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Abstract
Belief revision has been considered on various lan-
guage and theoretical levels. Alchourrón, Gärdenfors
and Makinson considered revision operators as bi-
nary functions assigning a belief set to a belief set
and a formula (Alchourron, Gärdenfors, and Makin-
son 1985). A more general formulation has been used
by Lehmann and co-authors (Lehmann, Magidor, and
Schlechta 2001) who formulated revision as a binary
set operator, thus replacing both, the belief set and the
formula by a set of sets (models). Katsuno and Mendel-
son in (Katsuno and Mendelzon 1991b) considered a
more specific approach where the belief set is generated
by a finite set of formulae thus being representable by
one formula. We propose a new formulation of belief
revision in terms of implicant sets, an implicant being a
finite consistent set of literals. We define implicant re-
vision functions as binary operators on implicant sets
and we characterize implicant revision by postulates
that specify properties every implicant revision function
should have. We show that every function satisfying the
implicant revision postulates satisfies the AGM postu-
lates, but the opposite is not true: there is an AGM re-
vision operator that does not satisfy all implicant revi-
sion postulates, thus implicant revision is stronger than
AGM revision. Then we study the relation of implicant
revison with more specific approaches, namely distance
based operators (Schlechta and Lehmann). Implicant re-
vision approach is more specific : there is a distance
based revision function that does not satisfy all impli-
cant revision postulates. Finally we study one important
subclass of implicant revision operators, namely those
that are invariant with respect to different equivalent im-
plicant sets.

Introduction
The main objective of belief revision formalisms is to pro-
pose methods for incorporate new information in a belief
set. The problem of how to characterize and to compute a
belief set resulting from the incorporation of new informa-
tion has been considered on various language and theoreti-
cal levels. The best known approach is due to Alchourrón,
Gärdenfors and Makinson (AGM postulates) who consid-
ered revision operators as binary operators assigning a belief
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set to a belief set and a formula (Alchourron, Gärdenfors,
and Makinson 1985; Gärdenfors 1988). They formulated
postulates that specify properties a revision operator should
have (AGMpostulates).

A more general algebraic formulation replaces both, the
belief set and the formula by a set of sets (models). This for-
mulation is more general because in the infinite case there
are model sets that are not representable by a formula set.
Katsuno and Mendelson in (Katsuno and Mendelzon 1991b)
reformulated the AGM postulates introducing a binary op-
erator on formulas, for the more specific case where the be-
lief set has a finite cover, that is, it is representable by a finite
set of formulas (or by a formula). They propose a semantic
characterization in terms of pre-orders (depending on for-
mulas) on model sets.

This paper presents a new and more specific approach
where revision occurs on implicant sets, an implicant be-
ing a finite set of literals. An implicant is equivalent to the
conjunction of its elements and a set of implicants to the
disjunction of the elements of this set. Thus implicant sets
correspond to disjunctive normal forms (DNF ) of formu-
las. We define implicant revision functions as binary oper-
ators on implicant sets and we characterize implicant revi-
sion by postulates that specify properties every implicant
revision function should have. We show that every func-
tion satisfying the implicant revision postulates satisfies the
AGM postulates, but the opposite is not true: we show
that there is an AGM revision operator that does not sat-
isfy all implicant revision postulates, thus implicant revision
is stronger than AGM revision. Then we study more spe-
cific operators, namely those based on a distance function
between models, (Lehmann, Magidor, and Schlechta 2001;
Schlechta 2004). We show that implicant revision is more
specific: there is a distance based revision function that does
not satisfy all implicant revision postulates. Finally we study
another important subclass of implicant revision operators,
namely those that are invariant with respect to different
equivalent implicant sets.

Our approach is situated somewhat between syntax and
semantics. The DNF of a formula is a specific syntactic ob-
ject that is easily obtained, by simple transformations, but
also by some theorem prover. For example, every tableaux
prover produces a disjunctive normal form of a formula. And
every implicant of a formula that does not contain opposite



literals (i.e. that is not closed) can be seen as a partial model
of the formula, namely it represents all models that satisfy
the literals it contains. Intuitively, our approach is due to the
following observation. Revision is the process of integrating
new information into a belief set Γ. When a new informa-
tion µ comes about, we consider first the set Γ∪ {µ}. There
are two situations, either ¬µ 6∈ Γ or ¬µ ∈ Γ. In the first
case the AGM postulates tell us that Γ∗µ is Γ∪ {µ}, in the
second case Γ ∪ {µ} is inconsistent and a new set Γ′ ⊆ Γ
must be found that does not contain ¬µ but contains most
of the information from Γ that is consistent with µ. Consis-
tency with µ can be fixed concretely by considering a set of
implicants equivalent to Γ and those equivalent to µ. If their
conjunction contains only closed implicants, Γ and µ have
no common model. The models of the revised belief set are
a subset of the models of µ. In order to obtain these mod-
els, we select implicants from µ augmented by non opposite
parts from implicants from Γ.

Many specific revision operators have been defined in
terms of models and taking into account the set of atoms
in which two models differ (Bordiga 1985; Dalal 1988;
Satoh 1988). These operators depend on the symmetrical
differences between models, i.e. on the set of propositional
variables in which the models differ. We show that the sy-
metric differences between models are easily obtained by a
simple operation on implicants.

The representation of a formula by a set of implicants,
that is its disjunctive normal form, is not unique, unless
we work with the set of all its prime implicants. But we
can show that one class of implicant revision operators ob-
tains equivalent revision results from equivalent implicant
sets. Hence our approch does not systematically require to
compute the prime implicants of the belief set and the revi-
sion formula. Several known revision operators (Dalal 1988;
Satoh 1988)) can be computed in our formalism without
generating prime implicants.

