
State Tracking of Uncertain Hybrid Concurrent Systems1

Emmanuel Benazera2 and Louise Travé-Massuỳes3 and Philippe Dague4

Abstract. In this paper we propose a component-based hybrid for-
malism, that represents physical phenomena by combining concur-
rent automata with continuous uncertain dynamic models. The for-
malism eases the modeling of complex physical systems, and adds
concurrency to the supervision of hybrid systems. Uncertainties in
the model are integrated as probabilities at the discrete level and in-
tervals at the continuous level. Our modeling framework is rather
generic while focusing on the construction of intelligent autonomous
supervisors by integrating a continuous/discrete interface able to rea-
son on-line in any region of the physical system state-space, for be-
havior simulation, diagnosis and system tracking.

1 INTRODUCTION

In the past few years, numerous works have been presented to model
embedded systems with hybrid models and reason about them for
simulation, diagnosis [9] or verification [1] purposes. The model-
ing framework usually expresses the different operating modes of
the system as a set of finite automata and associates to each mode
continuous knowledge encoded through standard numeric differen-
tial equations. In this paper we propose a component-based hybrid
formalism, that represents physical phenomena by combining con-
current automata with continuous uncertain dynamic models. How-
ever it is not sufficient to add continuous knowledge to automata, be-
cause moving between operating modes requires the automatic con-
struction of the structure of the newly assembled continuous model.
It means computing both the characterization of the region of the
state-space of the operating mode (denoted as aconfiguration), and
a proper causal ordering between the active variables in that mode.
No pre-study of the behavior of the physical system is required to
determine the state-space regions associated with the current sys-
tem configuration(s) because the search at continuous level is casted
into a boolean constraint satisfaction problem. A reasoning continu-
ous/discrete interface (C/D I) is thus added, which provides an on-
line generation of the characterization of the new model structure by
making use of enhanced Truth Maintenance techniques [18] on the
logical model. This is keypoint to achieve the diagnosis of the hy-
brid system for which detection is provided by the continuous layer
and state identification is performed at the discrete logical level by
searching for the current configuration consistent with observations.
At the same time, the logical framework allows the description of
purely discrete component behavior in the same manner as in [17].
Section 2 describes the discrete and the continuous layers; Section 3
presents the interface that integrates both layers together; Section 4

1 This work is supported by CNES (French Space Research Center) and AS-
TRIUM.

2 Laboratory for Analysis and Architecture of Systems, Toulouse, France
3 Laboratory for Analysis and Architecture of Systems, Toulouse, France
4 LIPN - UMR 7030 Universit́e Paris 13, France

presents the algorithms required to reason about hybrid models and
to track multiple trajectories in both simulation and diagnosis; Sec-
tion 5 discusses our research, compares and references some related
work.

2 Hybrid System Formulation

2.1 Hybrid Systems as Transition Systems

The set of all components of the physical system to be modeled is
denoted byComps. Every component in that set is described by a
hybrid transition system. The set of all variables used to describe a
component is denotedV and is partitioned in the following manner:

• Π = ΠM ∪ ΠC ∪ ΠCond ∪ ΠD — set of discrete variables of 4
distinct types (Mode, Command, Conditional, Dependent),

• Ξ = ΞI ∪ ΞD — set of continuous variables of 2 distinct types
(Input, Dependent).

Mode variablesΠM represent components nominal or faulty modes,
such asonor stuck. Command variablesΠC are endogeneous and ex-
ogeneous commands modeled as discrete events to the system (e.g.
software commands). Continuous input variablesΞI are exogeneous
continuous signals to the system determined by its environment (e.g.
known inputs or disturbances). Conditional variablesΠCond are spe-
cific discrete variables that represent conditions on continuous vari-
ables. Discrete and continuous dependent variables are all other vari-
ables. Finally the setObs contains observable variables of the phys-
ical system. Each observable signal has an explicit sampling period.
Our hybrid transition system is an extension of the standard transi-
tion system [8] that adds (qualitative or quantitative) constraints to
the states.

Definition 1 (Hybrid Transition System – HTS) A Hybrid Transi-
tion SystemHTS is a tuple (V , Σ, T , C, Θ) with:

• V = Π ∪ Ξ — set of all variables.∀v ∈ V , the domain ofv
is D[v], finite for variables inΠ, intervals or real values in<
otherwise.

• Σ — set of all interpretations overV .
Each state inΣ assigns a value from its domain to any variable
v ∈ V .

• T — finite set of transition variables.
Each variableτm in T ranges over its domainD[τm] of possible
transitions of the mode variablem ∈ ΠM . Eachτ im in D[τm] is
a functionτ im : Σ→ 2Σ, associated to a mapping functionlτim .

• C — set of (qualitative or quantitative) continuous constraints
overV .
Each constraintc in C at least depends on one mode variable in
ΠM . ∀m ∈ ΠM , we noteC[m] the set of constraints associated
to the variablem.

• Θ — set of initial conditions.
Θ is a set of assertions overV such that they define the set of
initial possible states, i.e. the set of statess in Σ such thats |= Θ.

