theorem)). a : b  c : d iff,
for any bimodel (u, v), if a ⊆ u and b ⊆ v, then either
c ∩ u 6= ∅ or d ∩ v 6= ∅.

Now, a crucial point for our subsequent discussion
amounts to the fact that logic programming rules of a general
form

notD1 ∨ . . . ∨ notDk ∨ C1 ∨ . . . ∨ Cl ←
A1 ∧ . . . Am ∧ notB1 ∧ · · · ∧ notBn

can be directly represented as bisequents

A1, . . . , Am : B1, . . . , Bn  C1, . . . , Cl : D1, . . . , Dk.

and vice versa, any bisequent in a language without connec-
tives can be viewed as a logic programming rule. In fact,
practically all known semantics for logic programs can be
described directly in the framework of biconsequence rela-
tions. Moreover, it has been shown in (Bochman 1998b;
1998c) that biconsequence relations in their full (four-
valued) generality provide an adequate logical framework
for a very broad range of semantics suggested for logic pro-
grams, including well-founded and partial stable semantics.

For the particular case of logic programs under the sta-
ble semantics, however, the formalism of biconsequence re-
lations should be strengthened by adding further structural
rules.

A biconsequence relation will be called consistent if it
satisfies the following structural rule:
Consistency A : A 



Consistency corresponds to the semantic requirement that
u ⊆ v, for any bimodel (u, v). This constraint reduces, in
effect, the formalism of biconsequence relations to a three-
valued setting. It provides also a precise syntactic counter-
part of the constraint H ⊆ T for HT-models.

A biconsequence relation will be called regular if it satis-
fies the structural rule:
Regularity If b : a  a : b, then : a  : b.

Regularity restricts the binary semantics to a quasi-
reflexive semantics in which, for every bimodel (u, v), (v, v)
is also a bimodel. Note that this constraint is also implicit in
the semantics of the logic of here-and-there that identifies, in
effect, bimodels of the form (T, T ) with ordinary ‘classical’
models.

It has been shown in (Bochman 2005) that for consistent
biconsequence relations, Regularity can be replaced with the
following structural rule

(C-Regularity)
A, a : b  : d

a : b  : A, d

It turns out that biconsequence relations that are both con-
sistent and regular constitute a maximal structural logic ad-
equate for logic programs under the stable semantics. This
fact can be demonstrated by showing that logical equiva-
lence with respect to such biconsequence relations coincides
with strong equivalence for logic programs. Thus, the fol-
lowing result has been proved in (Bochman 2005) (see also
(Bochman and Lifschitz 2011) for a more direct descrip-
tion):
Theorem 2. Two logic programs are strongly equivalent
with respect to the stable semantics if and only if they de-
termine the same consistent and regular biconsequence re-
lation.

In other words, logic programs Π1 and Π2 are strongly
equivalent if and only if each program rule of Π2 is deriv-
able from Π1 using the structural rules of consistent regular
biconsequence relations, and vice versa. The above repre-
sentation results unanimously suggest that consistent regu-
lar biconsequence relations constitute the ultimate structural
logic of logic programs under the stable semantics.

A most important consequence of the above representa-
tion for our present study is that reasoning about program
rules

notD1 ∨ . . . ∨ notDk ∨ C1 ∨ . . . ∨ Cl ←
A1 ∧ . . . Am ∧ notB1 ∧ · · · ∧ notBn

does not depend on the interpretation of the connectives oc-
curring in them (namely conjunction ∧, disjunction ∨, nega-
tion not and implication←) as logical connectives of some
logic. Instead, such connectives can be safely viewed simply
as suggestive punctuation marks (like commas or parenthe-
ses) that determine the structure of the program rule, a struc-
ture that is more concisely represented by the corresponding
bisequent

A1, . . . , Am : B1, . . . , Bn  C1, . . . , Cl : D1, . . . , Dk.

This representation provides, in effect, a solid formal ba-
sis for the possibility of viewing logic programming as a

‘logically independent’ knowledge representation formal-
ism. One of the positive effects of this independence is that
the formalism of logic programming acquires freedom of de-
veloping its own representation language and constructs that
might be more suitable for the problems and tasks it deals
with.

