
Expressing Preferences using Preference Set Constraint Atoms

Alex Brik, Jeffrey B. Remmel
Department of Mathematics, UC San Diego, USA

Abstract

This paper introduces an extension of Answer Set Program-
ming called Preference Set Constraint Programming which
is a convenient and general formalism to reason with pref-
erences. PSC programming extends Set Constraint Program-
ming introduced by Marek and Remmel (Marek and Rem-
mel 2004) by introducing two types of preference set con-
straint atoms, measure preference set constraint atoms and
pre-ordered preference set constraint atoms, which are ex-
tensions of set constraint atoms. We show that the question
of whether a PSC program has a preferred stable model is
CoNP-complete. We give examples of the uses of the pref-
erence set constraint atoms and show that Answer Set Op-
timization (Brewka, Niemelä, and Truszczynski 2003) and
General Preference (Son and Pontelli 2006) can be expressed
using preference set constraint atoms.

Introduction

The notion of a set constraint (SC) atom and a set constraint
logic program was introduced by Marek and Remmel in
(Marek and Remmel 2004). In this paper we extend these
notions to define preference set constraint (PSC) atoms and
PSC logic programs. The purpose of these extensions is to
use PSC atoms to express preferences.

PSC programming is an intuitive and general formalism
for expressing preferences. We demonstrate its generality
by showing that PSC programing can be used to express
optimal stable models of Answer Set Optimization (ASO)
of (Brewka, Niemelä, and Truszczynski 2003) and general
preferences of (Son and Pontelli 2006). An extension of
PSC programming can be used to express preferred answer
sets and weakly preferred answer sets of (Brewka and Eiter
1999). However, due to space limitations, we will not dis-
cuss the last two examples.

In this paper, we shall focus on the formal definitions of
PSC programming. However, there are a number of interest-
ing issues concerning the best way to implement PSC pro-
grams. While such issues are for the most part outside of the
scope of this paper, we note that an implementation of PSC
programming will not necessarily be a simple application of

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the definitions. The question of what is the best way to im-
plement PSC programming efficiently is one that requires
additional research, and we will only briefly discuss a few
salient implementation issues in this article.

The subject of expressing preferences using Answer Set
Programming (ASP) has been discussed extensively in the
literature. Various approaches have been proposed. We refer
the reader to the article (Brewka, Niemelä, and Truszczynski
2008) for an accessible overview of the subject and to a more
detailed albeit older survey (Delgrande et al. 2004).

In (Delgrande et al. 2004) various approaches are clas-
sified for handling preferences in nonmonotonic reasoning.
The paper identified the following criteria.
• Host system. This is a particular formalism which is ex-

tended to handle the preferences. In our case the host sys-
tem is a SC logic program.

• What is the preference ordering an ordering on? PSC
programming allows the user to directly specify prefer-
ence orderings on sets of atoms.

• Meta-level vs. object-level preferences. This criteria
identifies whether preferences are imposed “externally”
on the host system, or the preferences are used within the
object theory. Our approach is a meta-level approach.

• Static vs. dynamic preferences. This criteria specifies
whether the preferences are fixed at the time that the the-
ory is specified or can be determined “on the fly”. PSC
programming implements static preferences.

• Properties of the preference ordering. PSC program-
ming enforces a pre-order on the set of PSC stable mod-
els.

• Prescriptive vs. descriptive preferences. This criteria
concerns preference orderings on the rules and is not ap-
plicable to PSC programming.

• From preference to preferred results. This criteria iden-
tifies broad categories for methods that generate preferred
answer sets from a theory and a set of preferences. In PSC
programming preferred PSC stable models are standard
PSC stable models satisfying additional criteria.
As noted in (Delgrande et al. 2004), the majority of ASP

type systems that reason about preferences use a preference
ordering on the set of rules to express preferences. An exam-
ple of such an approach is given in (Brewka and Eiter 1999).

There are exceptions such as for instance (Sakama and Inoue
2000), (Brewka 2002) that specify preferences on the liter-
als and more recently ASO which uses a second preference
program to specify preferences on the answer sets. ASO is
in fact the approach that is closest to PSC programming.

Delgrande et al. note that to have the most general ASP
type system that can reason about preferences, one must be
able to handle preferences on sets of objects. PSC program-
ming allows the user to specify preferences on subsets of
atoms. This fact distinguishes PSC programming from most
other approaches for expressing preferences in ASP. PSC
programming is different from ASO in that the host system
of PSC programming is a SC logic program, whereas the
host system of ASO is an ASP logic program. We will show
that ASO programming can be viewed as a particular case
of PSC programming.

Since literals can be viewed as sets of cardinality 1, there
are similarities between PSC programming and some of the
proposals that specify preferences on the literals. Due to the
space constraints we will limit the related discussion to few
remarks.

In (Brewka 2002) Brewka introduces Logic Programs
with Ordered Disjunction (LPODs). The key feature of
LPODs are ordered disjunctions of the form C1 × ... × Cn
in the heads of the rules. The meaning is that if possible C1,
if not possible C1 then C2, ..., if not possible C1, ...,Cn−1
then Cn. The priorities among the answer sets of LPODs are
generated using the indices of the disjuncts included in the
stable models. As shown in (Brewka, Niemelä, and Syrjänen
2004) deciding whether S is a preferred answer set of LPOD
P is coNP-complete, which is the complexity of the same
problem for PSC programs. Thus a polynomial time transla-
tion between the formalisms exists.

In (Buccafurri, Leone, and Rullo 2000), Buccafurri et al.
extend the language of Disjunctive Datalog by weak con-
straints (DATALOG∨,¬,c). The weak constraints are con-
structs of the form ⇐ L1, ..., Ln where L1, ..., Ln are lit-
erals. The weak constraints effectively allow to specify sets
of atoms, i.e. a weak constraint specifies those sets of atoms
that violate the constraint. Γ is a model of a DATALOG∨,¬,c
program if Γ is a model of the underlying Disjunctive Dat-
alog program and if it minimizes the sum of the weights
of the violated weak constraints. DATALOG∨,¬,c programs
possess a certain similarity with the measure PSC programs.
In particular both specify preferences on sets and both use
numeric weights for the models. However, there are signifi-
cant differences between the two approaches. First, the host
system of DATALOG∨,¬,c is Disjunctive Datalog programs
while for measure PSC programs, it is SC programs. Sec-
ond, integer weights associated with candidate models in
DATALOG∨,¬,c allow the use of a binary search procedure
in finding models, whereas the use of binary search is not
helpful for the measure PSC programs since the stopping
criteria is not easily determined due to the arbitrary weights.
Thus if the complexities of the host systems were the same,
the complexities of the search for optimal models would be
different in the two approaches.