Note that in aHTS, due to the continuous constraints inC, some
transitions can trigger according to conditions over continuous vari-
ables. At the discrete/continuous interface level, these conditions
have a corresponding discrete variable inΠCond, which captures
their truth value. Throughout this paper we illustrate the formal-

C[open] : ẋ = aQo∆x
C[closed] : ẋ = aQc∆x where∆x = xe − x.
l1 : ẋ = aQc∆x
l2 : ẋ = aQo∆x

Figure 1. roomHTS with unknown mode

C[off] (C[stuck off]) : xe = xext
C[on] (C[stuck on]) : xe = h
l1 : ẋ = aQo/c(h − T.m)

l2 : ẋ = aQo/c(xext − T.M)

Figure 2. thermostatHTS with fault modes

ism and later on the diagnosis operation on a simple example: figure
1 shows theHTS of a roomR submitted to a temperature source.
It has two nominal modes:open (a door or a window is opened),
closed, and a faultyunknownmode. The room temperaturex is influ-
enced by the temperature of the sourcexe according to a first-order
differential equation which accounts for the room characteristicsQc
(closed) andQo (open). The actions that move the room from one
mode to another are modeled as observed single discrete commands
cmd = open andcmd = close. Figure 2 presents the model of a

thermostatT , with faulty modesstuckon, stuckoff andunknown, as
well as required transitions. This thermostat switches according to
the room temperaturex (it should be in itson mode when the tem-
peraturex ≤ m to warm up the room, and back to itsoff mode when
x ≥ M to cool it down).x is hence influenced by the heater setting
temperatureh (in modeon) or by the outside temperaturexext (in
modeoff). The temperature variatioṅx is observed through a sensor
with additive noiseẋnoi. Initially, x = xext, the room isclosedand
the thermostat ison. Variables of bothHTS are:
R.mode ∈ ΠM = (closed, open, unknown)

R.cmd ∈ ΠC = (none, open, close)

R.c ∈ Πcond = (R.x ≤ m,R.x > m ∧ R.x < M ,R.x ≥M)

R.x ∈ ΞD ∈ [−∞,+∞]

R.ẋ ∈ ΞD ∈ [−∞,+∞]

R.∆x ∈ ΞD ∈ [−∞,+∞]

R.ẋnoi ∈ ΞI ∈ [−1, 1]

R.Qc ∈ [0.05, 0.15]

R.Qo ∈ [0.02, 0.05]

R.a ∈ [0.9, 1.1]

R.xext = 4

T.mode ∈ ΠM = (off, on, stuck on, stuck off, unknown)

T.M = 17

T.m = 10

T.h = 20

Obs = {ẋ}

2.1.1 States and Time

Considerations about time are central because both the discrete and
the continuous frameworks use time representations that are differ-
ent. At the continuous level, time is explicit in the equations that
represent the physical system behavior, we call itphysical timeθ.
Physical time is discretized according to the highest frequency sen-
sor, providing theHTS reference sampling periodTs. x(kTs), or
x(k) for short, specifies the value of the continuous vector of state-
variables inΞ at physical timekTs. We callabstract timethe time
at the discrete level. It is dated according to the occurrence of dis-
crete events. At datet, the discrete stateπt of aHTS is the tuple
(Mt, Qt), whereMt is the vector of instances of mode variables, and
Qt the vector of instances of variables ofΠ in qualitative constraints.
Discrete state-variables are inΠ\ΠCond. Abstract time dates are in-
dexed on physical time, which informs about how long a component
has been in a given discrete state. Ift = kTs, then we write the in-
dexed datetk. When there is no ambiguity it is simply denoted byt.
Thehybrid statestk of aHTS is the tuple(πtk , x(k)).

2.1.2 Transitions

Transitions describe changes between modes over time. The transi-
tion variable associated to a mode variablem is denotedτm such that
its domain isD[τm] = {τ im ∈ TN} ∪ {τ jm ∈ TF } ∪ {τ id}, with:

• TN the set ofnominaltransitions that express switches from one
nominal mode to another,

• TF the set offaulty transitions that move theHTS into a faulty
mode,

• τ id the identity transition that allows aHTS to stay in its current
mode.

Because transitions cannot always be considered as instantaneous
against the frequency of the sensors, we introduce delays on nom-
inal transitions. Delaydτim is such that once a transitionτ im is en-
abled it is triggered afterdτimTs, i.e. afterdτim physical time units.

While a transition isenabledand waiting for its delay to expire, it is
said to be instandby. For a matter of simplification, the delay will be
referred asd when there is no ambiguity. A delay on transition can
also be modeled by adding modes and clocks to the hybrid transition
system [4]. We do not use this representation here because we think
that it does not enforce the easy representation of a component as a
transition system by creating modes that are irrelevant for the diag-
nosis purpose. To model faults, we define fault modes of which we
know the behavior, such asstuckon or stuckoff, and a unique mode
unknownthat is rather specific because it has no constraints and cov-
ers all interpretations inΣ. Modeled faults are often abrupt faults in
the sense that they do not represent tenuous parameter changes. Thus
fault transitions have no delay, i.e. their duration is one physical time
unit.

Definition 2 (pre and post assertions)For a given transitionτ im
and a given statestk ∈ Σ, we note assertionspre(τ im) = mj ∧
φiΠC∪Cond andpost(τ im) = mj′ where:

• mj andmj′ are two instances of the mode variablem,
• φiΠC∪Cond is a logical condition over instances of variables of

bothΠC andΠCond.

We refer to theguard of a transition as the condition statement
φiΠC∪Cond that triggers the transition. Only fault transitions can be
spontaneous, so their guard can be always true. Traditionnally, prob-
abilities are also attached to every nominal and faulty transitions. In
our example,T is represented as follows (© is the next operator
from temporal logic):

R.τ
1
nom : R.mode = closed ∧ R.cmd = open © R.mode = open

R.τ
2
nom : R.mode = open ∧ R.cmd = close © R.mode = closed

R.τ
1
fail : R.mode = open ∨ R.mode = closed © R.mode = unknown

T.τ
1
nom : T.mode = off ∧ R.x ≤ m © T.mode = on

T.τ
2
nom : T.mode = on ∧ R.x ≥M © T.mode = off

T.τ
1
fail : T.mode = on ∧ R.x ≥M © T.mode = stuck off

T.τ
2
fail : T.mode = off ∧ R.x ≤ m © T.mode = stuck on

T.τ
3
fail : T.mode = on © T.mode = stuck on

T.τ
4
fail : T.mode = off © T.mode = stuck off

T.τ
5
fail : T.mode = on ∨ T.mode = off © T.mode = unknown

There is no delay when the thermostat (room) switches betweenon
(open) andoff (closed) modes.