Despite all said above, the above structural representation
of logic programs leaves some questions unanswered. To
begin with, the use of the logical connectives in program
rules bears significant heuristic value in the process of trans-
forming ‘raw’ information about a problem at hand into pro-
gram rules. In fact, the language of classical logic is perva-
sive today in informal descriptions of many domains of in-
terest. Moreover, the original logic programming language,
Prolog, freely admits compositions of the logical operators,
so it treats them essentially as logical connectives. All this
obviously creates an incentive for a sound and reasonable
extension of the language for logic programs to compound
logical formulae. Of course, the fact remains that the par-
adise of full classical logic is irrevocably lost for represen-
tation and reasoning with logic programs. Still, it is worth
to inquire how much of it could be preserved in the logic
programming reality.

The Logic of Here-and-There
To begin with, note that the formalism of biconsequence re-
lations, unlike the majority of other formalisms for many-
valued reasoning, does not depend on a particular choice of
four-valued or three-valued connectives. In fact, any such
connective is expressible in it via introduction and elimina-
tion rules as in ordinary sequent calculi, the only distinc-
tion being that we have to write a pair of introduction rules
and a pair of elimination rules corresponding to two premise
sets and two conclusion sets, respectively. Moreover, just
as in the classical sequent calculus, these introduction and
elimination rules can be used for reducing any bisequent in
the extended language to a set of basic bisequents, that is
bisequents that involve propositional atoms only. In what
follows, we will illustrate this formalization on the logic of
here-and-there.

The language of the logic of here-and-there is based on
four propositional connectives {∧,∨,→,¬}1. These con-
nectives are definable in the framework of truth and falsity
assignments as follows:

ν � A ∧B iff ν � A and ν � B

ν=|A ∧B iff ν=|A or ν=|B
ν � A ∨B iff ν � A or ν � B

ν=|A ∨B iff ν=|A and ν=|B
ν � ¬A iff ν=|A
ν=| ¬A iff ν 6=|A

ν � A→ B iff if ν � A, then ν � B, and if ν=|B, then ν=|A
ν=|A→ B iff ν 6=|A and ν=|B

1It is known, however, that disjunction A∨B is definable using
the rest of the connectives, namely as ((A→ B)→ B) ∧ ((B →
A)→ A).



Now, there is a systematic procedure that allows us to
transform the above semantic definitions into introduction
and elimination rules for the corresponding connectives in
the framework of biconsequence relations (see (Bochman
2005) for details). Just as in the classical case, these rules
are easily discernible from the above definitions given the
intended interpretation of the premises and conclusions of a
bisequent.

For our case of HT, these rules are as follows:

Rules for conjunction
a : b  c, A : d a : b  c,B : d

a : b  c, A ∧B : d

a,A,B : b  c : d

a,A ∧B : b  c : d

a : b, A  c : d a : b, B  c : d

a : b, A ∧B  c : d

a : b  c : d,A,B

a : b  c : d,A ∧B

Rules for disjunction
a,A : b  c : d a,B : b  c : d

a,A ∨B : b  c : d

a : b  c, A,B : d

a : b  c, A ∨B : d

a : b  c : d,A a : b  c : d,B

a : b  c : d,A ∨B
a : b, A,B  c : d

a : b, A ∨B  c : d

Rules for negation ¬
a : b  c : d,A

a : b  ¬A, c : d

a : A, b  c : d

a : b  c : ¬A, d

a : b, A  c : d

a,¬A : b  c : d

a : b  c : A, d

a : b,¬A  c : d

Rules for implication
a : b, A  c : d a,B : b  c : d a : b  c, A : d,B

a,A→ B : b  c : d

a,A : b  c,B : d a : b, B  c : d,A

a : b  c, A→ B : d

a : b, B  c : A, d

a : b, A→ B  c : d

a : b, A  c : d a : b  c : d,B

a : b  c : d,A→ B

As in the classical sequent calculus, the above rules (ap-
plied bottom-up) allow us to reduce any bisequent in the lan-
guage of HT to a set of bisequents containing atomic propo-
sitions only.

