
Observations and Results Gained from the Jade Project

Wolfgang Mayer
�

and Markus Stumptner
�

and Dominik Wieland
�

and Franz Wotawa
���

Abstract

This paper summarizes the work done in the course
of the Jade project, which deals with automatic de-
bugging of Java programs. Besides a brief intro-
duction to the Jade project, models developed to
debug Java programs are evaluated and results are
presented. Furthermore, insights gained from the
results are discussed and topics for further research
are identified.

1 Introduction
For the last three years the Jade project has examined the ap-
plicability of model-based diagnosis (MBD) techniques to the
software debugging domain. In particular, the goals of Jade
were (1) to establish a general theory of model-based soft-
ware debugging with a focus on object-oriented programming
languages, (2) to describe the semantics of the Java program-
ming language in terms of logical models usable for diagno-
sis, and (3) to develop an intelligent debugging environment
for Java programs based on theoretic results.

The main practical achievement of the Jade project is the
interactive debugging environment, which allows us to effi-
ciently locate bugs in faulty Java programs. Currently, this
debugger is fully functional with regard to nearly all aspects
of the Java programming language and comes complete with
a user-friendly GUI, the diagnosis system being integrated
into a “normal” interactive debugger interface. The Jade
debugger limits the search space of bug candidates by com-
puting diagnoses for a given (incorrect) input/output behav-
ior. This is done by using model-based diagnosis techniques,
which in some cases have been adapted to suit the needs of
an object-oriented debugging environment. Furthermore, the�

Vienna University of Technology, Institute for In-
formation Systems, Database and Artificial Intelligence
Group, Favoritenstrasse 9-11, A-1040 Vienna, Austria,
email: � mayer,wieland � @dbai.tuwien.ac.at�

University of South Australia, Advanced Computing Research
Center, 5095 Mawson Lakes (Adelaide) SA, Australia, email:
mst@cs.unisa.edu.au	

Graz University of Technology, Institute for Software
Technology, Inffeldgasse 16b/II, A-8010 Graz, Austria,
email: wotawa@ist.tu-graz.ac.at

Authors are listed in alphabetical order

debugger can be used to unambiguously locate faults through
an interactive debugging process, which is based on the iter-
ative computation of diagnoses, measurement selection, and
input of additional observations by the user.

This work is organized as follows: The next section briefly
describes the program models used by the Jade debugging
environment. Section 3 presents results obtained with the
models introduced in Section 2. Section 4 analyzes the results
from Section 3 and discusses some properties of the models.
In Section 5, we point out interesting topics for further re-
search. Section 6 briefly compares our approach to related
work. Finally, we conclude the paper.

2 Program models
Since model-based diagnosis relies on the existence of a
logical model description of the underlying target system,
one of the most important components of the Jade sys-
tem are its models. Currently, the Jade debugger makes
use of two model classes, dependency-based models and
value-based models. This section briefly describes these
model types. More comprehensive descriptions can be found
in [Stumptner et al., 2001; Wieland, 2001; Mayer, 2000;
2001].

Dependency-based models are based on the collection
of all data and control dependencies of a given Java pro-
gram. As an example, we look at a single statement �� ,
e.g., int x=a*b;. Informally, the variable dependencies
arising from this statement can be specified by � ����������������

. A formal logical model can now automatically be
derived from this dependency. For our example it reads��� �"! � �$#&%('*) ! � #&%+'*) ! � #�, '*) ! �-# , where the predicate� � stands for the assumption that a certain statement is in-
correct, i.e., behaves abnormally. The predicate '*) !/. # speci-
fies that the value of variable . is correct without making use
of the concrete value of . . Observations for such a model
can be expressed by specifying the correctness or incorrect-
ness of a certain variable, e.g., � '*) ! �-# in the above example.
In the course of the Jade project different dependency-based
models have been created that vary in their levels of abstrac-
tion and the amount of information used during their creation.
These models are:

ETFDM: A dependency-based model, which makes use of
a concrete execution trace [Wieland, 2001].

