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Abstract

Given the description of a physical system in one
of several forms (a set of constraints, Bayesian net-
work etc.) and a set of observations made, the
task of model-based diagnosis is to find a suitable
assignment to the modes of behavior of individ-
ual components (this notion can also be extended
to handle transitions and dynamic systems [Kurien
and Nayak, 2000]. Many formalisms have been
proposed in the past to characterize diagnoses and
systems. These include consistency-based diag-
nosis, fault models, abduction, combinatorial op-
timization, Bayesian model selection etc. Different
approaches are apparently well suited for different
applications and representational forms in which
the system description is available. In this paper,
we provide a unifying theme behind all these ap-
proaches based on the notion of model counting.
By doing this, we are able to provide a universal
characterization of diagnoses that is independent of
the representational form of the system description.
We also show how the shortcomings of previous ap-
proaches (mostly associated with their inability to
reason about different elements of knowledge like
probabilities and constraints) are removed in our
framework. Finally, we report on the computational
tractability of diagnosis-algorithms based on model
counting.

1 Introduction
Diagnosis is an important component of autonomy for any
intelligent agent. Often, an intelligent agent plans a set of
actions to achieve certain goals and because some conditions
may be unforeseen, it is important for it to be able to recon-
figure its plan depending upon the state in which it is. This
state identification problem is essentially a problem of diag-
nosis. In its simplest form, the problem of diagnosis is to find
a suitable assignment to the modes of behavior of individual
components in a static system (given some observations made
on it). It is possible to handle the case of dynamic systems by
treating the transition variables as components (in one sense)
[Kurien and Nayak, 2000]. The theory developed in this pa-
per is therefore equally applicable to dynamic systems too

(although we omit the discussion due to restrictions on the
length of the paper).

Many approaches have been used in the past to character-
ize diagnoses and systems. Among the most comprehensive
pieces of work are [de Kleer and Williams, 1989], [Reiter,
1987], [Struss and Dressler, 1989], [Console et al., 1989],
[de Kleer et al., 1992], [Poole, 1994], [Kohlas et al., 1998]
and [Lucas, 2001]. The popular characterizations of diag-
noses include consistency-based diagnosis, fault models, ab-
duction, combinatorial optimization, and Bayesian model se-
lection. These approaches are however tailored for different
applications and representational forms in which the system
description is available. They also have one or more short-
comings arising out of their inability to provide for a frame-
work that can incorporate knowledge in different forms like
probabilities, constraints etc.

In this paper, we provide a unifying theme behind all these
approaches based on the notion of model counting. By doing
this, we are able to provide a universal characterization of di-
agnoses independent of the representational form of the sys-
tem description. Because model counting bridges the gap be-
tween different kinds of knowledge elements, the shortcom-
ings of previous approaches are removed.

2 Background
Before we present our characterization of diagnoses based on
model counting, we choose to provide a quick overview of
the previous approaches so that we can compare and contrast
our approach with them.
Definition (Diagnosis System) A diagnosis system is a triple
(
���

, ������� �
, �
	 �

) such that:
1.

���
is a system description expressed in one of several

forms — constraint languages like propositional logic, prob-
abilistic models like Bayesian network etc.

���
specifies both

component behavior information and component structure in-
formation (i.e. the topology of the system).
2. ������� �

is a finite set of components of the system. A
component ��
������ ( ��������� ������� � � ) can behave in one
of several, but finite set of modes ( � � ). If these modes are
not specified explicitly, then we assume two modes — failed
( ��	�� ��
����!�#" ) and normal ( $%��	&�'��
������#" ).
3. �
	 �

is a set of observations expressed as variable values.
Definition The task in a complete diagnosis call is to find a
“suitable” assignment of modes to all the components in the



system given
���

and �
	 �
. The task in a partial diagnosis

call is to find a suitable assignment of modes to a specified
subset

�
(
�)( ������� �

) of the components in the system
given

���
and �
	 �

.
Unless stated otherwise, we will use the term “diagnosis”

to refer to a complete diagnosis. Later in the paper we will
show that the characterization of partial diagnoses is a simple
extension of the characterization of complete diagnoses.
Definition (Candidate) Given a set of integers
�+*-,.,/,0�21 354-687:9!1 (such that for �;� <=� � ������� � � ,
���>� ?��=� �@?A� ), a candidate �
BDCFE!�'�+*%,.,.,G�21 354:6�759�1H" is

defined as �
BACFE��I�G*-,.,/,+�21 354-6�759�1 "�J)�LK 1 3:4:6�759�1M2N * �'��
���� M J
� M �'� M "+"+" .
Here, �PO��IQR" denotes the QDS'T element in the set �UO (assumed
to be indexed in some way).
Notation When the indices are implicit or arbitrary, we will
use the symbol V to denote a candidate or a hypothesis i.e.
an assignment of modes to all the components in the system.