2.2 Moving between modes

When a transition triggers, the component switches from one mode
to another, the correspondingHTS needs to transfer its continuous
state vectorx as well. For that reason each transitionτ im is associated
with a mapping functionlτim : Σ → Σ over the dependent variables
in V . It initializes the value of a subset of variables in the hybrid
state resulting from applyingτ im to stk

l
wherel is the abstract time

index. Other variables instk
l

keep their previous value. The iden-

tity mapping function is denotedlid. Triggering a transition is a two
steps operation [1]. First, mode change is performed by applying the
transitionτ im to the current hybrid state and moving to the resulting

mode after its delay has expired (transition relation
τim→):

τ im ∈ T , (stk
l
, s
tk+d
l+1

) ∈ Σ2, stk
l
|= pre(τ im)

stk
l

τim→ s
tk+d
l+1

(1)

Second, initialization is performed by making use of the mapping

function, and physical time goes on (time-step relation
θ→):

(πtl+1 , x(k + d)) = lτim(stk
l
)

(πtl+1 , x(k + d))
θ→ (πtl+1 , x(θ))

(2)

wherex(θ) is the continuous state associated to the discrete state
πtl+1 over the continuous timeθ. In the systems we are interested
in, most of the discontinuities are driven by controller actions and
preserve the state variables continuity. In our example, the tempera-
ture is obviously continuous when the thermostat switches fromon
to off and we use the temperatureT.M at this point to compute
ẋ = aQc(xe − T.M). However it has been shown in [10] that in
specific cases, retrieving a mapping function from the models of both
considered modes is far from trivial and requires deep understanding
of the physics of the phenomena abstracted in the discontinuity.

2.3 Component modes behavior

We described how transitions express component’s dynamics be-
tween modes. At this point we want to represent each intra-mode
behavior with two goals in mind: on the one hand the representation
must encode the available qualitative or quantitative knowledge; on
the other hand it must be suitable for efficient reasoning. For purely
discrete components, usually software drivers as well as complex
electronic devices, the behavioral model is given by a set of boolean
constraints overΠC ∪ΠD that are associated to each mode variable
value in the same manner as in [17]. For continuous components, the
continuous behavior is expressed by discrete-time continuous con-
straints overΞ. Each constraint is attached to a mode of the transition
system. The discrete-time continuous constraints are of the following
standard form:{

x(k + 1) = Ax(k) +
∑

j=0,...,r
Bju(k − j)

y(k + 1) = Cx(k + 1)
(3)

wherex(k), y(k), andu(k) represent the continuous state vector of
dimensionn, ouput (observed) variables vector of dimensionp and
input (control) variables of dimensionq at timekTs, respectively;A,
Bj andC are matrices of appropriate dimensions. To provide a suit-
able framework for reasoning, continuous constraints are encoded in
a specific two levels formalism [15] which includes a causal model
and an analytical constraint level. The causal model is obtained from
equation (3) by expressing it as a set ofcausal influencesamong
the (state, input or output) variables. Influences may be of different
types: dynamic, integral, static and constant. The following definition
expresses first and second order dynamic influences:

Definition 3 (Dynamic influence) A dynamic influenceiij is a tu-
ple (ξi, ξj ,K, Td, Tr, cond) for first order differential relations and
(ξi, ξj ,K, Td, ζ, w, cond) for second order relations with :

• ξi ∈ Ξ and ξj ∈ Ξ are two continuous variables such thatξi
influencesξj ,

• K is the parametergain, representing the static gain of the influ-
ence,

• Td is the parameterdelay, representing the time needed byξj to
react toξi,

• Tr is the parameterresponse timerepresenting the time needed by
ξj to get to a new equilibrium state after having been perturbed,

• ζ is thedamping ratioof the system,
• w is theundamped natural frequencyof the system,

• cond is the parameterconditionwhich specifies the logical con-
dition under which the influence is active.cond ranges over ele-
ments ofV .

The underlying operational model of dynamic influences is provided
by the following equation:

ξj(k+1) =
∑

p=0,...,n−1

apξj(k−p)+
∑

q=0,...,m

bqξi(k+1−q) (4)

whereξi and ξj are continuous variables,n is the influence order
andm ≤ n (causal link). Usually an equation is modeled by a set of
influences. When necessary, uncertainties can be taken into account
in the influence parameters and as additive disturbances. The first are
represented by considering that parametersap andbq have time in-
dependent bounded values, i.e. they are given an interval value. The
latter can be introduced as a bounded value constant influence act-
ing onξj . From the superposition theorem that applies to the linear
case, the computation of the updated value of variableξj ∈ Ξ in
an equationeq consists in processing the sum of the activated influ-
ences fromeq having exerted onξj during the last time-interval. The
prediction update of all the state and observed variablesx(k) and
y(k) from the knowledge of control variablesu(k) and influence
activation conditions is performed along the causal model structure.
Our representation of uncertainties leads to the prediction of contin-
uous variable trajectories in the form of bounded envelopes. In other
words, the system statex(k) at every time instantt = kTs is pro-
vided in the form of a rectangle of dimensionn.

Definition 4 (Causal system description – CD)The causal system
description associated to the set of continuous constraints of aHTS
is a directed graphG = (Ξ, I) whereI is a set of edges supporting
the influences among variables inΞ, with their associated conditions
and delays.

