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Abstract. In this paper we propose a component-based hybrid forpresents the algorithms required to reason about hybrid models and
malism, that represents physical phenomena by combining concute track multiple trajectories in both simulation and diagnosis; Sec-
rent automata with continuous uncertain dynamic models. The fortion 5 discusses our research, compares and references some related
malism eases the modeling of complex physical systems, and adagork.

concurrency to the supervision of hybrid systems. Uncertainties in

the model are integrated as probabilities at the discrete level and ins . .

tervals at the cont?nuous Ie\f)el. Our modeling framework is rather? Hybrid System Formulation

generic while focusing on the construction of intelligent autonomous? .1 Hybrid Systems as Transition Systems
supervisors by integrating a continuous/discrete interface able to rea-

son on-line in any region of the physical system state-space, for belN€ et of all components of the physical system to be modeled is

havior simulation, diagnosis and system tracking. denqted bngmps. Every component in thgt set is described by a
hybrid transition system. The set of all variables used to describe a

component is denoteld and is partitioned in the following manner:

1 INTRODUCTION ) )
o IT =11, UIlc UIlgong U IIp — set of discrete variables of 4

In the past few years, numerous works have been presented to modeldistinct types (Mode, Command, Conditional, Dependent),
embedded systems with hybrid models and reason about them for = = =; U Zp — set of continuous variables of 2 distinct types
simulation, diagnosis [9] or verification [1] purposes. The model- (Input, Dependent).

ing framework usually expresses the different operating modes of

the system as a set of finite automata and associates to each mdf@de variabledI,, represent components nominal or faulty modes,
continuous knowledge encoded through standard numeric differerfUch a®nor stuck Command variableH - are endogeneous and ex-

tial equations. In this paper we propose a component-based hybrRgeneous commands modgled as_discrete_ events to the system (e.g.
formalism, that represents physical phenomena by combining corsoftware commands). Continuous input variatiigsare exogeneous
current automata with continuous uncertain dynamic models. Howeontinuous signals to the system determined by its environment (e.g.
ever it is not sufficient to add continuous knowledge to automata, bekNown inputs or disturbances). Conditional variatiles, .. are spe-
cause moving between operating modes requires the automatic cofific discrete variables that represent conditions on continuous vari-
struction of the structure of the newly assembled continuous modepfbles. Discrete and continuous dependent variables are all other vari-
It means computing both the characterization of the region of theébles. Finally the seDbs contains observable variables of the phys-
state-space of the operating mode (denoted @snéiguratior), and ical system. Each observable signal has an explicit sampling period.
a proper causal ordering between the active variables in that mod®ur hybrid transition system is an extension of the standard transi-
No pre-study of the behavior of the physical system is required tdion system [8] that adds (qualitative or quantitative) constraints to
determine the state-space regions associated with the current sy§€ states.

Fem configuration(s) bepausg the ;earch at continuous Igvel 'S C‘.’JlStE)definition 1 (Hybrid Transition System — HTS) A Hybrid Transi-
into a boolean constraint satisfaction problem. A reasoning contlnut-ion Systenfi TS is a tuple ¢/, 3., 7', C, ©) with:

ous/discrete interface (C/D 1) is thus added, which provides an on- T ’
line generation of the characterization of the new model structure by 1/ — 11 U = — set of all variablesyv € V, the domain ofy
making use of enhanced Truth Maintenance techniques [18] on the s piy), finite for variables inIl, intervals or real values irk
logical model. This is keypoint to achieve the diagnosis of the hy-  gtherwise.

brid system for which detection is provided by the continuous layer, 53 set of all interpretations over.

and state identification is performed at the discrete logical level by Each state inS assigns a value from its domain to any variable
searching for the current configuration consistent with observations. ,, < y/.

At the same time, the logical framework allows the description of 4 7 __finite set of transition variables.

purely discrete component behavior in the same manner as in [17]. Each variabler,, in T ranges over its domai[r,,] of possible
Section 2 describes the discrete and the continuous layers; Section 3ransitions of the mode variable, € I, Eachr?, in D[r,,] is
presents the interface that integrates both layers together; Section 4 4 functionr?, : & — 2%, associated to a mapping functiop .