Finally we define three specific implicant revision oper-
ators all based on the symmetric difference between mod-
els. We minimize this difference in two ways, first by set in-
clusion of the symmetric differences (Satoh revision (Satoh
1988)) secondly by minimizing the number of elements
where the two models differ (Dalal revision (Dalal 1988)).
The third operator is based on literal weights where a weight
is a natural number that indicates the importance of the lit-
eral. The idea is that the higher the weight the more impor-
tant is the literal in the belief set and the less a user wants to
give it up. It seems to us that this approach is more natural
than those that weight whole interpretations. A single literal
might be more concrete for a user than a model. We use this
weight for revision by minimizing the sum of the weights
of the symmetric difference thus giving up globally the less
important information units.

Our system has been implemented by use of a tableaux
prover. A a revised belief set can be obtained by calculating
a tableau for the belief set formula and the revision formula
and by suppressing opposite literals within the eventually
closed tableau for these two formulas.

This paper is organized as follows. In the next section, we
recall elements and results of theory revision. In the third

part, we present the new implicant revision postulates and
we situate them by comparing them formally to the AGM
approach as well as to distance based revision. In the fourth
part we study specific implicant revision operators . We then
describe informally the implementation and give some com-
plexity results. Finally some comparison with related ap-
proaches are presented.

Preliminaries and Notation We consider a finite propo-
sitional language over a finite set of propositional variables
P .M is the set of all interpretations, F the set of all for-
mulas and LIT the set of all literals, i.e. LIT = P ∪ {¬a :
a ∈ P }. We call ¬l also the opposite of l. l ∈ LIT is iden-
tified with ¬¬l, etc. as well as ¬l with ¬¬¬l, . . . , etc. For
a formula φ ∈ F , [|φ|] = {m ∈ M : m |= φ} is the set
of models of φ (the set of interpretations that satisfy φ). An
interpretation can be identified with the set of propositional
variables it evaluates to true. ThenM = 2P 1. Given a set
of interpretations M ⊆ M , FOR(M) is a formula whose
set of models is M .

The consequence relation is noted “|=”, i.e. φ |= ψ iff
[|φ|] ⊆ [|ψ|] and we denote Cn(φ) = {ψ : φ |= ψ} the
set of consequences of formula φ. Eq(φ) denotes the class
of formulas logically equivalent to φ. We call belief base
any set of formulas (not necessarily deductively closed) and
belief set a deductively closed set of formulas.

Background
The AGM postulates for belief revision
Alchourron, Gärdenfors and Makinson proposed the well-
known AGM -postulates for theory revision (Alchourron,
Gärdenfors, and Makinson 1985). Here a revision is defined
as an operator on a belief base Γ and a formula µ and the re-
sult of the revision is a belief base denoted Γ∗µ. AGM pos-
tulates express what properties a revision operator should
have. Revision comes with another operation, expansion,
that simply adds a new information to a belief set regard-
less of whether the result is inconsistent. Expansion is noted
+ and it holds that Γ + φ = Cn(Γ ∪ {φ}).

Definition 1 (Revision operator) Let Γ be a belief set and
φ, φ1, φ2, ψ ∈ F . We call AGM revision operator every
operator ∗ for which the following basic postulates hold

K∗1 Γ∗φ is a belief set.
K∗2 φ ∈ Γ∗φ
K∗3 Γ∗φ ⊆ Γ + φ

K∗4 If Γ + φ is satisfiable, then Γ∗φ ⊇ Γ + φ

K∗5 If φ is satisfiable, then Γ∗φ is satisfiable
K∗6 If φ1 ≡ φ2 then Γ∗φ1 ≡ Γ∗φ2

Two additional postulates are normally considered that deal
with the relation between revising with a conjunction and
revising with each of the conjuncts subsequently.

K∗7 Γ∗(φ ∧ ψ) ⊆ (Γ∗φ) + ψ

K∗8 If (Γ∗φ)+ψ is satisfiable then (Γ∗φ)+ψ ⊆ Γ∗(φ∧ψ)

We note AGM the set of AGM -revision operators.
12M is the power set of set M



Here we will use a characterization of revision operators
in terms of model sets identifying a formula (or a formula
set) with the set of models satisfying it. In view of postulate
K∗2, a revision operator selects models from the revision
formula as result of the revision operation. This formulation
yields a rather simple algebraic characterization of revision
operators. In the following, U can be considered as a set of
model sets.

Definition 2 (Revision function) Le U be a set of sets,
N,M,L ∈ U . sm : U × U −→ U is a revision func-
tion on U iff for any M,N,L ∈ U
(S1) sm(M,N) ⊆ N
(S2) M ∩N ⊆ sm(M,N)

(S3) if M ∩N 6= ∅ then sm(M,N) ⊆M ∩N
(S4) if N 6= ∅ then sm(M,N) 6= ∅
The two additional postulates are:

(S5) sm(M,N) ∩ L ⊆ sm(M,N ∩ L)

(S6) if sm(M,N) ∩ L 6= ∅ then sm(M,N ∩ L) ⊆
sm(M,N) ∩ L)

The following correspondence results are straightforward.
They rely on the fact that we treat with finite sets of propo-
sitional variables. If P is not finite FOR(M) is not always
defined and the result of a revision function is eventually a
set of models that cannot be represented by a formula (or by
a set of formulas) (Lehmann, Magidor, and Schlechta 2001).
A revision operator ∗ is called definabiblity preserving when
FOR(sm([|Γ|], [|µ|])) is defined (i.e. is a formula).

Theorem 1 1 Let ∗ be an AGM revision operator.
Then the function sm defined by sm(M,N) =
[|Cn(FOR(M))∗FOR(N)|] is a revision function on
2M .

2 Let sm be a revision function on 2M . Then the operator
∗ defined by Γ∗µ = FOR(sm([|Γ|], [|µ|])) is an AGM
revision operator.

