
A Model-Based Diagnosis Framework for Distributed Systems∗

Gregory Provan
Rockwell Scientific Company,

1049 Camino Dos Rios, Thousand Oaks, CA 91360
gprovan@rwsc.com

Abstract
We present a distributed model-based diagnostics
architecture for embedded diagnostics. We extend
the traditional model-based definition of diagnosis
to a distributed diagnosis definition, in which we
have a collection of distributed components whose
interconnectivity is described by a directed graph.
Assuming that each component can compute a local
minimal diagnosis based only on sensors internal
to that component and knowledge only of its own
system description, we describe an algorithm that
guarantees a globally sound, complete and minimal
diagnosis for the complete system. By compiling
diagnoses for groups of components based on the
interconnectivey graph, the algorithm efficiently
synthesizes the local diagnoses computed in dis-
tributed components into a globally-sound system
diagnosis using a graph-based message-passing ap-
proach.

1 INTRODUCTION

This article proposes a new technique for diagnosing dis-
tributed systems using a model-based approach. We assume
that we have a system consisting of a set of inter-connected
components, each of which computes a local (component) di-
agnosis.1 We adopt the structure-based diagnosis framework
of Darwiche [8] for synthesizing component diagnoses into
globally-sound diagnoses, where we obtain the structure from
the component connectivity. Unlike previous approaches that
compute diagnoses using the system observations and a sys-
tem description [8; 10], we transform the component diagno-
sis synthesis into the space of minimal diagnoses. Assum-
ing that each component can compute a local minimal diag-
nosis based only on sensors internal to that component and
knowledge only of the component system description, we de-
scribe an algorithm that guarantees a globally sound, com-
plete and minimal diagnosis for the complete system. This

∗Research supported in part by The Office of Naval Research
under contract number N00014-98-3-0012.

1Note that one can compute component diagnoses using any
method which returns a minimal diagnosis (with respect to a speci-
fied minimality criterion).

algorithm uses as input the directed graph (digraph) describ-
ing the connectivity of distributed components,with arc di-
rectionality derived from the causal relation between the the
components. Given that real-world graphs of this type are
either tree-structured or can be converted to tree-structured
graphs, we propose a graph-based message-passing algorithm
which passes diagnoses as messages and synthesizes local di-
agnoses into a globally minimal diagnosis in a two-phase pro-
cess. By compiling diagnoses for collections of components
(as determined by the graph’s topology), we can significantly
improve the performance of distributed embedded systems.
We show how this approach can be used for the distributed
diagnosis of systems with arbitrary topologies by transform-
ing such topologies into trees.

One important point to stress is that this approach synthe-
sizes diagnoses computed locally, and places no restriction on
the technique used to compute each local diagnosis (e.g., neu-
ral network, Bayesian network, etc.), provided that each local
diagnosis is a least-cost or most-likely diagnosis. The syn-
thesis approach takes this set of self-diagnosing sub-systems,
together with the connectivity of these sub-systems, to com-
pute globally-consistent diagnoses.

The approach presented in this article assumes that all
faults are diagnosable (i.e., can be isolated) through a central-
ized algorithm. We examine whether a distributed approach
can diagnose all faults, since a distributed algorithm can iso-
late faults no better than a centralized algorithm. Issues re-
lating to restricted diagnosability of both centralized and dis-
tributed algorithms due to insufficient observable data (e.g.,
when the suite of sensors is insufficient to guarantee complete
diagnosability) are examined in [21].

This article is organized as follows. Section 2 introduces
the application model that we use to demonstrate our ap-
proach. Section 3 introduces our modeling formalism, and
specifies our notion of centralized and distributed model.
Section 4 describes how we diagnose distributed models.
Section 5 surveys some related work on this topic. We sum-
marize our conclusions in Section 6.

2 IN-FLIGHT ENTERTAINMENT
EXAMPLE

Throughout this article we use a simplified example of an

In-Flight Entertainment (IFE) system. Figure 1 shows the
schematic for an IFE system fragment where we have (1) a
transmitter module (Tx) that generates 10 movie channels
(consisting of both video and audio signals) and 10 audio
channels; (2) two area distribution boxes (ADB); and (3) at-
tached to each ADBi we have two passenger units, Pi1 and
Pi2. For ADB j, passenger i, i = 1, 2 has a controller Cji

for selecting a video or audio channel, plus an audio unit α i

and video display υi. Control signal Cji is sent by passenger
i to ADBj and then to the transmitter, which in turn sends an
RF signal (RF) to each passenger.

We adopt a notion of causal influence for describing how
different components affect the value of a signal as it propa-
gates through the system. For example, the RF signal causally
influences the passenger audio and video outputs. In this
model the observables are the control signals, plus for pas-
senger i downstream of ADBj sound (Sji) and video-display
(V Dji). We assign a fault-mode to the transmitter and to each
ADB and passenger unit.

Tx

ADB1

ADB2

C1

RF

C2

P11
S11

VD11

P12
S12

VD12

P21

S21

VD21

P22

S22

VD22

RF1

RF2

C11

C12

C21

C22

Figure 1: Schematic of IFE fragment, showing the main mod-
ules and the directed arcs of data-flows.