- - — set of (qualitative or quantitative) continuous constraints
1 This work is supported by CNES (French Space Research Center) and AS- gverV @ q )
TRIUM. :

2 Laboratory for Analysis and Architecture of Systems, Toulouse, France Each constraint in C' at least depends on one mode variable in
3 Laboratory for Analysis and Architecture of Systems, Toulouse, France IIx. Ym € IIy, we noteC[m] the set of constraints associated
4 LIPN - UMR 7030 Universi Paris 13, France to the variablem.




e © — set of initial conditions. thermostafl’, with faulty modesstuckon, stuckoff andunknown as

© is a set of assertions ovadr such that they define the set of Well as required transitions. This thermostat switches according to
initial possible states, i.e. the set of statds ¥ such thats = ©. € room temperature (it should be in itson mode when the tem-

' peraturer < m to warm up the room, and back to @ mode when
Note that in aHT'S, due to the continuous constraintsdh some < = M to cool it down).z is hence influenced by the heater setting
transitions can trigger according to conditions over continuous varif€mperature: (in modeon) or by the outside temperature.. (in
ables. At the discrete/continuous interface level, these conditiong10deoff). The temperature variationis observed through a sensor
have a corresponding discrete variablellp.nq4, Which captures  With additive noisetno;. Initially, * = xeq:, the room isclosedand
their truth value. Throughout this paper we illustrate the formal-the thermostat isn. Variables of both¥/7'S are:

R.mode € II); = (closed, open, unknown)
R.cmd € ll¢ = (none, open, close)
Rc€lleona = (Raxz<m,Rz>mARx<M,Rx>M)
RxecZp € [—oo,+00]
Rt €Zp € [—00,+00]
R Az €Ep € [—o00,+00]
R.inos €21 € [—1,1]
R.Qc € [0.05,0.15]
R.Qo € [0.02,0.05]
Ra € [0.9,1.1]
= Test Raewy = 4
g fo;](;ﬁ figé}fizwhe,em =z — . T.mode € IlIpy = (of f, on, stuck-on, stuck_of f, unknown)
1iEz a8l TM = 17
Tm = 10
Th = 20
Figure 1. room HT'S with unknown mode Obs = {i}

2.1.1 States and Time

Considerations about time are central because both the discrete and
the continuous frameworks use time representations that are differ-
ent. At the continuous level, time is explicit in the equations that
represent the physical system behavior, we cagbhigsical timef.
Physical time is discretized according to the highest frequency sen-
sor, providing theHT'S reference sampling periofl;. z(kTs), or

z(k) for short, specifies the value of the continuous vector of state-
variables in= at physical timekT,. We call abstract timethe time

at the discrete level. It is dated according to the occurrence of dis-
crete events. At datg the discrete state; of a HT'S is the tuple
(M, Q+), wherel, is the vector of instances of mode variables, and
Q. the vector of instances of variablesIdfin qualitative constraints.
Discrete state-variables arelih\ I1¢,,q. Abstract time dates are in-
dexed on physical time, which informs about how long a component
has been in a given discrete statet ¥ kT, then we write the in-
dexed date”. When there is no ambiguity it is simply denotedtby
Thehybrid states,, of a HT'S is the tuple(mx, z(k)).

2.1.2 Transitions
Cloff) (Clstuckof 1) e = reat
C Clstuck. e = e . . .
PSR Transitions describe changes between modes over time. The transi-

l2id =aQ/c(ext — T-M) tion variable associated toa mode varialaldzs denotedjm such that
its domain isD[r,,] = {7, € T} U {7d, € Tr} U {r**}, with:

Figure 2. thermostatd T'S with fault modes . . .
g e T the set ofhominaltransitions that express switches from one

nominal mode to another,
e Ty the set offaulty transitions that move thé/T'S into a faulty

ism and later on the diagnosis operation on a simple example: figure mode,

1 shows thef/T'S of a room R submitted to a temperature source. ¢ ¢ theidentitytransition that allows & 7'S to stay in its current

It has two nominal modesopen(a door or a window is opened), mode

closed and a faultyunknowrmode. The room temperaturas influ- '

enced by the temperature of the sourceaccording to a first-order Because transitions cannot always be considered as instantaneous
differential equation which accounts for the room characterigdics against the frequency of the sensors, we introduce delays on nom-

(closed) and?, (open). The actions that move the room from one . o . " "
mode to another are modeled as observed single discrete commarlgg' transitions. Delayl.; 'is such that once a transitiarj, is en-

emd = open andemd = close. Figure 2 presents the model of a abledit is triggered aftewd ; T, i.e. afterd,. physical time units.