Specific revision operators have been proposed that are
based on the distance between the set of models of a be-
lief set and of a revision or an update formula (Dalal 1988;
Forbus 1989). All these approaches define some distance
function between models, that induces a distance between
model sets. The models of the belief set resulting from the
revision operation is then the set of models of the revi-
sion formula that are closest to the models of the original
base. For example, Dalal uses the Hamming distance be-
tween sets, that is the number of propositional variables in
wich the two interpretations differ. Lehmann et al. charac-
terize formally the class of distance based revision operators
(Lehmann, Magidor, and Schlechta 2001) by means of dis-
tance spaces. Intuitively, Γ∗φ is a belief set that contains φ
and is as close as possible to Γ. According to K∗2, every
model of Γ∗φ is a model of φ, that means that the models
of the revised belief set Γ∗φ are a subset of the models of
φ. Distance based revision relies on a distance function be-
tween models and is defined semantically as a binary func-
tion on sets of models.

Definition 3 A distance space is a pair (∆, d) where ∆ is a
non-empty set and d is a distance function from ∆ × ∆ to
R≥0. We say that d respects identity if it satisfies the follow-
ing condition:

∀x, y ∈ ∆, d(x, y) = 0 iff x = y (id)

The distance between two sets A ⊆ ∆ and B ⊆ ∆ is
defined by

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} (inf)

Definition (inf) is not a distance function since d(A,B) = 0
iff A ∩ B 6= ∅. As a special case of Definition (inf), the
distance between an indiviual w ∈ ∆ and a set A ∈ ∆ is
d({w}, A) and is noted

d(w,A) = inf{d(w, y) : y ∈ A}

Hence d(w,A) = 0 iffw ∈ A. IfA = ∅, then d(w,A) =∞.
(∆, d) is called a min-space if additionally it satisfies the
following condition on the existence of a minimum of a set
of distances:
If A 6= ∅ and B 6= ∅ then ∃x0 ∈ A∃y0 ∈ B such that
d(x0, y0) = d(A,B).

Definition 4 (Distance based revision function) Given a
distance space (∆, d) and A,B ⊆ ∆, A |d B = {b ∈
B : ∃a ∈ A ∀a′ ∈ A, b′ ∈ B d(a, b) ≤ d(a′, b′)}.
Remark 1 A |d B = {b ∈ B : d(A, b) = d(A,B)}
Definition 5 Given a belief set Γ, a formula φ and a dis-
tance based revision function |d, the corresponding dis-
tance based revision operator ∗d is defined by Γ ∗d φ =
FOR([|Γ|]∗d[|φ|]).

Theorem 2 (Schlechta 2004) A distance based revision op-
erator ∗d satisfies the AGMpostulates if

1. d respects identity (id),
2. (∆, d) is a min space
3. ∗dis definability preserving.

The opposite is not true: there is an AGM revision oper-
ator that is not distance based as shown in (Lehmann, Magi-
dor, and Schlechta 2001). Distance based revision takes into
account disjunctive information (Lehmann, Magidor, and
Schlechta 2001): If a revision operator ∗ is distance based
then (Γ∗(φ ∨ ψ))∗µ is (Γ∗φ)∗µ or it is (Γ∗ψ)∗µ or it is
(Γ∗φ)∗µ ∪ (Γ∗ψ)∗µ.

Implicant revision
Here we introduce implicant revision. In its formulation it
is more specific than revision since it is defined on formulas
under a specific syntactic form.

Notations An implicant is a finite set of literals. We note
T the set of all implicants. An implicant is called closed
when it contains a literal l and its negation ¬l and it is called
open otherwise. A set of implicants is closed when all of its
elements are closed and it is open when at least one of its
elements is open. We can think of an implicant as being a
formula, namely the conjunction of its literals and of a set of
implicants as of a disjunction, namely the disjunction of the



conjunction of its elements. By abuse of notation, we will
write t (resp. T ) to design the formula that corresponds to t
(resp. T ). A set T of implicants is closed iff [|T |] = ∅. We
will use the following operation on pairs of implicant sets.
Let be S, T ⊆ T . S ⊗ T = {s ∪ t : s ∈ S and t ∈ T}.
S ⊗ T corresponds to the conjunction of the corresponding
formulas. Let So = {s : s ∈ S and s not closed } be the set
of implicants of S that are open.

The following is easy to see:
Fact 1 Let S, T be implicants. Then

1. S ⊗ T ↔ S ∧ T
2. [|S ⊗ T |] = [|S|] ∩ [|T |]
3. [|So|] = [|S|] and |= So ↔ S

In the finite case, every interpretation m can be repre-
sented by an implicant mI = m ∪ {¬a : a 6∈ m}2. For
a set of interpretations M , we set M I = {mI : m ∈ M}
and we have [|mI |] = {m} and [|M I |] = M .

Definition 6 (Implicant Revision Function) Let be
S, T,R ∈ 2T . An implicant revision function on 2T is
a binary operator st : 2T × 2T −→ 2T for which the
following basic postulates hold:

(ST1) For all v ∈ st(S, T ) there is t ∈ T , s ∈ S and s′ ⊆ s
such that v = t ∪ s′.

(ST2) If S ⊗ T is not closed then st(S, T ) = S ⊗ T .
(ST3) If T is not closed then st(S, T ) is not closed.
(ST4) If [|S1|] = [|S2|] and [|T1|] = [|T2|] then

[|st(S1, T1)|] = [|st(S2, T2)|].
One additional postulate is usually considered, that deals
with successive application of function st vs. application of
st to a “conjunction” of literal sets.