Consistency-Based Diagnosis
The task of consistency-based diagnosis can be summarized
as follows. Note that the definition of a diagnosis in this
framework does not discriminate between single and multi-
ple faults.
Definition (Consistency-Based Diagnosis) A candidate V is
a diagnosis if and only if

���XW �
	 �YW V is satisfiable.
There are other characterizations of diagnoses under this

framework called partial diagnoses, prime diagnoses, kernel
diagnoses etc. We will examine these later in the paper.

Fault Models
Consider diagnosing a system consisting of three bulbs
	�*�ZG	\[ and 	\] connected in parallel to the same volt-
age source ^ under the observations 
`_a_%� 	 * " , 
`_a_%� 	 [ "
and 
�C��'	\]/" . ��	&� ^b"�cd��	��'	\]�" is a diagnosis under the
consistency-based formalization of diagnosis if we had con-
straints only of the form $%��	�� 	\]e"-cf$%��	&� ^�"�gh
�C��'	\]i" .
Intuitively however, it does not seem reasonable because 	 ]
cannot be 
�C without ^ working properly. One way to get
around this is to include fault models in the system. These are
constraints that explicitly describe the behavior of a compo-
nent when it is not in its nominal mode (most expected mode
of behavior of a component). Such a constraint in this exam-
ple would be ��	&�'	\]�"�gj
`_a_%�'	\]/" . Diagnosis can become
indiscriminate without fault models. It is also easy to see
that the consistency-based approach can exploit fault models
(when they are specified) to produce more intuitive diagnoses
(like only 	�* and 	\[ being abnormal).

Diagnosis as Combinatorial Optimization
The technique of using fault models is associated with the
problem of being too restrictive. We may not be able to model
the case of some strange source of power making 	 ] on etc.
The way out of this is to allow for many modes of behavior
for each component of the system. Every component has a
set of modes (in which it can behave) with associated mod-
els. One of these is the nominal (or normal) mode and the
others are fault modes. Each component has the unknown
fault mode with the empty model. The unknown mode tries
to capture the modeling incompleteness assumption (obscure

modes that we cannot model in the system). Also, each mode
has an associated probability that is the prior probability of
the component being in that mode. Diagnosis can now be cast
as a combinatorial optimization problem of assigning modes
of behavior to each component such that it is not only con-
sistent with

���kW �
	 �
, but also maximizes the product of

the prior probabilities associated with those modes (assuming
independence in the behavior of components).
Definition (Combinatorial Optimization) A candidate V>J
Cand( �G*:,.,.,+�l1 3:4:6�759�1 ) is a diagnosis if and only if

���dW V W
�
	 �

is satisfiable and �m� Vf"fJh�'n 1 354-6�759�1M2N * �m�'��
���� M J
� M �'� M "+"+" is maximized.

Diagnosis as Bayesian Model Selection
Sometimes we have sufficient experience and statistical in-
formation associated with the behavior of a system. In such
cases, the system description is usually available in the form
of a probabilistic model like a Bayesian network. Given some
observations made on the system, the problem of diagnosis
then becomes a Bayesian model selection problem.
Definition (Bayesian Model Selection) A candidate V
is a diagnosis (for a probabilistic model of the system,���

) if and only if it maximizes the posterior probability
�m�'Vpo ��� Zl�
	 � " .
Diagnosis as Abduction
Yet another intuition behind characterizing diagnoses is the
idea of explanation. Explanatory diagnoses essentially try to
capture the notion of cause and effect in the physics of the
system. The observations are asymmetrically divided into in-
puts ( q ) and outputs ( � ) [de Kleer et al., 1992]. The inputs
( q ) are those observation variables that can be controlled ex-
ternally.
Definition (Abductive Diagnosis): An abductive diagnosis
for (

���
, ������� �

, �
	 � Jrq W � ) is a candidate V such
that

���XW q W V is satisfiable and
����W q W Vsgt� .