i
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While a transition issnabledand waiting for its delay to expire, itis Second, initialization is performed by making use of the mapping
said to be irstandby For a matter of simplification, the delay will be  fynction, and physical time goes afine-step relationi):

referred asi when there is no ambiguity. A delay on transition can

also be modeled by adding modes and clocks to the hybrid transition (e, x(k+d) =1L (st;c)

system [4]. We do not use this representation here because we think 0 @
that it does not enforce the easy representation of a component as a (Mo, 2k +d)) = (e, 2(0))

tran.sition system by creating modes thgt are irrelevant for thg diag\ivherex(e)
nosis purpose. To model faults, we define fault modes of which Wer,,., over the continuous timé. In the systems we are interested
know the behavior, such asuckon or stuckoff, and a unique mode  j, "ot of the discontinuities are driven by controller actions and
unknowrthat is rather specific because it has no constraints and CO\sreserve the state variables continuity. In our example, the tempera-
ers all interpretations ix. Modeled faults are often abrupt faults in e is obviously continuous when the thermostat switches fram

the sense that they do not represent tenuous parameter changes. TQUS# and we use the temperatuie]M at this point to compute
faglt transitions have no delay, i.e. their duration is one physical time;, _ aQ.(z. — T.M). However it has been shown in [10] that in
unit. specific cases, retrieving a mapping function from the models of both
Definition 2 (pre and post assertions)For a given transitiont;, considered modes is far from trivial and requires deep understanding
and a given state,. € ¥, we note assertiongre(r,) = m/ A of the physics of the phenomena abstracted in the discontinuity.

andpost(r,) = m’ where:

is the continuous state associated to the discrete state

7
¢HCUCond

e m’ andm’ are two instances of the mode variabte 2.3 Component modes behavior

i ¢ﬁcwwd is a logical condition over instances of variables of We described how transitions express component’s dynamics be-
bothIlc andIlcong. tween modes. At this point we want to represent each intra-mode
We refer to theguard of a transition as the condition statement behavior with two goals in mind: on the one hand the representation
dﬁicucmd that triggers the transition. Only fault transitions can be must encode th_e available q_ualitative or_q_uantitative knowledge; on
spontaneous, so their guard can be always true. Traditionnally, proihe other hand it must be suitable for efficient reasoning. For purely
abilities are also attached to every nominal and faulty transitions. Inliscrete components, usually software drivers as well as complex
our example.T" is represented as followg { is the next operator  ejectronic devices, the behavioral model is given by a set of boolean
from temporal logic): constraints oveflc U I1p that are associated to each mode variable
R.7y,,, : R.mode = closed A R.cmd = open. O R.mode = open value in the same manner as in [17]. For continuous components, the
R.r2,. : R.mode = open A R.cmd = close (O R.mode = closed continuous behavior is expressed by discrete-time continuous con-
O straints oveE. Each constraint is attached to a mode of the transition
system. The discrete-time continuous constraints are of the following
standard form:

R.T}ail : R.mode = open V R.mode = closed R.mode = unknown

T.‘riom : Tmode =off ANRx <m (O T.mode=on
T2, : Tomode =on ARax>M (O T.mode=off { z(k+1) = Az(k) +Zj:0,.“,r Bju(k —7) 3)
T.T}a” : T.mode =on ANR.x > M (O T.mode = stuck-off y(k + 1) = C:C(k + 1)
T.7}qi : Tomode =of f ARz <m O T.mode= stuck.on wherez(k), y(k), andu(k) represent the continuous state vector of
T.73,; : Tomode =on O T.mode = stuck_on dimensionn, ouput (observed) variables vector of dimensioand
T.rd,.: Tomode = off O T.mode = stuck-of f input (control) varigbles of dimens_ianat_timek_TS, respectivgly;A, _
T3+ Tamode = on v Tamode = of f O Tumode  unknown B, andC are matrices of appropriate dimensions. To provide a suit-

able framework for reasoning, continuous constraints are encoded in
There is no delay when the thermostat (room) switches bet@een a specific two levels formalism [15] which includes a causal model

(open andoff (closed modes. and an analytical constraint level. The causal model is obtained from
equation (3) by expressing it as a setaafusal influencesmong
2.2 Moving between modes the (state, input or output) variables. Influences may be of different

» . . types: dynamic, integral, static and constant. The following definition
When a transition triggers, the component switches from one mOd@xpresses first and second order dynamic influences:

to another, the correspondidgT’S needs to transfer its continuous
state vector as well. For that reason each transiﬂdﬂis associated Definition 3 (Dynamic inﬂuence) A dynamic inﬂuencéij is a tu-

with amapping functiori_; : ¥ — X over the dependent variables pie (¢;, ¢;, K, Ty, T;, cond) for first order differential relations and
in V. It initializes the value of a subset of variables in the hybrid (¢, ¢, K T, ¢, w, cond) for second order relations with :

state resulting from applying,, to Sk wherel is the abstract time _ )

index. Other variables in,. keep their previous value. The iden- ® §iﬂ€ = a;d & € E are two continuous variables such thgt