Moreover, the language of HT has an important additional
property, namely, it allows us to transform any bisequent
into a propositional formula. More precisely, the above rules
can be used for verifying that any bisequent a : b  c : d in
the language of HT is equivalent to the following bisequent
containing a single formula in the conclusions:


∧

(a ∪ ¬b)→
∨

(c ∪ ¬d) :,

where ¬b denotes the set {¬A | A ∈ b}. Due to this possi-
bility, any set of bisequents can be represented as a proposi-
tional theory in HT. Actually, it can be easily verified that,
under this correspondence, the above introduction and elim-
ination rules for the connectives of HT correspond precisely
to the reduction rules for HT-formulas described in (Cabalar,
Pearce, and Valverde 2005).

Summing up the above descriptions and results, the logic
of here-and-there fulfils the main desiderata for a sound ex-
tension of logic programs to a full-fledged logic. More pre-
cisely, it determines a logic which defines the key connec-
tives occurring in logic programming rules as logical con-
nectives, while securing at the same time mutual reducibility
of program rules and propositional formulas.

Desiderata for a Logic of Logic Programming
The logic of here-and-there has established a certain stan-
dard about what could be expected from a potential logic
that fulfils the role of logic for logic programming. In this
section we will investigate the essential ingredients of this
role and requirements imposed by it. On the way we will
also single out the range of alternatives that are open for
complying with these requirements.

An initial and most basic requirement for such a logic
stems from the fact that reasoning about logic programming
rules is determined by the three-valued semantics of HT-
models. This naturally suggests that any potential logic of
this kind should also have a semantic interpretation in terms
of such models, which implies, in turn, that it should be
some three-valued logic. Accordingly, the choice of a logic
reduces, in effect, to the choice of the language, namely
to the choice of logical connectives allowable in the three-
valued setting. Recall also that any choice of this kind will
already secure that any formula or rule of such a logic will
be reducible to a logic program.

Remark. It should be noted that the above requirement
excludes, in effect, some weaker logics that may still be
adequate for logic programs on other counts. Thus, it has
been shown in (de Jongh and Hendriks 2003) that a weakest
intermediate logic that characterizes strong equivalence for
logic programs is the logic of weak excluded middle WEM
(known also as KC), which is obtained by augmenting intu-
itionistic logic with the axiom ¬A∨¬¬A. As has been noted
in (Bochman and Lifschitz 2011), this means, in particular,
that WEM does not differ from HT on the level of flat (non-
nested) logic programs. Still, the semantics of WEM is more



general than that of HT, with a side effect that complex log-
ical formulas in WEM are not reducible, in general, to logic
programs. This latter fact can be viewed, however, as a sign
that the logic WEM goes beyond the logical paradigm be-
hind logic programs.

The stable semantics of logic programs implicitly im-
poses a further plausible constraint on the set of admissible
three-valued connectives. Recall that stable models (equi-
librium models in the terminology of HT) are defined as
models of the form (H,H) that satisfy some further con-
ditions. In such models, truth coincides with non-falsity, so
they determine a purely classical, two-valued logical setting.
Accordingly, it is natural to require that admissible connec-
tives of a relevant three-valued logic should behave as or-
dinary classical connectives in this setting. This require-
ment amounts to a restriction of three-valued connectives
to connectives that give classical truth-values when their ar-
guments receive classical values t or f . We will call such
connectives conservative three-valued connectives in what
follows.

A final constraint on a potential logic can be formulated
as a requirement that the language of such a logic should
contain logical counterparts of the connectives that occur
in program rules, namely conjunction, disjunction, negation
and implication.

In fact, it can be safely claimed that both the conjunction
and disjunction of HT constitute natural three-valued coun-
terparts of logical conjunction and disjunction that satisfy
practically all the properties of the corresponding classical
connectives (such as commutativity, associativity, idempo-
tence and distributivity). Granted this, we can restrict our
search of connectives to negation and implication.

Negations: Gödel versus Lukasiewicz
The negation connective should serve as a logical counter-
part of the negation-as-failure operator not in logic pro-
grams. Consequently, it cannot satisfy all the properties of
classical negation. In particular, it should not satisfy the
principle of excluded middle A ∨ notA, since in the logic
programming setting a propositional atom may be neither
proved, nor rejected (witness the program p← not p). Nev-
ertheless, the crucial question is what are the properties of
classical negation that could be preserved in this setting?

As a matter of fact, the requirements stated earlier do not
leave us with too many options. First, a three-valued nega-
tion connective N should behave as the classical negation on
the classical truth-values t and f , that is, it should satisfy

N(t) = f and N(f) = t.