3 Probabilities and Model Counting
Before we present our own characterization of diagnoses
based on the notion of model counting, we show an interest-
ing relationship between probabilities and model counting
(see Figure 1). The model counting problem is the problem
of counting the number of solutions to a SAT (satisfiability
problem) or a CSP (constraint satisfaction problem).

Definition (Binary representation of a CPT): The bi-
nary representation of a CPT (Conditional Probability Table)
is a table in which all the floating-point entries of the CPT
are re-written in a binary form (base 2) up to a precision of �
binary digits and the decimal point along with any redundant
zeroes to the left of it are removed.

We provide a set of definitions and results relating the
probability of a partial assignment � to the number of
solutions (under the same partial assignment � ) to CSPs
composed out of the binary representations of the CPTs (see
Figure 1). Basic definitions related to CSPs can be found in
[Dechter, 1992].
Definition (Zero-one-layer of a CPT) The uvS'T zero-one-layer
of a CPT is a table of zeroes and ones derived from the uvS'T
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Figure 1: Shows the conditional probability tables (CPTs) of a Bayes net on the left of the vertical line L. On the right of L are
the binary representations of these CPTs (example shown for 0.4 in decimal = 0.011 in binary). CPTs correspond to families in
the Bayes net and let the number of families be C.

bit position of all the numbers in the binary representation of
that CPT.
Definition (Weight of a zero-one-layer) The u S'T zero-one-
layer of a CPT is defined to have weight wvx M

.
Definition (CSP Compilation of a CPT) The uvS'T CSP
compilation of a CPT is a constraint over the variables of the
CPT that is derived from the uRS'T zero-one-layer of the CPT
such that zeroes correspond to disallowed tuples and ones
correspond to allowed tuples.
Definition (CSP Compilation of Network) The � uv*eZluy[�,.,.,lu 3 "
CSP compilation of the Network is the set of constraints

� Jz�{ �%| { � is the uRS'T� CSP compilation of the �}S'T CPT ~ .
Definition (Weight of a CSP Compilation) The weight of a
� u�*`Z�uA[�,.,/,�u 3 " CSP compilation of a network is defined to be
equal to wRx5� M��0�5Ml���H�H� M2�!�

.
Property There are an exponential number of CSP compi-
lations for a given network. Since each CPT expands into
� zero-one-layers and a CSP for the entire network can be
compiled by taking any of these � layers for each CPT (there
are � CPTs), the total number of CSP compilations possible
is � 3 .
Notation We will use the notation � � ? to mean the <DS'T CSP
compilation of the �#S'T CPT. Let � indicate a complete or
partial assignment to the variables. If � is an assignment
that instantiates all the variables of �
�
� � , then we will use
the notation ��� ? � ��" to indicate whether or not � satisfies
� � ? . If � is a complete assignment for all the variables in

the network, then all variables for all CPTs are instantiated
and we will use the notation � � � � M��l� Ml�.�H�H� M2��� �'��" to indicate
whether � satisfies all the constraints � � Ml� ( �������k� ). If
� is not a complete assignment for all the variables, then we
will use the notation ��� � � � M��2� Ml���H�H� M2�!� �'�\" to indicate the
number of solutions to the � u * Z�u [ ,.,/,Gu 3 " CSP compilation
of the network that share the same partial assignment as � .
Theorem 1 The probability of a complete assignment
��J �I��*�J��a*-,.,/,+�m��J��!�v" is just the sum of the
weights of the different CSP compilations of the network
that are satisfied by this complete assignment. That is,
�m�'�\"�J � � M � � M � �H�H� M � � � � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
(for all ���d����� , ����u � ��� ).
Proof Consider the complete assignment � J �'�&*�J
� * ,.,/,0� � J�� � " for all the variables. The probability of this
assignment is equal to the product of the probabilities defined
locally by each CPT. Now using the fact that the � S'T bit in the
binary representation of this local value has been written out
as an allowed or disallowed tuple in the �+S'T CSP compilation
of that CPT, we can rewrite the local value for � in a CPT
as � 7? N * � � ?A�'�\"+w�x ? . The total probability is then just the

product over all local values = n 3 M2N * � 7? N * � M ?A�'�\"+w�x ? .
Expanding the product, we see that each term is essentially
of the form � � M��l� Ml���H�H� M2��� w�x:� M��}�5Ml���H�H� M2�!� n 3? N * � ? M�  �'��">J
� � M���� Ml�.�H�H� M2�¡� w x:� M��}�:Ml���H�H� M2��� � � � � M � � M � �H�H� M � � � ��" .