. . _ ; . . L influenceg;,

tity mapping function is denotet!”. Triggering a transition is a two e K isthe pe{rametegain, representing the static gain of the influ-
steps operation [1]. First, mode change is performed by applying the ence

transitionr., to the current hybrid state and moving to the resulting e T, is the parametedelay, representing the time needed fyto
i g -

mode after its delay has expiretlgnsition relation—=): react tog;,
e T, is the parameteresponse timeepresenting the time needed by
i 1) &; to get to a new equilibrium state after having been perturbed,
i e ( is thedamping raticof the system,
Sip St;ﬂ:ﬁd e w is theundamped natural frequenof§the system,

T, €T, (st;c,st;cM) €x? Sk = pre(rk)




e cond is the parameteconditionwhich specifies the logical con- A T4 R

dition under which the influence is activemnd ranges over ele- - Az — 1. Ris; _ =
T2 T Tz -3
ftis @&
The underlying operational model of dynamic influences is provided y
by the following equation:

inai
Gl = Y apfl—p)+ Y. bi(k+1-q) (4)
p=0,...,n—1 q=0,...,m

Figure 3. Causal nominal system description of the thermostat and room

where¢; and¢; are continuous variables, is the influence order example

andm < n (causal link). Usually an equation is modeled by a set of
influences. When necessary, uncertainties can be taken into account
in the influence parameters and as additive disturbances. The first amgfinition 5 (Hybrid Component System — HCS) A Hybrid Com-
represented by considering that parametgrandb, have time in-  ponent SystemHCS is a tuple (Comps,V,%,T,C,0) with
dependent bounded values, i.e. they are given an interval value. Th@mps being a set ofs components modeled as concurrent hybrid
latter can be introduced as a bounded value constant influence agj;, ...

ing on¢;. From the superposition theorem that applies to the Iineal(rﬁalnSItlon systeméli = (Vi, %0, T3, Cis 0)s Uiz . Vi) = Vi
case, the computation of the updated value of varighles = in DS ®i L, T = Ui T, C = Uz- Ci, 0= Ui ©i.

an equatioreq consists in processing the sum of the activated influ-

ences froneq having exerted og; during the last time-interval. The - - . .
rediction update of all the state and observed variablé3 and of atrajectory as a succession of states. At each time-step, constraints
P and commands first synchronize on shared variabl€sinIl- and

y(k.) frpm the '_"T‘°W"?dge of control variablas(k) and influence = (the room and the thermostat shake). Shared variables serve
activation conditions is performed along the causal model structure; *.. o
. o o . as time-dated communication channels between automata. The au-
Our representation of uncertainties leads to the prediction of contin: .
- - s tomata must nevertheless synchronize between states. The synchro-
uous variable trajectories in the form of bounded envelopes. In other._ . s . .
o . nization uses transitions and is such that given components of the

words, the system statg k) at every time instant = k75 is pro-

vided in the form of a rectangle of dimensian HOS:

We track the evolution of & C'S over a temporal window in the form

e HTS that received a command synchronize on the corresponding
nominal transition,
e non commanded 'S synchronize on the identity transition®.

Definition 4 (Causal system description — CD)The causal system
description associated to the set of continuous constraintsbf &

is a directed graptG = (E, I) where! is a set of edges supporting
the influences among variablesah with their associated conditions

When synchronizeddT'S instances are introduced into the trajec-
and delays.

tory whereas otheH T'S are not copied at each time-step. Intuitively
The numerical intervals obtained from equation (4) are refined at th&ve want to only introduce the minimal subset of tH&'S necessary
analytical model level with global constraints by performing a toler-for tracking and diagnosis purposes. In [11] and for discrete-only
ance propagation algorithm [6] on the set of variables. Back to thenodels, this subset is computed using a pre-compilation of prime
example, the feasible continuous state&adre specified by the in-  implicants of mode variables. In our implementation, transitions syn-

fluences in eacli T'S: chronize a posteriori, and only when needed by the reasoner to oper-
ate. This saves big amounts of memory as when tracking a physical
R.i1 (static) : if (R.mode = closed) thenR.Ax gein=Ce p & system in its nominal long-term state, very few components need to
R.io (static) : if (R.mode = open) thenR.Ax 9¢in=Q0 p & be reintroduced. i e . i
, The concurrency process is complexified by the introduction of
R.iz (integral) : R *“5" R delays on transitions. Figure 4 presents an example of the synchro-
Ruis (static) : Rop 7%= 191" p Ap nization of four concurrenHT'S, H; to H4. Four transitions are
T.i1 (constant) : if (T.mode = on V T.mode = stuck.on) then enabled on shared variables at time-sfepnd synchronize over the
Th — R.Az three next time-steps with different delays, exceptdey andd-,
T.is (constant) : if (T.mode = of f V T.mode = stuck_of f) then that are equal{, andH>, as well asH3 and H, have constraints that
R.zent — R.Az share variables. Due to different commands, the concurrence makes
T.iz (constant) : T-&noi — R.& the four HT'S change mode at tim&' whereas otheHT'S in the

model stay inactive (they are not represented on the figure). Then the
synchronization effort takes into account delays of triggered transi-
tions as well as the links betwedfT'S through shared variables:

Influences without explicit conditions are valid in all modes except
in the unknownmode. Figure 3 presents the nomiaD for the
room and the thermostat.

e H, andH,4 have the same delay and thus participate a same hybrid

2.4 Hybrid Component System state at time-ste); ; 2,
Once components have been modeled FAES, constituting a  ® Hi andH> synchronize at,,™ . This is done with the identity

generic reusable database of models, they need to be assembled in dransition onf. frd

Hybrid Component Systetn model the entire physical plant. Com- ® H1 (or H2) and H, don’t synchronize at,,, "' because they
ponents are hence instantiated. Within the whole plant model, com- don't share any variables,

ponents are concurrent, i.e. able to evolve independently which ale H; and H, share variables budon’t synchronizeat tfj{i*? be-
lows us to reason on subparts of the model. causer; is already instandby



The last remark is of importance because it relies on the hypothesia the model, a proper causal ordering of variables is to be found
thatwe cannot track or diagnose a physical component while it iswhen entering the new mode. A brute force approach would con-
switching from one mode to anothée. when one of its transitions sist in generating a new causal structure for every different mode.
is in standby as the required transient models are often unknown oiThe problem of performing an on-line incremental generation of the
too complex. The consequence is that components only synchronizs&ausal structure has been previously addressed [16] but it is solved

in their non-standby states. here in a slightly different manner. This is done by first casting the
B problem into a boolean constraint satisfaction problem: every con-
Hy: st & 8141 = 543 tinuogls equatiotr: and va;]iablle in tec 7Sfishassocia;)tled to boolean
variables inlT whose truth values state if the variables or equations
. 73
s : E @ are active or not. Rules over the boolean variables are automatically
Hy 5 7 (oot 7 s 7t P built to represent the conditions of these activations and form a logi-
E ] P , D cal representation of the causal-ordering problem.
time t iy htin i+ 3.3 Overview
The previous configuration and causal ordering problems are solved
on-line by using a truth maintenance system (TMS) to reason on the
) N corresponding boolean constraint satisfaction problems. We use the
Figure 4. synchronization over 3 states of foli7'S. e . .
context switching algorithms of [18] because we are not interested
in generating all configurations of the physical system but to switch
from one to another as fast as possible. Fh€'S reacts to events,
. . Discrete level
3 Continuous/Discrete Interface o G i
3.1 Configurations -’ /o

Depending on the mode at a given time{&'S has its hybrid state Configurations
that ranges over several continuous regions. These regions are known
to be difficult to determine and compute, if not undecidable. We pro-
pose an on-line mechanism to keep track of the state-space partition e e P e e
by sheltering every continuous functional piece with a conjunction szi'\_ = o

of logical conditions we denote asanfiguration ] /’/T \ *
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Definition 6 (HC'S configuration) A configuration for aHC'S at
time-step” is a logical conjunctions,x = (A, m") A (A, 11%,,,.4)

where then! are instanciations of component modeglif; and the
It/ are variables ofilcona.

The configurations are automatically drawn from conditions on botH-€- Observations from sensors as well as commands, and propagates

transition guards and influences that define structural changes in tfg€m to the model's discrete and continuous levels through the logi-

model. A configuration can be attached to one or more modes igal interface and the way back. Figure 5 sums up these interactions.

I1,,. In our example, the continuous state is easily partitioned by thd he C/D |, made of the variables iic..a associated to influence

thermostat’s transitions into three regions determined by the thregonditions and transition guards, as well as the causal ordering log-

conditions on variable, defining27 configurations: ical model, ensures the logical consistency of the changes triggered
by the flow of events.