Our modeling approach makes the following assumptions.
First, we can specify a system using an object-oriented ap-
proach. In other words, a system can be defined as a col-
lection of components, which are connected together, e.g.,
physically, as in an HVAC system, or in terms of data trans-
mission/reception, as in the IFE example. Our primary com-
ponent consists of a block, which has properties: input set,
output set, fault-mode, and equations. Given the fault-mode
and input set, the equations provide a mapping to the output
set. In other words, the inputs are the only nodes with causal
arcs into the block, and the outputs are the only nodes with
causal arcs out of the block. Typically, we have causal depen-
dence of block outputs ωi on inputs �i, i.e. ωi ∝ �i.2

This distributed model consists of a set of sub-models, or
blocks, which may be connected together. In our IFE exam-
ple, the transmitter block has inputs of control signals C1 and
C2, and output an RF signal.

Second, we assume that each component computes diag-

2The causal function ∝ can be be generalized to include proposi-
tions, relations, probabilistic functions, qualitative differential equa-
tions, etc. We don’t address such a generalization here.

noses based on data local to the component. We do not place
any restrictions on the type of algorithm used to compute the
diagnosis, except that the diagnosis be a least-cost diagno-
sis. We will describe the cost function used by our synthesis
algorithm in the following section.

3 MODEL-BASED DIAGNOSTICS USING
CAUSAL NETWORKS

This section formalizes our modeling and inference approach
to diagnostics and control reconfiguration. We first introduce
the model-based formalism, and then extend these notions to
capture a distributed model-based formalism.

3.1 FLAT (CENTRALIZED) MODELS
We adopt and extend the model-based representation for

diagnosis of Darwiche [8]. We model the system using a
causal network:

Definition 1 A system description is a four-tuple Φ =
(V ,G,Σ), where

• V is a set of variables comprising two variable types:
A is a set of variables (called assumables) representing
the failure modes of the components, V is a set of non-
assumable variables (V ∩ A = ∅) representing system
properties other than failure modes;

• G is a directed acyclic graph (DAG) called a causal
structure whose nodes are members in V∪A and whose
directed arcs represent causal relations between pairs of
nodes;

• and Σ is a set of propositional sentences (called the do-
main axioms) constructed from members in V∪A based
on the topological structure of G.

This definition of system description differs from the stan-
dard definition (called SD in [22]) only in that we include
a graph G to complement the domain axioms set of failure
modes (commonly called COMPS) and non-assumable vari-
ables.

The set of non-assumable variables consists of two exclu-
sive subsets: Vobs (the set of observables) and Vunobs (the
set of unobservables).

We can capture structural properties of the system descrip-
tion using the directed acyclic graph, or DAG, G. 3 For exam-
ple, if an actuator determines if a motor is on or not, we say
that the actuator causally influences the motor. More gener-
ally, A may directly causally influence B if A is a predecessor
of B in G. We use B ∝ A to denote the direct causal influence
of the value of B by the value of A.4 Through transitivity, we
can deduce indirect causal influence. For example, if B ∝ A
and C ∝ B, then A indirectly influences C.

This captures the notion of direct causal influence, i.e., a
node N and those nodes that are directly causally affected by
N , using a clan. We define the notion of the clan of a node N
of a DAG G in terms of graphical relationships as follows:

3In other system description specifications, e.g. [12], these struc-
tural relations are captured using logical sentences.

4This notion of causal influence does not guarantee that A influ-
ences B, but that A may influence B.

Definition 2 (Clan) : Given a DAG G, the clan Y (Ni) of a
nodeNi ∈ G consists of the node Ni together with its children
in G.

We adopt the notion of clan because we are interested in
synthesizing diagnoses computed at a set of distributed nodes
organized in a tree structure. The intuition behind the algo-
rithm is as follows: given local diagnoses, we start at the par-
ents of leaves in the decomposition tree and move up the tree
to the root, identifying if any node’s diagnosis is affected by
the diagnoses of its children, and if so, synthesizing those di-
agnoses. To perform each synthesis operation, we use a clan.

A clan is dual to the well-known notion of family, which
is typically defined as a node together with its parents in G.
This notion is important because we need to synthesize local
diagnostics within tree-structured systems, and the clan pro-
vides a more efficient means for doing so than the family for
tree-structured systems. For simplicity of notation, we will
denote the clan for node Ni, Y (Ni), as Yi.

It is also important to define restrictions of subsets of ob-
servables:

Definition 3 (Restriction) We denote by θi the restriction of
an instantiation θ of variables V to the instantiation of a sub-
set Vi of V . We denote the restriction of variable set T to
variables in sub-system description Φi by TΦi .

One of the key elements of diagnosing a system is the in-
stantiation of observables, since a diagnosis is computed for
abnormal observable instantiations.

Definition 4 (Instantiation) θΦi is an instantiation of ob-
servables Vobs

Φi for system description Φi. ΘΦi denotes the
set of all instantiations of observables Vobs

Φi .

We specify failure-mode instantiations and partition the
possible states into normal states and faulty states as follows:

Definition 5 (Mode-Instantiation) A∗ is an instantiation of
behavior modes for mode-set A. Further, we decomposition
A∗ such that A∗ = AF ∪ A∅, where A∅ denotes normal
system behaviour, i.e. all modes are normal, andAF denotes
a system fault, which may consist of simultaneous faults in
multiple components.

