ON LOGIC PROGRAM UPDATES

INVITED TALK AT NMR'12

João Leite CENTRIA, New University of Lisbon

Non-Monotonic Logic Programming

Stable Models Semantics: A semantics for logic programs with negation developed by M. Gelfond and V. Lifschitz (1987-91), which lead to:

Answer-Set Programming (ASP)

- ASP has good properties for Knowledge Representation and Problem Solving
 - expressive language;
 - O, 1 or multiple answer sets (models);
 - two forms of negation to reason with a limited combination of the closed and open world assumptions;
 - we restrict to default negation.
 - fast answer-set solvers (DLV, CLASP, SMODELS, etc...);
 - theoretically well understood language;

Logic Programs

□ A (generalized) rule r is:

$$L_0 \leftarrow L_1, \ldots, L_n$$
.

where each L_i is a literal ie. an atom A or default literal ~A.
 H(r)= L₀ is the head of rule r
 B(r)={L₁,..., L_n} is the body of rule r
 A (generalised) logic program is a set of rules

Example:

 $a \leftarrow .$ $\sim a \leftarrow b.$ $b \leftarrow \sim c.$ $d \leftarrow \sim e.$ $c \leftarrow \sim b.$

Why default negation in heads?

4

- We need a way to update the truth value of an atom to "not being true".
 - In a dynamic setting, updating with a rule

means that if L₁,..., L_n is true, then A should now be true while updating with a rule

 $\sim A \leftarrow L_1, \dots, L_n$.

 $A \leftarrow L_1, \ldots, L_n$

means that if L_1, \ldots, L_n is true, then A should now not be true

- Why not use strong (classical) negation in the head instead?
 - LPs with two kinds of negation allow three different (consistent) states wrt. some atom A, namely {A}, {¬A} and { }.
 - We need to be able to update from/to any of these states
 - Strong negation updates to {¬A}
 - Default negation updates to { }

Logic Programs

5

□ An interpretation I is a stable model of a program P if:

```
I' = least(P \cup Defaults)
```

- □ $I'=I \cup \{ \sim A \mid A \text{ is an atom and } A \notin I \}$
- Defaults = $\{ \sim A \mid A \text{ is an atom and } A \notin I \}$
- least(.) denotes the least model of the (positive) program obtained by treating literals of the form ~A as new atoms.
- Example:

 $P = \{a. \quad b \leftarrow \neg c. \quad c \leftarrow \neg b. \quad \neg a \leftarrow b. \quad d \leftarrow \neg e. \}$ $I = \{a, c, d\} \qquad I' = \{a, \neg b, c, d, \neg e\} \qquad Defaults = \{\neg b, \neg e\}$ $least(P \cup Defaults) =$ $= least(\{a. \ b \leftarrow \neg c. \ c \leftarrow \neg b. \ \neg a \leftarrow b. \ d \leftarrow \neg e. \} \cup \{\neg b. \ \neg e. \}) =$ $= \{a, \neg b, c, d, \neg e\} = I'$ $\Rightarrow \{a, c, d\} \text{ is a stable model.}$

Belief Change

- Change operations on monotonic logics have been studied extensively in the area of belief change.
 - rationality postulates for operations play a central role
 - constructive operator definitions correspond to sets of postulates
- two different belief change operations have been distinguished [Katsuno and Mendelzon1991]:
 - Revision
 - recording newly acquired information about a static world
 - characterized by AGM postulates and their descendants
 - Update
 - recording changes in a dynamic world
 - characterized by KM postulates for update

KM Postulates

Postulates (KM 1) – (KM 8)

 $(\mathbf{KM}\ 1) \ \phi \diamond \psi \models \psi.$

(KM 2) If $\phi \models \psi$, then $\phi \diamond \psi \equiv \phi$.

(KM 3) If both ϕ and ψ are satisfiable, then $\phi \diamond \psi$ is satisfiable.

(KM 4) If
$$\phi_1 \equiv \phi_2$$
 and $\psi_1 \equiv \psi_2$, then $\phi_1 \diamond \psi_1 \equiv \phi_2 \diamond \psi_2$.

(KM 5)
$$(\phi \diamond \psi) \land \chi \models \phi \diamond (\psi \land \chi).$$

(KM 6) If $\phi \diamond \psi_1 \models \psi_2$ and $\phi \diamond \psi_2 \models \psi_1$, then $\phi \diamond \psi_1 \equiv \phi \diamond \psi_2$.

(KM 7)
$$(\phi \diamond \psi_1) \land (\phi \diamond \psi_2) \models \phi \diamond (\psi_1 \lor \psi_2)$$
 if ϕ is complete.