(ST5) If st(S, T )⊗R is open then st(S, T )⊗R ≡ st(S, T⊗
R)

It is not difficult to see that postulate (ST2) corresponds
to K∗4 (resp. (S3)), (ST3) corresponds to K∗5 (resp. (S4)),
(ST4) corresponds to K∗6, and (ST5) corresponds to K∗7
and K∗8 (resp. (S5) and (S6)). The difference between im-
plicant revision and “standard” revision relies on the first
postulate (ST1) that replaces K∗2 (or (S1): according to (S1)
every model of the revised belief set is a model of the revi-
sion formula. Postulate (ST1) is somewhat stronger: it says
something about which models of the revision formula are to
be selected for becoming models of the revised base. When
we revise a belief set seen as a set of implicants S by a
new information, given as a set of implicants T then we
choose a subset among the implicants of T and eventually
augment each implicant choosen by subsets of implicants in
S “compatible” (not contradictory) with that implicant. In
other words, we try to “keep” as many literals occurring in
implicants of the original belief set as possible. This means
that an important syntactical aspect intervenes in implicant
revision. The AGM postulates do not at all take into ac-
count the specific atoms within models for “choosing” one

2remember that we identify an interpretation with the set of
atoms evaluated to true.

model instead of another one within a revision result. Pos-
tulate (ST4), that corresponds to K∗6, requires the indepen-
dence of revision from syntax. One way to satisfy always
(ST4) is to work on the set of all prime implicants of the
belief set and of the revision formula. However, there is
a special class of implicant revision function, that we will
present in the next section, that produces equivalent revi-
sion results when applied to equivalent implicant sets with-
out requiring to work with prime implicants. Most related
approaches to implicant or implicate revision work with
prime implicants (Marchi, Bittencourt, and Perrussel 2010;
Bienvenu, Herzig, and Qi 2008). Our approach is different
in this respect.

Observe that the postulates do not prevent st(S,T) of con-
taining closed implicants. Since a closed implicant has no
model, it can be deleted within st(S,T) and the correspon-
ding formulas are equivalent according to fact 1.

Implicant revision satisfies theAGM postulates. Here we
show that every implicant revision function defines a revi-
sion function. Revision function postulates (S1) to (S6) are
satisfied by every implicant revision function and by theo-
rem 1 it follows that an implicant revision function satisfies
the AGM postulates.

Theorem 3 Let st be an implicant revision function on 2T .
Then the function sm : 2M × 2M −→ 2M defined by

sm(M,N) = [|st(M I , N I)|] (smt)

is a revision function.

Proof: We show that S1 to S6 hold for the function sm.
S1: Let m ∈ sm(M,N). Then m ∈ [|st(M I , N I)|] by the
equation (smt). Then there is v ∈ st(M I , N I) such thatm ∈
[|v|]. By ST1 there is s ∈ M I , t ∈ N I , s′ ⊆ s such that
v = t ∪ s′. Since t ⊆ v, [|v|] ⊆ [|t|] from which [|v|] ⊆ N
which entails m ∈ N .

S2 and S3: Let M ∩N 6= ∅, then M I ⊗N I is not closed
there therefore st(M I , N I) = M I ⊗ N I by ST2. Hence
sm(M,N) = [|st(M I , N I)|] = [|M I ⊗N I |] = [|M |] ∩
[|N |].

S4: Let be N 6= ∅. Then N I is not closed and by ST3
st(M I , N I) is not closed. Hence [|st(M I , N I)|] 6= ∅ and
sm(M,N) 6= ∅ by the equation (smt).

S5 and S6: Let be sm(M,N) ∩ L 6= ∅. Then
[|st(M I , N I)|] ∩ L 6= ∅ by equation (smt). There-
fore [|st(M I , N I)⊗ LI |] 6= ∅ by fact 1, 2. Therefore
st(M I , N I) ⊗ LI) is open and by (ST3), st(M I , N I) ⊗
LI = st(M I , N I ⊗ LI), i.e. [|st(M I , N I)⊗ LI |] =
[|st(M I , N I ⊗ LI)|], from which [|st(M I , N I)|] ∩ L =
sm(M, [|N I ⊗ LI)|] = sm(M,N ∩ L). Hence we get the
result sm(M,N) ∩ L = sm(M,N ∩ L).

Q.E.D. The opposite of theorem 3 does not hold. There is
an AGM revision operator that is not an implicant revision
operator.

Theorem 4 There is a revision operator that is not an im-
plicant revision operator.
Proof: We define the following revision operator sm0 that
fails to satisfy (ST1). Let M = {m1,m2,m3,m4} be the
models over the propositional language {p, q}, such that



m1 = ∅, m2 = {p}, m3 = {q} and m4 = {p, q}. Let
be X,Y ⊆M . We define a binary set operator sm0 by.
sm0(X,Y ) = X ∩ Y if X ∩ Y 6= ∅
sm0(X,Y ) = Y if card(Y ) ≤ 1

For all other cases, namely when X ∩ Y = ∅ or card(Y ) >
1, define
sm0({m1}, X) = sm0({m2}, X) = {m3} if m3 ∈ X
sm0({m1}, {m2,m4}) = {m2}
sm0({m2}, {m1,m4}) = {m1}
sm0({m3}, X) = {m4}, if m4 ∈ X
sm0({m3}, {m1,m2}) = sm0({m4}, {m1,m2}) =
{m1,m2}
sm0({m4}, X) = {m3} if m3 ∈ X
sm0({m1,m2}, {m3,m4}) =
sm0({m1,m3}, {m2,m4}) =
sm0({m2,m3}, {m1,m4}) = {m4}
sm0({m1,m4}, {m2,m3}) =
sm0({m2,m4}, {m1,m3}) = {m3}
sm0({m3,m4}, {m1,m2}) = {m1,m2}

It is not difficult to check that sm0 satisfies the
revision postulates (S1) to (S6). Now, consider
sm0({m1,m2}, {m3,m4}) = {m4}. We have also
sm0({m1}, {m3,m4}) = sm0({m2}, {m3,m4}) =
{m3}. sm0, interpreted as an implicant revision function
violates postulate (ST1): we have FOR({m1,m2}) = ¬q
and FOR({m3,m4}) = q, and FOR({m4}) = p ∧ q.
In terms of implicants we have then st0(¬q, q) = {p, q}
And there is no s′ ⊆ {¬q} such that {p, q} = {q} ∪ s′.
sm0 defines a revision operator that cannt be defined by an
implicant revision function. Q.E.D.
One might wonder how (and why) the result of revising be-
lief set Cn(¬q) by q can result in Cn({p, q}). But ¬q has
two models, m1 and m2. m2 satisfies p and according to
(ST4) st0({¬q}, X) = st0({(¬q, p), (¬q,¬p)}, X).