An assumable (behavior-mode variable) specifies the
discrete set of behavior-states that a component can
have, e.g., and AND-gate can be either OK, stuck-at-
0, or stuck-at-1. Our IFE-system, with component-set
{Tx,ABD1, ADB2, P11, P12, P21, P22}, can have a mode-
instantiation in which all components are OK except P11,
which is in audio-fail mode. In this case we have A∅ =
{Tx − mode = OK,ABD1 − mode = OK,ADB2 −
mode = OK,P12−mode = OK,P21−mode = OK,P22−
mode = OK} and AF = {P11 −mode =audio-fail}.

3.2 DISTRIBUTED SYSTEM DESCRIPTIONS
This section describes our distributed formalism, which ap-
plies to collections of interconnected components, or blocks.
We assume that a distributed system description is provided
either by the user or is deduced from the physical constraints
of available local diagnostic agents and physical connectiv-
ity. For example, many engineering systems, such as com-
mercial aircraft, are subdivided into Line-Replaceable Units

(LRUs), based on a number of factors, such as fault-isolation
capabilities, physical constraints, and ease of repair. An LRU
typically consists of a number of connected sub-systems, as
in the Passenger Unit of the IFE example, which consists of
circuit-cards to select audio/video channels and to drive the
audio and video output devices. It is standard practice in
commercial aircraft to isolate faults only to the LRU-level,
and replace faulty components only at the LRU-level.

Definition 6 (Decomposition Function) a decomposition
function is a mapping ψ(Φ) = Φdist that decomposes a
centralized system description Φ into a distributed system
description Φdist = {Φ1, ...,Φm}. The distributed system
description induced by a decomposition function ψ is defined
by a decomposition Π over the system variables V , i.e. a
collection X = {X1, ..., Xm} of nonempty subsets of V such
that (1) ∀i = 1, ...,m, Xi ∈ 2V; (2) V = ∪i(Xi|Xi ∈ Π).
When ξij = Xi ∩Xj �= ∅, we call ξij the separating set, or
sepset, of variables between Φi and Φj .

We can describe a distributed system description in terms
of a decomposition graph. A decomposition graph is a graph-
ical representation of the system model, when viewed as a
collection of connected blocks. In this graph each vertex cor-
responds to a block, and each directed edge corresponds to
a directed (causal) link between two blocks. Figure 2 shows
the decomposition graph for the extended IFE example. 5

A decomposition graph is a directed tree, or D-tree, which
is defined as follows:

Definition 7 A D-tree TD is a directed graph with vertices
V (TD) with a vertex r0, called the root, with the property
that for every vertex r ∈ V (TD) there is a unique directed
walk from r0 to r.

Definition 8 A decomposition graph GX is an edge-labeled
D-tree G(X , E , ξ) with (1) vertices X = {X1, ..., Xm},
where each vertex consists of a collection of variables of G,
(2) directed edges join pairs of vertices with non-empty in-
tersections, and arc direction is specified by the causal direc-
tion of the arcs between blocks in the decomposition graph,
i.e., E = {(Xj, Xk)|Xi ∩ Xj �= ∅, Xk ∝ Xj}, and (3)
edge labels (or separators) defined by the edge intersections,
ξ = {ξij |Xi ∩Xj �= ∅}.

We assume that in a distributed system description, for any
block all sensor data is local, and all equations describing dis-
tributed subsystems refer to local sensor data and local con-
ditions.

3.3 DIAGNOSIS SPECIFICATION

We define the notion of diagnosis as follows:

Definition 9 (Diagnosis) Given a system description Φ with
domain axioms Σ and an instantiation θ of Vobs, a diagnosis
D(θ) is an instantiation of behavior modes AF ∪ A∅ such
that Σ ∪ θ ∪ AF ∪A∅ �|= ⊥.

5We do not show the feedback loops of control requests
(C1, C2, C11..., C22) since all edges concerning observables can be
cut [7].

X2

X1

RF
C1

RF1
C11

RF1
C11

RF2
C21

RF2
C22

X4

X6

X5

X7

X3

RF
C2

X1={RF, C1, C2,
 Tx-mode}

X2={RF, C1,RF1,
 C11, C12, ADB-mode}

X3={RF, C2,RF2,
 C21, C22, ADB-mode}

X4={S11, VD11,RF1,
 C11, P11-mode}

X6={S12, VD12,RF1,
 C12, P12-mode}

X5={S21, VD21,RF2,
 C21, P21-mode}

Figure 2: Decomposition graph of extended IFE system de-
scription. Here an oval corresponds to a vertex, and a block
corresponds to a sepset. We specify the variables associated
with each vertex in the graph.

This diagnostic framework provides the capability to rank
diagnoses using a likelihood weight κi assigned to each as-
sumable Ai, i = 1, ...,m. Using the likelihood algebra de-
fined in [8], we can compute the likelihood assigned to each
diagnosis for observation θ. We refer to a (diagnosis, weight)
pair using (D(θ), κ). We use the weights to rank diagnoses,
i.e., least-weight diagnoses are the most-likely. This provides
a notion of minimal diagnosis, i.e. a diagnosis of weight κ
such that there exists no lesser-weight diagnosis.

3.4 LOCAL/GLOBAL DIAGNOSTICS
Our methodology rests on the determination of when com-
ponent diagnoses are independent, in which case the global
diagnosis is just the conjunction of the component diagnoses.
We apply the decomposition theorem of [8] to this case of
distributed diagnostics:

Theorem 1 If we have a system description Φ consisting of
two component system descriptions Φ1 and Φ2, and a sys-
tem observation θ, if the variables shared by Φ1 and Φ2 all
appear in θ, then

DΦ(θ) ≡ DΦ1(θ1) ∧DΦ2(θ2).

