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Abstract. In this work we revisit computational aspects of strongly admissible se-
mantics in Dung’s abstract argumentation frameworks. First, we complement the
existing complexity analysis by focusing on the problem of computing strongly ad-
missible sets of minimum size that contain a given argument and providing NP-
hardness as well as hardness of approximation results. Based on these results, we
then investigate two approaches to compute (minimum-sized) strongly admissible
sets based on Answer Set Programming (ASP) and Integer Linear Programming
(ILP), and provide an experimental comparison of their performance.
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1. Introduction

A key part to argumentative reasoning in Artificial Intelligence (AI) [3,6] are argumenta-
tion frameworks (AFs) due to Phan Minh Dung [14], which provide a formal approach to
represent arguments as abstract entities together with directed conflicts (attacks) among
the arguments. Semantics of AFs define criteria which sets of arguments can be deemed
acceptable, where the notions of conflict-freeness and defense of arguments prove to be
essential. A set of arguments is conflict-free if no arguments in the set are conflicting,
and defense requires that each attack onto a set is counter-attacked from inside the set.

A particularly cautious representative of AF semantics is the grounded semantics
that includes all unattacked (undoubted) arguments and each argument that can be it-
eratively defended from these unattacked arguments in the grounded extension. Almost
all major semantics of AFs contain the arguments of the grounded extension [14]. An
important reasoning task for the grounded semantics is to verify whether a queried argu-
ment is part of the grounded extension, or not. Notably, to answer this question, not all
arguments within the grounded extension are necessary.

Example 1. Consider an AF as shown in Figure 1. Say we desire to understand the
acceptability of argument a under grounded semantics. The unique grounded extension
of this AF is {a,c,g,h, j, l} which answers this question positively. Yet, not all arguments
are required to answer this question: e.g., argument c is sufficient to counter argument b
and to defend a, and g can be used to defend argument c from its three attackers.

A general observation from the preceding example can be made, and was formalized
in the literature: one can define dialectical proof procedures, or game-theoretic notions,
that specify which parts of the grounded extension suffice to witness containment in the
grounded extension. Under a game-theoretic perspective a proponent only needs to con-
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Figure 1. Two strongly admissible sets containing a: {a,c,g} and {a,h, j, l}

sider arguments g and c to defend a against each possible counter-argument. Such game-
theoretic notions for the grounded semantics were studied and resulted in the Standard
Grounded Game [25,23], and the Grounded Discussion Game [8].

Importantly, so-called strongly admissible sets [4,9] turned out to be key compo-
nents for winning strategies for such games. Admissible sets are conflict-free sets of
arguments where each argument in the set is defended by the set. Strongly admissible
sets, in contrast, require, intuitively speaking, that defense is “rooted” in unattacked ar-
guments. In addition, strongly admissible sets were not only shown to be viable for ex-
plaining acceptance under grounded semantics, but, recently, also shown to be useful for
explaining certain notions of non-acceptance [26].

Interestingly, while several papers provide results for strongly admissible sets [4,
9,5,15], in the literature strongly admissible sets were not yet studied in-depth from a
computational perspective. While the grounded extension, which can be computed in
polynomial time [16], would suffice to give a (maximal) strongly admissible set, expla-
nations, such as via winning strategies for games, benefit from only requiring as few ar-
guments as possible. Surprisingly, while all common reasoning tasks for the grounded
semantics are polynomial time decidable, we show that finding a strongly admissible
set of minimum size containing a queried argument is, in fact, a complex problem: we
show that a natural decision variant is NP-complete. Even more, we show that approxi-
mating minimum-sized strongly admissible sets containing a queried argument remains
NP-hard.

Our main contributions in this paper are as follows.

• We show NP-completeness of deciding whether there is a strongly admissible set
of size at most a given integer that contains a queried argument. Moreover, we
also turn some in P results of [9] to P-completeness results.

• We tighten the complexity landscape by showing NP-hardness for approximating
strongly admissible sets of minimum size.

• We provide two computational approaches inspired by the success of the “reduc-
tion approach” to AF reasoning [12]: (a) an encoding in Answer Set Programming
(ASP) and (b) an Inter Linear Programming (ILP) formulation.

• Finally we provide experiments that show feasibility of our approaches, even for
large AFs, based on instances of recent competitions.