(KM 8) $(\phi_1 \lor \phi_2) \diamond \psi \equiv (\phi_1 \diamond \psi) \lor (\phi_2 \diamond \psi).$

Logic Program Updates

□ Problem

Assing Semantics to a sequence of Logic Programs:

 $(P_1, P_2, ..., P_n)$

- Image: Image:
- Several lines of research
 - Based on Causal Rejection
 - Based on Abduction/Priorities/Preferences
 - Based on KM Postulates
 - Based on Structural Properties

••••

Fact Updates

[Marek and Truszczynski 98]

- \Box When the initial knowledge is just a set of facts (I_i)
 - an interpretation I_u is a Justified Update of I_i by a program Q if
 - I_u is a model of Q
 - There is no other model I_{χ} of Q such that $\Delta(I_{\chi},I_i) \subset \Delta(I_{u},I_i)$
- Example:

$$\begin{split} I_i &= \{ rain, clowdy \} \\ Q &= \sim rain \longleftarrow play \leftarrow \sim rain \\ I_u &= \{ play, clowdy \} \end{split}$$

- If the initial program is just a set of facts, then the result of updating it should be like in Fact Updates.
- □ $P_{\iota \upsilon}$: Generalisation of Fact Updates $P_I = \{A \leftarrow | A \in I\} \Rightarrow SEM(P_I \oplus Q) = IU(I,Q)$

Program Updates

[L and Pereira 98]

- What if our initial KB is a Logic Program?
- Can we simply take each of its stable models and update it?
- Initial Program P:
 - sleep $\leftarrow \sim tv_on$.
 - tv_on.

10

watch_tv \leftarrow tv_on.

- Stable Model:
 {tv_on, watch_tv}
 Updated Model:
 {power_failure, watch_tv}
- Intended Model is {power_failure, sleep}!

Support/Causal Rejection

Truth value of any element should be supported by some rule (either from the update program or from the initial program).

P $_{\sigma}$: Support:

```
if a \in M then \exists r \in P_i, H(r) = a \land M \models B(r)
```

- Inertia should be exerted on the program rules instead of model literals.
- Inertia in rules should only be blocked (or rules rejected) if there is a newer directly conflicting rule (or cause).
- $\square \mathbf{P}_{\gamma}$: Causal Rejection:

if $M \nvDash r \in P_i$ then $\exists r' \in P_k$, j < k, $H(r) = \sim H(r') \land M \vDash B(r')$

Other Desirable Properties

 $\mathbf{P}_{\mathbf{v}}$: Primacy of new information

 $\mathsf{M} \in \mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) \Rightarrow \mathsf{M} \vDash \mathsf{Q}$

 \mathbf{P}_{\varnothing} : Immunity to empty updates SEM(P $\oplus \varnothing$) = SEM($\varnothing \oplus P$) = SEM(P)

 P_{τ} : Immunity to tautologies $SEM(P \oplus Q) = SEM(P \oplus (Q \cup \{\tau\})) = SEM((P \cup \{\tau\}) \oplus Q)$ where τ is any tautology i.e. any rule τ such that $H(\tau) \in B(\tau)$

 $\mathbf{P}_{\rho\epsilon}$: Refined Extension Principle Generalisation of \mathbf{P}_{τ} to certain circular updates.

Logic Program Updates

13

 \Box An interpretation I is a stable model of (P_1, \dots, P_n) if

 $I' = Ieast([U(P_i) - Reject(I)] \cup Defaults(I))$

[L and Pereira 98]

 \Box Interpretation I is a Justified Update of (P₁,...,P_n) if

 $I' = \text{least}([\bigcup(P_i) - \text{Reject}(I)] \cup \text{Defaults}(I))$

$$\mathsf{Reject}(\mathsf{I}) = \{\mathsf{r} \in \mathsf{P}_{\mathsf{i}} \mid \exists \mathsf{r}' \in \mathsf{P}_{\mathsf{i}}, \mathsf{i} < \mathsf{j}, \mathsf{H}(\mathsf{r}) = \mathsf{H}(\mathsf{r}') \land \mathsf{I} \models \mathsf{B}(\mathsf{r}')\}$$

Defaults(I) = $\{ \sim A \mid A \text{ is an atom and } A \notin I \}$

On Logic Program Updates, Invited Talk at NMR'12

Interpretation I is a Justified Update of (P_1, \dots, P_n) if $I' = \text{least}([I](P_i) - \text{Reject}(I)] \cup \text{Defaults}(I))$ $Reject(I) = \{r \in P_i \mid \exists r' \in P_i, i < j, H(r) = \sim H(r') \land I \models B(r')\}$ $Defaults(I) = I^{-}$ Initial Program P₁: \Box Update Program P₂: power failure. sleep $\leftarrow \sim tv$ on. ~tv on \leftarrow power failure. tv on. watch tv \leftarrow tv on. Intended Model I={sleep, power_failure} l'={sleep, power_failure, ~tv_on, ~watch_tv} $Reject(I) = \{tv_on.\}$ $Defaults(I) = \{ \sim tv_on, \sim watch_tv \}$ least{sleep \leftarrow \sim tv_on. watch_tv \leftarrow tv_on. power_failure. ~tv_on ← power_failure. ~tv_on. ~watch_tv.} = ={sleep, power_failure, \sim tv_on, \sim watch_tv} = I'

15

[L and Pereira 98]

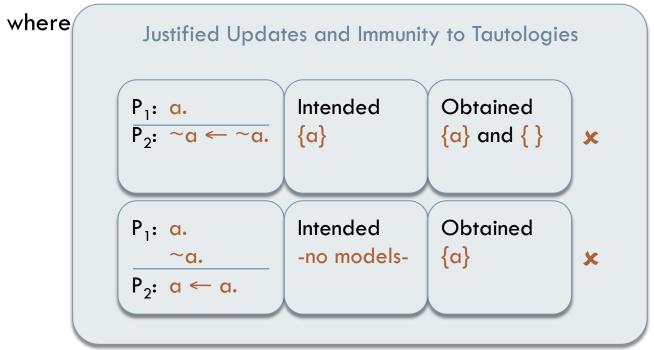
Properties:

 $A \in M \in SEM(P \oplus Q) \Rightarrow \exists r \in (P \cup Q) : H(r) = A \land M \vDash B(r)$

[L and Pereira 98]

- □ But, it doesn't obey:
- \mathbf{P}_{τ} : Immunity to tautologies

 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$


where τ is any tautology i.e. any rule τ such that $H(\tau) \in B(\tau)$

[L and Pereira 98]

18

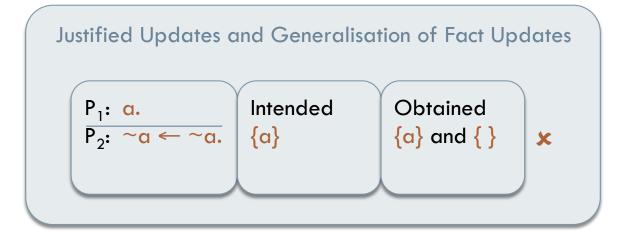
- □ But, it doesn't obey:
- $\boldsymbol{P}_{\tau}:$ Immunity to tautologies

 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$

On Logic Program Updates, Invited Talk at NMR'12

© J. Leite, CENTRIA

[L and Pereira 98]


And, it also doesn't obey:

 \mathbf{P}_{iv} : Generalisation of Fact Updates

 $\mathsf{P}_{\mathsf{I}} = \{\mathsf{A} \leftarrow | \mathsf{A} \in \mathsf{I}\} \Rightarrow \mathsf{SEM}(\mathsf{P}_{\mathsf{I}} \oplus \mathsf{Q}) = \mathsf{IU}(\mathsf{I},\mathsf{Q})$

[L and Pereira 98]

□ And, it also doesn't obey: $P_{\iota\upsilon}$: Generalisation of Fact Updates $P_{I}=\{A \leftarrow | A \in I\} \Rightarrow SEM(P_{I} \oplus Q) = IU(I,Q)$

On Logic Program Updates, Invited Talk at NMR'12

20

DLP – Dynamic Stable Models [Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

Interpretation I is a Dynamic Stable Model of (P₁, ..., P_n) if

 $I' = \text{least}([\bigcup(P_i) - \text{Reject}(I)] \cup \text{Defaults}(I))$

 $Reject(I) = \{r \in P_i \mid \exists r' \in P_i, i < j, H(r) = \sim H(r') \land I \models B(r')\}$

 $Defaults(I) = \{ \sim A \mid \nexists r \in P_i, H(r) = A \land I \models B(r) \}$

On Logic Program Updates, Invited Talk at NMR'12

[Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

Properties:

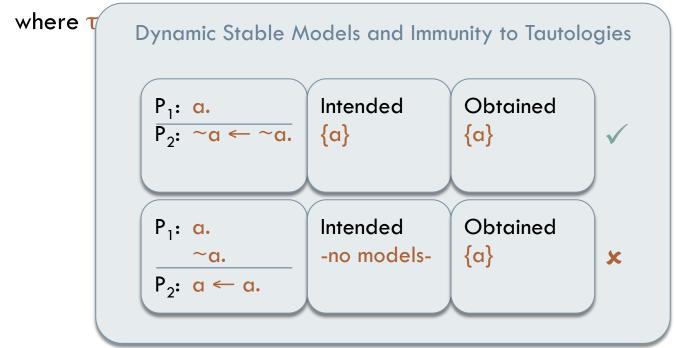
 $A \in M \in SEM(P \oplus Q) \Rightarrow \exists r \in (P \cup Q) : H(r) = A \land M \vDash B(r)$

 \mathbf{P}_{w} : Generalisation of Fact Updates

 $\mathsf{P}_{\mathsf{I}} = \{\mathsf{A} \leftarrow | \mathsf{A} \in \mathsf{I}\} \Rightarrow \mathsf{SEM}(\mathsf{P}_{\mathsf{I}} \oplus \mathsf{Q}) = \mathsf{IU}(\mathsf{I},\mathsf{Q})$

[Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

- But, it doesn't obey:
- $\boldsymbol{P}_{\tau}:$ Immunity to tautologies


 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$

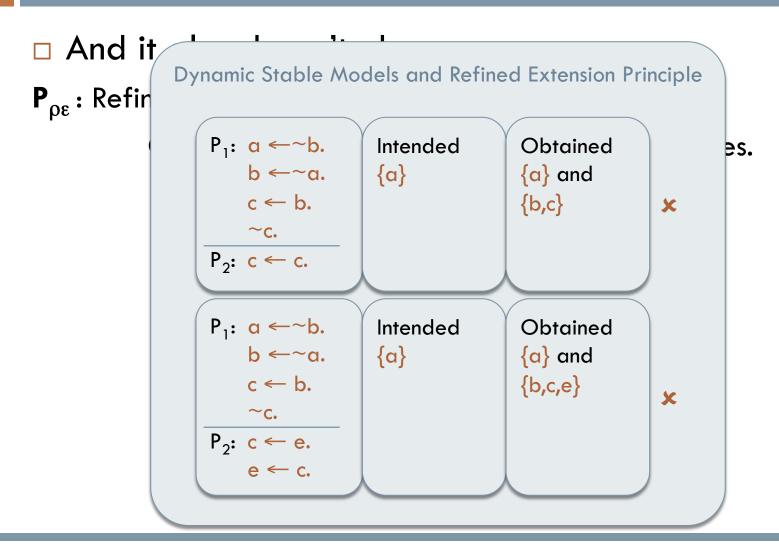
where τ is any tautology i.e. any rule τ such that $H(\tau) \in B(\tau)$

[Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

- But, it doesn't obey:
- \boldsymbol{P}_{τ} : Immunity to tautologies

 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$

On Logic Program Updates, Invited Talk at NMR'12


[Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

- And it also doesn't obey:
- $\mathbf{P}_{o\epsilon}$: Refined Extension Principle

Generalisation of \mathbf{P}_{τ} to certain circular updates.

[Alferes, L, Pereira, Przymusinska and Przymusinski 98,00]

26

On Logic Program Updates, Invited Talk at NMR'12

DLP – Refined Dynamic Stable Models [Alferes, Banti, Brogi and L 05]

Interpretation I is a Refined Dynamic Stable Model of (P₁,...,P_n) if

 $I' = \text{least}([\bigcup(P_i) - \text{Reject}(I)] \cup \text{Defaults}(I))$

 $Reject(I) = \{r \in P_i \mid \exists r' \in P_i, i \leq j, H(r) = \sim H(r') \land I \models B(r')\}$

On Logic Program Updates, Invited Talk at NMR'12

DLP – Refined Dynamic Stable Models

[Alferes, Banti, Brogi and L 05]

Interpretation I is a Refined Dynamic Stable Model of (P₁,...,P_n) if I' = least([U(P_i) - Reject(I)] U Defaults(I)) Reject(I) = {r∈P_i | ∃r'∈P_j, i ≤ j, H(r)=~H(r') ∧ I⊨B(r')} Defaults(I) = {~A | ∄r∈P_i, H(r)=A ∧ I ⊨B(r))}

□ Initial Program P_1 : □ Update Program P_2 :

a.

 $\sim a$.

a ← a

Unintended Model I={a}

Reject(I) = $\{a. \sim a.\}$ Defaults(I) = $\{\}$ least $\{a \leftarrow a.\} = \{\} \neq I' = \{a\}$

DLP – Refined Dynamic Stable Models

[Alferes, Banti, Brogi and L 05]

Properties:

 \mathbf{P}_{\varnothing} : Immunity to empty updates

 $SEM(P \oplus \emptyset) = SEM(\emptyset \oplus P) = SEM(P)$

 $\boldsymbol{P}_{\tau}:$ Immunity to tautologies

 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$

where τ is any tautology i.e. any rule τ such that $H(\tau) \in B(\tau)$

 $\mathbf{P}_{\mathbf{v}}$: Primacy of new information

 $M \in SEM(P \oplus Q) \Rightarrow M \models Q$

 \mathbf{P}_{σ} : Support

 $A \in M \in SEM(P \oplus Q) \Rightarrow \exists r \in (P \cup Q) : H(r) = A \land M \models B(r)$

P_w: Generalisation of Fact Updates

 $\mathsf{P}_{\mathsf{I}} = \{\mathsf{A} \leftarrow | \mathsf{A} \in \mathsf{I}\} \Rightarrow \mathsf{SEM}(\mathsf{P}_{\mathsf{I}} \oplus \mathsf{Q}) = \mathsf{IU}(\mathsf{I},\mathsf{Q})$

 $\mathbf{P}_{o\varepsilon}$: Refined Extension Principle

Generalisation of \mathbf{P}_{τ} to certain circular updates.

DLP – Dynamic Answer Sets [Eiter, Fink, Sabbatini and Tompits 02]

Interpretation I is a Dynamic Answer Set of (P₁,...,P_n) if

 $I' = least([U(P_i) - Reject(I)] \cup Defaults(I))$

 $Reject(I) = \{r \in P_i \mid \exists r' \in P_i \setminus Reject(I), i < j, H(r) = \sim H(r') \land I \models B(r')\}$

 $Defaults(I) = I^{-}$

On Logic Program Updates, Invited Talk at NMR'12

DLP – Dynamic Answer Sets [Eiter, Fink, Sabbatini and Tompits 02]

- □ It doesn't obey:
- \mathbf{P}_{τ} : Immunity to tautologies

 $\mathsf{SEM}(\mathsf{P} \oplus \mathsf{Q}) = \mathsf{SEM}(\mathsf{P} \oplus (\mathsf{Q} \cup \{\tau\})) = \mathsf{SEM}((\mathsf{P} \cup \{\tau\}) \oplus \mathsf{Q})$


where τ is any tautology i.e. any rule τ such that $H(\tau) \in B(\tau)$

DLP – Dynamic Answer Sets [Eiter, Fink, Sabbatini and Tompits 02]