Figure 5. 3-layers interactions

Ci1 : R.mode = closed N T.mode = on AN R.x <m
Cz : R.mode = closed AN T.-mode = on A (R.x > m A Rx < M) . . . . .
Cs : R.mode = closed AN T.-mode = of f AN (R.x >m A Rx < M) 4 Simulation and DlagnOSIS ofa Hybrld

Cs : R.mode = closed A T.mode = of f A R.x > M Component System

4.1 Simulation
Whatever the complexity of the conditions defining the regions of

the physical system, it is easy to logically express any condition as & HC'S simulation is a run of concurrent hybrid transition systems
boolean variable ofc,,4, Wwhose 1/0 corresponds to the condition that generates possible nominal trajectories of #€S according

and its negation. This however leads to a number of partitions thaf© issued commands and inputs over the time. The uncertainty on
is not optimal relatively to the exact number of state-space regionfe continuous constraint parameters determines the precision of the
in which the physical system evolves. Note that the configuratiorfomputed envelopes that enclose the observed behavior of the phys-

associated to thenknowrmode encompasses the overall state-spaceical system at each time step. o . .
Sometimes the truth value of a condition in a configuration may

be undetermined when checked against a rectangular enclosing of
the continuous state-variables. The problem arises from the fact that
When switching from one mode to another, some equations and varsome variables over which configurations rely are not measured.
ables are added or retracted according to the new configuration. Colivhen the computed bounds of such a continuous varigbspan
sequently, due to the possible presence of static continuous equatioager more than one configuration region relying on that variable, we

3.2 Causal ordering for static equations



say that the currerttonfiguration is splitting the continuous state on At time-steptf, due to the crossing af = M, the current configura-
variable ;. Figure 6 shows a configuration split for the thermostattion is splitted onz. A new partial hybrid state comes from equation

(5):
emporal
< Jnce%ﬂinfy R.mode = closed N'T.mode = on AN R.x > M
: ] Then bounds of variable are refined in each configuration by fil-
=M 2 tering the values with respective constraifts > m A R.x < M
22 andR.xz > M. As transitionT.72,,, turnsenabledwith the second
configuration, the configuration is instantaneoudy£,,, has no
\_ delay) updated to:
x=m \ C4 : Romode = closed N T.mode = of f NRx > M (7)
t
0 oyt oF ekt From that point the system tracks two distinct trajectories.

Figure 6. Transition guard split .
4.2 Fault Detection

The detection algorithm then uses the above prediction of the endo-
example when crossing — M. The current configuration splits on geneous continuous variable values to obtain robust decisions about

regionsz' andz? and the two possible trajectories are tracked simul-the existence of faults, based adaptive thresholdprovided by the

taneously. In applications, this situation happens rather frequentl nvelop(_as upper and lower bounds. Th|s_ is performed _by comparing
and multiple consecutive splits of a guard on the same variable ca e predicted and observed values of variables across time. The adap-
occur because sensor frequencies are usually beneattertiyo- tive thresholds principle fairly reduces the possibility of false alarms

ral uncertaintyinduced by the envelopes. We first want to split the when tracking the system. However, to achieve better robustness, we

continuous state into logical branches then refine consequently tr%ésually mark a variable as mibehaving after it has been outside of its

bounds on all continuous variables in every explored branch. For ounds for at least..» physical time-steps. After that delay, the

given continuous variablg;, the logical split of a configuratiod, lagnosis op(_ergtlon Is triggered. . L . .
returns the set of possible configurations to be tracked: For dynamic influences, the algorithm sensitivity relies on a mixed
' strategy which combines an observer type strateggséd-loop

mode, i.e. the measure of a variahleat time¢ is used to elabo-
[0,x](&) = \/ (Hgondsv A </\ H’Clond> ) (5) rate the prediction of at time¢ + 1) with a pure simulation strategy
’ n (open-loopmode, i.e. the prediction gfat timet-+1 is obtained from
) the prediction ofy at timet) to determine the thresholds and further
wherellz,,q, are variables oflconq relying ong; andIl¢,,.  assess variable states. We call this strateggmai-closed l00gSCL)
other conditions i, . Relation (5) is used to compute the splitted strategy [13]. The mode control (open-loop or closed-loop) depends
areas because it is much faster than exploring the overall continusn whether the observed value of a variablis in the predicted en-
ous state space. The following algorithm is applied on every trackestelope (normal situation) or out of it (alarming situation). As soon
trajectory: as the variable becomes alarming, running on a closed-loop mode
might drive the prediction to follow the fault, turning the detection
procedure insensitive to the fault. The prediction temporal window is
edt 1id hence scaled up by switching to the open-loop mode. Note that the
which it is splitting the state-space, _ fault detection mechanism is very efficient at ruling out wrong trajec-
2. The state-space is logically splitted with relation (5). For each conyqyies issued from multiple successive splits on the same boundary
flguratlon§§k in [0,%](&;), its corresponding contlngous region is onstraint.
denotedr; (k) and its corresponding discrete statg e, . Figure 7 shows three scenarios with faults where detection is ap-
3. Envelopes over variables i are refined in every regiongi(k) plied. On the first scenario the thermostat fails to switch at time-step
by filtering them on the constraints defined by the conditions in63 and sticks to it®n mode. In the second scenario the constant