2. Argumentation Frameworks

We recall basics of argumentation frameworks (AFs) [14] and their semantics (see
also [2] for an introduction).
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Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a finite 1

set of arguments and R ⊆ A×A is the attack relation. We say that S ⊆ A attacks b if
(a,b) ∈ R for some a ∈ S. Moreover, an argument a ∈ A is defended (in F) by S ⊆ A if
each b with (b,a) ∈ R is attacked by S in F .

Furthermore we denote by S+ = {b ∈ A | a ∈ S,(a,b) ∈ R} the set of arguments
attacked by S, and by S− = {b ∈ A | a ∈ S,(b,a) ∈ R} the set of arguments attacking an
argument in S. We call S∪S+ the range of S in F .

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions. We consider for σ the functions cf , adm, com, grd, and
strAdm which stand for conflict-free, admissible, complete, grounded, and strongly ad-
missible extensions, respectively. We first recall some semantics already introduced by
Dung [14].

Definition 2. Let F = (A,R) be an AF. A set S⊆ A is conflict-free (in F), if there are no
a,b ∈ S, such that (a,b) ∈ R. By cf (F) we denote the collection of conflict-free sets. For
a conflict-free set S ∈ cf (F), we say

• S ∈ adm(F), if each a ∈ S is defended by S;
• S ∈ com(F), if a ∈ S iff a is defended by S; and
• S ∈ grd(F), if S =

⋂
T∈com(F) T .

For each AF F we have grd(F)⊆ com(F)⊆ adm(F)⊆ cf (F) and |grd(F)|= 1, i.e.
there is a unique grounded extension which is the ⊆-minimal complete extension.

Next we introduce strongly admissible semantics as introduced by Baroni and Gia-
comin [4]. To this end, we first recall the notion of strong defence.

Definition 3. Let F = (A,R) be an AF. An argument a ∈ A is strongly defended by a set
S⊆ A iff each b ∈ {a}− is attacked by some argument c ∈ S\{a} such that c is strongly
defended by S\{a}.

We are now ready to provide the definition of strongly admissible semantics.

Definition 4. Let F = (A,R) be an AF. An E ⊆ A is strongly admissible (E ∈ strAdm(F))
iff E strongly defends each of its arguments.

Caminada and Dunne [9] provide some useful characterizations of strongly admissi-
ble semantics. In particular, one characterization avoids the notion of strong defence but
recursively refers to smaller strongly admissible sets.

Proposition 1 ([9]). Let F = (A,R) be an AF. It holds that E ∈ strAdm(F) iff each a ∈ E
is defended by some strongly admissible set S⊆ E \{a}.

Another useful characterization is based on the well-known (restricted) characteris-
tic function of AFs, recalled next.

Definition 5. Given an AF F = (A,R), the characteristic function FF : 2A → 2A of F
is defined as FF(S) = {x ∈ A | S defends x}. We will also consider the characteristic
function restricted to a given set E ⊆ A: FF,E(S) = {a ∈ E | S defends a}.

1Notice that the original definition is not limited to finite frameworks, but as we are studying computational
properties we are only concerned with finite AFs.
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By [14] it holds that the grounded extension of an AF F is the least fixed-point of
the characteristic function FF . Caminada and Dunne [9] use the restricted variant of the
characteristic function to characterize strongly admissible sets.

Proposition 2 ([9]). Let F = (A,R) be an AF. We have E ∈ strAdm(F) iff E is the least
fixed-point of FF,E(.).

We next recall useful properties of strongly admissible semantics [4,9]. For each
AF F we have grd(F) ⊆ strAdm(F) ⊆ adm(F) ⊆ cf (F). Moreover, strAdm(F) forms a
lattice, with the grounded extension as the top element and the empty set as the bottom
element. That is, the grounded extension acts as the top element of the strAdm(F)-lattice
as well as the bottom element of com(F)-semi-lattice. This yields the observation that
grd(F) = strAdm(F)∩ com(F), which we will use later on.

Lemma 1. Let F = (A,R) be an AF. It holds that S∈ grd(F) iff S∈ strAdm(F)∩com(F).