The numerical intervals obtained from equation (4) are refined at the
analytical model level with global constraints by performing a toler-
ance propagation algorithm [6] on the set of variables. Back to the
example, the feasible continuous states ofΣ are specified by the in-
fluences in eachHTS:

R.i1 (static) : if (R.mode = closed) thenR.∆x
gain=Qc−→ R.ẋ

R.i2 (static) : if (R.mode = open) thenR.∆x
gain=Qo−→ R.ẋ

R.i3 (integral) : R.ẋ
gain=a−→ R.x

R.i4 (static) : R.x
gain=−1,delay=1−→ R.∆x

T.i1 (constant) : if (T.mode = on ∨ T.mode = stuck on) then

T.h −→ R.∆x

T.i2 (constant) : if (T.mode = off ∨ T.mode = stuck off) then

R.xext −→ R.∆x

T.i3 (constant) : T.ẋnoi −→ R.ẋ

Influences without explicit conditions are valid in all modes except
in the unknownmode. Figure 3 presents the nominalCD for the
room and the thermostat.

2.4 Hybrid Component System

Once components have been modeled asHTS, constituting a
generic reusable database of models, they need to be assembled in a
Hybrid Component Systemto model the entire physical plant. Com-
ponents are hence instantiated. Within the whole plant model, com-
ponents are concurrent, i.e. able to evolve independently which al-
lows us to reason on subparts of the model.

Figure 3. Causal nominal system description of the thermostat and room
example

Definition 5 (Hybrid Component System – HCS) A Hybrid Com-
ponent SystemHCS is a tuple (Comps, V,Σ, T, C,Θ) with
Comps being a set ofn components modeled as concurrent hybrid

transition systemsHi = (Vi,Σi, Ti, Ci,Θi),
(⋃

i=1,···,n Vi

)
= V ,

Σ ⊆
⊗

i
Σi, T =

⋃
i
Ti, C =

⋃
i
Ci, Θ =

⋃
i
Θi.

We track the evolution of aHCS over a temporal window in the form
of a trajectory as a succession of states. At each time-step, constraints
and commands first synchronize on shared variables inΠD, ΠC and
Ξ (the room and the thermostat share∆x). Shared variables serve
as time-dated communication channels between automata. The au-
tomata must nevertheless synchronize between states. The synchro-
nization uses transitions and is such that given components of the
HCS:

• HTS that received a command synchronize on the corresponding
nominal transition,

• non commandedHTS synchronize on the identity transitionτ id.

When synchronized,HTS instances are introduced into the trajec-
tory whereas otherHTS are not copied at each time-step. Intuitively
we want to only introduce the minimal subset of theHTS necessary
for tracking and diagnosis purposes. In [11] and for discrete-only
models, this subset is computed using a pre-compilation of prime
implicants of mode variables. In our implementation, transitions syn-
chronize a posteriori, and only when needed by the reasoner to oper-
ate. This saves big amounts of memory as when tracking a physical
system in its nominal long-term state, very few components need to
be reintroduced.

The concurrency process is complexified by the introduction of
delays on transitions. Figure 4 presents an example of the synchro-
nization of four concurrentHTS, H1 to H4. Four transitions are
enabled on shared variables at time-steptkl and synchronize over the
three next time-steps with different delays, except fordτ2 anddτ4
that are equal.H1 andH2, as well asH3 andH2 have constraints that
share variables. Due to different commands, the concurrence makes
the fourHTS change mode at timetkl whereas otherHTS in the
model stay inactive (they are not represented on the figure). Then the
synchronization effort takes into account delays of triggered transi-
tions as well as the links betweenHTS through shared variables:

• H2 andH4 have the same delay and thus participate a same hybrid

state at time-stept
k+dτ2
l+1 ,

• H1 andH2 synchronize att
k+dτ1
l+2 . This is done with the identity

transition onH2.
• H1 (or H2) andH4 don’t synchronize att

k+dτ1
l+2 because they

don’t share any variables,

• H1 andH2 share variables butdon’t synchronizeat t
k+dτ2
l+1 be-

causeτ1 is already instandby.

The last remark is of importance because it relies on the hypothesis
that we cannot track or diagnose a physical component while it is
switching from one mode to another, i.e. when one of its transitions
is in standby, as the required transient models are often unknown or
too complex. The consequence is that components only synchronize
in their non-standby states.

Figure 4. synchronization over 3 states of fourHTS.

3 Continuous/Discrete Interface

3.1 Configurations

Depending on the mode at a given time, aHCS has its hybrid state
that ranges over several continuous regions. These regions are known
to be difficult to determine and compute, if not undecidable. We pro-
pose an on-line mechanism to keep track of the state-space partition
by sheltering every continuous functional piece with a conjunction
of logical conditions we denote as aconfiguration.

Definition 6 (HCS configuration) A configuration for aHCS at
time-steptk is a logical conjunctionδtk = (

∧
i
mi) ∧ (

∧
j

Πj
Cond)

where themi are instanciations of component modes inΠM and the
Πj
Cond are variables ofΠCond.

The configurations are automatically drawn from conditions on both
transition guards and influences that define structural changes in the
model. A configuration can be attached to one or more modes in
ΠM . In our example, the continuous state is easily partitioned by the
thermostat’s transitions into three regions determined by the three
conditions on variablex, defining27 configurations:

C1 : R.mode = closed ∧ T.mode = on ∧ R.x ≤ m
C2 : R.mode = closed ∧ T.mode = on ∧ (R.x > m ∧ R.x < M)

C3 : R.mode = closed ∧ T.mode = off ∧ (R.x > m ∧ R.x < M)

C4 : R.mode = closed ∧ T.mode = off ∧ R.x ≥M
. . .

Whatever the complexity of the conditions defining the regions of
the physical system, it is easy to logically express any condition as a
boolean variable ofΠCond, whose 1/0 corresponds to the condition
and its negation. This however leads to a number of partitions that
is not optimal relatively to the exact number of state-space regions
in which the physical system evolves. Note that the configuration
associated to theunknownmode encompasses the overall state-space.