This theorem states that a diagnosis is decomposable pro-
vided that the system observation contains the variables
shared between Φ1 and Φ2. However, what happens when
the observation θ does not contain all variables shared be-
tween Φ1 and Φ2? One solution [8] is to decompose the com-
putation of DΦ by performing a case-analysis of all shared
variables ξ12. However, this case-analysis approach is expo-
nential in |ξ12|, the number of variables on which we do case-
analysis. Hence if we wanted to embed the diagnostics code,
such a case-analysis might be too time-consuming when per-
formed on a system-level model.

In the following we assume that each component computes
a local diagnosis, i.e., a diagnosis based only on local ob-
servables and on equations containing only local variables. In
contrast a global diagnosis is one based on global observables
and on equations describing all system variables. Our task is

to integrate these local component diagnoses into a globally
sound, minimal and consistent diagnosis, since for many sys-
tems the diagnostics generated locally are either incomplete
or not minimal.

Note that we can obtain global diagnostics for a modular
system by composing local blocks and diagnosing the entire
system model. However, it is true in many cases that global
and local diagnostics may differ. We now define a notion of
correspondence between local and global diagnoses.

The conjunction of the set of distributed system descrip-
tions is defined as Ddist(θ) =

∧
Φk∈B DΦk(θ), and we know

that Ddist(θ) = D(θ) only when θ ≡
⋃

i, jξij .
We can compute the diagnoses for this set of distributed

system descriptions either using an on-line algorithm, or by
pre-computing the set of diagnoses for Ddist(θ). In the fol-
lowing, we outline the compiled method of diagnosis.

We define a table, called a clan table, to specify local and
global diagnoses for collections of blocks. This table com-
piles the local case-analysis required by Theorem 1. We will
show later how to use this table for our diagnosis synthesis
algorithm.

Definition 10 A clan (or local/global diagnosis) table for
block-set B = {Φi, ...Φj} is a table consisting of tuples
(observable-intantiation, global diagnosis, weight) for all ab-
normal instantiations of observables θ in B.

Note that we can use the compositionality of blocks to
show that any time we compose a system description from
multiple blocks, we obtain “global” diagnostics for that com-
posed system description when we compute diagnoses over
the composed system description. Hence the “global” diag-
nosis for each collection of blocks is computed from a system
description generated from the composition of the system de-
scriptions of the blocks in B, using the observables from B.

Example 1 Table 1 contrasts the local and global diagnoses
for a set of scenarios where the set B of blocks is an ADB
with downstream passenger units. In these scenarios, we
compute the (probabilistically) most-likely diagnosis, assum-
ing that all faults are equally likely, i.e., have weight 1. More-
over, in defining a local diagnosis in Table 1, we report the
conjunction of all local diagnoses, i.e. the local diagnosis is
ADB-diagnosis ∧ P1-diagnosis ∧ P1-diagnosis. In scenarios
1, 2 and 4, the local and global diagnoses are identical. How-
ever, in scenarios 3, 5 and 6, they differ: the passenger units
each assume a local fault, whereas the transmitter unit is the
faulty one (since a single transmitter fault is much more likely
the two simultaneous faults, one in each passenger unit). 6

Given this potential for discrepancy between local and
global diagnoses, we map the decomposition graph into a
representation, the clan graph, from which we can synthesize
globally sound and complete minimal diagnoses from local
minimal diagnoses. Figure 3 shows the clan graph for the
extended IFE example.

6These differences arise due to different instantiations of the RF
signal in the local and global diagnosis. We hide the details of the
case-analysis of shared variables for simplicity of presentation.

Scenario ADB1 Unit Pass. Unit11 Pass. Unit12 Diagnosis

C11 C12 S11 V D11 S12 V D12 LOCAL GLOBAL
1 audio audio nom. none nom. none − −
2 audio audio none none nom. none P11-audio-fail P11-audio-fail
3 audio audio none none none none P11-audio-fail∧ P12-audio-fail Xaudio
4 video video nom. nom. nom. none P12-video-fail P12-video-fail
5 video video nom. none nom. none P11-video-fail∧ P12-video-fail Xvideo
6 audio video none none none. none P11-audio-fail∧ P12-video-fail ADB1-fail

Table 1: Diagnostic Scenarios. We denote a nominal passenger output of nominal using nom., and abnormal observable data in
bold-face. Xaudio denotes degraded audio, and Xvideo denotes degrated video.

X2 X4 X6

X1 X2 X3

RF
RF1
C1

ADB1-mode

X3 X5 X7

RF
RF2
C2

ADB2-mode

Y1
Y2

Y3

Figure 3: Clan graph of extended IFE system description.

Definition 11 (Clan graph) : A clan graph GY of a DAG
G(V,E) of vertices V and edges E is an edge-labeled D-tree
G(Y, E , ξ) defined as follows: (1) vertices Y = {Y1, ..., Ym},
where each node Yi consists of a clan of G; (2) edges de-
fined by non-empty intersections between pairs of vertices
E = {(Yj , Yk)|Yi ∩ Yj �= ∅}; and (3) separators defined
by the edge intersections ξ = {ξij = Yi ∩ Yj}.

The following section shows how we use the clan graph for
distributed diagnosis.

4 DISTRIBUTED MODEL-BASED
DIAGNOSIS

This section describes our distributed model-based diagnosis
algorithm. We first map the directed graph of the system into
a tree using tree-decomposition techniques, and then employ
a message-passing algorithm on the tree.