Proof. First, by the above the grounded extension is both strongly admissible and com-
plete. Next, recall that the grounded extension is the unique minimal complete exten-
sion and the unique maximal strongly admissible set. That is, each strongly admissible
set different from the grounded extension is not complete and each complete extension
different from the grounded extension is not strongly admissible.

3. Complexity Results

In this section we recap existing complexity result for strong admissibility and comple-
ment them by P-hardness results as well as by studying the problem of computing a
minimum sized strongly admissible set for a given argument.

3.1. Standard Reasoning Problems

The standard problems in abstract argumentation (cf. [16]) are: Credulous acceptance
Credσ , deciding whether a given argument is in at least one σ -extension; Skeptical ac-
ceptance Skeptσ , deciding whether a given argument is in all σ -extensions; Verification
Verσ , deciding whether a given set of arguments is a σ -extension; and Non-emptiness
Exists¬ /0

σ , deciding whether the AF has a non-empty σ -extension.
First, credulous reasoning with strongly admissible semantics corresponds to cred-

ulous reasoning with grounded semantics [9] and is thus P-complete [17]. Moreover,
as the empty-set is always strongly admissible no argument is skeptically accepted and
the problem becomes trivial. The Non-emptiness problem again corresponds to the re-
spective problem for grounded semantics and is in L. Next, as shown in [9], verifying a
strongly admissible set is in P and we next show that it is also P-hard by relating it to
verifying the grounded extension.

Lemma 2. Verifying whether a given set is strongly admissible is P-complete.

Proof. As shown in [9] we can verify a strongly admissible set E in P by computing
the least fixed-point ofFF,E(.). We know that verifying the grounded extension is P-
complete [17] and verifying a complete extension is in L [16]. A logspace reduction from
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verifying the grounded extension G of an AF F to verifying a strongly admissible set
E of an AF F ′ simply tests whether G is complete. If not it returns a no instance (e.g.,
the AF F ′ = ({a},{(a,a)}) and E = {a}), otherwise it returns the unmodified AF and
extension, i.e., F ′ = F and E = G. Then, by Lemma 1, it holds that G is the grounded
extension of F iff E is strongly admissible in F ′.

3.2. Minimum size strongly admissible sets

Arguably, the standard reasoning problems fail to fully characterize the complexity of
strongly admissible semantics as both credulous and skeptical acceptance can be solved
without referring to the strongly admissible sets of the AF, i.e., only the empty-set and
the grounded extension are used. In that light, and motivated by the usage of strongly
admissible sets as justifications in grounded discussion games [9] we are interested in
the problem of computing a minimum size strongly admissible set containing a given
argument. The decision version of this problem is the k-Witness problem k-Witnessσ ,
deciding whether a given argument is in at least one σ -extension of size at most k. We
remark that k is part of the input of this problem, but we keep the “k” in the problem name
to emphasize the size constraint. We next show that k-WitnessstrAdm is NP-complete,
which implies that there is no polynomial time algorithm that computes a minimum size
strongly admissible set (unless P= NP).

Theorem 1. k-WitnessstrAdm is NP-complete.

Proof. For membership, non-deterministically construct a subset of the arguments and
verify whether this set (i) contains the queried argument, (ii) contains at most k many
arguments (for a given integer k), and (iii) is strongly admissible in the given AF. The
last check can be done in polynomial time (see Lemma 2).

For hardness, we reduce from the NP-complete problem of deciding whether a given
Boolean formula is satisfiable. Given a Boolean formula ϕ = c1∧·· ·∧ cn in conjunctive
normal form (CNF) over variables X with clause set C, construct AF Fϕ = (A,R) with
A = X ∪X ∪C∪D∪{ϕ} and

R ={(ci,ϕ) | ci ∈C}∪{(dx,ϕ) | dx ∈ D} ∪

{(x,ci) | x ∈ ci}∪{(x,ci) | ¬x ∈ ci} ∪

{(x,dx),(x,dx) | x ∈ X}

with D = {dx | x ∈ X}. It follows that Fϕ can be constructed in polynomial time for a
given ϕ . An illustration of the reduction for an example formula is shown in Figure 2.
We claim that ϕ is satisfiable iff there is an E ∈ strAdm(Fϕ) with (i) ϕ ∈ E and (ii)
|E| ≤ |X |+1. First assume that ϕ is satisfiable and let M be a model of ϕ . Consider the
set E = M∪{x̄ ∈ X̄ | x /∈M}∪{ϕ} of arguments. Clearly |E|= |X |+1 and it remains to
show that E ∈ strAdm(Fϕ). First we have E \{ϕ} ⊆FF,E( /0) as these arguments are not
attacked at all. Moreover, by the assumption that M is a model it follows that all ci and
dx are attacked by E \{ϕ} and thus ϕ is defended and thus E = F 2

F,E( /0). We obtain that
E ∈ strAdm(Fϕ).