Test series #TC Diagnosis Debugging����� ����� �������
	�� ���� ������
	�� ���� ��� ����� �������
	�� ���� ������
	��
1 Adder 14 17 8.14 48 8.14 48 17 10 3.9 39 3.9 39
2 IfTest 10 3.5 2.2 (1.9) 63 (54) 2.0 57 6.3 4.9 3 61 2.8 57
3 WhileTest 10 5.6 3.3 59 2.5 47 11.7 5.4 5.1 94 3.9 72
4 Numeric 9 4.6 4.6 100 4.6 100 6.2 3.6 4.4 120 5.3 147
5 Trafficlight 4 5 3 60 3 60 14 7.25 6.25 86 6.25 86
6 Library 5 26 20.6 (18) 79 (69) 20 77 33 18.6 7.8 42 7.6 41�

1 10 6.3 (5.9) 63 (59) 6 60 13.4 7.6 4.6 60 4.5 59

Table 1: Diagnosis and debugging results of the dependency-based models

DFDM: A dependency-based model, which only makes use
of static (compile-time) information, such as the Java
source code and the programming language seman-
tics [Stumptner et al., 2001; Wieland, 2001].

SFDM: Another dependency-based model, which is based
on either the ETFDM or the DFDM and involves a
higher level of abstraction by removing the distinction
between object locations and references [Stumptner et
al., 2001; Wieland, 2001].

Value-based models are models which make use of
concrete execution values and propagate these values from
the model’s inputs to its outputs and (if possible) from the
model’s outputs to its inputs. A simple value-based model
for the above example statement reads ��� �"! � �$#�� ��� ��� � ,
where � ,

�
, and

�
stand for concrete variable values as com-

puted at run-time. In the case of value-based models observa-
tions can be expressed by specifying the concrete value of a
certain variable, e.g., ����� in the above example. The Jade
system currently operates on the following two value-based
model types:

VBM: A value-based model, which makes use of not only
the underlying program dependencies, but also concrete
evaluation values and the full programming language se-
mantics [Mayer, 2000].

LF-VBM: A second value-based model, which is based
on the unfolded source code for a particular program
run [Mayer, 2001]. In particular, the loops are expanded
into a set of nested conditional statements, where the
conditional statements are modeled specially in order to
provide better backward reasoning capabilities.

Although the expressiveness of the individual models is not
exactly the same, all models support a considerable subset of
the Java programming language. Currently, exception han-
dling and programs using multiple threads are not supported.
Furthermore, the value-based models do not support recursive
method calls. The models are designed to locate functional
faults, e.g. wrong operators or reversed conditions. They
cannot reliably locate structural faults or more severe defects,
such as wrong algorithms or data structures.

3 Results
In this section we describe results obtained by applying
the models introduced above to a set of example pro-
grams and compare them with respect to their debug-

ging and diagnostic accuracy. The tests were separated
into two test sets, where one test set was used to com-
pare the dependency-based models, whereas the other set
was used to evaluate the value-based models. A compar-
ison between the dependency-based models and the value-
based models can be found in [Stumptner et al., 2001].
Most of the example programs can be obtained from
http://www.dbai.tuwien.ac.at/proj/Jade/.

3.1 Dependency-based models
The first test series aims at evaluating the performance of the
used dependency-based models, i.e., DFDMs, ETFDMs, and
SFDMs. Furthermore, we compare the results scored by these
model types. In particular, the test series has two main goals:
(1) to examine the ability of the Jade debugger to reduce the
search space of bug candidates. In other words, we test which
parts of a Java program can automatically be excluded from
the fault localization process in a single diagnosis step and
which parts of the search space remain for further debugging
actions. (2) to evaluate the debugging performance of the
Jade tool, i.e., determining the amount of user interaction
needed to unambiguously locate a fault in a Java program.