Theorem 2 (Model Counting) The marginalized prob-
ability of a partial assignment � to a set of variables�¢( ^ is equal to the product of the weight and the
number of solutions (under the same partial assignment � )
summed over all CSP compilations of the network. That is,
�m�'�\"£J=� � M � � M � �H�H� M � � ��� � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
(for all ���d����� , ����u � ��� ).
Proof From the previous theorem, we know that
the probability of a complete assignment 	 is
� � M���� Ml�.�H�H� M2�¡� � � � � M��2� Ml���H�H� M2�!� �'	�"+w�x:� M��}�:Ml���H�H� M2���

(for all
�¤�¥���¦� , �§�=uA�X�¨� ). Now, the marginalized
probability of a partial assignment � is just the sum of
the probabilities of all complete assignments 	 that agree
with � on the assignment to variables in

�
. That is,

�m�'�\"©J �«ª �m�'	8".�'	&� � "�J ��" . Using the result of
the previous theorem to expand �m� 	8" , we have �m� ��"�J
�¬ª&� � M��2� Ml�2�H�H� M2��� � � � � M��l� Ml���H�H� M2�!� � 	8"Gw�x5� M��0�5Ml�.�H�H� M2�¡� � 	�� � "�J
��" . Switching the two summations and noting that
�¬ª � � � � M��l� Ml���H�H� M2�!� � 	8".�'	�� � " J ��" is the same
as � � M��l� Ml���H�H� M2��� �8� � � � M � � M � �H�H� M � � �'�\" , we get that

�m�'�\"�J¬� � M � � M � �H�H� M � � �8� � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
.

3.1 Probability-Equivalents and Incorporation of
Probabilities

Often, we are given information in many forms. Probabilities
are natural information elements when there is an element of
statistical experience that we want to exploit. In other cases,
constraints may be the most appropriate to use. The general
idea in our framework is to use probabilities when we explic-
itly have them and to use model counting otherwise. We will
use �&� � * Z � [ ,/,.,H" to mean the number of consistent models to
� � * W�� [�,.,.,H" (with respect to the uninstantiated free variables
in

���
). Theorems 1 and 2 establish that model counting is

a weaker form of probabilities and that probabilities provide
only precision information over model counting. Therefore, it
is natural for us to use probabilities (to describe events) when
we have them explicitly, and to use model counting otherwise.
For any event ­ , we use the expressions ® � 9D¯ � °5�

® � 9D¯ � and �m�'­b"
almost equivalently — except that we use the former when
we do not know �m�'­b" explicitly. This framework allows us
to reason about both probabilities and constraints.
Definition (Probability Equivalents) The probability equiv-
alent of ��� ��� Z�­b" for any event ­ is defined to be
�m�'­8"G�&� ��� " when �m�'­8" is given explicitly.

4 Diagnosis as Model Counting
In this section, we characterize diagnoses based on model
counting. We will then show how all the previous approaches
are captured under this formalization. For the first part of
the discussion we will consider only complete diagnoses (an
assignment of modes for all the components).
Definition (Model Counting Characterization) A diagnosis
is a candidate V that maximizes the number of consistent
models to

���sW �
	 ��W V using probability equivalents
wherever necessary.
Notation We will use �k� Vf" to denote �&� ��� Z��
	 � ZGVf"
(the number of consistent models to

���±W �
	 �²W V ) when

���
and �
	 �

follow from context.
Theorem 3 (Capturing Consistency-Based Diagnosis)
Consistency-Based diagnosis is looking for a hypothesis V
for which �k�'Vf" is non-zero.
Proof By definition, consistency-based diagnosis chooses V
such that

����W �
	 �³W V is consistent. In other words, there
exists at least one satisfying assignment for