Now assume E ∈ strAdm(Fϕ) with (i) ϕ ∈ E and (ii) |E| ≤ |X |+ 1. In particular
E ∈ adm(Fϕ). As ϕ ∈ E we have C∪D ⊆ E+. By the arguments D we have for each
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ϕ

d1 d2 d3 d4c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

Figure 2. Example reduction for ϕ = (x1 ∨ x2 ∨ x3)∧ (¬x2 ∨¬x3 ∨¬x4)∧ (¬x1 ∨¬x2 ∨ x4).

x ∈ X either x ∈ E or x̄ ∈ E and by the size constraint that not both of them are in E. As
all C are attacked by E we obtain that M = E ∩X is a model of ϕ .

We summarize the complexity of all decision problems in Table 1.

Table 1. Computational complexity of strong admissibility

CredstrAdm SkeptstrAdm VerstrAdm Exists¬ /0
strAdm k-WitnessstrAdm

P-c trivial P-c in L NP-c

Given that we cannot compute a strongly admissible set of minimum size in polyno-
mial time a standard approach would be to go for a strongly admissible sets whose size is
a good approximation of the minimum size. We say a set S is an approximation within a
factor α if we have |S| ≤ α · |opt| where opt is an optimal solution. An α-approximation
algorithm is then a polynomial time algorithm that always returns a solution that is within
a factor α .

In order to show that hardness even holds when approximating a strongly admissible
set of minimum size with a queried argument, i.e., that under complexity theoretic as-
sumptions there cannot be a c-approximation algorithm for this problem for any constant
c, we consider the SET COVER problem. In the following we use [n] as shorthand for
the set {1,2, . . . ,n} (for a positive integer n).

Definition 6 (SET COVER). Given a universe U= [n] and a collection S= {S1, . . . ,Sm}
with Si⊆ U, the SET COVER problem is to find a smallest set I⊆[m] such that

⋃
i∈I Si=U.

Notice that SET COVER is not a decision problem as we are interested in computing
(the size of) a cardinality minimum solution. For SET COVER it is well-known that there
is no α-approximation algorithm where α is a constant unless P=NP. The actual lower
bound for approximation algorithms is even stronger.

Proposition 3 ([13]). Approximating SET COVER within a factor (1− ε) · ln(n) is NP-
hard for every ε > 0.

We next present a reduction from SET COVER to computing a minimum size
strongly admissible set for a given argument.

Reduction 1. For an instance (U,S) of SET COVER we define the AF FU,S = (A,R) with
A = U∪S∪{t} and R = {(i, t) | i ∈ U} ∪{(S, i) | S ∈ S, i ∈ S}.

An example instance of this reduction is shown in Figure 3. We next show that this
reduction maintains the size of minimum solutions.
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Figure 3. FU,S with U= {1,2,3,4,5} and S= {{1,2},{2,4},{2,3,4},{3,5},{4},{5}}.

Lemma 3. Let Imin be a minimum set cover of U,S and E a minimum among the sets in
strAdm(FU,S) containing t then |Imin|+1 = |E|.

Proof. We show that there is a one-to-one correspondence between set covers and
strongly admissible sets containing t which maintains the size of the solutions. First con-
sider a set cover I ⊆ [m]. It is easy to verify that the set E = {Si | i ∈ I}∪{t} is a strongly
admissible set in FU,S and the |I|+1 = |E|, as by assumption the selected Si attack all ar-
guments in U. Now consider E ∈ strAdm(FU,S) with t ∈E and define I = {i∈ [m] | Si ∈E}.
First as t ∈E we have U∩E = /0. We thus have {Si|i∈ I}=E \{t}⊆ [m] and |I|+1= |E|.
Finally, as the arguments U are only attacked by arguments S we have that each i ∈ U is
contained in some S ∈ E ∩S and thus I is a set cover.