In order to carry out these tests we implement a couple
of test programs demonstrating simple variable dependencies
(simulating a binary adder, numeric examples), making use of
control structures (if and while statements), and finally mul-
tiple objects and instance fields together with linked lists and
general processing (a small library application). We then con-
struct test cases for each program � by specifying the correct
input/output behavior of � and installing a single-fault into
� . Overall 52 test cases are constructed and used for the eval-
uation of the system’s performance. Table 1 shows all tests
carried out with each row summarizing all tests performed in
a single test series. Column "!$# denotes the number of tests
of the respective test series.

The diagnostic performance of the Jade system in the con-
text of dependency-based models is given in columns 4 to 8
of Table 1. Column % ��& shows the average number of top-
level statements of the tested programs in a single test series.
Since the Jade tool performs hierarchical debugging, only
these top-level statements (this excludes statements nested
in loops and selection statements) can be identified as the
source of a fault in a single diagnosis step. Columns %(' &
and %('*) present the number of top-level statements, which
remain as possible fault candidates after a single diagnosis
step has been performed using DFDMs and ETFDMs, re-

spectively. In other words, the difference between % � & and
%(' & (%(')) shows the number of statements, which can be
eliminated from the debugging scope in a single diagnosis
step. Columns %(' & ! � # and %('*) ! � # show the number of
remaining statements for both model types in relation to the
total number of top-level statement, i.e., % � & . These columns
present the percentage of statements, which remain as possi-
ble fault candidates for further debugging actions. All tests
are also performed with the simplified versions of the test
programs’ DFDMs. In cases where these tests yield results
different from tests with the full DFDMs, the results obtained
from the SFDMs are given in brackets. Note that no tests are
carried out with simplified versions of ETFDMs, since these
models are not yet fully supported by the Jade debugging
tool.

The right side of Table 1 (columns 9 to 14) depicts the
debugging performance of the Jade debugging environment.
Since we are now interested in the exact localization of faults,
we no longer deal with top-level statement only, but also take
statements nested in loop and selection statements into con-
sideration. Column % �) shows the average number of all
statements of the respective tested program. Column %�� in-
cludes the average indices of those statements, in which the
single fault has been installed during the test design phase.
If we argue that with traditional debugging tools one has to
step through the code manually statement by statement un-
til the bug is located, the values in column %�� provide a
reasonable reference value for the amount of user interac-
tion needed by the Jade system to exactly locate a fault.
The latter is presented in columns %$!�& (DFDMs) and %$!)
(ETFDMs). Columns %$!�& ! � # and %$!) ! � # show the av-
erage number of user interaction relative to the average in-
dex of the buggy statement, i.e., %$! & ! � # � %$! &�� %�� and
%$!) ! � #�� %$!) � %�� .

3.2 Value-based models
In a second step we test the diagnostic performance of the
more detailed and semantically stronger value-based models,
i.e., VBMs and LF-VBMs. For this task we implement a sec-
ond set of example programs which is designed especially
to investigate the specific advantages and disadvantages of
the value-based model variants. Whereas some examples are
small and specifically designed to demonstrate different as-
pects of the models, most of the example programs imple-
ment well-known algorithms which could be part of larger
programs. For example, programs executing a binary search
procedure, computing the Huffman encoding of an array of
characters, or applying Gauss elimination are part of this test
suite. Similar to the tests carried out with the dependency-
based models, faults were seeded into each program such that
each test case is influenced by one fault. Again, we assume
that the faulty program is a close variant of the correct pro-
gram. We do not deal with wrong choice of algorithms, data
structures or similar major design defects.

