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Abstract. Argumentation frameworks (AFs) provide a central ap-
proach to perform reasoning in many formalisms within argumenta-
tion in Artificial Intelligence (AI). Semantics for AFs specify criteria
under which sets of arguments can be deemed acceptable, with the
notion of admissibility being at the core of main semantics for AFs.
A fundamental reasoning task is to find an admissible set containing
a queried argument, called credulous acceptance under admissibility.
While such a set explains how to argue in favour of a queried ar-
gument, finding an explanation in the negative case, i.e., answering
why a queried argument is not credulously accepted under admis-
sibility, is less immediate. In this paper, we approach this problem
by considering subframeworks of a given AF as witnesses for non-
acceptability. Due to the non-monotonicity of semantics for AFs, this
requires that every expansion of the witnessing subframework must
preserve non-acceptance of the argument—otherwise the subframe-
work would not give sufficient reason for rejection. Among our main
contributions (i) we show that this notion of witnessing subframe-
works is connected to strong admissibility of AFs, (ii) we investigate
the complexity of finding small such subframeworks, and (iii) we ex-
tend a recently proposed framework for abstraction in the declarative
answer set programming paradigm in order to compute rejecting sub-
frameworks. The resulting system is thus able to deliver explanations
also in the case of non-acceptance and we provide a first empirical
study that shows the feasibility of our approach.

1 INTRODUCTION
The study of formal argumentation has established itself as a founda-
tional cornerstone of Artificial Intelligence with continuous attention
from the research community, and with multiple heterogeneous ap-
plications domains, such as legal reasoning, medical sciences, and
e-government tools [1]. Central to argumentation within AI are for-
mal approaches to represent and reason on arguments, with argu-
mentation frameworks (AFs) [20] constituting a key approach in this
area. AFs provide a clear and crisp reasoning engine, which is at the
core of several formalisms in argumentation [3, 8, 32, 7]. Reasoning
via AFs is carried out by instantiating arguments and directed con-
flicts (attacks) between them. Importantly, viewing these arguments
as abstract entities and using argumentation semantics, i.e., criteria
for finding acceptable sets of arguments, suffices to reason in an ar-
gumentative way for a variety of application scenarios.

A crucial ingredient for main argumentation semantics is that of
admissible sets of arguments, which represent a conflict-free view-
point that defends itself against counterarguments. An important rea-
soning task is to check whether an argument is part of at least one ad-
missible set (called credulous acceptance under admissibility), which
indicates one argumentative point of view under which that argument
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is defendable. If such an admissible set exists, that set provides a di-
rect argumentation witnessing acceptability of the queried argument.

Computationally speaking, while checking existence of an admis-
sible set containing a specified argument is NP-complete in gen-
eral [22], state-of-the-art systems exist that are capable of finding
such admissible sets even when faced with large AFs [16, 40, 27].
However, if there is no admissible set containing a queried argument,
i.e., when the argument is not credulously accepted under admissibil-
ity, current systems are only able of stating a negative answer without
detailed information. That is, current implementation approaches can
provide an argumentative witness to credulous acceptability, but no
explanations as to why an argument is not credulously accepted.

From the complexity of the underlying problem, it follows that
asking whether an argument is not credulously accepted under ad-
missibility is coNP-complete, which implies that witnesses for non-
acceptance, under complexity theoretic assumptions, cannot be poly-
nomially bound in size, in general. Nevertheless, in this paper we
argue that witnesses can be produced that provide reasonable and
potentially small explanations to non-acceptability of arguments.

Example 1. Consider a simple AF with four arguments, a, b, c, and
d, with a attacking b that attacks c, which in turn attacks d (Figure 1).
An admissible set requires that no two arguments in that set are con-
flicting, and that each attack onto the set is defended against, by an
attack on the attacker, from inside the set. In this example, the unique
subset maximal admissible set is {a, c}, i.e., a is not doubted at all
(no incoming attack) and defends c against the attack from b.

a b c d

Figure 1. Example AF

Say we desire to reason why d in the example is not credulously
accepted, i.e., why, for this AF, no admissible set containing d exists.
We approach this question by investigating what represents a suffi-
cient reason to explain non-acceptance, given the AF and the criteria
for admissibility.

To answer this question from a structural point of view, we have
at our disposal a directed graph of arguments (vertices) and attacks
(directed edges). A natural way towards what constitutes as a part
of the AF that is sufficient for rejection is to consider which sub-
framework (subgraph) can suffice to show rejection of d. Consider
subframeworks induced by subsets of the arguments. The subgraph
induced by only c and d is not sufficient for non-acceptance of d.
This is because one can add argument b, resulting in an induced sub-
graph of {b, c, d}, which leads to d being reinstated by b defending
d. However, taking both arguments a and c is enough reason to re-



ject d: when faced with a and c neither re-adding b, d, nor both b
and d give a reason for accepting d. In this way, the subframework
with arguments a and c provides a, what we call, strong reason for
rejection of d, since no induced subframework in between {a, c} to
{a, b, c, d} (the full framework) accepts d credulously under admis-
sibility. Considering all frameworks in between is vitally important,
due to non-monotonicity of AFs. Otherwise, non-monotonic effects,
such as adding b to the induced subgraph of c and d, may lead to an
unjustified credulous acceptance of d.

The approach of considering subframeworks and all frameworks
in between up to the original framework is founded in recent re-
search: indeed, previous work by Brewka, Thimm, and Ulbricht [11]
investigated strong inconsistency in non-monotonic reasoning using
similar concepts. While our notion is inspired and uses similar defi-
nitions from their work, their results (which mainly concern consis-
tency of formalisms) do not directly yield results for studying credu-
lous non-acceptance for AFs.