It doesn't obey:

32

\mathbf{P}_{τ} : Immunity to tautologies

Relationship between Semantics

Dynamic Answer Sets

Justified Updates

Dynamic Stable Models

They all coincide for acyclic LPs [Homola04,Banti et al. 05]

Refined Dynamic Stable Models

On Logic Program Updates, Invited Talk at NMR'12

Summary of Properties

	Pø	Ρ _τ	P_{v}	P _σ	Ρ _{ιυ}	$\mathbf{P}_{\mathbf{\rho}\mathbf{\epsilon}}$
	Immunity to empty updates	lmmunity to tautologies	Primacy of new information	Support	Generalisation of Fact Updates	Refined Extension Principle
Justified Updates	\checkmark	x	\checkmark	\checkmark	×	×
Dynamic Stable Models	\checkmark	×	\checkmark	\checkmark	\checkmark	×
Dynamic Answer Sets	\checkmark	×	\checkmark	\checkmark	×	×
Refined Dynamic Stable Models	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Other Approaches

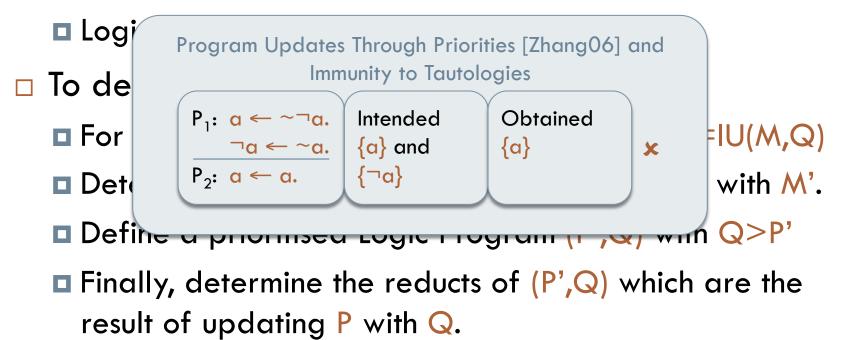
Preference-based Semantics

- Program Updates through Priorities
 - Zhang 06
- Program Updates through Preferences
 - Delgrande et al 07.
- Revision Semantics
 - Delgrande 10
- Abduction-based Semantics
 - Sakama and Inoue 03
- Using structural properties
 - Krumpelmann and Kern-Isberner 10
 - Sefranek 06

Program Updates Through Priorities [Zhang 06]

- Updates through a complex mixture of:
 - Fact Updates
 - Logic Programs with Priorities.
- \Box To determine $P \oplus Q$:
 - For each Stable Model M of P, determine M'=IU(M,Q)
 - Determine a maximal subset of P, P', coherent with M'.
 - Define a prioritised Logic Program (P',Q) with Q>P'
 - Finally, determine the reducts of (P',Q) which are the result of updating P with Q.

Program Updates Through Priorities [Zhang 06]

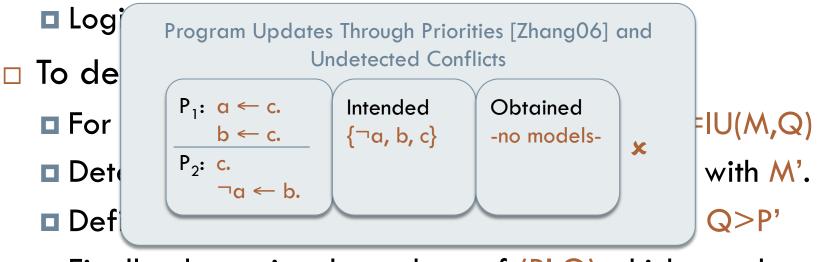

- Updates through a complex mixture of:
 - Fact Updates
 - Logic Programs with Priorities.
- \Box To determine $P \oplus Q$:
 - For each Stable Model M of P, determine M'=IU(M,Q)
 - Determine a maximal subset of P, P', coherent with M'.
 - Define a prioritised Logic Program (P',Q) with Q>P'
 - Finally, determine the reducts of (P',Q) which are the result of updating P with Q.

Program Updates Through Priorities [Zhang 06]

38

Updates through a complex mixture of:

Fact Updates



Program Updates Through Priorities [Zhang 06]

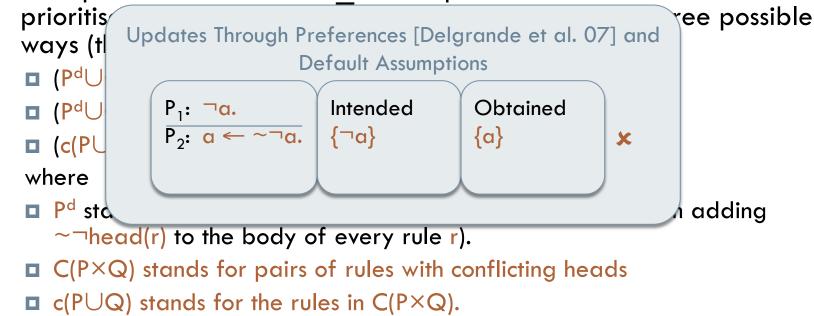
39

Updates through a complex mixture of:

Fact Updates

Finally, determine the reducts of (P',Q) which are the result of updating P with Q.