J

1. The configuration,. is checked against the rectangular region
defined by variables’ predicted envelopes to find a varigbterer

the configuration [6]. is degraded from time-stefs to a lower value, so the heater is slower
4, (wfk i :rg (k)) constitute new hybrid states enclosed in new tra-to warm the room. Scenario three presents a fault characterized by an
jectories to be tracked. abrupt structural change in the thermostat model. For all scenarios,
isb — 1.

Nm
The three preceding steps are applied for remaining variables on the
growing set of generated trajectories. Finally the resulting set of com-

puted hybrid states is: 4.3 Diagnosis
j ; When a fault is detected, a diagnosis comes back to find the cur-
[ser] = ®(7rtk & 7$§i(k)) ©) rent configuration of théZ C'S according to observations, inputs and
i commands. This must be performed over a finite temporal window

In our example, the thermostat's configurations only split on thel 111, but because of the fault detection at a continuous level the prob-

temperaturer. On figure 6, until time-step?, the configuration of lem of losing solutions is strongly reduced. The temporal window is
the HCS is ' usually set up to the physical time that corresponds to the longest

chain of non-repeated transitions. In our exanilflgohysical time-
Cs2 : R.mode = closed A T.mode = on A R.x >m A Rax < M steps cover aon-off complete sequence.
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(a) Scenarid, x: After detection and diagnosis, a few more time-
steps are necessary for the prediction to catch up with the physical
system. This comes from the fact that the estimation of the time
of the fault is not accurate enough: because of the time uncertainty

due to the envelopes, the estimation is a few time-steps late.

0 20

(b) Scenaridl, z:

the fault is detected at time-stég.
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(c) Scenario2, x: After the fault is diagnosed, thilind state-

velope shows that it is not sure if the thermostainor off.

100

(d) Scenari@, &: The fault is not so abrupt as to be detected in-

tracking methodises the nominal behavior of the thermostat and stantaneously. Measures iothe predicted bounds again at time-

predicts all possible switches at each time-step: the very wide en- step69. This is due to the fact that when using thénd state-
tracking methodthe thermostat’s controller model is still switch-

ing on valid thresholds.
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(e) Scenari®, z: The thermostat switches on valid thresholds and (f) Scenaria3, &: After a thermostat’s structure change, the heater

theblind state-tracking methokkeeps a relatively good tracking of

the temperature after the fault occured. This is due to the fact that its nominal behavior.

the physical model of the room is still valid.

Figure 7. Three fault scenarios

setting temperatur@'.h is oscillating. When turnedff, 7' keeps



Definition 7 (HC'S Diagnosis) A diagnosisdiag(t) overm time-  4.3.2 Diagnosis example with the unknown mode
steps for aHC'S is such thatliag(t) = {6 }=1,...,m With the con-
sitency of: Scenario® and3 primarily lead to diagnosi8a where the thermo-
stat is in theunknownmode. This mode is useful at the discrete level
U 5 ®) because it assures tlhat there is always a.solution to the diagnpsis
""" T problent. At the continuous level however, it has no model, so it is
T not possible to track &7'S in that mode. Isolating thenknown
Solving relation (8) is a three steps operation. First, existing conflict&utomata so as to continue the prediction of the behavior of others
(a set of influences which cannot be unfaulty altogether) are exhibf/ 7S in the model often leads to tracking based on a wrong model:
ited from the causal system descripti@nip) of the HCS, each in-  in scenari®, once the mode ¢f has been diagnosed to tieknown
fluence stamped with a temporal label and activation condition. Thesnfluences referring t@” are inactive which is equivalent to predict
are then turned into diagnosis candidates by a failure-time orientegk’s behavior withI".A = 0. Our current solution to that problem is to
enhanced version of the hitting set algorithm [14]. Temporal infor-yse a dedicatehlind state-tracking methothat is applicable thanks
mation is drawn from maximizing on each components the delays ofp the semi-closed loop fault detection strategy described in subsec-
the influences downstream the faulty variable€i. tion 4.2. When a component is found to be intittknownmode, the
Second, at the configurations level, the TMS negates the activatiofominal model of the component is used instead. The detection mod-
conditions of the conflicting influences and fastly iterates through theyle runs on open-loop prediction mode until the measures fall into
logical remaining configurations to reinsure the consistency. Finallythe envelopes again. This is guaranteed to occur because the open-
every found configuration is checked against the past observationsop predicted envelopes widen with time (uncertainty propagation
over the temporal window before being approved as in [11] excepbf interval models). Triggered by this event, the detection module
that candidate generation and consistency checks are interleaved agp@én switches to closed-loop prediction mode and is able to track the
run from present time back to the beginning of the temporal windowsystem until the measures get out of their bounds again, and so on.
Configuration solutions to the diagnosis problem contain a mode inThjs is the method applied on scenariband3 on figure 7. How-
stanciation of every necessary component infiieS explaining the  ever in scenari®, an improved solution could be to use parameter
observations. Note that on figure 7, for all three scenarios, the diagsstimation techniques as proposed in [9] because the structure of the
nosis operation is performed in less titah seconds on a Pentium Il model is still valid. But drawbacks are the additional computational
300 Mhz, which is beneath the measures’ frequency, so the detectiafbst and the fact this would leave the system untracked for a period

