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Abstract. A set S that has a non-empty intersection with every
set in a collection of sets C is called a hitting set of C. If no
element can be removed from S without violating the hitting set
property, S is considered to be minimal. Several interesting
problems can be partly formulated as ones that a minimal
hitting set or more ones have to be found. Many of these
problems are required for proper solutions, but sometimes the
approximate solutions are enough. A genetic algorithm and
advantaged algorithms were devised for computing minimal
hitting sets. An improvement makes them get most minimal
hitting sets efficiently. Furthermore, they are smaller, i.e. fewer
rules.

1 INTRODUCTION

A lot of theoretical and practical problems, e.g., [1~8], can be
partly reduced to an instance of the minimal hitting set or one
of its relatives, such as the minimum set cover problem, model-
based diagnosis [1~5,7~8], and teachers and courses problem.

Normally speaking, it is a problem of selecting a minimal set
(e.g., of teachers) that has a non-empty intersection with each
set (e.g., list of courses), That is to say, there is, at least, one
teacher who can teach any courses, This is a formulation of the
minimal hitting set problem, which, in general, is NP-hard [6].

Generally, there are a number of hitting sets, but sometimes
we only need one or some of them. There are some algorithms
[1~8] for computing all of the minimal hitting sets, the space
and time efficiency are not ideal. We present a novel method
based on the Genetic Algorithm (in short GA here) for
calculating minimal hitting sets.

 Definition 1. (Hitting sets)
Given a collection C={Si | i

�
 } of sets of elements from

some universe U, a hitting set is a set S ⊆ U such that S Si � ∅
, for all i, i.e., a set which contains, at least, one element
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from all sets in C. Let HS(C) denote the collection of all hitting
subsets in HS(C). These are called the minimal hitting sets of
C.

We introduce a minimizing operator µ [5], MHS(C)= µ
(HS(C)). We will use µ  to get minimal conflict(/hitting) sets
from conflict(/hitting) sets.

Determining a minimal cardinality element of MHS(C) is
called the minimal hitting set problem.

Example 1. Model-based diagnosis [1], as shown in Figure
1. Suppose conflict sets are {M1, M2, A1}, {M1, A1, A2, M3}.
The minimal hitting sets (diagnosis) are {M1}, {A1}, {M2,
A2}, {M2, M3}.

{M1}, {A1} are of minimal cardinality.

Figure 1 A simple circuit with 3 multipliers and 2 adders.

A minimal cardinality hitting set is a minimal hitting set of
minimal cardinality.

In case of large sets of conflicts, the computation of the
hitting sets will result both time and space consumption. Shown
in Figure 2.

There are about millions of components, For example, in
vehicles, computer systems, power plants, aircrafts, etc,.
Therefore, we developed a novel efficient GA to compute
minimal hitting sets. When the scale of conflicting sets is
getting large, the GA method can still be used for computing
the minimal hitting sets in a very short time.



2 GENETIC ALGORITHM

Genetic algorithm is a heuristic for the function optimization,
where the extreme of the function (i.e., minimal or maximal)
cannot be analytically established. A population of potential
solution is refined iteratively by employing a strategy inspired
by Darwinist evolution or natural selection. Genetic algorithms
promote “survival of the fittest”. This type of heuristic has been
applied in many different fields, including construction of
neural networks and multi-disorder diagnosis.

For the minimal hitting set problem, a straightforward choice
of population is a set P of elements from 2U, encoded as bit-
vectors, where each bit indicates the presence of a particular
element in the set.

Example 2. (Teacher and course problem) Let C denote a set
cluster containing,

S1={1, 2, 3, 4}, S2={1, 2, 4}, S3={1, 2}, S4={2, 3}, S5={4}.
It means that there are 5 courses {S1, S2, S3, S4, S5 } and 4

teachers 1, 2, 3, 4. Teachers 1, 2, 3 and 4 can teach course S1,
teachers 1, 2, 4 can teach course S2, … , teacher 4 can teach
course S5. We want to find the least teachers who can teach all
of the 5 courses. This is a minimal hitting sets problem, and the
minimal hitting sets are: H1={1, 3, 4}, H2={2, 4}.

We use bi-vectors to represent the sets and their hitting sets,
these bi-vectors are called “chromosomes”, each bit is called
“gene”, and all of the “chromosomes” are called “population”.

If we use chromosome to represent the sets, they are
represented as follow:

S1={1, 1, 1, 1}, S2={1, 1, 0, 1}, S3={1, 1, 0, 0}, S4={0, 1, 1,
0}, S5={0, 0, 0, 1}.

The hitting sets are: H1={1, 0, 1, 1}, H2={0, 1, 0, 1}.
Here, | Si|

�
|

�
Sj|, | Hi|

�
|

�
Sj|, so, the length of chromosomes

equals to |
�

Sj|.
Genetic operations include: “crossover”, “mutation”,

“inversion”, “selection” and “obtain”.
Suppose that minimal conflict sets cluster is C={S1, S2, … ,

Sn}, n=|
�

Sk|.
“Crossover” operator. Suppose that S1={s11, s12, … , s1n},

S2={s21, s22, … , s2n}, are two chromosomes, select that a
random integer number 0<r<n, S3, S4 is offspring of
crossover(S1, S2),

S3={si | if i
�
r, si

�
S1, else si 

�
S2},

S4={si | if i
�
r, si

�
S2, else si 

�
S1}.