There is also a distance based revision operator that is not
an implicant revision operator.
Theorem 5 There is a distance based revision operator that
is not an implicant revision operator.
Proof: We consider the same language {p, q} as in theorem
4 with the same model setM . Suppose thatM is in the plane
as in figure 1 and d is the geometrical distance.

Then d is symmetric and identity respecting and
d(m1,m4) = d(m2,m4) =

√
2

d(m1,m3) = d(m2,m3) =
√

5

d(m3,m4) = 1

d(m1,m2) = 2

The revision function defined by d is not sm0: we have
{m1}∗d{m3,m4} = {m4} but sm0({m1}, {m3,m4}) =
{m3, }. Then FOR({m1,m2}) = Eq(¬q),
FOR({m3,m4}) = Eq(q) and FOR({m4}) =
Eq(p ∧ q). Then Cn(¬q)∗dq = Cn(p ∧ q). Any im-
plicant revision function std, that satisfies (ST4), must be
such that std(¬q, q) = {(p, q)} violating (ST1). According
to (ST1)we cannot have but st(¬q, q) = {(q)}, which is not
possible. Q.E.D.

m1 m2

m3

m4

1

√
2

2

√
2

√
5

√
5

Figure 1: Distance function d on

Theorems 3, 4 and 5 show the following relationships be-
tween the three classes of revision operators:

• AGM ) IBR

• DBR 6⊂ IBR
• AGM ) DBR (Lehmann, Magidor, and Schlechta

2001)

Syntax independent implicant revision
functions

The postulates for implicant revision provide a general
framework for implicant revision. According to postulate
(ST1), every implicant of v ∈ st(S, T ) is the union of an
implicant of T and a subset of an implicant of S. We pre-
suppose that every implicant v ∈ st(S, T ) is open, since
eventually closed elements can be ignored. This means that
every v is a subset of s ∪ t, containing t for some s ∈ S and
t ∈ T . Since v must be open, the subset of s is obtained by
suppressing, at least, all elements in s opposite to elements
in t. Moreover, not every element t of T will be a subset
of some element of st(S, T ). This means that every impli-
cant revision function st is a choice function on 2T × 2T
that chooses for every S, T ∈ 2T open subsets from the set
{s′ ∪ t : s′ ⊆ s, s ∈ S, t ∈ T} according to (ST1). Specific
implicant revision functions are frequently based on some
minimization criterion, namely it selects the implicants that
are closest to implicants from the original belief set S.

It turns out that some of the known revision operators are
implicant revision operators. This is not a surprise because
the application of the choice function can be considered as
defining a preference relation between implicants, where v
is closer to S than w when it contains “more literals” from s
than from t.

In this section we show specific implicant revision opera-
tors. They depend all on a model distance minimization that
is easily obtained by operations on implicants. Hence we
present first these operations.

Notation Given a literal l, we note |l| the atom of l, i.e.
|a| = |¬a| = a for a ∈ P . We note l̄ the literal opposite to
l, i. e l̄ = ¬l. For an implicant t, we note |t| = {|l| : l ∈ t}
and t̄ = {l̄ : l ∈ t}. Subsequently, we make use of the



set of literals s ∩ t̄ that is the literals in s whose opposite
literal belongs to t. It turns out that the propositional vari-
ables “corresponding” to these literals are precisely the min-
imal symmetric differences between the models of s and the
models of t. Note that s ∪ t is open iff s ∩ t̄ = ∅. The sym-
metric difference of the sets M and N is noted M∆N , i.e.
M∆N = {x : (x ∈ M and x /∈ N), or (x ∈ N and x /∈
M)}.

Lemma 1 Let be s, t ∈ T . Then
(i) |s ∩ t̄ | = |t ∩ s̄ | and
(ii) |s ∩ t̄ | = Min⊆({m∆n : m ∈ [|s|] and n ∈ [|t|]})
(iii) (t ∪ s) \ (s ∩ t̄ ) = t ∪ (s \ t̄ )
Proof:

(i) is obvious. For (ii), we first show that for all m ∈ [|s|]
and n ∈ [|t|], |s ∩ t̄ | ⊆ m ÷ n. Let be a ∈ |s ∩ t̄ |. Then
either a ∈ s and ¬a ∈ t or ¬a ∈ s and a ∈ t. Then we
have that a ∈ m and a 6∈ n or a 6∈ m and a ∈ n, hence
a ∈ m÷ n. This shows that |s ∩ t̄ | is also included in every
minimal m ÷ n. Now it is sufficient to show that |s ∩ t̄ | is
also the symmetric difference between two models. Hence
we must show that there are interpretations m ∈ [|s|] and
n ∈ [|t|], such that m÷ n = |s ∩ t̄ | . Given an implicant u,
let be u+ = u ∩ P . Then we define m = (s+ ∪ {a ∈ t+ :
¬a 6∈ s} and n = (t+ ∪ {a ∈ s+ : ¬a 6∈ t}. Obviously,
m ∈ [|s|] and n ∈ [|t|]. Now it is sufficient to show that
m÷ n ⊆ |s ∩ t̄ |. Let be a ∈ m÷ n. Then either a ∈ m and
a 6∈ n or a 6∈ m and a ∈ n. Consider the first case: Then we
have (i) a ∈ s+ or (ii) a ∈ t+ and ¬a 6∈ s, but since a 6∈ n,
(ii) is not possible. Hence a ∈ s+. Since a 6∈ n, a 6∈ t+ and
either a 6∈ s+, which is not possible, or ¬a ∈ t. It follows
that a ∈ |s ∩ t̄ |. The other case, a 6∈ m and a ∈ n goes
through analogously.