In this paper, we investigate the concept of strong reasons for re-
jection for credulous non-acceptance, focusing on a structural view-
point, but also argue that the underlying concept is flexible to also
cover different ways of explaining non-acceptance. More concretely,
our main contributions are summarized as follows.

• We formally define strongly rejecting subframeworks on AFs that
are specified as subframeworks s.t. each superframework (includ-
ing the subframework itself) does not credulously accept a queried
argument under a given semantics. In this paper we focus on the
central semantic concept of admissibility, but also discuss and give
results for stable and grounded semantics, thus covering all main
semantics in terms of credulous acceptance.

• In addition to exemplifying several cases for strongly rejecting
subframeworks, we show that our notion also connects to strongly
admissible sets [4], in case such sets attack the queried argument.
Interestingly, strongly admissible sets were shown to provide a
particularly strong game-theoretic notion of showing acceptabil-
ity. In turn, being attacked by a strongly admissible set presents
itself naturally to be a strong explanation of non-acceptability.

• We argue that the underlying concept of strongly rejecting sub-
frameworks is not tied to a single structural view. In particular,
we exemplify that similar ideas can be applied to variants of sub-
frameworks, e.g., by relaxing attacks, and also to relaxing seman-
tical concepts by weakening defense of admissible sets. Such vari-
ants present different notions of explaining non-acceptability.

• We show that the complexity of finding small strongly rejecting
subframeworks is in ΣP2 , and NP and coNP hard.

• In order to compute strong reasons for rejection, we show that an-
swer set programming (ASP) and a recently proposed framework
of abstractions in ASP [37, 38] provide a versatile approach able
to capture various forms of strong rejections by a notion called
blocker sets. We extend the ASP abstraction framework by a novel
approach to compute blocker sets of minimum cardinality, which
can be applied also to other domains than argumentation.

• We present an empirical evaluation of a prototype implemented
in ASP to compute blocker sets of minimum cardinality, based on
instances of the recent ICCMA’19 argumentation competition.

2 ARGUMENTATION FRAMEWORKS

We start the formal preliminaries with argumentation frameworks
(AFs) [20] and semantics for AFs [2]. An AF consists of a set of
abstract arguments and directed attacks between these arguments.

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), where A is a finite set of arguments and R ⊆ A × A is
the attack relation. The pair (a, b) ∈ R means that a attacks b.

Example 2. AFs have a natural representation as directed graphs.
Consider an AF F = ({a, b, c, d}, R) with four arguments and the
following attacks: R = {(a, b), (b, c), (c, d)} (Figure 1).

A central notion towards the semantics of AFs is that of defense
of arguments.

Definition 2. Let F = (A,R) be an AF. An argument a ∈ A is
defended (in F ) by a set S ⊆ A if for each b ∈ A such that (b, a) ∈
R there exists a c ∈ S such that (c, b) ∈ R.

Semantics for argumentation frameworks are defined through a
function σ which assigns to each AF F = (A,R) a set σ(F ) ⊆ 2A

of extensions. We consider for σ the functions cf, adm, com, grd,
stb, and prf, which stand for conflict-free, admissible, complete,
grounded, stable, and preferred, respectively. Towards the definition
we make use of the characteristic function of AFs, defined for an AF
F = (A,R) by FF (S) = {x ∈ A | x is defended by S}.

Definition 3. Let F = (A,R) be an AF. An S ⊆ A is conflict-free
(in F ) if there are no a, b ∈ S such that (a, b) ∈ R. We denote the
set of conflict-free sets of F by cf(F ). For an S ∈ cf(F ) it holds that

• S ∈ adm(F ) iff S ⊆ FF (S);
• S ∈ com(F ) iff S = FF (S);
• S ∈ grd(F ) iff S is the least fixed-point of FF ;
• S ∈ stb(F ) iff S attacks in F each a ∈ A \ S; and
• S ∈ prf(F ) iff S ∈ adm(F ) and @T ∈ adm(F ) with S ⊂ T .

An argument a is said to be credulously accepted under semantics
σ in an AF F if there is a σ-extension E ∈ σ(F ) such that a ∈
E. An argument a is skeptically accepted under semantics σ in an
AF F if for all σ-extensions E ∈ σ(F ) it holds that a ∈ E. We
denote the set of credulously accepted arguments in F under σ as
cred(F, σ) = {a | a credulously accepted under σ in F}. It holds
that cred(F, adm) = cred(F, com) = cred(F, prf).

3 STRONGLY REJECTING FRAMEWORKS
In this section we formally introduce strongly rejecting
(sub)frameworks, and furthermore devote this section to exem-
plification, study of formal properties, and we show relations of such
reasons for non-acceptance. Towards the definition, we first recall a
standard notion of subframeworks.

Definition 4. Let F = (A,R) be an AF, and S ⊆ A. Define F |S =
(S,R′), with R′ = R ∩ (S × S), as the subframework of F w.r.t. S.

The main definition of strongly rejecting frameworks follows next.

Definition 5. Let F = (A,R) be an AF, S ⊆ A, and a ∈ A an
argument. The subframework F |S strongly rejects a (w.r.t. F ), under
semantics σ, if for each S′, S ⊆ S′ ⊆ A, we have a /∈ credσ(F |S′).