���«W �
	 ��W V .
Clearly, this is equivalent to saying that �k�'Vf" is non-zero.
Theorem 4 (Capturing Abduction) Abduction chooses a
hypothesis V that maximizes �k�'Vf" assuming uniformity in
prior probabilities �m�'Vf" .
Proof The maximum value of �&� ��� Z��
	 � J´q W ��Z�Vf"
is �&� ��� ZGVYZ�qD" and this happens when V Wf���rW qfg>� .
Given that the input variables are controlled externally, we
know that �&� ��� ZGV@"µJ·¶U�'q�"G�&� ��� ZGVYZ�qD" . Here, ¶d�'q�"
is a constant that measures the number of different values
for the input variables. Since �&� ��� ZGV@" is equivalent to
�m�'V@"G�&� ��� " which we assumed to be a constant for all
V , maximizing �&� ��� Zl�
	 � Z�Vf" is equivalent to finding
a hypothesis V for which q)g � (under

���
). The fact

that abduction requires V to be consistent is also captured,
because if V is inconsistent, then �k�'Vf"²J�¸ and clearly
�k�'V@" will not be maximized.
Theorem 5 (Capturing Bayesian Model Selection) Bayesian
model selection chooses a hypothesis V such that it maxi-
mizes the probability equivalent of �k� Vf" .
Proof The probability equivalent of �k�'Vf" J
�&� ��� Z��
	 � ZGVf" is �m�L�
	 � Z�Vf" . Clearly, if we are
maximizing �m�L�
	 � Z�Vf" then we are maximizing
�m�'Vpo`�
	 � "0�m� �
	 � " . Since �m� �
	 � " is independent
of V , it is equivalent to maximizing �m�'Vpo`�
	 � " which is
exactly what Bayesian model selection does.
Theorem 6 (Capturing Combinatorial Optimization) Com-
binatorial optimization is looking for a hypothesis V which
maximizes �m�'Vf" under the condition that �k�'V@" is non-
zero.
Proof As noted earlier, V is consistent with

���¤W �
	 �
if and only if �k� Vf" is non-zero. We also know that
combinatorial optimization is looking for a consistent V
which maximizes �m�'Vf" . The theorem follows as a simple
consequence of the above two statements. Basically, combi-
natorial optimization maximizes only the prior probabilities
of hypotheses (instead of maximizing the equivalent of the
posterior probabilities) unless they are obviously ruled out
by being inconsistent.

4.1 Consequences (Removing Previous
Shortcomings)

We now show the consequences of formalizing diagnosis as
model counting. In particular, we identify problems with pre-
vious approaches and show how model counting removes all
of them.

Problems with Consistency-Based Diagnosis
One of the problems with consistency-based diagnosis is that
it allows for non-intuitive hypotheses as diagnoses. It pro-
vides only for a necessary but not a sufficient condition on
the hypotheses that can be qualified as diagnoses. By itself, it
is of little value unless we use an elaborate set of fault models



to remove non-intuitive hypotheses that could otherwise be
consistent. Model counting removes these problems because
of its ability to merge and incorporate the notions of both
consistency and probabilities. In one sense, one can think of
model counting as giving us a measure of the degree to which
a hypothesis is consistent with

���
and �
	 �

. Some of these
problems are alternatively addressed in [Kohlas et al., 1998]
and [Lucas, 2001].

Problems with Fault Models
The problem with fault-models is that of over-restriction (as
explained at the beginning of the paper). We need to be able
to reason not only about constraints relating

���
and �
	 �

,
but also about any other kind of information we may have
in the form of probabilities etc. The over-restriction problem
can be removed by introducing probabilities. These proba-
bilities can then be used in the unified framework of model
counting.

Problems with Abduction
Like the consistency-based approaches, explanatory diag-
noses are also unable to incorporate and reason about proba-
bilities. Yet another problem with abduction is that it assumes
we have completely modeled all cause-effect relationships in
our system. This contradicts our modeling incompleteness
assumption and is an unnecessary restriction on

���
. Model

counting removes this problem in a way very similar to how
probabilities were used to deal with the modeling incomplete-
ness assumption. Alternate treatments for these problems
can be found in [Poole, 1994] (which links abduction with
probabilistic reasoning) and [Console et al., 1989] (which ad-
dresses the modeling incompleteness assumption).