Second, in order to be a logical counterpart of not, it
should satisfy the condition that a bisequent a : A, b  c : d
must be equivalent to a,NA : b  c : d, while a : b 
c : A, d should be equivalent to a : b  c,NA : d. This lat-
ter constraint completely determines the corresponding truth
assignment for N as the following semantic requirement:

ν � NA iff ν=|A.
It turns out that there are precisely two three-valued con-

nectives that satisfy the above requirements. The first one

is the negation ¬ of HT. The second one is the well-known
Lukasiewicz’s negation that we will denote here by∼. It has
the following natural semantic definition:

ν � ∼A iff ν=|A ν=| ∼A iff ν � A.

This fully symmetric description says that ∼A is true
whenever A is false, while ∼A is false if and only if A is
true.

A syntactic characterization of this negation is provided
by the following introduction and elimination rules:

Rules for ∼
a,A : b  c : d

a : ∼A, b  c : d

a : A, b  c : d

a,∼A : b  c : d

a : b  c, A : d

a : b  c : ∼A, d
a : b  c : A, d

a : b  c,∼A : d

Both negations of Gödel and Lukasiewicz satisfy the two
de Morgan laws with respect to disjunction and conjunction.
Still, the main difference between them is that Lukasiewicz’s
negation satisfies the Double Negation Law:

∼∼A ≡ A,

while ¬ satisfies only the Triple Negation Law

¬¬¬A ≡ ¬A.

As a consequence of the Double Negation Law, conjunc-
tion and disjunction become inter-definable in the presence
of ∼:

A ∧B ≡ ∼(∼A ∨ ∼B)

A ∨B ≡ ∼(∼A ∧ ∼B).

As a final attractive feature of Lukasiewicz’s negation we
should also mention that it sanctions the reduction rules of
the well-known Lloyd-Topor transformation of logic pro-
grams with respect to conjunction and disjunction (see
(Lloyd and Topor 1984)).

The differences between these two kinds of negation can
be attributed, ultimately, to their different historical origins
and associated objectives. Thus, Lukasiewicz’s negation has
emerged as a most natural generalization of the classical
negation for a three-valued setting in which the third truth-
value was interpreted as ‘undetermined’ (neither true, nor
false). This kind of negation (and its four-valued extension)
is widely used in other parts of Logic, for example in rele-
vance logic (see, e.g., (Anderson and Belnap 1975)).

On the other hand, the HT-negation can be viewed as an
offspring of an intuitionistic negation in a three-valued set-
ting. As is well-known, the intuitionistic negation does not
satisfy the Double Negation Law, for philosophical reasons
based on constructivist considerations. Note in this respect
that, though natural from the point of view of truth and fal-
sity assignments, the definition of ∼ looks very strange in
the framework of intuitionistic semantics based on states or-
dered by a relation of information inclusion. To be more
precise, all the connectives in intuitionistic semantics are
‘forward-looking’: their definitions involve only a current



state and its extensions. This implies, in particular, that in
an HT-model (H,T ), the value of any formula at the ‘there’
state T (which does not have further extensions) depends
only on the values of its components in T . In the framework
of truth and falsity assignments, however, this amounts to
a restriction of three-valued connectives to negatively local
ones, namely to connectives for which their falsity is defined
only in terms of falsity of their arguments. One of the im-
mediate consequences of this fact is
Lemma. Lukasiewicz’s negation ∼ is not definable in the
language of HT.

Despite the above ideological differences, we will argue
below that both kinds of negation can be seen as equally
valuable knowledge representation tools. In both cases,
given also conjunction and disjunction, logic programming
rules are reducible to plain inference rules between logical
formulas due to the following equivalences:

a : b  c : d ≡
∧

(a ∪ ∼b): 
∨

(c ∪ ∼d):

≡
∧

(a ∪ ¬b): 
∨

(c ∪ ¬d):

If we want to transform such inference rules into logical
formulas, however, we need a logical implication connec-
tive.

Rules and Implications
Both logic programming rules and their associated bise-
quents should be primarily viewed as inference rules rather
than logical formulas. However, in expressive logical for-
malisms such as classical or intuitionistic logic, inference
rules are reducible to logical formulas due to availability of
the corresponding implication connective that satisfies the
Deduction Theorem: a,A ` B iff a ` A⊃B. In our case,
the HT-implication → satisfies this property, so, as we al-
ready mentioned, it allows us to transform any bisequent into
a logical formula of HT.