In words, a subframework (specified via S) strongly rejects an ar-
gument a, under a semantics σ, if this argument is not credulously
accepted under σ in the subframework induced by S and each sub-
framework “in between” S and the full framework A. This means
that F |S rejects a credulously under σ, and no addition of arguments
to S (until the original framework F is reached) can lead to credulous
acceptance of a. In particular, this definition excludes the possibility
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Figure 2. Under admissibility, (a) F |{a,c,h} and F |{d,f,h} strongly reject i, (b) F |{a,c,f} and F |{c,d,f} strongly reject g, (c) ideal set {d} does not
strongly reject e, and (d) F |{a} strongly rejects b.

that argument a is not credulously accepted in F |S , credulously ac-
cepted in a framework F |S′ with S ⊆ S′ ⊆ A and possibly again
rejected in F . Thus, we make sure that non-monotonic effects cannot
lead to acceptance: any possible addition must reject a, as well.

Example 3. Consider an AF F = (A,R) with A = {a, b, c, d,
e, f , g, h, i} and attacks as in Figure 2(a). Let us have a look at
strongly rejecting subframeworks for argument i under admissibility.
First, i is not credulously accepted under admissibility in F , since
the grounded extension is {a, c, d, f, h}, which attacks i. This means
that F |A = F is strongly rejecting i under admissibility. Further, if
F |S strongly rejects i under admissibility, then h ∈ S. If h /∈ S, then
F |S∪{i} accepts i credulously under adm, since i is unattacked in
this subframework. Argument sets S s.t. F |S strongly rejects i under
adm are, e.g., {a, c, h} and {d, f, h}. Let S = {a, c, h}. To see that
F |S strongly rejects i under adm, consider any S′ with S′ ⊆ (A\S):
addition of S′ yieldingF |S∪S′ does not lead to credulous acceptance
of i. This holds, because any addition by S′ is either attacked by S
or attacks arguments not influencing acceptance of i.

The preceding example suggests several properties of strongly re-
jecting subframeworks, which we formalize next. First, by definition,
strongly rejecting subframeworks enjoy monotonicity.

Proposition 1. Let F = (A,R) be an AF, σ a semantics, a ∈ A, and
S ⊆ S′ ⊆ A. If F |S strongly rejects a under σ, then F |S′ strongly
rejects a under σ.

That is, if FS strongly rejects a then each superframework (up to
the original one) likewise strongly rejects a. Further basic properties
exhibited in Example 3 are presented in the following. In particu-
lar, if F |S strongly rejects a under a semantics we consider here,
then a need not be part of S, since a is not credulously accepted
in a (sub)framework where the argument does not exist. Further, ex-
cluding self-attacking arguments (a, a) ∈ R, at least one attacker of
a needs to be in S if F |S is strongly rejecting under admissibility
or grounded semantics. However, if a attacks itself, then even F |∅
strongly rejects; simply because adding a induces addition of (a, a)
and any conflict-free semantics does not warrant a, in such a case.

Proposition 2. Let F = (A,R) be an AF, a ∈ A an argument, and
σ ∈ {adm, stb, grd}.

• If F |S strongly rejects a under σ, then F |S\{a} strongly rejects a
under σ.

• If F |S strongly rejects a under adm or grd, and (a, a) /∈ R, then
S ∩ {b | (b, a) ∈ R} 6= ∅.

• It holds that F |∅ strongly rejects a under σ iff (a, a) ∈ R.

We note that item two in the preceding proposition is not stated
for stable semantics. Indeed, under stable semantics an attacker is
not necessarily required. Consider two arguments a and b, with
b self-attacking. Then a is not credulously accepted (since the

self-attacking b prevents existence of stable extensions), and F |{b}
strongly rejects a under stable semantics.

While Example 3 might suggest a (direct) connection of admissi-
ble sets and (subset minimal) strongly rejecting subframeworks un-
der admissibility, strongly rejecting frameworks are more diverse. In
particular, a strongly rejecting subframework F |S that is subset min-
imal (i.e., there is no S′ with S′ ( S that strongly rejects) does not
need to be admissible in F .

Example 4. Consider an AF F = (A,R) as shown in Figure 2(b).
Two subset minimal strongly rejecting subframeworks for argument
g under admissibility are F |{a,c,f} and F |{c,d,f}. Neither {a, c, f}
nor {c, d, f} is admissible in F . In this instance, {a, c} or {d, f}
are not sufficient: in the first case one could add b, d, and g to {a, c}
resulting in F |{a,b,c,d,g} for which {b, d, g} forms an admissible set.
On the other hand {a, c, f} strongly rejects g under adm: to defend
g against c and f one requires both b and e, and to defend b against
a one needs d. However, this means addition of all arguments, and g
is not credulously accepted under admissibility in F .

Nevertheless, admissible sets that are, in a sense, particularly strict
are sufficient to make up a strongly rejecting subframework. More
concretely, strongly admissible sets [4] that attack an argument con-
stitute strongly rejecting subframeworks for this argument. An in-
tuition can be seen in Example 2(a), in which both {a, c, h} and
{d, f, h} are strongly admissible sets. We recall the formal defini-
tion of such sets next.

Definition 6 ([4, 13]). Let F = (A,R) be an AF. Set S ⊆ A is
strongly admissible in F if every a ∈ S is defended by some S′ ⊆
S \ {a} which in turn is again strongly admissible.

Intuitively, a set is strongly admissible if defense of that set can be
“grounded” in unattacked arguments, with possibly using iterative
defense. The next theorem formally states that strongly admissible
sets attacking an argument each correspond to a strongly rejecting
subframework of this argument.