The rest of the paper is structured as follows. In section
2, we will describe the preliminaries of ASP and SC logic

programming. In section 3, we will introduce PSC program-
ming and provide a brief discussion of some key implemen-
tation issues for PSC programming. In section 4 we will
show that PSC programming can be used to express optimal
stable models of ASO. In section 5 we will show that the
general preferences of (Son and Pontelli 2006) can be ex-
pressed using PSC atoms. In section 6, we will discuss com-
putational complexity of PSC programming. In section 7, we
will give conclusions and directions for further research.

Preliminaries
Answer Set Programming.

Answer set programming is logic programming with sta-
ble model or answer set semantics (Gelfond and Lifschitz
1988), (Gelfond and Lifschitz 1991). ASP systems are ideal
logic-based systems to reason about a variety of types of
data and integrate quantitative and qualitative reasoning. The
question of whether a finite propositional logic program has
a stable model is NP-complete (Elkan 1990), (Marek and
Truszczynski 1991). It is also the case that any NP search
problem can be (uniformly) reduced to the problem of find-
ing a stable model of a finite propositional logic program
(Marek and Remmel 2003).

A normal propositional logic program P consists of rules
of the form

C = a← a1, ..., am, not b1, ..., not bn

where a, a1, . . . , am, b1, . . . , bn are atoms and not is a
non-classical negation operator. The set prem (C) =
{a1,..., am} is called the set of premises of rule C and the
set cons (C) = {b1, . . . , bn} is called the set of constraints
of rule C. The atom a is called the conclusion of rule C
and is denoted by c (C). Either prem(C), cons(C), or both
may be empty. Let H(P) denote the Herbrand base of P .
A subset M ⊆ H(P) is called a model of a rule C if
prem(C) ⊆ M and cons(C) ∩M = ∅ implies c(C) ∈ M .
M is a model of a program P if it is a model of every rule
of P .

Given M ⊆ H(P), the Gelfond-Lifschitz transform
PM of P with respect to M is obtained by removing
every rule C such that cons (C) ∩ M 6= ∅ and then
removing the constraints from all the remaining rules. M
is called a stable model of P ifM is the least model of PM .

Set Constraint Logic Programming.
Set constraint programming was introduced in (Marek

and Remmel 2004) as an extension of DATALOG¬. It
generalized Answer Set Programming (ASP) with cardinal-
ity constraint atoms or weight constraint atoms as defined
in (Niemelä, Simons, and Soininen 1999), (Niemelä and Si-
mons 2000).

Suppose that we are given a finite set of atoms X . We
let P (X) denote the set of all subsets of X . A set constraint
atom overX is a pair 〈X,F 〉where F ⊆ P (X). Given a set
of atoms M and a SC atom 〈X,F 〉, we say that M satisfies
〈X,F 〉 (or M is a model of 〈X,F 〉) and write M |= 〈X,F 〉
if M ∩X ∈ F .

A set constraint (SC) rule C is an expression of the form
s← s1, ..., sk

where s, s1, ..., sk are SC atoms. The set body (C) =
{s1, ..., sk} will be referred to as the body of the rule C and
the atom c (C) = s will be referred to as the conclusion of
the rule. A set of atoms M is a model of C (or M satisfies
C) ifM |= s1, ...,M |= sk impliesM |= s. An SC program
P is a set of SC rules and a set of atoms M is a model of P
if M is a model of every rule in P .

We note that the satisfaction of literals can be easily ex-
pressed in terms of the satisfaction of set constraints. That
is, for an atom a, M |= a if and only M |= 〈{a} , {{a}}〉
and M |= not a if and only if M |= 〈{a} , {∅}〉. Thus each
literal a or not a in a normal logic program can be written
as a SC atom and hence each normal logic program can be
considered as SC logic program. However such a translation
makes normal logic programs harder to read. Thus, in what
follows, we shall write a for the SC atom 〈{a} , {{a}}〉 and
not a for a SC atom 〈{a} , {∅}〉.

Given an SC atom 〈X,F 〉, the upper-closure F of F
with respect to X is the family F = {Y ⊆ X| ∃Z
(Z ∈ F ∧ Z ⊆ Y)}. A family F of subsets of X is closed
if F = F . Notice that the closure of a closed family F of
subsets of X is F itself. The closure of a SC atom 〈X,F 〉 is〈
X,F

〉
.

A Horn SC rule is a SC rule where the head of the rule is
an ordinary atom and all SC atoms in the body are closed,
i.e. a rule of the form

p← 〈X,F1〉, ..., 〈X,Fn〉
where for i = 1, 2, ..., n, Fi = Fi. The reason for call-
ing such a rule Horn is that if M satisfies a Horn SC rule
C, then all the supersets of M will satisfy C. A Horn SC
logic program (Horn SC program for short) is a SC program
consisting entirely of Horn SC rules. Given a Horn SC pro-
gram P , we define the one-step provability operator TP by
letting TP (M) equal to the set of all p such that there exists
a rule p← 〈X,F1〉,...,〈X,Fn〉 in P whereM |= 〈X,Fi〉 for
i = 1, . . . , n. It is easy to prove that the one-step provabil-
ity operator associated with a Horn SC program is mono-
tone and hence a Horn SC program P has a least fixed point
which is the smallest model of P .

The notion of SC stable model of a SC logic program is
defined using a modification of the Gelfond-Lifschitz trans-
form called NSS transform. That is, let P be a SC pro-
gram and let M be a subset of atoms. The NSS transform,
NSS (P,M) of P with respect toM is defined in two steps.
First, eliminate from P all rules whose bodies are not sat-
isfied by M . In the second step, for each remaining rule
〈X,F 〉 ← 〈X1, F1〉, ..., 〈Xk, Fk〉 and for each a ∈ X ∩M
generate the rule a←

〈
X1, F1

〉
,...,
〈
Xk, Fk

〉
. The resulting

programNSS (P,M) is a Horn SC program. Consequently,
NSS(P , M) has a least model NP,M . M is called a SC sta-
ble model of P if M is a model of P and M = NP,M .

Marek and Remmel in (Marek and Remmel 2004) proved
the following proposition showing the equivalence of a nor-
mal logic program and its representation as SC program.

Proposition 1. Let P be a normal logic program and let
M be a set of atoms. Then M is a stable model of P in the
sense of Gelfond and Lifschitz if and only if M is a stable
model of P viewed as SC program.

Preference Set Constraints in Logic Programs
In this section, we will define two types of preference
set constraint atoms, measure PSC atoms and pre-ordered
PSC atoms, and two types of preference set constraint pro-
grams, measure PSC programs and pre-ordered PSC pro-
grams which are extensions of SC atoms and SC programs,
respectively. We will also discuss some of the issues related
to the possible implementations of PSC programming.