The diagnostic experiments are performed by specifying
the inputs of the program together with the expected results
as observations. A summary report of the obtained results
for each example program is depicted in Table 2. Several as-
pects of the examples are listed: ����� denotes the number of

Program Stm VBM LF-VBM
C D % C D H S %

BinSearch 27 16 6 63 43 1 1 2 8
Binomial 76 26 9 42 255 24 1 1 32
BoundedSum 16 14 4 38 19 1 0 2 38
BubbleSort 15 10 6 93 34 7 1 1 47
FindPair 5 4 4 100 10 1 0 2 80
FindPositive2 17 13 3 41 20 2 1 1 12
FindPositive3 17 13 3 41 20 2 1 1 12
Hamming 27 19 11 70 95 9 1 1 33
Huffman 64 22 9 80 161 9 0 (2) (25)
Huffman 64 22 6 59 164 12 1 1 19
Intersection 95 31 12 84 155 8 1 1 5
Library 24 21 6 38 36 5 0 2 34
Matrix 71 21 21 100 127 37 1 1 52
MaxSearch2 21 16 3 38 37 2 0 2 19
MultLoops 21 12 2 19 27 4 2 3 24
MultiSet 97 55 8 28 283 1 0 (2) (11)
Permutation 24 17 14 96 29 3 1 1 13
Permutation0 26 19 12 69 33 1 1 1 4
Permutation1 26 19 12 69 32 8 0 3 100
Permutation2 26 19 15 85 33 9 1 1 35
Permutation3 24 19 12 67 33 2 0 3 50
Polynom 120 64 14 24 189 26 0 (3) (13)
SearchTree 84 41 41 100 140 45 0 (1) (54)
SkipEqual 5 4 4 100 11 2 1 1 40
Stat 23 17 3 39 42 2 0 4 48
Sum 5 4 3 80 10 3 1 1 40
SumPowers 21 12 8 81 36 5 1 1 24
% 39 20 9 65 77 8 0.6 (1.6) (32)

Table 2: Diagnosis results of the value-based models

statements in the program, # represents the number of com-
ponents in the generated model. ' stands for the number
of diagnoses of minimal cardinality that are obtained and 	
represents the number of diagnoses from ' that actually in-
clude the seeded fault. � denotes the cardinality at which
the diagnostic process is stopped because the seeded fault has
been located. Finally, the %-column lists the percentage of
the statements that have to be examined in the worst case un-
til the seeded fault is found. Here it is assumed that the di-
agnoses are presented with increasing cardinality. Note that
these numbers can further be improved by suitable heuristics,
which present the diagnoses according to their ’likelihood’
to explain the faults. For the VBM, the columns 	 and �
are omitted because their value is always equal to one. Num-
bers in parentheses denote cases where the faults cannot be
located because the maximum time allowed for diagnosis is
exceeded. In these cases the numbers are lower bounds to
the actual results that would be obtained when continuing the
diagnostic process to its completion.

4 Discussion
Based on the results from Section 3, in this section we dis-
cuss some important properties of the proposed models and
present insights gained during the Jade project.

From the results it can be seen that the amount of code
that has to be analyzed in order to locate a fault can be re-
duced significantly with all models. If we look at Table 1 we
find that in the test series carried out with dependency-based
models approximately 40% of the top-level statements can be
eliminated from the debugging scope, leaving some 60% for
further debugging actions. Interestingly, the average results
obtained with different dependency-based model types were
quite similar with slight advantages to ETFDMs (in compar-
ison to DFDMs) and full model versions (in comparison to
SFDMs). In the case of value-based models, the results lie
in the same order of magnitude. In particular, between 40
and 80% of all statements have to be checked, with the av-
erage being at 65%. Note that this does not indicate a better
performance of dependency-based models in comparison to
value-based models, since completely different test programs
were used to evaluate the different model types. In particular,
the test series with the value-based variants in general used
longer and more complex test methods. These methods result
in only very few statements being removed from the suspect
code in case of dependency-based models, but still yield re-
markable results with VBMs. For a more detailed comparison
of dependency-based and value-based models see [Stumptner
et al., 2001].