Theorem 3. Let F = (A,R) be an AF and a ∈ A an argument. If
S ⊆ A is strongly admissible in F and attacks a then F |S strongly
rejects a under admissibility.

Strongly admissible sets have been connected to particularly
strong reasons for acceptance: strongly admissible sets are part of
the grounded extension (with the unique subset maximal strongly
admissible set being equal to the grounded extension), and strongly
admissible sets are key components of a game-theoretic notion of
showing acceptance of arguments (see, e.g., [13]). Thus, a strongly
admissible set attacking an argument a represents a strong reason
for rejection of argument a (under many semantics). Our notion of
strongly rejecting frameworks capture such strongly admissible sets,
in the sense of Theorem 3. That is, if a strongly admissible set ex-
ists attacking a, then there is also a corresponding strongly rejecting
subframework for a under admissibility.



Relaxing the notion of strong admissibility is likely to prevent a di-
rect correspondence as shown in Theorem 3. We show this formally
by considering ideal sets [21]. An ideal set S is a set of arguments s.t.
each argument is in all preferred extensions (skeptically accepted un-
der preferred semantics), and S is, itself, also admissible. The unique
subset maximal ideal set is the ideal extension of an AF, reflecting the
same relation of strongly admissible sets and the grounded extension.
Ideal sets (and the ideal extension) present a different viewpoint on
what should be accepted in an AF when considering a rather cautious
stance. However, the ideal extension E can, in general, be a superset
of the grounded extension G of an AF.

Definition 7 ([21]). Let F = (A,R) be an AF. A set S ⊆ A is ideal
(in F ) if S ∈ adm(F ) and S ⊆

⋂
E∈prf(F )E.

As exemplified next, not every ideal set attacking an argument
leads to a strongly rejecting subframework for that argument.

Example 5. Consider an AF as shown in Figure 2(c). It holds that
{d} is an ideal set (ideal extension) of the AF. However, F |{d} does
not strongly reject e, since e is credulously accepted under admissi-
bility in F |{c,d,e}. Thus, it is not the case that an ideal set S attacking
e implies that F |S is strongly rejecting e. This can be the case if F |S
leaves open ways of constructing an admissible set with e part of it.

Intuitively, ideal sets are not “grounded” in unattacked arguments
like strongly admissible sets, and, thus, do not directly constitute
strongly rejecting subframeworks. This means that strongly admis-
sible sets and ideal sets provide a kind of separation for admissible
sets being necessarily strongly rejecting: if attacking an argument,
the former leads to strong rejection while the latter might not.

Finally, in this section, we show that strongly rejecting frameworks
F |S for admissibility can be characterized by non-existence of cer-
tain conflict-free sets in the original framework F . In the next propo-
sition we omit the case with self-attacking arguments for readability.

Proposition 4. Let F = (A,R) be an AF, and a ∈ A with a /∈
cred(F, adm) and (a, a) /∈ R. It holds that F |S strongly rejects a
under admissibility iff S attacks a and @S′ ∈ cf(F ) with a ∈ S′ and
S′ attacks each x ∈ {y | (y, z) ∈ R, y ∈ S, z ∈ S′}.

Example 6. Consider an AF F = (A,R) with an illustration in
Figure 2(d). That is, other than the two arguments a and b there are
several further arguments ci, each of them attacking b. The subframe-
work F |{a} suffices to strongly reject b under admissibility, since
each conflict-free set attacking {a} (some subset of the ci’s) is al-
ways conflicting with b. As can be seen in this simple example (and
formally by Proposition 4) for {a} not inducing a strongly rejecting
subframework, at least one ci needs to be non-conflicting with b.

Example 7. For grounded semantics, strongly rejecting frameworks
differ from admissibility. Consider an AF F = ({a, b, c, d}, {(a, b),
(b, a), (a, c), (b, c), (c, d)}), i.e., four arguments with a and b mutu-
ally attacking each other and each of them attacking c, which in turn
attacks d. While there are no strongly rejecting frameworks for d un-
der adm and stb (since d is in stable extension {a, d} for instance),
the subframework F |{a,b,c} strongly rejects d under grounded se-
mantics. Omission of any argument in {a, b, c} leaves open the pos-
sibility of having d part of the grounded extension: without c the
argument d is unattacked, leaving either a or b out the mutual attack
is missing, and, e.g., {a, d} is the grounded extension of F |{a,c,d}.

4 COMPLEXITY OF STRONGLY REJECTING
FRAMEWORKS

We show the computational complexity of decision problems for
finding small (w.r.t. cardinality) strongly rejecting subframeworks.
We start with the complexity of verifying whether a subframework is
strongly rejecting.

Proposition 5. Verifying whether a given set of arguments in a given
AF constitutes a subframework strongly rejecting a queried argument
is coNP-complete for admissible and stable semantics.

For the decision problem of deciding existence of a strongly re-
jecting framework of at most size k (which is a standard way of in-
vestigating complexity of optimization problems), we show that this
problem is in ΣP2 . As regards to hardness, we show both NP and
coNP hardness.

Proposition 6. Deciding whether there is a subframework strongly
rejecting a queried argument under admissibility, with a number of
arguments at most a given integer, is in ΣP2 , and NP and coNP hard.

That is, finding small strongly rejecting frameworks is plausibly
more complex than checking credulous non-acceptance. Member-
ship in ΣP2 holds also for grounded and stable semantics. We conjec-
ture that the preceding problem is, in fact, ΣP2 -complete. Hardness
for ΣP2 is left for future work.