3.2 Causal ordering for static equations

When switching from one mode to another, some equations and vari-
ables are added or retracted according to the new configuration. Con-
sequently, due to the possible presence of static continuous equations

in the model, a proper causal ordering of variables is to be found
when entering the new mode. A brute force approach would con-
sist in generating a new causal structure for every different mode.
The problem of performing an on-line incremental generation of the
causal structure has been previously addressed [16] but it is solved
here in a slightly different manner. This is done by first casting the
problem into a boolean constraint satisfaction problem: every con-
tinuous equation and variable in theHCS is associated to boolean
variables inΠ whose truth values state if the variables or equations
are active or not. Rules over the boolean variables are automatically
built to represent the conditions of these activations and form a logi-
cal representation of the causal-ordering problem.

3.3 Overview

The previous configuration and causal ordering problems are solved
on-line by using a truth maintenance system (TMS) to reason on the
corresponding boolean constraint satisfaction problems. We use the
context switching algorithms of [18] because we are not interested
in generating all configurations of the physical system but to switch
from one to another as fast as possible. TheHCS reacts to events,

con
tin

uou
s e

ven
ts

dis
cre

te e
ven

ts

...
...x2

xnx1

Continuous level

Discrete level

Configurations

...
...

x3

...

...

Figure 5. 3-layers interactions

i.e. observations from sensors as well as commands, and propagates
them to the model’s discrete and continuous levels through the logi-
cal interface and the way back. Figure 5 sums up these interactions.
The C/D I, made of the variables inΠCond associated to influence
conditions and transition guards, as well as the causal ordering log-
ical model, ensures the logical consistency of the changes triggered
by the flow of events.

4 Simulation and Diagnosis of a Hybrid
Component System

4.1 Simulation

A HCS simulation is a run of concurrent hybrid transition systems
that generates possible nominal trajectories of theHCS according
to issued commands and inputs over the time. The uncertainty on
the continuous constraint parameters determines the precision of the
computed envelopes that enclose the observed behavior of the phys-
ical system at each time step.

Sometimes the truth value of a condition in a configuration may
be undetermined when checked against a rectangular enclosing of
the continuous state-variables. The problem arises from the fact that
some variables over which configurations rely are not measured.
When the computed bounds of such a continuous variableξi span
over more than one configuration region relying on that variable, we

say that the currentconfiguration is splitting the continuous state on
variable ξi. Figure 6 shows a configuration split for the thermostat

Figure 6. Transition guard split

example when crossingx = M . The current configuration splits on
regionsx1 andx2 and the two possible trajectories are tracked simul-
taneously. In applications, this situation happens rather frequently
and multiple consecutive splits of a guard on the same variable can
occur because sensor frequencies are usually beneath thetempo-
ral uncertaintyinduced by the envelopes. We first want to split the
continuous state into logical branches then refine consequently the
bounds on all continuous variables in every explored branch. For a
given continuous variableξi, the logical split of a configurationδtk
returns the set of possible configurations to be tracked:

[δtk](ξi) =
∨
j

(
Πj
Condξi

∧

(∧
n

Πn
Cond

))
(5)

whereΠj
Condξi

are variables ofΠCond relying on ξi and Πn
Cond

other conditions inδtk . Relation (5) is used to compute the splitted
areas because it is much faster than exploring the overall continu-
ous state space. The following algorithm is applied on every tracked
trajectory:

1. The configurationδtk is checked against the rectangular region
defined by variables’ predicted envelopes to find a variableξi over
which it is splitting the state-space,

2. The state-space is logically splitted with relation (5). For each con-
figurationδj

tk
in [δtk](ξi), its corresponding continuous region is

denotedxjξi(k) and its corresponding discrete stateπj
tk
,ξi .

3. Envelopes over variables inΞ are refined in every regionxjξi(k)
by filtering them on the constraints defined by the conditions in
the configuration [6].

4. (πj
tk
,ξi , x

j
ξi

(k)) constitute new hybrid states enclosed in new tra-
jectories to be tracked.

The three preceding steps are applied for remaining variables on the
growing set of generated trajectories. Finally the resulting set of com-
puted hybrid states is:

[stk] =
⊗
i,j

(πj
tk
,ξi , x

j
ξi

(k)) (6)

In our example, the thermostat’s configurations only split on the
temperaturex. On figure 6, until time-steptkl , the configuration of
theHCS is

C2 : R.mode = closed ∧ T.mode = on ∧R.x > m ∧R.x < M

At time-steptkl , due to the crossing ofx = M , the current configura-
tion is splitted onx. A new partial hybrid state comes from equation
(5):

R.mode = closed ∧ T.mode = on ∧R.x ≥M

Then bounds of variablex are refined in each configuration by fil-
tering the values with respective constraintsR.x > m ∧ R.x < M
andR.x ≥ M . As transitionT.τ2

nom turnsenabledwith the second
configuration, the configuration is instantaneously (T.τ2

nom has no
delay) updated to:

C4 : R.mode = closed ∧ T.mode = off ∧R.x ≥M (7)

From that point the system tracks two distinct trajectories.

4.2 Fault Detection

The detection algorithm then uses the above prediction of the endo-
geneous continuous variable values to obtain robust decisions about
the existence of faults, based onadaptive thresholdsprovided by the
envelopes’ upper and lower bounds. This is performed by comparing
the predicted and observed values of variables across time. The adap-
tive thresholds principle fairly reduces the possibility of false alarms
when tracking the system. However, to achieve better robustness, we
usually mark a variable as mibehaving after it has been outside of its
bounds for at leastnmisb physical time-steps. After that delay, the
diagnosis operation is triggered.

