
Suggestions from the software engineering practice for applying

consistency-based diagnosis to configuration knowledge bases

Gerhard Fleischanderl

Siemens AG Österreich, Program and System Engineering, CES Design Services
Erdberger Laende 26, A-1030 Vienna, Austria

gerhard.fleischanderl@siemens.com

Abstract
A configuration knowledge base is software that needs
debugging during maintenance and can benefit from
consistency-based diagnosis. The paper describes
suggestions and practical experience from the
introduction of this diagnosis technique in the work
flow for maintaining configuration knowledge bases.
Consistency-based diagnosis is suitable for detecting
bugs in knowledge bases, but needs tailoring to fit in
the work flow of the knowledge engineers.

1 Introduction
Configurators have already been applied to different
industry domains. For instance, telecommunication systems
are among the products successfully handled with configu-
rators. The crucial information is in the knowledge bases of
the configurators.

Configurators using declarative constraints [Mittal and
Frayman, 1989] are in everyday use and can generate and
modify configurations with more than 50,000 objects
[Fleischanderl et al., 1998]. Declarative constraints offer
easier maintenance compared to procedural specifications,
but also benefit from effective debugging methods. Con-
sistency-based diagnosis [Reiter, 1987] [Greiner et al.,
1988] is applicable to fault detection in configuration
knowledge bases [Felfernig et al., 2000], which is the topic
of this paper. The extensions towards hierarchical models
[Felfernig et al., 2001] are not discussed here because the
author did not apply this yet.

This paper discusses suggestions and practical experi-
ence from applying diagnosis techniques to the debugging
of declarative knowledge bases for configurators. The
experience ranges from the planning of an engineering
process including diagnosis to the early adoption of diag-
nosis for the debugging of knowledge bases. The require-
ments of the development process for knowledge bases are
compared with the specification of the diagnosis method.

2 Maintaining knowledge bases
Creating and maintaining knowledge bases is essentially a
software engineering process.

After collecting and analyzing new requirements, the
knowledge base is modified and tested. Regression tests are
essential for long-term maintenance. So the results from
replaying regression tests should be fed into a diagnosis
tool if the new output differs from the expected output of a
regression test.

In an ideal world the discrepancies from regression tests
would be analyzed with a diagnosis tool and suggestions be
made which constraints in the knowledge base are
responsible for the discrepancies. Unfortunately this is not
that easy.

3 Preconditions for consistency-based
diagnosis

Consistency-based diagnosis needs a consistency checker,
i.e. a solver that yields conflict sets when a knowledge base
is in contradiction to a positive example. The configurator
kernel COCOS [Stumptner et al., 1998] applied by the
author is a solver that uses declarative constraints for stati-
cally checking or expanding a partial configuration. The
kernel was extended to also yield conflict sets. So a suffi-
ciently powerful consistency checker is available.

The elements that can be faulty have to be identifiable
parts of a knowledge base. In our case the constraints can
be faulty with respect to positive examples and are the
“components” for model-based diagnosis.

4 Requirements and consequences of
consistency-based diagnosis

4.1 Definition of a CKB-diagnosis
A CKB-diagnosis (i.e. diagnosis of configuration knowl-
edge bases) uses the model-based diagnosis paradigm and
is defined as follows [Felfernig et al., 2000].

Definition (CKB-Diagnosis Problem): A CKB-Diagnosis
Problem is a triple (DD,E+,E-) where DD is a configura-
tion knowledge base, E+ is a set of positive and E- of
negative configuration examples. The examples are given
as sets of logical sentences. It is assumed that each example
on its own does not contain inconsistencies.

Definition: A CKB-diagnosis for a CKB-Diagnosis
Problem (DD,E+,E-) is a set S ⊆ DD of sentences such that
there exists an extension EX, where EX is a set of logical
sentences, such that

DD – S ∪ EX ∪ e+ consistent ∀e+ ∈ E+
DD – S ∪ EX ∪ e- inconsistent ∀e- ∈ E-

Let NE be the conjunction of all negated negative
examples. This is the most easily found EX.