Dependency-based models One major advantage of
dependency-based models is that they can be constructed and
applied to actual diagnosis problems very quickly. This is
also true for medium- to large-size programs. They are also
easier to handle than their value-based counterparts, since
they require observations only to state whether the value of
a certain variable is correct or not, whereas with value-based
models concrete execution values are needed. Generally, the
use of ETFDMs results in fewer single diagnoses, because
concrete execution traces are used during the collection of
the dependencies. This becomes especially apparent for pro-
grams, which include loop and selection statements or recur-
sive method calls. The improved debugging performance of
ETFDMs in comparison to DFDMs comes with longer mod-
eling times, since now the creation of a model not only de-
pends on the underlying source code, but also on the ex-
istence of an execution trace, whose creation requires run-
ning the program. It was also shown that the full versions of
DFDMs and ETFDMs are superior to their simplified coun-
terparts. This is, because they model object locations and
object references by separate model constructs and thus pro-
vide a finer-grained model architecture. On the other hand the
computation of diagnoses with full model versions is compu-
tationally more expensive. Further on, the specification of
observations is easier with simplified model versions.

The Value-Based Model However, dependency-based
models did not prove to be an optimal solution for all tested
programs due to their lack of run-time information. Note
that even ETFDMs do not make use of concrete evaluation
values directly, but only extract information about executed
branches and numbers of iterations of loops from concrete
execution traces. Therefore, the VBM was developed, which
makes use of the full programming language semantics and
propagates concrete evaluation values through the system. As
already mentioned, in many cases VBMs score satisfying re-

sults with programs, which can hardly be diagnosed using
dependency-based approaches only. [Stumptner et al., 2001]
indicates that in general value-based models are superior to
their dependency-based counterparts. Therefore, although
VBMs have the drawbacks of their high computational re-
quirements, VBMs have proved as satisfying general-purpose
alternatives and complements to dependency-based models.

Loop Handling A negative aspect of the dependency-
based models and the VBM is the fact that these models pro-
vide good results for programs without loops but fail to com-
pute satisfying diagnoses for programs that consist of large
loop statements. This is due to the fact that loop statements
are modeled hierarchically and discrimination between state-
ments inside the loops is not possible. To overcome these
problems, the LF-VBM expands loops into a set of nested
conditional statements, with separate assumption variables
for each statement. The number of conditional statements is
derived from the initial execution of the test cases. Therefore,
the model is able to reason about the statements inside the
loop independently, without considering the whole loop as an
entity. This provides a finer-grained resolution, which avoids
the problem of large diagnosis entities mentioned above.

As can be seen in Table 2, switching from the VBM to
the LF-VBM leads to much better results. In particular, the
percentage of statements that has to be considered until the
fault is located is reduced to 32-43%1 on average, which is
quite low compared to the percentage of statements that was
computed by the VBM. For the LF-VBM it is no longer the
case that every faulty statement is included in a diagnosis of
cardinality one (as with the VBM). Therefore, the cardinal-
ity up to which diagnoses have to be computed is likely to
be greater than one, depending on the type of fault and the
program structure. For most example programs the diagnosis
cardinality required to locate a fault is less than or equal to
two, which is usually computationally feasible when consid-
ering small- to medium-sized programs. Another aspect of
the LF-VBM that keeps the model from being blindly appli-
cable is the fact that the strong fault modes of the conditional
statements decouple the selection of the conditional branch
to be executed from the evaluation of the selection condition.
Therefore, faults in the condition cannot be located using the
LF-VBM. Fortunately, such faults can in many cases be found
with the VBM alone and do not require the LF-VBM to be
applied.