4.1 TREE-DECOMPOSITION
The work on tree-decomposition stems from work on
treewidth and graph minors [23]. A good review of the liter-
ature can be found in [5]. We define the basic notions below.

Definition 12 A tree decomposition of an undirected graph
G = (V,E) is a pair (X , T) with T = (I, F) a tree, and
X = {Xi|i ∈ I} is a family of subsets of V , one for each
node of T , such that

1.
⋃

i∈I Xi = V ;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in T , then
Xi ∩Xk ⊆ Xj .

The last property is known as the running-intersection prop-
erty within the BN community. The clique-tree algorithm

computes a tree-decomposition in which each node of the
tree is a clique, and undirected edges correspond to shared
variables between cliques.

Given a tree-decomposition, inference complexity is based
on the treewidth, defined as follows. The width of a tree de-
composition is maxi∈I |Xi| − 1. The treewidth of a graph G
is the minimum width over all tree decompositions of G. The
treewidth bears close relations to the maximal vertex degree
and maximal clique of a graph, so it provides a measure of
the complexity of diagnostic inference, among other things.
If a graph has a low treewidth then inference on the graph
is guaranteed to be easy. The task of computing treewidth is
NP-hard [2]. Many algorithms exist that, given a graph with n
variables, will compute an optimal treewidth in time polyno-
mial in n but exponential in the treewidth k; see, for example,
[4].

Directed Tree-Decomposition
The difference between the standard literature on tree-

decompositions and the task addressed here is that the stan-
dard literature focuses on undirected graphs, and we focus on
directed graphs. We capture and exploit the directionality of
causal relations during all phases of diagnostic inference. For
example, if we have an abstract hierarchical specification of
a system and compute diagnostics for each abstract hierar-
chical block, we still preserve the directionality of causality
among the abstract blocks. We exploit this directionality us-
ing a diagnostic synthesis algorithm operating on a directed
tree.

Definition 13 A D-tree TD is a directed graph with vertices
VTD and a vertex V0, called the root, with the property that
for every vertex V ∈ VTD there is a unique directed walk from
V0 to V .

The tree-decomposition results have been generalized to
directed graphs in [16], and we make use of some of those
results here. The key change is that we need to preserve or-
dering of edges during the decomposition process. To capture
such properties, we first need to define a notion of variable or-
dering, called Z-normality.

Definition 14 Let G be a digraph and let Z ⊆ V . A set S is Z-
normal if and only if the vertex-sets of the strong components
of G \ Z can be numbered S1, S2, ..., Sd such that

1. if 1 ≤ i ≤ j ≤ d, then no edge of G has a head in S i

and tail in Sj , and

2. either S = ∅ or S = Si∪Si+1 · · ·∪Sj for some integers
i, j with 1 ≤ i ≤ j ≤ d.

Definition 15 A D-tree decomposition of a digraph G =
(V , E) is a pair (X , TD) with TD = (I,F) a D-tree, and
X = {Xi|i ∈ I} is a family of subsets of V , one for each
node of TD , and the edges are numbered J = {1, ..., l} with
F = {Fj : j ∈ J }, such that

1.
⋃

i∈I Xi = V;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in TD ,
then Xi ∩Xk ⊆ Xj;

4. if j ∈ J , then
⋃

i{Xi : i ∈ I, i > j} is Xj-normal.

The width of a tree decomposition is the least integer w such
that for all i ∈ I, |Xi ∪

⋃
Xj | ≤ w + 1, where the union is

taken over all edges j ∈ J incident with i. maxi∈I |Xi| − 1.
The treewidth of a graph G is the least integer w such that G
has a D-tree-decomposition of width w.

For the class of applications addressed in this article, the
input graphs G for the system description are digraphs, and
the decomposition graph and clan graph are both D-tree de-
compositions of G. For more general digraph topologies, by
applying an algorithm for generating D-tree decompositions,
we can convert the digraphs into a decomposition graph, and
apply the diagnostic synthesis approach. Many of the prop-
erties of undirected tree-decompositions hold for the directed
case [16].

4.2 DIAGNOSIS OF SYSTEMS WITH
TREE-STRUCTURED GRAPHS

We now describe an approach to diagnosing systems with
tree-structured decomposition graphs.

We assume that:

• We are provided with the component system descrip-
tions and their connectivity;

• There is a single root in the decomposition graph (which
is a component with no parent-components), and each
leaf is a component with no child-component;

• Nodes have indices starting at the root (X1), increas-
ing based on a breadth-first expansion from the root and
ending at the leaves, labeled Xn−s, ..., Xn;

• Each component computes a local diagnosis based on
local observables.

We base our approach on synthesizing diagnoses, starting
from the leaf components and ending up at the root of the
tree. We first decompose the decomposition graph into a clan
graph. Based on the clan graph we construct a clan table for
each node in the graph.

This algorithm is inspired by the Bayesian network clique-
tree approach of [17], but replaces the clique-tree with
an analogous clan-tree, and passes diagnoses as messages.
Analogous to the clique-tree method’s clique-table pre-
computation, this approach requires pre-computing clan-
tables, but for embedded systems this results in computation-
ally simpler algorithms than those adopted in the past.