Proposition: Given a CKB-Diagnosis Problem
(DD,E+,E-), a diagnosis S for (DD,E+,E-) exists iff

∀e+ ∈ E+ : e+ ∪ NE is consistent.
Corollary: S is a diagnosis iff

∀e+ ∈ E+ : DD – S ∪ e+ ∪ NE is consistent.

4.2 Representation of examples
The definition of a CKB-Diagnosis Problem says that the
examples are given as sets of logical sentences. This is
usually not the case in configurator implementations. Yet,
databases or other data representations can easily be trans-
formed into facts, i.e. logical sentences. This transfor-
mation need not be done for the implementation of diag-
nosis for configurator knowledge bases, but is a precon-
dition for the applicability of CKB-diagnosis.

With logical sentences one can define a configuration as
a set of fragments. In configurator applications, configu-
rations are based on an object model, which is usually
defined with UML. All objects usually are reachable from
one entry object. So the positive or negative examples
cannot just be isolated sub-configurations, but must be
connected objects. This is a slight restriction that does not
limit the diagnosis.

This property of configurations ensures that trivial
inconsistencies are avoided, e.g. there cannot be two
modules in the same slot. Therefore each example (i.e. its
structure of objects and connections) does not contain
inconsistencies among its elements.

4.3 Conjunction of negated negative examples
The definition of a CKB-diagnosis requires an extension
EX. The question is: Where does EX come from?

The simplest EX would be the negation of all negative
examples, i.e. NE as defined above. This is not a useful
solution for maintaining configurator knowledge bases in
real life. This would reduce the advantages of declarative
constraints, namely that knowledge bases contain little
redundant information and can be understood easily by
domain experts. Furthermore, the constraints should be
sufficiently general to be applicable to similar situations in
the future. The negation of configurations (i.e. negative
examples) would clutter the knowledge base with facts that

may overlap and would not prevent examples that are
slightly different.

4.4 Diagnosis is part of the existing knowledge
base

According to the definition of CKB-diagnosis, a diagnosis
is a subset of the knowledge base. That means faults are
found among the constraints in the existing knowledge
base. This is useful in real-life projects and makes the con-
sistency-based diagnosis worthwhile. Yet, defining new
constraints (thus extending the knowledge base) has to be
accomplished with other approaches.

5 Integrating consistency-based diagnosis in
the software engineering process

The definitions for consistency-based diagnosis of configu-
ration knowledge bases do not tell a lot about how to
proceed (step by step) to reach a correct knowledge base.
However, the conditions for the correctness check for
knowledge bases are specified.

This section describes how to use diagnosis in the soft-
ware engineering process for knowledge bases.

5.1 Use the examples one by one
Examples, i.e. stored configurations, may be partial or
complete. Due to restrictions coming from the usual object
models in software development, each example is a net-
work of objects that can be reached from an entry object.
Therefore, only one example can be loaded at one time.
This holds for positive and negative examples.

5.2 Negative examples are outsiders
In the diagnosis process discussed here, negative examples
do not yield hints for mistakes in a knowledge base.

We expect that negative examples lead to inconsis-
tencies. If a negative example is consistent with the
knowledge base, the consistency-based diagnosis has no
discrepancy to start from. The practical suggestion then is
to analyze the consistent negative examples "by hand" and
modify the knowledge base to rule out those examples.
This corresponds to finding the mysterious EX in the defi-
nition of CKB-diagnosis.

The good news, however, is that negative examples usu-
ally are modifications of positive examples or previously
positive examples that became negative after a modifica-
tion to the knowledge base. Our experience from mainte-
nance over many years shows that these negative examples
will mostly remain negative examples after more modifi-
cations to the knowledge base.

Help also comes from good practice in software engi-
neering. When knowledge bases are stored in a version
control (configuration management) system, we can find
the latest previous version where some negative example
was still rejected by the knowledge base. Comparing that
older version with the current knowledge base shows the
constraints that were modified or removed in the meantime.
This is of course an excellent starting point for modifying

the current knowledge base such that it again rejects the
negative example.

When all negative examples are rejected by the knowl-
edge base, start looking at the positive examples. So the
negative examples are treated outside the diagnosis step.

5.3 Use the results from regression tests
Like any software, knowledge bases can be maintained
more efficiently by using regression tests and checking
them after a modification.