Q.E.D.

Example 1 Let be s = {a,¬b, c} and t = {¬a, b, d}. Then
s ∩ t̄ = {a,¬b} and Min⊆({m∆n : m ∈ [|s|] and n ∈
[|t|]}) = {a, b}

There is exactly one ⊆ −minimal set among {m∆n :
m ∈ [|s|] and n ∈ [|t|]}), namely |s ∩ t̄ | and in view of
lemma 1 the sets s∩ t̄ and t∩ s̄ denote a sort of symmetric
difference set between the implicants s and t.

Minimizing symmetric differences
Any formula φ is the disjunction of a finite set of implicants.
This defines the set of its models as a finite union of model
sets (not necessarily disjoint), namely the models of its im-
plicants. In order to obtain the ⊆-minimal symmetric dif-
ferences of all the models of φ it is sufficient to obtain the
minimal sets among the |s ∩ t̄ | for all s ∈ S and t ∈ T .

We will need the following lemma to show that this min-
imization obtains the global minimal symmetric differences
for all models of the formula3.

Lemma 2 Let M be a set that is a finite union of sets that
are not necessarily disjoint, M = A1 ∪ · · · ∪ Ak and let ≤
be a pre-order on M for which the limit assumption holds

3We do not claim originality of this lemma

(i.e. the infimum ofM is a minimum). Then

Min≤(M) = Min≤(

k⋃
i=1

Min≤Ai)

Proof: “⊆”: Let be a ∈Min≤(M). Then a ∈M and there
is no b ∈M such that b < a. There is i, 1 ≤ i ≤ k such that
a ∈ Ai and Ai ⊆M . Therefore there is no b ∈ Ai such that
b < a. Hence a ∈Min≤Ai.

“⊇”: Let be a ∈ Min≤(
k⋃

i=1

Min≤Ai) and suppose that

a 6∈ Min≤(M). Then there is b ∈ M and b < a. Hence
there is i such that b ∈ Ai and b < a. If b ∈ MinAi then
b 6< a which is a contradiction. Hence b 6∈ Min≤Ai and
by the limit assumption, there is c ∈ Min≤Ai and c < b.
But then c < a by the transitivity of ≤, contradicting the

minimality of a in
k⋃

i=1

Min≤Ai. Q.E.D.

Corollary 1 Let beM = A1∪· · ·∪Ak = B1∪· · ·∪Bl two
different non-empty partitions of a setM and let≤ be a pre-
order on M for which the limit assumption holds (i.e. the

infimum ofM is a minimum). Then Min≤(
k⋃

i=1

Min≤Ai) =

Min≤(
l⋃

i=1

Min≤Bi)

The following theorem shows that the set of minimal ele-
ments of the symmetric differences between two model sets
can be obtained by minimizing all sets |t ∩ s̄ |.
Theorem 6 Let S, T ⊆ T and MinI = Min⊆({|s ∩ t̄ | :
s ∈ S and t ∈ T}). Then

MinI = Min⊆(m∆n : m ∈ [|S|] and n ∈ [|T |]) (M)

Proof: Consider the set DIFF = {m∆n : m ∈ [|S|], n ∈
[|T |]} and observe that DIFF =

⋃
s∈S,t∈T

{m∆n : m ∈

[|s|], n ∈ [|t|]}. DIFF is ordered by ⊆ and ∀s ∈ S, t ∈
T, |s ∩ t̄ | = Min⊆{m∆n : m ∈ [|s|] and n ∈ [|t|]} by
lemma 1, 2. (M) follows by applying the lemma 2. Q.E.D.

Theorem 6 shows that we obtain all minimal symmetric
difference sets between the models of a formula φ and a for-
mula ψ as the ⊆ −smallest sets |s ∩ t̄ | for implicants s of
φ and t of ψ. And we obtain them independently on the par-
ticular implicant sets involved whenever they have the same
models. This shows that for revision functions based on the
symmetric difference of models it is not necessary to use
all prime implicants of a formula. Any set of implicants is
sufficient.

Theorem 6 can be used for all revision operators that are
defined using the symmetric differences between models.
Here we discuss two of them.

Weighting literals
The revision function we propose takes into account that
for a user the different entities may have different impor-
tance. Using this function presupposes that an agent asso-
ciates weights to literals that measure the “importance” of



the literal in the belief base . The weight of a set of literals is
simply the sum of its elements.

Definition 7 w is a weighting function on LIT if
w : LIT −→ N , where N is the set of natural numbers. w
can be extended to a function on implicants and on propo-
sitional models. Let t ∈ T be an implicant. Then w(t) =
Σ
l∈t
w(l) and for a model m ∈M , w(m) = Σ

p∈m
w(p).

Fact 2 Let w be a weighting function on LIT and
m,n,m′, n′ ∈M . Then we have:
If m∆n ⊆ m′∆n′ then w(m∆n) ≤ w(m′∆n′)

Lemma 3 Letw be a weighting function on LIT and s, t ∈
T and S, T ⊆ T . Then

1. w(s ∩ t̄ ) = Min≤{w(m∆n) : m ∈ [|s|] and n ∈ [|t|]}
2. Min≤{w(m∆n) : m ∈ [|S|] and n ∈ [|T |]} =
Min≤{w(s ∩ t̄ ) : s ∈ S and t ∈ T}
This follows easily by lemma 1,(ii) and fact ?? and lemma

2.
The corresponding revision function is then:
stw(S, T ) = {t ∪ (s \ t̄ ) : t ∈ T, s ∈ S and w(s ∩ t̄ ) =

MinW}, where MinW = Min≤{w(s ∩ t̄ ) : s ∈ S and
t ∈ T}.

It is not difficult to see that stw is an implicant revision
function (for any weighting function w).