Program Updates Through Preferences [Delgrande, Schaub and Tompits 07]


- Updates through a mixture of:
 - Preferences
 - Defeasible Rules
- □ The update models of P⊕Q are the preferred models of a prioritised Logic Program (∏,<) constructed in one of three possible ways (three different operators):</p>
 - $\square (P^d \cup Q^d, P^d \times Q^d)$
 - □ (P^d∪Q^d, C(P^d,Q^d))
 - □ $(c(P\cupQ)^d\cup((P\cupQ)\setminus c(P\cupQ)), C(P^d,Q^d))$

where

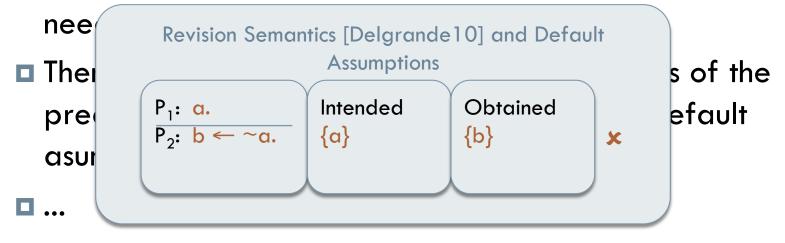
- P^d stands for the defeasible version of P (i.e. obtained from adding ~¬head(r) to the body of every rule r).
- C(P×Q) stands for pairs of rules with conflicting heads
- **c**($P \cup Q$) stands for the rules in C($P \times Q$).

Program Updates Through Preferences [Delgrande, Schaub and Tompits 07]

- Updates through a mixture of:
 - Preferences
 - Defeasible Rules
- \Box The update models of $P \oplus Q$ are the preferred models of a

Revision Semantics

Updates are determined by:


- Taking the most recent program and committ to a maximal set of default assumptions (default literals) needed to build one of its answer-sets.
- Then, add a maximal coherent sub-set of rules of the predecessor program, and committ to more default asumptions

•

Revision Semantics

Updates are determined by:

Taking the most recent program and committ to a maximal set of default assumptions (default literals)

Program Updates Through Abduction [Sakama and Inoue 03]

- Updates through Abduction:
- □ $P' = (P \cup Q) \setminus R$ is the result of $P \oplus Q$ if: □ SEM(P') ≠ Ø □ $R \subseteq P$ □ $\nexists R' \subseteq R | SEM((P \cup Q) \setminus R') ≠ Ø$
- Main Problem fails even the most basic property

```
\mathbf{P}_{\varnothing} : Immunity to empty updates
```

 $SEM(P \oplus \emptyset) = SEM(\emptyset \oplus P) = SEM(P)$

- Other issues:
 - Commits to rejected rules (R), which cannot be reused.
 - The result can be more than one program.
 - Higher Computational Complexity.

Other Properties

$P_{\mu\rho\rho}$: Minimal Rule Rejection SEM(P ∪ Q) ≠ Ø ⇒ SEM(P ⊕ Q) = SEM(P ∪ Q)

P_{ωµχ}: Weak Minimal ChangeSEM(P ∪ Q) ≠ ∅ ⇒ SEM(P ⊕ Q) ⊆ SEM(P ∪ Q)

P_{υρ}: Universal Recoverability Principle ∀P ∃Q : SEM(P ⊕ Q) ≠ ∅

Summary of Properties

	Pø	Ρ _τ	P_{v}	P _σ	P _{iv}	Ρ _{ρε}	$P_{μρρ}$	Ρ _{ωμχ}	P _{υρ}
	Immunity to empty updates	lmmunity to tautologies	Primacy of new information	Support	Generalisation of Fact Updates	Refined Extension Principle	Minimal Rule Rejection	Weak Minimal Change	Universal Recoverability Principle
Justified Updates	\checkmark	×	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark
Dynamic Stable Models	\checkmark	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark
Dynamic Answer Sets	\checkmark	×	\checkmark	\checkmark	×	x	×	\checkmark	\checkmark
Refined Dynamic Stable Models	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
LP Updates through Abduction	×	×	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark
LP Updates through Priorities	\checkmark	×	\checkmark	\checkmark	\checkmark	-	×	×	×
LP Updates through Preferences ^{1,2}	×	×	\checkmark	\checkmark	×	-	×	×	-
LP Updates through Preferences ³	\checkmark	×	\checkmark	\checkmark	×	-	×	×	-
Revision Semantics	×	×	\checkmark	\checkmark	×	-	x	×	\checkmark

On Logic Program Updates, Invited Talk at NMR'12

What about Classical Belief Change?

- Directly applying the KM postulates and constructions from belief change to logic programs and answer-sets leads to a number of serious problems.
 - ambiguity of the postulates, often difficult to formulate for logic programs and answer-sets
 - leads to very counterintuitive results
 - at the heart of [Leite and Pereira 98] and thoroughly investigated in [Eiter, Fink, Sabbatini and Tompits 02]
- Reconciliation of belief change with rule evolution is still a very interesting open problem:
 - a more general understanding of knowledge evolution
 - a semantic approach to rule evolution, focusing only on the meaning of a logic program and not on its syntactic representation
- □ How to proceed?