As has been established in the preceding section, the con-
nectives of conjunction, disjunction and negation allow us
to transform any bisequent into a rule of the form A:  B:,
where A and B are logical formulas. Now, an implication
connective ⇒ will sanction a reduction of such inference
rules to formulas if it will satisfy a condition that A:  B:
is equivalent to  A ⇒ B:. A semantic counterpart of this
condition is the following requirement:

(R) ν � A ⇒ B holds for all admissible valuations
ν if and only if ν � A implies ν � B for all such
valuations.

Now, the following ‘classical’ definition of truth for im-
plication provides the simplest way of complying with the
above requirement:

ν � A⇒ B iff ν 2 A or ν � B. (R’)

It turns out that there are precisely two conservative three-
valued connectives that satisfy the above constraint and co-
incide with classical implication when restricted to the clas-
sical truth-values t and f . Given (R’) as a common condition
for the truth assignment, these implications are determined,

respectively, by adding one of the following falsity assign-
ments:

ν=|A ⊃ B iff ν � A and ν=|B
ν=|A ⊃0 B iff ν � A and ν 2 B.

The first of these implications ⊃ has been used in (Arieli
and Avron 1996). Its corresponding syntactic characteriza-
tion is provided by the following introduction and elimina-
tion rules:

Rules for ⊃
a : b  c, A : d a,B : b  c : d

a,A ⊃ B : b  c : d

a,A : b  c,B : d

a : b  c, A ⊃ B : d

a,A : b, B  c : d

a : b, A ⊃ B  c : d

a : b  c, A : d a : b  c : d,B

a : b  c : d,A ⊃ B

In contrast to the above two implications, however, the
implication of HT does not satisfy the condition (R’); its cor-
responding condition of truth is more complex (see above).
Still, the adequacy of→ follows from the fact that it satisfies
(R), namely ν � A→ B holds for all admissible valuations
ν if and only if ν � A implies ν � B for all such valu-
ations2. Nevertheless, a stronger condition for truth shows
itself in more complex reduction rules for HT implication,
as compared, for example, with the above rules for ⊃.

In fact, in order to evaluate potential alternative candi-
dates on the role of implication in logic programming, it
should be taken into account that implication serves not only
for reification of program rules, but also, and most impor-
tantly, for encoding conditional assertions and if-then-else
constructs. What complicates the analysis in this situation is
a real possibility that these two roles may conflict with each
other. Namely, some implication connectives may be ade-
quate for encoding program rules as formulas, but are less
appropriate for representing conditional claims, and vice
versa, there are implication connectives that provide a rea-
sonable formalization for conditional assertions, but cannot
transform rules into formulas.

As an example of the latter situation, we can consider yet
another implication A ⊃LT B defined as ∼A ∨ B. A most
attractive feature of this implication is that it is determined
by introduction and elimination rules that correspond pre-
cisely to Lloyd-Topor reduction rules for implication:

Rules for ⊃LT

a : b, A  c : d a,B : b  c : d

a,A ⊃LT B : b  c : d

a : b  c,B : d,A

a : b  c, A ⊃LT B : d

2The semantic property of regularity is essential for this equiv-
alence.



a,A : b, B  c : d

a : b, A ⊃LT B  c : d

a : b  c, A : d a : b  c : d,B

a : b  c : d,A ⊃LT B

Combined with our preceding results for disjunction, con-
junction and negation, we even can state the following

Theorem 3. The language {∧,∨,∼,⊃LT } provides a
sound logical representation of logic programs that satis-
fies the Lloyd-Topor transformation rules with respect to the
stable semantics of logic programs.

The above result implies that, after all, logic programs un-
der the stable semantics can be given a logical interpretation
that satisfies the Lloyd-Topor transformation rules. Still, this
interpretation has, however, a serious drawback, namely the
implication ⊃LT is not adequate for transforming program
rules into formulas. This follows already from the fact that
it does not satisfy reflexivity A ⇒ A, whereas logic pro-
grams under the stable semantics freely admit program rules
p← p.