By Lemma 3, each c-approximation algorithm for computing a minimum size
strongly admissible set would yield a (2c)-approximation2 for SET COVER, which is in
contradiction to Proposition 3.

Theorem 2. Computing a c-approximation for the minimum size of a strongly admissible
set for a given argument is NP-hard for every c≥ 1.

Let us complete this section on the computational complexity with some final re-
marks. First, notice that Theorem 2 implies Theorem 1. We believe that the hardness
proof in terms of the standard reduction is of additional value (e.g., when comparing
with other semantics) and thus included both reductions. Second, while we focused on
minimizing the size of the strongly admissible set, all the results can be easily extended
to minimizing the number of attackers of a strongly admissible set or to minimizing
a (weighted) combination of the size and the number of attackers. Finally, notice that
the AFs constructed in the reductions have a rather simple graph structure, i.e., they are
acyclic, bipartite and all paths are of length at most 2.

4. Two Reduction-based Implementations

As our complexity analysis shows NP-hardness for computing strongly admissible sets
of minimum size, we implement computation of strongly admissible sets via using an-
swer set programming (ASP) and integer linear programming (ILP), two approaches that
showed promise for NP-hard problems in computational argumentation [11,12]. Both
approaches make use of the characterization as least fixed point of the characteristic
function from Proposition 2.

2Assume there is a c-approximation, i.e., a strongly admissible set E ′ with |E ′| ≤ c · |E|. Then, by Lemma 3,
there is set cover I with |I|= |E ′|−1 and thus we have |I|= |E ′|−1≤ c · |E|−1= c ·(|Imin|+1)−1≤ 2c · |Imin|.
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4.1. Answer Set Programming Encodings

Background on ASP. We recall briefly ASP background [24,21]. We fix a countable set
U of constants. An atom is an expression p(t1, . . . , tn), where p is a predicate of arity
n ≥ 0 and each term ti is either a variable or an element from U . An atom is ground if
it is free of variables. BU denotes the set of all ground atoms over U . A rule r is of the
form

a← b1, . . . ,bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a,b1, . . . ,bm are atoms, and “not” stands for default negation.
The head of r is a and the body of r is body(r) = {b1, . . . ,bk, not bk+1, . . . , not bm}.
Furthermore, body+(r) = {b1, . . . ,bk} and body−(r) = {bk+1, . . . ,bm}. A rule r is ground
if r does not contain variables. A program is a finite set of rules. If each rule in a program
is ground, we call the program ground.

For any program π , let UP be the set of all constants appearing in π . Define GP as
the set of rules rτ obtained by applying, to each rule r ∈ π , all possible substitutions τ

from the variables in r to elements of UP. An interpretation I ⊆ BU satisfies a ground
rule r iff the head a of r is in I whenever body+(r)⊆ I and body−(r)∩ I = /0. I satisfies a
ground program π , if each r ∈ π is satisfied by I. A non-ground rule r (resp., a program
π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp., GP). An
interpretation I ⊆ BU is an answer set of π if it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct π I = {head(r)← body+(r) | I∩body−(r) = /0,r ∈ GP}.

ASP Encoding. As usual [18], we encode an AF F = (A,R) as ASP facts {arg(x) | x ∈
A} and {att(x,y) | (x,y) ∈ R}. We provide our ASP encoding for strongly admissible
semantics in Listing 1. The first two lines generate a potential answer set for each subset
E of the arguments, where the atoms with the in predicate contain the arguments in E.
Lines 3 & 4 compute the least fixed-point of FF,E(.), notice that in Line 3 we explic-
itly ensure that only arguments a with in(a) can be in the fixed-point. The conditional
defeated(Y ) : att(Y,X) stands for a conjunction (list) of all defeated(Y ) s.t. att(Y,X)
holds (i.e., the conditional is expanded to {defeated(y) | (y,x) ∈ R}). Finally, in Line
5 we rule out answer sets where the least fixed-point differs from the guessed set E.
With the encoding in Listing 1 we can use clingo [20] to compute all strongly admissible

Listing 1: Encoding πstrAdm

in(X)← arg(X), not out(X).
out(X)← arg(X), not in(X).
fixedPoint(X)← in(X), defeated(Y) : att(Y,X).
defeated(X)← arg(X), fixedPoint(Y), att(Y,X).
← in(X), not fixedPoint(X).

sets of an AF and to solve all the standard reasoning tasks. Moreover, clingo also pro-
vides flexible optimization statements. To compute an optimal strongly admissible set
that contains some argument t we first add a constraint “← not in(t).” to ensure that the
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computed set contains the argument and then add optimization constrains. To compute a
minimum size set we add the constraint “#minimize {1@1,X:in(X)}.” which for each
argument in the extension adds one to the objective function that is minimized.