By Proposition 6, the minimum size (number of arguments) of a
strongly rejecting framework for a queried argument can be found
via querying a ΣP2 oracle in a binary search. That is, computing a
strongly rejecting subframework with a minimum number of argu-
ments can be achieved by logarithmically many times solving the
functional problem of computing a strongly rejecting subframework
of at most a given size.

5 VARYING AND ENRICHING STRONG
REASONS FOR REJECTION

Considering subframeworks induced by subsets of the arguments is
one way of viewing strong reasons for rejections. In this section we
argue that the underlying concept of strongly rejecting subframe-
works, i.e., that of finding parts of the framework such that this
part (and any super structure) rejects an argument, finds uses also in
variants for different kinds of explanations. We exemplify two vari-
ants: having attacks inducing subframeworks, and relaxing semanti-
cal constraints.

Subframeworks induced by attacks Before, we specified sub-
frameworks that are induced by subsets of arguments. We present
now a variant that is based on attacks. To distinguish terminology
from the notions above, we call a set R′ ⊆ R strongly attack-
rejecting an argument a ∈ A, for a given AF F = (A,R) under se-
mantics σ iff it holds that for any F ′ = (A,R′′) with R′ ⊆ R′′ ⊆ R
we have a /∈ cred(F ′′, σ).

Example 8. Considering the AF from Example 3 (Figure 2(a)), sim-
ilarly as before we get that {(a, b), (c, g), (h, i)}) strongly attack-
rejects i under adm (this AF is a direct counterpart to the strongly
rejecting subframework from the example above). Omitting any of
these attacks allows for an (attack) expansion that concludes credu-
lous acceptance of i under admissibility.

Differently to before, if an argument has multiple adjacent attacks
(ingoing or outgoing) a strongly attack-rejecting set can focus on



the required attacks. E.g., in AF from Figure 2(b) a strongly attack-
rejecting set for g under adm is {(a, b), (c, g), (f, g), (d, e)}. In this
set, attacks from a to d, or vice versa, are not required to show strong
attack-rejection of g. Moreover, the attack from d to e is now re-
quired, otherwise adding attacks (d, a), (b, c), and (e, f) would lead
to credulous acceptance of g. That is, with attack-rejection, we high-
light attacks needed for showing credulous non-acceptance.

Relaxing argument wise defense We now consider a different
form of rejection that is not based on the graph structure, but on the
semantics. Recalling the criteria for admissibility, they state that a
set S ⊆ A is admissible if (a) S is conflict-free and (b) each member
of S is defended by S. We relax the latter criteria in the following
way, for an AF F = (A,R). Let X ⊆ A be a subset of arguments.
We define a list of constraints that specify whether a set S ⊆ A is
admissible w.r.t. X (denoted by admX ) as follows. A set S ⊆ A
that is conflict-free in F is admissible w.r.t. X iff all the following
constraints are satisfied:

def X = {a ∈ S implies a defended by S in F | a ∈ X}.

That is, a conflict-free set S is admX if each X ∩ S is defended by
S, while S \X need not be defended. For an AF F = (A,R) we say
thatX ⊆ A defense-rejects a ∈ A if there is no set S with a ∈ S s.t.
S is admX . (In this case there is also no conflict-free S′ with a ∈ S′
that is admX′ for X ⊆ X ′; thus, supersets of X are already taken
care of and need no explicit consideration).

Example 9. Considering the simple AF from Example 3, it holds
that X = {b, g, i} defense-rejects i. To see this, there is no conflict-
free set containing i that is admX , e.g., because b is never de-
fended against the attack from a. Omitting any argument from X
misses a reason for defense-rejection: e.g., X ′ = {b, i} implies that
S = {g, i} is admX′ , since S is conflict-free, and i is defended by
S (g is not defended by S, but this is not required by admX′ ). For
the example AF in Figure 2(d), it suffices to consider X = {b}: no
conflict-free set exists that defends b and contains b.

Intuitively, this kind of relaxation of defense provides an alterna-
tive to structural views on explaining non-acceptability, by focusing
on checking (non-)defense of a subset of arguments.

6 COMPUTING STRONG REJECTION VIA
DECLARATIVE ASP ENCODINGS

In this section we show that answer set programming (ASP) can be
used to compute strongly rejecting subframeworks, and, furthermore,
also various other ways of showing strong rejection. We first recall
background on ASP, and then show that declarative encodings of AF
semantics can be utilized for finding strong reasons for rejection.

We recall basics of ASP next. A logic program π is a set of rules
r of the form

α0 ← α1, . . . , αm,not αm+1, . . . ,not αn, 0≤m≤n,

where eachαi is an atom and not is default negation; r is a constraint
ifα0 is falsity (⊥, then omitted) and a fact if n= 0. We also write r as
α0←B(r) or as α0 ← B+(r),not B−(r), where B+(r) (positive
body) is the set {α1, . . . , αm} and B−(r) (negative body) is the set
{αm+1, . . . , αn}; furthermore, we let B±(r) = B+(r) ∪ B−(r).
We sometimes omit r from B(r), B±(r) when talking about a par-
ticular rule. Rules with variables stand for the set of their ground in-
stances. The set of ground atoms of π is denoted byA. Semantically,

π induces a set of answer sets [31], which are Herbrand models (sets
I of ground atoms) of π justified by the rules, in that I is a minimal
model of πI = {r ∈ π | I |= B(r)} [24]. The set of answer sets
of a program π is denoted as AS(π). Common syntactic extensions
are choice rules of the form {α} ← B, which stands for the rules
α← B,not α′ and α′ ← B,not α, where α′ is a new atom.