A measure preference set constraint (measure PSC) atom
is a triple 〈X,F, ρF 〉 where 〈X,F 〉 is a SC atom and ρF :
F → [−∞,∞] is a measure function. The SC reduct of
〈X,F, ρF 〉, red(〈X,F, ρF 〉), is just the SC atom 〈X,F 〉.
A pre-ordered preference set constraint (pre-ordered PSC)
atom is a triple 〈X,F,≤F 〉 where 〈X,F 〉 is a SC atom
and ≤F is a pre-order on F . The SC reduct of 〈X,F,≤F 〉,
red(〈X,F,≤F 〉), is just the SC atom 〈X,F 〉. If M is a set
atoms, we say that M is a model of 〈X,F, ρF 〉 if M |=
〈X,F 〉 and M is a model of 〈X,F,≤F 〉 if M |= 〈X,F 〉. If
〈X,F 〉 is a SC atom, then we let red(〈X,F 〉) = 〈X,F 〉.

Given a measure PSC atom, a pre-ordered PSC atom or a
SC atom as above, an elementary PSC operation is one of
the following: computing M ∩X , determining if M ∩X ∈
F , computing ρF (M ∩X), determining whether M1 ∩ X
≤F M2 ∩X holds.

A measure PSC rule C is a rule of the form

s← s1, . . . , sk

where s1, . . . , sk are SC atoms and s is either a SC atom or a
measure PSC atom. We define the SC reduct of C, denoted
by red(C), to be the rule red(s) ← s1, . . . , sk. A measure
PSC program P is a set of measure PSC rules and we define
the SC reduct of P to be the set of red(C) such that C is in
P . We say that a set of atoms M is a model of P if and only
if M is a model of red(P) and M is a stable model of P if
and only if it is a stable model of red(P).

Similarly, a pre-ordered PSC rule C is a rule of the form
s ← s1, . . . , sk where s1, . . . , sk are SC atoms and s is
either a SC atom or a pre-ordered PSC atom. We define
the SC reduct of C, denoted by red(C), to be the rule
red(s) ← s1, . . . , sk. A pre-ordered PSC program P is a
set of pre-ordered PSC rules and we define the SC reduct of
P to be the set of red(C) such that C is in P . Again we say
that a set of atoms M is a model of P if and only if M is a
model of red(P) and M is a stable model of P if and only
if it is a stable model of red(P).

Our idea is that if we are given a measure PSC program or
a pre-ordered PSC program P , then the preference set con-
straint atoms can be used to induce a pre-order on the set of
stable models of P . Before we can talk about this induced
pre-order, we need to define a pre-order on the models of a
set of PSC atoms T . That is, suppose that T is a set of pre-
ordered PSC atoms and we are given two sets of atoms M1

and M2 which satisfy every element of T . Then we say that
M1 is preferred toM2 relative to T , written T |= M1 ≺M2,
if for all 〈X,F,≤F 〉 ∈ T , M1 ∩X ≤F M2 ∩X and there is
at least one 〈X,F,≤F 〉 ∈ T such thatM1∩X <F M2∩X .
(Here, as usual for two sets A and B and a pre-order ≤,
A < B denotes A ≤ B and B 6≤ A). We say that M1 is
equivalent to M2 relative to T , written T |= M1 ∼ M2,

if for all 〈X,F,≤F 〉 ∈ T , M1 ∩ X ≤F M2 ∩ X and
M2 ∩ X ≤F M1 ∩ X . Hence, our pre-order on the mod-
els of T is essentially a product order over the set of lo-
cal preference orders induced by each of pre-ordered PSC
atoms in T . We say that M1 is indistinguishable from M2

relative to T , written T |= M1 ≈ M2, if T 6|= M1 ≺ M2

and T 6|= M2 ≺M1.
A slightly weaker type of pre-order on models can be in-

duced by measure PSC atoms. That is, given a set T of mea-
sure PSC atoms and two sets of atoms M1 and M2 which
are models of T , we say that M1 is weakly preferred to M2

relative to T , written T |= M1 ≺w M2 if∑
〈X,F,ρF 〉∈T

ρF (M1 ∩X) <
∑

〈X,F,ρF 〉∈T

ρF (M2 ∩X). (1)

Note that for M1 to be weakly preferred to M2 relative
to T , we do not require that for every 〈X,F, ρF 〉 ∈ T ,
ρF (M1 ∩ X) ≤ ρF (M2 ∩ X), but only in the aggregate
M1 is preferred to M2. This type of pre-order induced on
models of sets of measure preference atoms allows the user
more flexibility in specifying preferences. This is because
one is allowed to weigh local preferences so that the weight
coming from the ρF associated with the measure PSC atom
〈X,F, ρF 〉 makes a much bigger contribution to (1) than
the weight coming from the ρG associated with the measure
PSC atom 〈Y,G, ρG〉. Thus it is possible to make sure that
the local preferences specified by 〈X,F, ρF 〉 are much more
important than the local preferences specified by 〈Y,G, ρG〉.
We say that M1 is indistinguishable from M2 relative to T ,
written T |= M1 ≈w M2,∑
〈X,F,ρF 〉∈T

ρF (M1 ∩X) =
∑

〈X,F,ρF 〉∈T

ρF (M2 ∩X).

We are now in position to define how we can use PSC pro-
grams to specify preferences on stable models. We will start
out considering what we call simple PSC programs. A sim-
ple pre-ordered PSC program is a pre-ordered PSC program
P which consists of two types of rules:

C1 = s← s1, . . . , sk

where s, s1, . . . , sk are SC atoms and

C2 = s← (2)

where s is a pre-ordered PSC atom. Given a simple pre-
ordered PSC program P , we let pref (P) denote the set of
pre-ordered PSC atoms that appear in a rule of type (2) in P .
Note that any stable model M of P must satisfy all the pre-
ordered PSC atoms in pref(P). Given two stable models
M1 andM2 of P , we say thatM1 is preferred toM2 relative
to P , written P |= M1 ≺M2, if pref(P) |= M1 ≺M2.

Similarly, a simple measure PSC program is a measure
PSC program P which consists of two types of rules:

D1 = s← s1, . . . , sk

where s, s1, . . . , sk are SC atoms and

D2 = s← (3)

where s is a measure PSC atom. Given a simple measure
PSC program P , we let pref (P) denote the set of measure
PSC atoms that appear in a rule of type (3) in P . Note that
any stable model M of P must satisfy all the measure PSC
atoms in pref(P). Given two stable models M1 and M2

of P , M1 is weakly preferred to M2 relative to P , written
P |= M1 ≺w M2, if pref(P) |= M1 ≺w M2.