time-step is equal to the diagnosis time-step. of time (proper parameter estimation requires to wait for properly
excited data). More research is needed to integrate existing parame-
4.3.1 Diagnosis example with a fault mode ter estimation and model fitting techniques into our framework. Also

note that such faults generally result from the natural degradation of

When applied to the first scenario, the diagnosis starts as SOQfe monitored physical system and could be taken into account in
as © goes out of its bounds for all currently tracked trajecto- causal models [12].

ries: iterating through the system nomin@lD from figure 3, at

timestep68 the influences in conflict ar€ = {T.i3, T.i2, R.i1,

R.i3, R.i4}. Relatively to the current configuration (7) it is equiv- 5§ Summary, Discussion and Related Work

alent to add the constrainisc = {\/mi:D[T‘mode] T.mode =

m', Romode = closed, T.mode = off V T.mode = In this paper we extend previous work on diagnosis in the Al com-

stuck_of f, \/WED £ mode] R.mode = m’} which are activation munity by presenting a formalism that merges concurrent automata

conditions on the influences in conflict. A&&i4 has a delay of, the ~ With continuous dynamic system models and reasons about its con-

elements of the last conflict are stamped with the current physicdigurations using logical tools. The problem of reasoning about and

time minusl. Other conflicts elements are stamped with the currenidiagnosing complex physical plants without computing their contin-

physical time. uous reachable state-space is addressed. The approach integrates nu-
The TMS then seeks for consistency on both the configurationsnerous techniques from different fields into a runnable standalone

and the transition model starting from the current configuration byapplication, which is able to deal with real-world problems such as

inserting the negation of the elementslia: I'-c = {T'mode = gaqliite state-tracking [3]. The modeling, simulation and diagnosis

unknown, R.mode = open V R.mode = unknown,T.mode = . . - . . .
on V Tamode — stuck.on NV T-mode — unknown, R.mode —= tools are implemented, including the engine that splits the configu-

unknown} and returns the following possible configurations rankedrations. The program generates a C++ runtime that is intended to be
according to the probabilities attached to transitions and to the numdemonstrated on an autonomous spacecraft test bench at CNES.

ber of faults leading to them: Other formalisms for building comprehensive and tracktable hy-
1 : (R.mode = closed) A (T.mode = stuck-on) A (R.x > M) brid systems include [10] and [4]. But none of these approaches pro-

2a : (R.mode = closed) A (T.mode = unknown) A (R.x > M) vide an intuitive component-based framework allowing engineers to

26 :  (R.mode = unknown) A (T.mode = stuck-on) A (R.x > M) build reusable models of equipments. Moreover the models often in-
3 :  (R.mode = unknown) A (T.mode = unknown) A (R.xz > M) clude numerous functional modes that are irrelevant to the diagnosis

task. For instance [4] introduces additional modes to deal with de-

layed transitions, and [10] rather focuses on the expression of the
proximations able to produce sound hybrid models of complex
ysical systems. Besides, it examines types of discontinuities that

are rarely encountered in controlled systems. In such systems, most

Other configurations with the thermostat in modes stuckoff, or

the room in modepenare ruled out during the search process be-
cause there are no transitions or past observations and commal
consistent with these configurations. Diagnasifits with the fault

in the first scenario (thermostat took transitiqh”). The state vec-

tor is reinitialized according to the mapping functionwf,;; (I**) 5 Note that theunknownmode is also a dead-end since no nominal transition
before the tracking continues. can lead out of this mode.
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aggregating in a history all past states in every tracked trajectory

is now strongly reduced as it is less likely that a wrong trajectoryREFERENCES
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