A Reconciliation
Facing the above proliferation of potential logics for logic
programming, we will suggest in this section a more general
approach to the question ‘What is a logic of logic program-
ming?’.

Our starting point is based on an observation that all the
above alternative logics are based on the same basic three-
valued semantics of HT-models. As a result, they are com-
pletely determined, in effect, by different choices of con-
servative three-valued connectives. In fact, all such logics
can be viewed simply as alternative ways of encoding three-
valued information. And just as in the case of classical logic,
we can ask whether we can achieve functional completeness
in our choice of connectives, namely find a set of connec-
tives such that any other connective can be expressed using
this set. Fortunately, this can be done.

As we already mentioned, Lukasiewicz’s negation ∼ is
not expressible in the language of the logic of here-and-
there. Accordingly, the language of HT is functionally in-
complete in the class of all conservative three-valued func-
tions. However, it turns out that adding ∼ to the language of
HT will already suffice for achieving functional complete-
ness. In fact, the implication→ of HT will already be defin-
able in this extended language, so we will obtain the follow-
ing

Theorem 4. The language {∧,¬,∼} is functionally com-
plete for the class of all conservative three-valued functions.

Proof. Using the HT-negation ¬, we can define a unary
connective AA as ¬¬A, and then the result follows from
a functional completeness of the set {∧,∼,A}, proved in
(Bochman 2005).

Let us denote by LP3 the logic determined by the lan-
guage {∧,¬,∼}. An axiomatic description of this logic is
provided by the introduction and elimination rules for con-
junction and the two negations, given earlier. Moreover, the

above result shows, in effect, that LP3 is a maximal logic
for reasoning about logic programs. In this logic we have
full freedom in defining any of the connectives that have
been mentioned in this study, and even for defining any other
three-valued conservative connective that we could find use-
ful in applications. Consequently, program rules can be en-
coded as propositional formulas in this logic (in a number
of ways), though we still have that any formula of LP3 is
reducible, in turn, to a logic program. In this sense, the logic
LP3 can be viewed as an ultimate logic for logic programs
under the stable semantics.

As a final observation, instead of a formulation of LP3 in
the language with two ‘competitive’ negations, we can use a
more ‘cooperative’ description that employs the implication
connective ⊃, described earlier.

Note first that an HT-implication A → B is definable as
(A ⊃ B) ∧ (¬B ⊃ ¬A). Moreover, in the presence of ∼,
we can define also an HT-negation:

¬A ≡ ∼(A ⊃ ∼(A ⊃ A)).

As a result, we immediately obtain the following

Corollary. The language {∧,⊃,∼} is functionally com-
plete for the class of all conservative three-valued functions.

Thus, the logic LP3 can also be formulated in the lan-
guage {∧,⊃,∼}. As has been established earlier, this lan-
guage also directly provides all the necessary connectives
for a logical representation of logic programs.

Conclusions
It has been shown in this study that the range of logics
suitable for reasoning with logic programs under the sta-
ble model semantics is determined, in effect, by possible
choices of propositional connectives definable in the frame-
work of the HT-semantics. As a matter of fact, the idea
that a logical variation in reasoning about logic programs
is largely confined to the choice of the underlying logical
language can actually be extended far beyond the stable
semantics. Thus, it has been shown in (Bochman 1998b;
1998c) that practically all semantics suggested for general
logic programs can be viewed as instantiations of the same
nonmonotonic construction in different logical languages.
Even a causal representation of logic programs, described
in (Bochman 2004), can be seen as a particular language
choice for basically the same semantic interpretation (see
also (Bochman 2005) for a more detailed picture).

The approach sketched in the last section above might
be considered as a particular elaboration of the claim that
logic programming is a logically independent knowledge
representation formalism that is permitted to have its own
objectives and expressive means. Basically, we suggest to
replace the question “What is a logic of logic programs?”
(which does not have a unique answer) with a more appro-
priate question “What are the logical means that are avail-
able in representing information and reasoning about logic
programs?”. According to this view, the choice of a logic
amounts, in effect, to a choice of a language used for en-
coding information in logic programs. In fact, we even do



not have to strive for a maximal choice in this respect (pro-
vided by the logic LP3), especially if a restricted language
turns out to be more efficient from a computational point of
view. In any case, we are dealing just with different ways of
representing knowledge and information in the formalism of
logic programs.
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