Problems with Diagnosis as Bayesian Model Selection
Bayesian model selection agrees with our characterization of
diagnoses — but the only problem it poses is that it requires���

to be in the form of a Bayesian network with known prob-
abilities. Modeling a physical system as a Bayesian network
is in many cases a non-intuitive thing to do. This is especially
so when certain probability terms are hard to get. Parts of
the system may be better expressed in the form of constraints
or automata. In such cases, Bayesian model selection does
not extend in a natural way and model counting is the right
substitute (because it is defined under all frameworks).

Problems with Diagnosis as Combinatorial Optimization
One problem associated with casting diagnosis as a combi-
natorial optimization problem is that of being unable to give
explanatory diagnoses a preference over the rest. Clearly, we
would like to prefer hypotheses that not only maximize the
prior probability �m�'Vf" but that are also explanatory rather
than just being consistent with

���fW �
	 �
. One way to incor-

porate this preference is to find all consistent hypotheses that
maximize �m�'Vf" and to pick an explanatory one among them.
The question that arises then is how we would compare two
hypotheses one of which is explanatory and the other just con-
sistent (but not explanatory), with the latter having a slightly
better prior probability. This question is left unanswered un-
der the combinatorial optimization formulation of diagnoses.
In the model counting framework however, it is easy to see

that we really have to maximize �m� Vf"D® � 9D¯ � 4 ª 9 � ¹º�
® � 9D¯ � ¹º� . The

second factor is maximized for explanatory diagnosis — but
this is as much as the preference we attach for them.

Another problem with the combinatorial optimization for-
mulation is that probabilities are restricted to only behavior
modes of components and only these prior probabilities are
maximized. There is no framework to reason about proba-
bilistic information connected with observation variables.

5 Partial Diagnoses
Sometimes, we are interested in finding a suitable assignment
of modes to a specified subset

�
of the components ������� �

rather than for all components. We argue that our characteri-
zation of diagnoses under the model counting framework re-
mains unchanged.
Definition (Candidate) Given a set of integer tuples
� u * Z+� M � "»,/,.,/�Lu � Z+� Ml¼ " such that for �
�P<m��Cf�X� ������� � � ,
�b�«� M�  �)� � ? � , a candidate �
BDCFE��+� u * ZG� M � "»,/,.,/�Lu � ZG� Ml¼ "+" is
defined as �
BDCFE��+� u * ZG� M � "»,.,/,/� u � ZG� Ml¼ "G"½J©� K �¾ N * � ��
���� ¾ J
� ¾ �I� M2¿ "+"G" .
Notation When the indices are implicit or arbitrary, we will
use the notation À 9 to denote a candidate or a hypothesis
i.e. a set of mode assignments to all the components in�Á( ������� �

.
Definition (Model Counting Characterization) A partial di-
agnosis for

��( ������� �
is an assignment of modes À 9 to

the components in
�

that maximizes �&� ��� Z��
	 � Z�À 9 " using
probability equivalents wherever necessary.

It is now not hard to verify that all previous approaches are
captured in a way very similar to that for complete diagnoses.
This is essentially a consequence of the theorem that relates
the number of consistent models for � ��� Z��
	 � Z�À 9 " to the
marginalized probability of À 9 (Theorem 2). Instead of pre-
senting the proofs again (and making repetitive arguments),
we choose to allude to another set of characterizations mostly
associated with consistency-based diagnosis. These are the
notions of partial (a different characterization in consistency-
based diagnosis), kernel and prime diagnoses. These notions
have the same kind of drawbacks associated with the general
consistency-based framework [de Kleer et al., 1992] and our
investigation into these notions is just in the spirit of under-
standing their relationship to model counting.
Definition An ��	�Â literal is ��	&�'�." or $%��	&�'�." for some
component � in ������� �

. An ��	�Â clause is a disjunc-
tion of ��	�Â literals containing no complementary pair of
��	�Â literals.
Definition A conflict of � ��� Zl������� � Z��
	 � " is an
��	�Â clause entailed by

���kW �
	 �
. A minimal conflict of

� ��� Z�������� � Zl�
	 � " is a conflict no proper sub-clause of
which is a conflict of � ��� Zl������� � Z��
	 � " .
Definition (Consistency-Based Characterization) The partial
diagnoses of � ��� Z�������� � Zl�
	 � " are the implicants of the
minimal conflicts of � ��� Z�������� � Z��
	 � " .
Theorem 7 A partial diagnosis in the consistency-based
framework identifying an implicant � of the minimal
conflicts of