In case of dependency-based models additional tests have
been carried out to examine the overall debugging perfor-
mance of the Jade tool. As Table 1 indicates, the average
number of user interactions needed by the Jade tool is sig-
nificantly smaller than the amount of user interactions needed
by traditional debugging tools. On average some 40% of user
interactions can be saved using the Jade tool. In general, the
direct comparison of user interactions is problematic, since
different user interactions require different types of inputs
from the user, which vary in time, complexity, and knowledge

143% is obtained when assuming the whole program has to be
examined for the examples where no exact solution was found. Bet-
ter estimates (37%) are obtained when taking the percentages ob-
tained with the VBM as upper bounds.

needed by the user. The numbers given in Table 1 therefore
include all user interaction performed by the Jade system. If
only variable queries, i.e., the input of a new observation in
the form of the value of a certain variable at a given source
code position, are counted, the average amount of user inter-
action amounts to only 35% of the user interaction needed by
traditional debugging tools. Since strictly speaking all other
kinds of user interactions are not included in the reference
value of traditional debuggers, this lower value probably pro-
vides a more accurate measurement of the debugging perfor-
mance of the Jade system.

Comparison If we compare the results obtained with
the Jade system to results obtained with other approaches
for program analysis, it can be seen that the approaches de-
scribed herein are comparable and in many cases even supe-
rior to other techniques. When comparing our approach to
slicing [Weiser, 1984], we find that with dependency-based
models we yield similar results to those obtained by slicing
techniques. When value-based models are used, our results
are much better, because for most of the example programs
used during the evaluation of the value-based variants, static
slicing is not able to eliminate any statement. This can be
explained by the different levels of abstraction applied by
dependency-based models and slicing on the one hand and
value-based diagnosis techniques on the other hand. The
value-based approach is somewhat closer to the actual execu-
tion semantics of the program than with both, program slicing
and dependency-based models. Another improvement with
respect to slicing is that we can provide more information to
the user, if a loop has to be executed a different number of
times to explain a fault. Those examples where no statements
of the program can be eliminated are programs that are either
very short (consisting of only an initialization statement and
a loop) or programs where almost every part of the program
depends on every other part (for example a binary search tree,
where the program execution depends on the values that were
inserted previously).

5 Ongoing Work
Although the results presented in the previous section are
already promising, there remain topics for further research.
This section discusses possible enhancements of the models,
to avoid some of the drawbacks mentioned in Section 4.

First, no single model is able to efficiently locate faults.
Rather, a combination of models has to be applied to perform
efficient reasoning. This multi-model-reasoning approach is
not only applicable to a single level of abstraction, as in
the case of the VBM and the LF-VBM, but can also be ap-
plied using multiple levels of abstraction or types of models.
For example, the dependency-based models can be used to
narrow the region of interest and then apply combinations
of the VBM and the LF-VBM to exactly locate the fault.
Also, models dealing with structural faults [Jackson, 1995;
Wotawa, 2000] or various special-purpose models (e.g., to
locate faults in loops, selection statements, etc...) could be
incorporated in such a framework.

For this approach to be applicable, suitable strategies to de-
cide under which conditions to apply certain kinds of models

have to be developed and evaluated. Based on these criteria,
the most efficient model can be selected based on the pro-
gram structure, the test cases and the diagnoses computed so
far. This approach overcomes the drawbacks of the models,
as well as reduces the computational complexity of the di-
agnostic process, because models are only instantiated when
needed. To select candidates for further inspection, suitable
criteria for ranking diagnoses according to their likelihood to
explain the fault have to be developed.

As far as the fault classes which can be located with the
Jade environment are concerned, it should already have be-
come clear that we are interested in source code bugs which
become observable as failures or output errors and manifest
themselves as logical faults in the analyzed source code. This
explicitly excludes compile-time and run-time failures as well
as faults leading to the non-termination of a program. For a
discussion about the fault classes handled by the Jade sys-
tem we divide the class of analyzed faults into functional and
structural faults. Functional faults are all faults, which result
in a certain variable storing an incorrect value in at least one
possible evaluation trace. In particular, these faults include
the use of incorrect operators or the specification of incor-
rect literals, such as integer or boolean constants. Since these
faults do not alter the structure of the program, faults belong-
ing to this class can generally be found with the Jade de-
bugging environment, once they become observable through
a test case leading to an incorrect variable value.