Under this scheme, we pre-compute clan tables for each
clan in GY . Given an observation θ for blocks X i, ..., Xk,

where Xi, ..., Xk are members of a clan Y ∈ GY , each block
computes diagnostics locally. We then compute the most
likely fault-mode assignment for Y through a process we call
diagnostics synthesis, which entails table-lookup in the clan
table of the minimal diagnosis given θ. The algorithm synthe-
sizes final diagnoses, going from the leaves to the root. This
guarantees a sound, complete and globally minimum system
diagnosis.

In this approach we first need to pre-compute the clan table,
and then use that table for diagnostic synthesis. We can pre-
compute the clan table from a set of blocks {Φ1, ...,Φk} as
follows:

1. Generate the decomposition graph GX from
{Φ1, ...,Φk}, with indices increasing in a breadth-
first manner from the root.

2. Generate the clan graph GY of GX .
3. Compute the clan table for each clan Yi in GY .
Given an observation θ, the diagnostic synthesis algorithm

is as follows:

1. Given observation θ, each block B i computes its local
diagnosis DΦi(θ) and likelihood κ(DΦi).

2. Mark all nodes Xi, i = 1, ..., n with flag=0;
3. Loop for j = n to 1:

(a) If flag=0 for Xj do:
For each node Xi in the clan Y (Xj), look up
corresponding clan diagnosis DΦY (θ) and weight
κ(DΦY (θ)) in the clan-table;

If κ(DΦY (θ)) <
∑

k:Φk∈Y

κ(DΦk),

• revise fault-mode assignment to nodes in Y (Nj),
by (a) setting the minimum-weight diagnosis
mode-variable; (b) if any local diagnosis D ′ is
synthesized, update D ′.• reassign values to variables in Y based on D and
θ• if reassignment is sound pass message with fault
report DΦY (θ).• Set flag for all Xi ∈ Y (Xj) to 1;

Theorem 2 Given a tree-structured decomposition graph
GX and local component diagnoses, diagnostics synthesis
will compute a sound and globally consistent set of fault
mode assignments for components X ∈ GX within O(|Y|)
message-passing steps, where GY is the clan graph generated
from GX .

Example 2 Diagnosis Synthesis in a Clan: Consider Sce-
nario 3 of Table 1. For this observation θ, the total set of
possible clan diagnoses is: (P11, audio-fail) ∧ (P12, audio-
fail) ∨ (ADB1, Xaudio). The weights of the diagnoses are 2
and 1, respectively.

In computing diagnoses on a purely local basis, the result-
ing diagnosis is (P11, audio-fail) ∧ (P12, audio-fail), with
weight 2. Note however there is a family diagnosis of weight
1, (ADB1, Xaudio), which is selected since it is of lower
weight than the distributed diagnosis. We now instantiate
each local component with θ, and set diagnoses as follows:
(P11, ∅), (P12, ∅), (ADB1, Xaudio). There exists a consistent
set of local variable instantantiations for this assignment, so
no further message-passing is necessary.

ADB1-mode
P11-mode
P12-mode

Tx-mode
ADB1-mode
ADB2-mode

ADB1-mode

ADB1-mode
P21-mode
P22-mode

ADB2-mode

P11∧ P12

P11∧ P12

ADB1

ADB2
∅∅∅∅

Local Dx

Family Dx

Local Dx

Family Dx
Local Dx

ADB2

ADB1

Y1

Y2

Y3

Figure 4: Diagnosis synthesis procedure, Step 1: (a) local
diagnoses synthesized at clans, and (b) clan diagnoses are
passed between families, as noted by dark arrows.

Example 3 Message-Passing: Figure 4 shows the first stage
of this procedure. In the graph we show nodes where the vari-
ables are restricted to fault mode variables, to simplify the
description of message-passing of instantations of mode vari-
ables. First, the local diagnoses are computed at each node
in the decomposition graph: all four passenger units register
a fault, and no other nodes in the decomposition graph reg-
ister faults. As a shorthand, we denote a fault-weight pair
using variable-names for faults, with ∅ denoting a nominal
mode. Then, these faults are synthesized at each clan using
the clan-table: fault-weight pair (P11∧P12, 2) is synthesized
into (ADB1, 1), and fault (P21 ∧P22, 2) is synthesized into
(ADB2, 1). Second, the synthesized faults (ADB1, 1) and
(ADB2, 1) are sent to the adjacent node in the clan graph,
Y1.

ADB1-mode
P11-mode
P12-modeTx-mode

ADB1-mode
ADB2-mode

ADB1-mode

ADB1-mode
P21-mode
P22-mode

ADB2-mode

∅∅∅∅
Local Dx

Family Dx

Local Dx

Family Dx

Local DxADB1∧ ADB2

Tx Family Dx

∅∅∅∅

Y1 Y2

Y3

Figure 5: Diagnosis synthesis procedure, Step 2: global diag-
noses computed following family diagnosis message-passing.

Figure 5 shows the second stage of this procedure. Fault-
weight pair (ADB1 ∧ADB2, 2) is synthesized into (Tx, 1)
at clan Y1, and all other fault-modes are set to nominal. This
is the global minimum-weight fault.

4.3 COMPLEXITY ISSUES
The complexity of logical resolution within a distributed
framework have been discussed in [1]. Here, our task is
model-based diagnosis within a tree-structured topology.

This approach is based on computing diagnoses for the
clans of G. Hence, it never needs to diagnose a system de-
scription for the entire graph G, but only for the clans of G.
As noted in Theorem 2, once the clan tables are computed,
given any local component diagnoses, the algorithm is linear
in the number of nodes in the clan-graph.