To be practical, any implementation of PSC programming
will have to be restricted to a class of programs that can be
represented in a compact way. The idea is that we should
think of an SC atom 〈X,F 〉 as being implemented by an
intersection algorithm AX for X and a membership algo-
rithm AF for F . That is, for any set of atoms M , the al-
gorithm AX returns a representation for M ∩ X as a word
w in {0, 1}|X| and then AF (w) = 1 if M ∩ X ∈ F and
AF (w) = 0 if M ∩ X 6∈ F . For a pre-ordered PSC atom
〈X,F,≤F 〉, we assume that there is an additional algorithm
A≤ which for any pair (M1,M2) of sets of atoms takes as in-
put (w1, w2) where w1 is the representation of M1 ∩X pro-
duced by AX(M1) and w2 is the representation of M2 ∩X
produced by AX(M2) and returns 1 if M1 ∩X and M2 ∩X
are in F and M1 ∩X ≤F M2 ∩X and returns 0 otherwise.
For a measure PSC atom 〈X,F, ρF 〉, we assume that there
is an addition algorithm AρF which for any set of atoms M ,
takes as an input the representation w of M ∩ X produced
byAX(M) and returns ρF (M1∩X) ifM1∩X ∈ F and re-
turns ∗ otherwise. For example, suppose that for a SC atom
〈X,F 〉, F contains only those subsets of X that consist of
an even number of elements. Implementation of this atom
by enumerating F is clearly inefficient as there are 2|X|−1

sets with even number of elements in F . Thus we do not
want to represent F by an enumeration of all the subsets of
X of even cardinality. However, an algorithm returning 1 if
and only if the input set has even number of elements is triv-
ial to implement and will run in O (|X|) time. An obvious
implementation can be obtained as follows. Let {x1, ..., xn}
be an enumeration of X . Thus any subset of X can be rep-
resented as a vector of n binary digits (bits). For instance,
suppose that X = {x1, ..., x8}. Consider Y ⊆ X where
Y = {x1, x3, x6}. Then an 8 bit representation of A is
101001. Assuming this representation we have the follow-
ing pseudocode for AF .

boolean AF (Y)
n = size(Y);
result = true;
for i=1:n if Y[i] == 1 then result = ˜result; endfor;
return result;

end
where Y[i] is the ith bit of the bit vector Y, and ˜result is the
boolean NOT operation. Suppose instead of the subsets ofX
of even cardinality, we want to enforce the cardinality con-
straint on the subsets of Y ofX such that 3 ≤ |Y | ≤ |X|−3.
There are 2|X|−2(|X|·(|X| − 1) /2+|X|+1) such subsets
and we clearly do not want to list all of them. However, as
in the previous example there is a simple algorithm that will
implement this cardinality constraint by counting the num-
ber of bits N of Y that have value equal to 1 and checking
the condition 3 ≤ N ≤ |X| − 3.

PSC semantics specifies what an implementation of PSC
programming should do. It is not a prescription for how
PSC programming should be implemented. Thus the fact
that PSC programming deals with sets should not be under-
stood to mean that PSC programming has to be implemented
by enumerating sets. Efficient implementations of PSC pro-
gramming will not use such an approach. We will use two
examples to motivate the fact that semantics does not neces-
sarily prescribe how the formalism is to be implemented. We
note that an extension of ASP that uses arbitrary algorithms
was considered in (Brik and Remmel 2011).

First, consider stable model semantics. The formalism
shows that a stable model can be found by choosing a subset
of the Herbrand base of a logic program and then check-
ing that the subset is a stable model. Now, while undoubt-
edly useful, the formalism is impractical if implemented as
stated. Indeed, modern ASP solvers such as smodels (Si-
mons, Niemelä, and Soininen 2002) and clasp (Gebser et
al. 2007) use efficient algorithms to implement stable model
semantics, where the algorithms do not rely on searching
through the entire powerset of the Herbrand base of a logic
program, which would be the case if the semantics was con-
sidered as a prescription for implementations.

Second, consider cardinality constraint programming
(Niemelä, Simons, and Soininen 1999). The formalism has
been implemented in smodels-2 (Simons 1999) and is gener-
ally considered to be a practical extension of ASP. However,
its practicality follows from the fact that efficient implemen-
tations of cardinality constraint programming exist.

To illustrate how the algorithmic approach for implement-
ing PSC programming might work we will consider the
problem of finding a vertex cover of size less than K for
a given graph, with a preference for the covers that include
vertex w.

For a given graph a measure PSC program can be
constructed as follows. For every edge (u, v) include a
rule〈{u, v} , {{u} , {v}}〉 ←, specifying that either u or v
is in a stable model. Also include the rule 〈V, F, ρF 〉 ←
where V is the set of all the vertices of the graph and, for
any U ⊆ V , U ∈ F if |U | < K and

ρF (U) =

{
0 if w ∈ U
1 if w /∈ U.

Now, an algorithmic implementation of V is very simple.
Namely, for any subset U of the Herbrand base AV (U)
returns a representation of U as a word bU in {0, 1}|V |.
Then the membership algorithm for F ,AF , can easily check
whether |U | ≤ K by making one pass through bU . Finally
the algorithm AρF (bU) simply has to check the condition
bU [iw] == 1 where iw is the index in the bit array cor-
responding to the atom w. This example shows that com-
pact representations of PSC programs can be created and
that such representations allow one to efficiently implement
PSC programming in many cases.

For many applications, simple PSC programs are ade-
quate to express preferences. In fact, pre-ordered simple
PSC programs are sufficient to express optimal stable mod-
els of ASO.

We will now give some examples which illustrate how
PSC programming can be used.

Example 1. Bob is a Ph.D. student who is about to grad-
uate from his university. Bob is guessing that he will have
multiple job offers and wants to determine a method by
which he will make his decision. Bob identifies two impor-
tant criteria in making a decision. These are the type of in-
stitution and its location. He thus introduces the following
atoms: R - for the job at a research university, T - for the
job at a teaching university, C - for the job in a company,
CAL-for the job located in California, and NCal-for the job
not located in California. Thus the set of atoms is X = {R,
T , C, CAL, NCAL}. Then any offer is described by a set
of atoms from the following family of sets:

F = {{A,B} : A ∈ {R, T,C} andB ∈ {CAL,NCAL}}.

Finally Bob decides on the following ordering of sets ≤F :
{R, CAL} <F {R, NCAL} <F {T , CAL} <F {T ,
NCAL} <F {C, CAL} <F {C, NCAL}.

In this example and all the following examples in this sec-
tion, we will assume that Bob is trying to decide between
two jobs j1 and j2. Thus we introduce a base program P0.
P0 contains the rule

〈{j1, j2}, {{j1}, {j2}}〉 ← .