Structural faults, on the other hand, are source code bugs
which alter the structure of the underlying program. This is
the case if the dependency graph [Ferrante et al., 1987] of
the program is not structurally equivalent to the dependency
graph of the correct program. The result of these faults is
that the system description, i.e., the model, differs from the
system description obtained by the correct program. At the
moment structural faults can only be located under certain
circumstances. A discussion about different classes of struc-
tural faults and how they are handled by the Jade tool is given
in [Wieland, 2001]. In the future special-purpose models have
to be developed that handle different kinds of structural faults.
As already discussed, these models then have to be combined
with the general-purpose models described herein to increase
not only the performance of the Jade debugger, but also the
number of fault classes handled by the tool.

To aid the programmer in correcting a fault, an intelligent
debugging environment should be able to provide possible
corrections for a faulty part of a program. As described in
[Stumptner and Wotawa, 1999], after a single diagnosis has
been selected for further investigation, possible replacement
expressions for the faulty expression can be inferred and pre-
sented as corrections.

Finally, intuitive means for specifying the expected behav-
ior of a program have to be developed. This includes the
construction of an intuitive graphical user-interface through
which the user can easily switch between different levels of
abstraction, test case specification, and other representations
of the program (e.g., visualizations of heap structures, etc.).

6 Related Work

This section briefly summarizes related research in the area
of program debugging and compares the approaches to our
work.

Weiser’s slicing approach [Weiser, 1984] is probably the
most widely known approach to improve program debugging.
His approach relies on the program dependencies and tries to
eliminate those parts of a program that cannot contribute to an
observed faulty program behavior. This approach is compara-
ble to the dependency-based models presented here. Details
on the relationship between these approaches can be found
in [Wotawa, 2001].

Shapiro [Shapiro, 1983] introduces a theoretical frame-
work for algorithmic program debugging and several algo-
rithms suited to debug logic programs. However, the ap-
proach suffers from heavy user interaction, which is unde-
sirable when debugging larger programs. In addition, the al-
gorithms cannot locate faults inside procedures.

In [Console et al., 1993] the application of model-based di-
agnosis to the software domain has been proposed for the first
time. This paper introduces a way of using MBD by remov-
ing and adding Horn clauses to Prolog programs. Extensions
of this approach were developed in [Bond, 1994].

Liver [Liver, 1994] discusses the use of a functional repre-
sentation in the debugging of software to reduce the problem
of structural faults in software, where statements are missing
or superfluous parts of a program are the source of errors. The
approach relies on symbolic execution of a functional speci-
fication, which has to be provided by the user.

Hunt [Hunt, 1998] applies the idea of MBD to the domain
of object-oriented languages by building models for programs
written in Smalltalk. The model used in this work is based
on dependencies between instance variables and method calls
that modify them. In contrast to our approach, [Hunt, 1998]
is limited to single faults.

MBD concepts have also been applied to VLSI design lan-
guages, in particular VHDL [Friedrich et al., 1999], using pa-
pers describe (abstract) models used for locating a concurrent
statement, e.g., a VHDL process, responsible for a detected
misbehavior. The Jade project builds on this work, but ex-
tends the previous approaches by modeling of object-oriented
features.

Finally, Burnell and Horvitz [Burnell and Horvitz, 1995]
present another approach to program debugging using prob-
ability measurements to guide diagnosis. As this approach
relies on belief networks, which have to be initialized by do-
main experts, it is doubtable whether this approach can be
applied to arbitrary programs.

7 Conclusion

Building intelligent debugging aids for programmers is an im-
portant goal repeatedly attacked by researchers during the last
decades. Unfortunately, no generally applicable solution has
been found so far. In this paper we summarize the work done
during the Jade project and discuss some results obtained
using the introduced model types. Besides the results, spe-
cific advantages and disadvantages of each of the models are

discussed. Incorporating these models in a system with multi-
model reasoning capability and ranking criteria for diagnoses
holds the promise of wider applicability and even better dis-
crimination. As our approach clearly outperforms classi-
cal debugging techniques for many example programs, the
model-based approach can be considered a promising tech-
nique that should be further researched to obtain a generally
applicable debugging tool.