For dynamic influences, the algorithm sensitivity relies on a mixed
strategy which combines an observer type strategy (closed-loop
mode, i.e. the measure of a variabley at time t is used to elabo-
rate the prediction ofy at timet+ 1) with a pure simulation strategy
(open-loopmode, i.e. the prediction ofy at timet+1 is obtained from
the prediction ofy at timet) to determine the thresholds and further
assess variable states. We call this strategy asemi-closed loop(SCL)
strategy [13]. The mode control (open-loop or closed-loop) depends
on whether the observed value of a variabley is in the predicted en-
velope (normal situation) or out of it (alarming situation). As soon
as the variable becomes alarming, running on a closed-loop mode
might drive the prediction to follow the fault, turning the detection
procedure insensitive to the fault. The prediction temporal window is
hence scaled up by switching to the open-loop mode. Note that the
fault detection mechanism is very efficient at ruling out wrong trajec-
tories issued from multiple successive splits on the same boundary
constraint.

Figure 7 shows three scenarios with faults where detection is ap-
plied. On the first scenario the thermostat fails to switch at time-step
63 and sticks to itsonmode. In the second scenario the constantT.h
is degraded from time-step46 to a lower value, so the heater is slower
to warm the room. Scenario three presents a fault characterized by an
abrupt structural change in the thermostat model. For all scenarios,
nmisb = 1.

4.3 Diagnosis

When a fault is detected, a diagnosis comes back to find the cur-
rent configuration of theHCS according to observations, inputs and
commands. This must be performed over a finite temporal window
[11], but because of the fault detection at a continuous level the prob-
lem of losing solutions is strongly reduced. The temporal window is
usually set up to the physical time that corresponds to the longest
chain of non-repeated transitions. In our example20 physical time-
steps cover anon-off complete sequence.

4

6

8

10

12

14

16

18

20

22

24

0 20 40 60 80 100

x
xmax, xmin

de
te

ct
io

n

fa
ul

t

(a) Scenario1, x: After detection and diagnosis, a few more time-
steps are necessary for the prediction to catch up with the physical
system. This comes from the fact that the estimation of the time
of the fault is not accurate enough: because of the time uncertainty
due to the envelopes, the estimation is a few time-steps late.

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

xd
xdmax, xdmin

de
te

ct
io

n

fa
ul

t

(b) Scenario1, ẋ: the fault is detected at time-step68.

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

x
xmax, xmin

fa
ul

t

de
te

ct
io

n

(c) Scenario2, x: After the fault is diagnosed, theblind state-
tracking methoduses the nominal behavior of the thermostat and
predicts all possible switches at each time-step: the very wide en-
velope shows that it is not sure if the thermostat isonor off.

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

xd
xdmax, xdminfa

ul
t

de
te

ct
io

n

(d) Scenario2, ẋ: The fault is not so abrupt as to be detected in-
stantaneously. Measures goin the predicted bounds again at time-
step69. This is due to the fact that when using theblind state-
tracking method, the thermostat’s controller model is still switch-
ing on valid thresholds.

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

x
xmax, xmin

fa
ul

t

de
te

ct
io

n

(e) Scenario3, x: The thermostat switches on valid thresholds and
theblind state-tracking methodkeeps a relatively good tracking of
the temperature after the fault occured. This is due to the fact that
the physical model of the room is still valid.

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

xd
xdmax, xdmin

fa
ul

t

de
te

ct
io

n

(f) Scenario3, ẋ: After a thermostat’s structure change, the heater
setting temperatureT.h is oscillating. When turnedoff, T keeps
its nominal behavior.

Figure 7. Three fault scenarios

Definition 7 (HCS Diagnosis) A diagnosisdiag(t) overm time-
steps for aHCS is such thatdiag(t) = {δt}t=1,···,m with the con-
sitency of:

HCS ∪Obst=1,...,m ∪

(⋃
t=1,···,m

δt

)
(8)

Solving relation (8) is a three steps operation. First, existing conflicts
(a set of influences which cannot be unfaulty altogether) are exhib-
ited from the causal system description (CD) of theHCS, each in-
fluence stamped with a temporal label and activation condition. They
are then turned into diagnosis candidates by a failure-time oriented
enhanced version of the hitting set algorithm [14]. Temporal infor-
mation is drawn from maximizing on each components the delays of
the influences downstream the faulty variables inCD.

Second, at the configurations level, the TMS negates the activation
conditions of the conflicting influences and fastly iterates through the
logical remaining configurations to reinsure the consistency. Finally,
every found configuration is checked against the past observations
over the temporal window before being approved as in [11] except
that candidate generation and consistency checks are interleaved and
run from present time back to the beginning of the temporal window.
Configuration solutions to the diagnosis problem contain a mode in-
stanciation of every necessary component in theHTS explaining the
observations. Note that on figure 7, for all three scenarios, the diag-
nosis operation is performed in less than0.1 seconds on a Pentium II
300 Mhz, which is beneath the measures’ frequency, so the detection
time-step is equal to the diagnosis time-step.

4.3.1 Diagnosis example with a fault mode

When applied to the first scenario, the diagnosis starts as soon
as ẋ goes out of its bounds for all currently tracked trajecto-
ries: iterating through the system nominalCD from figure 3, at
timestep68 the influences in conflict areΓ = {T.i3, T.i2, R.i1,
R.i3, R.i4}. Relatively to the current configuration (7) it is equiv-
alent to add the constraintsΓC = {

∨
mi=D[T.mode]

T.mode =

mi, R.mode = closed, T.mode = off ∨ T.mode =
stuck off,

∨
mj∈D[R.mode]

R.mode = mj} which are activation
conditions on the influences in conflict. AsR.i4 has a delay of1, the
elements of the last conflict are stamped with the current physical
time minus1. Other conflicts elements are stamped with the current
physical time.