Utilizing ASP for strong rejection To compute strong rejections
we first show an encoding for verifying whether a set S constitutes
a strong rejection, focusing initially on strongly rejecting subframe-
works. We base our approach on well-known ASP encodings of AFs
and AF semantics [23]. The graph structure of an AF F = (A,R) is
encoded by πF = {arg(a). | a ∈ A} ∪ {att(a, b). | (a, b) ∈ R}.
We recall an encoding of admissibility in Listing 1 (several encod-
ings πσ for other semantics σ exist, as well). It has been shown
that E ∈ σ(F ) iff there is an I ∈ AS(πσ ∪ πF ) with E = {a |
in(a) ∈ I} for σ ∈ {adm, stb} and an AF F = (A,R). We encode
credulous acceptance of a queried argument a ∈ A by constraint
← not in(a). In turn, an argument a ∈ A is credulously accepted
under σ if πσ ∪ πF ∪ {← not in(a).} is satisfiable (the constraint
removes all answer sets, respectively σ extensions, not containing a).

Listing 1. Encoding πadm of admissible sets [23]

in(X)← not out(X), arg(X).
out(X)← not in(X), arg(X).
← in(X), in(Y), att(X,Y).
defeated(X)← in(Y), att(Y,X).
undefended(X)← att(Y,X), not defeated(Y).
← in(X), undefended(X).

For checking whether a set S ⊆ A is a strongly rejecting frame-
work for a ∈ A, we modify the encoding of arguments and at-
tacks to allow for a non-deterministic guess of each superframe-
work of F |S up to F . We do this by conditioning every attack on
presence of both ingoing and outgoing argument, and introduce a
guess for each argument x ∈ A \ S. To distinguish encodings, we
use τ instead of π. We define τF = {arg(a) ← include(a). |
a ∈ A} ∪ {att(a, b) ← arg(a),arg(b). | (a, b) ∈ R}. Fixed
inclusion of an argument s ∈ S is then straightforward by spec-
ifying ASP fact include(s), and the remaining x ∈ A \ S are
guessed by the choice rule {include(x)}. The resulting ASP en-
coding τ ′ = τF ∪ {include(s). | s ∈ S} ∪ {{include(x)}. |
x ∈ A \ S} has as its answer sets a correspondence to all frame-
works F |S′ with S ⊆ S′ ⊆ A. Finally, F |S is strongly rejecting a
iff τ ′ ∪ πadm ∪ {← not in(a).} is unsatisfiable (mirroring our corre-
sponding complexity result of Proposition 5).

In a similar way one can encode other reasons for rejection, e.g.,
for defense-rejection (see Section 5), one can condition the last rule
of Listing 1 by include and in the same way have a fixed and
guessed part (thus relaxing the constraint for specific arguments).

Towards a general approach of computing strong rejections, we
make use of a recently proposed approach of abstraction in ASP [37],
which, intuitively, gives a handle how to abstract certain ASP atoms
in a systematic way, even when the atoms occur in rule bodies and
not only as facts. Important for us is the following modification of an
ASP program π by a set of atoms L ⊆ A. For every rule r : α←B
in π, we have

omit(r,L) =


r if L ∩B± = ∅ ∧ α /∈ L,
{α} ← mL(B) if L ∩B± 6= ∅ ∧ α /∈ L ∪ {⊥},
∅ otherwise.



where mL(B) stands for B+(r) \ L,not (B−(r) \ L) (mL is re-
ferred to as an omission abstraction mapping). In words, the rules
are projected onto the non-omitted atoms and choice is introduced
when an atom is omitted from a rule body, in order to make sure
that the behavior of the original rule is preserved. The aim is that the
atoms in L are to be “omitted” from rules, and the remaining atoms
shall remain, while also ensuring that each original answer set of π
can be projected onto some answer set of the constructed program
omit(π,L), thus achieving an over-approximation. The ground pro-
gram omit(π,L) is called an abstract program (reflecting omission
of certain atoms). Due to the over-approximation, if omit(π,L) is
unsatisfiable, then π is unsatisfiable. That is, unsatisfiability is pre-
served. This property is used to find a cause of unsatisfiability in the
following way.

Definition 8 ([37]). A set L ⊆ A of atoms is an (answer set) blocker
set of π, if omit(π,A \ L) is unsatisfiable.

In case omit(π,A \ L) is unsatisfiable, this means the atoms in
L are blocking the occurrence of answer sets. No answer sets are
possible as long as these atoms are present in the program.

Now, we can approach computation of strong rejections, and many
variants, straightforwardly by considering blocker sets. We first show
how blocker sets can be used for strongly rejecting subframeworks.
When stating include(a) for each a ∈ A as a fact, and defining
omission on the list of atoms L = {include(x) | x ∈ A \ S}, the
resulting abstract program omit(τF ∪ πadm ∪ {include(b). | b ∈
A}∪{← not in(a).},L) is unsatisfiable iffF |S is strongly rejecting
a. Briefly put, for x ∈ A \ S, omission leads to a choice whether to
include argument x (thus simulating the encoding proposed above).