Acknowledgments
This work was partially supported by the Austrian Science
Fund project P12344-INF.

References
[Bond, 1994] Gregory W. Bond. Logic Programs for

Consistency-Based Diagnosis. PhD thesis, Carleton Uni-
versity, Faculty of Engineering, Ottawa, Canada, 1994.

[Burnell and Horvitz, 1995] Lisa Burnell and Eric Horvitz.
Structure and Chance: Melding Logic and Probability
for Software Debugging. Communications of the ACM,
38(3):31 – 41, 1995.

[Console et al., 1993] Luca Console, Gerhard Friedrich, and
Daniele Theseider Dupré. Model-based diagnosis meets
error diagnosis in logic programs. In Proceedings

�������

International Joint Conf. on Artificial Intelligence, pages
1494–1499, Chambery, August 1993.

[Ferrante et al., 1987] Jeanne Ferrante, Karl J. Ottenstein,
and Joe D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Program-
ming Languages and Systems, 9(3):319–349, 1987.

[Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-based diagnosis of hard-
ware designs. Artificial Intelligence, 111(2):3–39, July
1999.

[Hunt, 1998] John Hunt. Model-Based Software Diagnosis.
Applied Artificial Intelligence, 12(4):289–308, 1998.

[Jackson, 1995] Daniel Jackson. Aspect: Detecting Bugs
with Abstract Dependences. ACM Transactions on Soft-
ware Engineering and Methodology, 4(2):109–145, April
1995.

[Liver, 1994] Beat Liver. Modeling software systems for di-
agnosis. In Proceedings of the Fifth International Work-
shop on Principles of Diagnosis, pages 179–184, New
Paltz, NY, October 1994.

[Mayer, 2000] Wolfgang Mayer. Modellbasierte Diagnose
von Java-Programmen, Entwurf und Implementierung
eines wertbasierten Modells. Master’s thesis, Institut für
Informationssysteme, Abteilung für Datenbanken und Ar-
tificial Intelligence, TU Wien, 2000. (only available in
German).

[Mayer, 2001] Wolfgang Mayer. Evaluation of Value-Based
Models for Java Debugging. Technical report, Technische
Universität Wien, Institut für Informationssysteme 184/2,
Paniglgasse 16, A-1040 Wien, Austria, 2001.

[Shapiro, 1983] Ehud Shapiro. Algorithmic Program Debug-
ging. MIT Press, Cambridge, Massachusetts, 1983.

[Stumptner and Wotawa, 1999] Markus Stumptner and
Franz Wotawa. Debugging Functional Programs. In
Proceedings

� � ��� International Joint Conf. on Artificial
Intelligence, pages 1074–1079, Stockholm, Sweden,
August 1999.

[Stumptner et al., 2001] Markus Stumptner, Dominik
Wieland, and Franz Wotawa. Comparing Two Models
for Software Debugging. In Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence
(KI), Vienna, Austria, 2001.

[Weiser, 1984] Mark Weiser. Program slicing. IEEE Trans-
actions on Software Engineering, 10(4):352–357, July
1984.

[Wieland, 2001] Dominik Wieland. Model-Based Debug-
ging of Java Programs Using Dependencies. PhD
thesis, Vienna University of Technology, Computer
Science Department, Institute of Information Systems
(184), Database and Artificial Intelligence Group (184/2),
November 2001.

[Wotawa, 2000] Franz Wotawa. Debugging VHDL Designs
using Model-Based Reasoning. Artificial Intelligence in
Engineering, 14(4):331–351, 2000.

[Wotawa, 2001] Franz Wotawa. On the Relationship be-
tween Model-based Debugging and Programm Mutation.
In Proceedings of the Twelfth International Workshop on
Principles of Diagnosis, Sansicario, Italy, 2001.