Belief Change and SE Models

- Belief Change on SE Models
 - AGM Revision on SE Models
 - [Delgrande, Schaub, Tompits and Woltran 08]
- □ SE Models [Turner 03]
 - semantic characterisation of logic programs, coinciding with the models in the Logic of Here and There for the fragment corresponding to logic programs.
 - □ richer structure an SE interpretation X is a pair of ordinary interpretations <|,J> such that | ⊆ J
 - an interpretation <I,J> is an SE-model of a program P if J is a model of P and I is a model of P^J (the GL reduct of P by I)
 - monotonic and more expressive than answer sets
 - characterise strong equivalence

KM Updates and SE Models

[Slota and L 10]

Postulates (PU 1) – (PU 8)

(PU 1) $\mathcal{P} \oplus \mathcal{Q} \models_{s} \mathcal{Q}$.

(PU 2) If $\mathcal{P} \models_{s} \mathcal{Q}$, then $\mathcal{P} \oplus \mathcal{Q} \equiv_{s} \mathcal{P}$.

(PU 3) If both \mathcal{P} and \mathcal{Q} are satisfiable, then $\mathcal{P} \oplus \mathcal{Q}$ is satisfiable.

(PU 4) If $\mathcal{P}_1 \equiv_s \mathcal{P}_2$ and $\mathcal{Q}_1 \equiv_s \mathcal{Q}_2$, then $\mathcal{P}_1 \oplus \mathcal{Q}_1 \equiv_s \mathcal{P}_2 \oplus \mathcal{Q}_2$.

(PU 5) $(\mathcal{P} \oplus \mathcal{Q}) \land \mathcal{R} \models_{s} \mathcal{P} \oplus (\mathcal{Q} \land \mathcal{R}).$

(PU 6) If $\mathcal{P} \oplus \mathcal{Q}_1 \models_s \mathcal{Q}_2$ and $\mathcal{P} \oplus \mathcal{Q}_2 \models_s \mathcal{Q}_1$, then $\mathcal{P} \oplus \mathcal{Q}_1 \equiv_s \mathcal{P} \oplus \mathcal{Q}_2$.

(PU 7) $(\mathcal{P} \oplus \mathcal{Q}_1) \land (\mathcal{P} \oplus \mathcal{Q}_2) \models_{s} \mathcal{P} \oplus (\mathcal{Q}_1 \lor \mathcal{Q}_2)$ if \mathcal{P} is basic.

(PU 8) $(\mathcal{P}_1 \lor \mathcal{P}_2) \oplus \mathcal{Q} \equiv_s (\mathcal{P}_1 \oplus \mathcal{Q}) \lor (\mathcal{P}_2 \oplus \mathcal{Q}).$

KM Updates and SE Models

[Slota and L 10]

Construction:

 ω - assigns a partial order $\leq^{\rm X}_{\omega}$ to every SE interpretation X

$$\llbracket P \oplus Q \rrbracket^{SE} = \bigcup_{X \in \llbracket P \rrbracket^{SE}} \min(\llbracket Q \rrbracket^{SE}, \leq^{X}_{\omega})$$
(1)

- Representation Theorem: A program update operator ⊕ satisfies conditions (PU 1) (PU 8) if and only if there exists a faithful and organised SE partial order assignment ω such that (1) is satisfied for all programs P;Q.
- We also defined a concrete operator.
- Great!
- But...

Problem with SE Model Update [Slota and L 10]

- 51
- Theorem A program update operator that satisfies (PU4) either does not respect support or it does not respect fact update.
- □ Proof
 - \blacksquare Let \oplus be a program update operator that satisfies PU4 and let:
 - P1: p.P2: $p \leftarrow q.$ Q: $\sim q.$ q.q.
 - Since $P_1 \equiv_s P_2$, by (PU4) we have that $P_1 \bigoplus Q \equiv_s P_2 \bigoplus Q$. Consequently, $P_1 \bigoplus Q$ has the same answer sets as $P_2 \bigoplus Q$.
 - Since \oplus respects fact update, then $P_1 \oplus Q$ has the unique answer set $\{p\}$.
 - But then {p} is an answer set of $P_2 \oplus Q$ in which p is unsupported by $P_2 \cup Q$.

How to Proceed?

□ Three ways to proceed:

- abandon the classical postulates and constructions
- use existing approaches (with a syntactic flavour)
 - Refined Dynamic Stable Models
- find a more expressive characterisation of logic programs

How to Proceed?

[Slota and L 11]

Our idea:

- View a Program as the Set of Sets of SE models of the rules it is composed of.
- $P_{1}: \{r. s.\} \text{ viewed as } \{ \langle r,r \rangle, \langle r,rs \rangle \langle rs,rs \rangle \}, \{ \langle s,s \rangle, \langle s,rs \rangle, \langle rs,rs \rangle \} \}$
- $\mathsf{P}_{2}: \qquad \{\mathsf{r} \leftarrow \mathsf{s}. \qquad \mathsf{s}.\} \text{ viewed as } \{ \{\langle \emptyset, \emptyset \rangle, \langle \emptyset, \mathsf{r} \rangle, \langle \emptyset, \mathsf{rs} \rangle, \langle \mathsf{r}, \mathsf{rs} \rangle \}, \{\langle \mathsf{s}, \mathsf{s} \rangle, \langle \mathsf{s}, \mathsf{rs} \rangle, \langle \mathsf{rs}, \mathsf{rs} \rangle \} \}$
- □ Closer to Base Change

But...