If we want to take also the attackers of an extension into account we first add a
rule “attacker(X):- in(Y), att(X,Y).” that computes the attacking arguments and
then we can formulate minimize statements that also take attackers into account. For
example such statements can minimize the size of the set plus the number of attack-
ers(#minimize {1@1,X:attacker(X)}. #minimize {1@1,X:in(X)}.), among the
minimum size sets minimize the number of attackers (#minimize {1@2,X:in(X)}.
#minimize {1@1,X:attacker(X)}.), or weight between size and the number of attack-
ers, e.g., by adding two for each argument in the set but just one for attackers (#minimize
{2@1,X:in(X)}. #minimize {1@1,X:attacker(X)}.).

The encodings are available at https://www.dbai.tuwien.ac.at/research/
argumentation/aspartix/dung/min_extensions.html.

4.2. Encoding as Integer Linear Programming

We describe an encoding of our problem as an Integer Linear Program (ILP) (see,
e.g., [27]). Integer linear programming is a well-known NP-hard problem where one is
given variables over the integer domain, a linear objective function and linear constraints,
and one has to minimize (or maximize) the objective while satisfying the constraints.

In contrast to the ASP encoding we will require a quadratic number of variables
and as preliminary tests showed that solvers are sensitive to the number of variables
we implemented the following simplifications before encoding the problem as ILP. First
we ignore all arguments that cannot reach the query argument t, second compute the
grounded extension G of the simplified AF, and then give an encoding that only refers to
arguments in G and G−. Moreover, as our encoding mimics the (restricted) characteristic
function we are also interested in the maximal number of iterations k until a fixed point is
reached. We obtain that the number of iterations is at most min(|G|, |G−|+1) as in each
iteration we have to add an additional argument to G and attack an additional argument
in G−, otherwise we have reached a fixed-point.

Given an AF F = (A,R), the grounded extension G, the attackers G−, k =
min(|G|, |G−|+1), wa,wb coefficients to weight between |E| and |E|−, and a target argu-
ment t ∈ A we define variables with domain {0,1}: xi,` encoding that argument i ∈ G is
accepted in the `-th iteration of the fixed-point computation; and yi encoding that i ∈G−

is an argument that attacks E. The ILP is then given as follows:

min wa ·∑
i∈G

xi,`+wb · ∑
i∈G−

yi (1)

xi,` ≤ xi,`+1 ∀i ∈ G,1≤ ` < k (2)

x j,` ≤ ∑
(k,i)∈R

xk,`−1 ∀(i, j) ∈ R,2≤ `≤ k (3)

x j,1 ≤ 0 ∀(i, j) ∈ R (4)

x j,k ≤ yi ∀(i, j) ∈ R (5)

xt = 1 (6)
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In the objective function (1) we can use the parameters to specify if we want to minimize
the arguments in the extension (wa = 1,wb = 0), the number of attackers of the extension
(wa = 0,wb = 1), or the sum of both (wa = wb = 1). The constraint (2) ensures that if an
argument is accepted in the `-th iteration then it is also accepted in all the later iterations.
By constraint (3) we get that an argument is accepted in the `-th iteration only if it is
defended by the arguments accepted at the (`−1)-th iteration. With the exception of the
first iteration where constraint (4) ensures that only unattacked arguments are accepted.
Constraint (5) encodes that all arguments i that attack an accepted argument are marked
as attackers of E. Finally, constraint (6) ensures that the computed strongly admissible
set contains the query argument t.

5. Experimental Evaluation

We provide an empirical evaluation of our two reduction-based approaches to implement
strongly admissible sets in ASP and ILP. We focus on the task of finding one strongly
admissible set of minimum size that contains a queried argument for a given AF, for
which we showed NP-hardness.