Dalal Revision
In (Dalal 1988) a revision operator is defined that is based on
the Hamming distance of sets. For two interpretations this is
the number of propositional variables that are assigned dif-
ferent truth values by the two interpretations. Dalal revision
is obtained as a special case of weighting based revision, by
setting w(l) = 1 for all l ∈ LIT .

Definition 8 Let Γ be a belief set and φ a formula. The
Dalal revision operator ∗dh

is defined by
[|Γ∗dh

φ|] = {n ∈ [|φ|] : ∃m ∈ [|Γ|], dh(m,n) =
Min≤{dh(k, l) : k ∈ [|Γ|], l ∈ [|φ|]}, where dh(m,n) =
card{p : p ∈ m iff p /∈ n} is the Hamming distance between
sets m and n.

We observe that:

1. Given two implicants s and t, Min≤{dh(m,n) : m ∈
[|s|], n ∈ [|t|]} = card(s ∩ t̄ ) (by lemma 1)

2. Given two sets of implicants, S, T , Min≤{dh(m,n) :
m ∈ [|S|], n ∈ [|T |] = Min≤{card(s ∩ t̄ ) : s ∈ S, t ∈
T} (by lemma 2).

This means that we obtain Dalal revision by minimizing
the sets s ∩ t̄ for all s ∈ S and t ∈ T according to their
cardinality. The revision result is then the set of implicants
t ∪ (s \ t̄ ) such that card(s ∩ t̄ ) = Min≤{card(s ∩ t̄ ) :
s ∈ S, t ∈ T}.
Theorem 7 Let Γ be a belief set, φ a formula and S (resp.
T ) a set of implicants equivalent to Γ (resp. φ). Then
std(S, T ) = {t ∪ (s \ t̄ ) : t ∈ T, s ∈ S and card(s ∩ t̄ ) =
Min≤{card(s∩ t̄ ) : s ∈ S, t ∈ T} is an implicant revision
function and [|Γ∗dh

φ|] = std(S, T ).

Satoh Revision
Satoh in (Satoh 1988) defines a revision operator that min-
imizes symmetric differences according to set inclusion.
stsa(S, T ) = {t ∪ (s \ t̄ ) : t ∈ T, s ∈ S and s ∩ t̄ ∈
Min⊆{|s ∩ t̄ | : s ∈ S, t ∈ T}}
stsa satisfies postulates (ST1) to (ST4) but fails to sat-

isfy (ST5) as shows the following example (Katsuno and
Mendelzon 1991b).

Example 2 S = {{p, q, r, s}, {¬p,¬q,¬r,¬s}}
T = {{¬p,¬q, r, s}, {p,¬q,¬r,¬s}, {¬p,¬q, r, s}}
U = {{¬p,¬q, r, s}, {p,¬q,¬r,¬s}}

Then stsa(S, T )⊗U = {{p,¬q,¬r,¬s}} but stsa(S, T⊗
U) = {{¬p,¬q, r, s}, {p,¬q,¬r,¬s}}.

Therefor stsa is not an implicant revision operator.

Implementation and complexity
considerations

Implicant revision postulates suggest to consider specific re-
vision operations that are defined as operations on impli-
cants. They indicate how to calculate effectively results of
revision operations. Given a belief base with finite cover φ
and a revision information µ we first produce the DNF of φ
and µ and we obtain the implicant sets S and T . Then we
apply operations on the implicants of φ and µ in order to
obtain a revised base as a new implicant set.

Here we give the informal algorithm for calculating the
implicant functions stw and std, as well as stsa, that is not
an implicant revision operator since it fails to satisfy (ST5).
Let formula ψ, represent a belief base and µ represent a new
information. Let n be the maximal length of the formulas
(n = max(length(ψ), length(µ)).

1. Generate a disjunctive normal form of ψ and µ, yielding
implicant sets S equivalent to ψ and T equivalent to µ.
This yields O(2n) implicants.

2. Determine the symmetric differences |s ∩ t̄ | for all s ∈ S
and t ∈ T . The number of operations is O(2n × 2n).

3. Determine the ≤ −minimal elements of the set
{w(|s ∩ t̄ |) : s ∈ S and t ∈ T}. The number of opera-
tions is linear in the number of elements, i.e. O(2n× 2n).

4. The revision result is the set stw(S, T ) = {v : v = t ∪
(s \ t̄ ) and w(s ∩ t̄ ) ∈MinW}.
As pointed out above, For Satoh the points 3. is:

3’ Determine the ⊆ −minimal elements of the set
{|s ∩ t̄ | : s ∈ S and t ∈ T}. The number of operations
is polynomial (quadratic) in the number of elements, i.e.
O((2n × 2n))2.

4 . The revision result is the set stsa(S, T ) = {v : v =
t ∪ (s \ t̄ ) and w(|s ∩ t̄ |) ∈MinI}.

The problem of deciding whether a formula belongs to a
knowledge base after revision resides on the second level
of the polynomial hierarchy (Eiter and Gottlob 1992). Here
we give the number of steps for calculating the set st(S, T ),



where S and T are the set of implicants of formulas φ and µ.
Let Γ be a formula representing a belief base and µ the new
infomation. Let be n the length of the formula Γ ∧ µ. Then,
the number of conjuncts of a DNF of Γ ∧ µ is O(2n). To
determine the ≤-smallest element (or elements) within the
subsets s∩ t̄ we have to compare all branches pairwise, that
gives a polynomial time algorithm (in an exponential num-
ber of branches). These complexity results result from two
factors:
• Obtaining implicants of a formula is NP-complete.
• The second factor results from the fact that our algorithm

compares subsets in an exponential number of implicants
(w.r.t. the number of propositional variables).
Better bounds can perhaps be obtained by addressing re-

strictions on the syntactic form of the belief set and of the
revision formula.