As an example for computing different kinds of strongly rejecting
reasons, consider omission of L = {defeated(x) | x ∈ A \ S}.
Applying omission on the ground program via omit(πF ∪πadm∪{←
not in(a)},L), leads to removal of each rule with a defeated(x) ∈
L in the head. Whenever x attacks an argument y, the omission
modification induces a rule deriving {undefended(y)} instead of
undefended(y) (last but one rule of Listing 1), effectively relax-
ing the prerequisite of defending y against x. This kind of omission
is similar to defense-rejection (Section 5), but alleviates the need of
defending arguments against certain attacking arguments, instead of
not requiring to defend an argument at all.

Since ASP abstraction as presented here can simulate computation
of strongly rejecting subframeworks (and other variants), as well as
giving users a handle to find subsets of atoms of an ASP encoding
that suffices to block satisfiability (block credulous acceptance) in a
systematic way by specifying a list of atoms, we focus in the remain-
der of the technical part on computing small blocker sets.

Computing Minimum Blocker Sets We present an approach to
find blocker sets of minimum cardinality, in order to find reasons for
strong rejections that are small. That is, given a set of atoms L we
aim to find an optimal S∗ ∈ arg minS∈U |S| with U = {S ⊆ L |
omit(π,L\S) unsat.}. As argued by our complexity results, and be-
cause computing minimum blocker sets needs to (at least) solve the
problem of finding minimum sized strongly rejecting frameworks,
finding small blocker sets is complex (more complexity results for
blocker sets can be found in [37]). In brief, we encode the whole
process of finding a blocker set of minimum cardinality via an en-
coding in disjunctive ASP with optimization statements (this ASP
language is capable of solving optimization problems complete for
ΣP2 ). In order to achieve that, the given ASP program π is turned into
a meta ASP program, as shown in [29]. We modified construction of

this meta program by incorporation of the omissions: freshly intro-
duced atoms omitted(p(X)) denote that p(X) is to be omitted. In
other words, the input program (possibly encoding strongly rejecting
subframeworks) is modified to include ASP atoms reflecting which
atoms should be omitted, and then the whole program is modeled as
a meta program. Such a meta program allows reasoning on the origi-
nal ASP program. Critically, for us, we can reason on which atoms to
omit (by specifying which omitted(p(X)) to include) while pre-
serving unsatisfiability. A saturation-based technique [29] is used to
compute a maximum set of atoms that could be omitted while pre-
serving unsatisfiability, which returns minimum blocker sets.

7 EXPERIMENTAL EVALUATION
We implemented computation of cardinality minimum blocker sets.
The software, with further details, can be found at http://www.
kr.tuwien.ac.at/research/systems/abstraction/.
For evaluating our approach, we performed an experimental evalua-
tion using AFs, and queried arguments, from the recent ICCMA’19
competition2. As ASP encodings we used the unmodified encodings
for adm and stb of [23] (i.e., πF and πadm from above and πstb

from [23]). From the originally 326 instances of the competition
(AF and queried argument), we took those directly for which the
argument is not credulously accepted under admissibility. When-
ever an argument is credulously accepted under admissibility, we
computed new queries by selecting uniformly at random another
argument, excluding those that were checked to be credulously
accepted. This resulted in 211 instances (the remaining 326 − 211
have all arguments credulously accepted under adm). The number
of arguments in these AFs range from 7 to 10000 (median 475), and
have a number of attacks from 9 to 1039471 (median 4374).

We performed computation of cardinality minimum blocker sets,
with the restrictions that the blocker sets can only be composed of
(i) attacks (att), and (ii) defeated atoms, reflecting different types
of blocker sets and different types of strong rejection. In addition,
for admissibility we performed a straightforward preprocessing that
computes the subgraph composed of all backwards reachable argu-
ments from the queried argument, which is not applicable for stable
semantics. We ran our ASP approach to compute a cardinality min-
imum blocker set, and set a timeout of 900 seconds and a memory
limit of 8GB per individual instance. We used ASP solver clingo ver-
sion 5.3.0 [28] and gringo 3.0.3 for meta programming [29].

We summarize performance evaluation in Figure 3, which shows
a cactus plot, i.e., the number of instances (x-axis) that were solved
within a certain time (y-axis) per type of abstractions. When con-
sidering defeated omissions, 85 instances and 95 instances were
solved optimally, for adm and stb respectively (with a maximum
number of arguments of 2130 and 4383, respectively). Our approach
solved optimally about 50 instances for att omission. We hypoth-
esize that the difference in running times for optimally solved in-
stances is due to the induced search space: allowing for omission
only on the defeated predicate represents a search space bounded
by the number of arguments in an AF, while omissions on attacks im-
plies a search space that is bounded by the number of attacks, which
is itself bounded quadratically by the number of arguments. For the
overall picture, while many instances were not solved optimally, we
remark that up to 70 instances were solved with almost no time ef-
fort (Figure 3), and, furthermore, our approach also allows for non-
optimal solutions to be returned as they are found (the ASP solver
iteratively refines solutions until optimality is reached).
2 https://www.iccma2019.dmi.unipg.it/
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Figure 3. Cactus plot of optimally solved instances.

Regarding evaluation of blocker sets, we report the size of the op-
timal blocker sets that were found. In all cases, optimal blocker sets
were very small: for defeated up to size 3 for admissibility and
up to 6 for stability, and up to size 4 for all other parameters. This
implies that the parts of the AF (or semantical criteria) necessary to
find that the argument in question is to be rejected (credulously) are
rather small, regarding the used ASP encoding and omission. We in-
spected several cases and found that the blocker sets show that only
arguments up to a few steps away from the queried argument suf-
fice to see non-acceptability. We note that in certain cases the ASP
solver reduces the blocker set slightly by internal preprocessing. This
in particular concerns unattacked arguments a, which do not occur in
blocker sets (i.e., defeated(a) is not part of a blocker set).