This rule says that, in any stable model M , exactly one of j1
and j2 is contained. Then we add rules to specify the relevant
information about jobs j1 and j2. For example, if j1 is a job
at a research university in California and j2 is a job at a
teaching university outside of California, we would add the
following rules: R ← j1, Cal ← j1, T ← j2, NCal ←
j2.

Then Bob’s preferences can be described by the simple
pre-ordered PSC program P1 which consists of P0 plus the
rule 〈X,F,≤F 〉 ←.

Example 2. Bob soon realizes that not all locations
outside of California have the same weight. He is actually
more likely to consider an offer from a location which
is near California than from a location which is far from
California. Bob thinks that a job at a research university is
preferable to a job at a teaching university and that a job at
a teaching university is preferable to a job at a company.
Yet, Bob notices that he will prefer a job from a teaching
university in California to a job from a research university
which is more than 500 miles away from California.

He thus revises his original approach. There are still
predicate atoms R, T , C to specify a research university,
or a teaching university or a company respectively. How-
ever, now Bob introduces a set of predicate atoms D̂ =
{D (x) |x ∈ N}, where N is the set of natural numbers and
D (x) indicates a distance x from California. Thus D (0)
indicates that the location of the job is in California. Note
that in an implementation of PSC programming D̂ can be an
algorithm that on an input M will simply return the set of
atoms in M of the form D(x) for x ∈ N. While D̂ repre-
sents an infinite set, its implementation can be compact and
efficient.

Now let Z = {R, T , C} ∪ D̂ and let H = {{A, B}|
A ∈ {R, T , C}, B ∈ D̂}. Bob defines a measure function
as follows ρH ({A,D (x)}) = τ (A) + x where τ (R) = 0,
τ (T) = 500 and τ (C) = 1000.

Thus Bob’s preferences are specified by the simple
measure PSC program which consists of P0 plus the rule
〈Z,H, ρH〉 ← .

If we consider more general pre-ordered PSC programs
P and measure PSC programs, then we have several natural
choices for how to induce a pre-order on the set of stable
models of P . If P is a pre-ordered (measure) PSC program
and M is a stable model of P , then we let pref (P,M) de-
note the set of all pre-ordered (measure) PSC atoms s such
that there is a rule C = s ← s1, . . . , sk where s is a pre-
ordered (measure) PSC atom and M satisfies the body of C.
Since all stable models of P are models of P by definition,
M must be a model of pref(P,M).

Note, however, that if M1 and M2 are stable models
of P it is not necessarily the case that pref(P,M1) =
pref(P,M2). Now in the case where pref(P,M1) =
pref(P,M2), the obvious thing to do for the pre-ordered
PSC programs is to say that M1 is preferred to M2 relative
to P if and only if pref(P,M1) |= M1 ≺ M2. However, if
pref(P,M1) 6= pref(P,M2), then one has several natural
choices. First, one can simply consider the pre-ordered PSC
atoms in pref(P,M1) ∩ pref(P,M2), i.e. the pre-ordered
PSC atoms which are the conclusions of rules of P which
are satisfied by both M1 and M2. Thus we say that M1 is in
common preferred toM2 relative to P , written P |= M1 ≺ic
M2, if and only if pref(P,M1) ∩ pref(P,M2) |= M1 ≺
M2. A second natural choice that one might want to use in
certain situations is to take the point of view that satisfying
a pre-ordered PSC atom s that appears in the head of a rule
in P is more preferable than not satisfying s. Thus we say
that M1 is in total preferred to M2 relative to P , written
P |= M1 ≺it M2, if and only if either (a) pref(P,M1) ⊃
pref(P,M2) and either pref(P,M1) ∩ pref(P,M2) |=
M1 ≺ M2 or pref(P,M1) ∩ pref(P,M2) |= M1 ∼ M2

or (b) pref(P,M1) = pref(P,M2) and pref(P,M1) ∩
pref(P,M2) |= M1 ≺M2.

Example 3. As Bob has more time to contemplate the job
offers, he realizes that his life will be simplified if the job is
in a town where there is a good public transportation system.
Also, being a classical music lover, Bob considers an easy
access to live classical concerts as one of the factors in mak-
ing his decision. Not being sure about the weight that public
transportation and live classical music concerts should have
in the decision making process, he reverts to the pre-ordered
PSC program from Example 1. Bob reasons that he will keep
his preferences as they already are, except when there is an
access to live classical music concerts in the area. In that
case, a location outside of California with a good system of
public transportation is preferable to a location in California
without such a system. Thus Bob introduces two new pred-
icate atoms: CM - to indicate the presence of local access
to live classical music concerts and PT to indicate the pres-
ence of a good system of public transportation. Bob adds a
new rule to the program P1 to produce a new program P3.

P3 consists of P0 plus the following two rules:

〈X,F,≤F 〉 ← 〈Y,G,≤G〉 ← CM

where Y = {CAL, NCAL, PT}, G = {{CAL, PT},
{NCAL, PT}, {CAL}, {NCAL}} and {CAL, PT} <G
{NCAL, PT} <G {CAL} <G {NCAL}.

Now P3 |= M2 ≺ic M1 since pref (P3,M1) ∩
pref (P3,M2) = {〈X , F , ≤F 〉} and 〈X , F , ≤F 〉 |=
M2 ≺ M1. However P3 |= M1 ≈it M2 be-
cause pref (P3,M1) ⊃ pref (P3,M2) and 〈X , F ,
≤F 〉 |= M2 ≺M1.

Similarly we can define a pre-order on the set of sta-
ble models of measure PSC programs. In the case where
pref(P,M1) = pref(P,M2), the obvious thing to do is
to say that M1 is weakly preferred to M2 relative to P
if and only if pref(P,M1) |= M1 ≺w M2. However, if
pref(P,M1) 6= pref(P,M2), then one has several nat-
ural choices. One is to simply consider the measure PSC
atoms in pref(P,M1)∩pref(P,M2), i.e. the measure PSC
atoms which are the conclusions of rules of P which are
satisfied by both M1 and M2. Thus we say that M1 is
in common weakly preferred to M2 relative to P , writ-
ten P |= M1 �w,ic M2, if and only if pref(P,M1) ∩
pref(P,M2) |= M1 ≺w M2. As before, our second nat-
ural choice is to take the point of view that satisfying a mea-
sure PSC atom s that appears in the head of a rule in P
is more preferable than not satisfying s. Thus we say that
M1 is in total weakly preferred to M2 relative to P , writ-
ten P |= M1 ≺w,it M2, if and only if (a) pref(P,M1) ⊃
pref(P,M2) and either pref(P,M1) ∩ pref(P,M2) |=
M1 ≺w M2 or pref(P,M1)∩pref(P,M2) |= M1 ≈w M2

or (b) pref(P,M1) = pref(P,M2) and pref(P,M1) ∩
pref(P,M2) |= M1 ≺w M2. We also have a third
natural choice that one might want to use in certain
circumstances which is just to compare the two sums∑
〈X,F,ρF 〉∈pref(P,M1)

ρF (M1 ∩X) and∑
〈X,F,ρF 〉∈pref(P,M2)

ρF (M2 ∩ X). Thus we say that M1

is in sum weakly preferred to M2 relative to P , written
P |= M1 ≺w,is M2, if∑

〈X,F,ρF 〉∈pref(P,M1)

ρF (M1 ∩X) <

∑
〈X,F,ρF 〉∈pref(P,M2)

ρF (M2 ∩X).