For instances, we considered AFs and queries provided by the benchmark sets of
the two most recent argumentation competitions ICCMA’17 [19] and ICCMA’193. From
ICCMA’19 we considered all provided AFs and queries, and from ICCMA’17 we con-
sidered the AFs and queries from the “A” benchmark set. From these benchmark sets,
we included in our experiments all AFs and queries whenever a query was provided by
the competition. Additionally, for each AF we generated one query argument within the
grounded extension of the AF (whenever the grounded is not empty). This resulted in
326 AFs from ICCMA’19 and 333 AFs from ICCMA’17 (17 AFs from ICCMA’17 in-
cluded no query argument and have an empty grounded extension). Furthermore, to look
at scalability, we generated 22 new AFs from the admbuster class [7], which is specifi-
cally designed for strongly admissible sets, with sizes from 10,000 to 7,000,000 argu-
ments. For queries of the newly generated AFs, we included again one randomly chosen
argument from the grounded extension, and also the distinguished argument “a”, which
requires the whole grounded extension to be included (i.e., the only strongly admissible
set containing “a” is the grounded extension). Overall, we included 698 AFs and 1168
queries over these AFs.

We let clingo [20] v5.4.0 and IBM’s CPLEX [1] v12.10.0.0 compute a strongly
admissible set of minimum size containing the queried argument with a timeout limit
of 900 seconds and a memory limit of 8GB per query. All experiments were run on a
machine with two AMD Opteron Processors 6308, 12 x 16GB RAM, and Debian 8. For
using CPLEX, we used the python LP modeler PuLP 4 to generate the ILP constraints.

We summarize the results obtained. Using clingo and the above encoding, 1157 in-
stances were solved optimally (550) or clingo reported unsatisfiability (607). One time-
out was encountered and ten times the memory limit was reached (for instances with
at least 3,000,000 arguments). Using CPLEX, overall 1089 instances were solved, ei-
ther by reporting an optimal strongly admissible set (482) or by showing unsatisfiabil-
ity (607). Further, using CPLEX two timeouts were reported and 76 times the memory

3https://www.iccma2019.dmi.unipg.it/
4https://pypi.org/project/PuLP/
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Table 2. Summary of performance evaluation

approach # optima found # unsatisfiability reported # timeouts # memory limit reached

ASP 550 607 1 10
ILP 482 607 2 77

limit was reached. One time a memory error was reported. Considering the running times
clingo solved 75% of the instances within 1.6 sec while CPLEX solved 75% of the in-
stances within 2.5 sec. When considering the admbuster instances, clingo solved all in-
stances up to 2,000,000 arguments while CPLEX only solved some of the instances up
to 20,000 arguments. In Table 2 we summarize the results obtained (the memory error is
included in the memory limit reached column).

From the results one can conclude that a large portion of the instances could be
solved (optimally), even when faced with large and potentially complex AFs. Due to the
low number of timeouts, we hypothesize that memory was the main limiting factor, for
the instances considered. Both reduction-based approaches reported the same unsatisfi-
able instances, which plausibly seems to be a simple case: computing the grounded ex-
tension and checking inclusion is a poly-time decidable problem. While our approach uti-
lizing CPLEX reported a higher number of cases where the memory limit was exceeded,
we speculate that this is more inherent to the large number of constraints produced dur-
ing construction of the ILP rather than due to (limitations of) CPLEX itself. More effi-
cient constructions of constraints might lead to better performance. Nevertheless, both
approaches solved a majority of the instances.

6. Conclusions

In this paper we studied the computational properties of strongly admissible sets. Con-
cretely, we showed NP-hardness of finding a minimum-sized strongly admissible set
containing a queried argument, a hardness result that we showed also to hold when ap-
proximating strongly admissible sets. To overcome the clear theoretic complexity barrier,
we provided two approaches to compute strongly admissible sets in practice: based on
the promising approaches of ASP and ILP, we provided one implementation each, with
both of them showing good performance in our experiments. The implementation based
on ASP was somewhat outperforming the approach based on ILP.

Directions for future work include extending our approaches to minimal admissi-
ble sets, which are also relevant for discussion-games [10], and abstract argumentation
formalisms that enhance Dung AFs [22].
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