 $P_1: \sim a \leftarrow b. \qquad P_2: \sim b \leftarrow a. \qquad P_3: \leftarrow a, b.$

...are all SE-Equivalent because their rules are not distinguishable by the SE-models semantics!

...and we want to distinguish their effect when used to update the program $\{a, b.\}$

How to proceed?

□ Three ways to proceed:

- abandon the classical postulates and constructions
- use existing approaches (with a syntactic flavour)
 - Refined Dynamic Stable Models
- find a more expressive characterisation of logic programs ...
 - In the set of the logic of Here and There (... and SEmodels)!

RE-Models

- An interpretation <I,J> is an RE-model of a program P if I is a model of P^J.
- Distinguishes

 $P_1: \sim a \leftarrow b. \qquad P_2: \sim b \leftarrow a. \qquad P_3: \leftarrow a,b.$

- Viewing a program as the set of sets of RE-models of its rules
- ... we defined an update operator that coincides with Justified Updates (apart from programs with local cycles).
- It can be seen as a semantic counterpart of Justified Updates.
- More about this at KR'12

Wednesday at 14:00 – Belief Revision II Session

[Slota and L 12]

Conclusions/Open Problems

- Semantic counterpart of Refined Dynamic Stable Models.
- Other notions of equivalence, instead of the one based on RE-Models, that allow us to satisfy some additional KM postulates.
 - Difficulty resides in capturing non-tautological irrelevant updates [Alferes et al 05, Sefranek 06].
- Better understanding of differences between Revision and Update in Logic Programming.
- Postulates for Updates of LPs
 - Although we should proceed with caution...

Conclusion...

The journey isn't over... ... but we are getting there.

On Logic Program Updates, Invited Talk at NMR'12

© J. Leite, CENTRIA

References

- J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska and T. C. Przymusinski, Dynamic Logic Programming, In Procs of KR'98, Morgan Kaufmann Publishers, 1998.
- J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Programming, 45(1-3):43–70, September/October 2000.
- □ J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle for semantics of dynamic logic programming. Studia Logica, 79(1): 7–32, 2005.
- F. Banti, J. J. Alferes, A.o Brogi, and P. Hitzler: The Well Supported Semantics for Multidimensional Dynamic Logic Programs, In Procs. of LPNMR'05, vol 3662 of LNAI, Springer, 2005.
- J. P. Delgrande. A Program-Level Approach to Revising Logic Programs under the Answer Set Semantics. Theory and Practice of Logic Programming, 10(4-6):565– 580, July 2010.
- □ J. P. Delgrande, T. Schaub, and H. Tompits. A preference-based framework for updating logic programs. In Procs. of LPNMR'07, vol. 4483 of LNAI, Springer, 2007.
- J. P. Delgrande, T. Schaub, H. Tompits, and S. Woltran. Belief revision of logic programs under answer set semantics. In Procs. of KR'08, AAAI Press, 2008.

References

- T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences based on causal rejection. Theory and Practice of Logic Programming, 2(6):721– 777, 2002.
- M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Procs. of ICLP'88, MIT Press, 1988.
- M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3-4):365–385, 1991.
- M. Homola. Dynamic logic programming: Various semantics are equal on acyclic programs. In Procs. of CLIMA V, vol. 3487 of LNAI, Springer, 2004.
- H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge base and revising it. In Procs of KR'91, Morgan Kaufmann Publishers, 1991.
- P. Krümpelmann and G. Kern-Isberner. On belief dynamics of dependency relations for extended logic programs. In Procs. of NMR'10, 2010.
- J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers of Artificial Intelligence and Applications, IOS Press, 2003.
- J. A. Leite and L. M. Pereira. Generalizing updates: From models to programs. In Procs. of LPKR'97, vol. 1471 of LNAI, Springer, 1998.

References

- V. W. Marek and M. Truszczynski. Revision programming. Theoretical Computer Science, 190(2):241–277, 1998.
- C. Sakama and K. Inoue. An abductive framework for computing knowledge base updates. Theory and Practice of Logic Programming, 3(6):671–713, 2003.
- J. Šefránek. Irrelevant updates and nonmonotonic assumptions. In Procs. of JELIA'06, vol. 4160 of LNAI, Springer, 2006.
- M. Slota and J. Leite. On semantic update operators for answer-set programs. In Procs. of ECAI'10, volume 215 of Frontiers of Artificial Intelligence and Applications, IOS Press, 2010
- M. Slota and J.o Leite. Robust equivalence models for semantic updates of answerset programs. In Procs. of KR'12, AAAI Press, 2012
- H. Turner. Strong equivalence made easy: nested expressions and weight constraints. Theory and Practice of Logic Programming, 3(4-5):609–622, 2003.
- Y. Zhang. Logic program-based updates. ACM Transactions on Computational Logic, 7(3):421–472, 2006.