Definition 1. A set of atoms M is called an in common
preferred PSC stable model of a pre-ordered PSC program
P if M is a PSC stable model of P and for all PSC stable
models M ′ of P , P 6|= M ′ ≺ic M .

An in total preferred PSC stable model, an in common
weakly preferred PSC stable model, an in total weakly pre-
ferred PSC stable model, an in sum weakly preferred PSC
stable model are defined similarly. To refer to any of these
definitions without explicitly naming them we may say that
M is a preferred PSC stable model of a PSC program P .

PSC Programs and Answer Set Optimization
Programs

As was stated in the introduction, the closest approach to
PSC programming is ASO. In ASO, one starts with an ASP
program Pgen over a set of atoms At and then a prefer-
ence specification is given by a separate preference program
Ppref . The rules of Ppref are of the form

C1 > ... > Ck ← a1, ..., an, not b1, ..., not bm (4)

where ais and bjs are literals and the Cis are Boolean com-
binations over At. Here a Boolean combination over At is
a formula built of atoms in A by means of disjunction, con-
junction, strong negation ¬ and default negation not, with
the restriction that strong negation is allowed to appear only
in front of atoms, and default negation is allowed to appear
only in front of literals.

Next suppose that we are given a set of literals S. Then the
definition of S satisfying a Boolean combination C, written
S |= C, uses the standard inductive definition of satisfaction
of propositional formulas except that S |= not l where l is
literal if and only if l /∈ S. Then we define the satisfaction
degree vS (r) for any rule of the form of (4) by setting (i)
vS (r) = I if either the body of r is not satisfied by S or the
body of r is satisfied by S, but none of the Cis are satisfied
and (ii) vS (r) = min{i : S |= Ci} if the body of r is satis-
fied by S and at least one of the Cis is satisfied by S. This
allows one to define a satisfaction vector VS = (vS (r1),
..., vS (rn)) for any answer set S of Pgen for a preference
program Ppref = {r1, ..., rn}.

One can then use satisfaction vectors to define a pre-order
on answer sets of Pgen as follows. First for any two possible
values a and b of vS (r) (i) a ≥ b if a = I and b = 1 or if
a = 1 and b = I , (ii) a > b if a = I and b ∈ {2, 3, ...}, and
(iii) a > b if a, b ∈ {1, 2, ...} and a < b relative to the usual
order on the natural numbers. Then for two sets of literals S1

and S2 VS1
≥ VS2

if vS1
(ri) ≥ vS2

(ri) for every i ∈ {1,
..., n} VS1

> VS2
if VS1

≥ VS2
and for some i ∈ {1, ..., n}

vS1
(ri) > vS2

(ri). S1 ≥ S2 if VS1
≥ VS2

and S1 > S2 if
VS1

> VS2
. Finally, a set of literals S is an optimal model of

an ASO program (Pgen, Ppref) if S is an answer set of Pgen
and there is no answer set S′ of Pgen such that S′ > S.

We will now show how optimal models of an ASO
program can be expressed using PSC programming. Let
(Pgen, Ppref) be an ASO program.

Let At be the set of all atoms that occur in the rules
of Pgen and Ppref . Note that any stable model A of Pgen
must be a subset of At. Consequently, any optimal model of
(Pgen, Ppref) must be a subset of At.

Let Ppref consist of the rules W1, W2, ..., Wγ where
Wi is of the form Ci1 > ... > Cik ← ai1, ..., aini

, not
bi1, ..., not b

i
mi

.
We will now construct a simple pre-ordered PSC program

P and we will show that there is a one-to-one correspon-
dence between the preferred PSC stable models of P and
the optimal stable models of (Pgen, Ppref).

The Herbrand base H (P) of P will consist of At plus
the set At = {a| a ∈ A} where for each a ∈ At, a is a
new atom not in At and where, for all a, b ∈ At, if a 6= b,

then a 6= b, and a new atom D so that D /∈ At ∪At. That is
H (P) = At ∪At ∪ {D}.

For a set A ⊆ At define A = {a| a ∈ A}. For a rule
Wi ∈ Ppref letAt (Wi) be the set of all the atoms that occur
in Wi. We define a PSC program P ′pref to be the set of all
rules 〈

At (Wi), P
(
At (Wi)

)
, ≤i

〉
← .

The pre-order≤i is defined as follows. ForA ⊆ At,B ⊆ At
A ≤i B if one of the following conditions hold.

1. A 6|= body (Wi); 2. A |= body (Wi) and A 6|= c (Wi);
3. A |= body (Wi) and A |= Ci1; 4. A |= body (Wi) and
A |= Ciz where z is minimal and B |= body (Wi) and
B |= Cij where j is minimal and z ≤ j, i.e., A ≤i B iff
vA (Wi) ≥ vB (Wi).

Let Pcons be the set of rules consisting of two rules for
each a ∈ At a← a and D ← a, not a, not D.

Then the PSC program P is defined by P = Pgen ∪
P ′pref ∪ Pcons.

We can prove the following two theorems.
Theorem 1. 1. For all B ⊆ At, if B is a stable model of

Pgen in the sense of Gelfond and Lifschitz, then B ∪ B is a
stable model of P in the set of PSC.

2. For all A ⊆ H (P), if A is a stable model of P in the
sense of PSC, then A = B ∪ B where B is a stable model
of Pgen in the sense of Gelfond and Lifschitz.

Theorem 2. 1. If B is an optimal stable model of
(Pgen, Ppref), then B ∪B is a preferred PSC stable model
of P .

2. If A is a preferred PSC stable model of P , then A∩At
is an optimal stable model of (Pgen, Ppref).

A reasonable concern in the construction of P
is the efficiency of the implementation of the PSC
atoms

〈
At (Wi), P

(
At (Wi)

)
, ≤i

〉
.The implementation

of such an atom can be a string 〈X, F, O〉 where X , F ,
O are the names of the algorithms. The algorithm corre-
sponding to X on the input set of atoms M will return
At (Wi)∩M . The algorithm corresponding to F will always
return 1 since any subset ofAt (Wi)∩M is inP

(
At (Wi)

)
.