8 DISCUSSION
Structural constraints and dependencies While (abstract) argu-

ments in an AF do not have inherent dependencies other than attacks,
such dependencies can be (implicitly) present when instantiating an
AF from, e.g., a structured knowledge base. For instance, presence
of an argument can imply presence of other arguments (e.g., when
one is structurally a sub argument of the other). Our approach is ver-
satile to accommodate such dependencies: since we specify what to
omit via ASP atoms, dependencies between such omissions can be
straightforwardly applied (via ASP rules). A recent study [41] on de-
pendencies of instantiated arguments when applying modifications of
the AF (as we do here by, e.g., shrinking the AF) shows that implica-
tions between presence of arguments can reflect important dependen-
cies between arguments, which can be captured with our approach.

Related Work Explainability and (formal) argumentation natu-
rally come together, and previous scientific works dealt with related
questions. Within formal argumentation, probably the closest work is
by [25] who look at (minimal) subframeworks, regarding arguments
and attacks, s.t. an argument is not credulously accepted. In [14]
games are studied that have a correspondence to admissible sets con-
taining a queried argument that are subset minimal w.r.t. the admis-
sible set and the arguments attacking this set. Abduction has been
proposed for explainability in AFs: [36] defines explanations as mod-
ifications to an AF (adding or removing arguments) s.t. an argument
can be labeled as in, out, or undecided, under labeling-based seman-
tics [15]. In [9] so-called critical sets are studied which are subsets
of the arguments in an AF s.t. each assignment of a complete label-
ing on the subset determines the labeling of arguments outside the
subset. Recently, [6] proposed diagnoses when no argument is cred-
ulously (skeptically) accepted, under a semantics. For structured ar-

gumentation, within assumption-based argumentation, dispute trees
were proposed to explain why a sentence should be concluded [17].
Formal approaches to argumentation, in varying forms, have also
been employed to provide explanations for several domains, e.g.,
in [39, 35, 18]. In contrast to these works, we look at, e.g., subframe-
works s.t. every expansion up to the original framework does not
credulously accept a queried argument.

Regarding related work in the field of ASP, approaches to debug-
ging explore explanations to unsatisfiable ASP programs [10, 33, 19,
30]. The main idea is to provide a reason of why an expected solu-
tion does not exist through occurring violations in the program and to
steer the user towards the erroneous rules. In our setting, the program
at hand is not considered to be buggy, and the aim is to get an under-
standing of which parts of the program are causing unsatisfiability. A
survey on explanation approaches for ASP can be found in [26].

The idea of strong inconsistency was proposed recently by [11] for
non-monotonic reasoning in general. In [12], strong inconsistency
was used to derive explanations for credulous (skeptical) acceptance
for logic programs. Our notions are inspired by theirs, where we di-
rectly tie strong rejection (strong inconsistency/explanations in their
approach) to credulous non-acceptance under main semantic notions
of AFs, and provide an in-depth analysis of these concepts by relating
them to well-known concepts in argumentation, show complexity,
provide an implementation, and an experimental evaluation. There
is also a certain relation between strong inconsistency and strong
equivalence; translating the corresponding result from [11] (Propo-
sition 5.3) to our setting in terms of strong equivalence between AFs
[34] amounts to the following statement: any subframework that is
strongly equivalent (under semantics σ) to a subframework strongly
rejecting argument a (under σ) is strongly rejecting a (under σ) itself.
However, since strong equivalence between two AFs requires that the
AFs are given over the same set of arguments [34], this results does
not provide any additional insight, since for any two subframeworks
F = (A,R), F ′ = (A′, R′) of an AF, A = A′ implies F = F ′.

With the aim of studying general notions of equivalence within
abstract argumentation, in [5] so-called C-restricted semantics were
introduced for a coreC of arguments in an AF. Their notion is related
to our relaxation of defense via admX in the sense that C-restricted
admissible semantics sanction conflict-free sets where only attacks
from C need to be defended against, while our notion requires that a
conflict-free set E of arguments needs only to defend its arguments
that are within X . Relating C-restricted semantics to explanations
remains as an interesting avenue for future work.

Conclusions In this paper we approached explanations of cred-
ulous non-acceptability under main argumentation semantics. Con-
cretely, inspired by earlier work, we defined strongly rejecting sub-
frameworks as subframeworks of AFs that provide sufficient reason
for rejecting an argument credulously. Our findings are that such
frameworks can be formally linked to particularly cautious game-
theoretic notions of explanations, namely that of strong admissibil-
ity. Further, we exemplified that the underlying concept of strongly
rejecting subframeworks can be varied to other notions, such as dif-
ferent types of subframeworks, or a relaxed notion of admissibility
that looks at defense for only a subset of arguments. Such different
notions can be tailored to which kind of explanation one seeks for in
detailing credulous non-acceptance. While computational complex-
ity of finding small reasons of rejection is high, as we show, we pro-
vided an implementation via ASP that can solve a reasonable num-
ber of AFs optimally, in the sense that smallest strong rejections are
found. In our experiments of AF instances of ICCMA’19 all opti-



mally solved instances resulted in very small blocker sets. This sug-
gests that in many cases, despite the complexity barrier in the general
case, small reasons of rejection can be found, and that, potentially,
AF solvers can decide non-acceptance often in a very local manner,
by investigating a small neighbourhood of a queried argument. More
broadly, we view our work as a step towards argumentative explana-
tion capabilities of AF systems at large.
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