���¨W �
	 �
, is also a partial diagnosis

in the model-counting framework maximizing �k�0À 9 "�J
�&� ��� Z��
	 � Z�À 9 " for

� J variables of the implicant � , but



with free variables limited to abnormality ( ��	 ) variables.
Proof The implicant � fixes an assignment for the compo-
nents in

�
but leaves ������� �)ÃY�

unassigned. Let the
set of minimal conflicts of

���kW �
	 �
be Ä . Let ��Å ª �'­b"

denote the number of consistent models of ­ restricted to
free variables being from the uninstantiated ��	�Â variables.
Since � is an implicant of Ä , all models of � (restricted to
��	�Â variables) also satisfy Ä and are hence consistent with���kW �
	 �

. This makes � Å ª � ��� Z��
	 � Z+��"�J�� Å ª �I�\" .
In general, since � Å ª � ��� Zl�
	 � ZG��" is upper bounded by
�8Å ª �'��" , the truth of the theorem follows.
Definition (Consistency-based Characterization) A kernel
diagnosis identifies the prime implicants of the minimal con-
flicts of

���XW �
	 �
.

Without a detailed discussion (due to lack of space), we
claim that this notion is related to yet another task in diagno-
sis — that of “representing” complete diagnoses. This task
is orthogonal to “characterizing” them [Kumar, 2002]. There
are other notions of diagnosis called prime diagnoses, irre-
dundant diagnoses etc. [de Kleer et al., 1992] arising mostly
out of the task of “representation” and all of which are cap-
tured in one or the other way by the model counting frame-
work (which we omit in this paper).

6 Related Work on Characterizing Diagnoses
and Model Counting

Related work in trying to unify model-based and probabilis-
tic approaches can be found in [Poole, 1994], [Kohlas et al.,
1998], [Lucas, 1998] and [Lucas, 2001]. [Poole, 1994] links
abductive reasoning and Bayesian networks and general diag-
nostic reasoning systems with assumption-based reasoning.
[Kohlas et al., 1998] shows how to take results obtained by
consistency based reasoning systems into account when com-
puting a posterior probability distribution conditioned on the
observations (the independence assumptions are lifted in [Lu-
cas, 2001]). [Lucas, 1998] gives a semantic analysis of differ-
ent diagnosis systems using basic set theory. The issue of the
modeling incompleteness assumption is referred to in [Con-
sole et al., 1989].

Diagnosis algorithms based on model counting have not
yet been developed. However, the problem of model count-
ing itself has been extensively dealt with. Although this prob-
lem is �8� -complete, there are a variety of techniques that
have been used to make it feasible in practice (including ap-
proximate counting algorithms running in polynomial time,
structure-based techniques etc.). Model counting for a SAT
instance in DNF (disjunctive normal form) is simpler than it is
for CNF (conjunctive normal form). For DNF, there is a fully
polynomial randomized approximation scheme (FPRAS) to
estimate the number of solutions [Karp et al., 1989]. CDP and
DDP are two model-counting algorithms for SAT instances in
CNF [Bayard and Pehoushek, 2000]. A version of RELSAT
has also been used to do model counting on SAT instances in
CNF. If a propositional theory is in a special form called the
smooth, deterministic, decomposable, negation normal form
(sd-DNNF), then model counting can be made tractable and
incremental [Darwiche, 2001].

7 Summary and Future Work
In this paper, we provided a unifying characterization of diag-
noses based on the idea of model counting. In the process, we
compared and contrasted our formalization with the previous
approaches — in many cases, removing the problems asso-
ciated with them. Because model counting bridges the gap
between probabilities and constraints and is well-defined for
many representational forms of information available about
the system, we believe that the model counting characteri-
zation of diagnoses is useful and general in the sense of not
imposing any restrictions on the representational form of the
system description.

As for our future work, we are in the process of investi-
gating and developing computationally tractable algorithms
based on the model counting characterization of diagnoses.
Advances in model counting algorithms (approximate count-
ing, structure-based methods etc.) seem to be encouraging
towards this goal. We are also working on variants of the
diagnosis problem (e.g. when we are interested in a set of
candidate hypotheses rather than just one).
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