When a regression test produces an output different from
its reference, find out whether the new output is expected
(after a modification to the knowledge base). Only if the
new output is different from what is expected, feed this
output into diagnosis.

5.4 Do diagnosis and repeat the cycle
Finally, we use consistency-based diagnosis to detect faults
in the knowledge base. This follows the definition of CKB-
diagnosis as described above. The well-defined precon-
ditions and semantics of the method make it particularly
valuable.

After the knowledge base was modified, we must repeat
the cycle of testing and diagnosis until all negative exam-
ples are inconsistent and all positive ones are consistent.

The cycle described here starts with the negative
examples (by modifying or extending the knowledge base)
and continues with the positive examples (by modifying or
reducing the knowledge base). This could be done the other
way round. The "optimal" sequence, however, depends on
the structure of the knowledge base and the expert's
experience and point of view. The objective is to modify
the knowledge base such that it remains easy to maintain
and easy to understand. We are confident that the steps
described above help us get close to this objective.

6 Beyond diagnosis
Beyond the scope of CKB-diagnosis, other methods can be
useful for maintaining knowledge bases.

Automatic generation of test cases would be helpful for
producing a large set of regression test cases. This would
assure the quality of knowledge bases that are maintained
over several years.

If a negative example is consistent, automatic generali-
zation of the negated negative example could yield a non-
redundant modification to the knowledge base. Here the
optimum between introducing too many new constraints
and over-generalization has to be found. For this purpose
the methods for automatic learning of concepts have to be
analyzed with respect to the semantics of the configuration
knowledge base.

7 Summary and conclusion
Consistency-based diagnosis is applicable to the debugging
of configuration knowledge bases. The method is particu-
larly valuable because of its well-defined preconditions and
semantics.

Integrating CKB-diagnosis in the software engineering
process for knowledge bases can be done efficiently and
effectively. There are minor limitations where CKB-
diagnosis cannot be fully applied, i.e. with respect to
automatic suggestions from negative examples. Altogether
the experience from the planning of a debugging process
with diagnosis and from the early adoption is encouraging.
Results from wide usage will follow.

Acknowledgement
I want to thank Gerhard Friedrich and Dietmar Jannach for
their valuable contributions to our discussions.

References
[Felfernig et al., 2000] Alexander Felfernig, Gerhard E.
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based Diagnosis of Configuration Knowledge
Bases. Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI-2000), pp. 146-150, Berlin,
Aug. 2000, IOS Press.
[Felfernig et al., 2001] Alexander Felfernig, Gerhard E.
Friedrich, Dietmar Jannach, and Markus Stumptner.
Hierarchical diagnosis of large configurator knowledge
bases. Working Notes of the 12th Intl. Workshop on
Principles of Diagnosis (DX-2001), Via Lattea, Italy,
March 2001.
[Fleischanderl et al., 1998] Gerhard Fleischanderl, Gerhard
E. Friedrich, Alois Haselböck, Herwig Schreiner, and
Markus Stumptner. Configuring large systems using
generative constraint satisfaction. IEEE Intelligent Systems
& their applications, 13(4):59-68, July/Aug. 1998.
[Greiner et al., 1988] Russell Greiner, Barbara A. Smith,
and Ralph W. Wilkerson. A Correction to the Algorithm in
Reiter's Theory of Diagnosis. Artificial Intelligence,
41(1):79-88, Nov. 1989.
[Mittal and Frayman, 1989] Sanjay Mittal and Felix
Frayman. Towards a generic model of configuration tasks.
Proceedings of the 11th Intl. Joint Conference on Artificial
Intelligence (IJCAI-1989), pp. 1395-1401, Detroit, Aug.
1989, Morgan Kaufman Publishers.
[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis
from First Principles. Artificial Intelligence, 32(1):57-95,
Apr. 1987.
[Stumptner et al., 1998] Markus Stumptner, Gerhard E.
Friedrich, and Alois Haselböck. Generative Constraint-
Based Configuration of Large Technical Systems.
AI-EDAM (Artificial Intelligence for Engineering, Design,
Analysis and Manufacturing), 12(4):307-320, Special Issue
on Configuration, Sep. 1998.