The algorithm corresponding to O on the inputs A and B
will return 1 iff A ≤i B and 0 otherwise. The algorithm
for O can be as efficient as the algorithm in the implemen-
tation of ASO. Our algorithm can use the ASO algorithm
to check the conditions A |= body (Wi), A |= c (Wi),
B |= body (Wi), A |= Ciz , B |= Ciz that are necessary
for its evaluation.

Using PSC Programs to Express General
Preferences

In this section we will show that the general preferences of
(Son and Pontelli 2006) can be expressed using PSC atoms.
In (Son and Pontelli 2006), the language PP for planning
preferences specification was introduced. PP allows users
to elegantly express multi-dimensional preferences among
plans that achieve the same goal. In PP , users can define

general preferences by building them from simpler atomic
preferences using a small number of special operators.

A basic desire formula (basic desire for short) is a for-
mula expressing a single preference about a trajectory. Son
and Pontelli provide a formal definition of the notion of ba-
sic desire, as well as a formal definition of the notion of a
trajectory, and define what it means for a trajectory to sat-
isfy a basic desire. For the purposes of this paper, it is not
necessary to restate these definitions. It will suffice to as-
sume that a basic desire is a formula φ in some language
and that, for any trajectory α, we can determine whether α
satisfies φ, written α |= φ, or whether α does not satisfy φ,
written α 6|= φ. We will also assume that each basic desire
corresponds to a unique predicate atom. In addition, we will
use the basic desires and the predicate atoms corresponding
to them interchangeably.

Let φ be a basic desire formula and let α and β be two
trajectories. The trajectory α is preferred to the trajectory
β, written α ≺φ β, if α |= φ and β 6|= φ. α and β are
indistinguishable with respect to φ, written α ≈φ β, if either
(1) α |= φ and β |= φ or (2) α 6|= φ and β 6|= φ.

An atomic preference formula is defined as a formula of
the type φ1 C φ2C...Cφn where φ1, ..., φn are basic de-
sire formulas. If α and β are trajectories and ψ = φ1 C
φ2C...Cφn is an atomic preference formula, then we say
α and β are indistinguishable with respect to ψ (written as
α ≈ψ β) if ∀i (1 ≤ i ≤ n⇒ α ≈φi

β) and α is preferred
to β with respect to ψ (written as α ≺ψ β) if ∃ (1 ≤ i ≤ n)
such that ∀ (1 ≤ j < i) α ≈φj

β and α ≺φi
β.

The set of general preference formulas (general prefer-
ences) are defined via the following inductive definition: (i)
every atomic preference formula ψ is a general preference
formula, (ii) if ψ1, ψ2 are general preference formulas, then
ψ1&ψ2,ψ1|ψ2, and !ψ1 are general preference formulas, and
(iii) if ψ1, ψ2, ..., ψk are general preference formulas, then
ψ1 C ψ2C . . . Cψk is a general preference formula.

Let ψ be a general preference formula and let α, β be two
trajectories. Then we say α is preferred to β with respect to
ψ (written α ≺ψ β) if:

1. ψ is an atomic preference formula and α ≺ψ β
2. ψ = ψ1&ψ2 and α ≺ψ1 β and α ≺ψ2 β
3. ψ = ψ1|ψ2 and (α ≺ψ1

β and α ≈ψ2
β) or (α ≈ψ1

β
and α ≺ψ2

β) or (α ≺ψ1
β and α ≺ψ2

β).
4. ψ =!ψ1 and β ≺ψ1

α
5. ψ = ψ1 C ψ2C . . . Cψk, and there exists 1 ≤ i ≤ k

such that (∀ (1 ≤ j < i) α ≈ψj β and α ≺ψi β)

We say α is indistinguishable from β with respect to ψ
(write α ≈ψ β) if:

1. ψ is an atomic preference formula and α ≈ψ β
2. ψ = ψ1&ψ2, α ≈ψ1

β and α ≈ψ2
β

3. ψ = ψ1|ψ2, α ≈ψ1 β and α ≈ψ2 β
4. ψ =!ψ1 and α ≈ψ1

β
5. ψ = ψ1Cψ2C . . .Cψk, and for all 1 ≤ i ≤ k α ≈ψi

β.

Let ∆ be the set of all the basic desire predicate atoms. Let
X be a finite subset of ∆ and F ⊆ P (X). Let ≤F be a pre-
order on F . For a trajectory α let ∆ (α) ≡ {d ∈ ∆| α |= d}
i.e. the set of all the basic desires satisfied by α. Then we

say that α satisfies 〈X,F,≤F 〉 if ∆ (α) ∩ X ∈ F . We say
that a trajectory α is preferred to a trajectory β with respect
to 〈X,F,≤F 〉 if 〈X,F,≤F 〉 |= ∆ (α) ≺ ∆ (β). This will
be denoted by 〈X,F,≤F 〉 |= α ≺ β. We say that trajec-
tories α, β are indistinguishable with respect to 〈X,F,≤F 〉
if 〈X,F,≤F 〉 |= ∆ (α) ≈ ∆ (β). This will be denoted by
〈X,F,≤F 〉 |= α ≈ β.

Theorem 3. For a general preference formula φ there ex-
ists a pre-ordered PSC atom 〈Xφ, Fφ,≤φ〉 such that for two
trajectories α, β, α ≺φ β in the sense of (Son and Pontelli
2006) iff 〈Xφ, Fφ,≤φ〉 |= α ≺ β and α ≈φ β in the sense
of (Son and Pontelli 2006) iff 〈Xφ, Fφ,≤φ〉 |= α ≈ β.

The proof, omitted due to space limitations shows how to
construct 〈Xφ, Fφ,≤φ〉.

The Computational Complexity of the Set of
Preferred PSC Stable Models

We can prove the following result on the computational
complexity of finding a “preferred” PSC stable models of a
PSC program. Please note that the theorem’s preconditions
are formulated to be useful for analyzing algorithmic imple-
mentations of PSC programming as discussed in section 3.

Theorem 4. Let P be a finite PSC program. Let At be the
set of all atoms appearing in P . Suppose that for any sub-
set of At and any PSC atom or any SC atom performing an
elementary PSC operation can be done in polynomial time
on the number of elements in At. Then given M ⊆ At, the
problem of determining whether M is a preferred PSC sta-
ble model of P for any of the induced pre-orders on stable
models described in Section 3 is CoNP-complete relative to
the size of P and the number of elements in At.

Proof. The problem is in CoNP sinceM is not a preferred
stable model of P if either M is not a stable model of P or
there exists a stable model N of P which is preferred to M .