The worst-case complexity of computing a clan table is ex-
ponential in the number of variables in the clan table. The
memory requirements for storing the clan tables are defined
as follows. In the worst case, for a clan with mode vari-
ables A1, ...,Am, where each mode variable has |ωAi | faulty
values, a clan table stores an entry for each of the × i|ωAi |
multiple-fault combinations. For single-fault scenarios, a clan
table must store only

∑
i |ωAi | entries.

The main issue is the time-complexity of generating the
clan tables. For tree-structured systems the complexity of di-
agnosing G is exponential in the clan size, and the complexity
is bounded by the largest clan of G. Hence the complexity of
initially computing diagnoses is the same for the centralized
and distributed approaches. However, for embedded applica-
tions, the distributed approach has a complexity advantage,
since only clan-table lookup and simple message-passing are
required.

5 RELATED WORK
Our approach to distributed diagnosis has been preceded by
many pieces of related work, and we review several here.
Note that this review examines the most relevant work, and
does not claim to be exhaustive.

One of the most closely-related pieces of work describes
techniques for distributed logical inference [1; 20]. This work
focuses on how to perform logical reasoning and query an-
swering, proposing sound and complete message passing al-
gorithms, by exploiting the tree structure of distributed theo-
ries. They examine the complexity of computation, propose
specialized algorithms for first-order resolution and focused
consequence finding, and propose algorithms for optimally
partitioning a theory that is not already distributed. In some
ways, our task can be considered a special case of the general
problem that Amir and McIlraith examine. Logical inference
computes a model, whereas diagnostic inference computes a
minimal model in the assumables, a subset of the language
of the theory. We leverage many aspects of the specific diag-
nosis problem in our work, aspects that serve to distinguish
both our approach and our results. These include the notion
of causality, which imposes a directionality on the tree struc-
ture and the inference, and the notion of preference. In ad-
dition, the task of diagnostic inference depends critically on
two classes of distinguished variables, assumables (the liter-
als of interest) and observables (the inputs), and distributed
diagnosability depends on how assumables and observables
are distributed among the collection of blocks. In addition,
if the variables common between two blocks are observable,
then from a distributed diagnostics point of view those blocks
are independent [7].

The approach presented here bears some relation to diag-
nostic approaches on trees. Stumptner and Wotawa [25] have
an algorithm for diagnosing tree-structured systems. This ap-
proach assumes a centralized system defined at the compo-
nent level whereas our approach deals with distributed sys-
tems that can be defined at any level of abstraction. In ad-
dition, our assumption of sub-systems computing their own
diagnoses means that our diagnostic synthesis process is a
single-pass algorithm from the leaves of the tree to the root,

whereas Stumptner and Wotawa need a two-pass approach
since they must first enumerate all component diagnoses. A
second major tree-based method uses a clique-tree decom-
position of a system, e.g., the diagnostic method of [13]. A
clique-tree is a representation that is used for many kinds of
inference in addition to diagnosis, including probabilistic in-
ference and constraint satisfaction. The tree we generate is a
directed tree with a fixed root, and the nodes of the tree are
generated based on the clan property; a clique-tree is undi-
rected (with an arbitrary root), and the nodes of the tree are
generated based on the family property. One can think of
the D-tree as a directed variant of a clique-tree, which is op-
timized for diagnostic inference. In addition, our approach
uses the ordering of the D-tree to require message-passing in
a single direction only; in contrast, message propagation in
clique trees is bi-directional.

Our work also bears some relation to papers describing dis-
tributed solutions to Constraint Satisfaction Problems (CSPs)
[26; 15]. As with the work on distributed logical inference
[1], the task of distributed CSPs is finding a satisfying as-
signment to the variables, when constraints are distributed in
a collection of subsets of constraints. Hence the underlying
tasks of distributed diagnosis and CSP satisfiability are dif-
ferent. One issue in this work that is similar to diagnostic
reasoning is the recording of minimal sets of unsatisfiable
clauses as nogoods [15]. The computation of nogoods is a
key step to computing diagnoses [10].

There have been several proposals for using the ATMS [9]
in a distributed manner, e.g., [11; 19; 3; 18]. Our approach
differs from this work in that our approach uses system topol-
ogy explicitly, whereas these other approaches do not make
as extensive a use of topology.

The compilation approach proposed in this article bears
some relation to prior work.7 [24] presents an empirical com-
parison of centralized compilation techniques as applied to
several areas, of which diagnosis is one. Our future work in-
cludes examining the applicability of these compilation tech-
niques within our distributed framework. Compilation is also
examined in [20], but (as mentioned earlier) as applied to a
different task, logical resolution.

There has been some prior work on distributed model-
based diagnosis. For example, the approach in [14] assumes
that the diagnosis computed by each distributed agent is glob-
ally correct, and examine the case where agents must coop-
erate to diagnose components whose status is unknown. Our
approach makes the more realistic assumption that diagnoses
are not necessarily globally sound, and derives a very differ-
ent global synthesis algorithm.

6 SUMMARY AND CONCLUSIONS

This document has described a mechanism for computing dis-
tributed diagnoses using system topology and observability
properties. This algorithm takes as input minimal diagnoses
computed within distributed components, and uses system
topology to integrate these diagnoses into a globally sound
and minimal system diagnosis.

7A review of compilation can be found in [6].