Related work
Specific implicant revision operators defined for knowledge
bases in specific syntactical forms have been proposed by
several authors (Marchi, Bittencourt, and Perrussel 2010;
Bienvenu, Herzig, and Qi 2008). Marchi et al. define a spe-
cific prime implicant revision method. Their system presup-
poses a knowledge base in clausal form and they propose to
weighten a literal by counting the number of its occurrences
within all clauses: the number of occurrences indicates the
importance of the literal. The weight of an implicant is then
the sum of the weights of the literals it contains. Their algo-
rithm is based on prime implicants; from a belief base first
the set of all its prime implicants must be calculated. The
base resulting from a revision is in general not more in form
of prime implicants and those have to be recalculated after
every revision step, in the case of multiple revisions. Since
the weight of a literal and of a prime implicant depends on
the number of occurrences in the clauses of the belief base ,
it will probably change after each revision step. Hence for
multiple revisions, new clauses must be obtained from the
revision result and new weights must be calculated. The au-
thors have extensively studied the performances of their sys-
tem with many benchmark examples. The differences with
our approach are the following:
• Marchi and co-authors use prime implicants, we do not

use prime implicants but implicants.
• The revision result in (Marchi, Bittencourt, and Perrussel

2010) is in the form of implicants for both approaches.
• Multiple revision steps need a new treatment of the belief

base in (Marchi, Bittencourt, and Perrussel 2010): prime
implicants, clauses and weights must be recalculated. In
our approach nothing must be redone, multiple revision
steps can naturally occur.

• We have a more global approach that comports many re-
vision approaches and we have clearly situated our class
of revision functions. Marchi et al. calculate essentially
one specific distance based revision operator.

• Marchi et al. have tested their approach on many bench-
mark examples, we only have a tableaux based system
that can compute revised bases.

In our approach, we do not use prime implicants but impli-
cants, multiple revision steps can naturally occur, we have
a more global approach that comports many revision ap-
proaches and we have clearly situated our class of revision
functions. Marchi et al. calculate essentially one specific dis-
tance based revision operator.

Bienvenu et al. (Bienvenu, Herzig, and Qi 2008) propose
a prime implicate-based revision operator that is a full meet
operator. Their algorithm is based on the set of all prime
implicates of a formula K, Π(K). The revision operator is
defined by K∗Πφ = φ ∧

∨
(Π(K)⊥¬φ) where K⊥φ is the

set of maximal subsets of K consistent with ¬φ. Again, one
problem is that Π(K) has to be recalculated after every re-
vision step since the revised belief base is not more the con-
junction of all its prime implicates. Our approach is more
general (and simpler), since we do not need a belief base in
normal form and we do not need to calculate the prime im-
plicants (or prime implicates) of the belief base and the revi-
sion formula.

DelVal (Val 1991) present a framework where revision
can be expressed in terms of DNF . He shows how to treat
most of the known distance based revision operators.

Delgrande and Schaub present a “consistency based” ap-
proach to express belief change in general (contraction and
revision) (Delgrande and Schaub 2003). Concerning revi-
sion, a belief change scenario is given by a pair (Γ, φ),
where Γ is the belief set and φ is the revision formula. In
order to revise Γ by φ, they start with φ, that must belong
to the revised base according to postulate K∗2, and then in-
clude as much as possible of Γ. Technically they express
Γ and φ in different languages, associating a new proposi-
tional variable p′ to every p ∈ P . A belief base extension of
scenario(Γ, φ) is then obtained from the set Γ′ ∪ {φ} ∪ E
where E ⊆ {p ↔ p′ : p ∈ P} is a maximal subset of
{p ↔ p′ : p ∈ P} such that Γ′ ∪ {φ} ∪ E is consis-
tent. The belief base extension is then E ∩ L(P). A belief
change scenario can be expressed in this framework by us-
ing a selection function c on the set E of all extensions.
c selects a subset of E and the revision result is the inter-
section of the selected subsets: Γ∗cφ =

⋂
c(E ). Delgrande

and Schaub present one revision operator that is the same
than our implicant revision function stsa. This is the opera-
tor that selects all extensions yielding their disjunction. The
following result shows the precise relationship between Del-
grande Schaub’s consistency-based approach and our IBR
approach.

Theorem 8 Let E ⊆ F be a belief set extension on (Γ, φ).
Then there is an implicant revision function st such that
[|E|] = [|v|] for some v ∈ st(ΓI , φI).

Conclusion
In this paper we defined a new class of belief set revision
operators. They work on a specific syntactical formula rep-
resentation, namely a DNF or implicant sets, and we have
defined a specific set of postulates that define implicant revi-
sion. We have situated our implicant revision operators w.r.t.
the AGM approach and distance based revision. We have
shown that several known approaches to theory revision are



implicant revisions.
In this paper we only address one type of theory change

operators, namely revision. We think that we can also cap-
ture other belief change functions such as update (Katsuno
and Mendelzon 1991a; Winslett 1988; Chou and Winslett
1991), erasure or contraction (Gärdenfors 1988) but also
merging (Konieczny and Pérez 1998) and iterated revision
(Darwiche and Pearl 1997).

Our revision functions can naturally be calculated by use
of a tableaux prover. The branches of a tableau for a formula
φ are implicants of the formula. In this case, the tableaux
prover is used classically and revision results are “calcu-
lated” by operations on tableau branches, that are the opera-
tions on implicants described in this paper. One of our forth-
coming research will be the definition of tableaux rules that
give directly a decision procedure for the problem wether a
revised knowledge base Γ∗φ contains some formula ψ. Del-
grande, Jin and Pelletier in (?) have investigated rules for
calculating updates that break up the update formula. We
think of tableaux rules that break up the belief base formula
according to the new information. Our new implicant revi-
sion postulate (ST1) suggests that the revised belief base is
composed of implicants that contain implicants of the revi-
sion formula and parts of implicants of the belief base. Thus,
a decision procedure for the problem whether a formula is
entailed by a revised belief base must modify the original
belief base according to the contradictions with elements of
the revision formulas.
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