The completeness is demonstrated by a reduction of 3-

SAT problem. Let ψ be a formula
n∧
i=1

(ai1 ∨ ai2 ∨ ai3),

where aij are boolean variables. For i = 1, .., n let Ai =
{si1, si2, si3} be a set of atoms. Consider the following mea-
sure PSC program Pψ .
〈{S}, {{S}}, f〉 ← 〈A1, P (A1)\∅〉 , ..., 〈An, P (An) \∅〉

where f({S}) = 1. For every i = 1, ..., n, for j = 1, ..., 3
Pψ has clauses 〈{sij}, {{sij}, ∅}〉 ←

For a set of atoms M let vM (aij) = 1 iff sij ∈ M . Then
S ∈ M iff vM satisfies ψ. Pick M ⊆ {s11, ..., sn3} at ran-
dom. If vM does not satisfy ψ then a satisfying assignment
exists iff M is not a preferred stable model of Pψ .�

Now, in (Brewka, Niemelä, and Truszczynski 2003), it
was shown that the problem of deciding whether there ex-
ists an answer set for an ASO program P = (Pgen, Ppref)
is NP-complete and the problem of deciding whether S is
an optimal model of P is coNP-complete. This is the com-
plexity of the corresponding problems for PSC programs.
That is, the problem of deciding whether there exists a stable
model for a PSC program P is NP-complete and the prob-
lem of deciding whether a PSC stable model M of a PSC
program P is a preferred PSC stable model is co-NP com-
plete.

Conclusions and directions for further
research

In this paper, we have introduced an approach to speci-
fying preferences in ASP called Preference Set Constraint
Programming which is an extension of SC programming
of (Marek and Remmel 2004). PSC programming uses two
types of PSC atoms: pre-ordered PSC atoms and measure
PSC atoms. These atoms can be used to define pre-ordered
PSC programs and measure PSC programs. For pre-ordered
PSC programs, we have considered two approaches for
specifying preferences: “in common” and “in total”. For
the measure PSC programs we have considered three ap-
proaches: “in common”, “in total” and “in sum”. We show
that the problem of determining whether M is a preferred
PSC stable models of a PSC program is CoNP-complete.
To demonstrate the expressive power of PSC programming,
we have shown that PSC programming can be used to ex-
press optimal stable models of ASO (Brewka, Niemelä, and
Truszczynski 2003), and the general preferences of Son and
Pontelli (Son and Pontelli 2006). It is also the case that
the preferred stable models and the weakly preferred sta-
ble models of (Brewka and Eiter 1999) can be expressed by
an extension of PSC programming, although it was not dis-
cussed in this paper.

We have only briefly discussed implementations of PSC
programming, but clearly it is an important issue for appli-
cations.

There are a number of areas for further research on PSC
programming. One is to study the exact relationships be-
tween PSC programming and other approaches for reason-
ing with preferences. In particular, one must pay special at-
tention to the efficiency of expressing preferences in any two
systems that are being compared. A second is to study exten-
sions of PSC programming where we add the ability of the
user to express preference by preference orderings on rules.
We will study both of these questions in subsequent papers.

Finally, the five approaches for specifying preferences us-
ing PSC programs can be viewed as special cases of the
following generalization. A PSC system R is a pair 〈P,≤〉
where P is a PSC program and≤ is a pre-order on the set of
PSC stable models of P with the property that if M1 and
M2 are PSC stable models of P such that pref (P,M1)
= pref (P,M2) and M1 ≤ M2, then pref (P,M1) |=
M1 ≺ M2 or pref (P,M1) |= M1 ∼ M2 if P is a pre-
ordered PSC program and pref (P,M1) |= M1 ≺w M2 or
pref (P,M1) |= M1 ≈w M2 if P is a measure PSC pro-
gram. We suggest that one should study abstract properties
of PSC systems.

References
Brewka, G., and Eiter, T. 1999. Preferred answer sets for
extended logic programs. Artif. Intell. 109(1-2):297–356.
Brewka, G.; Niemelä, I.; and Syrjänen, T. 2004. Logic pro-
grams with ordered disjunction. Computational Intelligence
20(2):335–357.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. An-
swer set optimization. In Gottlob, G., and Walsh, T., eds.,
IJCAI, 867–872. Morgan Kaufmann.

Brewka, G.; Niemelä, I.; and Truszczynski, M. 2008. Prefer-
ences and nonmonotonic reasoning. AI Magazine 29(4):69–
78.
Brewka, G. 2002. Logic programming with ordered disjunc-
tion. In AAAI/IAAI, 100–105.
Brik, A., and Remmel, J. B. 2011. Hybrid asp. In Gallagher,
J. P., and Gelfond, M., eds., ICLP (Technical Communica-
tions), volume 11 of LIPIcs, 40–50. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.
Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Enhancing
disjunctive datalog by constraints. IEEE Trans. Knowl. Data
Eng. 12(5):845–860.
Delgrande, J. P.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational In-
telligence 20(2):308–334.
Elkan, C. 1990. A rational reconstruction of nonmonotonic
truth maintenance systems. Artif. Intell. 43(2):219–234.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Veloso, M. M.,
ed., IJCAI, 386–373.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Gelfond, M.; Leone, N.; and Pfeifer, G., eds. 1999. Logic
Programming and Nonmonotonic Reasoning, 5th Interna-
tional Conference, LPNMR’99, El Paso, Texas, USA, De-
cember 2-4, 1999, Proceedings, volume 1730 of Lecture
Notes in Computer Science. Springer.
Marek, V. W., and Remmel, J. B. 2003. On the expressibility
of stable logic programming. TPLP 3(4-5):551–567.
Marek, V. W., and Remmel, J. B. 2004. Set constraints in
logic programming. In Lifschitz, V., and Niemelä, I., eds.,
LPNMR, volume 2923 of Lecture Notes in Computer Sci-
ence, 167–179. Springer.
Marek, V. W., and Truszczynski, M. 1991. Autoepistemic
logic. J. ACM 38(3):588–619.
Niemelä, I., and Simons, P. 2000. Extending the smodels
system with cardinality and weight constraints. Logic-Based
Artificial Intelligence 491–521.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
model semantics of weight constraint rules. In Gelfond et al.
(1999), 317–331.
Sakama, C., and Inoue, K. 2000. Prioritized logic program-
ming and its application to commonsense reasoning. Artif.
Intell. 123(1-2):185–222.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artif. Intell.
138(1-2):181–234.
Simons, P. 1999. Extending the stable model semantics with
more expressive rules. In Gelfond et al. (1999), 305–316.
Son, T. C., and Pontelli, E. 2006. Planning with preferences
using logic programming. TPLP 6(5):559–607.