The TMS then seeks for consistency on both the configurations
and the transition model starting from the current configuration by
inserting the negation of the elements inΓC : Γ¬C = {T.mode =
unknown,R.mode = open ∨ R.mode = unknown, T.mode =
on ∨ T.mode = stuck on ∨ T.mode = unknown,R.mode =
unknown} and returns the following possible configurations ranked
according to the probabilities attached to transitions and to the num-
ber of faults leading to them:

1 : (R.mode = closed) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

2a : (R.mode = closed) ∧ (T.mode = unknown) ∧ (R.x ≥M)

2b : (R.mode = unknown) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

3 : (R.mode = unknown) ∧ (T.mode = unknown) ∧ (R.x ≥M)

Other configurations with the thermostat in modeson, stuckoff, or
the room in modeopenare ruled out during the search process be-
cause there are no transitions or past observations and commands
consistent with these configurations. Diagnosis1 fits with the fault
in the first scenario (thermostat took transitionτ3

fail). The state vec-
tor is reinitialized according to the mapping function ofτ3

fail (lid)
before the tracking continues.

4.3.2 Diagnosis example with the unknown mode

Scenarios2 and3 primarily lead to diagnosis2a where the thermo-
stat is in theunknownmode. This mode is useful at the discrete level
because it assures that there is always a solution to the diagnosis
problem5. At the continuous level however, it has no model, so it is
not possible to track aHTS in that mode. Isolating theunknown
automata so as to continue the prediction of the behavior of others
HTS in the model often leads to tracking based on a wrong model:
in scenario2, once the mode ofT has been diagnosed to beunknown,
influences referring toT are inactive which is equivalent to predict
R’s behavior withT.h = 0. Our current solution to that problem is to
use a dedicatedblind state-tracking methodthat is applicable thanks
to the semi-closed loop fault detection strategy described in subsec-
tion 4.2. When a component is found to be in itsunknownmode, the
nominal model of the component is used instead. The detection mod-
ule runs on open-loop prediction mode until the measures fall into
the envelopes again. This is guaranteed to occur because the open-
loop predicted envelopes widen with time (uncertainty propagation
of interval models). Triggered by this event, the detection module
then switches to closed-loop prediction mode and is able to track the
system until the measures get out of their bounds again, and so on.
This is the method applied on scenarios2 and3 on figure 7. How-
ever in scenario2, an improved solution could be to use parameter
estimation techniques as proposed in [9] because the structure of the
model is still valid. But drawbacks are the additional computational
cost and the fact this would leave the system untracked for a period
of time (proper parameter estimation requires to wait for properly
excited data). More research is needed to integrate existing parame-
ter estimation and model fitting techniques into our framework. Also
note that such faults generally result from the natural degradation of
the monitored physical system and could be taken into account in
causal models [12].

5 Summary, Discussion and Related Work

In this paper we extend previous work on diagnosis in the AI com-
munity by presenting a formalism that merges concurrent automata
with continuous dynamic system models and reasons about its con-
figurations using logical tools. The problem of reasoning about and
diagnosing complex physical plants without computing their contin-
uous reachable state-space is addressed. The approach integrates nu-
merous techniques from different fields into a runnable standalone
application, which is able to deal with real-world problems such as
satellite state-tracking [3]. The modeling, simulation and diagnosis
tools are implemented, including the engine that splits the configu-
rations. The program generates a C++ runtime that is intended to be
demonstrated on an autonomous spacecraft test bench at CNES.

Other formalisms for building comprehensive and tracktable hy-
brid systems include [10] and [4]. But none of these approaches pro-
vide an intuitive component-based framework allowing engineers to
build reusable models of equipments. Moreover the models often in-
clude numerous functional modes that are irrelevant to the diagnosis
task. For instance [4] introduces additional modes to deal with de-
layed transitions, and [10] rather focuses on the expression of the
approximations able to produce sound hybrid models of complex
physical systems. Besides, it examines types of discontinuities that
are rarely encountered in controlled systems. In such systems, most

5 Note that theunknownmode is also a dead-end since no nominal transition
can lead out of this mode.

of the discontinuities are driven by controller actions and preserve
state variables continuity.

Our work takes numerous ideas from the discrete-only work at the
basis of Livingstone [17, 11] and adds and links continuous knowl-
edge to it. The difficult problem of the temporal window that required
aggregating in a history all past states in every tracked trajectory
is now strongly reduced as it is less likely that a wrong trajectory
is tracked without detecting anomalies at the continuous level. [9]
introduced a diagnosis-dedicated hybrid formalism relying on error
bounds for the detection parts, but without concurrence nor transi-
tions triggered autonomously from the continuous level; it uses prob-
abilities, parameter estimation as well as data fitting to refine the di-
agnosis. [20] unifies traditional continuous state observers with hid-
den Markov models belief update in order to track hybrid systems
with noise but do not include concurrent models nor any mapping
function discussion. The approach is interesting because it makes
extensive use of probabilities where we chose to rely on bounded
uncertainties (intervals) at the continuous level and on probabilities
at the discrete level. In fact these are different uncertainties as the
uncertainty is uniformly distributed in the case of intervals whereas
[20] relies on normal laws. In our point of view using probabilities
at the discrete levels allows to prune an otherwise prohibitive search,
but intervals offer a more compact representation of uncertainties on
continuous variables. However, the point would need more discus-
sion and research. Similar approaches also include [21] that com-
bines a Petri net and signal analysis to estimate the discrete modes
and overcome an exponential cost in the number of sensors, but lacks
an efficient diagnosis engine; and [7] that uses a dedicated bayesian
network as well as a method of smoothing that helps successfully di-
agnose faults with a very low belief state. Note that the model check-
ing community has recently investigated the use of interval-based
numerical models [5].