“Mutation” operator. Suppose that a chromosome S1={s11,
s12, … , s1n}, selecting a random integer number 0<r

�
n, S3 is

mutation of S1,
S3={si | if i � r, then si=s1i, else si =1-s1i}.
“Inversion” operator. Suppose that chromosome S1={s11,

s12, … , s1r , s1, r+1, … , s1, r+l, s1,r+l+1, … , s1n }, r, l are random
numbers, S2 is the inversion of S1.

S2={s11, s12, … , s1r , s1, r+l, … , s1, r+1, s1,r+l+1, … , s1n }.
“Selection” operator. Suppose that there are m sets, we

select [m/2] sets and eliminate other sets, the sets we selected
are both “fitness” and “minimal”, i.e. first, they intersect more
sets than the other, and second, their cardinality is smaller.

“Obtain” operator. Suppose that there is a singleton set in
the set cluster, then all hitting sets must hits this set, i.e. the
gene stands for this set must be always kept as “1” , we refer to
this operator as “obtain”:

“Obtain” operator has no any influence on the result, it can
improve the efficiency, such as a giraffe obtains “long neck”.
So they can be competed under the “ long neck” condition.
Genetic algorithm.
1. InitializePopulation: Obtain k*|C|*|

�
Si| population

randomly, each chromosome is an n-length array, k is a const
coefficient.

2. Testing if one of the stopping criteria (time, fitness, etc)
holds. If it is yes, the procedure can be stopped, here,100
generations are gotten

3. Selection: Selecting one of chromosome; testing its
fitness, here, being the number of sets it hits. Keeping the most
fitness ones and deleting the bad ones.

4. Applying the genetic operator: such as “crossover”,
“mutation”, “inversion” and “obtain” to the selected parents to
form offspring.

5. Recombining the offspring and current population to form
a new population with “selection” operator.

6. Repeating steps 2-5.
Also, we can use Genetic Algorithm to compute MINIMAL

hitting sets from hitting sets.
In step 3. If we get hitting sets, we can undergo mutation

operator just to change sr from “1” to “0” in order to get its
offspring, else, we undergo mutation operator just to change sr

from “0” to “1” in order to get its offspring. In the next
selection operator we will go on keeping hitting sets because
they are more fitting.

In the end, we will get 4 sets as follow:
1. Minimal hitting sets;
2. Both minimal hitting sets and their super-hitting sets; we

will use operator  to delete the super-hitting sets;
3. Hitting sets, but not minimal, their sub-hitting sets are not

gotten;
4. No hitting sets, these sets will be deleted by “selection”

operator.
But, in fact, the situation 3 is never gotten by GA test

program.
We can get about 95 percent minimal hitting sets with GA.

(shown in Figure 2)

3 COMPARISON

We have written a program to compare among HS-tree, BHS-
tree [8] and GA; the result is shown in Figure 3 and Figure 4.
The elements of every conflict sets are between 1 and 20.

In general, GA can get more than 95 percent minimal hitting
sets in 100 generations, when the set cluster is big, then the HS-
tree and BHS-tree can not run because of “Out of memory”,
but, GA can get almost all minimal hitting sets efficiently.

The space complexity of HS-tree is about O(mn), m is the
average of |Si|, n is |C|, That of BHS-tree is about O(

||2 is∪
),



that of GA is about O(n|
�

Si|). So the efficiency of GA is better
than that of HS-tree and BHS-tree.

Figure 2 Running time among BHS-tree, HS-tree and GA.
(CPU-PII 667, 128M main memory, C++, Windows’98)

Figure 3 The hitting sets number and the percentage of GA
gets.

4 CONCLUSIONS

In this paper, we have improved,
1. When the conflict sets scale gets big, This GA algorithm

may get most of minimal hitting sets in a relative short time
and small memory, but the other algorithm can’t get the hitting
sets because of “out of memory”.

2. The GA algorithm can also get MINIMAL hitting sets. If a
chromosome is not a hitting set, and the “mutation” operator
just changes a random gene from “0” into “1”, else change a
random gene form “1” into “0” so that we can get minimal

hitting set.
Example 3. (Continue to Example 2)
If we get H3={1, 1, 0, 1} and know that it is a hitting set,

then we undergo “mutation” operator to it, however, we only
change “1” into “0” here.

H3={1, 1, 0, 1} {0, 1, 0, 1}, (minimal hitting set)
            {1, 0, 0, 1}, (no hitting set)
            {1, 1, 0, 0}. {no hitting set}
Underlined genes stand for “mutation” from parent genes.
3. Although this algorithm can’t get all of the minimal hitting

sets, but after we replace or repair these components we have
computed, we can do next diagnosis step by step. The next
research is GA used in choice of a repair/replace action on the
set of suspects or choice of a next measurement.

This GA can be used in many other fields, e.g. a librarian can
decide what kind of journals referred by researchers will be
purchased under lack of funds. [6, pp124].
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