We are in the process of applying this approach to two real-
world domains, that of In-Flight Entertainment and diagnosis
of HVAC systems.

The approach presented here provides a mechanism for
designing systems with predictable distributed diagnostics
properties. A given decomposition graph can be rated accord-
ing to its diagnosability and efficiency. Additionally, given a
system description, we can apply D-tree decomposition al-
gorithms to the system DAG to assist in identifying small-
treewidth decompositions, if any exist. Further, if a system
has no small treewidth decomposition, one can then recom-
mend system re-design to be facilitate efficiently computing
distributed diagnoses.

References
[1] E. Amir and S. McIlraith. Paritition-based logical rea-

soning. In Proc. KR ’2000, pages 389–400. Morgan
Kaufmann, 2000.

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Complex-
ity of finding embeddings in a k-tree. SIAM J. Algebraic
Discrete Meth., 8:277–284, 1987.

[3] C. Beckstein, R. Fuhge, and G. Kraetzschmar. Support-
ing assumption-based reasoning in a distributed envi-
ronment. In Proceedings of the 12th International Work-
shop on Distributed Artificial Intelligence, pages 3–17,
Hidden Valley, Pennsylvania, 1993.

[4] Hans L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. SIAM Journal
on Computing, 25:1305–1317, 1996.

[5] H. Bodlander. Treewidth: Algorithmic techniques and
results. In Proceedings 22nd International Sympo-
sium on Mathematical Foundations of Computer Sci-
ence, MFCS’97, volume 1295 of Lecture Notes in Com-
puter Science, pages 29–36. Springer-Verlag, 1997.

[6] Marco Cadoli and Francesco M. Donini. A survey
on knowledge compilation. AI Communications, 10(3-
4):137–150, 1997.

[7] A. Darwiche and G. Provan. Exploiting system struc-
ture in model-based diagnosis of discrete-event systems.
In Proc. 7th Intl. Workshop on Principles of Diagnosis,
pages 95–105, 1996.

[8] Adnan Darwiche. Model-based diagnosis using struc-
tured system descriptions. Journal of Artificial Intelli-
gence Research, 8:165–222, 1998.

[9] J. de Kleer. An Assumption-based TMS. Artificial In-
telligence, 28:127–162, 1986.

[10] J. de Kleer and B. Williams. Diagnosing Multiple
Faults. Artificial Intelligence, 32:97–130, 1987.

[11] A. Dragoni. Distributed belief revision versus dis-
tributed truth maintenance: preliminary report. In Atti
del 3zo Incontro del Gruppo AI*IA di Interesse Spe-
ciale su Inteligenza Artificiale Distribuita, pages 64–73,
Rome, Italy, 1993.

[12] O. Dressler and Peter Struss. The consistency-based ap-
proach to the automated diagnosis of devices. In Ger-
hard Brewka, editor, Principles of Knowledge Repre-
sentation, pages 267–311. CSLI Publications, Stanford,
CA, USA, 1996.

[13] Yousri El Fattah and Rina Dechter. Diagnosing tree-
decomposable circuits. In IJCAI, pages 1742–1749,
1995.

[14] Peter Frohlich, Iara de Almeida Mora, Wolfgang Ne-
jdl, and Michael Schroeder. Diagnostic agents for dis-
tributed systems. In ModelAge Workshop, pages 173–
186, 1997.

[15] K. Hirayama and M. Yokoo. The effect of nogood learn-
ing in distributed constraint satisfaction. In Proceed-
ings of the 20th IEEE International Conf. on Distributed
Computing Systems, pages 169–177, 2000.

[16] T. Johnson, N. Robertson, P. Seymour, and R. Thomas.
Directed tree-width. to appear in J. Combin. Theory Ser.
B.

[17] S. Lauritzen and D. Spiegelhalter. Local computations
with probabilities on graphical structures and their ap-
plications to expert systems. Royal Statistical Society,
50:154–227, 1988.

[18] Benedita Malheiro and Eugenio Oliveira. Solving con-
flicting beliefs with a distributed belief revision ap-
proach. In IBERAMIA-SBIA, pages 146–155, 2000.

[19] Cindy L. Mason and Rowland R. Johnson. DATMS:
A framework for distributed assumption based reason-
ing. In Les Gasser and Michael N. Huhns, editors, Dis-
tributed Artificial Intelligence, volume 2, pages 293–
317. Pitman, 1989.

[20] Sheila A. McIlraith and Eyal Amir. Theorem proving
with structured theories. In Proc. IJCAI, pages 624–
634. Morgan Kaufmann, 2001.

[21] G. Provan. Distributed Diagnosability Properties of Dis-
crete Event Systems. In Proc. American Control Con-
ference, Anchorage, AK, May 2002.

[22] R. Reiter. A Theory of Diagnosis from First Principles.
Artificial Intelligence, 32:57–96, 1987.

[23] N. Robertson and P. Seymour. Graph minors. ii. algo-
rithmic aspects of treewidth. J. Algorithms, 7:309–322,
1986.

[24] Laurent Simon and Alvaro del Val. Efficient conse-
quence finding. In IJCAI, pages 359–370, 2001.

[25] Markus Stumptner and Franz Wotawa. Diagnosing tree-
structured systems. Artificial Intelligence, 127(1):1–29,
2001.

[26] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and
Kazuhiro Kuwabara. The distributed constraint satis-
faction problem: Formalization and algorithms. Knowl-
edge and Data Engineering, 10(5):673–685, 1998.