An advantage of our approach is that any type conditions as-
sociated to transitions and influences (e.g. continuous functions as
guards) can be modeled and tracked without being directly observed.
Finally on-line performances can be enhanced as the formalism al-
lows the logical model to be pre-compiled before use by generating
prime-implicants on transition guards [19] and influence conditions.
However it still happens that trajectories cannot be discriminated due
to too much imprecision on parameters that leads to overlapping en-
velopes. A solution to this problem has been to merge such envelopes
and corresponding trajectories. Another remark concerns the splits
that occur and are not linked to any real mode or structure changes
in the model: when starting the thermostat and room models with
external temperaturexext < m, a split occurs when first crossing
at x = m. These splits however are sound and refine the bounds
on continuous variables as they allow the system to reduce temporal
uncertainty at the crossing point.

Further work will focuse on reconfiguration by reasoning on con-
figurations with the same core algorithms as for diagnosis. This will
be done by identifying a set of goal configurations and find under un-
certainty a valid plan made of least costly endogeneous commands
to reach each goal. We think that additive improvements could also
include automatic controller synthesis as in [2] as well as parameter
estimation based on the causal structure of the continuous level in
order to refine the tracking of the system when in itsunknownmode.
In a near future more results are to come out as our implementation is
intended to be tested on spacecraft models and run on-board ground
based satellite hardware.

6 Acknowledgements

We are very thankful to Marie-Claire Charmeau and Bernard Polle
for providing information about application and valuable comments
on this work.

REFERENCES
[1] R. Alur, C. Courcoubetis, N.Halbwachs, T.A. Henzinger, P.-H. Ho,

X. Nicollin, A.Olivero, J.Sifakis, and S.Yovine, ‘The algorithmic anal-
ysis of hybrid systems’, inProceedings of the 11th International Con-
ference on Analysis and Optimization of Discrete Event Systems, pp.
331–351, (1995).

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, ‘Effective
controller synthesis of switching controllers for linear systems’,Pro-
ceedings of the IEEE, Special Issue on Hybrid Systems, 88, 1011–1025,
(July 2001).

[3] E. Benazera, L. Trav́e-Massuỳes, and P. Dague, ‘Hybrid model-based
diagnosis for autonomous spacecrafts’, inProceedings of the first ESA
Workshop on On-Board Autonomy, October 2001, Nordwijk, Nether-
lands, pp. 279 – 286, (2001).

[4] T. Henzinger, ‘The theory of hybrid automata’, inProceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS
’96), pp. 278–292, New Brunswick, New Jersey, (1996).

[5] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, ‘Be-
yond HYTECH: Hybrid systems analysis using interval numerical
methods’, inHSCC, pp. 130–144, (2000).

[6] E. Hyvonen, ‘Constraint reasoning based on interval arithmetic: The
tolerance propagation approach’,Artificial Intelligence, 58(1-3), 71–
112, (1992).

[7] Uri Lerner, Ronald Parr, Daphne Koller, and Gautam Biswas, ‘Bayesian
fault detection and diagnosis in dynamic systems’, inAAAI/IAAI, pp.
531–537, (2000).

[8] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concur-
rent Systems - Specification, Springer-Verlag, 1992.

[9] S. McIlraith, G. Biswas, D. Clancy, and V. Gupta, ‘Towards diagnosing
hybrid systems’, inProceedings of the Tenth International Workshop
on Principles of Diagnosis DX-99, (1999).

[10] P. J. Mosterman and G. Biswas, ‘A comprehensive methodology for
building hybrid models of physical systems’,Artificial Intelligence,
121, 171–209, (2000).

[11] P. Nayak and J. Kurien, ‘Back to the future for consistency-based tra-
jectory tracking’, inProceedings of AAAI-2000, Austin, Texas, (2000).

[12] R. Pons, L. Trav́e-Massuỳes, and M. Porcheron, ‘Model-based diagno-
sis and maintenance of time-varying dynamic systems’, inProceedings
of the Tenth International Workshop on Principles of Diagnosis DX-99,
pp. 211–219, (1999).

[13] L. Travé-Massuỳes, T. Escobet, R. Pons, and S. Tornil, ‘The ca-en di-
agnosis system and its automatic modeling method’,Computacíon i
Sistemas Journal, 5(2), 128–143, (2001).

[14] L. Travé-Massuỳes and J.A. Jimenez, ‘Fault detection and isolation in
the ca-en system’, Technical report, LAAS-CNRS, Toulouse, France,
(2001).

[15] L. Travé-Massuỳes and R. Milne, ‘Tigertm: Gas turbine condition mon-
itoring using qualitative model based diagnosis’,IEEE Expert Intelli-
gent Systems & Applications, (1997).

[16] L. Travé-Massuỳes and R. Pons, ‘Causal ordering for multiple modes
systems’, inProceedings of the Eleventh International Workshop on
Qualitative Reasoning, pp. 203 – 214, (1997).

[17] B. C. Williams and P. Nayak, ‘A model-based approach to reactive self-
configuring systems’, inProceedings of AAAI-96, Portland, Oregon,
pp. 971–978, (1996).

[18] B. C. Williams and P. Nayak, ‘Fast context switching in real-time rea-
soning’, inProceedings of AAAI-97, Providence, Rhode Island, (1997).

[19] B. C. Williams and P. Nayak, ‘A reactive planner for a model-based
executive’, inProceedings of IFCAI-97, (1997).

[20] B.C. Williams, M. Hofbaur, and T. Jones, ‘Mode estimation of prob-
abilistic hybrid systems’, Technical report, Massachusset Institute of
Technology, (2002).

[21] Feng Zhao, Xenofon D. Koutsoukos, Horst W. Haussecker, James Re-
ich, Patrick Cheung, and Claudia Picardi, ‘Distributed monitoring of
hybrid systems: A model-directed approach’, inIJCAI, pp. 557–564,
(2001).

